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This thesis describes the development of a catalogue of
waverider shapes generated from axisymmetric conical flow.
A simple but reliable method of calculating the viscous drag
is presented and over one-hundred configurations are shown
with various aerodynamic and pertinent geometric design
factors. All of the configurations presented are based on
Mach number of 17 and Reynolds number (based on the length of
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the waverider) of 106*' However, the analysis presented here
adapts itself to any Mach or Reynolds number. The lift-to-
drag ratios presented range from 4.32 to 35.06 while the
average skin friction ccefficient ranged from 0.00176 to
0.0020%. The volume to area ratldxyfifiLjanged frcm 0.224 to
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Nomenclature

AVAM ratio of base arsas of an arbitrary wave-
rider with the idealized cone derived
waverider

b/1 aspect ratio, base of waverider divided

by the length of waverider

Cy drag coefficient
EZ average skin friction coefficient for the

compression surface

o skin friction coefficient based on conditions
just outside the boundary layer

Cff average skin friction coefficient for the

freestream surface

Cie average skin friction coefficient for the
compression surface

Ch average total skin friction coefficient

Citav same as Cg

k' thermal conductivity at the wall

1 length of basic cone

1, length of waverider

(l./D)vis viscous lift to drag ratio

M! Mach number just outside the boundary layer

M Mach number at infinity or freestream

vill
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SSD

conditions

Prandtl number

dynamic pressure

heat flux at the wall

distance from the origin of axis to a point
on the waverider surface

distamce from origin to an arbitrary point on
the the compression surface projected to the
base plane

Reynolds number hYased on conditions just ocut-side
the boundary layer

Reynolds number based on freestream conditions
distance from origin to an arbitrary point on
the freestream surface projected to the base
plane

ratio of planform areas of waverider to the
idealized waverider

ratio of wetted area to planform area

shock standoff distance in the base plane
Stanton number

wetted area of compression surface

wetted area of freestream surface

adiabatic wall temperature

temperature at the wall

ix




V/vi volume ratio of waverider to idealized wave- ridge

\ﬂ”/Sp nondimensionalized volume to planform area
ratio

(E] half angle of shock cone

& half angle of basic cone

§(x) boundary layer thickness

boundary layer thickness in the transformed

coordinates

$ angle between -éland ¢,
@1 dihedral angle of waverider in the base plane
éz dihedral angle of waverider at an arbitrary

crossection

ratio of specific heats

He viscosity coefficient just outside the
boundary layer

Hy viscosity coefficient at the wall

o} /8, radius of shock cone in the base plane !
of nondimensional coordinate system

g radius of shock come at am arbitrary cross
section of nondimensioral coordinate system

T surface stresses at the wall




CHAPTER 1

Introduction

1.1 Introductory Remarks

Lifting—-body configurations are currently of interest as
a means for achieving long-range and high~performance hyper-
sonic missile and aircraft characteristics. Semi-empirical
methods used heretofore for calculating the flow fields and
aerodynamics of blended wing-body shapes are not appropriate
for modern hypersonic flight. Design requirements for
hypersonic aircraft are discussed by Townend! and Stollery;
Elaborate computer codes have become necessary for predicting
the characteristics of arbitrary configurations. Since these
codes are still 1n evolutionary stages and are quite
expensive as well as complex, a need for a simplified
calculation scheme exists.

Waverider analysis provides one means for studying
blended body configurations on a relatively simplified
scale., The work presented here is well adapted to the
personal computer. Shapes derived by this analysis yield
flow fields ard aerodynamic properties that are known for
their particular on-design conditions, and allow for

systematic variation of parameters pertinent to the desigr

prucess.
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An historical background on waveriders is provided by

3 L

Kuchemann and Hemsch and Nielsen

offer additional
perspectives. Also, in recent times there have been several
papers dealing with geometry variations, optimization,
viscous effects, experimental verification, and

applj.cat.icms.f’"15

1.2 Primary Goals

This study has two primary goals, The first is
essentially an extension of the work by Rasmussen and
Stevens“. In this sense, this work is a catalog of many
shapes and variations of waveriders (over 100 are presented)
that can be generated by axisymmetric flow past a cone.
Lift, drag, and friction coefficients as well as lift-to-
drag ratios are c3lculated together with pertinent design
factors such as projected planform area, base area, wetted
surface area, volume ratio, and aspect ratio.

The other goal of this study is the calculation of the
visczus drag in a simple but reliable fashion. The viscous
drag bhas been calculated previously by an average skin
friciton coefficient, such as outlined by reference 8, or by
means of an elaborate integral boundary-lavyer methodu. Here
however, a new method is presented for laminar boundary

layers that allows for variations in Mach number, Reynolds
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numbers based on body length, and wall temperature
conditions. The me thod involves simple quadratures
associated with the wetted surface area of the waveriders.
It 1s hoped that we can present some configQurations that
heretofore were not envisaged using cone derived waveriders.

None-the-less these perhaps unusual shapes still render flow

fields that are known based on supersonic flow past a cone.




CHAPTER 2

Development of Waverider Shape

2.1 Introductory Remarks

We will start by defining a coordinate system and basic
parameters. Then we will determine in a systematic way the
waverider shape starting with the base plane view, Finally,
we will present views at arbitrary cross sections and a view

from overhead.

2.2 Coordinate System and Basic Definitions
To begin we will use the spherical coordinate system shown

below in figure 2-1.

: -y
v

X

FiQure 2-1 Sphericai Coordinate System
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This figure lends itself to the following set of basic
equations.

x = rein®cosd, Yy = rsin@sind, 2z = rcose (2-1)
We now wish to impose that © be restricted to small angles

and we reduce this set of equations to,
x = rocosd, vy = rosind, z = r (2-2)
Next, we rotate the conventional spherical coordinate system
and impose a cone symmetric about the z-axis with the vertex
at the origin, and establish a free stream Mach number aligned
with and pointing in the +2z direction. This creates a shock
cone that is also symmetric about the =z-axis. Figure 2-2

below shows this.

Meo

N

J
X

Figure 2-2 Basic Cone and Shock Cone
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We now want to construct a non—-conical bady that will have
a flow field that remains conical between the body compression
surface and the shock surface. This is done using the
procedure in reference 14,

To begin, we define the trailing edge of the free stream
surface. In this thesis we will use a sixth-arder polynomial
to describe this line. Now, we trace undisturbed free
streamlines (i.e., streamlines parallel to M) upstream until
we intersect the shock cone, thus describing the freestream
surface. Next, we trace corresponding streamlines through the
shock layer until we intersect the base plane of the cone.
thus describing the compression surface of the waverider.

When we determine the streamlinmes in the compression
surface that correspond to those in the freestream surface we
require the aid of figure 2-3. Imagine that we pass a plane
through the axis of the basic cone. This plane then
identifies corresponding streamlines for the freestream and
compression surfaces. For example, we may choose any point
on the trailing edge of the freestream surface and pass a
plamne through the axis of the basic cone which also intersects
this point. Now staying in the plane we trace upstream until
we intersect the shock. Then we trace back a streamline that

intersects the shock and stays in the plane until we get back

to the base of the cone. Now if we sweep the plane from point
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to point along the freestream surface we define the
compression surface,. Therefore, simply by describing the
trailing edge of the freestream surface we have means to

determine the entire shape of the waverider body.

”.\ \ AX1S OF BASIC CONE

PLANE PASSING
THROUGH AXIS
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According to reference 14, the freestream and compression
surfaces are described by

ré = r(¢)B (2-3)
rel - sH' = r () (p? - sH!2 (2-4)

where r 1is a line from the origin of our coordinate system
to any arbitrary point on the freestream or compression
surface, © 1is the angle between r and the axis of the cone
(z-axis), and r, ig the line from the uvrigin to the
intersection of the compression and freestream surfaces.
Also, B and & are the half angles for the shock cone and

the basic cone respectively. Figure 2~-4 below shows a 2-D

side view of these definitions.

Figure 2-4 Two Dimensional Side View



2.3 The base plane view
We would like to represent the trailing edge of the free-
stream surface by a 4-term, sixth-gorder polynomial like the
following
x = A + By’ + Cy' + Dyb (2-3)
A representation of this form will allow us to be symmetric
about a8 plane passing through the z-axis in the x-direction.
Consider a base plane representation as is shown below in

figure 2-5 along with the above equation (2-95).

Y/// L sing

Figure 2-5 Baseplane Representation (dimensional)

We can see from equation (2~5) that,
¥ = A when y = Q (2-6)
Also, considering figure 2~4 we have the distance from the

origin to the shock as lsinfl . Note that this is also the

distance from the origin to the intersection of the two
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surfaces since the shock remains conical. This perhaps
suggest that we normalize with 1sinf3B . However, considering

the relationship between 3 and & given in referenchk 14 as,

2
s P _ [(7“) + 2] (2-7)
s 2 (M, 6)

we choose to normalize with isiné or 16 sitce we have
restricted ourselves to small angles. Dividing equation (2-
S) by 1§ vyields

x/(18) = A/(18) + 1/(18)(By? + Cy' + Dy®) (2-8)
Now as a matter of convenience since B, C, and D are as yet
arbitrary we will define them in the following way

B =by(18), C =by/(18)% D= b/(15)° (2-9)
where by, by, and bb are yet to be described. Also, we will
define A/(18) as a new parameter with the symbol Ro .

Doing this we rewrite equation (2-8) as,

X

R, + b2 + py! + byt (2-10)
where,
X = x%x/(18), Y = y/(18) (2-11)
This normalized system renders the following new baseplane
representation shown in figure 2-6. It is this new normalized
system that we will use to develop a method of determining an
infinite variety of waverider baseplane shapes.

This system allows the following conditions:
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‘i) X = R, when Y =0

ii) X = ogcos$; when Y = osind,
Additionally, we will require that the slope at the tip of the
waverider be between zero and ér This helps to prevent
double intersections with the compression surface. We will
call thnis condition three.

iii) 0 & dXs/dY : §,

The four terms of equation (2-~11) are determined using these
conditions. Substitute condition ii) into (2-11) to vyield,
4

acosél = Ro+bzozsin24>l+b4o sin‘¢1+bbabsin6§l (2-12)

Res

I X

Figure 2-4 Baseplane Representation (non-dimensional)
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We see that in order for (2-12) to hold we must choose
Ro, Ql, b?’ by, and b6 accordingly. To do this we may choose
any one variable to be dependent and let the others remain
independent.

For example, choose b2 to be the dependent variable,.

Solving equation (2-12) for b2 yields,

oc osél-Ro-bp‘sin‘él-bbcbsinbtbl
b, = (2-13)

azsinzél

We may therefore use (2-10) to describe a general waverider
freestream edge providing we use (2-13) to determine b2 once
we have arbitrarily chosen Ro’ él, b,, and bF

Additionally, we will restrict attention to the cases when
condition (1i1) holds as well. To see if (iii) holds we
merely calculate dX/dY = 2by + 4bY' + 6bY’ and see if the
criterion is met.

We now have a means to make various freestream trailing
edge shapes. Referring to the above coordinate system we see
that the negative most value of Y is,

\}q = -osing, (2=14)
and clearly the positive most value of Y 1s,
Yms = +osin@l {2-15)

All other values of Y must lie in between (2-14) and (2-15).

We therefore start at Y = —asinél and march away 1in

i
4
;
L
i
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small increments until we reach Y = +csin§l . At each step
along the way we stop and use (2-10) to determine X. We now
have many X, Y data points available to plot the freestream
edge. If the increments are significantly small we may use
a straight line approximation in between data points.

The above is a procedure to determine the freestream edge
in the base plane. We now develop the procedure to determine
the compression surface. Reéall figure 2-6. At each set of
points X, Y we may caiculate Fﬂb by wusing the Pytnagorean
theorem

R

o = (X2 ¥Hi2 (2-16)
where Rw is the distance from the origin of the base plane
coordinate system too a point on the surface of the freestream
edge in the base plane.

Now w2 must determine the compression surface that goes
with a chosen freestream surface. This 1is accomplished in
reference 14 and is given as

Ry = [1 + (o - 1)R%, /0?32 (2-17)

We will now define the X, Y data points for the
compression surface as Xc and Yc to prevent confusion,. To
determine the Xc. Yc data points for the compression surface

we use simple trigonometric relations,

Xc = chosé, Yc = Rwsiné (2-18)

But, cosé = X/R.b and sind = Y/Rm and we rewrite (2-18) as
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X, = X(RG/Ry), Y. = Y(Ry/RY) (2-19)
The above gives a systematic way to explore virtually an
infinite number of waverider base plane shapes. All we need
do is choose different variables subject to the given
conditions and plot our picture.

We will now look at arbitrary craossections of the

waverider viewed from a base plane perspective.

2.4 Arbitrary Crossectional Views
The Yreestream surface at any arbitrary cross section 1s
still given by the general equation,

X = R+ by? + gyt + by (2-20)
however the range of YV is clearly not the same. Recall figure
2-3. From the figure we can see that @l is dependent on
location along the Z axis. Note ¢, is the angle between the
l~axis and the outermost value of Y.

Now recall condition 1i) given earlier. We can use the
same condition at any arbitrary cross sectior simply by
replacing ¢, with ¢, and ¢ with o

" This gives,

X = O'ICOSQz when Y = czsinéz (2-21)

substituting (2-21) into (2-20) gives,

= 2.2 A_ . b i b f o
ozcoséz = R°+b20151n §1+b40151n ¢z+b66251n @z (2-22)

There are two unknowns 1in (2-22). They are o, and éf

Considering figure (2-7) below we can produce a relationship

that will give us o,
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Figure 2-7 Side View (non-dimensional)

Recall that g, is the distance from the Z axis to the line
of intersection of the shock and waverider body (in the non-
dimensional system). But, this is also the distance from the
Z axis to the shock in the X-direction. Therefore simple
triangle relations give us,

0, =R, + Z,/1,(0c - R (2-23)

where Z/l' is the percentage back from the leading edge.

i.e., 0.1, 0.35 etc...

Now equation (2-23) gives us ¢ and then (2-22) will 3ive

z.’

us ér Due to the difficulty of solving (2-22) for ¢v we may

use a numerical, instead of analytical approach to solving

it. Once él and g, are known the free stream edge 1s simply

plotted as before by replacing o and él by 9, and Qz in

=,
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equations (2-14) and (2-15). We may call these equatians (2-
14) and (2-15) modified.

