3- DT FILE COPY - . @“
NAVAL POSTGRADUATE SCHOOI.

Monterey, California

AD-A217 936

THESIS

IMPLEMENTATION OF A HYPERTEXT HELP SYSTEM
FOR GLAD, A GRAPHICS LANGUAGE FOR DATABASE

by
Lon M. Yeary
June 1989

Thesis Advisor: C. Thomas Wu J

Approved for public release; distribution unlimited

DTIC

ELECTE

S FEB 13,1990
B W

4y 3 Ry

.- Unclassified

Security Classification of this page
REPORT DOCUMENTATION PAGE

Ta Report Security Classificati 16 Restrictive Markings
[l Repon Seeusly Cleaton,) classified
~ 3

A ed for public release; distribution is unlimited. |
%‘h"’” anization Report umter(s) ""'7]
aval Pos uate School ;

» siate, and

Mcmtere&= CA 93943-5000
9 trument Number

10 !owo"undh ‘Numbers - i

I Prognm Manens Number | PrejsNo | TakNe | Wark Unis Assessian No

[T Title (Include Security Classification)

|IMPLEMENTATION OF A HYPERTEXT HELP SYSTEM FOR GLAD, A GRAPHICS LANGUAGE FOR DATABASE
l!a Typo of ﬁ ' 15» Tims Coversd ' 14 Date of lcpon (year, monthday) 165 Fa.a Eoum

. Muter‘s Thesis From Te June 1989 ,
{16 Supplementary Notion The VIEWS expressed In this thesls are those of the aUthor and 0o ot mhect the official . |
li or position of the De ent of Defense or the U.S. Government,

8 Subject Terms (continue on reverse |f necessary and idensify by block number)

‘On-line Help System, Hypertext, ACTOR, Object-Oriented, Graphical

User Interface, GLAD, Database Thesed, Duato, boests)

‘ Abatract (continue on reverse {f Wgcessary and ulcntw by block
aper explores the desi anz implementation of a help system for a graphical user interface named

GI..AD (Gna hics LAnguage for Dgtabase). It examines help se'vwm design alternatives. Emphasis is on the,
implementation of a hym'lext help system for GLAD using the Windows utility GUIDANCE and the objent-

oriented programming language A R. Discussion mcludes the advantages of hypertext for on-line hely.
systems. Kéazwmd sr
30 Distribution/Availability of Abstract 21 Absuast Security Classification
woclassiflediunlimited same as repont ﬂ DTIC users Unclassified .
esponsible Individual 235 Telephone (lncludc Area code) 226 Offics Symbol
Prof C. Thomas Wu — (408) 646-3391 Code 52Wu
55 Em Mﬂ. ﬁ ﬂﬁ 83 APR edition may be used until exhausted security ¢ miﬂmm o! Eﬂ 8 page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

Implementation of a Hypertext Help System
for GLAD, a Graphics LAnguage for Database

by

Lon M. Yeary
Captain, United States Marine Corps
B.S., United States Naval Academy

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

June 1989
Author: J{ff’/ W -, 1/
‘Lon M/ au:-k———
: i

Approved by:
C. Th Wu, Thesis Advisor

Ahfe. Aoy

David K. Hsiao, Second Reader

(D tat (5 PN

Robert B. McGhee, Chairman
Department of Computer Science

KT

Kneale T. Mars
Dean of Information and Policy Sciences

ii

ABSTRACT

This paper explores the design and implementation of a help system for a graphical
user interface named GLAD (Graphics LAnguage for Database). It examines help
system design alternatives. Emphasis is on the impiememation of a hypertext help
system for GLAD using the Windows utility GUIDANCE and the object-oriented
programming language ACTOR. Discussion includes the advantages of hypertext for

on-line help systems,

Acoessinn For
NTIS GRAAI ui’
DTIC TAB O

Unannounced 0
Justifiocation a

By
Diatribution/
Avallability Codes
Avail and/or
Dist Special

iii

11

TABLE OF CONTENTS

INTRODUCTION it i e e an
A. OVERVIEW e e e

D. MOTIVATION FOR DEVELOPMENT OF A HELP SYSTEM
E. ORGANIZATION i i i v

HELP SYSTEM ALTERNATIVES
A. WHAT IS A HELP SYSTEM? i it i
B. TYPES OF HELP SYSTEMS et i v
Static versus Dynamic 0 e
Multi-level Help System vy
System-Initisted Help
UserInitiated Help

Screen Options

IS o A

Extensibility
C. HYPERTEXT it e
D. SUMMARY ... it e e

THE GLAD HELP SYSTEMo o,
A. DESIGN CONSIDERATIONS o..0....
B. GLAD DESIGN CHOICES0covuuvuon..

C. GUIDE AND GUIDANCE0oviinnnnnn..

1
12
13
14
16
16
18

IV. GLAD HELP SYSTEM IMPLEMENTATION 29

0 A. INTEGRATING GLAD AND GUIDANCE0.0... 29
B. IMFLEMENTING THE HELP SYSTEM ACCELERATOR KEY ... 38

i C. GLAD HELP ORGANIZATION vovvrinnn e vnnns 36
D. MEMORY MANAGEMENT e e 42

V. CONCLUSIONS .ot tote ettt et et e e i 45

A. STRENGTHS AND WEAKNESSES R 45

B. FUTURE AREAS OF RESEARCH0ovvvvnnnn. .. 47

APPENDIX A - SAMPLE SECTION OF GLADVO2RC 48

APPENDIX B - GLAD INITMENUID METHODScoonvvur... 51

‘ LIST OF REFERENCES P 53
INITIAL DISTRIBUTION LIST o\ it v ettt et et ie e 55

Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

LIST OF FIGURES

..............

Standard Position of Help in GLAD Window
Structure of Guidance Help System
Shape of Guide Buttons
GLAD Hierarchy
Guidancelnitialise Routine
Example GLAD Methods Utilizing GuidanceSetContext
Guidance Use of Search String to Find Context-Sensitive Help . . .
GladApp Class shouldClose Method
Demonstration of Expansion Button
Help Window With Replica of DML Window
GLAD Index Guideline
Example Numbering Used To Minimize User Disorientation
GLAD Help Window Menu

Example Note Button

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooo

oooooooooooooooooooo

oooooooooooo

I. INTRODUCTION

A. OVERVIEW

GLAD (Graphics LAnguage for Database) is a coherent, graphics-oriented interface

for data manipulation and program development with a database (WU, 1989). It was

originally proposed in 1985 by Dr. C. Thomas Wu of the Naval Postgraduate School,
Monterey, California. This unified interface is designed for easy leaming and use
while providing a comprehensive visual representation of a database schema. A major -
design principal of GLAD was that the user should have access to additional
information whenever desired (WU, 1989).' This thesis proposes a context-sensitive
help system utilizing hypertext to augment the information available to GLAb users

and increase the overall usability of the database interface.

B. BACKGROUND

In order to manage the vast amounts of information generated in today's complex
world, it is vital that a simple, yet powerful database management system be available.
Desirable systems would not require a costly database specialist to program every
modification. A second desirable characteristic of a database management system is

that it must be casy-to-learn and use. GLAD research has been motivated by the

desire to develop a theory identifying the best method of graphical user interface for

interaction with a database. It was the lack of an easy-to-leam, easy-to-use query
facility for accessing databases that led to the proposal for GLAD. WU believed that
by proposing and comparing as many graphical interfaces as possible, a “best”
'methodology could be established. GLAD is unique in that it is not based upon a
specific data model, however, it provides a visual representation of the four most
widely used abstraction concepts: aggregation, qsociation, classification and
generalization (WU, 1987, p. 3). Through the use of simple visual repmentﬂtion of
u dstabase schema, GLAD is easy to leam and use. This is critical for wide-spread
use of a database management system. We believe this model for database

managément holds the best potential as an end-user interaction tool.

