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1. Project Summary

The flame type of most practical combustion devices is the diffusion flame. These
flames are important in the interaction of heat and mass transfer with chemical reactions
in ram jets, jet turbines and commercial burners. Three-dimensional models that couple
the effects of fluid flow with detailed chemical reactions are as yet computationally infea-
sible. We can, however, obtain important information in practical systems by considering
two-dimensional configurations. In particular, in this report we focus our attention on
axisymmetric laminar and turbulent diffusion flames in which a cylindrical fuel stream is
surrounded by a coflowing oxidizer jet. In this configuration we can study the interaction
of fluid flow with chemical reactions while obtaining a computationally feasible problem.
The work centers on the development and application of accurate and efficient computa-
tional methods for the solution of the two-dimensional nonlinear boundary value problems
describing the reacting systems. In particular, our goals involve the generalization of
our one-dimensional fluid chemistry model to two dimensions. We also focus on the use
of two-dimensional flame sheet models as starting estimates for the nonlinear equation
solver. The highly nonlinear finite rate chemistry-fluid equations are solved by a combina-
tion of time integration and a modified Newton method. The final object of the research
is the incorporation of a k — € turbulence model into the finite rate chemistry formulation.
Both confined and unconfined methane-air flames have been studied. The results of the
research are applicable to problems in 1) turbulent reacting flows, 2) engine efficiency, 3)
commercial power generation units, and 4) pollutant formation.

2. Identification and Significance of the Problem

The ability to predict the coupled effects of complex transport phenomena with de-
tailed chemical kinetics is critical in an understanding of turbulent reacting flows, in im-
proving engine efficiency and in the study of pollutant formation. Since three-dimensional
models combining both fluid dynamical effects with finite rate chemistry are as yet com-
putationally infeasible, the modeling of chemically reacting flows generally proceeds along
two independent paths. In one case chemistry is given priority over fluid mechanical ef-
fects and these models are used to assess the important elementary reaction paths, for
example, in hydrocarbon fuels. In the other case, multidimensional fluid dynamical effects
are emphasized with chemistry receiving little or no priority. The goal in reacting flow
computations, however, is to be able to combine the effects of detailed chemistry with
complex fluid mechanics.

3. Phase II Technical Objectives

We have investigated the coupled effects of fluid flow with finite rate kinetic models in
two-dimensional axisymmetric diffusion flames. The work centered on the developement
and application of accurate and efficient computational methods for the solution of the
two-dimensional nonlinear boundary value problems describing the reacting systems. In
particular, our goals involved the generalization of our one-dimensional fluid-chemistry
model to two dimensions. We considered a stream function-vorticity formulation with
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detailed kinetic theory transport and finite rate chemistry. The Phase II research plan
focused on the use of two-dimensional flame sheet models as starting estimates for the
nonlinear equation solver. The highly nonlinear finite rate chemistry-fluid equations are
solved by a combination of time integration and a modified Newton method. The final
objective of the research was the incorporation of a k — ¢ turbulence model into the finite
rate chemistry formulation. The two-dimensional model and solution procedure represent
a generalization of our Phase [ initiative. The work proposed in Phase II has allowed the
investigation of the effects of detailed chemistry and transport on the structure and extinc-
tion of hydrocarbon flames. The researcher now has the ability to predict the temperature,
major and minor species as well as the velocities in axisymmetric diffusion flames. This
level of predictive capability is useful to both the Federal Government and the commer-
cial sector in 1) determining flame extinction limits, in 2) predicting the effect of higher
hydrocarbons in the onset of soot formation and in 3) an understanding of flame shape,
height, and width.

4. Phasge II Work Plan

The modeling of axisymmetric diffusion flames can be reduced to the solution of a set
of coupled nonlinear boundary value problems. In these problems we desire solution profiles
to as many as several dozen species concentrations in addition to the temperature and the
velocity fields. Although axisymmetric flames are important in combustion applications,
they have received relatively little attention in theoretical flame studies. Part of this
neglect is due to the two-dimensional nature of the problem coupled with the complexities
associated with the combined effects of transport phenomena and chemical processes. In
the axisymmetric diffusion flame we consider, a fuel jet discharges into a laminar air stream.
The flames can be either confined or unconfined. In both cases the tubes through which
the fuel and the oxidizer flow are concentric and have radii R; and Ry, respectively. The
two gases make contact at the outlet of the inner tube and a flame that resembles a candle
is produced.

Our work plan is divided into five sections. In the first part we consider the formu-
lation of the governing axisymmetric equations. We consider a stream function-vorticity
formulation. We next incorporate detailed transport phenomena with finite rate chemistry
into the model. This involves the use of kinetic theory expressions for the diffusion coeffi-
cients, the viscosity and the thermal conductivity. The reaction mechanism is be inputed
via CHEMKIN, the chemical kinetics package developed at Sandia National Laboratories
in Livermore, CA [1}. In the third stage, multi-dimensional flame sheet models are used
to provide starting estimates for the nonlinear equation solver. In part four we employ a
combination of time-stepping and a modified Newton method in solving the large system of
highly nonlinear equations. The Newton equations are be solved by a generalized minimum
residual method for nonsymmetric systems of linear equations. Finally, we incorporate a
k — € turbulence model into our fluid dynamic-thermochemistry model.

4.1. Laminar Flames

4.1.1. Problem Formulation
Conclusions derived from studies of laminar flames are important in characterizing the
combustion processes occurring in turbulent flames, in improving engine efficiency and in
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understanding the formation of combustion based pollutants. By studying laminar flames,
we can identify the important reactions controlling extinction and we can identify the
important species involved in pollutant formation while providing information on the fluid
mechanics of the flames. One of the simplest two-dimensional flame configurations with
practical importance is the axisymmetric diffusion flame. Although axisymmetric flames
are important in combustion applications, they have received relatively little attention in
theoretical flame studies. Part of this neglect is due to the two-dimensional nature of the
problem coupled with the complexities associated with the combined effects of transport
phenomena and chemical processes. In this report we consider two axisymmetric diffusion
flame configurations-an unconfined and a confined flame. In the unconfined case a fuel jet
discharges into a laminar air stream. The tubes through which the fuel and the oxidizer
flow are concentric and have radii Ry and Rg, respectively. The two gases make contact
at the outlet of the inner tube and a flame that resembles a candle results (see Figure
1). In the confined problem a cylindrical shield surrounds the fuel and oxidizer tubes (see
Figure 2). Our model of axisymmetric laminar diffusion flames considers the full set of
two-dimensional governing equations. In primitive variables (r and 2z denote the radial and
axial coordinates, respectively) the governing equations can be written in the form

Continuity:

9(pvs)
)t o =0 (41)

T ar (

Radial Momentum:

rpv Al +r Iur _28 9vr 0 3"'
pUy ar PpUg —— 32 3 8r az

, 29 d(rvy) ovg a2 Ov,
39r (" or )+§5; (r“'c?z— dz h or

3#5;, T3, =0 (4.2)

Axial Momentum:
av’ av' a av' av'
["’”' ar +"""$] o ( ) (

20 d(rv,) 20 v, 9 avr ap
+3az (“ ar )+§a— (r az) 3 3 )+ra——rpg 0, (4_3)

Species:

Y}
* 92

aY;

[rpv'—BT + rpu

d K .
] + 3 (rYiVi,) + 5= (reYiV,) — Wi = 0, k= 1,2,..., K,
(4.4)




Energy:

8T+ ar] @ r)‘a_T 9 n\aT
Cp |TPUr g, T TPV, ar \  or 0z 0z

X T aT K
+ry {pckak (Vkr; + Vk.a) } +r Y kWi =0. (4.5)
Equation of State:
4

The system is closed with appropriate boundary conditions on each side of the com-
putational domain. For the unconfined flame we have

Axis of Symmetry (r = 0):

8  _8vy Yy 8T . :
-5’—._0,-—73—;-—7—--——-0, k—l,2,...,K, (4.7)

Exit (z — o0):

avr av, aYk aT

= = = e— k= ce ey y .
0z 9z 9z 0z 0, 1,2, K (4.8)
Inlet (2 =0):
r<ﬁ1
P=0PI
vr=0,
vy = vg, (4.9)
Ye =Y, k=1,2,...,K,
T=Ty,
R1<Y<Ro
P =P0,
vr=0,
Vg = Y0, (4.10)
Yk'—yko) k—lszv 1K$
T =T,
4




Outer Zone (r = Rp):

=g == =0,k=12...,K (4.11)
Identical boundary conditions are employed in the confined flame except for the outer
zone. On the shield’s surface we have

Outer Zone (r = Rp):

vr=”s=0,
Y
—_= = oK, 4.12
o =0 k=12, K (4.12)
T = Tyaul-

The subscripts I and O refer to the inner jet and the outer jet, respectively, and py, po, vy, v0,
Yi, 2 Yios T1, To and Ty, are specified quantities.

We can reduce the size of the system to be solved by introducing the vorticity and
the stream function [2]. The vorticity is a measure of the counterclockwise rotation in the
flow. In particular, formulation of the vorticity transport equation serves to eliminate the
pressure as one of the dependent variables. We define the vorticity such that

avr av,
= - — —, 4.13
“=3z  ar (4.13)
The stream function ¢ is used to replace the radial and axial components of the velocity

vector by a single function. It is defined in such a way that the continuity equation is
satisfied identically. We have
Y

pror = ——==, (4.14)
ay
prvg = —=. (4.15)
With the definitions in (4.13)-(4.15), the governing equations become
Stream Function:
d (18y a (1Y
32 (;E) + 3 (;E_—) +w=0, (4.16)

Vorticity:

2 (22) -2 (2
dz\roar) or 75)

(30 (u d (39 (u 2 90 oo (vE+02\ .
dz (r 6z(7w))—5;(r5;(;“") +r 95;+'v —2-)-180p=0, (4-17)

Species Conservation:




[_‘9_ (yk%%) -5 (Y ';f)] + 5 (roYiVi,)

dz
7]
+5- (roYiVi,) — Wi, =0, k=1,2,...,K, (4.18)
Energy:
d Y d Y d T
o7 (%) -3 (1%)] -7 (2%) - 5 (73 )
K aT K
+r Z {pcPkYk (Vk' a7 + Vi, 5= 32 )} Z h Wity = (4.19)
k=1 k=1

where the components of the iso operator are given by (8p3z, —3p3r). The boundary
conditions for the unconfined flame in the stream function-vorticity formulation are written
in the form

Axis of Symmetry (r = 0):

¢=w=——=—r=0, k=12,...,K, (4.20)

Exit (z — oo):

2_'/,_=_=_-_-_-_z_=0, k=1,2,...,K, (421)

Inlet (z = 0):
r< Iy
¥ =ppvrt/2
w=0,
Ye =Yy, k=12,...,K, (4.22)
T="Ty,
Ry <r < Rop
1 2,1 2_ p2
¥ = ;p1vIR} + 2p0vo(r” — Ry),
w =0,
Yi=Yi,, k=12,...,K, (4.23)
T =Tp,




Outer Zone (r = Rp):

1 1
¥ = =p1v1R} + ~povo(RY — RY),

2 2
%’_:’ﬁ =0, k=1,2,...,K, (4.24)
7 -o

The boundary conditions on the shield must again be modified for the confined flame. We
have

Outer Zone (r = Rp):

1 1

S EvaRf + -z-ﬂovo(R?) - R}),

S S ek 25 W) 5 |
Ropi(Ro — Rr-1)? 2
Yy

—_— = = ooy K, .25
= 0, k=12..K (4.25)

T= Twalb

where quantities with the subscript I —1 in the vorticity boundary condition are evaluated
at the grid points next to the shield.
In addition to the variables already defined, T', denotes the temperature; Y}, the mass

fraction of the kth species; p, the pressure; v, and v,, the velocities of the fluid mixture
in the radial and axial directions, respectively; p, the mass density; W}, the molecular

weight of the kth species; W, the mean molecular weight of the mixture: R, the universal
gas constant; A, the thermal conductivity of the mixture; cp, the constant pressure heat

capacity of the mixture; c,;, the constant pressure heat capacity of the Kth species; uy, the

molar rate of production of the kth species per unit volume; hg, the specific enthalpy of the
kth species; g, the gravitational constant; u the viscosity of the mixture and Vi, and Vi,»

the diffusion velocities of the kth species in the radial and axial directions, respectively.
Specifically, we write

r

Vi, = —(l/Xk)Dk%}f—"-, k=1,2,... K, (4.26)

X
9z’

7

Ve, = —(1/Xy) Dy

k=12,...,K, (4.27)




where X is the mole fraction of the kth species and Dy is related to the binary diffusion
coefficients through the relation (see, e.g., (3|)
(1-Y3)

k= . (4.28)
S Kk X5/ D5

4.1.2. Transport and Chemistry Model

The transport of momentum, species mass fractions and energy in a chemically react-
ing flow requires the evaluation of the mixture viscosity, the thermal conductivity of the
mixture and the diffusion coefficients of the species. Accurate and efficient evaluation of
these quantities is an important aspect of combustion calculations. We have modeled the
given transport coefficients by the following procedures.
Diffusion Velocity

The binary diffusion coefficients D;, can be written as functions of the temperature

and the pressure [4]. We have
‘/21rk3 T3 /M,
Dy =~ B (4.29)

1k = 'i'é pﬂ’d}kn(l'l).

