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ABSTRACT

Tapered, coupled, microstrip transmission lines are an increasingly important part

of high-speed digital circuits. These lines, used as interconnects between integrated circuit

devices, are modeled using an iteration-perturbation approach applied in the spatial domain.
The approach is used first to solve the static problem, and then to iterate on the static

solution to obtain the charge and current distributions on the lines at different frequencies.
From this model, a frequency-dependent scattering parameter characterization is

determined. Results for typical geometries are presented and are compared with those

published by other authors.

A time-domain simulation of pulse propagation through the tapered, coupled,

microstrip lines is performed. The frequency-domain scattering parameters are inverse
Fourier transformed to obtain the time-domain Green's function. The input pulse is

convolved with the Green's function, and a Newton-Raphson algorithm is applied to

account for nonlinear loads. Good agreement is found with other published results.

Finally, some experimental results are shown and an equivalent circuit is proposed.

The experimental results verify the model, while the equivalent circuit allows the time-

domain simulation to be performed in less time with a negligible loss in accuracy. Results

show that the equivalent circuit gives essentially the same time-domain response in about
one-tenth of the simulation time.
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CHAPTER 1.

INTRODUCTION

The modeling and analysis of signal interconnects in high-speed digital circuits have
become more complicated in recent years. As the clock rates of digital circuits become

faster, the frequency of operation increases and the rise time of the digital gating pulses

shortens. Currently, digital devices can achieve rise times of less than 1 nanosecond
(nsec), with 40 picoseconds (psec) not unreasonable. Digital signals with sharp rise times

and short durations contain significant frequency components from several gigahertz up to
10 gigahertz (GHz). For frequencies above a few gigahertz, the lumped circuit

approximations commonly used as models for interconnects in digital circuits can lead to
erroneous results. The distance the signal must travel in terms of a wavelength is large
enough that lumped-element approximations are no longer valid, and thus the interconnect
must be treated as a transmission line. In addition, as frequencies get higher, parameters
normally considered constant, such as the effective dielectric constant, become a function

of frequency. This results in different propagation velocities for different frequency
components, leading to dispersion and distortion of the propagated pulse. An additional
complication comes from the fact that interconnects typically contain some type of
discontinuity, causing reflections of the incident pulse. The discontinuity could be a bend,
a via, or, as in this study, a taper in the line. Furthermore, an increase in packing density
results in lines being closer together, giving rise to undesired coupling. Finally, the

terminations for the interconnection could be nonlinear active devices.

Currently, no unified study of all these complications has been undertaken. Other
authors have investigated various parts of the problem. For example, dispersion in
microstrip lines has typically been analyzed using the spectral domain technique [1] - [3].
Kretch and Collin [4], on the other hand, investigated the frequency-dependent parameters
for a single uniform microstrip line using an iteration-perturbation approach in the spatial
domain. Rao et al. had written a program to characterize a linear taper, but only using a
static approach [5]. Syahkal and Davies [6] extended the spectral-domain approach to
tapered lines. However, their formulation does not include losses. The possibility of

crosstalk upsetting logic states in coupled lines was investigated by Smith and Snyder [7].

Ghione et al. [81 combined the analysis of uniform lines by the spectral-domain technique
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with a time-domain analysis of pulse propagation. But the analysis was limited to linear
terminations and to lines whose lengths were less than the wavelength of the signal.
However, these techniques are not easy to combine with other programs, especially circuit

simulators. Only recently, Romeo and Santomauro have integrated a uniform, coupled,
lossless set of transmission lines into the SPICE circuit simulator [9].

This thesis investigates the effects of tapered, coupled, microstrip lines used as
interconnects in high-speed digital circuits. Effects such as conductor loss and conductor
thickness are included. An important concern is the use of nonlinear terminations. The
nonlinearity is usually due to the load being an active device. Many active devices have the
input modeled by a capacitor and a diode in parallel. The effects of the change in effective
dielectric constant due to frequency and of a transverse current on the scattering parameters
of the interconnects are also evaluated.

Each chapter of this thesis covers a different aspect of the problem. A single-line
taper is modeled and a method for determining the scattering parameters (S-parameters) is
derived in Chapter 2. The method uses an integral-equation approach based on the Green's
function of the structure. An iterative scheme derived from potential theory is added to
evaluate the effects of frequency on the S-parameters. In Chapter 3, the previous model is
extended to the multiline case. The effects of conductor loss and conductor thickness are
added. In this thesis, only the three-line structure is considered. Extensions of the theory
to any number of lines is possible, but the numerical calculations become time-consuming.
In Chapter 4, a time-domain simulation of the pulse propagating through a three-line
tapered structure is performed, using both linear and nonlinear terminations. The amount
of crosstalk is evaluated. In Chapter 5, the frequency-domain scattering parameter results
are compared to experimental measurements. In Chapter 6, an equivalent circuit for the
single-line taper is derived, and its accuracy compared to the full simulation. Conclusions
are summarized in Chapter 7.
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CHAPTER 2.

MODELING OF A SINGLE TAPERED MICROSTRIP LINE

2.1. Introduction

In this chapter, a method for determining the characteristics of a single tapered

microstrip transmission line is developed. The tapered transmission line can be

characterized by first separating it into many uniform lines and calculating the effective

dielectric constant (eff) and characteristic impedance (ZO) values of the uniform lines. The

Eeff and Z0 values include dispersion effects caused by the transverse current in the

transmission line and, thus, are a function of frequency. Throughout this thesis, this

condition will be called frequency-dependent, and does not imply a full-wave analysis. An
iteration-perturbation technique is used which first finds a static solution and then

determines a correction to that solution to account for dispersion effects. The S-parameters
are determined for the uniform sections and are cascaded to determine the S-parameters for

the tapered line. Results are presented for both a uniform line and a tapered line, with
comparisons made to published results and to results from a commercial computer-aided

design package.

Several authors have characterized uniform lines, including dispersion effects [10j' -
[13]. Most methods of including dispersion for a single uniform line consist of an

empirical formula that defines the effective dielectric constant and characteristic impedance
as functions of frequency. However, these empirical methods cannot be applied directly to

tapered lines. Goossen and Hammond [131 use a qtasi-transverse electromagnetic (TEM)

approximation that is valid only up to the lowest frequency where non-TEM modes can
propagate. The concept of characterizing a tapered line by dividing it into many small

uniform lines has been shown to be valid. Rao et al. [5] present a method for calculating

characteristics of a single tapered line by dividing the line into many uniform sections.
However, their approach uses a static TEM approximation and thus does not include

dispersion. The concept of cascading sections using generalized scattering parameters was

described by Chu and Itoh [14] and can be applied to any geometry. The analysis was

based on the use of the equivalent waveguide model for microstrip lines.
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Section 2.2 presents the quasi-static and frequency-dependent theory development.
The theory uses an efficient iteration-perturbation technique in the spatial domain. In

addition, the procedure for cascading uniform sections to form a tapered line is described.
The result is an S-parameter characterization of a tapered microstrip line, including
dispersion effects. In Section 2.3, the results of the method are presented and compared
with results from other methods and authors. Section 2.3.1 presents the uniform line

results, while Section 2.3.2 presents the tapered line results. Even though the uniform
lines have been thoroughly studied by others, the results are presented to show the
consistency of this method with other approaches, such as the spectral domain technique or

empirical formulas. The S-parameters for a tapered line are given as a function of
frequency. The difference between the quasi-static S-parameters and the frequency-

dependent S-parameters is highlighted. Section 2.4 contains the summary and

conclusions.

2.2. Theory

This section presents the development of the quasi-static and frequency-dependent
theory for calculating the eeff and Z0 values and cascading uniform sections to form a

tapered line, which is approximated by dividing it into many uniform sections, as shown in
Figure 2.1. A cross-sectional diagram of a typical uniform section, including coordinate

axes, is shown in Figure 2.2. Each uniform section is analyzed individually to obtain the
charge and current distributions using the integral equation formulation in the spatial
domain. From the total charge and total current, the effective dielectric constant and
characteristic impedance can be found for each section.

Briefly, the procedure is as follows. The integral equations involving the charge or

current distributions, Green's functions, and potentials are determined. They are then
converted to matrix equations by using point matching. The equations are solved to
determine the total charge and total current. Once the total charge and total current are
found, the impedance and S-parameters can be calculated. The uniform sections are
combined by cascading S-parameters to give an S-parameter representation for the tapered
line. To include frequency dependence, a correction term for the potential distribution is
found, and the ceff and Z0 values are calculated again. The process is repeated until the

values converge.
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Figure 2.1. Approximation of tapered line by cascading uniform sections.

Figure 2.2. Cross section of a typical uniform section of a tapered line.
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Section 2.2.1 describes the static calculation of the eeff and Z0 values. The integral

equations are derived and then converted into matrix equations. Section 2.2.2 describes the
iterative technique applied to the quasi-static solution to obtain the frequency-dependent eeff

and Zo values. Finally, Section 2.2.3 describes the calculation and cascading of the S-

parameters.

2.2.1. Quasi-static Feff and Z0 calculations

The single-line taper is analyzed by first dividing it into small sections and

approximating each section as being uniform. Then the charge and current distributions

can be calculated for each section using a Green's function method-of-moments approach

[4]. Once the charge and current distributions are found, the total charge and total current
can be determined. Since the potentials are known, the effective dielectric constant eff and

characteristic impedance Z0 can be found.