C. DEVELOPMENT OF GLAD

There have been two cycles in the development of GLAD. Version .01 developed.
e rudimentary prototype to see whether a full implementation of GLAD using object-
oriented programming and ACTOR' was feasible (WU, 1989). The second cycle of
GLAD added a data definition component, bitmap display capability, and updated the
facility of the first version. Version .02 has added some classes to increase the
functionality of this and future versions. Originally, plans were made to develop
GLAD as a system compatible with Sun Microsystems’ workstation. A study sho@ed

this to be infeasible (Wu, 1989). Attempts were made to implement GLAD using C;

! ACTOR i8 a registered trademark of The Whitewater Group, Inc.

however, it \x"as found that available routines were too low-level and very difficult o
use. For example, the code required to display a single scroll bar required ten
parameters (WU, 1989). Due to budget and manpower constraints this approach was
deemed unwieldy. A rapid prototyping tool was critical to the success of this visual
interface; therefore, a search began for a development tool which provided a quicker
and easier method of developing windowing routines. This development tool needed
to be capable of rapid prototyping and provide extensibility. Naval Data Automation
Commaend, a GLAD sponsor, imposed the requirement that the system be capable of
running on an IBM PC/AT compatible MS-DOS machine. It was also considered
desirable to keep the system capable of being ported to other platforms such as Unix
and Macintosh. It was felt that features of an object-oriented programming language
such as inheritance, encapsulation and polymorphism would best facilitate the most
expedient implementation of GLAD. After exploring Smalltalk and other similar
languages, information on ACTOR was found. ACTOR appeared to meet most of the
requirements specified above.

ACTOR is an object-oriented language introduced in 1987 for developing Microsoft
Windows (MS-Windows)® applications. It is a language that appeals to intuition and
does not depend upon the user possessing a wide background in traditional computer

science topics (Rowell, 1988, p. 77). In 1988, a GLAD prototype was successfully

‘M3, Microsoft and Windows are trademarks of Microsoft, Inc.

implerented using ACTOR (Williamson, 1988, p. 32). ACTOR was selected as the
language to be utilized for the development of GLAD. Interactive in nature, ACTOR
features several powerful tools that provide a sophisticated programming environment
for developing MS-Windows applications (WU & HSIAO, 1989, p. 3).

Among the tools provided in the ACTOR programming environment are a Browser
for viewing, modifying, and creating classes, an Inspector for viewing object structure,
a Debugger for debugging ACTOR code, and an Editor for simple text editing.
ACTOR allows static and dynamic binding of variables which are useful for rapid
prototyping of application software while not compromising the efficiency of the final
software product. ACTOR is designed to run within Microsoft Windows on an IBM
compatible personal computer with at least 640K of memory and a hard disk (Duff,
et al, 1989, p.). An BGA or VGA color monitor and extra memory are highly
desii hle, though optional. The prototype for GLAD was developed using ACTOR on
an AT.zompatible machine with an EGA color monitor and a 386 machine with a
VGA color monitor,

GLAD pruvides an object-oriented data model which provides a close relationship
between ti.» structure of the database tc be modeled and the logical entities used within
the - ~ct-oriented programming environment. Wu and Hsiao (1989) have identified

sk design principles for the development of GLAD. The program should be able to:

« Provide more information witen asked.
+ Recover from the unintended ur erroneous operation.
Pecfonm (. same operation in n.ore than one way.

¢ Perform logically equivalent operations in a consistent manner.
» Display multiple information at the same time.
» Display multiple views of the same information.

D. MOTIVATION FOR DEVELOPMENT OF A HELP SYSTEM

While it is theoretically possible to develop a computer program that is so well
designed that no user assistance is ever required, practically speaking, it is impossible.
The philosophy of the GLAD project is that the end-user should have easy access to
any information hat will permit the maximum possible usability. Design principle one
states that the user should have access to additional information when requested. It is
envisioned that a user will be able to obtain assistance from within the GLAD
environment concerning any operation, term, or process. The purpose of this thesis is
to research, design and implement a help system that meets the design principles

proposed by Wu which will promote even greater end-user usability for GLAD.

E. ORGANIZATION

The remainder of this thesis is organized as follows. Chapter II discusses help
system design alternatives. Chapter III discusses the design decisions made in the
development of the current GLAD help system. It includes a discussion of constraints
imposed by the GLAD environment and the decision to incorporate hypertext into

GLAD. Chapter IV discusses the implementation details of the GLAD help system.

It includes a discussion of the utilization of dynamic link libraries with ACTOR and

the incorporation of the hypertext system GUIDANCE’. Cor lusions and future

research for GLAD are discussed in Chapter V.

'Guidance is a registered trademark of Owl International, Inc.

R

II. HELP SYSTEM ALTERNATIVES

A. WHAT IS A HELP SYSTEM?

A help system is a program (or several programs) that assist the user in the

operation of another, usually, larger program. The help system can either be a separate

program that runs concurrently with the larger program or, as is more common, a
program that is completely integrated within the larger application (Kearsley, 1988, p.

3). Help encompasses a continuum of assistance to the user, from a memory jogger

of available commands to on-line documentation which includes or supplements the

user manual. Heip includes error nipssages. tutorials to.assist in the leaming process,

and detailed explanations of texminolog)". Help also includes prompts which guide the
user through the available choices within the program.

Help for a computer user comes in two basic forms. It can be printed (hard-copy)
which includes user manuals and reference guides, or it can be on-line. Tutorials are
another form of computer help: they can be printed, on-line or both. There are
advantages and disadvantages to both printed and on-line help. Research has shown
that speed and comprehension is greater using printed materials than when reading
from a CRT (Shneiderman, 1987, p. 360). Printed help allows the user to refer to his

wotk and the help information simultaneously without interrupting the program.

b

On-line help provided in a windowed environment will also provide this capability.
On-line help has the advantage of being available any time the program is running.
While at the terminal, the user does not have to be concerned with locating the
manual, and manifold users within an organization will not have to purchase multiple
copies of documentation. Additionally, on-line help is generally current. Unlike a user
maiiual which may be outdated with respect to the goﬁwm. on-line help is usually
updated with the software; therefore, it is more likely to be current. |
Regudless of the advantages of on-line. help syliems. it is clear that they cannot

completely replace the printed user manual. A "perfect help system would be of no

‘use to & naive user who did not know ,how to turn the computer on. lnstead. anon-

line help system can be thought of as a method of qnhmcing or uugmenting th;

~ information available to a program user. ‘This thesis addresses the developmm of an

on-line help system, It will not discuss, the need to. develop a good user mm_ug,lﬁ-fgr
GLAD.
Dumas (1988, p. 50) proposes seven principles for a good interface design. One

of these design principles is the incorporation of an on-line help facility. A well

designed help system cortributes to the overall usability of a progtam by reducing the

time it takes to complete an on-line function and by reducing the number of errors
made. Jackson and Lefrere (1986), Shneiderman (1987), and Kearsley (1988) all

discuss research which confinms the advantages of a well designed on-line help system.

Improving the design of the help system will improve its benefit to the user.

Improved use'r performance and user satisfaction can result from having a skillfully
planned help system integrated into a software program. If only by providing
increased confidence for the user, a help system can be beneficial, speeding the process
of familiarization (Jackson and Lafrere, 1986, p. 64).

To be truly useful, an on-line help system must be easier and quicker to use than
a manual (Roberts, 1970, p. 547). In addition, it must be accurate or it will destroy
any confidence the user might have in it (Killory, 1987, p. 19). On-line help is only
useful if it is capable of providing assistance to a user to derive or debug a plan of
action (Jackson and Lefrere, 1986, p. 63). When users request help, normally they are
seeking a specific explanation for an immediate problem. A help system cannot
assume that a user possesses a specific proficiency level. The help system mﬁst

present information commensurate with the user’s level of expertise.

B. TYPES OF HELP SYSTEMS
1. Static versus Dynamic
There are many design altemnatives available when developing an on-line help
system. One of the first considerations is whether the help offered should be static,
that is independent of where the user is in the program and any previous actions, or
dynamic, that is dependent on where the user is and what the user’s previous actions
were. Static help could be thought of as a kind of "on-line glossary of terms"

(Kearsley, 1988, p. 14). A list of terms is provided with a brief explanation when a

user requests help. Regardless of the function being performed during program
execution, the same information will appear whenever help is requested.
WordPerfect’s* F3 key is an example of a static help system. When F3 is pressed, the
user is presémed with the same list of qommmd options regardless of where he is in
the ptogram.' Static help allows réqueats for specific terms, however, the user must
know what term requires further explanation. While it is sometimes helpful to provide
. every detail to the user searching for a solution to a problem, it is possible to provide
so much information that the user becomes lost or distracted. If the search takes the
user through unnecessary information, the user may be delayed in actual task
completion.

