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Abstract

The effect of Mach number on the plane mixing layer has been investigated

by means of linear stability theory and two- and three-dimensional direct numerical

simulations of the compressible Navier-Stokes equations. The objective was to iden-
tify the effects of compressibility on a building-block fluid flow, with applications

to supersonic mixing and combustion.

Results from linear stability theory show that the amplification rate is reduced

as Mach number is increased. Above a convective Mach number of 0.6 it is found
that three-dimensional waves are more amplified than two-dimensional waves and

a simple relation is found to give the orientation of the most amplified waves. It is

also shown that the linear stability theory can be used to predict the mixing layer

growth rate as a function of velocity ratio, density ratio and Mach number.

Two-dimensional simulations show a strong reduction in growth rate of the two-

dimensional motion as Mach number is increased, with more elongated structures

forming at high Mach numbers. Shock waves are observed in two-dimensional sim-

ulations above a convective Mach number of 0.7. The supersonic modes of insta-

bility, which are the only two-dimensional unstable modes at high Mach numbers,

are shown to be radiating and vortical, but have very low growth rates.

Three-dimensional simulations with random initial conditions confirm the linear
stability result that oblique waves become the most amplified waves at high Mach

numbers, with no evidence for any other modes of instability. Simulations beginning

with a two-dimensional wave and a pair of equal and opposite oblique waves show

a change in the evolved large-scale structure as Mach number is increased. Above

a convective Mach number of 0.6 the oblique modes have most of the energy in the
developed structure, and above a convective Mach number of I the two-dimensional

instability wave has little effect on flow structure. Similar organized structure was

found in a simulation with random initial conditions. No shock waves were found

in the three-dimensional simulations, even at convective Mach numbers above 1.
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CHAPTER 1

Introduction

1.1 Motivation

Free shear layers are of fundamental importance in the study of turbulence. They

are found in many situations in nature (e.g. atmospheric flows, volcanic eruptions,

stellar jets) and in industrial applications (e.g. gas turbine combustor, airfoil wake,

rocket exhaust). Detailed understanding of the physics of free shear layers is essen-
tial for the development of new turbulence and mixing models. Improved models

of mixing in free shear layers will lead to a better capability for the prediction of

chemical reactions and control of pollutant emissions, for example from oil and gas

burners in power generation plant.

Progress in space research is dependent on developing more efficient propulsion

systems, and vehicles capable of carrying a higher payload into orbit. Future fully

re-usable space vehicles have been proposed, which would be capable of taking off

from conventional runways and attaining earth orbit. Such vehicles would use air

breathing engines, and in the range of flight Mach numbers from 5 to 20 it appears
(Swithenbank et al. [19891) that the best efficiency is obtained in a supersonic

combustion ram jet (scramjet). In such an engine the heat addition takes place
at supersonic speeds and the air velocity throughout the engine is approximately

equal to the flight velocity. The limiting process in these engines is the time taken

to mix the fuel and oxidizer, which must occur within the combustion chamber for
the heat release to be of value in generating thrust. Mixing occurs in supersonic

free shear layers within the combustor. A general understanding of the physics of

compressible mixing may suggest methods of reducing the mixing time and making

scramjets more efficient.

The plane mixing layer is a simple prototype of a free shear layer, consisting of two

streams of fluid with unequal velocities, and in the compressible case often unequal

densities. The low speed version has been extensively studied in the laboratory,

and compressible experiments are now being performed. The flow is amenable to

solution by direct numerical simulation, and has been selected as the basic flow for

this study.
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1.2 Survey of Previous Work

Much previous research has been directed towards the incompressible mixing

layer, but the effect of compressibility has received relatively little attention. For

completeness, the literature for both high and low speed mixing layers is reviewed

here.

1.2.1 Experiments

Early mixing layer research mapped out the time-averaged character of the flow

(Liepmann and Laufer [1947]), and identified the strong dependence of the down-

stream development of the flow on upstream effects (Bradshaw [1966]). A ma-

jor change in thinking about the mixing layer occurred when Brown and Roshko

[1974] observed that large-scale nearly two-dimension. ..tructures, which had pre-

viously been associated with a transition phenomena, persisted in the flow at high

Reynolds numbers, when the mixing layer was statistically self-similar. The large

scale structure has been found by many succeeding researchers, including Dimotakis

and Brown [1976] at even higher Reynolds numbers. Oster and Wygnansky [1982]
found that two-dimensional disturbances applied at the splitter plate were able to

control the appearance of the large-scale structures downstream in the mixing layer.

They identified regions where growth was enhanced or retarded by the effects of the

forcing.

Three-dimensional structure was observed in the original work of Brown and

Roshko [1974], showing up as streamwise streaks in the braid region between suc-
cessive rollers. This secondary structure was investigated in detail by Bernal and

Roshko [1986], who showed that it consisted of counter-rotating streamwise vor-

tices in the braids, the ends of which became wrapped around the neighboring

large rollers. The counter-rotating vortices move fluid between them up or down

which shows up as a mushroom shaped structure in the scalar field, shown clearly

in Bernal's pictures. The streamwise vortices were initially fixed in space, devel-

oping from small rig-dependent disturbances in the upstream flow field. Later in

the mixing layer development they appear to move around in space, since long

time-exposure pictures did not show their presence.

Identification of dominant structures in the incompressible mixing layer has led
to the development of new models capable of predicting the behavior of the flow.
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Dimotakis [1986] proposed a model for entrainment, based on the geometry of the

primary two-dimensional motion, which successfully predicts the experimentally-

observed phenomenon of asymmetric entrainment of fluid, with more fluid from

the high-speed side than the low-speed side being entrained into the mixing layer.