In the above formula M, denotes the reduced mass (molecular) for the (j, k) species pair

ZMJ‘Mk (4 30)
7k = M; + M, ’ )
o4k is the averaged collision diameter, n(1L1)* s a collision integral and kg denotes Boltz-
maun’s constant. A similar expression can be written for V,.

Viscosity
The single component viscosities can be written in the form [4].

5 /*MpkgT

Bi

where M, is the mass of the molecule, o; is the Lennard-Jones collision diameter and
1(2:2)* ig a collision integral.

Given the single component viscosities, we evaluate the mixture viscosity using the
averaging formula recommended by Mathur et. al. [5]. We have

K

#=l Zxk“k+

——— (4.32)
2 k=1 Zf:l Xk/“k




Thermal Conductivity
The single component thermal conductivities can be written in the form (6]

Ak = -:;_’k;(ftramcv.tram + frotCu,rot + fvibc","fb)’ (4.33)

where the quantities firans, frot and fy;p are given by

5 2 Cu rot A
=2(1-2222 ), 4.34
ftrana 2 ( p Cu,trana B) ( )
_ POk (24
frot = R (1+7r 5 ) (4.35)
D,
Soip = RE, (4.36)
Bi
A=2_ 1’2’2’5, - (4.37)
2
2 (5Cy,rot PDkk)
= - -2 . 4.38
B Zm¢+”<3 5 +mc (4.38)

The specific heats for the case of a linear molecule take the familiar forms. We have

Co rot 2
: = =, 4.39
Cv,tram 3 ( )

Cv rot

—_—— = 4.40
R 1’ ( )

and 5
Cy,vit = Cv — ER. (4.41)

The rotational relaxation collision number is available from Parker [7] and Brau and
Jonkman [8].

The mixture conductivity is evaluated from the averaging formula of Mathur et. al.
(5]. We have

K
1 1
A== E Xeve+t =g——— |- (4.42)
2 k=1 Ek:l Xk/Ak

Kinetica Model

The burning of hydrocarbon fuels proceeds through a complex sequence of elemen-
tary reversible reactions. The intermediate species in such mechanisms are of extreme
importance. They are involved in the chain initiation, chain propagation, chain inhibition
and chain breaking reactions that describe the oxidation of a given fuel. We model the
kinetic aspects of axisymmetric diffusion flames by allowing the chemical production and
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destruction of a species to occur through a sequence of m reversible elementary chemical
reactions. We can represent these reactions in the form

K K
E”ﬁzk = ZV}ZZ&. J=1L2,...,m, (4.43)

where uﬁc(uﬁ) is the stoichiometric coefficient of species k appearing as a reactant (prod-
uct) in reversible reaction j = 1,2,...,m and where Z}, represents the chemical symbol
for the kth species.

The production rate Wy for the kth species can be written in the form

- f S oYn V’Q‘ S pYn u;:‘
we =Y _(vh —vi) [£l0) [] (WZ) - k(1) [1 (W;) . (4.44)
J=1 n=1 n=1

The function k:’f- (k;) is the rate constant for the forward (reverse) path of reaction 5. We

assume k]f has the following modified Arrhenius temperature dependence

/
k] = al1% exp(~E!/RT), (4.45)

with a similar expression for k;. The reverse rate constant can be written in terms of the
forward rate constant and the equilibrium constants KJ‘? by

k] = kI/ K. (4.46)

The pre-exponential factor Al , the temperature exponent ﬂf and the activation energy E!

can be compiled from published experimental work. A typical mechanism for the burning
of methane in air is included in Appendix I.

4.1.3. Flame Sheet Starting Estimates

The governing equations in (4.1)-(4.12) or (4.16)-(4.25) are highly nonlinear and
require a starting estimate for the finite difference method described in the next section.
The determination of a sufficiently “good” initial solution estimate in two-dimensional
problems can be difficult. The difficulty is due to the exponential dependence of the
chemistry terms on the temperature and to the multidimensional nonlinear coupling of
the fluid and the thermochemistry solution fields. In previous work, we focused our efforts
on the solution of adiabatic and nonadiabatic premixed laminar flames by adaptive finite
difference methods (9, 10, 11, 12]. In these problems the governing differential equations
were discretized and the resulting nonlinear difference equations were solved by Newton’s
method. Cubic polynomials and Gaussian shaped profiles were used as starting estimates
for the major and minor species on an initial coarse grid. In adiabatic and nonadiabatic
premixed laminar flame problems the conservation of mass and momentum reduced to
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the specification of a constant mass flow rate and a constant thermodynamic pressure.
Hence, thermochemical considerations played a more important role in these problems
than did fluid dynamical aspects. This is not the case in axisymmetric laminar diffusion
flames. There is a strong coupling between the fluid dynamic and the thermochemistry
solution fields in these flames. We have found that the solution procedure used in premixed
laminar flame problems does not provide a sufficiently robust or efficient starting estimate
from which Newton’s method will converge. In addition, the relaxation of these starting
estimates by time-dependent methods to steady-state (or at least until the solution is
within the convergence domain of Newton’s method) is extremely slow. The importance of
these flames in combustion modeling, however, necessitates the development of an efficient
starting procedure.

The burning rate in a diffusion flame is controlled by the rate at which the fuel and the
oxidizer are brought together in the proper proportions. This is in distinction to premixed
flames where the burning rate is controlled by chemical reactions. In the limit of infinitely
fast kinetics, the fuel and the oxidizer are separated by a thin exothermic reaction zone.
In this zone the fuel and the oxidizer are in stoichiometric proportion and the temperature
and products of combustion are maximized. In such an ideal situation, no oxidizer is
present on the fuel side and no fuel is present on the oxidizer side. The fuel and oxidizer
diffuse towards the reaction zone as a result of concentration gradients in the flow. In
diffusion flames of practical interest, the oxidation of the fuel to form intermediates and
products proceeds through a detailed kinetics mechanism. In these problems combustion
takes place at a finite rate and some fuel and oxidizer co-exist on either side of the reaction
zone. Nevertheless, the use of a thin, infinitely fast, global reaction model is a natural
starting point for the determination of a “good” initial solution estimate for our finite rate
axisymmetric model (see also Burke and Schumann [13], Mitchell [2], Mitchell et al. [14],
Smooke et al. [15], and Keyes and Smooke [16]).

We assume that the fuel and the oxidizer obey a single overall irreversible reaction of
the type

Fuel (F) + Oxidizer (X) — Products (P), (4.47)
in the presence of an inert gas (N). We have
vpF +vxyX — vpP, (4.48)

where vp,vx and vp are the stoichiometric coefficients of the fuel, the oxidizer and the
product, respectively. In addition, we neglect thermal diffusion and assume that ¢, and
cp, are constant and that the ordinary mass diffusion velocities can be written in terms of
Fick’s law. With these approximations we can write

Stream Function:

a (1dy d (109y
32 (rp az) + e (r_p;E‘-) +w =0, (4.49)

2 {i (222) _9 (wiv
dz \r Or dr \ r 0z
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Vorticity:
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Species
oy oy d aYyp
o (e52) + 7 (e8| - 5 (ope 5E
g aY] .
_5 (rpDF———a:) - YWFVFW =0,
Y oy 2 Yy
- [5; (Yxaz) * 3 3z (Yxar)] T ar (prX or
_ai ( pr__aan) _ rWxvxi =0,
d Y Ypoy\| @ ( ayp)
- [E (Y”az) +3z( or )] or rpDp dr
_a_az. (rpDP—-a;, ) + rWprvpw =0,
ay Y 7] oYy
[200) 12 (r2)] -8 (ooe)
d aY;
—-a—z (TpDN-—a-—) =0,
and
Energy:
oy d oY 0 aT 2 oT
o5 (15) -5 (%) -5 (°5) - % (%)
_rWFVth +Wxvxhyxy — WPVPhPu') -0
cp ’
where

W= WP _ _Wx Wp
T T Tux  vp
is the rate of progress of the reaction.
If we introduce the heat release per unit mass of the fuel Q where

Q=hp+0xvx, _Wpp

h
Wruvp X - Wgpvp P

and if we assume that the Lewis numbers

Lep = —— ,Lexy =
F pDpep '’ X pDxep’
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(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)a




A

Lep = yLey = , 4.59)b
P = Drer 'V°N = 2Dnc, (4.59)
are all equal to one, then each of the Shvab-Zeldovich variables
Zp=Yp-Yp, + %(T ~To), (4.60)
— Vv _ r - 6
Zx =Yx—-Yx, + QWror (T - To), (4.61)
Yo —Ye - 2WPYP
Zp=Yp-Yp— 7 Wror (T - To), (4.62)
Zy =YN —-YN,, (4.63)
satisfies the differential equation
0 oY 7] Y d 0Z;
~or (Zka) * 3z (ka) ar ("’Dkw
o 02
_— —_— ) = = . 4.64
3 (rpDk 32 ) 0, k=F,X,P,N (4.64)

One can show that all of the Z; are proportional to each other and to a conserved scalar
S which satisfies an equztion similar in form to (4.64).

To complete the specification of the starting estimate, we must be able to recover
the temperature and the major species profiles from the conserved scalar. Of critical
importance to this procedure is an estimate of the location of the flame front. In the
Shvab-Zeldovich formulation fuel and oxidizer cannot co-exist. Hence, on the fuel side of
the flame Yy = 0 and on the oxidizer side Y = 0. If we denote variables at the flame
front with the subscript f, then it can be shown (see also Keyes and Smooke [16]) that,
for a fixed value of the axial coordinate z, the location of the flame front is defined such
that _

Yx,
Yx, + %Yp’
The location of the flame front can be obtained by solving {(4.65) at each axial coordinate
level.

If we utilize the proportionality of the Z;’s to S along with the expressions in (4.49)-
(4.63), we can derive expressions for the temperature and species on the fuel and oxidizer
sides of the flame. On the fuel side, we have

S("/)Ilized 1 =57= (4.65)

w
T=TiS+ [To + YXOZQ;W—;_%] (1-29), (4.66)

Wgrv
Yr = Yg,5 + Yxoﬁ(s -1), (4.67)
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Yy =0, (4.68)
Yp =Yy, udid JTPY (4.69)
Wxvx
and
Yy =Yy, (1 - S) + Yn,S. (4.70)
On the oxidizer side, we have .
T =T, Q
=To(1-S)+ -c-Yp, + Tyt S, (4.711)
4
Yr=0, (4.72)
Wxvx
Yy =Yy (1-S5)-Y, S, 4.73
x = Yxo ) - YF, Wror (4.73)
Wpvp
= 74
Yp Wror YFI S, (4.74)
and
Yy =Yn,(1 - S)+Yn,S. (4.75)

The equations in (4.49), (4.50) and (4.64) are solved for the stream function, the
vorticity, the temperature and the major species in the flame. For a given profile of the
conserved scalar, we solve (4.65) for the location of the flame front on each axial level.
We then utilize the relations in (4.66)-(4.75) to obtain expressions for T,YF,Y0p,Yp and
Yy. The recovered temperature profile is used in the ideal gas law to evaluate the density.
The temperature is also needed in forming the viscosity and the diffusion coefficient (D;
is replaced by D). If we introduce the Prandtl number

Pr= -“{-’i, (4.76)

and recall that all of the Lewis numbers are equal to one, we can write

A pn
pD = — = ’
Cp (Pr)re[

(4.77)

where (Pr),. 7 i8 a reference Prandtl number. Specifically, we use an approximate value
for air, (Pr),.s = 0.75. Hence, determination of pD is reduced to the specification of a
transport relation for the viscosity. We use the simple power law

u = o (3,’-;-) (4.18)

where r = 0.7, Tg = 298 K and pyg = 1.85 x 1074 gm/cm-sec is again a reference value
for air [17]. The temperature exponent was determined by fitting the equation in (4.78)
to the mixture viscosity and temperature data of a representative one-dimensional finite
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rate chemistry calculation. The scaled heat release parameter Q/cp can be determined
from an estimate of the peak temperature (e.g., from an experiment) or from the heat of
combustion of the system under consideration and a representative heat capacity.

4.1.4. Computational Approach

Most of the detailed chemistry, computational combustion studies that have appeared
in the literature have focused on essentially one-dimensional configurations, i.e., freely
propagating or burner-stabilized premixed flames and counterflow premixed or diffusion
flames (Spalding (18], Adams and Cook (19|, Dixon-Lewis (20, 21|, Spalding et al.[22],
Wilde (23], Bledjian (24], Margolis (25], Warnatz (26, 27, 28], Westbrook and Dryer [29,
30|, Coffee and Heimerl (31, 32|, Miller et al. [9, 10, 33], Smooke [11], Smooke et al. (34,
12, 35, 36|, Hahn and Wendt (37|, Sato and Tsuji [38], Dixon-Lewis et al. (39], Giovangigli
and Smooke [40]). The interaction of heat and mass transfer and chemical reaction in
practical combustion systems, however, requires a muitidimensional study.

Our goal is to obtain a discrete solution of the governing equations in two dimensions
on the mesh Mj the initial nodes of which are formed by the intersection of the lines of
the mesh M, ‘

M={0=ro<ri<...<r...<ry, = Ro}, (4.79)

and the mesh M,
Mg={0=20<2<...<2...<2zym, = Z}. (4.80)

Computationally, we combine a steady-state and a time-dependent solution method. A
time-dependent approach is used to help obtain a converged numerical solution on an
initial coarse grid using the flame sheet starting estimate. Grid points are then inserted
adaptively and the steady-state solution procedure is used to complete the problem.