Using the Green's function, the integral equations to be solved are [4]

00
r _ A(x)J GlO(x,x')Jz(x')dx' -(2.1)

-00 i

00

fG20(x,x')pz(x')dx' = eO (x), (2.2)
-00

where for the quasi-static case, eo(x) = 1 and A(x)/I.o = 1. The Green's functions are

given by

G10 =- ln Ix2 - x'2 1 + -LIn 1[(2a) 2 + (x+x')2 ][(2a)2 + (x-x')2 ]1, and4nt 8nt

(2.3)

G20 =-L 1o
lcg+ I

7UZa 7C ta 7 a
KK -1 cosh-a-+ cosl(x-x') cosh--t+ cos -({x+x')+ " 'r In

27c(Kcg+1) 2 2 Kg taa
a- cos -j(x-x') coshl-- - cos -- (x+x')
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00

7c na 7 a ,
cosh(m+l)L-+ cos .. x-x') a cos

+ (-T)m In
7tt 7c a Ra acosh(m+la- cos-(x-x') cosh(m 1;- Cos-x+x')

m=l1

(2.4)

The integrals become finite because Jz and Pz are nonzero only on the conductor. Note that

only the even part of the Green's function needs to be included for the single-line case.

Next, expand Jz and Pz in terms of their basis functions. Thus,

Jz(x') = IoB 0 (x') - I1B2(x') + 12B4 (x') - 13 B6(x'), (2.5)

pz(X') = QoBO(x') - Q1B2(x') + Q2B4 (x') - Q3B 6(x'), (2.6)

where the basis functions were chosen as

Bi(x') = Ti(x') (2.7)\117- 

Ti(x') is the ith Chebyshev polynomial. A plot of the four basis functions is shown in
Figure 2.3. Note that these are entire-domain basis functions with the appropriate edge

singularity already included in each basis function. Only even basis functions are required
due to the fact that the distributions on the single strip are even.

Inserting Equations (2.3) and (2.6) into Equations (2.1) and (2.2) and normalizing
so that the width of the strip extends from -1 to 1 give

1
G1O(xx') (IOBO(x')-I1B 2 (x')+12B4(x')-I 3B6 (x')) dx' = 1 , (2.8)

1

j G20(xx') (QoBo(x')-QIB 2 (x')+Q2B4 (x')-Q 3B6 (x')) dx' 1 . (2.9)

Now, applying delta testing functions to Equation (2.8), where xi is the point at which the

equation is enforced, gives



8

3

2-

1• --- First
-.- Second

0 --- Third
--- Fourth

-2

-3
-1 0 1

Normalized X-Coordinate

Figure 2.3. Four basis functions used for current and charge expansion.

8(xi) 10(x,x')[IIjBj(x')]dx'dx = f8(xi)dx. (2.10)

Thus, the integral equation can be converted into a matrix equation as follows:

1

10(xi,x')[YIjBj(x')]dx ' = B(xi) = 1; (2.11)

1

V.i .IG1O(xix')Bj(x')dx' = 1 . (2.12)

The matrix equation is



9Ea( ,) a(O, 1) a( ,2) a( ,3) ] [1O1 [A x )]1  [11a(1,0) a(1,1I) a(1,2) a(1,3) 'jI] A(x1  (213
a(2,O) a(2, 1) a(2,2) a(2,3) 12= A(x2) II
la(3,O) a(3, 1) a(3,2) a(3,3) I L3] 11 (x3)JLI

where the columns correspond to the basis functions and the rows correspond to the field
points at which the integral equation is being enforced. The number of basis functions
equals the number of field points at which the equation is being enforced; thus, the matrix
is square. The matrix elements are

1
a(ij) = JIGIO(xi,x')Bi(x')dx' , i, j = 0, 1, 2, 3 . (2.14)

The integration can be accomplished numerically. The element a(ij) represents the
contribution to point i of the jth basis function integrated with the Green's function.
Similarly, Equation (2.9) for the charge distribution becomes[a(0,0) a(0,1) a(0,2) a(0,3) iQoi 1

a(1,0) a(1,1) a(1,2) a(1,3) "0 Q(2.15)
a(2,0) a(2,1) a(2,2) a(2,3) Q2~I 11 (.5
la(3,0) a(3, 1) a(3,2) a(3,3) IJLQ 3J I1

where the matrix elements are given by

1

a(ij) = fIG2O(xi~x')Bj(x')dx' , i, j = 0, 1, 2, 3 . (2.16)

The matrix equation is then solved for the basis function coefficients using
Gaussian elimination. From this, the total charge can be found from

1
QtoaI=={-[QOBo(x') + QIB 1(x') + Q2B 2 (x') + Q3B3(x')J dx' . (2.17)

Evaluating each term individually gives

1

{lQiBi(x') dx' = 0 , (2.19)
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1
_{Q2B2(x') dx' = 0, (2.20)

1
_{Q 3 B3(x') dx' = 0. (2.21)

Thus, Qtotal = n Qo. Likewise, Itotal = n 10. From the total charge and total current, the

effective dielectric constant and characteristic impedance can be found.

Itotal

= 0 (2.23)

Itotai 4 "

These are the static values used as a starting point for the iteration-perturbation technique

described in the next section.

2.2.2. Frequency-dependent -eff and Z0 calculations

For the static case, the right-hand sides of Equations (2.1) and (2.2) were constant

because the transverse component of the current was assumed to be zero; thus, the
potentials were not a function of x. For the frequency-dependent case, however, a
transverse component of the current must be considered. Since the exact functional form of

the right-hand side is unknown, a perturbation-iteration approach based on potential theory
will be used.

First, the quasi-static solution must be found, as done in Section 2.2.1. To include
the transverse current Jx(x), use the equation T = -joi0X - VO and the boundary condition

Ex = 0 on the conductor to obtain -jcoAx = 2. Integrating in the x direction give

x

O(x,H) = -jiojAx dx + O(0,H). (2.24)

Rearranging, setting O(O,H) = I and substituting for Ax give
E0
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x
CO(x,H) = 1- jo,<)E0 .IG(x,x')Jx(x )dx dx, or (2.25)

-0 O(x)= 1 + S(x) (2.26)

on the conductor. Recall that the strip width has been normalized. The right-hand side is
no longer just a constant term, but a constant term with a correction term that depends on

the transverse current.

The static solutions for eff, p(x), and J(x) are used to calculate the correction term

to the right-hand side. From (2.25) and (2.26), the correction term S(x) is

x

S(x) = - jopoo .G(x,x )Jx(x )dx dx, (2.27)

where Jx(x') is related to Feff, p(x'), and Jz(x') by the continuity equation. The Green's
function is the same as in the static case. Integrating the continuity equation VsJ = -jcop,

equating Fourier components y- Jxn = j(0) (Eeff Jzn - Pn), and substituting into Equation

(2.27) yield

S(X) o cos Wn - effJzn), (2.28)

n odd

nxc

where all variables are known, wn =M; and the subscript n indicates the nth Fourier

component. The new right-hand side is used to determine new basis function coefficients,
and thus a new eeff. The procedure is repeated until eeff converges to its frequency-

dependent value. From this, the frequency-dependent impedance can be determined.

An additional difficulty caused by this technique is that the Fourier coefficients of
the charge and current distributions must be determined. The current and charge can be

written in terms of their Fourier components as

Jz(x) = , Jzn coswnx , (2.29)
n odd
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Pz(x) = p cO5wnX, (2.30)
n odd

where

2 1

Jzn a jJz(x) cOswnx dx n odd, (2.31)

1
Pzn jPz(x) cOswnx dx n odd. (2.32)

Likewise, the potentials can be decomposed as

D = 1cDn(Y) cOswnx, (2.33)
n odd

Az= XAzn(y) cOswnx, (2.34)
n odd

Ay = XAyn(Y) coswnx, (2.35)

Ax= YAxn(y) sinwnx, (2.36)
n odd

where e-Jiz has been suppressed. The propagation coefficients are

Y'ln =  1p2 . rko2 + Wn 2 , (2.37)

Y2n =  (p2 - Kyko2 + Wn 2 ) , (2.38)

yn= pj32 - k0
2 + Wn2 . (2.39)

The equations for (D and Ay must be solved simultaneously. The solutions are

=-ODnY ( wi(n)w3(n)Sh3(n) _+ko2Sh2(n) .