We now proceed to determine the compression surface at an
arbitrary cross section. Recall equation (2-4) describing
the compression surface,

rio? - 8 = rl(@)(p? - 8% (2-24)
Dividing through by 12 we obtain,
(r21tyel - 8 = L) 1%p? - 8 (2-25)

Now we define 9.b as the angle between r and the I-.xis
where r is a line from the origin to any point on the frae-
stream trailing edge in the base plane. With this definition
then we can say that,

16, = rf (2-26)

L

where re is a 1line from the origin to the point of
intersection of the two surfaces. Dividing through by § we
obtain,
18,/6 = rf3/6 = ro (2-27)
and solving for O/ 8 yields,
ew/s = rsall (2-28)
Now ew/s 1s also equal to F\’.b and we can write,
Ry = rgo/1 (2-29)
or
2,72 _ 2,.2 _
rs/l = Ry /0 (2-30)

Substituting (2-30) into (2-25) gives,
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(ri1d o2 - Y = (RZ/o (B? - &) (2-31)
and dividing through by 82 yields,
r271%0 181 - 1) = RM/o¥(pl/82 - 1) (2-32)
Solving (2-32) for 93/52 and replacing r with 2z yields,
o8t = 1 + (14/z2h (o -1IR, (@) /0 (2-33)
We note that 63/52= sz and therefore (2-33) is remarkably
close to equation (2-17) except for the factor 12/21
Since we want to view the arbitrary cross section from a
tase plane perspective we want to project ec onto the base

plane. Figure 2-8 below represents this.

Figure 2-8 Side View Dimensionral

e s bt e i it i M i Al i 1o P i il it i i Bmess i
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We see that,
28, = l(ec)ww (2-34)
or
(eC)WM
Substituting (2-35) into (2-33) yields,

= 26./1 {2-39)

(Rgy! woj = 2217 + (o? -1HIR2($) /0! (2~36)

From the abhocve figure we see that,
2. =z - Rollo (2-37)

]
and
1,1 - RJl/e = 1(1 - Ro/o) (2-38)
Equation (2-38) lets us normalize (2-36) with lw. Solving
(2-38) for 1 and substituting into (2-37) we get after
rearranging,
z/1, = (z/1 = Ro/o)/(l - Ro/a) (2-39)
We now solve (2-39) for =/1 to vield,
z/1 = (z,/1))(1- R/0) + Ro/a (2-40)
Now substitute (2-40) into (2-36) to give the desired result,
2 - 2 r 2 2 -
(Rw)wﬂ = (2/1“1 R“o)+RJo)*%a IRy (@) /¢ (2-41)
We now determine Xc, chata points to plot the arbitrary
cross section compression surface. We recall esquations (2-
14) and (2-15) modified,
V}n = ~oxsinéz. Yun = +czsincbz (2-42)

Now start at Yn &nd march away in amall increments until you

o

reach an' At each step along the way stop and calculate X
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according to egquation (2-20) and R.b according to equation (2~

16). We can now determine (Rw) using (2-41). With (Rm)

proj

¢ Y. with the following simple

proj

known we determine X
trigonometric relations,

X, = X(Rcb)

¢ R

(2-43)

VM/ o

Yc = Y‘“m)wm/ﬁw (2-44)

Note that equations (2-43) and (2-44) are similar to

equations (2-19). Also in equation (2-41), z/l' is an

arbitrary input value depending on what cross section is being

viewed. For example, if it is desired to view the cross-
section at say 30% from the leading edge then z /1 = 0.30 .

We now have a systematic way to view the waverider shape

at any arbvitrary cross section from the leading edge to t(he

base plane. FigQgure 2-9 below gives an example of the results

using this procedure. The figure shows a base plane

perspective of the waverider at 0.1 intervals from the leading

edge.




Y
~ \‘.
. P /
S ~ -
Conical Shock - -
1x
Figure 2-9 Baseplane Perspective of Arbitrary

Crossections

2.9 The Top (planform) View
To determine the planform view of the waverider we
consider the following coordinate system. We note that along
the freestream surface r® is a constant, and if we project %o

the base plane we see that ré = rJ? . Therefore we have

re = r'B = constant (2-45)
We now establish a relationship between 1 and 1, . We can

see that from figure 2-10a,
1 -1, = z,(y=0) (2-46)
and from figure 2-10b, 9 = 3 when r is drawn to the

leading edge of the waverider where the shock intersects the

body. Redrawing figure 2-10b we have
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Figure 2-10 Planform and Side View (Coordinate System
(dimensional)

Now using basic trigonometry we see that,
z,(y=0) = R 15/tanf} (2-47)
but using small angle approximations tanfi = 3, therefore
z,(y=0) = R18/B = R 1/¢ (2-48)
Substituting (2-48) into (2-46) we have
1 -1, =Rl/¢

or 1, = l(l-Rol/a) (2-49)
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Figure 2-11 Side View (dimensional)

Equation (2-49) gives us a relationship between 1 and 1 .
Now at the base plane r =1, therefore
16, = r B = constant
Dividing through by & and rearranging we obtain
/8 = rB/(18) = roo/l (2-50)

Recall that © and r_ vary for a given shape and §, B3, and ¢

s
do not. Now 6,/8 = R,($) and this gives us

Rgp(d) = roo/l (2-51)
For small angles r, = z, and we rewrite (2-51) as,

z,/1 = Ry(@)/0 (2-52)
Now recall from our spherical coordinate system that,

y » rosiné, zZ 3 r (2-53"

or y = z0sin¢ (2-94)

Along the boundary (where the shock and body intersect) € =
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. Replacing z with ry and dividing through by 1 we have,

y/1 = rfising/1 (2-59)
but r,/1 = Ryu($)/0 from (2-52). Thereforer subsﬁituting
yields, *

y/1 = Ru($)6sind (2-56)

Equations (2-52) and (2-56) give us a way of drawing the

planform view normalized with 1, However, it may be more

convenient to normalize with l'. Using (2-49) to accomplish
this we have,

2/1, = Ry(®) /(0 - Ry) (2-57)

Yg'l, = Ryp(#)8sing/(1 - R /0) (2-58)

Equations (2-37) and (2-58) give us a method of plotting

our waverider as viewed from the top mormalized with 1'. The

appendix of this thesis devotes much of its bulk to showing

various planform and baseplane views of different waveriders

determined by a choice of different parameters in equation (2-

10).

2.6 Three Dimensional Views

Development ot a three-dimensional view of an arbitrary
waverider shape can be an extension of the arbitrary cross
section and planform views presented earlier. Adams16 has
developed a code using this amalysis to present a 3-D view,

Several views are presented in appendix H using this code.

oot
‘h“‘




CHAPTER 3 -

Surface Skin-Friction Coefficients

3.1 Introductory Remarks

In this chapter we wish to derive expressions for the
average skin-friction coefficienté for both the freestream and
compression surfaces. Al though these expressions will be
approximate, they will reflect the proper trends for
variations in Reynolds number, Mach number, and surface wall
temperature. Since the pressure is constant on the freestream
surface of the waverider and varies slowly along an inviscid
streamline on the compressior surface, we will assume that the
friction coefficient can be modeled after a flat plate for
the freestream surface and a wedge for the compression
surface. In both cases, the pressure gradient along an
inviscid surface streamline is zero. We shall use the
momentum-integral formulation for compressible boundary

layers.

3.2 Momentum—-Integral Equation for Flat Plates and Wedges
The momentum-integral equation for zero pressure gradient

is given by reference 18 as,

.
g—f = (3-1)
pOUO
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Where © is the compressible momentum thickness given by,

6
o[ (%)
P
0%e ¢ ° (3-2)
and Tu is the surface stress determined by,
= «8—2- 3-3
X' &"(M). ( )

Here x and y are measured along and normal to the surface in
the usual way, as shown in figure 3-1. The thickness of the
boundary layer is denoted by §=6§(x). The subscripts e and w
denote conditions at the outer edge of the boundary layer and

at the wall surface.

Ue

U y I 5o boundary
— tayer
D 4
R

X surface wall
Freestream
Conditions

Figure 3-1 Boundary Layer Definitions
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To account for compressibility effectg, we introduce a

transformed normal coordinate Y defined by,
dr = £-ay (3-4)
e

The momentum thickness can now be written as,

A
e-f1(1-v_)dv (3-5)
0 Ue
where Y = A is the location of the outer edge of the boundary

layer for the transformed coordinate. The wall friction is

given by,
Tw =:ﬁu4<gll ) (3-6)
pew Yy w

3.3 Approximate Solution Based on Assumed Velocity Profile
An approximate salution for the momentum integral equation
can be obtained by using an assumed velocity profile having

the form,

9.,,<l) (3-7)
)

The momentum inteqral and wall friction can now be expressed

as

O=Aa2 (3-8a)




(3-8b) 7 A

where

%.J‘o_?l_(,_ l‘j:)a(_z.) (3-9a)

(3-9b)

For this problem, we assume that the pressure gradient 1is
zero and that the wall temperature is a constant, and thus
that aQ, and a, are constants that depend only on the assumed
velocity profile. The momentum-integral equation (3-1) can

Nnow be expressed as,

Ads _ W_EE.JB_ (3-10)
where
o
Cv - % (3-11)
Po Heo

For this problem, the right side of equation (3-10) is a

constant. Thus we can integrate 1t without difficulty,

subject to the boundary condition A(0) = 0, and obtain
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We thus obtain the well-known result for flat plates that the
transformed boundary-layer thickness grows like the square
root of x.
The local skin friction camn now be obtained from equation
(3-8b). The local skin—-friction coefficient, based on the

external-flow conditions is,

c, = (3-13)
e Jnge
where
Rey =—ela X (3-14)
€

is the Reynolds number based on the external flow conditions.
Equation (3-13) has the same form as that obtained from the
classical Blasius egquation for constant-density flow past a
flat plate. For compressible flow, the factor C. depends on
+hme assumed viscosity-temperature relation. The factor aya,
depends on the assumed velocity profile.
3.4 Viscosity-Temperature Power-Law Relation

In this analysis, we shall assume the viscosity-

temperature power-law relation

W
ol =(_T_.> (3-15)
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where w is a constant usually taken to lie in the range
.95 ¢ w £ 1, depending on the temperatures involved in the
problem. Generally, @ is taken to be about 3/4.
For the special case w = 1, equation (3-13) takes the
form

e K _ g (3-16)

Since the pressure is a constant across the boundary layer,

1
we have for a thermally perfect gas (P = PRT) that & 5 _F |

e
and thus that
P K
=1 (3-17)
Py He
For this case, therefore, we have that C. = 1. Thus for w =

1, Cfe from equation (3-13) has ¢the same form as for
incompressible flow, provided that P and nu are evaluated
at the external flow conditions.

1f¢ w¥1 , equation (3-15) can be written in the form

T
(3~18)
Te i

vhere
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Equation (3-186) is sometimes referred to as the Chapm;n—
Rubesin form of the viscosity-temperature law, when C is taken
as some constant or some function of x, but not as a function
of y. For our purposes here, since T is a function of y, we
will consider that C is also a function of y, given by

equation (3-19). It correspondingly follows that,

w -1
Cu = (.Tw_) (3-20)

3.9 Assumed Velocity Profile
We shall assume that U/Ue = f(Y/A ) has the specific form
following the Karman-Pohlhausen technique. Namely, a fourth-

order polynomial having the form,

2 3 4
U Y Y Y Y -
-y —_ —_ 1-A~B~C) [~ (3-21)
g, =42+ o) 0omeo)
This expression satisfies the condition at the outer edge of

the boundary layer that U/U.(l) = 1, The constants A, B, and

C are as follows to meet boundary conditions.

Aa [B(U/Ue)] . a (3-22a)
a(y/a)l,
2
1 {8 (U/Ue) (Z-22b)

B = '2'[377/_[')2],,




3t
C= (-2 -08) (3-22¢)
To specify A and B and thus C, we start by noting from the

boundary-layer momentum differantial equation that at the wall

[_a_(“o_g) ] “0 | (3-23a)
dy y w

provided the pressure gradient along the wall is zero. In

terms of the transformed variable Y, this is

0 fcu, 28U ] - -
[=( .,Y)' 0 (3-23b)

Since 4, does not depend on Y, we can expand equation (3-23b)
e

and get
020) din¢C 8 U
(57 "( Y )(OY)
w w w
__(_L“”C><OT )(OU) (3-24)
27 oY /\ay
w w w
--@-9731\/2u
Tw Y Y
w w

Equation (3-22) provides a relation between the first and
second derivative of the velocity at the wall, that 1is,
between A and B. It is useful to place it in an alternative

form. We note along with the expregsions (3-3) and (3-6) at

the wall that we have saimilar e pressions for the heat flux




at the wall:

T Py k .
a, = ""(%‘,‘) - _—'-5--(%-1-) C(3-29)
w ° w ' ' R

(ozu) .(”'oi.‘JL(f’_Ll)z (3-26)
v )" Tw G o7 \8Y )
where

Pe = Ch/K, (3-27)

is the Prandtl number evaluated at the wall, and Cp is the
specific heat at constant pressure. We assume that both Pr
and Cp are constants.

1t is further useful to introduce the Stanton number as

the dimensionless heat—-transfer coefficient:

q

S, = (3=-28)
T &U. CP(TV- Taw)

Here the Stanton number is based on the external flow
conditions, and T“ is the adiabatic wall temperature, to bLe
specified later. Note that if hest is transferred from the
fluid to the wall, then T' < T~ and q, { 0, In terme oOf ST and
Cys defined by equation (3-13), we can rewrite equetion (3-24)

as
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0%(U/ U6 )V atw 1) (Tu b s. [0(U/Ue)1? -
[Ftw7a5r ) (0 o Tewd 20 51 Gors], o

or

B o W=y Tow) 2P S7 ,2

(3-29b)
Z T >

The factor 25;/C, is known as the Reynolds—-analogy factor.
1t will be specified later. Note when w = 1 that B = 0, and
also when C is a constant or a function of x only that B again
is zero.

Since B is a function of A, we need a condition on the
assumed profile (3-19) to determine A. To do this, we assume
the following condition at the outer edge of the boundary

layer:

8U/U)] . o )
[O(Y/A) ]Y” (3-30)

This gives,
A+ 2B + 3C + 4(1-A-B-C) = O
substituting the relations for B and C yield,
DA? + 3A - 6 = O (3-31)

where

0 o (w=1) (T~ Tay) 2P St

(3-32)
2 Tw Cy
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Solving the quadratic equation for A gives ' SRR
A = 12/(3 + J(9+24D)) (3-33)

When D = Q, then A = 2, and the velocity profile reduces tog 74%

3 4
."_-Z(L) -2(L\ *(_Y.) (3-34)
Ue A A/ A
3.6 Effects of Mach Number and Heat Transfer on the Friction

Coefficient
The momentum-thickness parameter d; can now be evaluated

from the basic definition equation (3-%9a):
a, = 1/35 +4A/15 - A¥/9 +DA%(1/14 -9A/140 - DA/105) (3-35a)

Since A depends on the factor D from equation (3-33), then a

depends on D only. Using the relationships from reference 17,

Am2+ —%- A w -2B (3-35b)

and that D = BAzallows us to write (3-35%a) in the same manner

a8 1% done in the same reference namely,

2
ay = ‘_<_~”_7_- A _"_> (3-35¢)
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When D = 0, that is, when @ =-1 or when T = T, (no heat

-
transfer), then A = 2. We then have a, = 0.1175. Likewise
for this case we have C,= 1, and the factor I(Zafw) appearing
in the friction coefficient Ch’ equation (3-13), takes the
value,
{(2aiay) = 0.685.