An important new model for mixing and chemical reactions has been developed by
Broadwell and Breidenthal [1982], and for reactions with finite-rate chemistry by

Broadwell and Mungal [1988]. The model uses observations from experiment to

identify various fluid states in the mixing layer: (i) unmixed fluid, (ii) fluid in the

structures, mixed at the entrainment ratio, and (iii) fluid in strained laminar diffu-

sion layers between the two free streams (e.g. in the braid region). Mixing in each

region has its own characteristic behavior as a function of Reynolds and Schmidt

numbers. The Broadwell-Breidenthal-Mungal model correctly predicts many trends
in experiments with chemical reactions (Mungal and Dimotakis [1984], Breidenthal

[1981], Koochesfahani and Dimotakis [1986], Mungal and Frieler [1988]), and has

been used to predict the effects of forcing on mixing (Sandham et al. [1988]).

The effect of compressibility on the plane mixing layer was first investigated

in the 1960's, for the mixing layer between one high-speed stream, and another

stream at rest. The data, compiled by Birch & Eggers [1973], showed a reduction

in the growth rate of the mixing layer as the Mach number was increased. Brown &

Roshko [1974] found that the density ratio alone could not account for the reduction

in growth rate, implying that a true compressibility effect was being observed.

Renewed interest in compressible mixing in the 1980's led to experiments by

Bogdanoff [1983], and by Papamoschou & Roshko [1986, 1988], in which high-

speed mixing layers with various velocity and density ratios were investigated. Both

sets of researchers proposed a parameter, called the convective Mach number by

Papamoschou & Roshko, which seemed to collapse all the available growth rate

data onto one curve, showing reduced growth rate as the convective Mach number

was increased. The reasoning behind the convective Mach number concept can be

found in Papamoschou and Roshko [1988]. It is based on the existance of organized

large-scale structure in the compressible mixing layer. If one looks at the flow in a

reference frame convecting with the large structures, then the Mach number of the

free-streams is an intrinsic Mach number for the flow. Respectively for each stream,
we have: M 1= _ (.

|MCl = U 1 -c U= UC - U2

ci C2
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where U, is the convective velocity of the structures, U* and U2 are the free-stream
velocities, and c and c the sound speeds. The superscript * denotes a dimensional

quantity. In the incompressible mixing layer in a reference frame moving at U,

there is a stable stagnation point in the braid region. If the existence of a similar

point is assumed for the compressible layer, and that this point is reached by an

isentropic process from the free-streams, then an expression for U* can be derived

(Papamoschou and Roshko [1988]). For gases with -1 = 1Y2 it is found that Mji =

M,2 and:

jC * + UC
UC = Uc;+c U2* (1.2)

We can also eliminate U* from equation (1.1), and define the Mach number Mc as:

MC -U - U2 (1.3)

More recently, Papamoschou [19891 has attempted to measure the convective ve-

locities of the large scale structures directly from experimental Schlieren images.

He finds disagreement between experiment and theory, and has proposed an alter-

native two-dimensional large-scale structure, in which shock waves are allowed on

one side of the mixing layer, breaking the assumption of isentropic flow in the above

derivation.

Recent experiments by Samimy et at. [1989] show a reduction in turbulence levels

as Mach number is increased. Ongoing flow-visualization work at Stanford (Clemens

et al. [1989]) shows little evidence for organized two-dimensional motion at a con-

vective Mach number of 0.6.

1.2.2 Linear Stability Theory

Numerical solutions of the linearized equations first began to appear in the early

1960's. Applications to the incompressible mixing layer were presented by Michalke

[1965a,b,c], and to the compressible mixing layer by Lessen et al. [1965,19661, and

by Gropengiesser [1970]. Earlier analytical work had revealed the instability of a
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velocity profile with an inflection point (Rayleigh [18801) and the preference for

amplification of two-dimensional waves in incompressible flows (Squire [19331).

The valuable contributions of Gropengiesser [1970] were largely overlooked at

the time. He found the second mode of instability, previously observed by Lessen

et al. [1966], which keeps the mixing layer unstable in two dimensions at high

Mach number. This instability was subsequently rediscovered by Blumen, Drazin

et al. (1970, 1975, 1977]. Gropengiesser used spatial stability theory and used

a solution of the compressible laminar boundary-layer equations as the base flow,

instead of a simple hyperbolic tangent profile. He noted the high amplification rate

of three-dimensional waves at high Mach number, as found for the compressible

wall boundary-layer by Mack (see e.g. Mack 11984]).

When there are walls present in the flow, or in wakes with an embedded sub-

sonic region relative to the free-stream, there can be additional modes of instability

present. These 'acoustic' modes were found by Mack 119891 in wall boundary layers

and in near wakes. Additional modes were found for the confined mixing layer by

Greenough et al. [1989], referred to by them as 'wall modes', which may be the

same kind of instability.

The important effects of the mean velocity profile were investigated by Monkewitz

and Huerre 11982]. They found that only the amplification rate computed by spatial

theory for the Blasius mixing layer velocity profile showed growth rate proportional

to A = (Ul - U2)/(U + U2), as found in experiments. Morkovin [1988] makes the

point that only the results from spatial stability analysis based on a mean profile

satisfying the boundary-layer equations can be compared with experiments. Earlier

attempts to transform results from the temporal theory gave poor agreement with

the measurements.

Huerre and Monkewitz [1985] introduced the notion of convective and absolute

instabilities for free shear layers, which affects the choice of temporal versus spatial

theory. If the flow is convectively unstable the linear theory for spatially growing

disturbances is applicable, whereas the temporal theory should be used for abso-

lutely unstable flows. They found that the transition from absolute to convective

instability for the mixing layer, unfortunately based on a hyperbolic tangent veloc-

ity profile, occurred at X = 1.315, i.e. for flows with a significant backflow on one

side.
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Recent work by Ragab and Wu [1988] shows that, as with incompressible free

shear layers, the compressible mixing layer has a basically inviscid, inflectional

instability and the effect of viscosity is only to damp the disturbances. They also

found that non-parallel effects are negligible in compressible mixing layers.