Newton’s Method

We approximate the spatial operators in the governing partial differential equations by
finite difference expressions. Diffusion terms are approximated by centered differences and
convective terms by upwind approximations. The problem of finding an analytic solution
of the equations is then converted into one of finding an approximation to this solution at
each point (r;,2;) of the mesh in two dimensions. With the difference equations written
in residual form, we seek the solution U* of the system of nonlinear equations

F(U)=0. (4.81)

For an initial solution estimate U® which is sufficiently close to U*, the system of nonlinear
equations in (4.81) can be solved by Newton’s method. This leads to the iteration

JUMU™ U™ = —A"F(U™), n=0,1,2,.... (4.82)

J(U™) = @F(U")/3U is the Jacobian matrix and A™ (0 < A < 1) is the nth damping
parameter [41].

We point out that with the spatial discretizations used in forming (4.81), the Jacobian
matrix in (4.82) can be written in block nine diagonal form. For problems involving
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detailed transport and complex chemistry, it is often more efficient to evaluate the Jacobian
matrix numerically as opposed to analytically. The numerical procedure we implement
extends the ideas outlined by Curtis, Powell and Reid [42]. We form several columns of
the Jacobian simultaneously using vector function evaluations and the Jacobian’s given
sparsity structure. If to each column of the Jacobian we associate the ¢ and j values of
the node corresponding to the column’s diagonal block, then all columns of the Jacobian
having the same value of the parameter

a= (¢ +3j)mod 9, (4.83)

can be evaluated simultaneously. Ideas along these lines have also been explored by
Newsam and Ramsdell [43] and Coleman and More [44]. Once the Jacobian is formed
we solve the Newton equations with a block-line SOR method. The Newton iteration
continues until the size of [[U™*! — U"||3 is reduced appropriately.

Adaptive Gridding

The solutions of the governing equations in the axisymmetric problems contain regions
in each coordinate direction in which the dependent variables exhibit high spatial activity
(steep fronts and sharp peaks). Efficient solution of these problems requires that the high
activity regions be resolved adaptively. Techniques that attempt to equidistribute positive
weight functions have been used with a great deal of success in premixed and counterflow
flame problems. Flames with 30 to 40 chemical species and over 100 chemical reactions
can be solved efficiently by adaptively placing grid points in the high activity regions. We
follow a similar approach in the axisymmetric problem.

Adaptive mesh refinement in two dimensions can proceed along several different paths.
The simplest procedure involves determining the grid points of the mesh M, by equidis-
tributing positive weight functions over mesh intervals in both the r and z directions (see,
e.g., Kautsky and Nichols [45] and Russell {46]). Specifically, we attempt to equidistribute
the mesh M, with respect to the non-negative function W, and constant C, for each of the
M; + 1 horizontal grid lines. We write

Ti+1
Wr d'<Cr, i=0,l,-..,Mr“l, (4-84)

i

for j = 0,1,..., M. Similarly, we attempt to equidistribute the mesh M, with respect to
the non-negative function W; and constant C; for each of the M, + 1 vertical grid lines.
We have

Zj+1 )
/ W' d2<C,, J =0,l,--.,M,—l, (4.85)
nt ]

fort=0,1,..., M,.

In implementing the two-dimensional adaptive grid strategy, we first solve the bound-
ary value problem on an initial coarse grid. We then test the inequality in (4.84) one r
subinterval at a time for all the j grid lines and all the dependent solution components. If
the inequality is not satisfied, a grid point is inserted at the midpoint of the r subinterval in
question for y = 0,1,..., M;. Once this procedure has been carried out in the r direction,
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we reverse the process and begin again in the 2z direction. This procedure produces an
orthogonal tensor product grid in which the coordinate lines connect opposite boundaries
of the computational domain. The weight functions in the equidistribution procedure are
chosen such that the grid points are placed in regions of high spatial activity with the
goal of reducing the local discretization error. We use a combination of first and second
derivatives of the solution profiles (see also Smooke [11, 47|, Giovangigli and Smooke [40]).
The particular combinations of function and slope and the values of C, and C; can be
changed to produce a solution to a desired level of accuracy.

Coarse to Fine Grid Methodology

The formation of the Jacobian and its partial factorization in the block-line SOR
method accounts for a substantial part of the cost of the diffusion flame calculation. As
a result, the use of a modified Newton method in which the Jacobian is re-evaluated
periodically is indicated. The immediate implication of applying the modified Newton
method is that the partial factorization of the Jacobian can be stored and each modified
Newton iteration can be obtained by performing relatively inexpensive block-line SOR
back substitutions. The problem one faces when applying the modified method is how to
determine whether the rate of convergence is fast enough. If the rate is too slow we want
to change back to a full Newton method and make use of new Jacobian information. If
the rate of convergence is acceptable, we want to continue performing modified Newton
iterations.

In our adaptive grid strategy, the equidistribution condition is checked one mesh
interval at a time and grid points are added appropriately. The coarse grid solution is then
interpolated linearly onto the new finer grid. The interpolated result serves as an initial
solution estimate for the iteration procedure on the finer grid. The process is continued
on successively finer and finer grids until several termination criteria are satisfied. We
anticipate that as the size of the mesh spacing gets smaller, the interpolated solution
should become a better starting estimate for Newton’s method on the next finer grid. For
a class of nonlinear boundary value problems, Smooke and Mattheij [48] have shown that
there exists a critical mesh spacing such that the interpolated solution lies in the domain
of convergence of Newton's method on the next grid. As a result, the hypotheses of the
Kantorovich theorem [49] are satisfied and the sequence of successive modified Newton
iterates can be shown to satisfy a recurrence relation scaled by the first Newton step
[50]. As a result, if in the course of a calculation, we determine that the size of the

(n+1)% modified Newton step is larger than the value predicted by the theorem, we form
a new Jacobian and restart the iteration count.

Time-Dependent Starting Estimates

The coarse to fine grid strategy and the flame sheet starting estimate helps elimi-
nate many of the convergence difficulties associated with solving the governing equations
directly. Nevertheless, to obtain a starting estimate on the initial grid that lies in the
convergence domain of Newton’s method we apply a time-dependent iteration to the flame
sheet solution. We remark that fundamentally there are two mathematical approaches for
solving flame problems - one uses a transient method and the other solves the steady-state
boundary value problems directly. Generally speaking, the transient methods are robust
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but computationally inefficient compared to the boundary value methods, which are effi-
cient but have less desirable convergence properties. Most of the numerical techniques that
have been used to solve one-dimensional flame problems have employed a time-dependent
method. Variations of this approach have been considered by a variety of researchers (see,
e.g., Spalding (18], Adams and Cook [19], Dixon-Lewis [20, 21|, Spalding et al. [22], Bled-
jian [24], Margolis [25], Warnatz [26, 27, 28], Westbrook and Dryer (29, 30|, Coffee and
Heimerl [31, 32]). In these methods, the original nonlinear two-point boundary value prob-
lem is converted into a nonlinear parabolic mixed initial-boundary value problem. This
is accomplished by appending the term 8(e)/dt to the left-hand side of the conservation
equations. This same procedure can be employed in our two-dimensional calculations. We
obtain

U
5 = Fl), (4.86)

with appropriate initial conditions. If the time derivative is replaced, for example, by a
backward Euler approximation, the governing equations can be written in the form

(Un+l _ U") _

FU™Y) = F(U™H) - pres) 0, (4.87)

where for a function g(t) we define g" = g(t") and where the time step phHl = gndl _yn

At each time level we must solve a system of nonlinear equations that look very similar
to the nonlinear equations in (4.81). Newton’s method can again be used to solve this
system. The important difference between the system in (4.81) and (4.87) is that the
diagonal of the steady-state Jacobian is weighted by the quantity 1/ ™+l This produces a

better conditioned system and the solution from the nth time step ordinarily provides an
excellent starting guess to the solution at the (n + l)“ time level. The work per time step
is similar to that for the modified Newton iteration, but the timelike continuation of the
numerical solution produces an iteration strategy that will, in general, be less sensitive to
the initial starting estimate than if Newton’s method were applied to (4.81) directly. As
a result, when we ultimately implement Newton’s method on the steady-state equations
directly, we obtain a converged numerical solution with only a few additional iterations.
This time-dependent starting procedure can also be used on grids other than the initial
one. The size of the time steps are chosen by monitoring the local truncation error of the
time discretization process (see also, Smooke et al. [35]). -

4.1.5. Numerical Results — Laminar Flames

In this section we apply the flame sheet starting estimate and the computational
method discussed in the previous section to both a confined and an unconfined methane-
air, axisymmetric laminar diffusion flame. Detailed transport coefficients and a 42 reaction,
fifteen species reaction mechanism (see Table I, Miller et al. [33] and Smooke et al. [36]
were used in the calculations.
Confined Flame

The first flame we consider is a confined methane-air diffusion flame studied exper-
imentally by Mitchell [2]. The experimental configuration is such that the radius of the
inner fuel jet Ry = 0.635 cm, the radius of the outer oxidizer jet Rp = 2.54 cm and the
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length of the tubular pyrex shield Z = 30.0 cm. Fuel is introduced through the center
tube and air through the outer coflow. The boundary conditions at the inlet are given by

Inlet (2 =0):
r< iy
T =298 K,
Yo, =10, Y, =0, k # CHy, " (4.88)
vy = 0.0 cm/sec,
vy = 4.5 cm/sec,
Ry<r<Rp
T =298 K,
Yo, = .232, Yy, = .768, Y =0, k # O3, N, ~ (4.89)

vy = 0.0 cm/sec,
vy = 9.88 cm/sec.

The appropriate boundary conditions for the stream function-vorticity system can be
formed using the definition in (4.13) along with (4.22)-(4.23). The shield temperature
is kept constant at 298 K.

The flame sheet model provided initial solution profiles for the stream function, the
vorticity, the temperature and the major species, s.e., CHq, Oz, N3, CO2 and H30. The
starting estimates for the minor species in the full chemistry solution were approximated
by Gaussian profiles that were centered at the location of the flame sheet on each axial
level. They had peak heights of at most a few percent. To conserve mass in the starting
estimate, the N3 mass fraction was reduced accordingly. The flame sheet starting estimate
required approximately 150 adaptive time steps and five Newton iterations to converge.
Once the flame sheet estimate was calculated, we solved the full set of governing equations
in a two-step procedure. We first determined a solution to the stream function, vorticity
and species equations (4.16)-(4.18) based on the flame sheet temperature profile. This
fixed flame sheet temperature solution (Toyr) was then used as input to the full fluid
dynamic-thermochemistry model (4.16)—(4.19) in which the energy equation was included
(Trn). This procedure helped to reduce both convergence difficuities and the total CPU
time and is similar to the two-pass solution method used in the solution of adiabatic
premixed laminar flames {12] and counterflow diffusion flames [16].

The flame sheet and the first Toyr calculation were performed on a 40 x 28 tensor
product grid. One hundred fifty-five adaptive time steps were required to reduce the
norm of the Toyr steady-state residuals below 1.0 x 10~3. This was sufficient to bring
the numerical solution within the convergence domain of Newton’s method. After the
time steps, Newton’s method converged with only seven iterations. Once this solution
was obtained, the mesh was refined and a solution was calculated on a finer grid. This
procedure was continued until a refined 75 x 41 grid was obtained. The refined fixed
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temperature solution was then used as the starting estimate for the complete fluid dynamic-
thermochemistry solution. As the computational mesh was refined, Newton’s method
typically converged with a smaller number of time steps than on the coarser grids. The
mesh spacing was such that 32000 equispaced points would have been needed to obtain
comparable accuracy. The total CPU time for the entire procedure was approximately
150 hours on an FPS-264 which is consistent with a single one-dimensional counterflow
diffusion flame calculation that requires between 2-3 hours on the same machine.

Mitchell [2] has measured radial temperature profiles at several heights above the
burner using three mil Pt vs. Pt-13% Rh thermocouples. The measurements were cor-
rected for radiative losses. Major species were sampled with quartz microprobes and then
analyzed with a gas chromatograph. The probe had a maximum outside diameter of 0.75
mm and was tapered to 0.15 mm at the tip. The inner diameter was approximately 50u.
In Figure 3 we compare the radial experimental and calculated temperature profiles at
a height of 1.2 cm above the burner. We observe excellent agreement between the two
profiles from the axis of symmetry to the low temperature coflow region. In Figures 4 and
5 we compare radial experimental and computational profiles for the major species in the
flame (CHy, 02, N3, H30,CO4,CO and Hj) at a height of 1.2 cm above the burner. The
agreement among all the computational and experimental profiles is very good. Several
features in Figures 4 and 5 are worth noting, however. From Figure 4 it is clear that
the methane diffuses to the reaction zone where it is completely consumed. The oxygen
concentration outside the flame region is near its inlet value and then drops nearly to zero
in the reaction zone. It then slightly increases as the symmetric axis is approached. This
type of oxygen profile results near the flame base because the temperatures are low enough
to allow some oxygen to penetrate the flame. In the radial direction water and carbon
dioxide maximize in the region of the peak temperature. In the lower regions of the flame
the carbon monoxide and hydrogen profiles first increase with distance from the symmetric
axis then proceed through a maximum and finally decrease to zero in the reaction zone.
Similar profiles for the temperature and major species are illustrated in Figures 6-8 at a
height of 2.4 cm above the burner. We note that the experimental temperature profile is
somewhat narrower than the computed one but the peak values and the trend in the major
species profiles is again excellent. Experimentally, temperature profiles were not obtained
from 2.5 cm to 5.0 cm above the burner due to the tendency of carbon particles to collect
on the thermocouple bead.