The correct value for this factor evaluated by the Blasius
profile form laminar boundary-layer theory is 0.664. Thus,
forrthis case, the profile from equation (3-34) leads to an
error of 3 percent.

Although this error is quite acceptable for our present
purposes, the important utility of the present amalysis lies
in the result for Aas equation (3-35), that produces combined
results for w & § and for wall heat transfer, and for which
there are no corresponding analytical results from the
differential-equation analysis of compressible laminar
boundary-layer theory. TJo proceed further, we need to
evaluate the factor D, and to do this we need expressions for
the adiabatic wall temperature and the Reynolds analogy

factor. We shall thus assume the relations

— - 2
TOW=T8(1+‘1PI' 1‘2_1'M3) (3-T6)

25,/C, = P (3-37)




36

which are well known approximations for flat plates and

wedges. The factor D thus becomes

- — - 2
D= w21P1/3[1-%<1+JPr -Llee)] (3-38)
w

With these results, we now have the general functional

dependence

Te
Cfe-f<RexeoM€vT—w' 0Pfu w, 7) (3=-39)

By means of equation (3-20) we can write equation (3-13) as

1=

Cio™ V2 aim (12)-2"' (3-40)
VRexe ‘Tw

with the factor J(2aa,) being a function of D as given by

equation (3-38). For adiabatic walls, the results simplify

since D = 0, and we have

0.685 1

Cfez —_— 2 \1=¥
\JRexe <1+Jpr %MO)—’—

The factor C“I(R ) is plotted versus Mg in figure 3-2 for

7T = 1.4, @ = 0,7, P, = 0.72. It can be seen that

increasing the external-flow Mach number can reduce the local
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skin-friction coefficient considerably.
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Figure 3-2

Figure 3-2 also shows two curves for when the wall
temperature is held fixed, that is, for T'/T.= 1 and é. Again
these curves are calculated by means of equations (3-39), (3-
36), (3-33) and (3-31). Again, the 1local skin friction
coefficient decreases as Me increases, These curves are in
agreement with corresponding results obtained by numerical
integration of the similarity boundary-layer equations of

reference 19 and 20.

3.7 Application to Waverider Freestream Surface
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For flat plates the external conditions are the same as
the freestream concditions. Since the inviscid surface
streamlines are straight lines with zero pressure gradient on
the upper freestream surface of the waverider, we can apply
the previous formulas for Cfe by replacing the subscript e with
the subscript . In doing this we ignore the fact that there
is actually a cross flow in the boundary layer. This occurs
because the boundary layer originates at different locations
along the leading edge. In a subsequent section, we will
obtain an average skin friction coefficient for the freestream
wetted surface by integrating the 1local skin-friction
coefficient along each straight streamline on the freestream
surface and then integrating again across the span of the
surface. This approximate result can be obtained straight
forwardly and provides a simple means for making parametric
studies of friction drag.
3.8 Compression Surface of the Waverider

For the compression surface of the waverider, the external
conditions for the boundary layer are not the same as the
freestream conditions because the inviscid surface streamlines
pass through the conical bow shock. To express the local
skin-friction coefficient and the local Reynolds number in

terms of the freestream conditions, we therefore rewrite

equation (3-13) as follows:




2 1=
P,U, (1.51" 2 g0y
P U \ T, RUs Ky g,
P-U-I‘Q Xeo
(3-42)
—_ )2 w2 1~
R () () (R) =
Fu \ Us Tee To JE:::
where
Ry, = 2l X (3-43)
G xae o
For a thermally perfect gas we have
.p_Q. = .%_ I.‘; (3-44)
peo Pw Te

Thus, when the density is eliminated in favor of the pressure,

equation (3-42) becomes

3/2 t-w
\ 2
Cr..'\jgi (3—"-) (L-) V2. (3-45)
o o0 T r'-__
w RCXO

The inviscid surface streamlines on the compression side

of the waverider lie in a plane, and the pressure increases

Al though the boundary layer has

slowly along the streamline.
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a crauss flow and is thus actually three dimensional, we assume
these effects are small enough to 1ignore, and thus the
boundary layer along an inviscid surface streamline behaves
nearly as that of a flat piate. Further, we assume that the
external flow conditions are given by the conditions
immediately behind the conical bow shock. I1f we evaluate

these conditions by hypersonic small-disturbance theory then

we have
e o 1 (3-46a)
U
LIS T (3-46b)
Ro
-2 +2 T -
( M‘; LR G el Kg (2— _1_?) (3-46¢)
(7—1)Me + 2 Two 2 ot
where

(3=-46d)

and K‘ = vgs. Equation (3-45) now takes the form

G

R lo e (3-47)
L T { —

w R exw
The factor “ﬂazh must be evaluated such that Te and Me in the

factor D are calculated in terms of the infinity conditions




a1
by means of equation (3-46c).
We may simplify equation (3-47) by writing it in terms of
the freestream skin friction coefficient given by equation (3~

40). Doing so gives,
th= K(Cf.,)fs (3-48)

where
K= —°-,’__z°’"’2)e (3-49)
Pe Vo

In tne factor K the dominant term 1is J(P/P) since
I(Uﬁazh/(afﬁ)) is close to unity. In fact it is unity when
Pr = 1.
3.9 Average Skin Friction Coefficients
The average skin friction coefficient is determined by
summing up all of the local coefficients along each streamline
and then dividing through by the wetted area of the surface.
Considering figure 3-3 below, we have for the average skin

friction coefficient for the freestream surface

L
sz'QJhds
= £ 18

Cy (3-50)

[ o
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In this section we will skip the details of the analysis of
the above equation and save it for appendix A. However, after

this analysis we have,

Z
//- as

Figure 3-3 The Freestream Surface

\(]

C,, =J-Ro/o Cyy ZIJ1'Rt/a\ﬂ+(dX/ﬂ?dY
0

H (3-51)

A}
fo(""t/v ) J1+@x/avy ay

The reader may choose any numerical integration scheme desired
to evaluate the integrals.
Now, to determinme the average skin frictiomn coefficient

for the compression surface we will make the assumption that

the wetted area for the compression surface 1s approximately
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the same &8s that of the freestream surface, Using this . -~ -

approximation gives for the compression surface,

A
C._ =\1-Ro/s ¢ ZIJ“Rt/vJH(dX/dY)’dY
fc fc 0 (3-52)

\J
L(" Re/o ) J1+ (@x/av ¥ aY

In equations (3-51) and (3-52) above Cy and Cfc are the
local skin friction coefficients determined using the analysis 2
of the previous sections.

3.10 Estimation of Total Drag

A good discussion on various types of Drag is presented in
reference 21. Here, we will begin with the following
definition

D=0D, + Dy + D (3-53)
where D is the wave drag, Df is the skin friction drag and Db
is the base drag.

The wave drag exists at supersonic/hypersonic speeds and
is caused by static pressure gradients across the shock wave.
We will define the wave drag as

D, = a”c, (3-54)

where q = 1/2 P}ﬂ.,ﬁ% is the base area of the waverider and

C, is the wave drag coefficient.
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The skin friction drag is caused by shearing stresses over
the wetted surface of the body. We will define the friction
drag as |
Dy = qC(Sy + Sy) (3-55)
where S, and S represent the wetted surface area of the
freestream and compression surfaces respectively. Also, EZ
is the average total skin friction coefficient. However,
using the analysis of the previous sections we can rewrite (3-
53) as
Dy = a(S,€ + S.C4) (3-56)
or using the results of equation (3-48) we have,
Dy = qCu(Sy + KSL) (3-57)
The base drag is caused by the blunt end of a body. This
is because the pressure at the base is usually not the same
as the surrounding infinity conditions. We will ignore this
effect however, as is usually done when comparing different
configurations“. Thereby setting Pb= Py
Ignoring the base drag and combining equations (3-51) and
(3-50) into (3-49) gives
D = q(CA, + CySy * C4Sy) (3-58)
or using the results of (3-57) we have
D = glCA, + CTy(Sy + KS) ] (3-59)
1t may be more convernient to have the total drag in terms

of the average total skin friction coefficient. Equating (3-
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55) and (3-57) and solving for C, yields,
Cyp = Cpl(Sy *+ S,)/(Sy+ KS)1 (3-60)

Substituting (3-60) into (3-59) gives,

D = qICA, + Ci(Sy + S, (3-61)
where

In the appendix to this thesis we present the lift-to-drag
ratio as well as the average total skin friction coefficient

for each particular configuration shown,




CHAPTER 4

Comparing Configurations

4.1 Introductory Remarks

Here we will describe what happens as we change diffe}ent
parameters of the waverider configuration. In order to do
this we must establish a basic shape from which we will base
our comparisons, 0Once the basic configuration is chosen then
we will discuss what happens when we change the coefficients
of Y of equation (2-10) namely, By by and b,. After thas we
will compare shapes with different values forF%, QP and 8 and

include a discussion on the Mach number and Reynolds number.

4.2 The Basic Waverider Configuration
The basic shape is chosen to have the parameters shown below
in table 4.1

Table 4~1
Basic Configuration Parameters

Mach Reynolds
¢ 6 Number | Number 7
50° 8 10 1x10°® 1.4
by b, bg slope
0.5 0903 | -1.0 0.437 2s’

45
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The basic parameters were chaosen arbitrarily except far b2
and by. The value of bbwas chosen such that the slope at the
edge of the waverider freestream surface was 253*. This value
is in between the limits imposed by condition iii) of chapter
2. The value of b; was fixed according to equation (2-13).
These basic configuration parameters resulted in the waverider

configuration shown below in f.gure 4-1.

Figure 4-~1 Basic Configuration Base Plane and Planform
Views

We will now vary these parameters and see how the basic

configuration changes,

2.3 Changing the Coefficients of Y of the Equation Describing

the Freestream Edge in the Base Plane With Consideration of

the Edge Slope
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Here, we will hoid the parameters, él, §, M, Rey, and
constant and vary in a systematic way the coefficients of Y
equation (2-10).

Suppose we want to change b, from a -1.0 as shown in table
4.1, to @ 2.0, This is easily done. However, due to equation
(2-13) changing b4 will result in a different value of b, as
well. We must also keep in mind the imposed condition of the
slope at the edge of the waverider. Changing b4 will also
change the slope at the edge of the waverider. We can
however, keep the slope at a constant value by letting b6
change by a suitable amount. Table 4-2 below shows what
happens when we change b, from -1.0 to -2.0, holding R, and the
edge slope constant. Also, figure 4-2 shows the

corresponding waverider configuration.

Table 4-2
Mach Reynolds
¢ 6 Number Number Y
50° 8 10 1x10® 1.4
b, b, b slope

0.5 1.405 | -2.0 0.935 25’




49

Figure 4-2 Effect of Changing b4

This discussion shows the inherent complexities of changing
what may seem to be a rather simple variable. By changing b‘
we discovered that b, and b, must also change.

Suppose naw instead of changing b, we want to change the
freestream edge slope from 25° to its maximum limit of 30°.
This is eccomplished by changing the value of bb or b,.
However, for the sake of simplicity we will hold b, at its
previous value of -1.0. Setting dX/dY = 50 and solving gives
a new value of b, and b,. Table 4-3 below shows this, and
figure 4-3 shows the corresponding waverider configuration.

A similar approach to the above analysis cam be done i1f we
want the slope of the freestream edge at its minimum value.

We must also ask ourselves what are the aerodynamic and

geometric consequences of changing the values of b,. Analysis
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Table 4-3 ré

Mach Reynolds :

¢ ¢ Number Number 7 -~ -4
50° 8 10 1x108 1.4

Ro b, b, bg slope B
0.5 0.795| 1.9 | 0.54a 50"

has shown that the viscous l1ift to drag ratio may increase

or decrease with a change in b,. The deciding factor is the

initial value of b,. However, the change in magnitude of the

viscous L/D appears to change only rather slightly.

\

Figure 4-3 Effect of Changing Freestream Edge Slope
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Similarly, the effects of changing the edge slope in general
has a minor effect on the aerodynamic values. However, a
slope of 50° usually gave higher L/D ratios; although in some

cases this was not true.

4.4 Changing Ro in the Equation Describing the Freestream
Edge

When changing Ro’ we might say that there is no effect on
the edge slope. However, a further investigation tells us
that, even though dX/dY has no Roterms in it, the value of b,
does depend on R,. Since the slope is dependent un b2 we see
that changing Ro will result in a changing tip slope. We can
however keep the tip slope constant by changing b6 as done
before.

A more dramatic affect caused by changing Ro is the non-
dimensional length of the waverider. Thig is easily seén by
equation (2-38). Also, figure (4-4) below shows this result.
We can see that small values of Rowill regult in more slender
configurations. We define the aspect ratio for these
configurations as b/1.. Where b 1is the meximum distance
across the base of the waverider. Therefore the smaller the

aspect ratio the more slender the waverider. Aspect ratios

are given for each configuration shown in the Appendix.
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Axis of Basic Cone
Ro,
Figure 4-4 Effects of Changing R, i

Analysis shows in general that small values of Ro usually
result in better viscous 1ift to drag ratios.

Another effect on the waverider that occurs with a change
in R, is the shock stand off distance. Smaller values of Ro
result in the shock being a greater distance away from the
compression surface. This can be seen in the above figure.
There are other factors that determine the shock stand off
distance and these will]l be discussed as they occur,.

Changing R, also significantly changes the shape of the base
plane configuration as is shown below in figures 4-5a,b.

In figures 4-5a,b the value of the edge slope and the value

of b, is kept constant. In general, larger values of R, cause

the freestream surface to be flatter.




S3

\

Figure 4-3a R;=0.7, by=-1.0, Figure 4-5b Basic Config.
slope=25"° R°=O.5, b4=-1.0, slope=25"°

4.5 Changing the Parameter ¢,

When we change Ql the most significant change in the
waverider shape that is first noticed is the change in maximum
span or width; all other parameters remaining the same.
Equations (2-14) and (2-15) give us the positive and negative
most values of Y, which allow us to determine the span of the
waverider. Clearly a decrease in Q,decreases the span. A
decrease in the span decreases the aspect ratio and increases
the slenderness of the waverider.