1.2.3 Secondary Stability Theory

Secondary stability theory was developed to allow a further step into transition,

beyond the primary instability, to be studied. The theory assumes that the primary

instability has developed, modifying the basic flow field. A new eigenvalue stability

problem is set up, in which the base flow and eigenfunction are dependent upon both

the streamwise and the normal location. This approach has proven very successful
for wall boundary-layer and channel flows, predicting the appearance of both K

(Klebanoff) and H (Herbert) type breakdown towards turbulence (Herbert [1983],

Herbert and Bodonyi [1989]), which have been observed in experiment and in direct

numerical simulation (Singer et al. [19871).

The major work in this field for the mixing layer was performed by Pierrehumbert

and Widnall [1982]. They assumed a base flow consisting of the hyperbolic tangent

mixing layer mean flow, with superposed Stuart [1967] vortices, which are steady

solutions to the incompressible Navier-Stokes equations. Two classes of instability

modes were found: fundamental and subharmonic. The fundamental modes have

the same wavelength in the streamwise direction as the vortex spacing, and the sub-

harmonic modes have twice the wavelength. Two fundamental modes were found,

corresponding to vortex core deformations - a core 'bulging' mode (spanwise sym-

metric), and a core 'translative' mode (spanwise antisymmetric). The translative

mode was the more unstable, and the wavelength of the most (rapidly) amplified

instability was roughly equal to the spanwise spacing of streamwise vortices found

in the experiments of Bernal and Roshko [1986]. The most amplified subharmonic

wave was the two-dimensional subharmonic, corresponding to the 2D pairing pro-

cess most commonly observed in experiments. Pierrehumbert and Widnall did find

another, three-dimensional, subharmonic mode. This produced a helical pairing,

and may possibly have been observed in the flow visualizations of Chandrsuda et
al. [19781.

The only work in secondary stability for the compressible mixing layer was car-

ried out by Ragab and Wu [1989]. They used a base mixing layer profile, and
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superimposed the neutral mode of the two-dimensional instability. They studied
the subharmonic instability, and found that, above a convective Mach number of

0.4, the helical pairing mode was more amplified than the 2D pairing mode. This

is a further indication that the dominant instability modes at high Mach number
are three-dimensional modes.

1.2.4 Numerical Simulations

Techniques for time-accurate numerical simulation of free shear layers can be

divided into three categories (i) vortex dynamics calculations, (ii) large-eddy simu-

lations and (iii) direct numerical simulations. The first (e.g. Ashurst and Meiberg
[1988]) assumes inviscid, incompressible flow. The Biot-Savart rule for vortex induc-

tion assumes an instantaneous transfer of information in the flowfield, which does
not happen in compressible flow, where the speed of sound is finite. The method

of large-eddy simulation (LES) requires a model for the smallest scales of turbu-

lence. The method of direct numerical simulation (DNS) can produce spatially and

temporally accurate solutions of the full Navier-Stokes equations with no modeling,
when care is taken to choose the flow parameters (e.g. Reynolds number, Schmidt

number) in order to fully resolve all the scales of motion. Usually the requirement
for spatial resolution of a wide range of scales necessitates the use of spectral or

very high order finite-difference numerical methods.

Two types of mixing layer problem can be tackled numerically. The spatially-

developing mixing layer computations (figure 1.1) use the same reference frame as

the experiments, with inflow at one end of the computational box and outflow at the

other end. These inflow/outflow boundaries require special treatment - given the

convective nature of the instability, the computed mixing layer will be dominated

by the upstream forcing, as specified by the inflow boundary condition. The outflow
boundary must allow all structures to smoothly leave the computational domain,

without reflection of waves back into the simulation. The alternative computations

are for the time-developing mixing layer (figure 1.2). Here the computational do-

main is fixed in a reference frame moving with the structures, and the flow then

develops in time, rather than in space. Periodic boundary conditions are enforced
in the streamwise direction and the flow develops from a specified initial condition.

Time-developing simulations permit a more efficient use of computational resources,
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and the periodic boundary conditions in the streamwise and spanwise direction are

tailor-made for highly accurate Fourier methods.

The earliest mixing layer computations were performed with LES for the time-

developing mixing layer (Mansour et al. [1978], Cain et al. (1981]). The first di-

rect numerical simulations were presented by Riley and Metcalfe 119801 for a time-

developing layer developing from random initial conditions, using methods devel-

oped by Orszag and Pao [1974]. Recent work (Metcalfe et al. [1987], Rogers and

Moser [1989]) has shown that the experimentally observed phenomena of primary

roll-up and secondary streamwise vortices leading to mushroom shaped structures

in the braids can be fully realized in numerical simulations.

The spatially-developing mixing layer was simulated by Lowery and Reynolds
[19861. Lowery used inflow boundary conditions consisting of the mean flow, with

eigenfunctions of the fundamental and two subharmonic frequencies (from linear

stability analysis) superimposed. This resulted in the generation of a forced mix-

ing layer and he was able to show that the asymmetry of entrainment, observed

in experiments, could be captured in a spatially-developing computation. Lowery

also performed three-dimensional computations in which streamwise vortices were

present in the inflow field. These developed the characteristic mushroom structure

in the braid region. Follow-up work by Sandham and Reynolds [1989], using Low-

ery's 2D code, showed that the large asymmetry of entrainment, observed in the

initial development of the mixing layer (Koochesfahani and Dimotakis [1986]) could

be traced to the effect of the wake of the splitter plate, upstream of the development

of the mixing layer. It was also shown that a random-walk, applied to the phase of

the forcing eigenfunctions, could be used at the inflow to simulate a more natural

mixing layer, with linear growth rates and more nearly self-similar statistics.

The approach of Corcos et al. (Corcos and Sherman [1984], Corcos and Lin [1984]

and Lin and Corcos [1984]), has been to directly simulate simple deterministic model

flows of the mixing layer, and extract physical information from these. Part I of

their study deals with the two-dimensional roll-up, Part II with the development

of the secondary instability, and Part III with the effect of the staining field from

the primary roll-up on the development of streamwise vorticity. They found that

the plane strain field, produced in the braid region by the roll-up of the primary

instability, acted to 'collapse' the streamwise vorticity associated with the secondary
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instability of the flow, into circular streamwise vortices, which then generated the

mushroom structures in the scalar field in the braid.