A more global picture of this flame can be obtained by plotting the temperature and
species contours versus the independent spatial coordinates. In Figures 9-11 we illustrate
the temperature isotherms and the methane and oxygen isopleths, respectively, as functions
of the axial and radial coordinates. We note immediately the high temperature region
extending from the boundary of the fuel and oxidizer jets to the axis of symmetry. The
figure also points out the extremely high temperature gradients directly above the burner
inlet. The temperature rises from 298 K to nearly 2000 K in approximately 0.8 mm. It
is in this region that the fuel and the oxidizer first meet in stoichiometric proportion. In
particular, it is clear from these figures that combustion occurs only in a thin region above
the inlet. The methane and oxygen co-exist in only a very small region. Most of the
methane disappears within 1.0 cm of the fuel jet. The resulting heat release produces an
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extremely rapid rise in the temperature. As one moves in the direction of increasing r, we
observe that the temperature rapidly decreases and ultimately approaches its inlet value.
In addition, if we define the flame height as the first axial location where the maximum
temperature occurs on the axis of symmetry, we obtain a flame height of approximately
7.0 cm.

From a structural viewpoint, methane is the simplest hydrocarbon-it is the only hy-
drocarbon without a carbon-carbon bond. As a result, its oxidation differs significantly
from other hydrocarbon fuels. Westbrook and Dryer [51) and Warnatz [52] have postu-
lated that the oxidation of methane occurs through roughly two parallel paths. In one
path carbon-hydrogen bonds are broken to form methyl radicals. The methyl radicals are
then oxidized to methoxy radicals and/or formaldehyde. This is followed by the formation
of the formal group which is then oxidized to form carbon monoxide. In the second path,
methyl radical recombination is followed by the oxidation of the resulting C; species. In
our calculations, the former path was chosen and the latter path was neglected.

In Figures 12-15 we illustrate isopleths for H,0,CO, H3 and CO3, respectively. Sim-
ilar plots for CH3,OH and CH3O are illustrated in Figures 16-18. It is clear from these
figures that large quantities of HoO,CO and H; are produced soon after the methane
has been consumed. It is in this region that the methane is attacked by O,H and OH
radicals and C Hj is formed. In this region only small amounts of OH, H and O exist (see,
e.g., Figure 17) due to the high affinity of methane for these radicals. The peak values
of both CH3 and C H,0 also occur after the methane has disappeared. The oxidation of
CH;,0 to HCO and the subsequent formation of CO occurs in regions of high methyl and
formaldehyde concentrations.

The oxidation of CO to CO3 proceeds primarily via the reaction

CO+0OH - CO; + H.

Hence, the rate of CO oxidation depends on the availability of OH radicals. However, as
Westbrook and Dryer point out [51] the presence of most hydrocarbon species inhibits the
oxidation of CO. This can be attributed to the fact that the rate of the reaction

H+ 03— OH + 0O,

i8 considerably smaller than the reaction rates of H atoms with hydrocarbon species and
the rate of the CO oxidation reaction is also smaller than the reaction rates of hydrocarbon
species with OH. As a result, small quantities of hydrocarbons can effectively restrict the
oxidation of CO to CO3. Although carbon monoxide and hydrogen are found during
the oxidation of the hydrocarbon species, it is not until after the hydrocarbons and the
hydrocarbon fragments have been consumed that the OH level rises and CO; is formed.
In Figure 17 we observe that in the axial direction the OH radical pool increases after
the disappearance of the methane and the formation of CO. The CO is then oxidized to
form CO;. Hence, in Figure 15 we observe that carbon dioxide forms downstream of the
regions of high CH3,CH,0 and CO concentration.

From a fluid dynmaic viewpoint, we find the velocities along the centerline to be higher
than the values one would expect due to the effects of natural convection. In particular,
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the stream function isopleths in Figure 19 illustrate two large recirculation cells that are
established between the hot surface of the flame and the cooler shield. Air is entrained into
the system at the shield outlet to balance the momentum of the inlet fuel and air streams
along with the frictional losses at the shield wall. The presence of these recirculation cells
reduces the total area available for the flow of the combustion gases and hence the velocities
are increased due to the combined effects of natural convection and a reduced flow area.

It is worthwhile to reconsider Figure 8 in light of the recirculation cells. We note that
the water vapor profile in Figure 8 asymptotes to a value of about one mole percent. (At
a height of 5.0 cm above the burner this value asymptotes to about three mole percent).
This is due to the fact that moist air was entrained into the system at the shield outlet.
The moisture content of the air in the exit region of the shield was higher than in other
portions of the laboratory. As a result, following Mitchell's {2] measurements, the inflow
boundary conditions at the top of the shield in the recirculation zone were adjusted to
account for the higher water vapor concentrations in the entrained air.

Unconfined Flame

The second flame we consider is an unconfined methane-air diffusion flame. The
experimental configuration is such that the radius of the inner fuel jet Ry = 0.2 cm and
the radius of the outer oxidizer jet Rg = 2.54 cm. Fuel is introduced through the center
tube and air through the outer coflow. The boundary conditions at the inlet are given by

Inlet (2 =0):
r < Ity
T = 298 K,
Yoeu, =10, Yy =0, k # CHy, (4.90)
vy = 0.0 cm/sec,
vy = 5.0 cm/sec,
Ry <r < Rp
T =298 K,
Yo, = .232, Yy, = .768, Y =0, k# O3, N,, (4.91)

vy = 0.0 cm/sec,
vy = 25.0 cm/sec.

The appropriate boundary conditions for the stream function-vorticity system can be
formed using the definition in (4.13) along with (4.22)-(4.23).

The flame sheet model again provided initial solution profiles for the stream function,
the vorticity, the temperature and the major species, t.e., CHy, O2, N3, CO2 and H,0
and the starting estimates for the minor species in the full chemistry solution were also
approximated by Gaussian profiles that were centered at the location of the flame sheet on
each axial level. The two-step solution procedure described in the confined flame problem
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was used in solving the complete set of governing equations. The flame sheet and the first
ToyT calculation were performed on a 31 x 25 tensor product grid. The ToyT solution
was refined four times until a solution was obtained on a 65 x 38 grid. The total CPU time
was comparable to the time required to obtain a solution for the confined flame.

From a chemical viewpoint, the flame is structurally similar to the confined flame
discussed previously. In Figure 20 we illustrate the temperature isotherms for this system.
We again observe extremely high temperature gradients directly above the burner inlet.
The methane and oxygen co-exist in only a very small region. Most of the methane disap-
pears within 1.0 mm of the fuel jet. Similarly, water, carbon monoxide and hydrogen are
produced soon after the methane has been consumed. The oxidation of CO to CO; again
proceeds primarily via the CO oxidation reaction and once the OH radical pool increases
after the disappearance of the methane the CO is then oxidized to form CO,. The carbon
dioxide forms downstream of the regions of high C Hs, CH,0 and CO concentration.

In the confined flame the acceleration of the gases along the symmetric axis helped
to produce a flame several cm in length. Without the additional acceleration near the
axis of symmetry we obtain a much shorter flame. We compute a flame with a height
of approximately 1.25 cmn. Aside from the height of the two flames, the most dramatic
difference between the confined and unconfined flames is in the fluid dynamic solution
fields. In Figure 21 we illustrate the stream function for the unconfined flame. We observe
that the streamlines indicate a bowing out of the flame above the inlet with a gradual
movement of the flow towards the symmetric axis. No recirculation cell occurs in this
configuration. Also, we observe in Figure 22 that there are two large vorticity cells that
begin approximately 4.0 cm above the inlet and are centered approximately 0.5 cm from
the axis of symmetry. These are the regions of highest counterclockwise rotation in the
flame. Here the flow has a strong velocity component towards the axis of symmetry. This is
in contrast to the region directly above the inlet where the vorticity is negative and the flow
direction is such that there is a substantial radial component of the velocity causing the
flame to “bow out”. The negative vorticity region is limited to the area directly above the
jets. At a height of approximately 1.0 mm above the inlet, the vorticity changes sign and
the inward radial component of the velocity begins to increase. In the confined flame, due
to the recirculation cells, the high vorticity region is located much closer to the symmetric
axis.

4.2. Turbulent Flames

The final objective of our Phase II work plan is the incorporation of a k — ¢ turbulence
model in our fluid dynamic-thermochemistry equations. The turbulent modeling capabil-
ities of AXIJET lag behind the laminar modeling capabilities in terms of physical realism
and robustness of the computational algorithm, even though they are close to the state
of the engineering art. This is because: (a) turbulence is inherently a three-dimensional
time-dependent phenomenon, with multiple space and time scales that are likely to remain
computationally unresolvable for many years, even with optimistic extrapolations of com-
puting power, and (b) two-dimensional time-averaged models of turbulent flows contain
extra forms of coupling not found in laminar flow models which force Newton’s method
to proceed at such small implicit time-steps that less implicitly coupled techniques, when
tameable, seem preferable, to date, in terms of computing resources.
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A simple reminder of the inaccessibility of turbulent flow computations from first
principles comes from a spatial scale argument. Let L be an integral length scale for
a turbulent flow, say the diameter of a pipe bounding the flow, and let [ be the scale
of the smallest turbulent eddies requiring resolution (the Kolmogorov scale) in a direct
Navier-Stokes simulation of the flow. Then L/l = O(Re3/ 4), where Re is a Reynolds
number based on the RMS of the fluctuating velocity components and the integral length
scale. This can be related to a conventional pipe flow Reynolds number upon division
by an average turbulence intensity, typically 1 to 10 percent. The number of mesh points
required is O((L/!)%) = O(Re%4). For a Reynolds number of 104, this amounts to a billion
grid points. The only satisfactory direct simulations of turbulent flows performed to date
have been for Reynolds numbers of O(102).

4.32.1. Problem Formulation

Given the general inadequacy of computational methods in the face of turbulence,
it is preferable to modify the governing equation model to account in an approximate
manner for the enhanced mixing that occurs in turbulent reacting flows, and its effects on
the reaction, than to neglect turbulence completely. AXIJET-T incorporates a standard
Favre-averaged k — e flow model and a standard mixture-fraction-covariance model for the
chemical reaction. The & —~ ¢ model reduces the evaluation of the turbulent stresses to a
pair of fields which satisfy transport equations similar to those governing steady laminar
flows. These are combined to generate local time and length scales for the turbulence.
The mixture-fraction-covariance model reduces the evaluation of the local thermodynamic
state of the flow to another pair of fields, denoted f and g herein, which also satisfy steady
transport equations. Within AXIJET-T’s k—e~— f —g formulation there are three main sub-
hypotheses: an isotropic eddy viscosity, a A-function probability density function for the
mixing of the fuel and oxidizer streams, and the laminar flamelet hypothesis. Discussion
of these submodels is postponed until the following section.

Since AXIJET-T represents the flow field in terms of steady, time-averaged quanti-
ties, precise definition of the averaging employed is in order. For constant density flows,
turbulence modeling is based on the decomposition introduced by O. Reynolds (1895) of
a time-dependent field ¢(x,t) into a steady time-averaged part (denoted with an overbar)

~ and a fluctuating part with zero mean (denoted with a prime):

#(x,t) = J(x) + ¢'(x,t)

where
o1 (T
30 = lim = /0 d(x,t) dt

For variable density flows, Reynolds averaging of the governing equations is inconve-
nient in that man; correlations between density and other fields emerge. In combustion
applications, the density may vary by an order of magnitude over the flow domain, so that
these terms are non-negligible. The density-weighted time averaging introduced by Favre
(1969) [53] overcomes this inconvenience for variable density flows (although it still requires
modeling of triple correlations in the turbulent stress terms). The Favre decomposition
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is written in terms of a density-weighted average (denoted with a tilde) and a fluctuating
part with zero density-weighted mean (denoted with a double prime):

$(x,t) = $(x) + ¢"(x,¢)

The following simple relationship between Reynolds and Favre averages shows that
they reduce to the same decomposition when density is constant:

¢ =d(x)+7¢/p

In terms of Favre averages, the primitive variable governing equations in two-dimensional
axisymmetry, and in the subsonic regime for which AXIJET is designed, are given by:
Continuity:

J, _ 10 -
3, (P8) + —5-(rpt) = 0
Axial Momentum;

o, .. —5—n 18 op 87‘,,
—_— o tt — -
az(puu+pu u )+r8r(rp + rpv'u )+ S+

+ "—(""zr) =
Rzdial Momentum:

9, . . ——m 18 U——F I WY | Togg = OTrs
1", ——— g, —_— - A A ——
az(puv + puv) + rar(rpvv + rpvlv’) + B + rar(rr") - + 32

=0

No gravity body force term is retained in the momentum equations because the large
forced convective flow velocities and short convective time scales typical of turbulent ap-
plications render it insignificant.