Dynamic help that is sensitive to the sequence of user requests or actions can
be developed. Dynamic or comext-s?nsitive | help offers assistance based on the
function being perfonned durihg program execution. For instance, if the user is in
the edit mode of a program and requests help, an explanation of edit commands
available user would be provided without listing unrelated commands. Dynamic help
can be as simple as an explanation of an error message or it can be more
sophisticated, providing detailed information of prograun options based on where the
user is in the program or the function being performed. By increasing the degree of

context sensitivity, the usefulness of the help is increased.

‘WordPerfect is a registered trademark of NordPertect Corporation.

10

A powerful form of dynamic help is a dialog between the user and the system.
The dialog guides the user through the problem providing step-by-step instructions
' (Kearsley, 1988, p. 16). Dialog help is difficult to develop. It requires the
incorporation of assistance for every possible user action or question into the help
system. These help systems require extensive error checking to ensure correct user
input. SHERPA, a help system developed by ComTrain for LOTUS 1-2-3, is a good
example of a dialog-type help system which uses prompts to assist the user through a

series of functions (Kearsley, 1988, p. 35).

2, Multi-level Help System

It is clear that providing a complex step-by-step procedure for e\;ery user may
not be desirable and may even slow processing time considerably for the experienced
user. Therefore, another design dtemative is to provide multiple levels of help, givihg
more detailed information for each successive level of help requested. In addition to
increasingly detailed information, successive levels of help would provide examples,
qualifiers on use, or descriptions of related commands. Some programs such as
MicroPro’'s WordStar’ allow users to set the level of help when the program is
initinted. WordStar users have the choice of four levels of help, ranging from a full
menu of choices on screen at all times to no help prompts displayed. Another example

of a multi-level help system is one that utilizes different terms to request different

'WordStar is a registered trademark of MicroPro International Corporation.

11

levels of help, for example, "Define,” "Explain,” "Example," or "Limitations" (Kearsley,
1988, p. 17). Having different levels of help available is an attempt to meet the
specific needs of various users including the novice, the occasional user needing only

a memory aid, as well as the experienced programmer.

3. System-Initiated Help
Help requests may be initiated by the user or by the system. System-initiated
help, usually given as advice or as a suggestion, is frequently triggered by an error
condition. For example, if a user types a command that is inappropriate for the current
function, the system would provide a list of all the correct altemative commands.

Some users perceive system-initiated help as an interruption or as a delay in using the

program, and may even consider the messages as "nagging". System-initiated help is

necessary in some systems to prevent users from making "fatal errors”, especially in
systems where errors could result in catastrophic consequences. System-initiated help
also assists the user by pointing out shortcuts that may have previously been unknown.
This could prove useful to the novice and experienced user alike. For example, the
system may be designed to inform the user when he is using several operations to
accomy.’ish a task which should be incorporated into a single operation.

If system-initiated help is utilized, it is recommended that the user be given
the option of turning it off or specifying the level of message desired (Kearsley, 1988,

p. 20). Specific messages of highest priority cuuld be left on, while allowing the user

12

e e

t0 tum off advisory messages that may not be pertinent to their use. In order to
provide the advantages of system and user-initiated help, a system can be designed

which incorporates both.

4, User-Initiated Help

User-initiated help can be activated through a variety of means, includinj typing’

a help ch,, pressing a designated help key, or by selecting a help option from

a n;enu. The advantage of this method is that the help may be obtained independently

of typed input. The disadvantage is that the user may not remember which key is the

help key'unless a method for keeping a reminder on screen is utilized. Typing a help

command fnay be desirable in that it allows for complex syntax to be used to take _

the user to a specific area of needed assistance; however, the user will have 10
remember m; correct syntax of the help command. |

Utilizing menus with a help 6ption has several advantages. The user "wﬂl have
command options displayed in the menu eliminating the need to remember the
command choices. In addition, the user is reminded every time he looks at the screen
that the help option is ».:iiable. ivenus have the same problem as designated help
keys in that both require the user to specify the topic on which help is required,
Menu help systems allow the user to select from an index of topics. The need for
greater specificity is eliminated if the system is context-semit{ve. The fact that a

system is menu-driven does not necessarily imply that it is effective. "In fact, poorly

13

designéd merus are one of the most common problems with application software”
(Dumas, 1988, p. 60).

Menu-driven systems are becoming increasingly popular. Microsoft’s Word",
MicroPro's WordSur. and Wordperfect Corporation’'s Wordperfect have all released
menu driven lym. Aids in conv&ting existing programs to menu-driven programs
are already on the murket Macintosh's iconic menu system: s very popullr due to its
ease of learning. While this s primarily a movement toward gnprovm user-interface
design, it directly affects help systems available to the user. Commands will be on
screen, elimtnu'ing the uneed to remember the me syhm of the commsand or ghg!

proper command key.

5. Screen Options

Formatting of the screen, to a ,ln'ge extent, will be dependent _:_po;\ the
capabilities of the operating system being used and the constraints of the programming
environment. It must be deteuunined if the help message will be located within thﬁ
existing screen or if a sepmucte screen will apycar Critics of on-line help systems
state that it Is difficult for users to reinembrr what the help screenr star=; ‘vhen they
have to switch back to the operiung screen (Wciss, 1985). Help messages that are
displayed on part of the operating screen, for example at the bottoin or on the next

available line, may be limited in the depth the help message can display due to limited

‘Word is a registered trademark of Microsoft, Inc.

14

o

space, It al.so may be desirable, as mentioned earlier, to keep on the screen the
information needed to access the help system, i.e,, "F<1 = Help". This is usually
located either at the top or the bottom of the screen.

Operating systems that support bitmapped graphics allow for independent
windows that can eliminate many of the problems in screen formatting. Windowing
capabilities allow for both the operational screen and the help screen to be displayed
simultaneously. The operating eyitem being utilized will dictate if the windows will
overlap each other, potentially blocking part of the other screen, or if the window can
be moved and adjusted in size to allow the user to have access to both sets of
information, Some of the problems that have been identified in the use of windows
are that excessive window manipulation may be time consuming and distracting, the
need for window borders consumes valuable screen space, and small windows with
large amounts of information may lead to excessive, botl;ersome scrolling (Galitz, 1989,
p. 99).

Another consideration in screen formatting is whether the help screen should
page or scroll through the information if it exceeds the space available. Both methods

should keep in mind that the user should have to exert minimal effort to go both

forward and backward in retrieving information to minimize any delay.

6. Extensibility

Extensibility can be defined as "the ease with which software products may be
adapted to changes of specifications” (Meyer, 1988, p. 5). Extensibility is very
important to the design of a good help system. The information contained in the help
must be modifiable. As the software program evoives, the help system will need to
keep pace to remain useful. The user may also want to "personalize” the help system,
adding more information to the help message to reflect the way the command is used
(Kearsley, 1988, p. 23). A system of preventing inaccurate information from being
added to the help system must be utilized in order to maintain the integrity of the help
system. If a user altered an existing help message inaccurately, it wouid u’ltlmntel&
affect many users who also utilize the program. The proposed solution to this problem
is to allow additions to the help system while preventing modifications to the brlglnal

content of the help system.

C. HYPERTEXT

Hypertext has been hailed as ideally suvited to help systems (Kearsley, 1988, p. 19).
While hypertext has been around for over two decades, it has recently enjoyed an
upsurge in interest (Conklin, 1987, p. 32). With hypertext, windows on the screen are
associated with objects in a database. Links are provided between these objects both
graphically and in the database as pointers. Major terms or cc;ntml options can be

selected that will then be further explained. Any tern or graphic display can be used

16

to provide further help. Hypertext is capable of performing "high-speed, branching
transactions on textual chunks” (Conklin, 1987, p. 32). It cuts across traditional
boundaries; at the same time it is a database method, a representation scheme, und an
interface modality (Conklin, 1987, p. 33). It ic a way for high speed, automated
browsing through information (Guide, 1988, p. 3). Any text item can act as a "trigger"
for various kinds of help information and actions (Kearsley, 1988, p. 43). Owl,
International introduced "Guidance" in 1988. It is, on its simplest level, a context.
sensitive on-line help system that uses hypertext. It is a "read-only windows
application with a simple interfuce so that it can be driven by a host application”
(Guidance, 1988, p. 5).