Direct numerical simulations of the compressible mixing layer have only recently

appeared. Both the two-dimensional simulations in the current work, and those

of Lele [1988, 1989] show the reduction in growth rate of the mixing layer as the

convective Mach number is increased, and the appearance of weak embedded shock
waves in the flow for convective Mach numbers above 0.7. Lele also shows that

simulations started from low level random perturbations evolve first into the usual

primary roll-up, with wavelength getting longer as the Mach number is increased,

as predicted by the linear stability analysis. Other work is limited, but Soestrisno

et al. [1988] presented two-dimensional simulations of the time-developing mixing

layer, and Eberhardt et al. [1988] have presented simulations of the 'wall mode'

of instability for the confined mixing layer. The simulations show that this mode

tends to kink the mixing interface, but does not lead to a roll-up, and probably

would not contribute to enhanced mixing at high Mach number.

1.3 Objectives and Overview

The objective of this work is to secure a fundamental understanding of the effect

of compressibility on the development of the plane mixing layer. Several important

questions emerge from the previous work in this area. (1) Why does the mixing

layer grow more slowly at higher Mach numbers? (2) Is the convective Mach number
a good parameter to describe the complete behavior of the flow? (3) What is the

structure of the largest scales in the mixing layer at high Mach number, and what

implications, if any, does this have for mixing at supersonic speeds?

The approach of this work is numerical. First, in Chapter 2, the linear stability

problem is formulated and solved for a wide variety of mixing layers. Spatial stabil-

ity analysis is used to compare with experiments and temporal stability to obtain

eigenfunctions for use in the direct numerical simulations in later chapters. Inter-

esting features emerge in their own right from the stability computations. First,

it is shown that the amplification rate of the most unstable mode from the linear

stability analysis can be used to correctly predict the growth rate of the developed
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mixing layer. This suggests that linear processes may be very important, even in

the developed mixing layer.

Secondly, it is found that three-dimensional waves are far more amplified at high

Mach numbers than two-dimensional waves, implying that the developed structure

at high Mach number is highly three-dimensional.

Results from linear theory are used to provide eigenfunctions for initial conditions

for the numerical simulations. Linear theory is also used to indicate the key Mach

numbers at which the instability characteristics of the flow change, where changes in

physics may be observed, and to suggest Reynolds numbers to use in the simulations,

low enough to resolve the flow, but high enough to capture the inviscid nature of

the instabilities.

The numerical methods, used for the direct numerical simulations, are presented

in Chapter 3. The three-dimensional code is spectral (Fourier) in the periodic

directions, and high-order compact finite difference in the normal direction.

In Chapter 4 two-dimensional simulations are presented, which illustrate the re-

duction in growth rate as the Mach number is increased. Consideration of the

compressible vorticity equation shows how dilatational and baroclinic effects can

explain the stabilization of the two-dimensional instability, as compressibility be-

comes marked. At higher Mach numbers the two-dimensional simulations show the

appearance of weak shock waves, embedded around the vortices.

The key three-dimensional effects are presented in Chapter 5. At low Mach

number the modes found by Pierrehumbert and Widnall [1982 are simulated, by

carefully choosing the phasing of a pair of oblique instability waves relative to the

fundamental 2D wave. The effect of increasing Mach number on the structure of the

mixing layer is investigated by running three simulations at Mach numbers where

(i) the 2D mode is dominant, (ii) both 2D and 3D waves are approximately equally

amplified, and (iii) high Mach number where the 3D waves are dominant. The latter

two simulations identify new structures in the mixing layer, which are highly three-

dimensional. A model structure for high Mach number flow (Me > 1) is developed,

based on the non-linear development of two equal and opposite oblique waves.

10



The main contributions of this work are:

" mixing layer growth rate can be predicted by linear stability analysis. The

mixing layer growth rate is found to be directly proportional to the linear am-

plification rate of the most amplified spatial instability wave, using a solution

to the boundary-layer equations for the base velocity and temperature profiles.

" the most amplified instability wave becomes an oblique wave above a convec-

tive Mach number of 0.6. At higher Mach numbers the most amplified wave

becomes more oblique, and the relation M, cos 0 = 0.6 was found to predict

the orientation of the most amplified waves at high convective Mach numbers.

" the non-linear growth rate of the two-dimensional instability wave, which dom-

inates the incompressible mixing layer, is reduced as Mach number is increased.

" if the flow is forced to be two-dimensional then shock waves develop for con-

vective Mach numbers above 0.7.

" three-dimensional instability waves at high Mach number grow strongly in the

non-linear region of roll-up, as well as in the linear regime. The developed

structure is found to change as Mach number is increased, with less spanwise

coherence and strong streamwise vorticity at higher convective Mach numbers.

" the structure that develops at high Mach number from a pair of equal and

opposite oblique instability waves consists of a pair of hairpin-like vortical

structures which are split in a peak-valley manner in the streamwise direction.

I1
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CHAPTER 2

Linear Stability Theory

In this chapter the linearized theory describing the growth of small disturbances

in the compressible mixing layer is considered. The linearized equations are solved

to find the most amplified wave for given profiles of velocity and density. It will

be shown how linear stability theory can be used to predict the growth rates of

mixing layers, giving good agreement with experiments for the effects of velocity

ratio, density ratio and Mach number. Three-dimensional waves are found to be

important in the compressible mixing layer at high Mach number. The structure of

the eigensolutions gives important information about the structure and growth of

the vortices which develop out of the linear instability.

In the following sections the inviscid equations are used and parallel flow is as-

sumed. Spatial theory is used when comparisons with experiments are desired.