=)(w3(n)Sh3(n)+erwl(n)Ch3(n) + wl(n)Sh2(n)+w 2(n)Ch 2(n))

x 2 , (2.40)
1+ wn2
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P.OJznSh3(n)Azn(y) = wl(n)Sh 2(n) + w2 (n)Ch2(n)' (2.41)

for n = 1, 2, 3, .... The following notations have been used:

wl(n) =yn ; w2(n) =Tln ; w3(n) = y2n ; (2.42)

Shi(n) = sinh wi(n)y ; Chi(n) = cosh wi(n)y. (2.43)

To obtain results at the first frequency increment, new Green's functions are determined

using the quasi-static value of eeff. The new Green's functions are related to Equations

(2.40) and (2.41) and are given by

Gin = A zn (h ) and (2.44)
WJzn

G2n = eoon(h) (2.45)
Pn

The Fourier components are summed to give the new Green's function. The new

equations to be solved instead of Equations (2.1) and (2.2) are

1

_IGIO(x')Jz(x')dx' = 1 + S(x) (2.46)

1

_IG20(x,x')pz(x')dx' = I + S(x). (2.47)

From this integral equation, a new Jzn and Pn are determined. From these, new values of

In and Qn for this frequency increment are calculated. A new value of 6eff can then be

determined. This procedure is repeated until the value for Eeff does not change by more

than 0.1%. This value is the final eeff for this frequency. The procedure then steps to the

next frequency and calculates a new S(x) from an extrapolated value of Ceff, and starts

iterating all over again. For the single line case, the characteristic impedance can be

determined from

00

zo 120It 1 + -- 2+w 1  -2)(2.48)

ItotaI p effkO2+wj2(n)
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where

Arwl(n)Sh3(n) (2.49)
w3(n)l[w3(n)Sh 3 (n)+ErWl(n)Ch3(n)]

A2Sh2(n) (2.50)
wl(n)Sh2(n)+w2(n)Ch2(n) (

2.2.3. Scattering parameter determination

Once the characteristic impedance of the line has been found, it is then used to

determine the reflection and transmission coefficients for that small section, using the

given reference Z0 . The coefficients are then rotated through the length of the uniform

section. The procedure is repeated for each section, and the overall S-matrix is computed

by cascading the individual sections.

The reflection and transmission coefficients are calculated from

F = ZL - ZO e-2"d , (2.51)

T= 24L ZO e-27d , (2.52)

where d is the length of the uniform section of the microstrip line. Once the reflection and

transmission coefficients for the uniform sections are found, they can be cascaded to obtain

the reflection and transmission coefficients for the tapered line. Sections are cascaded by

first calculating

Z=Z0 + (2.53)i-F

This impedance Z is used as the new load impedance ZL for the next section. The value of

ZL is substituted into Equations (2.51) and (2.52) along with the characteristic impedance

Z0 of the next section. In this way, overall reflection and transmission coefficients for the

single-line taper are determined.
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2.3. Results

The theory described in Section 2.2 was programmed into a computer algorithm.

The program was used to analyze various uniform and tapered geometries. In this section,
results for both the uniform line and the tapered line are presented.

2.3.1. Uniform line results

To confirm the validity of this technique, the characteristics of a uniform line were
computed and the results compared with other published results. Figures 2.4 and 2.5
show the effect of frequency on the effective dielectric constant and characteristic
impedance, respectively, for a nominal er of 12. For Figure 2.4, the effective dielectric

constant approached its nominal value of 12 as the frequency increases. This is as
expected, because as the frequency increases, the effect of the fringing fields on the
effective dielectric constant decreases. In other words, more of the electric field is
concentrated in the dielectric. This can also be seen by noting that for any particular
frequency, the effective dielectric constant approached the nominal value as the line width
increases. The results for the particular case of er = 2 and w/h = 1 are compared with [4] in
Figure 2.6. Agreement is excellent, as it should be, since the techniques are similar.

12

10.o 10 ---O-- w/h:=1
w/h = 2

" -q w/h = 3
9 ---- w/h=5

o. . w/h = 10

8

0 5 10 15 20 25

Frequency (GHz)

Figure 2.4. Effective dielectric constant as a function of frequency.
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The quasi-static inductance was computed for various w/h ratios and the results
compared to those given by Neale and Gopinath [15]. For the worst case of w/h = 0.5, the
results differ by about 6%. The comparison is plotted in Figure 2.7.

2.3.2. Tapered line results

The S-parameters generated using this technique were compared with the S-
parameters generated by the commercially available program Touchstone by EEsof. The
results are for a single line with the parameters given in Table 2.1. The reflection
coefficient magnitudes and phases are compared in Figures 2.8 and 2.9, while the
transmission coefficient magnitudes are compared in Figures 2.10 and 2.11. As can be

seen, the results compare favorably.

-5 600
x

- 500

400- Thesis Method
x Neale and Gopinath

300•

200-

0 1 2 3 4 5 6

w/h

Figure 2.7. Comparison of inductance per unit length from thesis technique with [15].
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TABLE 2.1

PARAMETERS FOR COMPARISON OF THESIS TECHNIQUE WITH TOUCHSTONE

Width of line at input end 3.0 mm

Width of line at output end 1.0 mm

Length of line 3.0 cm

Relative dielectric constant 2.35

Substrate thickness 1.0 mm

0.5

0.4

.a= 0.3

- 0.2

0.1
Thesis Method

0.0I I
0 5 10

Frequency (GHz)

Figure 2.8. Reflection coefficient magnitude comparison between Touchstone and thesis

method.



19

180

135

-' 90

t0 45

0, Touchstone
- Thesis Method

0. -45.

-90

-135

-180 - I
0 5 10

Frequency (GHz)

Figure 2.9. Reflection coefficient phase comparison between Touchstone and thesis

method.

1.0

0.9

0.8

0.7

0.6 Touchstone

- Thesis Method
0.5

5 I0
0 5 10

Frequency (GHz)

Figure 2.10. Transmission coefficient magnitude comparison between Touchstone and
thesis method.
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Figure 2.11. Transmission coefficient phase comparison between Touchstone and thesis

method.

As an example of the effects of frequency dependence, the overall S-parameters are
determined, and the reflection coefficient magnitude is compared to the quasi-static results
in Figure 2.12. The curve marked dependent was calculated using the frequency-

dependent procedure described in Section 2.2.2, while the curve marked independent came
from the quasi-static procedure described in Section 2.2.1. Note that the envelope of the
magnitude is about the same, but the nulls are shifted.

2.4. Conclusions

In this chapter, the theory used to characterize a single-line microstrip, both uniform
and tapered, was presented. The theory used an integral equation formulation which
includes the spatial-domain Green's function. The iteration-perturbation technique required

to determine the frequency-dependent characteristics was developed. Once the
characteristic impedance Zo was determined, the S-parameters for the line were calculated.
Results for both uniform and tapered lines were presented. Comparison with previously

published results and results from a commercial program showed good agreement. Thus,
the technique has been validated for both uniform and tapered single-line microstrips.
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Figure 2.12. Frequency-dependent and quasi-static reflection coefficients for a single-line

taper.
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CHAPTER 3.

MODELING OF MULTIPLE TAPERED MICROSTRIP LINES

3.1. Introduction

Digital interconnects rarely occur as isolated lines. Many times multiple lines run

alongside each other as in a data bus. The proximity of the lines to each other results in
coupling between lines and produces a crosstalk signal on the adjacent line. Tapers are
typically used as interconnects to change the spacing and width of parallel lines as they

approach and connect to an active device, such as an integrated circuit, or a connector,
which is found on the edge of a printed circuit board. This chapter takes the model and
method developed for a single tapered line and extends it to multiple tapered lines. Only a

three-line structure is analyzed in this thesis, but the technique presented could be extended
to any number of lines.

Multiple uniform lines have been widely analyzed [3], [8], [16] - [32]. Ghione et
al. determined the transfer function of a multiline interconnecting bus using the spectral-
domain approach [8]. But while their approach does include losses, it neglects dispersion
effects. Diaz [16] used the Discrete Variational Conformal technique which relies on
conformal transformations to obtain the simplest possible form of the Green's function.
Farr et al. [17] looked specifically at the problem of dispersion and coupling in lines used
in very-large-scale integrated circuit (VLSI) interconnections. Garg and Bahl [18]
developed semiempirical design equations for two coupled uniform lines. However, none
of the previous studies addresses coupled tapered microstrip lines.

This chapter takes the single-line theory presented in Chapter 2 and extends it to
multiple tapered lines. Section 3.2 presents the quasi-static and frequency-dependent

theory modifications to account for multiple lines. In addition, corrections for thickness
and line losses are incorporated. Section 3.3 presents results for both uniform coupled
lines and tapered coupled lines. Comparisons are made to previously published results

where possible. Finally, conclusions are given in Section 3.4.
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3.2. Theory

In this section, the technique developed in Chapter 2 is modified to analyze the
three-line tapered microstrip. A cross-sectional view of the three-line taper is shown in

Figure 3.1, and a planar view in Figure 3.2. The relative dimensions shown are typical for
use in VLSI circuit interconnects, with w being the width-to-height ratio. When referring
to a particular line, the numbering scheme in Figure 3.1 is used. When referring to a
particular port, as is done by the S-parameters, the numbering scheme in Figure 3.2 is

used.

Just as in the single-line case, the three-line taper is solved by first dividing the

tapered lines into small sections that can be approximated as uniform coupled lines. The
quasi-static L and C matrices are determined for each uniform section. The frequency-

dependent L and C matrices are found by applying an iteration-perturbation approach based
on potential theory. Once the L and C matrices have been determined, the scattering
parameters can be calculated. The inverse Fourier transforms of the scattering parameters
are then used in the time-domain simulation.

y

1 2 3 x

Figure 3.1. Cross sectional view of the three-line taper.
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Port 4

Port 1

Port 5

Port 3

Port 6

50 - 150 W

Figure 3.2. Planar view of the three-line taper.