Although there are many advantages to using hypertext, Conklin (1987) lists these
“nine as significant:
Ease of tracing references.
Ease of creating new references.
Information structuring.
Global views,
Customized documents.
Modularity of information.
Consistency of information.

Task stacking.
Collaboration.

He also identifies two miajor problems in the use of hypertext. First, a user can get
lost in the document because thes:- is not the traditional linear way of moving through
the document. This "disorientation problem" can be corrected through technical

solutions, such as the use of a graphical browser that can "map" the network that is

17

linked. Secondly, "cognitive overhead" or the additional effort nceded to juggle several
tasks at once may become troublesome with hypertext. However, utilizing a rapid
cross-reference node can ease this problem, as can an instantaneous one to three line
explanation in a pop up window as a side reference.

Through the use of hypertext, it is possible to incorporate many of the concepts
in help design altematives that prorﬁote maximum usability. Hypertext allows for both
static and dynamic context-sensitive help on a multi-level basis. It can access specific
information needs through the use of major terrns which serve as pointers or triggers

to elaborate further information,

D. SUMMARY

Help system design provides several alternatives. Tradeoffs will be required
between space, time and functionality. Design decisions needed in creating a help
system have been delineated. Major decisions include:

+ Utilizing static or dynamic help,

¢ Making the help system multi-leveled.

» Making help user or system-initiated.

*» Selecting screen options.

« Incorporating extensibility.

» Utllizing hypertext.

Hypertext appears ideal for the development of a help system. A good help system

will incorporate the best features of each design alternative.

IN0. THE GLAD HELP SYSTEM

A. DESIGN CONSIDERATIONS

The objective of this project is to develop a help system for GLAD. Inherent
within this project are certain constraints. First, the program must be able to run on
a IBM PC compatible computer as requested by the project sponsors. Second, GLAD
is a Microsoft Windows'-based application. It is, therefore logical to develop a help
system that is Wmdows based. Windows provides certain conventmns and capabﬂines
which mﬂuence the design of a help system A few examples of these conventions
and capabilities are the use of a mouse, adjustable windows, a co‘mmon menu
presentation and a common method of closing windows. GLAD is ‘a graéﬁical
interface. In order to maintain the desired consistency. it is legical that the help
system provide graphical capabilities as well. In addition, Windows casily facilitates
the presentation of bitmapped graphics.

The design principles for Glad were established rrior to the design of the help
system. ‘These six design principles must be adhered to in order to keep the help

system consistent with GLAD. Previous developers of GLAD have suggested that it

'Microsoft Windows hereafter referred to as "Windows".

19

should include a context-sensitive help system (Williams, 1988, Wu and Hsiao, 1989).
These suggestions have directed the design of the GLAD help system.

Another consideration in designing this help system is that GLAD is still under
development. A quality method of implementing the help system was needed which .
would provide extensibility and easy modification. One final constraint which must be
considered when working on any project of this nature is time. The time available for

the completion of this project was finite.

B. GLAD DESIGN CHOICES

Given the above constraints and the design principles for GLAD,‘ certain choices
for the help system were obvious. Firsf. since GLAD is a Windows-based application,
the help system for GLAD must also ﬁm in windows. Second, since pre;rious
developers of GLAD specified the need for context sensitivity, a dynamic help system
capable of sensing the location of the user within the document is preferred. Third,
to be useful to both the novice and the experienced user, the help system must be
multi-leveled, allowing the user to view as much information as required. Naturally,
the system has to run on tnv same hardware as GLAD.

The requirement of having the help system run within the Windows environment
is, in many ways, a design advantage. The Microsoft Windows development
environment eases design decisions through its conventions and capabilities. The first

design principle of GLAD states "be able to provide more information when asked".

20

The Windows programming environment establishes a conventions which provides a
convenient method of incorporating this principle into the help system. Programming
Windows recommends the right justified position on the menu bar as the standard
position for help (Petzold, 1988, p. 361). It also recommends enclosing the HELP
menu selection within a box which separates it from 6ther menu selections (Petzold,
1988, p.406). Windows provides simple methods which allow menus to be developed
utilizing these conventions. F1sHELP appears in the standard position enclosed in
& - 9n every menu bar of GLAD, see Figure 3.1. Help can be accessed by clicking

the left inouse button on Fi=HELP within the menu bar from any window of GLAD.,

: oAb

Create Modify Open Remove Guit

Figure 3.1 Standard Position of Help in GLAD Window

Another convention of the Window Programmers Reference Manual is the
establishment of the F1 key as the standard keyboaru accelerator for access to help.
A keyboard accelerator allows users to execute a command using the keyboard which
can also be executed using the mouse. This convention of accessing help through the
F1 key has been incorporated into GLAD. Design principle three states "be able to
perform the same operation in n. .. than one way". Thus, the GLAD user has been
given two methods to access the help system. He can either select FI=sHELP using
the mouse from the Help window menu bar or use the keyboard accelerator F1.
Regardless of the method used to access help, the FlmHelp box flashes on the menu
_ bar to give the user visual feedback that help has been accessed.

Using Windows i:rovides screen options that make the help syst-.u more utilitarian,
It is frustrating when thel user is required to switch to a screen where his work is .xio
longer visible in order to reference the on-line help, only to be required to switch
back while remembering all of the pertinent information just viewed. Using an
overlspping window allows the user to simultaneously view his work and refer to help
in a separate window. The user will not have to memorize information before
switching to his work screen. This ability to overlap and position a help window
anywhere on the screen has been incorporated into the GLAD help systerﬁ. The
information provided must be neatly formatted and presented in such a manner that

each screen explains a complete operation or concept. Forcing the user to scroll

22

" through an unknown amount of information can cause "infonnatién anxiety" as in
continuous scroll help systems.

Windows provides standard methods for closing windows which have been
incorporated into the GLAD help system. The help window can be closed with the
key;uoke combination ALT_F4, clicking on the control-menu box and selecting close
or by double-clicking on the control-menu box. These methods of closing the help
window are consistent with all Windows-based programs. This consistency and
flexibility adhere to design principles three and four, "perform the same operation in
more than one way" and "be able to perform the logically equivalent operation in a
consistent manner." |

The problem then, is how to incorporate these desigﬁ conventions into a help
system for GLAD. Consideration was given to writihg the entire help system using
ACTOR, howéver, the amount of code needed could be unwieldy and require
substantial amounts of time to generate. In addition, changes would demand that
someone study and re-write the help system code for each change to GLAD. Using
ACTOR would allow graphics to be incorporated into the help system; however, this
could be difficult unless the graphics were limited to simple geometric figures such as
circles and rectangles.

The decision was made to research the incorporation of GLAD with an existing
program designed to produce a Windows-based help. This program would have to

be capable of being easily integrated into GLAD Consideration was given to using

23

o
g -

a stand alone help program called "HELP" produced by R Company (1988). This

application would run independently of GLAD, but it would provide an easy method

of providing textual help for Window-based applications. This was ruled out, because

it did not allow the use of graphics within the help system. It was considered an

inadequate solution for GLAD's help system.

C. GUIDE AND GUIDANCE

A second application which was considered and ultimately selected for incorporation
into the GLAD help system is OWL Interhational’s Guidance (1988). Guidance is a
read-only Windows utility designed to allow users to display help while running a
host application under Microsoft Windows, Guidance permits the integration of a help
system which meets the design requirements of GLAD. Help information is contained
in files referred to as Guidelines. These Guidelines can contain both text and bitmapped
graphics. Guidelines are created using a program called Guide'. Guide is a general
purpose hypertext document generator supplied with Guidance (Guidance Manual, 1988,
p 9). Guidance not only fumnished a simple means of incorporatinig text and graphics
into the GLAD bhelp system, but also provided the advantages of hypertext. ACTOR,
the implementation language of GLAD, allows the easy integration of Guidance without

excessive coding.

'‘Guide is a registered trademark of Owl International, Inc.