Temporal theory is used when eigenfunctions are desired as inputs to direct numer-

ical simulations of the time-developing mixing layer.

2.1 Numerical Solution Schemes

The compressible boundary-layer equations are solved using a shooting technique

to obtain the mean flow. The linear disturbance equations are then solved using

a shooting procedure. The methods are basically from Gropengiesser [19701, but

have been extended to allow computation of both temporal and spatial instability

characteristics of a variety of planar free shear layers.

2.1.1 Solution for the Mean Flow

The boundary-layer equations for steady two-dimensional flow of a compressible

perfect gas with zero streamwise pressure gradient are (White [1974]):

a(p*u*) + a(p*=*) = 0 (2.1)
j-*- ayl*

* ,au* + ,au* =a A (2.2)

13 ay* ay*
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ah* ah* a " 2
(_)+ (2.3)ax a* y*Pray*. , ay*

The streamwise direction is x* and the normal direction y*. Velocity components

in these directions are u* and v* respectively. The density is denoted by p*, the

viscosity by t&* and the enthalpy per unit mass by h*. The superscript * represents

a dimensional quantity and the Prandtl number is defined by Pr = c4j&/k*, where

k* is the conductivity.

The perfect gas law is

p* P*R*T* (2.4)

where R* is the gas constant and p* is the pressure. Constant specific heats are

assumed, and we write dh* = c4dT*, where c4 is the specific heat at constant

pressure.

Non-dimensionalization of the above equations is obtained by dividing the di-

mensional quantity by the corresponding dimensional quantity on the high-speed

(y > 0) side of the mixing layer (subscript 1). The new dimensionless variable has

no superscript. For example:

U* p T** *
= p T* (2.5)

The reference length-scale is for the time being an arbitrary constant l*, and the

reference time-scale is I* /U. Non-dimensional parameters are the Reynolds number

Ret = PlU1 /,u, the Mach number of the high-speed side of the mixing layer

M1 = U /c,, where the sound speed is denoted by c*, and the ratio of specific

heats -y = cp/c v .

The boundary-layer equations in dimensionless form become:

a(pu) + O(pv) = 0 (2.)
ax O (.6

au au 1 a - (27)
PU - + PV- -A 275x + y Rel ay(ay)
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aT aT 1 a aT M12(y'-a) 2 (2.8)
ax + p-5y = ne 1Pr- yA- y Rel kay

and

pT= 1 (2.9)

since pressure has been assumed uniform.

The first step is to derive a relation between temperature and velocity. The pro-

cedure, described in White [1974], is to search for a solution T = T(u). Substituting

into the energy equation (2.8), and using for example

aT dT a~u--= u (2.10)
ay -du ay

we have

dT (au au 9 1 a 4u= (M2(1 d2T) (au\ 2d"uPu- -~ig +e~~y~) PV- 1 "-T""AT P , (2.11)
Z kaxP a Y8 =e ~ du2, 49Y)

If the Prandtl number is assumed unity then the left hand side must be zero by the

momentum equation (2.7), and we have the equation

d2T 2

du2  -M1(y - 1) (2.12)

This can be integrated twice, subject to the boundary conditions that T = 1 when

u = 1 and T = T2 when u = U2, giving:

T = M -1 -- 1) (u(1 + U2) _ u2 _ U 2) + T2(1 -U) + (U - U 2) (2.13)

M 2( 2  (1 -U 2 ) (1 -U 2 ) (.3

This is the general T - u relation, referred to as a Crocco-Busemann relation after

the original developers.

The next step is to find a solution to the continuity and momentum equations.

A stream function 0, which automatically satisfies continuity, is defined by:

a¢k atp
-y v 1 X (2.14)
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The momentum equation now becomes:

ao au a au 1 a 8u (215)
aya ax ay Rel (Y'.15

We now introduce Howarth's transform (also known as the Illingworth-Stewartson

transform, see Schlichting [1979]):

Yd = T (2.16)

H-IT dYH

Using this, together with equation (2.9), we can rewrite (2.15) as:

ao, &20, a, a2 0, 1 a a2 0 (2.17)
aYHaa aYH aay y

This can be reduced to an ordinary differential equation by making the transfor-
mation:

- F Re (2.18)

If we also assume that viscosity varies linearly with temperature we obtain

2F" + FF" = 0 (2.19)

where the prime here denotes differentiation with respect to rt. Boundary conditions

are that F(0) - 0, the dividing streamline, and the free stream velocities F1(0o) = I
and F'(-oo) = U2 . Equation (2.19) can then be solved by shooting.

The shooting procedure is simplified by using the invariance of the equation to
the transform G( = a7) = F(rf)/a, reducing the shooting parameters from 2 to 1.
The method is as follows.

(a) Guess F'(0) and F"(0) and shoot to +oo.

(b) Evaluate the constant a and transform the equation so that G satisfies the

upper boundary condition exactly.
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(c) Shoot to -oo and compare G'(-oo) with U2 .

(d) Choose new F"(0) and iterate.

A fourth order Runge-Kutta scheme was used for the integrations and secant

iteration was used to vary F"(0) until G'(-oo) converged to U2 . Once the mean

velocity profile G'(YH) is known the temperature can be found using (2.13). The

shooting cannot proceed to infinity, so a cutoff at YH = 20 was used, after checking

that this had negligible effect on the results. The last step in the procedure is

to reverse Howarth's transform and convert back to the physical y coordinate by

integrating:

dy

dYH T y(o) = 0 (2.20)

and normalizing the y coordinate by the vorticity thickness, defined by

1 -U 2  (2.21)
Idu/dylmax

Papamoschou [1986] noted that the results presented by Gropengiesser [19701

showed a larger than expected sensitivity to density ratio. Both the current calcu-

lations, and those of Ragab & Wu [1988] show that the work of Gropengiesser was

not in error. The reason for the discrepancy lies in the normalization of the mean

profiles. Gropengiesser normalized the thickness by the momentum thickness in the

YH domain. Thus his plots for different density ratios are normalized differently,

according to the effect of density on the transform YH --* y. To properly assess

the effect of density ratio on amplification rate one has to normalize by a consis-

tent thickness parameter. The vorticity thickness was chosen since Monkewitz and

Huerre [1982] found that vorticity thickness rather that momentum thickness gave

direct proportionality between spatial amplification rate and mixing layer growth

rate.