1t we change ¢, holding R, and b, constant, we get a new
value for bzaccording to equation (2-13). Also, b6 will have
to change to keep the slope at the edge constant or within
limits according to condition iii). Figures 4-éa,b show two
configurations with identical 8§, b', and tip slope but with

different él’s
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We see from this that a change in ¢, causes a significant
change in the wavericer shape; not only in span but also in
the curvature of the freestream and comprassion surface.

However, there is no change in the length of the waverider,

< <

Figure 4-6a R =0.5, b4=-l.0, Figure 4-6b Basic Config
slope=25"*, <I>1=210' R,;=0.3, by=-1.0, slope=25°,
$,=50°

4.6 Changing the Parameter §

When we change § the value of o changes. This has an effect
on the standoff distance between the shock and the compression
surface of the waverider body. To see this we look at the

definition of ¢ from chapter 3.

2 (7+1) + 1

2 K

g =

(4-1)

(= X\

where K8 = M5.
We carm see from equation (4-1) that a decrease in § will

result 1in an 1increase in o¢. This causes the separation

P R A T S TS T T T MY (SRS Sy e 3 T2 1)
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between B and § to increase; which affects the shock standoff
distance. The standoff distance becomes important when
considering design of engine and engine inlet conditions.
Below in figures 4-7a,b we show different waveriders with the

same Ry @l, b4, and tip slope but with different §'s.

< <

Figure 4-7a R;=0.5, b=-1.0, Figure 4-7b Basic Config.
§=6, =50, slope=25° R,=0.5, b;=-1.0, &=8, éfSO,
s%ope=25’

Again, changing 8 and therefore o, results in a change of
b, according to equation (2-13) and a change in b, or b6 to
meet the slope condition on the edge of the waverider
freestream surface. These changes cause the curvature of the

freestream and compression surfaces to vary.

4.7 Changing the Mach Number

Varying the mach number has a similar effect as changing 6§

as we see from equation (4-1). An increase in M will cause
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the standoff distance to be smaller just as an increase in §
will do. The only difference will be the magnitude of the
change. Again we must take into account ho@ changes affect

v and therefore b2’ b, and by

4.8 Changing the Reynolds Number

We realize that M has a role in the determination of the
Reynolds number. However, lets assume the Mach number will
remain constant. This leaves alti vde and the length of the
waverider as the deciding factors ¢’ the value of the Reynolds
number .

Figure 4-8 below shows L/D vs. Reynolds number for the basic

configuration shown in figure 4-1.

L/D v8 R holiding Mach constant

3.3
9.4 -
8.9 4

0.8 4
8. 4

s 4
4..-{
a4
4. 4

[Ya-Ned - 1)

4.8
e.9 4
4.4 1
4.3 o
.0 -

4.9 =

] L S R A Y YT —r———— Y T
0.3 0.8 0.7 8.8 0.9 1 1.9 1.2 13 14 13 1.8 1.7 1.8 19 ¢
foym s e WO

Figure 4-8 L/D vs. R holding Mach constant




CHAPTER 5

Conclusion T g e

9.1 Summary _
The two primary goa’ established in chapter 1 have been
accomplished. In the appendices, a catalogue of over 100
shapes is presented. This catalogue shows variations of

waveriders that can be generated by axisymmetric flow past a
cone and is the result of tne first goal.

As discussed earlier there can be an infinite number of
waverider shapes so as yet the catalogue 1is incomplete.
However, one may get an idea and a feel for waverider shapes
by studying the appendices.

Chapter 3 is the result of the second primary goal. Here
we developed an analytical method of estimating the skin
friction coefficient -- where as before only numerical methods
existed. An average total skin friction coefficient is
presented in the appendices for each arbitrary waverider

shape.

5.2 Results and Discussions
The best waverider shape depends on the designers main
goals., As in all design processes one is usually faced with

compromise. For example the waverider with the best lift-to-
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drag ratio will probably not have the best volume;to—area
ratio.

The following table is a tool to help in the design
process. In the table we can see the effects of certain
geometric and aerodynamic values when we vary parameters that
affect the shape of the waverider. When using the table the
results are given such that all other parameters are held
constant. For example, 1¢ ing élwill in general result in
a lower wvalue of L/D

the other parameters are held

constant; namely, R, and b,. The table doesn’'t give

]

magnitudes of change only direction of change. 1In some cases
the effect of a change cannot be determined ahead of time.
An example would be the effect ir the volume-to-area ratio
with a change 1in b4. Lowering b4 may result in either an
increase or decrease in the volume-to-area ratio depending or

the original value of b,.

TABLE 5-1
EFFECT OF LOWERING (@1, R,, and by)

°1 Ro b4
L/D ' { {
V/V, i } 4
v, } | i
SSD — } -
0/t { { -
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Following this chapter in appendices B through H a
catalogque of over 100 shapes 1is presented. All of the
configurations presented are based on Mach number of 10 and
Revnolds number of 108, The 1lift-to-drag ratios were
calculated and found to lie in a range from 4.32 to 5.06 while
the average skain frictiomn coefficient ranged from 0.00176 to
0.00205. The volume to area ratio*ﬂn/spranged from 0.224 to
0.153. 1In the table under each view are various geometric and
aerodynamic values,. Some of them are compared with what we
call the idealized waverider, Refersnce 14 describes this
ideal waverider. The freestream surface of the ideal

waverider is given by,
X = |vcotg)| (5~1)
where the lines about the term on the right represent the
absolute value. MNote thanm in the above equation there is no

term representing the value of Rw This is because Rois zZero

in this case,
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Appendix A
Development of Equation 3-51
We begin by establishing a few definitions that will be
used later in this analysis. Consider the second part of

figure 3-3 and we may say without much effort,

ds = (ax)+ (dy)*
= "1+(dX/dY?dy A.l

Next, consider equations (2-5) and (2-20). From these we can
show that,
dx/dy = dX/dvY A.2
and also that,
dx = 18dX, dy = 18dY A.3
Now considering the first part of figure 3-3 we may write

that the wetted surface area of the freestream surface is,

[2
sw”- 2ff dzds
4 29

= zfu-z,wa A.4

Now since we are using small angles we have,
z, ®or, A.5

Therefore,
SW. = ZI(C‘ rs )ds
1}

- 2¢f(1-%)da

&2
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Now use eguation (2-29) and that R, = R, to give,

S e 2cf(1-Rt/o)ds | a7

and substituting A.1 yields,

Yt
Swam 28 [(1-Re/o) V14 @xy] dy A.8

0

Now if we substitue relationships A.2 and A.3 we have,

Yt
S -2¢'6f(1"RQ/a) 1+(dX/dY dy A9
Weoo 0
Recall equation (3-50)
]
dz d
= _ 2.,;J;IC'-' ’ A.10

f1

1

where C“ is the local skin friction coefficient for the

fresstream surface. Substituting A.4 into A,10 yields,

. 2 ¢ g A.11
Cop = Sy Ce Jz ds
oo s 18

Using equation (3-40) and replacing the subscript e with w

according to section 3.7 yields,
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T (T

Weo ‘J‘LKL/
1—0
= [—“‘ (Tu\ f d g
SW“ &Un/[‘b *
=@
4 \,241Q <T..,) 2 tillJ‘J___z_ 4
- T — | 1- S
Swe VB ™ A
1=-0
— 2 e (T“) ‘ Lyt J'\ﬁ 7y, d
= _— \T -2y, ds
Sweo VAU lu/i, W e, 7t A.12
Now recall from equation (3-28) that,
1, = 1(1 - R/g) A.L3
substituting yields,
¢ Wi1-Ry
T . 2 2ae (T_-) z 7 f -1y, de A.14
ft Sweo Tw Jﬁ::: '

We may now make the substitutions of equation (3--40) and

equations A.1, A.2, and A.3 to vyield

e
—_— i_?.‘* J1-Ro/¢q ‘zdf‘l1_Rt/°
0

J1+@x/av Yy dy A.1L
f S

pi § e = 2 I—— VT ¥ T
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Now substitue equation A.9 to give us the desired result

equation (3-51)

: - :
- G 2 1= gf;]l"‘t/c V1 +(@x/dy ) dY
A (] A.16

f( 1-Ry /o N1+ (@dx/dY } A
]




APPENDIX B

Presented here are configurations that have the following
parameters held fixed:
$ = &0, & =18, M =10, Rey = 1x10°
The following parameters are varied:
Ro from 0.2 to 0.4
by from 0.0 to -3.0
The values of b2 and b6 are such that equation 2-13 and

condition (iil) holds.
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Figure B.1
Table B.1
Pbi =60.0 | Delta = 8.0 Mach =10.0 | Rey = 0.100+07 | Gamna = 1.40
T: 0.200 +# 1.0877°2 ¢+ -1.0001°¢ ¢+ 035271
Cftar = 0.001847 { CL - 0.043795 b - 0.009681
Se/Sp = 2.152177 ] V°(2/3)/Sp = 0.212266 (L/D)sis = 4.519038
Ab/Abi = 0.870880 | V/Vi = 0.774453 Sp/Spi = 0.901518
ble=  0.372008 | 88D - 0.300503
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Figure B.2

Table B.2

Phi =60.0 | Delta = 8.0 Bach =10.0 | Rey = 0.108+07 | Gamaa = 1.40

1= 0,200 + 1.1717°2 + -1.0001°¢4 + 0.200 7°6

Cftav = 0.001951 | CL - 0.043789 1 CD = 0.003884

Sw/Sp = 2.180042 | V(2/3)/Sp = 0.212500 (L/D)vis = 4.521998

Bb/Abi = 0.835673 | W/Vi = 0.743075 Sp/Spi = 0.87603%

b/le = 0.372398 | SSD : 0.300503

< e eresiwmmean . nh R4 SEOLNG 02T AEIEOXE TARKLIE AT AL .. SR oALAAATEie 1T ADilM MM iR R i RIEE tAA: b . e Dl gt ot i me & ik gl eiiir}ox emamanh i
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Figure B.3
Table B.3
Phi =60.0 | Delta = 8.0 Bach =10.0 | Bey = 0.10B+07 | Gamoa = 1.40
- 0.200 ¢ 1.8127°2 4 -2.0007°¢ + 0.87371°8
Cttav = 0.001973 | CL = 0.043690 D : 0.008756
Se/Sp = 2.263438 | VU(2/3)/8p = 0.211051 (L/D)vis = 4.478099
Ab/Ab = 0.756626 | ¥/Vi - 0.655907 Sp/Spi = 0.811647
b/1n = 0.372398 | 95D - $.300503
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Figure B.4

Table B.4

Phi =60.0 | Delta = 8.0 Back =10.0 | Rey = 0.10B407 | Gamsa = 1.40

D= 0,200 +# 2457772 ¢ -3.0007°4 + 1.0617°6

Cttar = 0.002009 | CL - 0.043637 (- 0.009994 1

Sw/Sp = 2.389211 | V'(2/3)/5- = 0.212883 (L/D)eis = 4.366130

Ab/hbi = 0.5765%8 | V/Vi : 0.579832 Sp/Spi - 0.741174

b/l = 0.3723%8 | 88D = 0.300503
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Figure 8.5

Table B.5

Phi =60.0 | Delta : 8.0 Neeh =10.0 | Rey = 0.100+07 | Ganma = 1.40

I= 0,300 + 020772 ¢+ C0007°4 ¢ -0.0137°8

Cftav = 0.001818 | CL - 0.043598

D= 0.009593

Sw/Sp = 2.107518 | VU(2/0)/8; = 0.207946

——

(L/D)rlg = 4.545040

Ab/Abi = 0.878447 | ¥/V§ - v. 74080

o ——————

b/le = 0408313 AJ‘ESD : 0.290236

- 0 395232
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RSP

??Eute B.6

Table B.6

¥
Phi =60.0 | Delta = 8.0 Bach 210.0 | Rey = 0.100407 | Gamsa = 1.40

I: 0.300 +# 041172 ¢« 0006074 + -0.08218

Cftav = 0.001818 j CL : 0.043578 0 - 0.0085186
Sw/Sp :  2.108805 ) ¥ (2/3)/6p = 0.207258 (L/D)vis = 4.579339
Ab/ibi = 0.843229 | V/M : 0.710444 Sp/pt = 6871710
b/le = 0.408313 | S3D - 0.290238

iy

o
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Figure B.7

Table B.7

Pbi <60.0 | Delta :

8.0 Bach =10.0

Rey = 0.108407 | Gassa = 1.40

|8$D§

Iz 0.300 ¢« 0.8401°2 ¢ -1.0009°¢4 ¢+ 0.3761°8
(ftar = 0.,001932 | CL - 0.043448 | CD = 0.009450
Se/Sp = LM ] V(2/3)/Fp = 0.203256 (L/D)vis = 4.587088
Ab/Ab = 0.798080 | V/V) - 0.647930 | Sp/Bpt - 0.835926
b/le = 0.400313 0.256238




Figure B.8

Table B.8

Phi =60.0

Delta = 8.0

Hach =10.0

Bey = 0.108+07

Gasea < .40

0.300 +

1.066 1°2

+ -1.000 174 ¢+

0.306 1°8

(ftar = 0

001839 | CL

: 0.043431 | CD :

0.008481

SI/SP : 2.