24

When accessed, Guidance opens an Index Guideline which is similar to a "Table
of Contents”. This Index then connects to either another part of the Index or to a

Secondary Guideline, see Figure 3.2,

GLAD
L HOST
W i APPLICATION - INDEX
- GUIDELINE
SECONDARY

GUIDELINES

Figure 3.2 Structute of Guidance Help System

Guide furnisher four types of buttons as a means of accessing information within

Guidelines: Reference, Expansion, Note and Commnand. These buttons are the bullding

blocks which create the help system structure. Information contained within the help

. system which is linked to additional material is indicated by tl\ése buttons,

Reference buttons provide a means of linking material within a Guideline or

between Guidelines, This powerful cross-referencing capability allows the user to .

move quickly to other areas of the help system. Information which is linked to a
refemncé is indicated by the word or wouls. of the Guideline shown in italics. When
the cursor is positioned over a reference, the cursor changes to an arrow. See Figure
3.3 for the cursor -shlpe of reference buttons, Graphics or areas of a graphic which
are linked to a reference are also indicated by the cursor changing to an arrow.
Clicking the left mouse Lutton when the cursor is in this arrow shape will cause the

reference link to be traversed and the additional information to be displayed.

Ea EXPANSION BUTTONS

REFERENCE BUTTONS

=
% NOTE BUTTONS
=

COMMAND BUTTONS

GUIDE BUTTONS

Figure 3.3 Shape of Guide Buttons

.....
i

Bxpansioﬂ buttons allow information contained in the help system to be
hierarchically nested. Text within a Guideline which is an expansion button is
indicated in bold type. Positioning the cursor over this bold type will cause the cursor
to change to a cross hair. See Figure 3.3 for the cursor shape of an Expansion button,
Positioning the cursor over an area of a graphic which is an Expansion button also
changes the cursor to a cross hair. When a user positions the cursor over an expansion
button displaying the cross hair, clicking the left mouse button causes the information
which is hidden below the button to appear. This information can be nested to an
infinite number of levels. The user can go from level to level as desired, coﬁtlnuauy
revealing more and more details,

Note buttons allow the user. to access small pieces of supplementary information
about a topic and are intended for temporary display. Text which is linked to a note
is underlined. When the cursor is positioned over a Note button it changes to an
asterisk. See Figure 3.3 for an example of the shape of the Note button cursor. When
the cursor is positioned over a graphic which is linked to a Note button, the cursor
changes to an asterisk. When the user clicks on a Note button a small overlapping
window appears containing the additional information. This window remains visible
only as long as the user continues to hold down the left mouse button. Note buttons
are well suited to an on-line glossary, example formulas or short helpful hints.

Command buttons allow the user to launch other applications from within the help

system. This would be useful if the user wanted to open up a text editor or a

spreadsheet to obtain information for entry' or médiﬁcati_on to a GLAD database. A
user could also use this feature to open a text editor to jot down notes about the
database he was using in GLAD. The cursor changes to a solid black arrow when
positioned over a Command button. See Figure 3.3 for an example of the cufsor
shape of Cornmand buttons.

Utilizing Guidance to implement a help system for GLAD has several other
advantages not previously mentioned. Guidance allows the. GLAD help system to be
expanded or updated without requiring changes to the GLAD executable file. Guidance
is designed to run in Microsoft Windows and is able to take full advantage of all of
Windows' conventions, It furnishes multi-level capabilities th;ough the use of
hypertext. Guidance also provides functions which allow the help system to be
context-sensitive, The next chapter will discuss the implementation detaﬁs of

incorporating Guidance into the GLAD help system.

28

IV, GLAD HELP SYSTEM IMPLEMENTATION

A. INTEGRATING GLAD AND GUIDANCE

Guidance takes advantage of a feature in Micrbuot‘t Windows which enables
interapplication communication. This feature of Windows is referred to as Dynamic
Data Exchange (DDE). Within Guidance is Gydance.exe, a dynamic linked library
(DLL) or dynalink (Petzold, 1988, p. 805). Dynamic linked libraries are a feature of
the Microsoft Windows environment that allow aebame applications to dynamically
share code. Each module is compiled and linked separately in an executable file.
Utilizing the DLL, Gydance.exe, GLAD is eble to communicate with Guidance through
DDE. In essence, it allows Guidance to become an extension of the GLAD progrmh.
The advantages to this are that the application file is linked to help only at run time
when needed, making the GLAD executable file smaller and less memory intensive.
The link is also faster because only those modules which need to be linked are linked.
Most importantly, several different applications can share the same resource, which is
especially critical in a large integrated programming environment (Draganza, 1989, p.
59). ACTOR provides the library and procedure classes which allow easy integration

of DLLs.

29

s
T

Cydance.exe fumishes three routines which allow GLAD to interface with Guidance.
These routines are:

* QGuidancelnitialise.

¢+ GuidanceSetContext.

* GuidanceTerminate.

As the name implies, Guidancelnitialise initializes a link between GLAD and
Guidance. Once established this link remains until the GuidanceTerminate routine is
called. A link to Guidance must be established through Guidancelnitialise prior to any
requests for context-sensitive help wusing the GuidanceSetContext routine,
Guidancelnitialise must include the name of the index guideline. The GLAD index
guideline is the file index.gui. All files associated with the help system are noted by
the ".gui" extension.

Figure 4.1 shows the GLAD hierarchy. This figure indicates where the link to
Guidance is established. The Guidancelnitialise routine is executed in the InitGuidance
method of the GladWindow class. This method is executed each time a Glad Window
object is created. Figvee 4.2 shows the ACTOR code ussociated with the
Guidancelnitialise routine. Notice that prior to executing the Guidancelnitialise routine,
GLAD must create a 1w library and add the three routines provided by Guidance.

Each GLAD window which contains a menu bar provides access to help. When
a user requests i, by selecting "Fl=HELP" from the menu bar, a help message is
sent to the appropriate GLAD window. The help method of each window class inclucies

a call to ¢.e GuidanceSetContext routine. This routine enables the help system to be

30

- GladObj Oblect GladApp

[V ’ I . ’
Library | Colioetlonl et .
1

i _ i _J .l
- -' ondexed. Set Dialog | | Window
Point Byte . '—L—-m_L :
. K ;
Array coll“ctlonl lg”“'” ~ IMVW'"""”} v’?ﬁ.%‘éﬁv
| || . -1
Ordered Strust Attribute T .
= | Dascribe
collioipg] Dllulog F=1 Window
Color- | - | object L] . S —
Table |. " | Dialog __
e T B F Ll
Graphics ' alog '~ | LAd || oml .
3zaphics Pros 0 _L@ AD | J-NasidoM
i [[- T
" : Delete .
P Reot’ - ™1 Window &an-
ey
GuidanceTerminate Routine
- Contained in identified Class —v" ‘
Guidancelntialise Called indow
from Identified Ciass ‘

GuidanceSetContext Routine .
® Contained In Identified Classes A&?nod:v n:&',:z
Guidancelntialise Routine e

Executed in identified Clase Bitmaps

Figure 4.1 GLAD Hierarchy

31

/* Initialialse call to Guidance */
- Def initGuidance(selflaStr,aString)
{Lib := new(Library);
Lib.name := "Gydance.exe";
add(Lib, #AGUIDANCEINITIALISE, 0, #0 0 1 1 0 0));
add(Lib, #GUIDANCESETCONTEXT, 0, #0 1 0));
add(Lib, #GUIDANCETERMINATE, 0, #(0));
load(Lib); '
aStrirg := "GLAD";
- ' aStr := "index.gui";
HGuide :mpcall(Lib.procs[#GUIDANCEINITIALISE],
Hinstawe, handle(self), 1P(aString),
1P(aStr), 1,1);
J

Figure 4.2 Guidancelnitialise Routine

A context-sensitive. Included in this GuidanceSetContext call is .q sfring that contains
the name of the current GLAD window. Figure 4.3 contains some examples of the
GLAD methods whlcﬁl utilize the GuidanceSetContext routine. Notice the name of the
calling window is contained in a string in each method. Guidance searches the index
guideline for this string, then traverses the link to the guideline containing information
about the requesting window. This guideline then appears on the screen. See Figure
44.