Rather than fit the profiles to a generalized hyperbolic tangent, as done by

Gropengiesser [1970], it was decided to use the computed profiles directly. A cubic

spline was fitted through the integration points and this was used as the base profile

for stability calculations.
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2.1.2 Linearized Disturbance Equations and Shooting Method

The inflectional instability of the mixing layer provides an inviscid instability

mechanism, and the only effect of viscosity is to damp the growing disturbances

(Betchov and Szewczyk [1963]). It was therefore decided to solve the simpler inviscid
stability problem. The starting equations are the Euler equations, obtained by
dropping the viscous and heat conduction terms from the Navier-Stokes equations.

In dimensional form these equations for continuity, momentum and energy are as

follows (White [1974]):

ap* *ap* au*-- +  ! - + P  = 0 (2.22)
I %

, (-u .- (2.23)

at*h a* Or* "

P \aht* + u*'h~* 2p u *. (2.24)
S S

Using the continuity equation, the perfect gas equation (2.4), and the definitions of

h* and -y from the previous subsection, the energy equation can be rewritten as:

(aT* + u* T*) 
u

P * + u - -Y , (2.25)
% I

Non-dimensionalization is obtained by the same method as in the previous sec-

tion, equation (2.5). The non-dimensional equations for continuity, momentum and

energy are:
ap ap O9u i
- + U- - =+0 (2.26)

I aui ui \ _ 1 ap (2.27)

+ 9T = )- 1U (2.28)
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and the non-dimensional perfect gas equation is

p = pT (2.29)

We introduce the following decomposition:

U ='i+u, v = Vt,w = w',T ='T+TI,p =-7+p',p = 1 +p' (2.30)

where an overbar denotes a mean quantity and a prime a small disturbance. It is

assumed that the stability analysis may be conducted neglecting the slow streanwise

variation of the mean flow, i.e. i = U(y), T = T(y) etc. The mean velocity, density

and temperature profiles need to be specified. The mean pressure is constant and

non-dimensionally unity.

Under the parallel-mean-flow assumption, the linearized disturbance equations

have coefficients which are independent of x, z and t. Hence the solutions are expo-

nentials in these independent variables and disturbances have the form of travelling

waves

(iUs, V', w', T', p!, p') = (fi, 0', t, , ,)ei(aX+fiz-w) (2.31)

where fi, 0, tb, T, 0, P are complex eigenfunctions depending only on the y coordinate.

In equation (2.31) w is the frequency and a and / are wavenumbers in the streamwise

(x) and spanwise (z) directions respectively. The angle 0 of a disturbance is given

by

tan0 = 8/ar (2.32)

where a, is the real part of a. The wavenumber /f has to be real, since we require

disturbances not to amplify for z --* ±oo. The form of a and w depends on the

particular problem. For the temporal stability problem disturbances grow in time

and not in space, so a has to be real and w complex. In the spatial problem w

is real and a complex so that disturbances grow in space, but not in time. The

amplification rate of a disturbance is given by wi in the temporal case and -ai in

the spatial case.

The pressure perturbation can be easily found from the density and temperature

using the linearized form of the perfect gas law (2.29):

p' = T' + p7 (2.33)
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After substituting equations (2.30) and (2.31) into the governing equations (2.26)-
(2.29) and linearizing, we obtain the following linearized equations for continuity,

three components of momentum, energy and the perfect gas law:

pi(d - w) + ODp + A[i(afi + P3h) + DO] = 0 (2.34)

- i~- -wfi+MDu -a (2.35)

i(ai - w)6 = -DP (2.36)

_. = - (2.37)

6[i(i- w)T + ODTJ = -(y 1)[i(au + ftb) + DO] (2.38)

and

P- = -t + OT (2.39)

where D represents the operator d/dy.

These equations can be reduced to a set of two equations as follows. First we

multiply equation (2.34) by T and then add it to (2.38), using the fact that differ-

entiating (2.29) with respect to y gives TD'- + 7DT = 0. This gives

i(dii - w)f = -yf[i(afi + Ptb) + DO] (2.40)

Now ti and tb can be eliminated using equations (2.35) and (2.37), giving

i 2
(du--- w)DO - oiODU = ' 1P (2.41a)

where

a2 + ,62 _ M12 (di _ W)2  (2.41b)

g2= a2
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Equations (2.36) and (2.41) form a set of two equations for 0 and P. These can
be further reduced by following the method of Gropengiesser [1970], who defined a

new variable X:

X M (2.42)

The equation to be integrated for X then becomes:

dX a 2 (U - w/a) x(xg + D-) (2.43)
Y = ( T (U /)-24a)

The boundary conditions are obtained by considering the asymptotic behavior of
disturbances in the freestreams. In the freestream Dii is zero and equations (2.36)

and (2.41) can be written as

D2p = - 2gp (2.44a)

D 2 6 = 7t2g6 (2.44b)

The general solutions to these equations, vanishing for y --- -oo are

= al eJ qY  (2.45a)

6 = a2 e : qy  (2.45b)

where al and a2 are constants and q is "ia2g. Note that P and 0 decay with the
same complex exponential in the freestream. Therefore, the new variable X, formed

as a ratio of these solutions, must go to a constant as y --+ ±oo. Setting dX/dy = 0
and DUR = 0 in equation (2.43) leaves

a(U W/a) (2.46)

The numerical solution procedure is iterative. First, a guess is made of the

eigenvalue. For spatial analysis w is specified and a guessed, whereas for temporal

analysis a is specified and w guessed. Knowing the eigenvalue, we can evaluate X in

the freestreams using equation (2.46). Then we integrate equation (2.43) from each
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of the freestreams to the centerline of the mixing layer at y = 0. At the centerline the

value of X computed by integrating from the upper freestream, X+ (0), is compared

with the value computed by integrating from the lower freestream, X -(0). Then a

new eigenvalue is chosen, and iterated upon until the eigenvalue has converged to a

specified tolerance. The shooting method was implemented using subroutines from

Press et at. [1986]. The integrations were carried out using a variable step fifth

order Runge-Kutta scheme, and the iteration was achieved by a Newton-Raphson

method. An error control of 10-6 was used for the integrations, and the iteration

continued until the eigenvalue converged to 10- 7 . Single precision arithmetic was

sufficient for most computations. However, double precision was required for some

of the weakly amplified supersonic modes of instability (section 2.2.4).