Section 3.2.1 describes the calculation of the quasi-static L and C matrices. This

derivation parallels the one described in Section 2.2.1. Section 3.2.2 presents an overview

of the frequency-dependent modifications. Two additional complications are included in

the three-line analysis that were not included in the single-line analysis. The first is a

correction for finite conductor thickness, and the second is the inclusion of line losses.

These complications are covered in Sections 3.2.3 and 3.2.4, respectively. The calculation

of scattering parameters is more complicated than for the single-line case, since the

structure is now a six-port network. Details are presented in Section 3.2.5.
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3.2.1. Quasi-static solution

The procedures of Chapter 2 can be extended to the three-line case. Again, the
problem is approached by solving multiple uniform lines and cascading to form multiple

tapered lines. The Green's functions now contain both even and odd parts, and the basis
functions are replicated on each conductor. This additional complication comes from the
fact that three different modes of propagation could exist. Thus, the problem must be
solved for three different excitations: two even and one odd. The three independent
excitations chosen for the right-hand side are represented by the voltage vectors

V = (V1 , V2, V3) = (1,1,1), (1,0,1), or (-1,0,1). (3.1)

Solving the problem gives a 3x3 charge and current matrix, where each element gives the
total charge (or total current) for a particular line and mode.

The basic integral equations to be solved are the same as before:

00

r _ A(x),J GO(x,x')Jz(x')dx' = (cf. 2. 1)
-00 110

JG20(x,x')pz(x')dx' = e0 (x) . (cf. 2.2)
-00

Now, however, three ranges of x have nonzero values for Jz and Pz. These three ranges

correspond to the locations of the conductors. Thus, each doubly infinite integral can be
reduced to three finite integrals. In addition, symmetry can be imposed to reduce the

amount of numerical integration. The even and odd parts of the Green's functions are

G1
0 (even) = - ln I x2 - x'2 1

47r
1

+ -In I [(2a) 2 + (x+x') 2 ][(2a)2 + (x-x') 2 ]1, (3.2)8ft

G1
0 (odd)= - llnx +x')~ 1 n ((2a)2 + (x+x')2

47c 8n- (2a)2 + (x-x,) 2 j 33

G2
0 (even) = -- G 0

Kcg+ I
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+~~ ~ &Lncs--+ cos (x-x') cosh j-+ cos t(-x+x)N
2nir(g+1) 2 2 1cg irtt 7cX ar~ Ic

cosh-~t- Cos- j-(x-x') cosh-j- - Cos t(x+x'))

00

7ca 7C~ a na X a
cosh(m+)-+ cos tij.x-x') cosh(m+)- + cos -x+x')

+(-71)m In a aa
ira 7Ca ira 7c a

ohm)-- cos 2a -0 cosh(m+).- Co S x'

(3.4)

G20 (odd) = 2LG1
Kcg+ 1

h Xa -csit a ira it a

+ -K IKg-i In Cos a - os-(x+x') cosh-F- + cos -. (x+x')j
21(cgI221gra ica ira nra

2ir(Kg+1)2 2Kg ') cosh-j--+cos-2- x)

00

7ca ic a iRa 7 a
icosh (m+ I)--- cos- 2 a<x+x') cosh(m+1) ~+ Cos s-~x+x')

ira ir a Ira xra
ohm+)7j-a c os e2a(xX') cosh(m+1 )- + Cos t(x-x')

(3.5)

The total Green's function is the sum of the respective even and odd parts.

For each of the outer conductors, four basis functions are used: two odd and two
even. The inner conductor uses two basis functions, either odd or even, depending on the
excitation. The two additional odd basis functions are BI(x') and B3 (x'), as defined by
Equation (2.4). Analysis showed that two basis functions on the center conductor are
sufficient for a symmetric geometry. Expanding Jz(x') and pz(x') in terms of new basis

functions and inserting into Equations (2. 1) and (2.2), the new equations to be solved are

00

JG1O(x,x')[IIjmBj*(x)dx' = Om(xi) , and (3.6)
-00
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fG20(xi,x')[YQjmBJ*(x')Idx'= Am(xi), (3.7)

where the subscript m = 0, 1, 2 designates one of the three modes. For ease of evaluation,

a new set of basis functions is defined as follows.

BO*(x') = B0(x') , B I*(x') = B2(x'), if even excitation (3.8)

Bo*(x') = B(x') , Bl*(x') = B3(x'), if odd excitation (3.9)

Bk*(X') = Bk-2(x'-s), for k = 2,3,4,5 . (3.10)

For this transformation, s is the center-to-center separation of the microstrip lines, and the
lines are normalized so that the width of the center line extends from -1 to 1. Note that
B0 *(x') and Bl*(x') are nonzero only on the center conductor. Likewise, the other four
basis functions are nonzero only on the outer conductors. The derivation from this point
onward assumes that the structure is symmetric about the 9-axis, as shown in Figure 3.1,
and that all lines have the same width. Such restrictions are not required for the theory, but
they do simplify the derivation and subsequent computation significantly.

As before, point matching is used to generate a matrix equation whose solutions are
the coefficients Ijm and Qjm. The matrix equation must be solved for each excitation.
Table 3.1 lists the voltages on each conductor for each mode, as well as the formula for

determining the total current on each conductor. The total charge is found by using the Q
coefficients instead of the I coefficients. Thus, a 3x3 matrix I is formed for the currents
and a second 3x3 matrix Q is formed for the charges.

From the charge and current matrices, the inductance (L) and capacitance (C)
matrices can be found from Q = CV and (D = LI. Q and I have just been determined, and

V and D are given. As a result, L and C can be determined from

L = 01-1 and C = QV -1. (3.11)

The L and C values will be used to calculate the S-parameters of the structure in Section

3.2.5.
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TABLE 3.1

DEFINITION OF MODES USED TO SOLVE THE THREE-LINE PROBLEM

Mode Voltages Current Calculation

Line I Line 2 Line 3 Line I Line 2 Line 3
0 1 1 1 7t12 RIO 7t12
1 1 0 1 7t12 ltIO 7t12
2 -1 0 1 -71I2 0 t12

3.2.2. Frequency-dependent solution

A 1 nsec rise-time pulse has significant Fourier components up to several gigahertz,

for which a quasi-static analysis still gives reasonable results. However, as rise times
become shorter, a frequency-dependent analysis must be performed. The same technique

used to determine the frequency-dependent behavior of a single line can be extended to the
three-line structure. Thus, a complete characterization of pulse distortion and crosstalk will

be available for a three-line tapered or uniform structure.

The approach used to determine frequency-dependent behavior is similar to that

used for a single line. A correction term to the right-hand side of the equation is calculated
based on the known z-directed current in each line and the continuity equation. A new
problem arises in that the routine can no longer check for convergence of ceff, since three

different modes now exist. Instead, the routine checks for convergence of total charge and

total current.

The basic integral equations to be solved are the same as before:

cc

fGI 0(x,x')Jz(x')dx' = A + S(x) , (3.12)
-000
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JG20(x,x')pz(x')dx' = F-0 O(X) + S(x). (3.13)
-00

The correction term S(x) again relates the current and charge through the continuity
equation VsJ = -jwp. The correction term is calculated by expanding the charge and current

distributions into their Fourier components, and combining the terms with the Green's
function as in Equation (2.24). However, this procedure must be done for each conductor.
Once the correction term is included in the right-hand side of the matrix equation, solution
proceeds as before.

3.2.3. Correction for finite thickness

The quasi-static theory described in the previous section assumes that the conductor
is infinitesimally thin. While this assumption may work well for the quasi-static case, it
will not work when frequency-dependent parameters and losses must be calculated. One
way to account for a finite-thickness conductor is to calculate an effective zero-thickness
strip width that takes into account the fringing fields of the finite-thickness conductor. This
technique has been frequently used [33] - [35].

The correction terms used here are those proposed by Hammerstad and Jensen [36]:

Aul I= In (1 + 4 exp(1) (3.14)
t coth2 (6.517 u)

A 1 1o+ h ) Aul, (3.15)
Aur 2( cosh46e 7

where u is the strip width normalized to the substrate height. The corrected strip width ur is

then

ur = u + AUr. (3.16)

This new width-to-height ratio Ur is then used in the calculation of the charge and current
distributions. The effect of conductor thickness on the width-to-height ratio is shown in
Figure 3.3. The correction is smaller for higher values of the relative dielectric constant.
This is consistent with the fact that more of the field is concentrated in the substrate because

of the higher dielectric constant; thus, the fringing field is relatively smaller.
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1.2
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---- Epsilon = 6
-u-Epsion =12
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0.02 0.04 0.06 0.08 0.10
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Figure 3.3. Effective width-to-height ratio for nominal width-to-height ratio of 1 when

thickness of conductor is considered.

3.2.4. Line losses

An important concern for computer-aided design is the inclusion of line losses.
Large losses can be encountered in thin or narrow lines, causing the attenuation of the pulse
as it propagates. Fortunately, losses can be included in the calculation of the impedance
(Z) and admittance (Y) matrices. Specifically,

Re(Z} = R, (3.17)

ImZ} = (oL, (3.18)

and

Re{Y} = G , (3.19)

Im(Y) =O C (3.20)
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where R is the resistivity in ohms per meter and G is the conductivity between lines in

mhos per meter. The conductance matrix is related to the dielectric losses. If the dielectric

losses are small, then G can be ignored [8]. Then, the ZY and YZ matrices are formed,

and the complex eigenvalues and eigenvectors can be found as described in Section 3.2.5.