121541

V(23 /8 ¢

0.203583

{L/D)vis =

4605786

bb/bof = 0

163182

¥/ =

0.61819)

8p/8p1 =

0.808807

ufiw : 0

A0

§6) -

9.20023
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Figure B.9

Table B.9

Phi =60.0 | Delta = 8.0 Bach =10.0 | Rey = 0.108407 | Gampa = 1.40

Iz 0.300 + 1.68771°2 ¢ -2.0009°¢ + 0.696 1°6

Cftav = 0.001874 | CL = 0.043324 0D s 0.008531

Se/Sp = 2.200173 | 9°(2/3)/8p = 0.202618 (L/D)vis = 4.545457

Ab/Abi = 0.484815 | 9/Vf : 0.538133 | Sp/8pi = 0.740833

b/1n = 0.408313 | 88D : 0.290236
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Figure B.10

Table B.10
Phi =60.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108407 | Gamaa = 1.40
0.400 ¢+ 0.180 7°2 ¢ 0.000 7°¢ + 0.011 76
Cftar = 0.001801 | CL = 0.043239 - 0.009377
Sw/bp = 2077541 | V(2/3)/8p = 0.198899 (L/D)vis = 4.811255
Ab/abi = 0.806447 | V/Vi: 0.821062 5p/8p1 = 0.830038
b/1w 2 0.454352 | 88D - 0.276033
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Figure B.11

Table B.1ll

Phi =60.0 | Delta = 8.0 | HMach =10.0 | Bey = 0.108407 | Qanma = 1.40

D= 0400 ¢+ 0,829 772 + -1.0007°¢4 + 0,398 17§

Citav = 0.001927 | CLs 0.043063 | CD:= 0.009289

Sw/Sp = 2.00M000 | VU(2/3)/8p = 0.194384 | (L/D)wis = 4.635706

Ab/Abi = 0724848 | /91 : 0.530231 | Sp/Spi = 0.764733

b/le = 0.454382 | 88D - 0.276033

i,




78

Figure B.12
Table B.12
Phi =60.0 | Delta = 8.0 Nach =10.0 | Rey = 0.10B407 | Gamma = 1.40
1= 0,400 ¢ 093872 ¢+ -1.0000°¢ ¢+ 0.330 78
Cftar = 0.0019%7 | CL = 0.043048 ¢ : 0.009288
Sw/Sp = 2.000441 | V(2/3)/8p = 0.184770 (L/D)vis = 4.844742
Ab/Abi = 0.891182 | V/Vi : 0.504332 8p/501 - 0.738151
b/le 2 0.454352 | 88D : 0.278033
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Figure B.13

Table B.13

Phi =60.0 | Delta s 8.0 Nach =10.0 | Rey s 0.108+07 | Ganma = 1.40

= 0400 4 1.5777°0 & -2.0007°4 ¢+ 0721178

Cftav = 0.001987 | CL = 0.042926 | CD = 0.009358

Su/Sp = 2104240 | V(2/3)/Sp = 0.194121 | (L/D)eis = 4567408

Ab/Abi = 0.612625 | V/1i = 0.432013 | Sp/Bpi = 0.680012

b/lw = 0.454352 | 88D - 0.216083
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Figure B, 14

Table B.14

Pbi =60.0 ! Delta = 8.0 Bach =10.0 | Rey = 0.108+07 | Gaama = 1.40

Tz 0400 4 2.2201°2 + -3.0007°4 + 1.12071°6

Citav = 0.002045 | CL = 0.042875 | CD = 0.009654

Sw/fp = 2.281403 | VO(2/3)/6p = 0197759 | (L/D)vis = 4441051
Bb/Bbi = 0.533089 | V1% : 0.371700 |} Sp/Spi = 0.593178
b/le = 0454352 | 86D = 0.274088




APPENDIX C

Presented here are configurations that have the following

parameters held fixed: 7
$ = 50, & =18, M =10, Rey = 1x108
The following paraméters are varied:
Ro from 0.3 to 0.7
b, from 0.0 to -3.0
The values of b2 and b6 are such that equation 2-13 and

conditiorn (iii) holds.

81
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Figure C.1
Table C.1
Phi =50.0 | Delta = 8.0 Bach =10.0 ] Rey = 0.108407 | Gomna = 1.40
T= 0.300 ¢« 0.79271°2 + -0.4007°¢ + 0.1477°6
Cftav = 0.001905 | CL = 0.043800 e : §.008381
Su/Sp = 2.154487 | V°(2/%)/5p = 0.210144 (L/D)vis = 4647788
Ab/abl = 0.885860 | v/ 0.754987 Sp/Spl = 0.696308
b/le 0.362059 | 88D : 0.29023¢6

"o ey .
PR I
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Figure C.2
Table C.2
Pi <50.0 | Delta = 8.9 Bach =10.0 | Rey = 0.108+07 { Gamsa = 1.40
I= 0300 ¢+ 0.99371°2 ¢+ -0.8001°4 + 0.346 16
Cftav = 0.001908 | CL = 0.043558 b - 0.008344
Se/Sp = 2.151280 | V'(2/3)/8p = 0.209198 (L/D)vis = 4.€61775
Ab/Bbf = 0865016 | V/Vi : 0.729159 Sp/Spt = 0.879708
b/1s - 0.362059 | 86D - 0.290236
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Figure C.3
Table C.3
Phi =50.0 | Delta = 8.0 Mach =10.0 | Rey = §.108407 | Qamma = 1.40
1= 0300 +« 1.100Y°2 + -0.8009°4 ¢+ 0.240 18

Cftar = 0.001908 | CL - 0.043545 D : 0.008335
Su/Sp = 2167182 1 V°(2/3)/Sp = 0.200543 (L/D)vis = 4.6684793
Ab/AbL = 0.837507 | W/Vi = 0.703898 Sp/5p1 = 0.857857
b/1w = v. 362059 | 58D - 0.290238
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Figure C.4

Table C.4

Phi =50.0 | Delta = 8.0

Hach =10.0

Rey = 0.108+407 | Gawma = 1.40

T: 0,300 + 1.2007°2 ¢ -1.0007°4 ¢+ 0.3307°8
Cftav = 0.001807 | CL : 0.043525 (D= 0.009328
Sa/Sp = 2170048 | V'(2/3)/8p = 0.209224 (L/D)vis = 4.686134
Ab/hbi = 0.82708% [ V/Vi - 0.681601 | Sp/6pi = 0.849130
b/le = 0,362059 | SSD - 0.290238




86

Figure C.5

Table C.5

Phi =50.0 | Delts = 8.0 Hach =10.0 | Rey = 0.10B407 | Gamsa = 1.40

T:= 0300 + 1.3027°2 ¢+ -1.2009°4 + 0.4387°8

Cftav = 0.001908 | CL - 0.043507 § CD = 0.008325

Sw/bp = 2174980 | V°(2/3)/Sp = 0.208844 (L/D)ris = 4.865699
Bb/Abi = 0.816603 | V/7i - 0.879505 | Sp/bpi - 0.840323
b/lm = 0.362059 | 88D : 0.290236




87

\

Figure C.6

Table C.6

Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108407 | Gamma = 1.40

T= 0300 ¢+ 1.50371°2 4+ -1.6001°4 + 0.637 7178

Cftav = 0001811 | (L = 0.043470 | CD = 0.009329

So/Sp = 2.187984 | 7°(2/3)/Sp =  0.2084%9 (L/Dyvis = 4.659933

Bb/Bbi = 0.79595%8 | V/Vi - 0.656134 Sp/Spd - 0.022638

b/le = 0.362059 | 58D - 0.290238
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Figure C.7

Table C.7

Phi =50.0 | Delta - 8.0 Bach =10.0 | Rey = 0.10B407 | Gamsa = 1.40

I= 0.300 +# 1.7047°2 ¢+ -2.0007°4 + 0.836 7°6

Cfeav = 0.001815 | CL = 0.04337 | CD = 0.009345

Su/Sp = 2.200845 | V°(2/3)/6p = 0.208223 (L/D)vis = 4.648007

Ab/Abd = 0.775313 | V/Vi : 0.633565 Sp/Spi = 0.804787

b/le = 0.362059 | SSD = 0.290236
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Figure C.8

Table C.8

Phi =50.0 | Delta = 8.0 Mach =10.0 | Rey = 0.10B+07 | Gawma = 1.40

I= 0300 + 1.9057°2 + -2.4007°4 ¢+ 1.03571°6

Cftav = 0.001921 | CL : 0.043405 | CD : 0.009374

Se/Sp = 2.228375 [ V(2/3)/Sp = 0.208129 (L/D)vis = 4.630399

Ab/bbi = 0.754669 | V/V : 0.611813 Sp/Spi : 0.788616

b/le = 0.382058 | SSD - 0.290238
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Figure C.9
Table C.9
Pbi =50.0 | Delta = 8.0 Bach =10.0 | Rey = 0.10B407 | Gasma = 1.40
D= 0.300 ¢ 2013772 ¢+ -2.4009°4 ¢ 092071

Cftav = 0.001826 | CL = 0. 043415 s 0.009424
Sw/Sp = 2.264482 | 9°(2/3)/8p = 0.209875 (L/D)vis = 4.606875
Ab/Abi = 0.726901 | /i : 0.591549 Sp/Spi = 0.762748
b/ly = 0.362059 | SSD - 0.290238
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Figure C.10

Table C.10

Phi =50.0 | Delta = 8.0 Mach =10.0 | Rey = 0.10B407 | Ganea = 1.49

I:= 0300 ¢« 2.3127°2 + -3.0007°4 + 1.22971°6

Cftar = 0.001836  CL = 0.043382 | CD - 0.009498

Sw/Sp = 2.300484 | V°(2/3)/Sp = 0.210525 (L/D)vis = 4.567349

Ab/Abt = 0.696%82 | V/Vi - 0.562402 | Sp/Spi = 0.735208

b/le = 0.362058 | SSD - 0.290238
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Figure C.11

Table C.1l1
Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.10B¢07 | Gamma = 1.40
T:= 0400 + O.4417°2 + 000074 + -0.00276
Cftay = 0.001882 | CL - 0.043268 D - 0.009180
Se/Sp = 2.108585 | V'(2/3)/%p = 0.20238% (L/D)vis = 4.713079
Ab/Abi = 0.829852 | V/7f = 0.64964) Sp/Spi = 0.841907
b/lw = 0.401698 | 58D = 0.276033
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Figure C.12
Table C.12
Phi =50.0 | Delta = 8.0 Hach =10.0 | Rey = 0.108+07 | Gamsa = 1.40
: 0400 + 0642772 ¢ -0.400 774 ¢+ 0.107 1°8
(ftar = 0.001887 ¢ CL 0.043220 (b - 0.009145
SefSp = 2.093222 | VU(2/3)/S5p = 0.201318 {L/D)eis = 4.726161
Ab/Abi = 0.808208 | V/Vi - 0.624954 Sp/Spi = 0.824801
b/le = 0.401898 | SSD - 0.276033
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Figure C.13

Table C.13
Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.10K+07 | Gawna = 1.40
I: 0.400 ¢ 0.7509°2 ¢ -0.400 Y°¢ + 0.080 Y76
Cftar = 0.001689 | CL = 0.043199 D - 9.009122
Sw/Sp = 2.106453 | VU(2/3)/Sp = 0.20147 (L/D)vis = 4.735799
Ab/AbL = 0.781440 | V/V{ : 0.600359 Sp/Spi - 0.802415
b/le = 0.401898 | SSD - 0.27603)
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Figure C.14

Table C.14

Phi =50.0 | Delta = 8.0 Mach =10.0 | Bey = 0.108407 | Gamma = 1.40

I 0.400 ¢ 0851772 ¢ -0.6007°¢ + 0.189 1°6

Cftav = 0.001892 | (L - 0.043177 - 0.009115
Sw/Sp = 2.107503 |} V°(2/3)/Sp = 0.201090 (L/D)vis = 4.736885
Ab/Abi = 0.770988 | V/7i - 0.588658 Sp/Spi - 0.793473
b/le = 0.401898 | SSD = 0.276033
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Figure C.15

Table C.15

Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108+407 | Gamma = 1.4}

I: 0,400 ¢ 1652772 + -1.0007°¢ + 038876

Cftar = 0.001098 | CL - 0.043133 - 0.009111
Su/Sp = 2.113615 | V(2/3)/5p = 0.200432 (L/D)vis = 4.734126
Ab/Abi - 0.750343 | V/¥i : 0.566081 Sp/Spi = 0.775592

b/1n = 0.401898 | SSD - 0.276033
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Figure C.16
Table C.16
Phi =50.0 | Delta = 8.0 Bach =10.0 | Bey = 0.108407 | Gamna = 1.40
T:= 0,400 ¢+ 1.2537°2 ¢ -1.4007°4 + D.58771'¢
Cttar = 0.001905 | CL - D.043082 - 0.009120
Sw/Sp = 2.124808 | V°(2/3)/5p = 0.199339 (L/D)vis = 4.72519%
Ab/AbE = 0.729698 | V/Vi : 0.544315 Sp/8pi = 0.757447
b/le = 0.401898 | S8D - 0.276033
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Figure C.17
Table C.17
Phi =50.0 | Delta - 8.0 Bach =10.0 | Rey = 0.10B+07 | Gamma = 1.40
T= 0,400 ¢« 1.56271°2 ¢ -1.8007°¢4 + 0.8797°¢

Cftav = 0.001919 | CL - 0.043054 ¢ - 0.008171
Su/Sp = 2167482 } V°(2/3)/Sp = 0.201008 (L/B)vis = 4.694574
Ab/AbY = 0.681286 | V/Vi - 0.503584 5p/6p4 = 0.715070
b/l = 0.401898 | 58D - 0.276033

[EpESOPIY
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FPigure C.18

Table C.18

Phi :50.0 | Delta = 8.0 Mach =10.0 | Rey = 0.100+07 | Qamsa = 1.40

Tz 0.400 ¢+ 1.76371°0 & -2.2007°4 ¢ 0.07871°¢

Cftar = 0.001828 | CL = 0.043024 | CDs 0.008211

Su/Bp = 2190483 } VU(2/8)/8p = 0.201283 | (L/D)vis = A.671087

Ab/Abl = 0.880641 | V/7i - 0.404482 | Sp/Bpt - 0.696187
b/le = 0.401898 | 88D : 0.27603)
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Figure C.19

Table C.19

Pl 250.0 | Delta = 8.0 Back =10.0 | Rey = 0.100407 | Gassa = 1.40

Tz 0400 ¢ 1.9647°2 + -2.800 7°4 ¢ 1.0771°8

Citav = 0.001938 | CL = 0.042099 | CD = 0.009261
Bu/fp = 22007 | V(2/3)/8p = 0.201728 | (L/D)vis = 4.84307%
Ib/abi = 0.839998 | V/Vi : 0.466241 | Sp/8pi = 0.677104
b/lm . 0.401808 | 88D : 0.2760%2




101

Figure C.20

Table C.20

Phi =50.0 | Delta = 8.0 Bach :10.0 | Rey = 0.10B+07 | Gamma = 1.40

Tz 0.400 + 2.08571°2 ¢ -3.000Y°4 ¢+ 1.2167°¢

Cftar = 0.001848 | (L = 0.042978 | CD - 0.009321

Sw/Bp = 2247389 | V°(2/3)/8p = 0.202447 (L/D)vis = 4.611121

Ab/abg = 0.619381 | V/¥i - 0.448869 | Sp/bpl - 0.657835

b/lw = 0.401888 | 8D - 0.276033
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Figure C.21