Figure 4.1 also indicates the location of the GuidanceTerminate routine within the

GLAD hierarchy. This routine is executed by the shouldClose method of the GladApp

class. When the shouldClose message is sent to the Glad Application, the

GladWindow Class

Def topHelp(selflaStr)

(aStr :masciiz("GLAD WINDOW");
peall(Lib.procs[(#GUIDANCESETCONTEXT],HGuide,
1P(aStr),1);
freeHandle(aStr);

}

DMWindow Class

i Def help(selflaStr)

(aStr :masciiz("Data Manipulation Window");
peall(Lib.procs(#GUIDANCESETCONTEXT]),HGuide,
1P(aStr),1);
freeHandle(aStr);

)

DDWindow Class

Def help(selfiaStr)

(aStr :masciiz("Data Definition Window");
peall(Lib.procs(#GUIDANCESETCONTEXT),HGuide,
1P(aStr),1);
freeHandle(aStr);

)

ListMemWindow Class

Def help(selfiaStr)

(aStr ;masciiz("List Members Window"),
peall(Lib.procs[#GUIDANCESETCONTEXT],HGuide,
1P(aStr),1);
freeHandle(aStr);

)

Figure 4.3 Example GLAD Methods Utilizing GuidanceSetContext

p——— DML WINDOW *'

DML WINDOW
’ Data
Manipulation
Index.gui Window
HELP
DML. gui

Figure 4.4 Guidance Use of Search String to Find Context-Sensitive Help

/* If any cleaning up needs to be done in the application before closing,
it should be done here. */

Def shouldClose(self)
(peall(Lib.procs[#GUIDANCETERMINATE], HGuide)) !!

Figure 4.5 GladApp Class shouldClose Method

34

GuidunceTerminate routine is- executed. Figure 4.5 depicts the shouldClose method

GuidanceTerminate removes the link between Guidance and GLAD.

B. IMPLEMENTING THE HELP SYSTEM ACCELERATOR KEY
Menus for GLAD windows are defined in the "resource script file". This gs an

ASCII file which contains GLAD's menus, dialogs, accelerator keys, icons and strings.
(Duff, and others, 1989, p. 343). GLAD's resource script file is gladv02.rc.
Incorporating the F1 accelerator key involves altering GLAD's resource script file.
Appendix A contains a portion of kladeZ.rc. Code to implement the F1 accelerator
key is delineated in bold lettering. In the line »

\a"FluHelp", HELPER, HELP ;
the (\a) causes "Fl=Help" on the menu to be right justified. "HELPER" associates the ..
identifier HELPER with this menu selection. The word HELP causes a box to be
placed around the words "FimHelp". In gladv02.rc, the line

VK_F1, HELPER, VIRTKEY
associates the F1 key with the identifier HELPER. The line

#define HELPER 950
is contained in the file glad.h. The integer 950 can then be used as an index to the
dictionary which contains the menu selections for each GLAD window. A dictionary

in ACTOR is similar to an array in procedural programming languages. This number

was arbitrarily chosen; however, it had to be higher than the number of menu options.

This is a standard Windows convention for calling help. For further explanation of RC
and header files refer to Petzold (1988) . The LiitMenulD method of each window
class contains the dictionary which associates the identifier "HELPER" with the help
method for each appropriate class. Appendix B contains the InitMenuID methods for

each GLAD window class,

C. GLAD HELP ORGANIZATION
The Guidelines for GLAD were designed to provide modules of information for ‘.
each window within the GLAD l;ieruchy. These Guidelines were further developed
to provide multi-leveled help within each Guideline, This enables the uset to retrievé
only as much information as desired. Figure 4.6 demonstrates how the user is able to
access nested information through the use of expansion buttons. The top window of
Figure 4.6 shows a section of the GLAD Data Definition Window Guideline. 1f the
user desires additional information pertaining to the QUIT menu selection, he can
obtain this information by positioning the cursor over the text "QUIT". The bold font
visually indicates that the text "QUIT" is an expansion button. The cursor changing
to a cross hair confirms that the text below is an expansion button. Clicking the left
mouse button displays the information shown in the bottom window of Figure 4.6.
The modular design of the GLAD help system allows Guidelines to be altered with

minimal effect on the remainder of the help system. Keeping the Guidelines small

permits quick, easy reading and reduces the amount of memory required.

Brint Jop gSearch laclt

" fora nested object.
(4.1 S)DELETE - SOhcting delete Wil delete entities from the
: dlflbuo schema which we no longer needed.

(4 1 e) ”EZP Provldos oomprohomlvo uur uslctuneo For

_information conceming the reading of hiypertext and using this
" help system, click 61 HELP at’ boglnnln of this paragraph, For.
" anindexto GLAD heip topics dlick on GI.AD holp Index "

following thiz paragraph. :

(4.1 .7)QU|T- Io;yo ourrontwlndo_'w ,
GLAD hefp indiax

 Help concernig QUIT prior to expanding

(4 1 5)DELET l‘-.‘ Soloctlng dom wlll dolm ontmos from the
database schema which are no longer nooded

an index to GLAD help topics dlick on " GLAD help Index "
following this paragraph.

GLAD WINDOW. When in the GLAD Window QUIT retums the
user to the Wiindows operating system.

GLAD hep hdfax
Help concerning QUIT after expanding

(4.1.8) HELP -Provides comprohonsm user assistance. For
information conceming the reading of hypertext and using this
help system, click on HELP at beginning of this paragraph. For

(4.1.7)QUIT- Closes the DDL window and retums the user to the |

......

, Figure 4.6 Demonstration of Expansion Buttons

37

" The help system ls designed to emulate the look and fesl of GLAD. The Guideline

for each GLAD window contains a replica of that window, see Figure 4.7, Ideally, the -

help tystem will behave identically io the GLAD program, except the user will be

gprovidbd with help informition when [opmlkm is selocted. This allows tho user to
. vilullly associate & GLAD opcmion wilh s replica of that operation comm‘i ln the ..

| HBLP ‘Guidelines. For exnmple, the user can obtlin hnip by positioning the ounor ‘=

over the item in the replica’s menu bar that cormponds with the same menu uleciion

in the GLAD window. Clicking the mouse on this itém causes the heip sysiem to
respond similarly to GLAD and provide help on thui operation. Bxlmples of OLAD 'f

‘operations will alao be included whenever pouible witin help to make the informnion‘

as clear as possible. - - I ok -i -

O [N

As mentioned in Chapter II the potemml to become disoriented whiie mdinz

hypenext documents is a diudvantage Vof hypertext. A numbering system was -

incorporated into the GLAD help system in oiﬂor to minimize user disorientation while
accessing help. The numbering sysiem allows the user to, at minimum, identify which
Guideline he is using. The Guideline iiumber corresponds to a number assigned in the
Index Guideline. Figure 4.8 shows the GLAD index Guideline and its associated
indim Each successive nesting level within the Guideline will add a decimal point
and a digit indicating the user's relative position in the Guideline. For example, 4.1.2
would indicate the user is two levels deep in the fourth Guideline. Figure 4.9 shows

an example of the numbering system. Should the user become disoriented, Guidance

38

i
Ph

COBRA PHOTOS FLT_CTL_SVS

The GLAD DML, Window is displayed each time an existing -

| the database selected. The window above shows an example of
opening @ AH1S Haelicopter database. For additional information on
§ GLAD DML window operations, expand Glad DML Wwindow menu.

-database is gpewes . The content of this window Iis dependenton -

Figure 4.7 Help Window with Replica of DML Window '

urdane o oy

Brint Jop Search Rack

| GLAD HELP INDEX

1.0 Glao window
2.0 Opev? Lalabase Disvoy
3.0 Remuove Dalabase Dhslog
4.0 Dats Doyt Window
6.0 Dwwig a Database
8.0 Duarg Marngnsaner: wikow
1.0 Dsedlyy One Wwindow
8.0 Descride
8.0 L&t Mevnbers Window
10.0 SVromwterrnechior:
11.0 GLAD Fgoevy
) 12.0 Usinig e Mypevtont hep Systsn

Figure 4.8 GLAD Index Guideline

39

e
.......

provides the menu selection BACK on the help window menu bar. This allows the
user to retrace the steps that he has taken within the Guideline. Guidance also
provides a TOP menu selection. Selecting TOP automatically takes the user to the
beginning of the Guideline. Links to the Index Guideline been have dispersed

throughout the help system. This provides the user eisy access to a position which

is familiar should he become lost. In addition, it allows the user to access help in

areas not contained in the current Quideline. ‘This includes information conceming
other GLAD Windows and operations, not contained in the current Guideline,
Should the user have a specific topic that requires explanation, he can use the
search capabilities provided by Guidance. When the user selects SEARCH from any
help window menu, a dialog boi appeurs requesting the search topic. Guidﬁce

searches the cutrent Guideline to locate information on this topic. If a string

corresponding to the requested topic is contained in the current Guideline, the Guideline

is displayed at that position of the information.