The propagation constants y, are determined from the y,2 = ith eigenvalue of YZ,

which will have a real part if the lines are lossy. Thus, the factor Ti i = ei'iz will have a
real part which will cause the attenuation of the pulse. For a lossless line, 'y will be purely

imaginary, and no attenuation will occur.

The problem, however, is how to determine the R matrix. This thesis assumes that

the dielectric losses are small so that they can be neglected, or that if the dielectric losses are

not small, then they are given. The quasi-static theory described previously will produce
the L and C matrices. The R matrix can be calculated using the geometry of the microstrip

interconnect and the conductivity of the lines. The basic principle is [37]:

Ri= l-i (3.21)

where li is the length of the coiductor, ai is the conductivity, and Si is the cross-sectional

area. Ri here is just the value of resistance for one particular line. Letting li equal 1 meter

gives the resistance on a per meter basis,

1
Ri = -1 /m, (3.22)

provided ai and Si have dimensional units in terms of meters.

Frequency dependence comes in through the determination of the cross-sectional
area Si. Figure 3.4 shows a single microstrip conductor with a skin depth 5 indicated. The

value of 8 is given by

q8W= EY. (3.23)

If 8 is greater than 1, then the cross-sectional area is given by the quasi-static value for the

entire structure:

Si = Wt. (3.24)



32

However, as the frequency increases, the skin depth decreases. The conductor can be

treated as if all the current were contained within one skin depth of the surface [37, p. 388].

Thus, the cross-sectional area is frequency dependent, and is given by

Si = 2 8 (t + W - 2 8) (3.25)

tI

Figure 3.4. Geometry for calculation of cross-sectional area due to skin depth.

The R matrix is then given by

R00 1
R 0 R20 I(3.26)

S0 OR 3I

where typically R1 = R2 = R3 . The off-diagonal terms are typically zero since no

connection exists between the lines, and the frequencies are below those of millimeter

waves [8]. Thus, the effect of line losses can easily be evaluated by including them as the
real part of the impedance matrix Z.

An alternative method of handling conductor losses is based on Wheeler's

incremental inductance rule [101, [38]. This method is based on the fact that for a

conductor with surface impedance Zs = R + jX.
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R = X = coLi, (3.27)

where Li is the incremental increase in L caused by an incremental recession of all metallic

walls due to the skin effect. This technique has been applied to single conductor lines [34],

[39], but no application has been made to multiple lines, perhaps because the expression

for Li is difficult to compute analytically for multiconductor lines. The expression is

Li = SY .S (3.28)
2Z.4Snm

m

where m is the mth conductor wall and - is the derivative of L with respect to the
8nm

recession of wall m. Of more interest here is the expression for the resistance:

Rsm L
R= 8--L' (3.29)

m

where Rsm = and 8m = -as before. For the case under consideration
and om =mam

here, tm = o and am = 0.

The difficulty in using Wheeler's incremental inductance rule comes in computing

As with any numerical method, the approximation
8nm

AL 8L (3.30)
Anm 8nm

must be used. This method was compared to the simple skin effect resistance calculation

discussed previously. The difference between the scattering parameters was found to be
negligible (less than 0.1%). The comparison was made from quasi-static up to 6 GHz.
However, Wheeler's incremental inductance rule has the disadvantage that it requires the L

matrix to be calculated four times in addition to the one time required for the baseline

calculation of L. The simple skin effect formula requires only the baseline calculation,
which would have to be done even if the conductors were assumed lossless. Thus, the

data shown in this thesis use the simple skin effect calculation for the sake of numerical

efficiency.
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3.2.5. Scattering parameter determination

The procedure for finding the S parameters is more complicated in the three-line

case. Again, the problem is first solved for small sections of a uniform three-line structure.
However, three different propagating modes exist, with each mode possessing a different
propagation constant. The problem is best worked using modal parameters, converting to

line parameters only when needed. The modal eigenvectors are the eigenvectors of the ZY

(or YZ) matrix. These eigenvalues are proportional to the modal propagation constants,
and are used to form a similarity transformation between line and modal variables. Thus,

the original problem is converted to a modal problem.

First, the eigenvalues and eigenvectors of the ZY and YZ matrices are determined.
The inverse of the matrix of column vectors of YZ is called H, and the inverse of the

matrix of column vectors of ZY is called E. The Q "1 is analogous to YZ, but the I-IQ
matrix must be premultiplied by (I-1 and post-multiplied by V. The E and H matrices are

then normalized so that the first element of each row equals one. The eigenvalues, which
are the same for either QI or IlIQV -1, are placed in the diagonal of the matrix Arer. The
reference impedance matrix is calculated from Zref = ArefrlErefDPI'Href"l. The matrix Zref

is the matrix containing the modal impedances. With the reference calculations done, we
obtain the impedance matrix of the test section by the same procedure.

The modal reflection coefficient is given by r = [1+FW]-I[1-FW], where F =

EEref"1 and W = ZrefHrefH'-Z-1 . The propagation matrix is

e-Yii 0 0
T= 0 e-"21 0 ), (3.31)

(0 0 e-Y/3I

where yi is the propagation constant for that mode and I is the length of the section. We

also need T = [1+FW]-IF. The S parameters are then given by

S11 -T1 [r - 'l-'P] [1 - lPl-]-1 T (3.32)

S2 2 = S11 (3.33)

S2 1 = 2E 0E-1 [1 - I] [1 -P"I"]-1 T (3.34)

S 12 = S2 1, (3.35)
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where F is the modal reflection matrix, TV is the modal propagation matrix, E and E0 are

the eigenvector matrices, and T is the transformation matrix. The technique used here is

based on work done by Schutt-Aine [40]. The uniform sections are cascaded using the
following equations:

Sllc"mp = Sill 1 +S121Sl12[1 - $221S112] -1 S211 , (3.36)

S2 1comP = S2 12[1 - S22lS 1 2]-l S2 1
1 , (3.37)

S22comp = S222 + S2 12S 22 1[1 - S1 12S 22 11-1 S 122 , and (3.38)

S12comp = S12
1[1 - S1 1

2S22 1 "1 S 12
2 . (3.39)

The superscript comp indicates the composite matrix, while the superscripts 1 and 2

indicate the first and second set of S-parameter matrices.

3.3. Results

The techniques described in Section 3.2 were implemented in a computer program.
In this section, results for particular uniform line and tapered line test cases are presented.

Comparisons are made to published results where possible.

3.3.1. Uniform line results

As previously stated, the S-parameters for the tapered structure are obtained by
cascading small uniform sections of a three-line structure. As a check of uniform line
results, a test example was run using the parameters listed in Table 3.2. Some S-parameter
results for three-line uniform structures are shown in Figures 3.5 through 3.8. Figures 3.6
and 3.8 show that the coupling between lines increases as the frequency increases. Recall
that the subscripts for the S-parameters follow the convention shown in Figure 3.2.

3.3.2. Tapered line results

As done for the single-line case, the S-parameters for the tapered three-line structure
are obtained by cascading small uniform three-line sections. A test example was run using
the parameters listed in Table 3.3. Some S-parameter results for a three-line tapered

structure are shown in Figures 3.9 through 3.12. Notice that the shape of the reflection
coefficient shown in Figure 3.9 is more complicated than the corresponding result for
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uniform lines shown in Figure 3.5. Also, Figures 3.10 and 3.12 indicate that coupling
increases with frequency, just as for coupled uniform lines.

TABLE 3.2

PARAMETERS FOR UNIFORM LINE TEST CASE

Length of line 78.74 mm
Width of line 0.7874 mm

Spacing of line 0.7874 mm

Conductor thickness 0.03556 mm
Conductivity (copper) 5.8 x 107 mhos/m
Dielectric thickness 0.7874 mm
Relative dielectric constant 4.7

0.3-

0.2

0.1-

0.0
0 1 2 3

Frequency (GHz)

Figure 3.5. S22 for a uniform three-line structure.
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Figure 3.6. S25 for a uniform three-line structure.

0.2-

0.1-

0.0.
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Figure 3.7. S 12 for a uniform three-line structure.
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Figure 3.8. S15 for a uniform three-line structure.

TABLE 3.3

PARAMETERS FOR TAPERED LINE TEST CASE

Length of line 78.74 mm
Width of line (input end) 0.7874 mm
Width of line (output end) 1.9685 mm
Spacing of line (input end) 0.7874 mm
Spacing of line (output end) 1.9685 mm
Conductor thickness 0.03556 mm
Conductivity (copper) 5.8 x 107 mhos/m
Dielectric thickness 0.7874 mm
Relative dielectric constant 4.7
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Figure 3.9. S2 2 for a tapered three-line structure.
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Figure 3.10. S2 5 for a tapered three-line structure.
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Figure 3.11. S 12 for a tapered three-line structure.
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Figure 3.12. S 15 for a tapered three-line structure.
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3.4. Conclusions

In this chapter, the technique developed for a single-line taper was extended to a
three-line tapered structure. For this case, the problem had to be solved for three different
excitations in order to account for the three different propagating modes. The result was a
matrix of charge and current values. The effects of conductor thickness and losses were
included. The method for determining the scattering parameters was presented. Results
were shown for a typical uniform and tapered three-line structure.
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CHAPTER 4.