Generally the integrations were performed with y as the independent variable,

starting the integrations 10 vorticity thicknesses away from the centerline. Instead

of solving the problem on the domain [-co, co] it is possible (Gropengiesser [1970J)

to reduce the domain of integration to [U2 , 1] by transforming the independent

variable in equation (2.43) from y to u. This method was also implemented and

was found to be slightly quicker than the method integrating in y, and gave exactly

the same results. However, there were problems with this method for wake flows and

for mixing layer profiles where the base flow was not an analytic function. Results

from compressible wake calculations using the above methods can be found in Chen

et al. [1989). The procedure for the wake calculations was similar. However, for the

symmetric wake mode 0 at the centerline is zero, so X defined by equation (2.42)

goes to infinity. This was remedied by working with a new variable 1/X.

Once the eigenvalues have been found the eigenfunctions are calculated by in-

tegrating equations (2.36) and (2.41) out from the centerline into the freestream.

Initial conditions are calculated from the solution for X(O), choosing the phase of

the eigenfunctions so that 0D(0) = 1 + iO. From (2.42) this means that A(0) is given

by:

P'(0) = IMIx'i(O) (2.47a)

i(O) = -- M1Xr(0) (2.47b)

After computation the eigenfunctions are renormalized without phase change so

that the magnitude of f is 1. In all cases this renders the other components of the

eigenfunction less than 1.
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2.1.3 Validation

The first method of validation was to compare results obtained with the shooting

method described in the previous section with results from a code for direct solution

of the linearized equations, developed in collaboration with J. H. Chen and described

in Appendix A. This is an ideal situation for checking numerical methods. When two

completely different methods give the same results one is confident that the solution

is correct. The superior performance of the shooting method for weakly amplified

disturbances led to its being used for all the stability calculations presented here.

In addition, results were checked against published data including the graphs of

Gropengiesser [1970], and at low Mach number against results for incompressible

flow by Michalke [1965a,b], Monkewitz and Huerre [1982] and Lowery and Reynolds

[1986]. Comparisons are presented below in tables 2.1 and 2.2.

Table 2.1 Comparison of temporal results at M1 = 0.01 with Michalke [1965]

ar wi Michalke wi current

0.2 0.06975 0.06974
0.4 0.09410 0.09409
0.6 0.08650 0.08649
0.8 0.05388 0.05386

Table 2.2 Comparison of spatial results at M 1 = 0.02

with Lowery and Reynolds [1986]

wr a Lowery a current

2/3 0.88869, -0.12850i 0.88891, -0.12850i
1/3 0.43110, -0.09913i 0.43110, -0.09913i
1/6 0.20908, -0.05860i 0.20908, -0.05860i

2.2 Results

Results are presented for a variety of mixing layers. In non-dimensional terms

(equation (2.5)) these flows are characterized by U2 , the velocity ratio and P2, the

density ratio. Since pressure is assumed uniform we can also write P2 = 1/72.
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2.2.1 Low Mach Number Results

It was shown by Monkewitz and Huerre [1982] that, when spatial theory and the
Blasius mixing layer profile are used, the maximum amplification rate jailmax is

proportional to A = (U - U2)/(U + U2). Also, the best fit through the experi-

mental data for the incompressible mixing layer with uniform density, compiled by
Brown and Roshko [1974], is a straight line d6/dx proportional to A. Thus, for the
incompressible mixing layer with constant density it appears that i Imax from the
linear theory is proportional to d6/dx from experiments (Morkovin [1988]).

In this section we test the postulate that the relation IOilmax - d6/dx applies to

all mixing layers, with any velocity ratio, density ratio and Mach number, with the

following provisos:

(a) use spatial stability theory since this is a convectively unstable flow (Huerre
and Monkewitz [1985])

(b) use a solution of the laminar boundary-layer equations as the base flow

(c) normalize the profiles by the vorticity thickness.

The effect of the mean velocity profile can be important. A comparison between

hyperbolic tangent velocity profiles and the boundary-layer solution is shown for
two different velocity ratios in figure 2.1. In each case the densities of the free-
streams are equal (P2 = 1). The profiles are all normalized with their vorticity
thickness and shifted so that u = (1 + U2 )/2 at y = 0. The most amplified spatial

instability wave was computed from these profiles. The percentage difference in
amplification rate of the case with a hyperbolic tangent profile relative to the case
with a boundary-layer profile is shown on table 2.3.

Table 2.3 Percentage difference in jOilmax between tanh and

laminar velocity profiles at M 1 = 0.1 and P2 = 1

U2  % difference
0.00 + 16.0
0.25 +4.0
0.50 +0.5
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The largest effect was at U2 = 0 where the wave with the highest amplification

rate was 16% more rapidly amplified on the hyperbolic tangent mean flow than on

the boundary-layer mean flow. At higher values of U2 the effect was much smaller.