If the user desires a printed copy of the on-line help information, it can be printed
by selecting PRINT from any GLAD help window menu bar. The document will be
printed as it appears on screen. If an extended print-out of on-line information is
desired, expansion buttons can be unfolded providing the full information available on
the screen. If fewer details are required copy, only the desired information should be

displayed, prior to selecting PRINT. Figure 4.10 displays an example of a GLAD help

window with the TOP, SEARCH, and PRINT menu selections.

print Jop go_agcn Rack
(4.1) DDL WINDOW selections

(4.1.1) SAVE- This menu selection wiil save changes to the
database schema to a disk file for later use.

(4.1.2) DEFINE - Selecting define allows the user to define
new objects for an existingor new . -

(4.1 8)ATTRIBUTE - Permits definitions of attributes for defined:
data entities. ,.
(4.1.4)EXPAND -Allows the definition of specialization entities
for a nested object. _
(4.1 5)DELETE - Selecting delete will delete entities from the
database schema which are no longer needed.

(4.1.6) HELP -Provides comprehensive user assistance. For |
information concerning the reading of hypertext and using this
help system, click on HELP at beginning of this paragraph. For.
an index to GLAD heip topics click on " GLAD help Index -

Figure 49 Example Numbering Used To Minimize UserDisorientation

Lovrdan v ban IR

print Jop Search Rach

(1.1) QLAD WINDOW menu :
(1.1.1) CREATE - allows generation of new database
(1.1.2) MODIFY - aliows an existing database to be changed
(1.1.3) OPEN - presents existing database for manipulation
(1.1.4) REMOVE - delete an existing database

Figure 4.10 GLAD Help Window Menu

gt
i
¥

i

Any word or concept within the Guideline that may require further explanation is
linked to a Note button. This serves as an on-line glossary of terms, providing the
user quick explanations of unfamiliar terminology. Figure 4.11 example show an
example of a Note button which is used to provide further explanation for the term
"Select". Text which is a Note button is visually indicated by' an underline.

‘Quidelines are constructed in accordance with the Guide and Guidance User
Manuals. Help windows have been designed to present a complete description of an
operation within a single window. This prevents the user frqm being required to scroll
through multiple windows to obtain the information desired. ’ﬁ\is was not possible in
all situations. Some operations required more than one screen to fully explain the

operation,

D. MEMORY MANAGEMENT

Throughout the development of the GLAD help system, memory management has
been a troublesome issue. Attempts to integrate Guidance and GLAD within the
ACTOR program environment on a 640K machine were unsuccessful. The only
solution which allowed GLAD and Guidance to run simultaneously within the ACTOR
programming environment was expanded memory. An additional megabyte of memory
and the memory manager utility 386 Max’ were required. This enabled GLAD and

Guidance to run within the ACTOR programming environment. It was believed that

’306 Max is s trademark of Qualitas , Inec.

42

orenalovtee o 4 b

- .] . Inordar o select an fom. yosiion the cursor over 1
o {2.3) Op the casined ftor and cick the left mouss button. - I
o mmwmwmm :

 aLAb ’u’........,

X wnau.-. o — | n
X 1.1 N L [\ Lo ! - v . .

o con'mlnlng a llmbox oﬂho GLAD Dlnbun slmmar to tho

- -one shown above will apear. . a
2. Selactthe nime of the dlfabuo you want 10 opon ﬂom
~ the listbox. After a database is soloctod ltwm appw
highlighted in the llhtbox. : S

mm 4.11 Enmple Note B\mon

once development was complete and .' stand-alone version of GLAD Mud.
expanded memory would be unnecessary. Development of a stand-alone spplication -
using ACTOR involves a process »f removing portions of ACTOR which are not used
by the spplication. For example, the ACTOR Debugger, Editor and Browser were
removed and consequently freed memory for GLAD. Once the code required to
incorporate Guidance with GLAD was written and tested within the ACTOR
- environment, & stand-alone application was produced. Unfortunately, development of

| a stand-alone did not produce the desired results.

43

ok ‘v."-.\'k.'. ‘,-.7;';\' e

“The help system operates correctly with one or two GLAD Windows open.

Opening more than two windows reduces the amount of memory available to the help -

system to a point where memory is insufficient to correctly display the Guidelines.

hmfﬂéi,em memory results in an error message requesting the user to close one or :
more windows. If expanded memory is available, GLAD and the help system work '\
perfectly together. . ‘ ’_ ' -

V. CONCLUSIONS

A. STRENGTHS AND WEAKNESSES

The purpose of this thesis was to design a help system for GLAD. The help
system developed met the six design principles of GLAD while incorporating important |
features necessary in a help system. The strengths of the design are:

» The hypertext capability provides access to viﬁullly endless amounts of

information without reading unnecessary information.

o It is intuitive, easy to learn and use.

o It is powerful and cost effective in terms of time to implement,

o It is extensible. ' :

 Minimal changes to GLAD wei¢ required to incorporate the help system.

» Graphics as well as text are easily incorporated.

The weaknesses of the proposed help system are:

» The help system will not run correctly without expanded memory.

o Despite the indexing system, the potential for the user to become disoriented

within a hypertext document still exists.

The major weakness of this design is the requirement for expanded memory in
order to achieve its full functionality. While the design constraints did not specifically
state that this help system was limited to operation on a computer with 640K of
memoty, this is the most common memory capability of IBM compatible computers.

The requirement for additional memory limits the use of this help system to computers

that have expanded memory.

45

The implications of this requirement for additional memory may be that 640K is
too limiting for a project the size and scope of GLAD. Intuitive, user friendly, graphic
interfaces require resources, specifically memory. More memory is required as more
features are added to a system. As GLAD expands, it will continue to require more
memory. If 640K is an absolute requirement, it will not only limit the capabilities of
the help system, but also the capabilities of the entire GLAD project.

The GLAD project must not be constrained by limiting memory to 640K. A
choice must be made between an inferior help system which would allow GLAD to
operate within 640K, or the proposed help system which is more capable, is easier to
c;hange and will better serve the needs of GLAD. The help system as proposed best
suits the needs of the GLAD project. Restricting GLAD to a 640K of environment
will result in a situation such that, as GLAD is developed and expanded, the help
system will necessarily deteriorate.

The limitations associated with the 640K memory barrier imposed by the DOS
operating system have been documented for at least five years, These limitations have
become a driving force behind the development of operating systems such as OS2,
which provide greater capabilities. This hurdle of memory limitation must be dealt
with, in order to implement any help system as well as to develop GLAD to its fullest

potential.

40

B. FUTURE AREAS OF RESEARCH

Methods to make maximum use of available memory need to be explored. Possible
areas of research include exploring development of GLAD with OS2 or UNIX to
| alleviate memory difficulties. Along with research into OS2 and UNIX, methods which
would allow MS-DOS miachines to take advantage of memory beyond 640K should be
investigated. lnvestlghlons into optimizing the memory demanded by GLAD would
also be beneficial.

Constructing hypertext documents to provide the best access to information for
users is another area of possible research. Additional methods of indicating to the user
where he is in the hypertext document needl to be developed to eliminate the
disorientation a user may experieace when reading a hypenext document.

An intelligent help system that determines \\‘fhm the user is in a program and
suggests courses of action or corrects mistukes is an area that deséfves further
exploration and research. Sound may also enhance the help system, as well as

animation. These features require technology which is not currently available and may

be too costly in terms of actual benefits to the GLAD project.

APPENDIX A - SAMPLE SECTION OF GLADV02.RC

This sppendix contairis a portion of the file gladv02.rc. Only the section pertinent
to the implementation of the help system menus is shown.