TIME-DOMAIN SIMULATION OF MULTIPLE TAPERED MICROSTRIP
LINES

4.1. Introduction

An important concern of this study is the effect that tapered lines have on high-

speed digital data pulses. These pulses can have a rise time of less than 1 nanosecond
(nsec). The results are desired not only for linear terminations, but also for nonlinear

terminations. The study of linear terminations is undertaken in this thesis for two reasons.
First, this is the simplest case, and the results in many instances are intuitive and easily
verified. Second, much work has already been done and published using linear

terminations; thus, many results are available for comparison. Nonlinear terminations must
be included because the inputs of active devices are typically modeled with nonlinear

elements. The solution of such a problem cannot be accomplished in the frequency
domain, because nonlinear elements cannot be modeled in the frequency domain. Thus, a

time-domain simulation is required. This chapter describes how that time-domain

simulation is performed.

Within the last few years, several articles have been published on the time-domain
analysis of transmission lines [8], [9], [13], [40] - [42]. Goossen and Hammond were
concerned with a single microstrip line on a silicon substrate [13]. They used empirical

equations for dispersion and loss, and a transform technique for the linear terminations.
The technique used by Romeo and Santomauro [9] is similar to the one used in this thesis
and [40] in that they convert the coupled lines into modal parameters propagating on

uncoupled uniform lines. Models for nonlinear devii -s have been developed for use in

circuit simulators and are readily available [43]. However, the use of these models as
terminations for microstrip transmission lines is relatively new. Schutt-Aine [40] analyzed

coupled uniform microstrip lines with typical digital drivers and receivers modeled as
nonlinear devices. Hill and Mathews analyzed pulse propagation on an exponential

transmission line with nonlinear drivers and receivers [42], but their method is limited to
exponential lines, which rarely occur in digital systems.

In this chapter, the necessary theory is presented to analyze the effect of coupled,

tapered microstrip lines on digital pulses. Section 4.2 describes the termination modeling
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and algorithm for calculating the time-domain response. Equations are developed which
can be implemented on a digital computer. Section 4.3 presents the results of the time-
domain simulation for a typical coupled, tapered microstrip structure. These results show
:.:,e effect of the nonlinear terminations and of the coupling between lines. Finally, Section
4.4 contains the summary and conclusions.

4.2. Theory

The voltage response of a tapered microstrip line to an input pulse is found by time-
domain simulation. The time-domain simulation is performed by convolving the input
voltage vector with the time-domain Green's function matrix corresponding to the S-

parameters. The S-parameters are those derived using the method presented in Chapter 3.
The time-domain Green's function matrix is the inverse Fourier transform of the frequency-
domain S-parameters. The simulation incorporates the effects of the terminations through
the reflection and transmission coefficient matrices calculated from the source and load
impedances. If the termination is nonlinear, a Newton-Raphson algorithm is used to
incorporate the V-I characteristics of the termination at the corresponding time step. Thus,
the problem can be reduced to one of solving a linear transmission line problem for the
given time step and given iteration on the nonlinear termination. Once the solution
converges for the given time step, the process is repeated for the next time step, using the

previous results as a starting point.

In Chapter 3, a method of determining the frequency-domain scattering parameters
was developed. These scattering parameters satisfy the relationships

B1 = Sl1 A1 + S12 A2 , (4.1)

B2 = S2 1 A1 + S22 A2 , (4.2)

where S11, S 12, S21, and S22 are the modal scattering parameter matrices determined in
Chapter 3 that describe the six-port network. Al, A2 , B1, and B2 are the forward and
backward modal wave matrices. For the six-port network, the subscript 1 indicates the
input ports (ports 1, 2, and 3), while the subscript 2 indicates the output ports (ports 4, 5,
and 6). A time-domain formulation can be achieved by taking an inverse Fourier transform

of (4.1) and (4.2) to obtain

bl(t) = S11(t) * al(t) + S12(t) * a2(t) , (4.3)
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b2(t) = S2 1(t) * al(t) + S22(t) * a2(t), (4.4)

where each term is the inverse Fourier transform of the corresponding term in (4.1) or
(4.2), and the symbol * denotes convolution.

Equations (4.3) and (4.4) relate the incident and reflected time-domain wave
vectors. The wave vectors are related to the terminations and the input signals by the

equations

al(t) = Tl(t) gi(t) + ri(t) bi(t) , (4.5)

a2(t) = T2(t) g2(t) + F2 (t) b2(t), (4.6)

where TI(t) and T2(t) are the transmission coefficient matrices, F1 (t) and F2 (t) are the

reflection coefficient matrices, and gl(t) and g2(t) are the voltage generator vectors.

Thus, Equations (4.3) through (4.6) relate the source voltages, terminations, and
characteristics of the transmission line structure. These can then be solved for al(t), a2(t),
bi(t), and b2(t). The modal voltage vectors are then given by

VmI(t) = al(t) + bl(t) (4.7)

Vm2(t) = a2(t) + b2(t). (4.8)

The line voltage vectors are recovered from

VI(t) = E0
-1 VmI(t) (4.9)

V2(t) = E0
"1 Vm2(t), (4.10)

where E0 is the voltage eigenvector matrix.

The input and output terminations can be characterized by their reflection and
transmission coefficient matrices. The matrices are defined by [40]

1s(t) = - [I + E Zs(t) L - 1 E "1 Am]-1 [In - E Zs(t) L-1 E "1 Am] "I , (4.11)

ri(t) = [I + E ZI(t) L- 1 E"1 Am] "1 [In - E Zl(t) L- 1 E"1 Am] "1 , (4.12)

Ts(t) = [I + E Zs(t) L-1 E"1 Am] "1 , (4.13)
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T1 (t) = [I + E ZI(t) L- 1 E- 1 Am]-I, (4.14)

where I is the identity matrix, the subscript s or 1 denotes the source or load end of the
structure, and E, L, and A are calculated from the reference system.

A typical load for a transmission line includes digital receivers that contain
nonlinearities. In addition, capacitance can be introduced by the chip bonding pad,
package, and printed wiring board connector [44, p. 391. These effects must be included
in a time-domain simulation if accurate results are desired. In order to determine the
impedance matrices for nonlinear loads, the V-I (i. e., voltage-current) characteristics are
used in a Newton-Raphson algorithm to calculate the impedance at that time step. To
perform a Newton-Raphson iteration, the nonlinear equation for the voltage-current
relationship is put in the form f(x) = 0 and the algorithm

6df(x) I x = x) ] 4 f(x(i)) (4.15)

is applied. If the initial guess x(0) is sufficiently close to a correct solution of f(x) = 0, then
the algorithm will always converge to a correct solution. If the initial guess is far away
from a correct solution, the algorithm may not converge at all. For the problem under
consideration, the initial guess x(0 ) at a time step is chosen to be the final value from the
previous time step. Thus, the initial guess is assured of being close to a correct solution,
and the algorithm will converge. Convergence to a solution is quadratic.

Once the voltage and current values are found, the impedances are determined, and
the solution proceeds as in the linear case. This technique was implemented in a computer
program, with the results shown in Section 4.3.

4.3. Results

The time-domain theory presented in this chapter was combined with the tapered
line model developed in Chapter 3. This combination allows the input and output voltage
waveforms of a six-port, three-line tapered structure to be determined. First, comparisons

are made with previously published uniform line results. Then, a test case is run using the
geometry analyzed in Chapter 3. Results for both linear and nonlinear terminations are
presented.

Unfortunately, no time-domain results are available for tapered lines. Therefore, to
verify the technique, a comparison was made with the time-domain results of Romeo and
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Santomauro [9]. Even though they analyzed a uniform line, a comparison of results would

confirm the time-domain simulation technique. The parameters used in [9] are listed in
Table 4.1. The results are shown in Figure 4.1. As can be seen, agreement is good,

considering that the data from [9] were read from a graph published in the article.

TABLE 4.1

PARAMETERS FOR COMPARISON WITH ROMEO AND SANTOMAURO

Line width 0.19 mm

Line spacing 0.44 mm

Conductor thickness 0.06 mm

Height of substrate 0.41 mm

Length of line 210.0 mm
Relative dielectric constant 4.6
Pulse rise time 5.0 nsec

5

4 XK x x  
3

4-

3- x

>2

1 Thesis Method

L / x Romeo and Santomauro
0 I

0 5 10 15 20

Time (nsec)

Figure 4.1. Comparison of thesis method with the results of Romeo and Santomauro [9].
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The test case to be considered is a set of coupled, tapered microstrip lines using the
parameters listed in Table 4.2. The geometry of the tapered structure is the same as used in
Chapter 3 and listed in Table 3.3. An input pulse of 4 V was placed on the center line, and
the voltages at the input and output ends of all three lines were calculated.