Table C.21

Pbi =50.0 | Delta = 8.0 Bach 210.0 | Rey = 0.108407 | Gasma = 1.40

I:= 0500 « 0292712 + 0.0001°¢ + 0.04771°8

Citav = 0.001862 | CL - 0.042867 | CD - 0.008987

Se/Sp = 2.010844 | V°(2/3)/6p = 0.193480 (L/D)vis = 4.763799

Ab/Abd = 0.753140 } V/Vi : 0.529250 | Sp/Spi : 0.768223

b/le = 0.451588 | 56D - 0.258054
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Figure C.22

Table C.22

Phi =50.0 | Delta = 8.0 Nack =10.0 { Rey = 0.108407 | Gamea = 1.40

I= 0500 + 06011°2 +# -0.40071°4 ¢+ 0.1391°8

Cftar = 0.001877 | CL : 0.042788 | CD - 0.008942

Su/bp = 2.087T18 | V°(2/3)/6p = 0.192469 1 (L/D)vis = 4.784768

Ab/Abi = 0.704728 | V/Vi - 0.48383% | Sp/Spi = 0.727428

b/l = 0451589 | SSD - 0.208084
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Figure C.23

Table C.23

Ph =50.0 | Delts = 8.0 Mach =10.0 | Rey = 0.10B+07 | Gamsa = 1.40

I= 0500 + 0.9037°2 ¢ -1.0001°4 + 0.43771°¢

Cftav = 0.001884 | CL - 0.042716 | D : 0.008949

Sw/Sp = 2.078381 | V(2/3)/6p = 0.191381 | (L/D)vis = 4.773218

Ab/Abi = 0.673631 | V/¥i - 0.452048 | 8p/8p1 - 0.699733
b/le = 0.451589 | 56D = 0.258054
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Figure C.24

Table C.24

Pbi =50.0 | Delta = 8.0 | Nach =10.0 | Rey - 0.108+07 | Gasma = 1.40

T= 0500 ¢ 1212770 ¢ -1.4007°4 ¢+ 0.52971°¢

(ftar = 0.001815 | CL = 0.042664 | CD 0.008987

Sw/Bp = 2105614 | ¥U(2/3)/5p = 0.102161 (LD)vis = 414724
Ab/bdbi = 0825218 ) V/Vi = 0.414189 | 5p/8pi = 0.656853
b/le = 0451589 1 86D - 0.256054
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Pigure C.25

Table C.25

Phi =50.0 | Delts = 8.0 Bach =10.0 | RBey = 0.108+407 | Gamma = 1.40

I 0500 ¢+ 1.40371°2 ¢ -1.8001°4 ¢+ 072876

Cftav = 0.001927 | CL = 0.042628 ! : 0.003025

Sw/Sp = 2124140 | V7(2/3)/Sp = 0.192207 (LD)vis = 4.723200

Ab/Ab = 0.804573 | V/Vi : 0.398348 Sp/5pd = 0.631721

1w = 0.451589 | §SD - 0.258054
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Figure C.26

Table C.26

Phi =50.0 ] Delta = 8.0 Nach =10.0 { Rey = 0.10k+07 | Gamma = 1.40

1= 0.500 ¢ 1614712 + -2.2007°4 + 0.927 1%

Cftav = 0.001941 | CL - 0.042597 - 0.009073

Su/bp = 2.146518 | V°(2/3)/Sp = 0.192518 (L/D)ris = 4.894764

Ab/abi = 0.503929 | V/Vi : 0.379397 Sp/8pi = 0.61840%

b/lw = 0.451589 | SSD - 0.258054
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Figure C.27

Table C.27

I
Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108407 | Gamaa = 1.40

I= 0.500 « 1.8157°2 + -2.6001°¢ ¢+ 1.126 "6

Cftav = 0.001955 | CL = 0.042571 (b : 0.009131
Su/Sp = 2112482 | V°(2/3)/Sp = 0.193128 (L/D)vis = 4.662208
Ab/abi = 0.56328¢ | W/Vi : 0.363326 Sp/%pl = 0.598916
b/lw = 0.451589 | 88D : 0.258054
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Figure C.28
Table C.28
Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108407 | Gamsa = 1. 40
1= 0500 ¢+ 2.0167°2 + -3.0007°¢4 + 1.3257'%
Cftar = 0.003969 | CL = 0.042552 0D : 0.209198
Se/Sp = 2.201684 | VU(2/3)/8p = 0.184077 {L/D)vis = 4.826232
Ab/Adi = 0.542639 | /%1 - 0.348142 Sp/Spi = 0.579266
b/le = 0.451589 | 58D : 0.258054
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Figure C.29
Table C.29
Pbi =50.0 | Delta = 8.0 Nach =10.0 | Bey = 0.108407 | Camma = 1.40
1= 0.600 « 0.01437°2 ¢+ 0.0007°¢ + 0.096 1“6
Cftav = 0.001841 | CL - 0.042047 - 0.008833
Se/Sp = 2.051067 | V'(2/3)/Sp = 0.184276 (L/D)vis = ¢.805467
Ab/Abi = 0.676428 | V/Vi : 0.421012 Sp/Spi = 0.692483
b/le = 0.515302 | SSD - 0.236489
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Figure C.30
Table C.30
Phi =50.0 | Delta - 8.0 Bach =10.0 | Rey = 0.108+07 | Gamas : 1.40
T: 0.600 +# 0.2517°2 + 0.0007°4 ¢+ -0.011 1%

Cftav = 0.001851 | CL - 0.042412 (D= 0.0086800
Se/Sp = 2.045426 | 1°(2/3)/5p = 0.184069 (L/D)vis = 4.819488
Ab/hbi = 0.648661 | V/71 0.399285 Sp/5pi - 0.669200
b/1e - 0.515302 | §SD - 0.236489
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Figure C.31

Table C.31

Pbi =50.0 | Delta = 8.0 Bach =10.0 | Bey = 0.108+407 | Gamma = 1.40
I:= 0,600 + 0.4527°2 + -0.4007°4 + 0,168 16

Cftar = 0.001867 | CL = 0.042357 - 0.008801

Su/Sp = 2.043804 | V°(2/3)/8p = 0.183058 (L/D)vis = 4.812601

Ab/Abf = 0.628016 | V/Vi : 0.379612 Sp/Spi = 0.650607

b/l = 0.515302 | SSD = 0.236489
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Figure C.32

Table C.32
Phi =50.0 | Delta = 8.0 Bach =10.0 | Rey = 0.100407 | Gamse : 1. 40
2 0,800 + 0.0827°2 ¢+ -1.0007°4 ¢ 037978
Cftay = 0.001908 | CL 0.042262 D - 0.008024
Sw/Sp = 2.061863 | V°(2/3)/8p = 0.102083 (L/D)vis = 4704272
Ab/Abi = 0.568151 | ¥/Vi : 0.333022 8p/op! = 0597814
b/ls = 0.515202 | 88D - 0.236409
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Pigure C.33

Table C.33
Pl 250.0 | Delta s 8.9 Back 30,0 | Rey = 0.100+07 | Ganms = 1.40
D= 0600 ¢+ 1.0837°2 o 1,400 7°4 ¢ 0.8781¢
Cftay = 0.00192% | CL: 0.042220 eh: 0.000871
Ba/8p = 2.005419 1§ Y°(2/3)/8p = 0.102680 (L/D)vis = 4.759073
Ab/abi = 0540508 | Y/V8 ¢ 0.317302 8p/8p1 : 0.570473
b/l s 0.515802 | 88D = 0.206409




115

Figure C.34

Table C.34
Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108407 | Gamma = 1.40
T:= 0.600 + 1.2647°2 ¢ -1.0001°4 ¢+ 077771
Cftav = 0001942 | CL = 0.042183 | CD: 0.000919
Su/Sp = 2.092990 | V'(2/3)/8p = 0.182802 (LD)vis = 4720744
Bb/Abl = 0.527881 1 ¥/04 : 0.301464 Sp/opt = 0.550982
b/l = 0.515302 | 98D - 0.238489

U P
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Figure C.35

Table C.35

Phi =50.0 | Delta = 8.0 Mach =10.0 { Rey = 0.10B+07 | Gamma = 1.49

1= 0.600 ¢ 1465772 ¢+ -2.2001°4 + 0.8767°8

Cftar = 0.001961 | CL : 0.042152 | CD: 0.008976

Se/Sp = 2114218 | VU(2/3)/5p = 0.183242 (L/D)vis = 4.695912

Ab/dbl = 0.507217 | V/Vi s 0.286913 | Sp/Spi = 0.539200

b/le = 0.515302 | 86D = 0.238489
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Figure C.36
Table C.36
Pbi =50.0 | Delta = §.0 Nach =10.0 | Rey = 0.108+07 | Gamsa = 1.40
I: 0,600 + 1.66861°2 ¢+ -2.600 74 ¢+ 1,1757°¢

Cftav = 0.001980 | CL - 0.042127 = 0.009043
Su/Sp = 2.138879 | Vo(2/3)/6p = 0.184060 (L/D)vis = 4658574
Bo/Bbi = 0.486572 | V/V§ - 0.273058 Bp/Spl - 0.519468
b/le = 0.515302 | SSD - 0.236489
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Pigure C.37
Table C.37
Phi =50.0 | Delta = 8.0 Bach =10.0 | Rey = 0.102+07 { Gasna = 1.40
1:= 0800 + 1.0677°2 ¢ -3.0001°4 ¢ 137476
Cftav = 0.001989 | CL = 0.042110 D 0.008118
Se/Spz  2.166782 | V(2/3)/Sp = 0.1853U4 (L/D)vis = 4.616535
Ab/AbS = 0.465927 ) /M - 0.280108 Sp/8p1 = 0. 498505
b/1s = 0.515302 | 68D 0.236489
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Figure C.38
Table C.38
Phi =50.0 | Delta = 5.0 Nach =16.0 | Rey = 0.100+07 | Gamsa = 1.40
Tz 0700 « 0.1027°2 + 000014 ¢ 0.0201°¢

Citav = 0.001833 | CL - 0.041972 (D s 0.008678
Be/8p = 2.035301 | VO(2/3)/8p = 0.174208 (L/DYris = 4.8370828
Bb/AbE = 0.571949 | V/Vi = 0.305445 8p/8pi = 0.581427
bl s 0.599945 | 88D = 0.211550
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Figure C.39

Table C.39

Phi =50.0 | Delta = 8.

] Mach =10.0 | Rey = 0.108+407 | Gampa = 1.40

T= 0.700 « 0411772 ¢+ -0.4007°4 ¢+ 0.1307°8
Cftar = 0.001875 | CL : 0.041883 | CD - 0.008686
Sw/bp = 2.000808 | V°(2/3)/5p = 0.17M487 (L/D)vis = 4.821683
Ab/Abl = 0.523536 | V/Vi - 0.270847 Sp/bpi = 0.547973
b/lw = 0509945 | S5D - 0.211550
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Figure C.40

Table C.40

Pbi =50.0 | Delta = 8.0 Bach =10.0 | Bey = 0.108+07 | Gamsa = 1.40

I= 0.700 ¢ 0.7M27°2 ¢ -1.0009°¢4 + 0.4297°8

Cftar = 0.001811 | (L= 0.041807 (b - 0.008740
Sw/Sp = 2.044167 | V°(2/3)/8p = 0.172623 (b/D)vis = 4.7836886
Ab/Abi = 0.492688 | V/Vi : 0.247583 | Sp/Spi = 0.518875
b/1n = 0.599945 | S6D - 0.211550
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Figure C.41

Table C.41

Phi =50.0 | Delta = 8.0 Nach =10.0 { Rey = 0.10B407 | Gamsa = 1.40

T= 0700 ¢ 091312 ¢+ -1.40071°4 + 0.628 Y°6

Cftav = 0.001936 | CL - 0.041768 [ CD = 0.008788

Su/Sp = 2.056345 | V(2/3)/5p = 0.172440 (L/D)vis = 4.75206%

b/hbi = 0.472083 | ¥/¥i - 0.233263 Sp/Spi = 0.499199

b/le = 0.599845 | S6D - 0.211550
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Figure C.42

Table C.42

Phi =50.0 | Delta = 8.0 Mach =10.0 | Rey = 0.10B407 | Gamma = 1.40

I= 0.700 + 1.1147°2 + -1.8007°¢ + 0.8271°6

Cftav = 0.001961 | CL - 0.04172¢ | CD - 0.008847

SwiSp = 2.072390 | V°(2/3)/8p = 0.1726U (L/D)vis = 4.716013

Ab/Abi = 0.451408 | 9/Vi : 0.219838 Sp/Spi - 0.479313

b/1w = 0.599945 | 86D - 0.211550
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Figure C.43
Table C.43
Phi =50.0 | Delta = 8.0 Nach =10.0 | Rey = 0.10B+07 | Gamma = 1.40
= 0,700 + 1.3157°2 + -2.2009°4 ¢+ 1.026 1°6

Cftav = 0.001987 | CL - 0.041693 D - 0.008918
S/Sp = 2.091982 | v (2/3)/Sp = 0.1T3211 (L/D)vis = 4.676222
Ab/AbL = 0.430764 ) ¥/Vi - 0.207317 Sp/Spi = 0.459405
b/ln = 0.599945 | SSD - 0.211550




125

Figure C.44

Table C.44

Phi =50.0 | Delta = 8.0 Mach =10.0 | Rey = 0.108+07 | Gamsa = 1.40

T= 0700 + 1506772 + -2.600%°4 + 1.2261°

Cftav = 0.002013 | CL : 0.041870 { CD = 0.008993

Sw/bp = 2.114185 | VO(2/3)/Sp = 0.174308 (L/D)vis = 4.631658

Bb/AbY = 0.430119 | V/Vi = 0.195705 | Sp/Spi 0.43930%

b/lw = 0.599945 | SSD - 0.211550
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Figure C.45
Table C.45

Phi 250.0 § Delta - 8.0 Bach =10.0 | Rey = 0.10B407 | Gamna = 1.40 :

]
I= 0700 ¢« 1.7177°2 ¢ -3.0001°4 + 1.4247°6

Cftar = 0.002039 | CL = 0.041657 ¢h = 0.008076

Sw/Sp = 2.040448 } V°(2/3)/Sp = 0.178001 (L/D)vis = 4,588540

Ab/Abi = 0.389474 | V/Vi : 0.185009 Sp/Spi : 0.418079

b/1v = 0.59994% | SSD - 0.211550




APPENDIX D

Presented here are configurations that have the following
parameters held fixued:
$ = 40, 5§ =8, M= 10, Rey = 1x10%
The following parameters are varied:
R, from 0.4 to 0.8
b, from 0.0 to -2.0