The time-averaged molecular stress terms 7,; are modeled by the usual Newtonian
formulae in terms of time-averaged velocity gradients:

Ju 2
Tes = —4[{2— — =V .
2z ”[232 3 u]

a2
Trr = —ﬂlza-; - §V 'ﬂl
v 2
Top = —n(2- - 3V -1
da  0Jv

Trs = Tgr = —I‘l— e

dz
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The triple-correlation turbulent stress terms are modeled by the usual Boussinesq
hypothesis in analogy to the molecular stresses above:

—_— 9i. 2
gl — —\ + Zpk
pu''u mel25-) + 3P
—_— v, 2
Tl — __ 1+ =
pv'ly mlzarl + 3pk
—_— 9i IV
ol . __ — —_—
putyn = “"ar + dz

The turbulent stress terms introduce a turbulent (or eddy) viscosity u¢ in analogy with
the laminar (or molecular) viscosity u. We note that the @ and 0 required in the molecular
stress terms are not available without additional modeling assumptions. However, the
molecular stresses will be generally negligible in comparison with the turbulent stresses
except near walls, since 4 << u¢. Therefore, we may use & and ¥ in place of @ and ©
in the molecular terms and sum the two stresses away from walls. In wall regions, the
small errors thus committed are acceptable in view of our reliance upon standard constant
density wall function approximations, themselves.

In terms of the Favre velocity fluctuations, we may define a specific turbulent kinetic
energy

1 P ——
k= i(u”2 +ov"%)  [units: 12¢72
and a specific turbulent kinetic energy dissipation rate

NN
e=v{2 (3;) +(~—aT> +(-;-) +(3'z—+¥) [umts.lt ]

The eddy viscosity will be specified in terms of k and ¢, so the non-reacting turbulence
model is closed by the following two transport equations:
Turbulent Kinetic Energy:

a, . 10, . 0 [ pedk 10 Ke Ok
az(”“k) + rdr (rpik) - dz (;;5;) T ror (r E;"a? =% pe

Turbulent Kinetic Energy Dissipation Rate:

a ., . 19, . 9 [ pe Oc 10 Be O\ de pel
37 \Pie) + 75, (r0e) — 5 (a, 5‘) ~rar ( a—,:a:‘) =Cag —Ca

These equations require definition of diffusive transport coefficients in terms of the
effective viscosity

Be = p+ 1

and k and ¢ “Prandt]” numbers o, and o, which we take as standard fits from constant
density wall-bounded shear flow experience with the model:
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o, =10
O¢ = 1-3

Each equation has a source term based on the local dissipation of the mean flow:

au\? [av\? [(#)? v da\? A
= — —_— - —- i its: -1-
L m{2 [(az) +(8r) +(r) ] +(8z+ar) [units: ml ]
and a corresponding sink tern. Whereas the derivation of the k-equation rests on good
theoretical grounds (at least for isotropic turbulence), the derivation of the e-equation is

weaker and relies on dimensional analysis and empirical fitting. The constants we employ
in the source and sink term are again standard fits from the literature:

Ce1 = 147
C,y = 1.92

Note that ratio k/e provides a characteristic temporal scale for the turbulence and k3/2 /€
a characteristic spatial scale.

We model the chemical composition of the reacting flow by means of a Favre-averaged
mixture fraction, f, where f(x) is defined as the fraction of the mixture at x originating
from the fuel stream, and hence varies from a value of 0 at the oxidizer inlet to 1 at the
fuel inlet. An unambiguous definition of f can be made in terms of the local molecular
composition, the molecular weight, and the atomic composition of each molecule involved
in the reaction mechanism. For concreteness, an example based on a pure methane fuel
stream and an oxygen/nitrogen oxidizer stream follows. Let there be K molecular species
in a reaction mechanism, with molecular masses M and local mass fractions ;. Let a ¢

denote the number of carbon atoms in the k*! molecule and ag,j the number of hydrogen
atoms. Finally, let M and My denote the atomic masses of carbon and hydrogen. Then

K (ak oMo Ye(x)/My) + T (a5, gy My Yi(x)/My)
Yen,

f(x) =

Two particular values of f are of special interest, the asymptotic exit plane value

forit = T
2T 1+ mo/mp
and the stoichiometric value

1
fse =
1+ (voMo/vrMF)
where rhp and g are the integrated mass fluxes of fuel and oxidizer, vf and v their sto-

ichiometric coefficients (adjusted, if necessary, for the fact that either stream may contain
a nonzero amount of inert), and My and My their molecular masses.
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Under the assumption that all state variables of the flow are functions of f, solution
of a source-free transport equation for f describes the complete thermodynamic state of
the mixture. However, because of the underlying turbulence, it is unreasonable to assume
that f(x) is a deterministic function, and it is typically modeled as a random function
governed by some Favre probability density function P(f ). Therefore, any state variable
or function thereof (such as temperature or viscosity) is derivable as a probability integral
over the domain of allowable values of f:

~ l -~
§= /0 (1) P(1)4f

The density is the lone exception to this formula, because of the density-weighted
averaging employed. The appropriate formula is instead:

1 1y .
5=/0 ;,-(-f—)'PU)df

Evaluation of P(f ) typically requires a set of moments of f. The simplest schemes
involve only one higher moment, the Favre covariance, denoted g and defined by:

g = (/")

where " = f — f. The specific choice of P enters only into a free-standing module bundled
with AXIJET-T, which in turn affects the main AXIJET-T code only through a data file
giving the state functions necessary to advance the calculation in terms of fandg.

The Favre-averaged mixture fraction satisfies the following homogeneous equation:
Mixture Fraction:

9, o 18, . 8 pe 0f 18 [ pedf) _
5z Pu/) + 73,0700 a(;;a—z) “rar ( 5 ar) =0

The mixture fraction covariance satisfies a modeled equation similar in structure to

the € equation:
Covariance of Mixture Fraction (“Unmixedness”):

9 12 9 (u.dg 13 ( pedg\ _ Pyge
(p g)+ (rp 9) (a,az) ror (r agg; =Can® - ngT

As with the k — ¢ pair, modeling constants are required, two “Prandtl numbers”:
oy = 0.6

ag = 0.6
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and source and sink term coefficients, for which we employ the fits:
Cgl =28"

The source term @4 consists of squares of gradients of f, in analogy to the mean dissipation
term of the k — ¢ model:

~\ 2 -\ 2
Oy = pe (-‘;—{-) + (%{-) [units: ml"st'l]

4.2.3. Transport and Chemistry Model

The transport and chemistry model consists of three independent models: a set of
deterministic state functions of mixture fraction, a probability density function with which
these are weighted in constructing the mean properties, and a formula for the enhanced
mixing due to the turbulence in the form of u;.

For the first, an assumption of thermo-chemical equilbrium is often asumed in the
literature, as matter of convenience in view of the ignorance of finite-rate kinetics. Though
an equilibrium-based data file can be prepared for the methane-air flame demonstrated in
the results section below, we employ instead a primitive laminar flamelet hypothesis, which
takes advantage of our earlier work in the modeling of finite-rate methane-air flames. The
laminar flamelet model is based on a picture of a turbulent flame front as a convoluted
ensemble of laminar flamelets — counterflowing diffusion flames, to be precise. The local
composition is taken to the composition of the corresponding diffusion flame at the same
value of the mixture fraction. Refinements to the laminar flamelet model take into account
variations in the local fluid rate of strain. This capability is not incorporated into the
present version of AXIJET-T.

Because of the way AXIJET-T is formulated above, knowledge of most state variables
is not needed to advance the calculation; only density and viscosity are needed at each
intermediate iteration. Consequently, the evaluation of the temperature and mass fractions
of various species can be deferred to a post-processing step.

Plots of density and viscosity as a function of mixture fraction are given in Figures 23
and 24 following and a plot showing the temperature and the two major reactants is given
in Figure 25. The data comes from the Tsuji flame configuration solved in [54]. Note that
for this particular flame, the stoichiometric value of f is 0.0551, and this is where the peak
of the temperature profile (also the trough of the density profile) sits.

For the second model, namely the probability density function for f, “clipped Gaus-
sians” or Incomplete Beta functions are often used. The latter is built into the AXIJET
preprocessor. Its definition is

D e L ) b
P(f) = Trta - iy (4.92)

29




where the exponential parameters are derived from the Favre mean and covariance:
a=fI:f(lT—f)-—l], b=(1-f)[ng_—f—)—1]. (4.93)

It is readily verified for a > 0 and b > 0 that P satisfies the basic properties of
a probability density function over the interval (0,1): it is non-negative and has a unit
integral over the complete interval. Note that g must be confined to the range 0 < ¢ <
f (1- f) for this to be true. Very small values of g lead to delta-function-like peaked
distributions at the endpoints, and g = O represents certainty that the flow is in the state
characterized by f. Large values of g lead to Gaussian-like distributions about f. Some
sample plots of P for different f and g are contained in Appendix A. Appendix A also
addresses some fine points in the numerical quadrature of integrals containing S-functions.

We follow standard practice in adopting for our third model an isotropic turbulent
viscosity coefficient

Turbulent Viscosity:

pe = Cupk®fe  [units: mi~1¢71]

which contains another fitted parameter:

Cp = 0.09

4.2.3. Boundary Conditions and Wall Functions

Discussion in this section is patterned after the geometry that is presently hard-coded
into the release copy of AXIJET-T, namely that of a two-fluid jet with a coaxial coplanar
inlet boundary upstream, adiabatic no-slip bounding walls, and an outflow boundary.
(Figure 26 applies equally well in this section.) An (z,r) coordinate system is adopted
with its origin at the center of the inlet plane and key dimensions as follows. The radius
of the cylindrical fuel jet is r;;, and the outer radius (which is the same as that of the
annular oxidizer jet) is roy¢ The outflow is at z,y¢. In describing phenomena in the wall
region, a local coordinate system is also adopted at wall boundaries in which y is a normal
coordinate with its origin at the wall itself, and u;, and uj are the local normal and
tangential velocities, respectively.

Due to radial symmetry, only half of an (z,r) plane need be considered. Thus four
types of boundaries are discussed in conjunction with the particular geometry currently
in AXIJET-T: inflow, outflow, symmetry and wall. These are the same types likely to
be required in most future applications of AXIJET-T, except possibly for permeable wall
boundaries (along which u| =0, but v, # 0) and nonadiabatic wall boundaries. We begin
with wall boundaries, because they are both key and problematic features in turbulence
modeling, and because results from the wall boundaries are subsequently used at inlet
boundaries as well. From this subsection onward, all tilde notation of the Favre averaging
is dropped but implicitly understood.
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4.2.3.1. Wall Boundaries
Wall boundary conditions along an impermeable no-slip surface are straightforward,
namely u =uy = 0, whence k = ¢ = 0. If the wall is adiabatic, we also have that

% = 0 and ¢ = 0. In the history of the numerical simulation of high Reynolds number

turbulent flows it has often difficult for economic reasons to resolve the wall boundary
layer sufficiently well for these straightforward boundary conditions to be applied without
severely contaminating the accuracy of the solution outside of the layer. Furthermore, the
process of resolving the wall region accurately enough to capture the normal gradients,
inevitably introduces large numbers of points in the low Reynolds number region near the
wall, which increases the volume of computational work required. Furthermore, in the low
Reynolds number regions, the k — ¢ model, and the resulting estimate for u; are invalid,
and must be replaced with additional local assumptions anyway.

Therefore, it is customary to look to empirical fits of experimental data to interpolate
between the bulk high Reynolds number turbulent flow and the no-slip wall. This practice
is complicated by the fact that the bulk flow depends on the field variables at the outer edge
of the wall function region, and the parameters of the wall functions are defined in terms
of the bulk flow — the patching process must be implicitly handled. (This requirement
for implicitness is no different a situation than that encountered in enforcing a system of
elliptic PDEs without wall functions all the way to the wall, but it complicates the coding
in that a transition region in which both sets of formulae apply must be determined in
order for the solution process to go forward.)

The most convenient links by which the patching process is mediated are the shear
stress at the wall, denoted herein by 7y, and the “friction velocity”, denoted U, and defined
in terms of 7y by Ur = y/7w/pw. These are used to define a host of nondimensional
quantities as follows:

y+ - yU,
Vw
|
U,

k

Kkt = —
v?

+_ Wy
&= —
vt

The first of these quantities, y*, is used to divide the domain into three layers, ac-
cording to classical turbulent flow taxonomy (the transitions between these layers are ap-
proximate.) The laminar (or Couette) layer is 0 < y* < 12; the log layer is 12 < y* < 300;
and the outer layer is y* > 300. The values of k and ¢ at grid points at and near the wall
will depend on the location of the grid points in terms of y*. (We note that the physical
locations (in y) a fixed y* change as the flow evolves, since y* depends on the local shear
stress at the wall, which varies with bulk flow conditions.) The “law”

Inyt
wt=2Y ;B
<
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in which x = 0.42 and B = 5.5, holds in the log layer and constitutes a transcendental
equation for Uy, which may be solved by iteration at any point in the layer. Having deter-
mined the dimensionless normal distance, we are able to complete the following scheme:
Parallel Velocity:

+ £ ot
u _{lny+/lc+B. if yt > 12 (4.94)
Specific Turbulent Kinetic Energy:
0.05(y*)?, if yt <5
+_ J1.25+0.325(y*-5), if5<y*<15 4.5
k"= 45— (y* — 15)/37.5, if 15 < y* < 60 (4.95)
3.3, if 60 < y* < 200
Specific Dissipation Rate of Turbulent Kinetic Energy:
0.1 +y*/120, if y* <12
+ _
€= { 1/(kyt), if y*t > 12 (4.96)

The log law is illustrated in Figure 27 and these fits for k* and ¢* in Figures 28 and
29.