TABLE 4.2

PARAMETERS FOR TIME-DOMAIN SIMULATION

Rise and fall time 0.5 nsec
Pulse width 10 nsec

Source voltage (ports 1, 2, 3) 0, 4, 0 V
Loads Nonlinear
Duration of simulation 20 nsec
Number of data points 256

Figures 4.2 through 4.5 show the time-domain response of a three-line structure
with nonlinear loads. In Figure 4.2, the reflection from the load is evident by the step in
the rise and fall times. The fact that the voltage levels are not constant across these steps is
due to the nonlinearities of the terminations. The effect of the terminations can also be seen
in Figure 4.4. Figures 4.3 and 4.5 show that the crosstalk signal has an amplitude of about
200 mV. Thus, any devices connected to the coupled transmission lines must have a noise
margin large enough to prevent the crosstalk signal from causing false switching. The
dependence of the crosstalk signal on the transmission line geometry can easily be
determined by evaluating other cases.

4.4. Conclusions

In this chapter, the equations for the time-domain simulation were presented. These
equations take the frequency-domain scattering parameters developed in Chapter 3 and
combine them with the nonlinear terminations to obtain the voltage waveforms for all six
ports. This allows the study of pulse propagation through the tapered line and crosstalk
between tapered lines. Results were presented for a typical example. Agreement with
previously published results was shown to be good.
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Figure 4.2. Voltage at input of center line of three-line taper.
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Figure 4.3. Voltage at input of outer line of three-line taper.
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Figure 4.4. Voltage at output of center line of three-line taper.
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Figure 4.5. Voltage at output of outer line of three-line taper.
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CHAPTER 5.

EXPERIMENTAL CHARACTERIZATION OF MULTIPLE TAPERED
MICROSTRIP LINES

5.1. Introduction

The S-parameters computed using the approach described in Chapters 2 and 3 will
be compared to measurements taken on representative structures. In particular, a single
uniform line and a three-line tapered structure will be measured. These measurements will
confirm the validity of the model and the accuracy of the computer program. Possible
measurement errors will be discussed.

Several authors have reported experimental S-parameter results for uniform
microstrip lines [6], [8], [40]. For example, Schutt-Aine [40] performed experimental
time-domain measurements on coupled uniform lines. But only one of these papers
concerned itself with tapered microstrip lines. Syahkal and Davies [6] performed
measurements on back-to-back microstrip to coplanar waveguide tapers and a tapered
finline to waveguide transition. Unfortunately, neither of these structures is of interest in

high-speed digital circuits.

In this chapter, experimental measurements are compared to the calculated values.
Section 5.2 describes the procedures used to obtain the experimental data. The data consist
of both magnitude and phase values for each S-parameter. Section 5.3 shows the
experimental data as well as the data calculated by the program. Finally, Section 5.4
presents the conclusions drawn from the comparison of the "xperimental measurements
with the calculated results.

5.2. Test Procedures

The tests were made using a Hewlett-Packard HP8510B network analyzer, which
provides the reflection and transmission coefficients of the structure. These values are then
compared with the calculated values. Measurements were made on a single-line and e
three-line geometry. Table 5.1 lists the parameters of the single-line test case. All complex
S -parameters, "11, S 12, S2 1, and S22 ) were measured.
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TABLE 5.1

PARAMETERS FOR UNIFORM LINE TEST CASE

Line length 10.16 cm

Line width 1.397 mm

Substrate thickness 0.7874 mm

Relative dielectric constant 4.7

Conductor conductivity (copper) 5.8 x 107 mhos/m

Conductor thickness 0.03556 mm

Additional length from connectors 1.0 cm

The first step in taking the measurements was to calibrate the HP8510B. The

calibration was done using specially-fabricated shorts, opens, matched loads, and sliding

loads on both ports. The calibration was then checked by observing the S-parameters of a

through-section and an open. The results were as expected. A TRL (through-reflected

line) calibration was tried to remove the effect of the connectors, but could not be

successfully accomplished due to the lack of a lossless reference line. Therefore, all

measurements include the effects of the connectors. Symmetry was used to reduce the

number of measurements taken. The results of the measurements are presented in the next

section, where they are compared with the calculated S-parameters.

5.3. Results

This section presents the results of the experimental measurements and compares

them with the results of the calculations. Due to the connectors in the lines, the data from

the experimental measurements are valid only to about 4 GHz. Thus, the comparisons to

calculated results will be made only up to 4 GHz. The length introduced by the connectors

is already in the experimental results, and therefore was included in the calculated results.

Additionally, the board used for measurements had a film layer over the conductors,

presumably to prevent oxidation or corrosion of the copper conductors. However, the

dielectric constant and thickness of the layer were not known; thus, the effect on

measurements are unknown.
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Figures 5.1 and 5.2 show the magnitude and phase plots of the experimental and
calculated results. Note that agreement is good at lower frequencies (less than 2 GHz) and

degrades somewhat as the frequency increases. The discrepancy can be attributed to the

connectors. Time-domain reflectometry measurements were made, which confirmed the

discontinuity introduced by the connectors.

A tapered three-line structure with the geometry shown in Figure 5.3 was
measured. Except for the line length and line width, all other physical parameters are the
same as those listed in Table 5.1. Figures 5.4 and 5.5 show the magnitude and phase of

the transmission coefficient between ports 1 and 2 of the tapered three-line structure. The
measured values agree reasonably well with the calculated values. Figures 5.6 and 5.7
show the magnitude and phase of the transmission coefficient between ports 2 and 5. The

0.3

Calculated

0.2 x Measured

0.1

0.0
0 1 2 3 4

Frequency (GHz)

Figure 5. 1. Calculated versus measured values of reflection coefficient magnitude for

single uniform line.
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Figure 5.2. Calculated versus measured values of reflection coefficient phase for single

uniform line.

18 mil lines [
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Figure 5.3. Three-line tapered geometry used for experimental measurements.
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Figure 5.4. Calculated versus measured values for magnitude of S 12 for coupled tapered

lines.
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Figure 5.5. Calculated versus measured values for phase of S12 for coupled tapered lines.
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Figure 5.6. Calculated versus measured values for magnitude Of S25 for coupled tapered

lines.
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Figure 5.7. Calculated versus measured values for phase Of S25 for coupled tapered lines.
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phase agreement is good, but the measured magnitude values show more loss than the

calculated values. This could be due to the fact that the calculated values do not include
radiation loss or dielectric loss. These loss mechanisms become more important as the

frequency increases, but can be neglected at lower frequencies. The model developed in

this thesis does not include radiation loss, and the dielectric loss must be specified

explicitly. Data for the dielectric loss were not available. However, the dielectric loss
could be estimated from the experimental data.

To estimate the dielectric loss, the transmission coefficient magnitude data for the

single uniform line was used. Figure 5.8 shows the experimental data along with the data
calculated using only conductor loss. In order to match the experimental data, dielectric
loss was added until the experimental and calculated curves agreed, as shown in Figure

5.8. Achieving this agreement required the following conductance matrix:1 0 0
G = 0.002o 1 (5.1)

where o) is in gigaradians. Off-diagonal terms were tried, but were found to have little

effect on the results.

1.0 x-r-' 'X-X -' r "k"" It I
0 .9 - "3'. r - x

0.8

0.7

0.6 - Calculated, Conductor Loss Only
Calculated, Conductor and Dielectric Losses

0.5 X Measured

0.4 9 1 - I
0 1 2 3 4

Frequency (GHz)

Figure 5.8. Calculated versus measured values of transmission coefficient magnitude for

single uniform line, including dielectric loss.
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The results of including the dielectric loss is shown in Figure 5.9. As can be seen,

the calculated and measured data show better agreement than in Figure 5.6. Recall that

Figure 5.6 includes only conductor loss, while Figure 5.9 includes both conductor and

dielectric losses. The dielectric loss had little effect on any of the other data. Thus, for this

particular substrate, which is supposed to be typical of printed circuit boards used in high-

speed digital computers, dielectric loss has a greater effect on the transmission coefficient

than conductor loss.

1.0

0.9

0.8-

0.7

0.6- Calculated, Conductor Loss Only

0.5 - Calculated, Conductor and Dielectric Losses

X Measured
0.4 1

0 12 3 4

Frequency (GHz)

Figure 5.9. Calculated versus measured values for magnitude of S2 5 for coupled tapered

lines, including dielectric loss.

5.4. Conclusions

In this chapter, comparisons were made between experimental measurements and

values calculated using the technique described in previous chapters. Good agreement was

found up to 4 GHz. At higher frequencies, the effects of the connectors became dominant,

and comparisons between calculated and measured values could not be made. For a typical

printed circuit board, dielectric loss could have a greater effect on the transmission

coefficient than conductor loss.
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CHAPTER 6.

EQUIVALENT CIRCUIT CHARACTERIZATION

6.1. Introduction

The equivalent circuit approach has been used for various microstrip discontinuities

such as open ends, gaps, and step junctions. The practice of expressing a discontinuity in
terms of an excess charge or current leads naturally to a lumped equivalent circuit. The use

of equivalent circuits allows the designer to easily characterize the behavior of a circuit by

simulation. The simulation time is much less when a discontinuity can be approximated as
a lumped or transmission line circuit than when a full-wave analysis is performed. Also,
lumped element or transmission line circuits can easily be integrated into most existing

circuit simulators. However, no simple equivalent circuit has yet been proposed for a
tapered line, perhaps because most analysis techniques require the discontinuity to be

spatially localized.