The values of b2 and b6 are such that equation 2-13 and

condition (iii) holds.
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Pigure D.1
Table D.1
Phy =400 | Delta s 8.0 | Mech s10.0 | Rey = 0.108407 | Gasma = 1.40
I 0,400 ¢ £.0709°0 o 0.00074 4 -0.426 18
Cotar s 0001872 1§ CL s 0.043200 | CDs 0.009158
Ba/Bp s 2200440 | V(2/0)/8p 5 0210828 | (L/D)vis = 4728029
Bb/Ubd = 0010408 | Y11 s 0.846480 | Sp/Bpl = 0.328151
b/les 0007200 | 88D = 0.270033

\Y

R

dl

b - ks




129 3

Figure D.2

Table D.2

Phi =40.0 | Delta : 8.0 Bach =10.0 | Rey = 0,108¢07 | Gamma = 1.40

Tz 0400 ¢ 1420 7°2 4 -1.0001°4 + 0.2701°8

Cfbav = 0001876 | CL : 0.043219 | (D= 0.009140
Bu/bp = 2001080 | V'(2/3)/8p = 0.200081 | (L/D)wis = 4720425
Ab/AbL = 0701684 | /Y ¢ 0.816215 | Sp/8pl = 0.804085
b/lez 0007200 | 88D s 0.2760%3
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Figure D.3

Table D.3

Phi =40.0 | Delta = 8.0 Hach =10.0 | Rey = 0.108+07 | Ganna = 1.40

Tz 0400 ¢ 1.7787°2 ¢ -2.000Y°4 + 0.97771°

(ftar = 0.001879 | CL = 0.043182 | CD = 0.008145

Se/bp = 2.240033 | V°(2/3)/8p = 0.208406 | (L/D)vis = 4.71967)

Bb/Abi = 0.764796 | ¥/V1 : 0.505486 | Sp/Spi = 0.779723

b/le = 0337233 | 88D = 0.27603)
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Figure D.4

Table D.4

Phi =40.0 | Delta = 8.0 | Mach =10.0 | Rey = 0.108407 | Gassa = 1.40

I= 0.400 ¢ 2.1327°2 ¢ -3.0007°4 + 1.8821'

Cftav = 0.001883 | CL = 0.043108 | CD = 0.009172

Sw/bp = 2.262038 | V°(2/3)/6p = 0.209216 | (L/D)vis = 4.700084

Ab/abi = 0.737008 | ¥/Vi : 0.557007 | Sp/Spd = 0.754930

b/le = 0.33723) | 8D = 0.276033
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Figure D.5

Table D.5

Phi =40.0 | Delta = 8.0 Nach =10.0 | Rey = 0.108407 | Gamma = 1.40

T= 0500 + 0.85¢79°2 + 0.0007°¢4 ¢ -0.2057°¢

Cftar = 0.001859 | CL = 0.042861 [ CD - 0.008915
Bu/8p = 2.150700 | V°(2/3)/8p = 0.201529 | (L/D)eis = 4.807703

Ab/Bbi = 0.738083 | 7/%) - 0.521240 | Sp/5pd - 0.749808

b/le = 0070929 | 88D = 0258054
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Figure D, 6
Table D.6
Phi <400 | Delta = 8.0 | Mach =10.0 | Rey = 0.108+07 | Gansa = 1.40
1= 0.500 ¢ £.2129°0 ¢ -1.000 "4 + 0.411 716
Cftar = 0.001068 | CL : 0042796 | CD: 0.000912
Bo/8p = 2.154430 ) V°(2/0)/8p = 0.200740 (L/D)vis = 4.801750
Ab/Abt = 0711191 | Wy e 0.49289) Bp/8pi = 0.725149
b/l : 0.370929 | 88D 0.258054
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Figure D.7

Table D.7

Pbi =40.0 | Delta = 8.0 Hach =10.0 | Rey = 0.108+07 | Gamma = 1.40

Tz 0500 ¢« 1.56671°2 ¢ -2.0007°¢ ¢ 1.1187°¢

Cftar = 0.001877 | (L - 0.04293 | D= 0.008031

Se/8p = 2.167308 | V°(2/3)/8p = 0.200233 (L/D)vis = 4.785007

b/Abf = 0.684393 | V/Vi - 0.465955 | Sp/Spd = 0.700308
b/le = 0.370920 | 86D - 0.258054
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Figure D.8

Table D.8

Phi =40.0 | Delta = 8.0 Bach =10.0 | Bey = 0.10R+07 | Gamma = 1.40

I= 0600 ¢« 0.6487°2 ¢+ 0.0007°4 ¢+ -0.15¢71°6

Cttav = 0.001847 | CL - 0.04242¢ | CD: 0.008715

Se/Sp = 2.085432 | V(2/3)/Sp = 0.191944 (L/D)vis = 4.868124

Ab/Abi = 0.657881 | V/Vi - 0.409208 | Sp/Spl - 0.670060

b/lw = 0.432390 | 86D - 0.236489
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Figure D.9
Table D.9
Phi =40.0 | Delta = 8.0 Bach =10.0 | Rey = 0.10R407 | Gamaa = 1.40
0.600 + 1.0007°2 « -1.0007°¢ + 0.55271°
Cftav = 0.001862 | CL 0.042383 e - 0.00872%
Su/Sp = 2.007928 | V°(2/3)/Sp = 0.191047 (L/D)vis = 4.853993
Ab/Abi = 0.630788 | V/Vi : 0.383805 Sp/%i = 0.644953
b/1w : 0.432390 | SSD - 0.238489
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Figure D.10
Table D.10
Phi =40.0 | Delta = 8.0 Nach =10.0 | Rey < 0.108+07 | Gamma = 1.40
I:= 0.600 ¢+ 1.4577°2 ¢ -2.000 74 ¢+ 1.05371°%
Cttar = 0.001884 | CL - 0.042278 = 0.00878)
Su/Sp = L.127193 | VU(2/3)/Sp = 0.191596 (L/D)vis = 4.81352)
Ab/abL = 0.584419 | V/Vi : 0.347349 Sp/Spi = 0.601709
b/ln = 0.432390 | S8D - 0.236489
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Figure D.11

Table D.11

Phi =40.0 | Delta = 8.0 ¥ach =10.0 | Rey = 0.108+07 | Gansa = 1.40

I= 0700 + 0.43471°2 ¢+ 000074 ¢ -0.013 178

Cftar = 0.001833 | CL : 0.041914 b= 0.008546

Se/bp = 2.085211 | VU(2/3)/Sp = 0.1818T (L/D)vis = €.911695

Ab/Abi = 0.577218 | /%1 : 0.310836 | Sp/Spi - 0.589212

b/le = 0.503414 [ SSD - 0.211550
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Figure D.12

Table D.12

Phi =40.0 | Delta = 8.0 Bach =10.0 | Bey = 0.108407 | Casma = 1. 40

= 0,700 +« 0.8911°2 + -1.0009°¢4 + 0.4677°8

Cftar = 0.001866 | CL - 0.041880 | CD = 0.008588

Sa/Sp = 2.085478 | 7°(2/3)/Sp = 0.181381 (L/D)vis = 4.876789

Ab/ebi = 0.50814 | V/Wi - 0.278388 | Sp/Spi - 0.545752

b/ly = 0.509414 | SSD = 0.211550

{
i
v
i
:
i
i
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Figure D.13
}
Table D.13 J
Phi =40.0 | Delta = 8.0 | Nach =10.0 | Rey = 0.10E+07 | Gamsa = 1.40 ]
1= 0700 + 1.2459°2 + -2.000 74 + 1.194 1°6
Cftay = 0.001881 | CL = 0.041816 | €D = 0.0086842

Su/Sp = 2.080821 | V°(2/3)/8p = 0.181065 (L/D)vis = 4.838809

Ab/Abi = 0504018 | V/7i = 0.256373 | Sp/Spd = 0.520036

b/le = 0.503414 | 55D = 0.211550
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Figure D, 14

Table D.14
Phi :40.0 | Delta = 8.0 Bach 210.0 | Rey = 0.10B407 | Ganna 3 1.40
T: 0,000 + 0.2027°2 + 0.00074 + 0.12871°¢
Cftav = 0.001814 | CL = 0.041516 D 0.008402
Su/Bp = 2.001092 | V°(2/3)/8p = 0.170501 (b/D)vls = 4.941120
Ab/Ab = 0.498075 | V/Vi : 0.22598¢ 8p/8p1 0.507482
b/lw 0.602357 | 88D : 0.108460
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Figure D.13

Table D.15

Phi 240.0 | Delts s 8.0 Bach 310.0 | Rey 2 0.100407 | Ganns ¢ 1.40

Tz 0000 ¢+ 0.8701°0 ¢ -1.0007°4 ¢ 00201

Cltar = 0.0010684 | CL : 0.041112 [ CD: 0.000482
bu/Bp s 2000087 | VU(2/0)/8p 5 0.180021 | (L/D)vle = 4000649
Bb/ibg s 0400011 | /14 ¢ 0.198078 | Sp/Bpi : 0. 463604
bins  0.802087 | 88D s 0.108460
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Figure D.16
Table D.16
Phi =40.0 | Delts 2 8.0 Bach =10.0 | Rey = 0.108407 | Ganna = 1.40
1 0.800 + 1.1879°2 ¢ -2.000 74 + 1,128 1°¢
Cftav = 0.001018 1 CL: 0.041339 (W 0.008571
Bu/Bp = 2081029 | V'(2/3)/8p ¢ 0.1TUU (L/D)eis = 4.823078
Ab/AbL = 0.403848 | V/V : 0.170474 $p/8p1 = 0.419171
b/ln 2 0.602357 | 88D = 0.188480 ‘AJ

o _ A1 . st e it e 3 S A Mz 8.8 223,



APPENDIX E

Presented here are configurations that have the following
parameters held fixed:
$ =30, 8§=8, M=10, Rey = 1x10®
The following parameters are varied:
Ro from 0.5 to 0.9
by from 0.0 to -15.0
The values of b, and b, are such that equation 2-13 and

condition (iii) holds,

144
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Figure E.1
Table E.l
Phi =30.0 | Delta = 8.0 Bach =10.0 | Rey = 0.108+07 | Ganma = 1.40
Iz 0.50 + 2019712 +« 0.000Y4 + -2.94371°%
Cftav = 0.001849 | CL = 0.042870 (- 0.008184
Se/Sp = 2.087881 | V'(2/3)/5p = 0.217387 (L/D)eie = 4.887721
Ab/abf = 0.725007 { V/¥4 : 0.515734 fp/Spi = 0.732560
b/l = 0.294754 | 59D - 0.258054




Figure E.2

Table E.2
Phi =30.0 | Delts = 8.0 Bach =10.0 | Rey = 0.108407 | Gansa = 1.40
I= 0.500 + 3.0809°2 ¢ -5.0009°4 ¢+ 2,00571°¢
Cftav = 0.001857 | CL = 0.042758 : 0.009247
Sw/Bp = 2420212 | V(2N /8p = 0.2178M0 (L/D)eis = 4.620818
Ab/AbY = 0.674038 | V/Vi : 0.484878 fp/8p! = 0.683728
b/1s : 0.204754 | 88D : 0.258054
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FPigure E.3

Table E.3
Pbi 30,0 | Delts = 0.0 | Dack 210.0 | Rey = 0.108407 | Qases = 1.40
1= 0.500 ¢ 4.18079°2 ¢ -10.0001°¢ ¢+ 8100 71¢
Oftav s 0.001086 | CL s 0.042671 | CD = 0,009992
Su/bp = 2.000008 | V(2/0)/8p = 0.210708 (L/D)vde = 4.540412
Ab/hbL = 0820008 | V/V 0.419818 Bp/8pl = 0.834407
bin: 0204754 | 88D : 0.288084




Pigure E.4

Table E.4

Rey = 0.108+07 | Gamma = 1.40

$.212 1°2 + -15.600 1°4 + 14.670 176

: 0.009808

1(2/3)/6p -

(L/D)vis = 4.435354

So/bpi = 0.586776
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]
Figure E.5
Table E.5
Pbi =30.0 | Delta = 8.0 Nach =10.0 | Bey = 0.10R+07 | Ganma : ' 4
I: 0.800 ¢« 1.6601°2 + 0.000%4 ¢+ -2.3087°6

Cftav = 0.001845 | CL s 0.042420 b - 0.008904

Se/Sp = 2.217009 | V'(2/3)/8p = 0.207252 (L/D)vis = 4.764273

Ab/Abf = 0.641828 | V/Vi - 0.400941 Sp/Sei = 0.649562

b/1w = 0.336339 { S8D = 0.236489
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Figure E.6
!
Table E.6
Phi =30.0 | Delts : 8.0 Mach =10.0 | Bey = 0.108407 | Gamsa = 1.40
I:= 0,600 + 2738712 4+ -5.00074 + 3.53171%¢
Cftavy = 0.001883 | CL = 0.042302 1} CD = 0.008987
Sw/Sp = 2.317458 | V'(2/3)/Sp = 0.201171 (L/D)vis = 4.707104
Ab/abi = 0.590635 | V/Vi = 0.355951 Sp/Spl = 0.600247
b/lw = 0.336338 | SSD - 0.236488
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Figure E.7
Table E.7
Phi =30.0 | Delta = 8.0 Mach =10.0 | Rey = 0.108+07 | Ganma = 1.40
1= 0.600 +« 3.81097°2 +-10.0007°4 ¢+ 9,369 1%
Cftar = 0.001881 | CL : 0.042215 (- 0.009155
Su/Sp = 2.309240 | V°(2/3)/5p = 0.208868 {L/D)vis = 4611248
Ab/AbE = 0.539665 | V/Vi : 0.318522 Sp/Spi = 0.550550
b/lv = 0.336339 | SSD = 0.236489
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Figure E.8
Table E.8
Phi =30.0 | Delts = 8.0 Hach =10.0 | Rey = 0.108+07 | Gamma = 1.40
1: 0.600 ¢+ 4.8817°7 ¢ -15.000 94 ¢+ 15.205 16
(ftay = 0.001802 | CL 0.042170 b : 0.009410
Se/Sp = 2.518831 | Vo(2/3)/8p = 0.213079 (L/D)vis = 4.481304
Ab/AbL = 0.488651 | V/Vi = 0.282666 Sp/Spi = 0.500467
b/lu = 0.536339 | SSD = 0.238489
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Figure E.9 ;

Table E.9 !