One final feature of the wall function technique is the Van Driest formula for u; within
the log layer:
Wall Region Turbulent Viscosity:

By = %(\/1 + 4a? — 1) (4.97)

where vt
a=nxyt(1-eV' /4T,

in which At = 26.7.

4.2.3.2. Inflow Boundaries

Generally, normal and tangential mean velocities, as well as density are available at
inflow boundaries. In multicomponent problems, the mixture fraction f is often known
with precision in inlet streams, in which case its covariance, g, is zero. In the absence of
measured data, specific turbulence kinetic energy can be be hypothesized to be a fraction of
the specific mean kinetic energy, k = c(uﬁ +u2) (c is dimensionless). Again, in the absence

of superior information, a constant turbulence length scale hypothesis yields ¢ = K3/ 2/l (
has dimensions of length). We use these formulae  towards the middle of the inlets, as
described below, assuming that the inlet profiles are themselves well developed. We choose
the constants by grafting them onto boundary layer formula at the inlet edges. Hence, all
inflow data are Dirichlet.

In the case at hand, the inlets are 2 =0, 0 < r < r;, (cylindrical fuel inlet, subscript
F) and z = 0, rj, < r < roy¢ (annular oxidizer inlet, subscript O).

For fully-developed turbulent flow, we have, away from the wall regions:
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Velocities:
Ur = 0

Tin —T\1/7
vy = vp,ma,(—‘—ﬁ;—) T, o0<r< Tin
T —Tin )1/1
Arout — Tin

Tout —F 1/7
v = v —————————
z O,mc:z(ro“t _ '\"out)

vy = ”O,maz( y Tin<r< Afout

y Arout <7 < Tout
where the maxima at r = 0 and r = Aryy are given by
_ (60)0
VYFmaz = 19 F

_ 60 1 )
vo,maz = (3g) T MO+ tin/Tout)) 0

where 0y and 9o are the fuel and oxizider mass fluxes divided by the inlet densities and

1—{rin/rou
2In{rout/nin) "
By equating these expressions for the parallel velocity components away from the inlet

walls with log law velocity profiles at a given matching value of y*, we may deduce the local
friction velocity U, at each of the three inlet walls, r slightly less than r;, in the fuel jet,
r slightly greater than r;, in the oxidizer jet, and r slightly less than r,y¢ in the oxidizer
jet. From these values of Uy, the axial velocity profiles can be corrected near the wall
through (4.94). A value of about 200 for y* is reasonable for this matching. Because of
the wall correction to the 1/ 7th power law velocity distribution, the mass flux through each
inlet will be slightly reduced from the design mass fluxes, from which vp yaz and v mas
are initially calculated under the assumption of a full profile. It is therefore advisable to
renormalize the velocity distribution once it is in final shape.(In typical applications, this
effect is 2% or less, and the process is not iterated.)

Since U, is known, k, € and u¢ can be set in each wall inlet layer by means of (4.95)
through (4.97). This process provides three sets of values of k and ¢ at y* = 200 which
can then be used to determine the constants ¢ and [ in the sets of formulae
Specific Turbulent Kinetic Energy:

areas, and A =

k= cvf

Speciﬁc Rate of Dissipation of Turbulent Kinetic Energy:
,;3/2
‘=TT

Of course, since the annular inlet provides a matching at both sides, the constants ¢
and ! may be slightly different when fit independently from either side. In practice, this
discrepency should be modest but it is, in any event, dispensed with by calculating the k
and ¢ distributions from both ends and blending them linearly in the middle.
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Finally we have the inlet conditions for the f — g submodel:
Mixture Fraction:

1, ifo0<r< Tin
f =1 fse if r =riy (4.98)
0, ifrj,<r<rou

Covariance of Mixture Fraction:

4.2.3.3. Outflow Boundaries

The outflow boundary is assumed to be far enough downstream that zero gradient
conditions can be imposed on the radial momentum, and all other field variables except
the axial momentum. The flow is overconstrained by a zero gradient condition on the axial
momentum which translates through the continuity equation and the lateral boundary
conditions to a statement that v, = 0. Therefore, the axial momentum is required to
satisfy the less stringent condition of zero curvature. In the case at hand, the outlet is
2 = Zout, 0 < r < rout. We have:

Velocities:

All other variables ¢:

4.2.3.4. Symmetry Boundaries

On a symmetry boundary the fields satisfy zero-normal gradient conditions. In ad-
dition, the velocity normal to the symmetry boundary must be zero by continuity. We
have:

Normal velocity, v,:

Up = 0
All other variables ¢:

¢

E =0




4.2.4. Initial Conditions

It is useful to calculate outflow parameters based on the assumption of fully developed
turbulent outflow profiles, since this provides information which can be used in constructing
an initial iterate by axial interpolation of inlet and outlet streams. For this purpose, we
assume a fully developed outflow and construct an axial velocity in direct geometric aralogy
to the fuel inlet, except that the radius is different and the mass flux is, of course, the sum
of that of both inlet streams. As at the inlet, we assume that ¢ = 0, and we set f = [,y
at all r. All fields except for k£ and ¢ are then linearly interpolated in z between inlet and
exit. Consulting the state relationship of p(f) provides a global estimate for the density.
It is then possible to construct an estimate for the axial momentum pv, at all points, and
thereby of the integrated axial mass flux at each station. Since these mass fluxes by station
must match the sum of the inlet fluxes, the velocity profiles are normalized by the ratio of
fluxes in an approximate attempt to begin the calculation with a flow field which is axially
non-divergent.

The turbulence parameters are set at their lower bounds everywhere except at the
inlets in the initial estimate, so that the flow effectively begins as a laminar one. Lin-
ear interpolation between assumed turbulence profiles at the inlet and outlet stations
was attempted and found highly unsatisfactory because in typical applications turbulent
“hot spots” tend to be localized in the axial coordinate, are thus poorly approximated
by a monotonic interpolation between the inlets. Furthermore, their appearance in sev-
eral “guessed” source/sink terms pulls the flow in several directions at the outset, which
confuses the solution algorithm in its initial pressure equilibration progress.

4.2.5. Computational Approach

AXIJET-T is basically a SIMPLER (Semi-Implicit Method for Pressure-Linked Equa-
tions — Revised) algorithm after Patankar [55] based on a staggered-grid Finite Analytic
discretization of the governing equations after Chen and Chen [56] (see also [57] for a
turbulent flow application). The major refinement over a conventional SIMPLER imple-
mentation is the use of a direct solver, YSMP (Yale Sparse Matrix Package {58|) to handle
the pressure and pressure correction equations without iteration. We repeat that all tilde
notation of the Favre averaging is dropped, since the algorithm applies equally well to any
physical formulation which fits into the generic five-point transport operator on a staggered
grid.

As applied to the extended system of field equations (for u(= v,), v(= v,), p, k, ¢,
f, and g¢), and algebraic relationships (for p, u, and u;), the SIMPLER algorithm has
the following form (consult [55] for the well-documented details). The roles of the lin-
earized velocity components u and v at each iteration are played by two sets of fields:
“pseudo-velocities” (@ and 9) which satisfy the discrete momentum equations without the
pressure gradient terms, and “true” velocities which satisfy the full momentum equations,
albeit based on a provisional pressure. Similarly, the pressure is decomposed into two
fields: a provisional pressure (p*) which satisfies the Poisson equation obtained by taking
the divergence of the momentum equations with the source term computed based on the
pseudo-velocities only, and a pressure correction (p') based on the same discrete Poisson op-
erator, but with the “true” velocities used in computing the source term. As implemented
in AXIJET-T, it takes the following form:

35




The “SIMPLER” Algorithm

(0) Specify uk, vk, (p‘)k, etc., at iteration index k =0

(1) Solve linearized momentum eqns. for temporary velocities u*, v*
(2) Solve pressure-correction eqn. for (p')*+!

(3) Solve velocity-correction eqns. for uF+1,vk+1 ysing (p')*+!1
(4) Solve pressure-free momentum eqns. for 4,

(5) Solve for provisional pressure (p*)¥+!

(6) Solve linearized conservation eqns. for other fields
(7) Update state and transport properties

(8) If converged, STOP

(9) k — k + 1; go to (1)

The cycle (1-9) is ordered differently from the original version of SIMPLER in two
ways. In the original, Steps (6) and (7) immediately follow step (3). The two orderings are
nearly equivalent, however, since the only fields modified between steps (3) and (6) are the
pseudo-velocities and the pressure, on which none of the other field variables depend, and
the dependence of the coefficients of the equations used in steps (4) and (5) upon the other
fields may be suppressed anyway, to avoid recomputation. Apart from the unimportant
difference in the cyclic order, the cycle begins at a different stage in the original, namely
at our step (4).

Each of stages (1) through (6) involves solving large sparse linear systems of algebraic
equations for the discrete unknowns. The equations arising in (2) and (4) are solved by
direct Gauss elimination, which incurs a large storage overhead, but should be regarded as
a minimum step in the direction of implicitness for SIMPLE-type algorithms on large grids,
over which relaxation methods are too inefficient to be worth the storage savings. The other
systems are solved by block line Gauss-Seidel, sweeping in the convective direction. Sweeps
are repeated until the residuals of the linearized discrete equations for each field in turn
satisfy an absolute convergence criterion. This criterion is set stringently in the release
version of AXIJET, since typically only a handful of sweeps are necessary in combination
with the below-mentioned implicit time-stepping. Introduced for nonlinear stability, it
has the side-effect of providing diagonal dominance which enhances the efficiency of the
relaxation sweeps.

In an effort to control the notorious instability of the SIMPLER class of algorithms in
the presence of a variable density k — ¢ model, AXIJET incorporates sink-term-linearization
in the k, ¢ and g equations, and implicit time-stepping in all equations except for the
Poisson pressure equation. In addition, “filtering” is performed, if necessary, once each
cycle through the SIMPLER loop to: (a) bound the k and ¢ fields away from zero or
negative values, by clipping them into the interval [10"10,00) (b) clip the f and g fields
into their doubly bounded intervals of [0,1] and [0, f(1 — f)], respectively. While doing
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the filtering, the code checks that the outflow boundary is truly an outflow (s.e., that
vz(zout) > 0). (A warning message is printed if this condition fails, but no corrective
action is taken, since it is likely a symptom of invalid placement of an outflow boundary if
it persists.)

Dirichlet boundary conditions are explicitly incorporated into the governing equation
set, while the Neumann symmetry conditions are handled by solving a discrete form of the
governing equations on the axis itself, by means of defining a row of auxiliary boundary
cells “below™ the symmetry axis. Neumann outflow conditions are incorporated by solving
discrete equations up to the penultimate station and extrapolating the unknowns of the
final station.

The wall functions are enforced in a region near r = rout, 0 < 2 < zou¢ by explicitly
overwriting the k, ¢, pu¢ and v, fields in the last few discrete rows. (The exact number
of rows is a user-specifiable parameter). The transcendental equation for U, is solved
by a Newton-Raphson iteration at each station at each iteration. The tr~nsverse extent
of the “swept” region solved by the block-line Gauss-Seidel algorithm is tru: -a ed away
from the wall region for the k and ¢ fields, since the governing equations from which the
discretizations are derived are not valid in this low Reynolds number region.

Discretization of the governing partial differential equations is performed with the
Finite Analytic method, which may be thought of, as far as the structure of its dis-
crete operator is concerned, as an interpolated-upwinding Finite-Difference scheme. Like a
lowest-order primitive variable Finite-Difference scheme for this set of governing equations,
it makes use of a five-point stencil. However, instead of using Finite-Difference formulae,
the Finite Analytic method solves ezactly the piecewise constant coefficient problems as-
sociated with each cell of the domain over which the governing equation is defined. The
relations between neighboring degrees of freedom are, in effect, matching conditions for
the solutions continuously defined over each cell.

The system of governing equations described throughout this section for use in model-
ing the turbulent reactor could be solved, after transformation to streamfunction-vorticity
form to eliminate the continuity equation, by exactly the same type of fully-implicit mod-
ified Newton solver employed in AXIJET-L. The wall function formalism is slightly dif-
ferent under this transformation in that the sclution of the transcendental equation for
the wall shear stress (or equivalently, for the friction velocity) involves integral evaluations
when expressed in terms of streamfunction. It was originally intended that AXIJET-L
and AXIJET-T employ the same solver, and simply have different residual evaluation
routines. However, this uniformity was not preserved in the final product in favor of a
more conservative scheme (in terms of resemblence to other state of the art codes) for
AXIJET-T. Apart from the minor convenience of handling the turbulence wall functions
in primitive variables, the main reasons for delivering a field-by-field decoupled primitive
variable version were: difficulties with the k and ¢ equations inside of the Newton loop,
the strongly convection dominated character of turbulent flows (as opposed to the more
elliptic character of lower Reynolds number laminar flows), which makes the decoupling
penalty less significant in this regime, and the inconvenience of the special conditionals
required to handle the upper-bounded fields of f and g in the Jacobian matrix evaluation
routine of the AXIJET-L solver. The nonlinear source terms of the k and ¢ equations are
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not in and of themselves worse than the Arrhenius-type source terms successfully handled
by a damped-modified Newton method in AXIJET-L. However, the mean-flow dissipation
terms (represented by ®) represent a new spatial coupling between the mean momentum
and turbulence equations which is likely at least part of the difficulty, especially since the
required velocity gradients strongly involve the “corner points” of the nine-point discrete
stencil. In practice, Newton’s method was forced to proceed along such tiny time-steps
when given a “reasonably” constructable initial estimate for the solution iterate that the
SIMPLER-type scheme was superior in some tests of non-reacting flows. Ultimately, for
large numbers of species per gridpoint, Newton’s implicit advantages must prevail over
segregated algorithms, and may yet prevail even at modest numbers of species such as the
current AXIJET-T, but this is left to future research.