Based on the S-parameters determined in Chapter 3, an equivalent circuit for

coupled, tapered lines is proposed. The equivalent circuit is then tested by using it in a

simulation program and comparing the time- and frequency-domain results with those of
the full-scale simulation. The circuit model proposed here uses the idea that a taper can be
viewed as a series of uniform transmission lines with step discontinuities. This allows the

discontinuity to be spatially spread out, just as the original taper. Since the desired end

result is a time-domain simulation, the step discontinuities themselves do not need to be
modeled. The difference in impedance is sufficient for the time-domain simulator.

The equivalent circuit proposed in this chapter has both shortcomings and

advantages. The major shortcoming is that the equivalent circuit is only good up to a

particular frequency. However, analysis will show that if the equivalent circuit is chosen
properly, the frequency will be high enough for an adequate time-domain simulation. The

major advantage is its simplicity in implementation and simulation. As will be shown, it

also does give reasonably good results for most digital pulses of current interest.

Discontinuities such as steps, gaps, and T-junctions have been widely studied and

reported in the literature [10], [11], [14], [15], [45] - [51]. But the majority of these
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approach the discontinuity as a localized phenomenon. However, Chu and Itoh did

cascade two step junctions with good results [14]. This thesis extends that idea to the

cascading of many step junctions to approximate a tapered line.

This chapter describes the development and testing of a simplified model for

tapered, coupled lines. Section 6.2 describes the model used for the equivalent circuit.

Empirical estimates of the equivalent circuit parameters are presented. Section 6.3

discusses the results of comparing the S-parameters of the model with previously derived

S-parameters and time response for the tapered line. Finally, Section 6.4 presents some

conclusions and observations related to the use of the equivalent circuit.

6.2 Model Development

Given the distributed nature of the tapered line discontinuity, no lumped equivalent

circuit will model the line over a wide frequency range. Therefore, the choice was made to

match the lower frequency characteristics. In the low-frequency limit, the taper should

behave as if it was not there, leaving a junction with the load connected directly to the

source. In the high-frequency limit, the entire structure should behave as if no

discontinuity existed. A step junction equivalent circuit with frequency-dependent element

values could model this behavior. However, no circuit simulator will accept frequency-

dependent elements. Therefore, some simplification and approximation must be made.

Since the fundamental frequency in a Fourier expansion of the digital pulse has the greatest

magnitude, this frequency would be the most important to match. The fact that the Fourier

coefficient magnitudes go to zero as the frequency increases allows the high-frequency

asymptotic limit to be neglected.

As a result, the proposed circuit model is a combination of uniform transmission

line sections, as shown in Figure 6.1. This model will supply both the periodic

transmission line characteristics and the impedance matching characteristics of the tapered

line. The total length of the uniform lines is the same as the length of the taper. The taper

is divided into three sections, and each section is replaced by uniform coupled lines whose

width and spacing equal the width and spacing at the midpoint of each section.

This model has a limited frequency range. The upper frequency limit is determined

by the length of the taper and the frequency components of the input pulse. A common

rule-of-thumb is that the equivalent circuit will be adequate up to the frequency at which the

length of a section becomes a quarter wavelength. For a taper 7.874 cm long on a substrate
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1

Z

Figure 6.1. Symbolic equivalent circuit for a tapered line.

with relative dielectric constant 4.7, the frequency limit for a three-section equivalent circuit

is given by

f= c 1.7 GHz. (6.1)

This frequency limit will be compared with the actual results in the next section.

To determine the frequency range needed, a Fourier analysis of the input pulse can
be performed. To simplify the analysis, two approximations will be made. The first is that
the input pulse has zero rise time and fall time. The second is that any Fourier component
whose magnitude is less than one-thousandth of the magnitude of the fundamental
frequency can be neglected. These two assumptions will yield a worst-case estimate. The
Fourier transform of a pulse is given by [52]

F ( rect(t) ) = sinc(f) , (6.2)

where

1
1 for I t I < 1

rect(t) = 1 and (6.3)
0 for I t I >

sinc(f) sini f (6.4)7Ef
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If t is in nanoseconds, then f is in gigahertz. For a digital pulse with a period of 20 nsec,

the fundamental frequency is 50 megahertz (MHz). The Fourier components become

negligible at about 100 times the fundamental frequency, or 5 GHz. This number is on the

same order of magnitude as the limit for the accuracy of the model. Thus, the model

should give reasonable results. The results are presented in the next section.

6.3. Results

The S-parameters for the equivalent circuit developed in Section 6.2 were compared

against those of the tapered line from which it was derived. The geometry for the structure

is the same as used in Chapter 3 and listed in Table 3.3. Nonlinear terminations were used.

The pulse parameters are the same as those used in Chapter 4 and listed in Table 4.2. The

equivalent circuit consists of three sections of microstrip transmission line as described in

the previous section. The frequency- and time-domain responses of both the tapered line

and the equivalent circuit were calculated. Figures 6.2 through 6.5 show a comparison of

the three-line equivalent circuit with the three-line taper.

As can be seen in the figures, the equivalent circuit data compare favorably with the

full simulation data. In fact, if only the peak value of the crosstalk signal is desired and not

the precise shape of the waveform, the equivalent circuit analysis is sufficient. The

equivalent circuit calculation requires significantly less time than the full simulation.

Execution time on an Apollo DN3500 workstation was about 135 sec for the equivalent

circuit case, compared to 1593 sec for the full simulation case.

The reason for the close time-domain agreement can be seen in Figures 6.6 through

6.9. The plots are typical of all the S-parameters. Note that below 2 GHz the two curves

in each figure agree closely. Since the Fourier components of the input pulse decay rapidly

with frequency, the discrepancies in the S-parameters above 2 GHz have little effect on the

propagated pulse. Note that the value observed ir the graphs compares favorably with the

value of 1.7 GHz determined in the previous section. However, some problems do arise

around 3 GHz. Apparently, the equivalent circuit has some resonances at this frequency

that do not exist in the original taper. However, since the input pulse has only negligible

frequency components in this range, the effect of the resonance cannot be seen in the time-

domain plots.
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Figure 6.2. Near-end driven line time-domain response for coupled tapered lines.
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Figure 6.3. Near-end coupled line time-domain response for coupled tapered lines.
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Figure 6.4. Far-end driven line time-domain response for coupled tapered lines.
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Figure 6.5. Far-end coupled line time-domain response for coupled tapered lines.
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Figure 6.7. S22 phase for full simulation and equivalent circuit.
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The proposed equivalent circuit was further tested by comparing the S-parameters

against the S-parameters generated by the program Touchstone. However, since

Touchstone cannot analyze coupled tapered lines, only results for a single tapered line will

be compared. The parameters for the equivalent circuit are the same as used in Chapter 2

and listed in Table 2.1. Figures 6.10 through 6.13 show the results for the equivalent

circuit and the tapered line as determined by Touchstone. Note that the curves agree well

for frequencies up to 5 GHz. Above 5 GHz, the assumptions explained in Section 6.2 are
no longer valid, and thus the curves do not agree as well.

6.4. Conclusions

In this chapter, an equivalent circuit for coupled, tapered microstrip lines has been
proposed and tested. The equivalent circuit is valid over the frequency range of interest

when excited by typical high-speed digital pulses. The time-domain responses of the

equivalent circuit show good agreement with the response of the tapered line. Use of the

equivalent circuit will reduce simulation time with a negligible effect on the accuracy of the

results.
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Figure 6.10. Reflection coefficient magnitude comparison between Touchstone and

equivalent circuit.



67

Touchstone
180 x Equivalent Circuit

135

90 x
45 xx

x
0- x

A. -45 3

-90 \, x x
-135 x xx x
-180 x I

0 5 10

Frequency (GHz)
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equivalent circuit.
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CHAPTER 7.

CONCLUSIONS

In this thesis, a technique was described for analyzing multiple, tapered, microstrip
lines as used for interconnects in high-speed digital circuits. First, the theory was

developed and tested for single tapered lines, and then it was extended to multiple tapered
lines. The theory uses an integral equation formulation to calculate the quasi-static

characteristics of the lines and an iteration-perturbation approach based on potential theory
to include dispersive effects caused by transverse currents. In addition, conductor losses

and thickness were included. The S-parameters for the microstrip structures were
calculated, and comparisons were made with results by other methods. Good agreement
was found between this technique and other techniques.

A method of analyzing digital pulse propagation through multiple tapered microstrip
lines terminated with nonlinear loads was described. In this method, the frequency-domain

S-parameters are inverse Fourier transformed into a time-domain Green's function for the
structure. The Green's function is convolved with the input pulse, and a Newton-Raphson
algorithm is apLied to the characteristics of the terminations to include the effects of the
nonlinearities. Again, the results were compared with previously published results, and

agreement was good. To confirm the validity of the technique, the calculated results were
compared with experimental results. Measurements were taken to determine the S-
parameters of a microstrip structure, and the calculated values showed good agreement with
the measured values.

Finally, an equivalent circuit was proposed for a multiple tapered line structure.
The equivalent circuit does not take the form of lumped elements because a taper is not a

localized discontinuity that lends itself to modeling by lumped elements. Instead, the

equivalent circuit is a minimum number of cascaded steps that yields the same time-domain
response and the same frequency-domain response up to a given frequency as does the

original tapered line. This form of an equivalent circuit is practical because most circuit
simulators already have models for uniform lines and, thus, can easily be made to simulate

tapered lines.
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