Pbi :30.0 | Delta = 8.0 Nach =10.0 | Rey = 0.10E+07 | Gamna = 1.40

I= 0.700 + 1.3187°2 4 0000974 + -1.86771°8

(ftar = 0.001840 | CL = 0.041957 | 0D - 0.008657

Sw/Sp = 2183218 | V°(2/3)/8p = 0.186271 iL/D)vis = 4.846844

Ab/dbi = 0.558282 | V/Vi : 0.300542 | Sp/Spi - 0.565997

b/l = 0.391568 | 8D - 0.211550
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Figure E.10

Table E.10

Phi =30.0 | Deita = 6.0 Nach :10.0 | Bey = 0.190+407 | Gampa = 1.40

T 0700 + 2.3891°2 + -5.0001°4 + 4.1871°6

Cftav = 0.001871 | CL - 0.041834 | CD - 0.008763

Sw/Sp = 2.221092 | V°(2/3)/5p = 0.196084 (L/D)vis = 4774157

Ab/Abi = 0.507238 | V/¥i = 0.261448 | Sp/Spi = 0.516250

b/le = 0301586 | SSD = 0.2115%0
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Figure E,11l

Table E.l11

Phi =30.0 | Delta = 8.0 Bach :10.0 | Rey = 0.108407 | Gasma = 1.40

T= 0700 ¢ 3.460 Y2 4 -10.000 T4 + 10.008 1°6

Cftar = 0.001809 | CL : 0.041748 | CD s 0.008959

Sw/Bp = 2.302022 | V°(2/3)/8p = 0198184 | (L/D)vis = 4.658729
Ab/abi = 0.456288 | V/1 - 0.226008 | Sp/8pi = 0.486260
b/lv = 0.301588 | 58D - 0.211580

¥y e i - S, S— A A 20 Kt % 44 i 0 coinll i ix m ki dr- s Eoiew—sooctimcace:. r— S ——— o Sk £ o e - p——— o ——— i = TIPS - ——
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Pigure E.12

Table E.12
Phi 230.0 | Delts = 8.0 Mach =10.0 | Bey 7 0.100+07 | Qasma = 1. 40
T 0,700 ¢ 4.5027°2 4 -15.000 Y'4 + 35.005 1°8
Cftav = 0.001938 | CL 0.041716 b = 0.009249
Su/fp = 2.424993 | ¥°(2/3)/8p = 0.203740 (L/Dyvis = 4510335
Bb/BbE = 0.405119 | V/¥ : 0.200114 Bp/8p1 : 0.415759
b/l : 0.391586 | 66D = 0.211580




157

Figure E.13

Tabla E.13
Phi :30.0 | Delta s 8.0 Nach =10.0 | Rey = 0.100407 | Ganm = 1.40
= 0000 ¢+ 0.9601°2 4+ 0.00074 4 -1.000 78
Cftav = 0.001033 | CL = 0.041485 (- 0.008441
Bw/bp = 2.107252 | V°(2/3)/8p = 0.184133 (L/Dvis = 4.914905
Ab/Bbi = 0.474848 | 9/V4 : 0.214528 Sp/8pt - 0.481883
b/1s : 0.480550 | 66D = 0.183460
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Figure E.14
Table E.l4

Phi =30.0 | Delta = 8.0 | HMach =10.0 | Rey = 0.108+07 | Gansa = 1.40

I: 0.800 + 2.038971°2 + -5.0001°4 + 4.8047°6

Ctiar = 0.001883 | Cl - 0.041357 [ CD = 0.008576

Su/Sp = 2.140818 | ¥°(2/3)/8p = 0.183749 (L/D)eis = 4.822828

Ab/abi = 0.420886 | /71 - 0.181456 | Sp/Spt = 0.431872

b/le = 0.488550 | §6D - 0.183480

- T Y L 7 TS S —— 115 P T i w— ran st it 2R Rt i 7. A it s ket St e 38 1208 ) M
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Figure E.15
Table E.15
Phl =30.0 | Delta : 8.¢ Bach :10.0 | Rey = 0.108407 | Ganma = 1.40
T2 0000 ¢+ 3.100 1°2 +-10.0001°¢ + 10.842 14
Cftav = 0.0019% | CL : 0.04127% D : 0.008812
Sa/8p = 2.221630 | V'(2/3)/8p = 0.108426 (L/D)vle = 4804118
Ab/Abf = 0372088 | V/V - 0.154018 8p/891 - 0.301599
b/le - 0.468550 | 88D - 0.183460
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Figure E.16
Table E.16
Pbi :30.0 | Delta = 4.0 Bach =10.0 | Bey = 0.108407 | Gamna ¢ 1.40
= 0.800 4 4.100 72 +-15.0007°4 + 18481 1°¢
Cftar = 0.001082 | CL: 0.041280 (D : 0.009137
Bu/6p = 2.340808 | V'(2/)/8p = 0.194100 (L/D)vis = 4.515485
Ab/Abi = 0.321837 | /Wi 0.13223 Bp/8pt = 0.331083
/1w = 0.460850 | 68D - 0.103460
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Figure E,17

Table E.17
Pbi =30.0 | Delts 2 8.0 Bach =10.0 | Bep = 0.100+07 | Gamoa 2 1. 40
Tz 0,900 + O0.6187°2 o 000014 ¢+ -0.09771°¢
Cftay = 0.001821 | CL ¢ 0.04100% 0 0.008254
Su/8p = 2081210 | V'(2/8)/8p = 0.170417 (L/D)vis = 4.980442
Ab/AbL = 0391447 | V/91 ¢ 0.143081 Bp/8pt = 0.397405
b/1e ¢ 0.503188 | 88D - 0.152480

;e
- aws.
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Figure E.18

Table E.18

Phi =36.0 | Delta = 6.0 Nach =10.0 | Rey = 9.108+07 | Gamna = 1.40

T: 0900 + 1.6887°2 « -5.0000°4 ¢ 5.44277%8

Cftav = 0.001889 | CL - 0.040875 | €D = 0.008433
Sw/bp = 2.079087 | V°(2/3)/8p = 0.168835 | (L/D)vis = 4.847222

Bb/Abi = 0.340488 | V/V§ = 0.116021 | Sp/Spi = 0.347197
b/ln = 0.503168 | 88D

0.152450
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Figure E.19

Table E.19

Phi :30.0 | Delta = 8.0 Bach =10.0 { Rey = 0.10B+07 | Gamaa = 1. 40

= 0.000 + 2.759 1°2 + -10.000 T4 + 11.280 1°6

Cftav = 0.001981 | CL = 0.040798 | CD - 0.008725

Sw/Sp = 2.158027 | 1°(2/3)/8p = 0.173278 | (L/D)vis = 4.876L11

Ab/bbi = 0.289528 | /i = 0.004622 | Sp/Spi = 0.296699

b/le = 0.583188 | 85D - 0.152450




APPENDIX F

Presented here are configurations that have the following

parameters held fixed:
$ =20, § =8, M=10, Rey = 1x10
The following parameters are varied:
Ro from 1.0 to 1.1
b, from 8.0 to -8.0
The values of b, and b, are such that equation 2-1i3

condition (iii) holds.
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Figure F.1

Table F.l

Pbi =20.0 | Delta = 8.0 Mach =10.0 | Bey = 0.108407 | Gamea = 1.40

I= 1000 + 0.7257°2 ¢+ 8.000 774 +-29.400 176

Cttav = 0.001798 | CL : 0.040560 = 0.008193

Se/Sp = 2.116358 | V°(2/3)/Sp = 0.17864d (L/D)vie = 4.850312

Bb/AbL = 0.308388 | V/Wi - 0.087251 | Sp/Spi = 0.307613

b/le = 0.520095 | 68D - 0.118747
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Figure F.2
Table F.2
Phi =20.0 | Delta = 8.0 Nach =10.0 | Rey = 0.10B407 | Gamsa = 1.40
1= 1,000 + 1.52679°2 4+ 0.0007°4 & -9.440 7°6
Cftav = 0.001832 | CL = 0.040506 = 0.008260
Se/Sp = 2.118220 | V(2/3)sap = 0.175873 (L/D)eis = £.903740
Ab/Abi = 0.287061 | V/9i = 0.079159 Sp/Spt = 0.288387
b/1w = 0.528085 | 58D - 0.118747
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Figure F.13

Table F.3

Pb) .20.0  Delta = 6.0 Jlach 10.0 ) Rer - 0.108407 | Gamma = {.40

1= 1,000 ¢ 2.3271°0 + -4.0009°4 + 10.5301°¢8

Cftar = 0.000K88 | (L : 0.040489 { CD: 0.000350

fu/Bp = 2133018 | V(2/3)/8p :+  0.17508% (L/D)vis = 4.845502

Ab/abt = 0208787 1 /Y - 0.0138°0 | Sps w - G.271188

Min:  0.52009% | 88D - 0.114747

L . o ————
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Figure V.4

Table ¥.4

PAl 220.0 | Delta = 8.0 Bach s10.0 | Rey = 0.108407 | Gansa = 1.4

T: 1,000 + -0.0047°0 + 8000 7°4 +-20.180 776

Cltav = 0.00178 | CL - 0.040081 | C : 0.007917

BiSp: 10N | T(2/%)/Bp: 005400 | (LD)els:  5.0628%
IECRE D00 | So/Sph:  0.20805
[ 8oz 0.10022 | 880 : D, 002814

ittt mark . el admimcia ca:ieae st s bl s i St - wmaTe b IOy R TR SRV Py YR PSR SR P PR W ST ee——
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Figure F.5
Table 7.5
Pbi <20.0 | Delta = 8.0 | Bach =10.0 | Foy = 0.108007 | Gunsa = 1.40
L= 0100 ¢ 00112 + 0.000 14 + -3.200 18

Cltar = 0001806 | €L - 0.040021 | D : 0.008021
Sw/bp - LOISBL | Vi Be s 0080810 | (WD)eie: 4000471
kol = 0.201881 | Wmy 0007080 | Sp/dph: 0200108
r—--
bie:  0.181022 | 38D s 0.082874
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Figure P.6

Table F.6

Pl :20.0 | Delts = 8.0 Bach z10.0 ] Rey = 0.100+07 | Gansa = 1.40

D= 1100 + 1579 0°0 & -0.000 1°4 + 16.740 Y6

Cltav = 0.00187% | CL : 0.000971 | CD: 0.008187

r——

Bo/fp = 2.045004 | Y(2/0)/8p ¢ 0.1820M (L/D)efs = 4900140

Ab/hbi - 0.180187 | VML : 0032182 | 8p/8pi = 0.:04042

X ]

b/le s 0.181020 | 68D : 0.002674

Y- grre— e itz ke 7 s e B it S it M £ S MR ALY 3 8, i M = st 28 3 M 5 A1 4 ek ot
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APPENDIX G

Presented here are configurations that have the following
parameters held fixed:
$ = 10, & =8, M =10, Rey = 1x10°
The following parameters are varied:
Ro from 1.0 to 1.1
by trem 120.0 to -120.0
The values of bz and b6 are such that egquation 2-13 and

condition (iii) holds.
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Figure G.1
Table G.1
Pbi =10.0 | Delta = 8.0 Bach =106.0 | Bey = 0.108¢07 | Gamsa = 1.40
T 1,000 ¢ 5,000 1°2 + 120,000 1°¢ ¢+ -2138.0 16
Citav = 0.001884 | CL ¢ 0.040648 - 0.009100
Bo/Bp = 2825704 | VU(2/8)/8p :  0.202710 (L/D)eis = 4.452075
Bb/AbY = 0.292598 | V/Vi = 0.083162 Bp/0p1 : 0.293198
b/1e = 0.260121 | 88D ¢ 0.118747
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Figure G.2
Table G.2
Pbi <10.0 | Delta = 8.0 Bach =10.0 | Bey = 0.100+07 | Gansa = 1.40
T: 1,000 « 8.2009°2 ¢+ 0.0009°¢ ¢+ -977.01°8
Cftar = 0,001 | CLs 0.040500 b : 0.009214
Bu/Bp :  2.000484 | V°(2/3)/8p = 0.22200) (L/Dyvis = 4.3965M1
Ab/Abf = 0.274081 } V/9i - 0.07548¢ 8p/8p! = 0.274854
b/l 2 0,260121 | 88D : 0.11814

camas
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Figure G.3
Table G.3
Phi <100 | Delta = 8.0 Hach =10.0 | Roy = 0.108+407 | Ganea 2 1.40
T 1,000 o 15.009 1°2 +-120.000 Y°4 ¢ 101.0 1°6
Citav = 0.001644 | CL s 0.040462 ¢ : 0.000387
Su/8p = 2781008 | Y(2/8)/8p 2 0.024272 (L/D)vis = 4310472
Ab/AbL = 0200043 | YV s 0.0808890 Bp/8pt : 0.255087
blv ¢ 0.200121 | 88D ¢ 0.110747
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Figure G.4
T.blc Go"
Pbi =10.0 | Delts = 6.0 Bach =10.0 | Roy = 0.100407 | Qansa = .40
T2 1100 o 2746 1°2 « 40,000 9°¢ ¢ -1185.0 1°8
Citav = 0.00821 | Cl: 0.0400%3 0D : 0.008489
So/p = 2.008109 | V(2/0)/8p = 01949088 (L/0)vis = 4715081
Ab/hbi = 0.196422 | YV ¢ 0.037476 Bp/8p1 s 0.196085
bl s 0.394535 | 84D s 0.082674

v - ey q - e
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Figure G.5

Table G.5

Pbi =10.0 { Delta = 8.0 Hach =10.0 | Rey = 0.108407 | Ganma = 1.40

Tz 1100 ¢« S.2051°0 ¢ 0000174 ¢ 8140716

Cfoav s 0.001841 | CLs 0.040009 | CD: 0.000556
So/Bp = 2.921589 | V°(2/3)/8p = 0.195055 {(L/D)vis = {.878086

Bb/bbt = 0107158 | V/Yi : 0.034088 | Sp/Spt = 0. 187598
b/lez 0396608 | 88D - 0.942674
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Figure G.6

Table G.6

Phi =10.0 | Delta = 8.0 Bach 210.0 | Rey = 0.10B407 | Gamea = 1.40

Iz 1,100 + §.84571°2 ¢ -60.0001°4 ¢+ -33.071°

Cltay = 0.001859 | CL - 0.000989 | 0D 0.008639

§a/8p = 2044980 | VU(2/8)/8p = 0.195459 | (L/D)vis = 4.82089)
Ab/hbl = 0177804 | Y/Vi ¢ 0.032408 | Bp/Spl - 017601
b/lm = 0.290805 | 88D - 0.0028%4




APPENDIX H

Here in appendix H we show gseveral different
configurations in a three-dimensional setting. The
configurations shown are repeats of earlier configurations in
the above appendices.

These 3-D views are presented so that the reader gets a better
perception of the configurations shown and even ones that are

shown only in the 2-D views of earlier appendices.
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Figure H.3
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Figure H,6 (E.L19)
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Figure H.8 (G.6)