One advancement of the state of the art in primitive variable solvers is available which
is not included in the current version of AXIJET-T: namely fully implicit velocity-pressure
coupling, as advocated by, e.g., Vanka [59]. We have successfully tested a fully implicit
velocity-pressure algorithm employing a direct solver and Newton’s method on a laminar
non-reacting flow problem, but this is not yet incorporated into the u — v — p portion of
AXIJET-T. We do, however, overcome one of the prime inefficiencies of the semi-implicit
velocity-pressure coupling of the SIMPLER algorithm, in that we do employ a direct
(sparse) solver for the pressure and pressure-correction equations.

4.2.6. Computational Results

We show in this section results from three problems run using AXIJET-T which are
small enough to run on a microVAX: a non-reacting flow in the design configuration of two
coaxial jets, a reacting flow in the same configuration, and a reacting flow in an alternate
configuration with one axial and one radial inlet.

The former illustrates the example in the AXIJET-T User’s Guide, a typical labora-
tory configuration comprised of a higher-speed narrow methane fuel jet (0F = 8.23 m/s,
rin = 1.0 cm, T = 332 K) and a low-speed wide oxidizer stream of standard atmospheric
composition (89 = 0.67 m/s, r;, = 10 cm, T = 283 K). The inlet conditions were chosen to
be in stoichiometric balance and to produce an exit Reynolds number based on the diam-
eter of 104, which implies for these dimensions and inlet conditions a fuel inlet Reynolds
number of 7,779 and an oxidizer inlet Reynolds number of 9,328. The exit is at 254t = 1.5
m, or 15 radii, downstream.

A little less than 1 hr of MicroVAX time was required to obtain the solution depicted
in Figures 30 through 33 on a fairly coarse grid (30 x 25), using a more conservative (and
thus less efficient) than necessary time-step strategy in which an initial step of 10~3 was
increased in steps to 10~!. The solution is not yet grid-independent at this resolution, but
the problem provides an adequate test of the algorithmic working of the code. The second,
on the same grid, is under-resolved like the first, given the sharp density differences of
hydrocarbon combustion, but is included as a companion test problem involving the non-
monotonic-with-f state relationship characteristic of hydrocarbon-air flames. Its solution
(also requiring under an hour of MicroVAX time, under the same time-stepping strategy)
is represented in Figures 34 through 36. The same exit Reynolds number of 10* requires
a greater inlet mass fluxes due to the high viscosity and low density of the hot burned
mixture. The inlet velocities are 9y = 30.94 m/s and 9p = 2.53 m/s, leading to Reynolds
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numbers of 29,231 for the fuel and 35,051 for the oxidizer.

Reference to a third problem is included briefly in the report, but not in the User’s
Guide because it represents a custom application of AXIJET-T to a very difficult problem
in the oxidation of a metallic chloride in heated air. The extreme density ratio in the
problem is about 15.6, which is roughly twice the ratio of atmospheric methane-air flames,
and there is a large recirculation region tucked out of the way of two cross-jets. A streamline
and temperature plot are given in Figures 37 and 38. The resolution of the solutions
pictured is 90 x 60, which has been shown to provide grid-independence for all functionals
of engineering interest.
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TABLE 1

Reaction Mechanism Rate Coefficients In The Form k; = AT'Bexp(—E’o/RT).
Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

P®NS AW

REACTION A B8 E
CH{+M=CH3;+ H+ M 1.00E+17 0.000 86000
CHy+ Oy = CHj + HO, 7.90E+13  0.000 56000
CH4+ H = CHs + Hy 2.20E+04 3.000  8750.
CHy+ O = CHs + OH 1.60E+06  2.360 7400
CH,+ OH = CHy + HyO 1.60E+06 2.100  2460.
CH,0 + OH = HCO + H,O0  753E+12 0000  167.
CH,0 + H = HCO + H, 3.31E+14 0.000  10500.
CH O+ M= HCO+H+M 3.31E+16 0.000 81000.
CH;O0+O+= HCO + OH 1.81E+13 0.000 3082.
HCO + OH = CO + Hy0 5.00E+12  0.000 0.
HCO+M=H+CO+M 1.60E+14  0.000 14700
HCO + H=CO + Hy 4.00E+13 0.000 0.
HCO+0O=0OH+CO 1.00E+13 0.000 0.
HCO + 0, = HOy + CO 3.00E+12 0.000 0.
CO+0O+M=2CO+M 3.20E+13 0.000 -4200.
CO+OH=CO+H 1.51E+07 1.300 -758.
CO+0;=C0O+0 1.60E+13  0.000 41000.
CHj + Oy = CH30 + O 700E+12 0000 25652
CH;O+M =CH,0+H+M 240E+13 0.000 28812
CH30+ H = CH;0 + H; 2.00E+13 0.000 0.
CH30 + OH = CH20 + Hy0 1.00E+13  0.000 0.
CH30 + O = CH20 + OH 1.00E+13  0.000 0.
CH3;0 + Og = CH,0 + HO;  6.30E+10 0.000  2600.
CHj + O = CH,0 + OH 5.20E+13 0.000 34574
CH3+0 = CH,0+ H 6.80E+13  0.000 0.
CH3; + OH = CH,0 + H; 7.50E+12  0.000 0.
HO3 +CO = C0Oy+OH 5.80E+13  0.000 22934
Hy + Oy = 20H 1.70E+13  0.000 47780.
OH + Hy = H O+ H 1.17E+409 1.300 3626.
H+0y=0OH+O0 2.20E+14 0.000 16800.
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TABLE 1 (continued)

Reaction Mechanism Rate Coefficients In The Form k; = ATﬁexp(—Eo/ RT).
Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

REACTION A B E

3. O+Hy=OH+H 1.80E+10 1.000 8826.
3. H+Oy+M=HO;+M* 210E+18 -1.000 0.
33. H+02+03= HO;+ O, 6.70E+19 -1.420 0.
3. H4+Oa+ Ny=HOy+N; 6.70E+19 -1.420 0.
35. OH + HO2 = H20 + Oy 5.00E+13 0.000 1000.

36. H+ HOp =20H 2.50E+14 0.000  1900.
37. O+ HOy = 0, +OH 4.80E+13 0.000  1000.
38. 20H = O + H,0 6.00E+08  1.300 0.
39. Hy+M=H+H+M® 2.23E+12 0.500 92600.
40. O +M=0+0+M 1.85E+11 0.500 95560.
41. H+OH+ M= HyO+M° 150E+23 -2600 O.
42. H+ HO; = Hy+ Oy 2.50E+13 0.000  700.

® Third body efficiencies: k3z2(H20) = 21k33(Ar), k3z(Hz) = 3.3k32(Ar),

k32(N2) = k33(02) = 0.
b Third body efficiencies: k3o( H20) = 8k3g(Ar), kag(H) = 2kag(Ar), ksg(H3) = 3k3g(Ar).
¢ Third body efficiency: kqy(H20) = 20kq;(Ar).
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TABLE 2

.1788E-03
.1790E-03
.1799E-03
.1809E-03
.1831E-03
.1875E-03
.1959E-03
.2103E-03

0.0000E+00 0.1242E-02 0
0.4721E-05 0.1240E-02 0
0.2993E-04 0.1231E-02 O
0.5602E-04 0.1222E-02 0
0.1143E-03 0.1201E-02 O
0.2398E-03 0.1162E-02 O
0.4946E-03 0.1092E-02 O
0.972SE-03 0.9865E-03 0
0.1784E-02 0.8524E-03 0.2327E-03
0.3027E-02 0.7106E-03 0.2632E-03 10
.4765E-02 0.5817E-03 0.3007E-03 11
0
0
Y
0
0
0
0
0
0
0

CEdAU DL WN

0
0.7030E-02 0.4754E-03 .3432E-03 12

0.8389E-02 0.4311E-03 .3656E-03 13
0.9899E-02 0.3923E-03 .3885E-03 14
0.1156E-01 0.3586E-03 .4114E-03 15
0.1337E-01 0.3295E-03 .4341E-03 16
0.1742E-01 0.2832E-03 .4776E-03 17
0.1968E-01 0.2650E-03 .4977E-03 18
0.2208E-01 0.2495E-03 .5167E-03 - 19
0.2464E~01 0.2361E-03 .5345E-03 20
0.2735E-01 0.2246E-03 .5510E-03 21
0.3022E-01 0.2147E-03 0.5662E-03 22
0.3323E-01 0.2061E-03 0.5802E-03 23
0.3640E-01 0.1986E-02 0.5931E-03 24
0.3970E-01 0.1919E-03 0.6048E-03 25
0.4314E-01 0.1861E-03 0.6156E-03 26
0.4670E-01 0.1808E-03 0.6254E-03 27
0.5036E-01 0.1761E-03 0.6344E-03 28
0.5410E-01 0.1717E-03 0.6427e-03 29
0.5866E-01 0.1672E~03 0.6514E-03 30
0.6099E~01 0.1653E-03 0.6546E-03 31
0.6337E-01 0.1639E-03 0.6566E~-03 32
0.6666E-01 0.1628E-03 0.6572E-03 33
0.7014E-01 0.1625E-03 0.6555E-03 34
0.7773E-01 0.1635E-03 0.6475E-03 35
0.8615E-01 0.1654E-03 0.6371E-03 36
0.9539E-01 0.1678E-03 0.6252E-03 37
0.1055E+00 0.1704E-03 0.6124E-03 38
0.1167E+00 0.1734E-03 0.5987E-03 39
0.1320E+00 0.1775E-03 0.5805E-03 40
0.1492E+00 0.1821E-03 0.5611E-03 41
0.1684E+00 0.1872E-03 0.5406E-03 42
0.1898E+00 0.1929E-03 0.5190E-03 43
0.2137E+00 0.1993E-03 0.4964E-03 44
0.2403E+00 0.2063E-03 0.4730E-03 45
0.2699E+00 0.2142E-03 0.4487E-03 : 46
0.3028E+00 0.2230E-03 0.4238E-03 47
0.3393E+00 0.2329E-03 0.3984E-03 48
0.3795E+00 0.2439E-03 0.3727E-03 49
0.4236E+00 0.2563E-03 0.3470E-03 50
0.4718E+00 0.2703E-03 0.3214E-03 51
0.5237E+00 0.2862E-03 0.2962E-03 52
0.5787E+00 0.3041E-03 0.2718E-03 53
0.6359E+00 0.3246E-03 0.2485E-03 54
0.6939E+00 0.3480E-03 0.2265E-03 55
0.7507E+00 0.3746E-03 0.2062E-03 56
0.8043E+00 0.4045e-03 0.1877E-03 57
0.8524E+00 0.4375E-03 0.1715E-03 58
0.8933E+00 0.4724E-03 0.1575E-03 59
0.9262E+00 0.5073E-03 0.1460E-03 20 ________________________________________
0.9511E+00 0.5400E-03 0.1369E-03 1
0.9689E+00 0.5683E-03 0.1301E-03 62 tend of imput)
0.9755E+00 0.5803E-03 0.1275E-03 : . .
This file contains the state functions
_2'3000E+01 8'5886E'03 8'1245E'°3 64 of density and visgosity to be read by
: : : program BETPDF. These data are from the
F DENSITY VISCOSITY Tsuji counterflow quoted from Keyes &
Smocke, J. Comp. Phys., v.73, pp.267-288
(1987). The card beginning with "-1.0"
is the sentinel required by BETPDF.
a2
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Figure 1: Schematic of a confined axisymmetric lami-
nar diffusion flame,
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Figure 3: Schematic of an unconfined axisymmetric
laminar diffusion flame.
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Figure 3: Experimental (o) and computational (solid
line) temperature profiles for the confined methane-air
laminar diffusion flame at a height of 1.2 cm above the
burner inlet.
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Figure 4: Comparison between measured CI4 (N),
O3, (o) and Ny (o) profiles and corresponding compu-
tational values (solid line) at a height of 1.2 cm above
the burner inlet.
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Figure 6: Comparison between measured H20 (N),
CO; (o), CO (o) and Hj (+) profiles and corresponding
computational values (solid line) at a height of 1.2 cm
above the burner inlet.
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Figure 8: Experimental (o) and computational (solid
line) temperature profiles for the confined methane-air
laminar diffusion flame at a height of 2.4 cm above the
burner inlet.
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Figure 7: Comparison between measured CHy (M),
03, (o) and N, (o) profiles and corresponding compu-
tational values (solid line) at a height of 2.4 cm above
the burner inlet.
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Figure 8: Comparison between measured 1,0 (N),
CO;3 (o), CO (o) and I3 (+) profiles and corresponding
computational values (solid line) at a height of 2.4 cm
above the burner inlet.
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Figure 9: Temperature isotherms for the confined
methane—air laminar diffusion flame.
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Figure 10: Methane (CH,) isopleths for the confined
methane-air laminar diffusion flame.
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Figure 11: Oxygen (0,) isopleths for the
methane—air laminar diffusion flame.
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Figure 12: Water (H,0) isopleths for the confined
methane—-air laminar diffusion flame.
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Figure 13: Carbon Monoxide (CO) isoplcths for the
confined methane-air laminar diffusion flame.
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Figure 14: Molecular hydrogen (H,) isopleths for the
confined methane-air laminar diffusion flame.
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Figure 15: Carbon Dioxide (CO,) isopleths for the
confined methane—-air laminar diffusion flame.
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Figure 16: Methyl radical (CH,) isopleths for the
confined methane—air laminar diffusion flame.
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Figure 17: Hydroxy! radical (OH) isopleths for \ .e
confined methane—-air laminar diffusion flame.
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Figure 18: Formaldehyde (CH,0) isopleths for the
confined mcthanc-air laminar diffusion flame.
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Figure 19: Stream function isopleths for the confined
methane—air laminar diffusion flame.
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Figure 20: Temperature isotherms for the unconfined
methane~-air laminar diffusion flame.
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Figure 21: Stream function isopleths for the unconfined
methane-air laminar diffusion flame.
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Figure 22: Vorticity isopleths for the unconfined
mecthanc-air laminar diffusion flame.
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Figure 23: Density versus mixture fraction for the Tsuji
counterflow flame.
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Figure 24: Viscosity versus mixture fraction for the
Tsuji counterflow flame.
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Figure 35: Fuel mass fraction (peaking at f = 1), oxy-
gen mass fraction (peaking at f = 0), and temperature
(peaking near f = fg;) for the Tsuji counterflow.
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Figure 26: Schematic of confined coaxial configuration
solved by AXIJET-T.
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Figure 27: y* versus ut on alinear-log plot, illustrating

the log law.
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Figure 28: kt versus yt, illustrating the wall law for
k.
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Figure 29: ¢t versus y*, illustrating the wall law for e.
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Figure 31: Streamfunction contours for the methane-air
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5.1. Introduction