GladTopMenu MENU
BEGIN

MENUITEM “Create", 1

MENUITEM "Modify", 2

MENUITEM "Open”, 3

MENUITEM "Remove”, 4

MENUITEM "Quit", 6

MENUITEM "™aFi=Help", HELPER, HELP
END

GladDmiMenu MENU
BEGIN '
MENUTTEM "Describe", 1
MENUITEM "Expand”, 2
POPUP "ListMembers"
BEGIN
MENUITEM "All at Once", 3
MENUITEM "One by One", 4
END
POPUP "Change"
BEGIN
MENUITEM "Add data”, §
MENUITEM "Delete data".6
MENUITEM "Modify data", 7
END
MENUITEM "Query", 8
MENUITEM "ShowConnection", 9
MENUITEM "Quit", 11
MENUITEM "aFi=Help", HELPER, HELP
END

GladDdIMenu MENU
BEGIN .

"Save', 1

"Define”, 2

"Attribute”, 3

“Bxp‘ndll' 4

nweten. 5

"Quit", 7

"\aF1=Help", HELPER HELP

GladLMMenu MENU

BEGIN

MENUITEM "More", 1|
MENUITEM "Modify", 2
MENUITEM "Quit", 4
MENUITEM "aFl=Help", HELPER,HELP
END : '
GladOMMenu MENU

BEGIN

MENUITEM "Add", 1
MENUITEM "Delete", 2
MENUITEM "Modify", 3
MENUITEM "Prev', 4
MENUITEM "Next". §

POPUP "GoTo"

BEGIN

MENUITEM "“Fust", 6
MENUITEM "Last", 7
MENUITEM "I th", 8

END

MENUITEM “All", 9

MENUITEM "Quit", 11

MENUITEM "\aFl=Help", HELPER,HELP
END

49

GLADV02 ACCELERATORS

BEGIN
.. VK_INSERT, EDIT_PASTE, VIRTKEY
VK..SUBTRACT EDIT_CUT, VIRTKEY

o . .VK_ADD, EDIT_ COPY, VIRTKEY

* VK_LEFT, VK_LEFT, VIRTKEY
" 'VK_UP, VK_UP, VIRTKEY

.. VK_RIGHT, VK_RIGHT, VIRTKEY
VK_DOWN, VK_DOWN, VIRTKEY

. "Ay", EDIT_SELALL
“ar" BR_REFORM
"Az", BR_ZOOM

VK_F1, HELPER, VIRTKEY
' VK_TAB, EDIT_TAB, VIRTKEY
VK_PRIOR, EDIT_PRIOR, VIRTKEY
" VK_NEXT, EDIT_NEXT, VIRTKEY
 VK_HOME, EDIT_HOME, VIRTKEY
VK_END, EDIT_END, VIRTKEY

V¥._DELETE, EDIT_CLEAR, VIRTKEY

V{_DELETE, EDIT_CUT, VIRTKEY, SHIFT

VK_INSERT, EDIT_COPY, VIRTKEY, CONTROL

VK_INSERT, EDIT_PASTE, VIRTKEY, SHIFT
END

50

APPENDIX B - GLAD INITMENUID METHODS

: {

GLAD WINDOW CLASS 3

: y

. Def initMenulD(self) '

{ 3
menulD := %Dictionary (1->#makeNewDb y
2->#modifyDb

3->#openDb R

4->#removeDb

950->#topHelp =

6->#close)

) J

DM WINDOW CLASS

5_-_‘ Def initMenuID(self)

menulD := %Dictionary(1->#describe : h
: 2->#expand
* 3->#listMembers

4->#oneMember
5->#addMember
6->#deleteMember
7->#modifyMember
8->#query
9->#showConnection
950->#help

11->#close)

L emida

DDWINDOW CLASS

Def initMenulD(self)
{
menulD = %Dictionary(1->#saveSchema,

2->#defineObj,
3->#attachAttr,
4->#defNestedObjects,
S->¥deleteObj,
950->#help,
7->Hquit)

M

DISPLAY ONE WINDOW CLASS

Def initMenulD(self)
{
menulD ;= %Dictionary(1->#addMember
' 2->#deleteMember

3->#modifyMember
4.>#prev
S->¥next
6->#first
7->#lost
8->#goTolth
9->#allAtOnce
950->#help
11->#close)

m

LIST MEMBERS WINDOW CLASS

Def initMenulD(self)
{
menulD ;= %Dictionary(1->#more
2->#modify
950->#help
4->#close)
i

52

ik

LIST OF REFERENCES

Conklin, Jeff, "Hypertext: An Introduction and Survey", [EEE, September 1987.

Draganza, Michael, "Dynsmic Link Libraries Under Windows", Computer Language.
Vol. 6, no. 5, 1989,

Duff, Charles, and others, Actor Language Manual, The Whitewater Group, 1989.
Dumas, Joseph S., Designing User Interfaces for Software, Prentice Hall. 1988,

Galitz, Wilbert, Handbook of Screen Format Design, 3rd Edmon, QED Information
Sciences, Inc., 1989 .

Guidance: Hypemxr Help System, Hypertext for Soﬁwarc Developers, Owi
International, lnc 1988, :

Guide: Hypertext for the PC, Owl International, Inc., 1988

Help, R Company Ltd., 1988,

Jackson, Peter and Lefrere, Paul, "On the Application of Rule-based Techniques to the
Design of Advice Giving Systems", Int. Journal of Man-Machine Studies, Vol. 20,
1983.

Kearsley, Greg, Online Help Systems: Design and Implementation, Ablex Publishing,
1988.

Killory, J.F., "Computer-Human Interaction and the Documentation Puzzles", Computers
and People, Vol. 30, Nos, § & 6, 1987.

Meyer, Bertrand, Object-Oriented Software Construction, Prentice-Hall, 1988.

Petzold, Charles, Programming Windows, Microsoft Press, 1988,

Roberts, Roger, "Help - A Question Answering System", AFIPS Conference
Proceedings, Vol. 37, Fall Joint Computer Conference, 1970.

Rowell, Michael, The Suitabiliry of an Object Oriented Language for Prototyping and
Abstracting Data Types, Mmer’s Thesis, Naval Postgraduate School, June 1988,

: Stmeidonnm. Ben, Designing the User Interface, Straregies for Effective Human
Computer Interaction, Addison-Wesley Publishing, 1987

TR

Weiss, Edmond H., How to Write a Usable User Manual, 181 Press, 1985,

- Williamson, Micheel, An Implementation of a Data Definition Facility for the Graphics
L : Language for Database, Master's Thesis, Naval Postgraduate School, December 1988.

TETT

Wu, C. Thomas, GLAD: G apmcs Language for Database, Prepsred for Chief of
Naval Research, 1987,

o o e e g T

Wu. C. Thomas and Hsiao, David K., Implementation of Visual Database Interface
Using an Object Oriented Language, Presented at IFIP TC-2 Working Conference on i
Visual Database Systems, Tokyo, Japan, April 1989. S

——

Wu, C. Thomas, '°3§ngﬂts'of Objéct-Oriented ijrm‘ to Implement a Visual - ’
Database Interface”, Case Studies of Object-Oriented Programming, Addison-Wesley, R
Publication pending.

i

\‘“

: i
i

i

|-

:

INITIAL DISTRIBUTION LIST

VDoifense Technical Information Center L 2
Cameron Station | _ , .
Alexandris, Virginia 22304-6145

Library, Code 0142 2
Naval Postgraduate School
Monterey, Cdi_fomh 93943-50022

Commandant of the Marine Corps 1
Code TE 06 o : '
Headquarters, U.S. Marine Corps

- Washington, D.C. 20360-0001"

Department Chairman, Code 52 . ‘ ' 2
Department of Computer Science - :

. Naval Postgraduste School
Monterey, California 93943-5000

Curriculum Officer, Code 37 : 1 - B
Computer Technology -
Naval Postgraduate School

Monterey, Califomia 93943-5000

6. Professor C, Thomas Wu, Code 52Hq 10
Computer Science Department
Naval Postgraduate School
Monterey, Califomia 93943-5000

7. Professor David Hsiao 1
Computer Science Department
Naval Postgraduate School
¢ Monterey, California 93943-5000 S F

Captain Lon M. Yeary
¢/o Mr. Lon O. Yeary
2N236 Pear]l Avenue
Glen Ellyn, Illinois 60137

56