In practical calculations of turbulent reacting flows, Favre-averaged values of the mix-
ture properties are often evaluated through the introduction of a probability density func-
tion (pdf) for a single conserved scalar, f. The Favre average is a density-weighted time
average of a fluctuating quantity, and is customarily denoted by means of a tilde to dis-
tinguish it from the overbar employed in ordinary time-averaging. For a fluctuating field

8,

¢ = pd/. (5.1)

The pdf P(f,x) when multiplied by a differential df gives the probability finding the
instantaneous value of the conserved scalar in a range df about f at the point x. The
total range of the conserved scalar is 0 < f < 1. Thus, the Favre average of any quantity
¢ depending solely on f, such as a species concentration under an equilibrium kinetics
assumption, for instance, is given at a point x by

3 1
3(x) = /0 $(N)P(f,x) 4. (5.2)

In this expression ¢(f) is the equilibrium value of the quantity ¢ corresponding to the
instantaneous f.

The pdf P(f,x) is assumed to embody all aspects of the local turbulent-chemistry
interaction. Under the chemical equilibrium hypothesis, as well as under other hypotheses
not illustrated herein, a useful conserved scalar is the mixture fraction, defined as

Z-2
f= F

= EO._—ZF:’ (5-3)

where Z is any conserved function of the reaction (such as a stoichiometrically weighted
linear combination of fuel and oxidant), and where subscripts F and O denote its values
in the fuel and oxidant streams, respectively. The form of an incomplete beta function is
often adopted for the pdf. Its form was given in equations (4.92) and (4.93).

The Favre averages f and g at the point x are obtained by solving modeled partial
differential equations of transport type as part of the main computational procedure, which
often includes a k — ¢ turbulence model. The resulting formalism is sometimes referred
to as the k — ¢ — g model. A thermochemical package is needed to provide ¢(f) for each
species concentration, viscosity, temperature, etc. Substitution of (4.92) into (5.2) gives
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i_ 1 ! a-1¢q __ nd-1
b= g /0 8() 1311 ~ b1 af, (5.4)

where the complete beta function is defined by the definite integral

1
Bla,b) = ]o o1 - bt ey,

The formula for the gas density is of a slightly different type since the time-averaged density
is included in the Favre-averaged definition of all other fields. The appropriate relationship
using the same pdf (4.92) is

1
7! = ;(;‘T, /0 ()21 - )b af, (5.5)

Equations (5.4) and (5.5) are both of the type

fol $(z)z°"1(1 - z)b-1 dz‘

Jdza-1(1 — z)b-1 dz (56)

5=

Since the variance g is constrained to lie in the interval 0 < g < f(l - f), a and b are
both greater than zero from (4.93), and thus the numerator and denominator of (5.6)
are integrable for all physically reasonable ¢. The results of the integration are best
tabulated once for repeated “lockup” during the governing equations solution phase. A
few considerations appropriate to this tabulation are:

® When a and b attain large values, numerical quadrature of the integrals in (5.6) can
lead to underflow, since ¢ is bounded, and at least one factor of each integrand tends
to zero in this limit. Even in the absence of underflow, a modestly large absolute error
tolerance in the quadratures could result in an unacceptably inaccurate ¢ being formed
from the ratio.

e When @ or b is less than one, the integrals become improper, since their integrands
tend to infinity at at least one endpoint.

¢ An efficient arrangement of the table is needed to minimize the CPU time spent search-
ing the table during the main computation.

We recommend in the next section an efficient and robust procedure for dealing with
these potential problems.
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5.3. Numerical Evaluation of Turbulent State Relations

In most cases of practical interest, the relationship ¢(z) between the mixture property
and the instantaneous conserved scalar is given in the form of tabulated data, that is, ¢(z)
is known only at a set of n + 1 points {z,;},0 =29 < ) < -+ < Z,_y < Tq = 1, which
partition the unit interval into n subintervals. On each subinterval, ¢(z) may conveniently
be approximated by a polynomial of degree k whose coefficients depend on the values ¢(z,)
at some neighboring set of k+1 indices. For piecewise linear interpolationin z;_; < z < z;,,

8(z) = é(zi_ 1)+ et e (8(z:) - $(zio)),

or

#(z) = sz + d;, (5.7)

Only the piecewise linear case will be explicitly treated in the sequel; however, generaliza-
tion to any finite-order polynomial can be straightforwardly accommodated in the following
development by the inclusion of additional terms whose integrands contain higher powers
of z. No cases requiring special treatment occur for powers beyond the zeroth and first.

Employing the interpolation (5.7) in the numerator of (5.6) gives

n

/1 #(x)z%1(1 — z)b-1 dz = Z [c‘- /z.' ?(1-z)b1dz + d,-/zi 711 - z)b-l dz
0 Ti-1 Zi-1

1=1

= Z [ci(ﬂ(a +1,b,z;) — B(a + 1,b, zi-—l)) + di(ﬂ(avb) z,) — B(a,b, zi—l))] )
1=1

where

ﬂ(a’byz) = /Oz xa—l(l - I)b*l dz

is the unnormalized incomplete beta function. (Note that in this triple-argument notation
B(a,b,1) is simply the complete beta function.) The denominator of (5.8) can be handled
in exactly the same manner, with ¢;, =0and d; =1fori=1,-.-,n.

Equation (5.6) can also be written as

/ é(z)z*~1(1 — z)b- ldz—Z[cI +dJ], (5.8)

=1
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where

I, =I(a+1,b,z;) — I(a + 1,b,2;,_,), J; =1I(a,b,x;) - I{a,b,z;_,),

where, in turn,

I(a,b,z) = b_(:_,iﬁ /0 " 201(1 - 2)t dz (5.9)

is the standard notation for the normalized incomplete beta function.

Since the I; and J; are independent of ¢(z), they may be calculated once at each
(a,b) required in the state function tables. The state function tables for each field are then
produced by summing over the appropriate set of ¢; and d;.

The quadratures can be done by either of two convenient methods. If accurate sub-
routines for the evaluation of (5.9) are available, they may be employed directly. If not,
adaptive quadrature using a Richardson-extrapolated Simpson’s formula on successively
refined meshes will work in subintervals 2 through n — 1. In the BETPDF program, this
is embodied in the FORTRAN routine QSIMP.

As noted in the introduction section, there are two regimes of the exponential param-
eters of the beta function wnich demand special numerical treatment.

o The case of a and b sufficiently large to cause underflow occurs only if g is very small.
Physically, this implies that the variances of the fluctuating state variables about their
means is negligible. In this limit, the pdf P(f) may be represented by a Dirac delta
function centered at f. Hence, ¢ = é( f ) directly, and numerical integration is unnec-
essary.

o If either a or & is less than unity, the left- or right-most subintervals, respectively,

require a preliminary integration by parts to remove the negative power of z%~! or
(1 — z)2—1, respectively. Thus, one obtains the special formulae:

1 1 b-1 %0
‘]l - ;(zl)a(l - zl)b 1 + '—a—/ Ia(l - I)b_2 dz, When 0<ac< 1,
0

a

1
In = E(zn—l)a(l - 3n—l)b + b

Tn
/ 211 - z)* dz, whenO<b<1,
L T |

a-—1

1 -
Jn = E(zn-—l)a l(l - zn—l)b + b

Zn
/ 221 -z)* dzwhenO < b< 1.
Zn-1

(Note that no special formula is needed for I) regardless of the magnitude of a.)
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e As further noted in the introduction, the state function routines will be called repet-
itively at each grid point at each iteration during the main computational procedure
which solves the governing Favre-averaged partial differential equations. Thus, the
table searches need to be very efficient in terms of operation count. The domain
0<f<1,0<g< f(l - f) has a parabolic bounding arc. This implies that a tabula-
tion of state data over a uniform tensor product mesh in the circumscribing rectangle of
( f, g)-space, implemented as a two-dimensional FORTRAN array, is wasteful of points.
Any other type of mesh requires an iterative search in g followed by a bilinear inter-
polation procedure in a nonrectangular region. However, the transformation to ( f, n)
coordinates, where

L
fa-1)

and 0 < f < 1, 0 < n < 1 makes the state space a square. In terms of 1,

":

-1 - 1
e=fz-1. b=(1-Hi;-1).

Tabulation of the state variables at ( f.,n,) where f; = i/N fr 4= -y Ny and where

n; = J/Ny, 3 = 0,---, Ny provides that é( f,r)) may be bllmearly interpolated in
exactly eight scalar multiply-adds and one scalar division.

5.3. Example and Discussion

The calculation of the Favre-averaged viscosity and density in terms of f and n is
presented as an example. The equilibrium data for density and viscosity is listed in Table II.
Figures 23 and 24 display three-dimensional views of pdf-averaged density and viscosity
on the ( f ,n) plane, respectively. (j’ = 0 corresponds to the oxidizer stream and f =1to
the fuel.)

The striking features of these figures are the non-monotic relationships between the
state variables and the mixture fraction at small » and the asymptotic approach of the
viscosity curve to a straight line between the fuel and oxidant reservoir values when n — 1.
The first feature is not necessarily characteristic of all fuel-oxidizer combinations and inlet
temperatures. (Hydrocarbon-air mixtures are notorious for the nearly vertical tangents
of the density at small values of f, where f passes through its stoichiometric value, and
this fact needs to be taken into account in adaptively refining the resolution of discrete
methods in such regions. Failure to do so will nullify the accuracy of any calculation in
which density differences play a role.) The second (highly appropriate) feature is generic
to all beta-function generated models, can be verified mathematically as follows.

In the limit of n — 1, we may write » = 1 — ¢ and consider instead the limit ¢ — 0
(through positive values). From a Taylor expansion with second- and higher-order terms
neglected, we then have a ~ nf and b = n(1 - f) From the alternative integral definition
of the complete beta function,
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Ba,b) = [0 Nk )b 4 1) g,

we easily obtain to leading order that 8(a,b) ~ 1/¢ in this limit. Thus, the denominator
of (5.6) becomes unbounded. Let the numerator be written

s a— b- 1-6 a— b-1 1 a—1 b-1t
j{)d’(z)z 1-2) ldz+/6 #(z)z° (1 - z) dz+/l_6¢(z)z (1-z)° ! dz,

where & is some fixed positive constant less than unity which is chosen sufficiently small
that ¢(z) can be represented to adequate accuracy by simply the constant term in its
Taylor series about the extreme endpoints in the first and third integrals. (Since the rest
of each integrand has delta function-like behavior at each endpoint as ¢ — 0, this is always
possible.) Then the first and third terms of the numerator become, respectively,

30> +¢( i)
-7

The middle term of the numerator can be bounded independently of ¢ by

—26

[26(61 -4§) ¢z )]

Multiplying both numerator and denominator by ¢ and letting ¢ — O gives the result that

¢ — f8(0) + (1 - (1),

as was to be shown.

Evaluation of Favre-averaged properties of a turbulent reacting flowfield using a beta
function formalism is mathematically straightforward but requires some care in implemen-
tation in finite precision arithmetic, especially considering the strong nonlinear couplings
in which the state variables are involved in the system of governing equations. In the
technique described above for the accurate evaluation of these properties, the improper
integrals occuring in the beta function integrals are removed by partial integration before
numerical quadrature is employed. All of the mixture properties can be evaluated from
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one set of evaluations of the beta-function integrals. The searching of the data table is sim-
plified by means of a transformation which makes the domain of the independent variables
a square.
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