To investigate the effect of profile shape some calculations were made with a pro-

file constructed from a hyperbolic tangent on the low speed side and the boundary-

layer solution on the high speed side. Such profiles are smooth to the eye but

derivatives are discontinuous at the centerline. No numerical problems were en-

countrered but results have to be treated with caution. It was found that a 'fuller'

velocity profile on the high speed side was stabilizing, and from the reverse cal-

culation that a longer tail on the low speed side was also stabilizing. The latter

effect was larger by a factor of about 3. This kind of argument may explain why

tripping the high speed boundary-layer, making it turbulent and hence having a

much 'fuller' mean velocity profile reduces the growth rate of the developed mixing

layer by approximately 30% (Browand and Latigo [1979], Mungal et al. [1985]).

The differences in the velocity profile are generally small when the two free-

streams have equal densities, but can become very large when there is a large

density ratio. The effect of density ratio on the mean velocity and density profiles

at U2 = 0.5 and P2 = 1/7,1,7 is shown in figure 2.2. The profiles for P2 = 1/7

and P2 - 7 are very different from a hyperbolic tangent. Clearly in this situation a

hyperbolic tangent would be a poor choice for the mean velocity profile. The most

unstable case corresponds to P2 = 7, which is the least 'full' profile on the high

speed side and the shortest tail on the low speed side, in agreement with the above

arguments.

The effect of density and velocity ratios on the amplification rate of the most

amplified spatial instability wave (I ai Imx) is shown in figure 2.3a for the boundary-

layer mean velocity profile and on figure 2.3b for the hyperbolic tangent mean

velocity profile The growth rate is plotted against A for three different density

ratios, as done by Bogdanoff [1984] and Dimotakis [1986]. Experimental points from

Brown and Roshko [1974] are also plotted, both the original vorticity thicknesses as

well as density thicknesses. The density thicknesses were evaluated by Bogdanoff

[1984] by joining the 20% and 80% points on the density profile and measuring the

distance between the points where this line intercepts the free-stream density. The

agreement between the linear amplification rate and the experimental growth rate

is remarkable, especially when mixing layer thicknesses based on the experimental
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mean density profile are used. For these and other experiments the ratio 6'/IaiJmax,
where 6' = d6/dz, is shown on table 2.4 below.

Table 2.4 Relationship between 6' from experiments and Jai ma
from linear theory

Experiment U2  P2 6'/Iot lmax t/Iajilmax

Brown & Roshko [1974] 1/v/7 7 0.591 0.491
Brown & Roshko 19741 1/VF 1/7 0.623 0.537
Brown & Roshko 11974 1/7 7 0.604 0.344
Fiedler [1974] 0.0 1.09 0.594 -
Bogdanoff [1984] 0.0 0.2 0.557 -

Dimotakis & Brown [19761 0.19 1.0 - 0.432

From these results, we conclude the following relations between linear amplifica-
tion and experimental growth rate (±20%):

dw

d- 0.45[ailmax (2.48b)

Comparison between figures 2.3a and 2.3b shows that the linear results based
on a hyperbolic tangent mean velocity profile do not show the correct trends. At
A = 0.3, for example, the effect of increasing density ratio with the hyperbolic
tangent mean velocity profile is that first the amplification rate rises and then it
falls. This can be compared with the results for the boundary-layer mean flow,
which show a continuous rise in amplification rate with increasing density ratio.

The variation in Ictilmax over two orders of magnitude change in temperature
ratio T2 (recall T2 = 1/P2) is shown in figure 2.4 for velocity ratios U2 = 0 and

0.5. The case U2 = 0 was computed by Maslowe and Kelly [1971] for a hyperbolic
tangent mean velocity and a specified, non Crocco-Busemann, mean temperature
profile. They found a peak amplification rate, at a density ratio of P2 = 33, that
was 64% higher than the amplification rate for equal densities. The current results
for that velocity ratio show a much stronger effect of density ratio on amplification
rate, in better agreement with the experiments of Davey and Roshko [1972]. At a

26



I

density ratio P2 = 5, the amplification rate is three times that of the equal-density

case. When U2 = 0 the amplification rate appears to become very large when the

low speed stream has a large density compared to the high speed stream. However,

it should be noted that for the case U2 = 0 the v component of velocity on the low

speed side of the layer will be large relative to the u component and the boundary-

layer assumption is no longer strictly valid.

We have seen that there is a good agreement between the linear theory and the

existing experimental data for the effect of density and velocity ratio on the mixing

layer growth rate at low Mach numbers. It therefore appears reasonable to use

the linear theory over the full range of possible conditions (not just at experimental

points) to compare with some of the models that have been proposed for the growth

rate of the mixing layer as a function of density and velocity ratios. In particular,

two models are compared. The first is a form originally proposed by Brown [1974],

and used by Papamoschou [19861 to compute the growth rates of incompressible

mixing layers with the same velocity and density ratio as his compressible mixing

layer experiments:

d5 _ (I- U2 )(1 + V/') (2.49)

dx (1 + U2 ,VF)

The second model is a modified form of the above, and was proposed from geomet-

rical arguments by Dimotakis [1986]

db ~ (1-U 2 ) _I_-_

dx (I+U 2  ) 1 -1+ 2.9/A (2.50)

These models will be referred to as model 1 and model 2. For comparison purposes

the constant of proportionality is set so that both models coincide with the linear

growth rate prediction (equation (2.48)) for the equal-density case. The comparison

between the models and the linear theory is shown in figure 2.4 for velocity ratios

0 and 0.5. Agreement is generally not good. We can also check the models by

comparing the growth rate plotted against the right hand sides of equations (2.49)

and (2.50) above. A straight line would indicate agreement between the model for

growth rate and the linear theory prediction. Figures 2.5a and 2.5b show this plot

for each model. Model 2 is closer to a straight line.
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Both model 1 and model 2, and the linear theory prediction of equation (2.48)

agree well with the available, but limited, experimental data. However the different

predictions of these three models for other velocity and density ratios suggests that

this is not a cut-and-dried issue. In particular, the method of normalization used I
by Papamoschou and Roshko [1988] (dividing the compressible mixing layer growth
by the (model 1) prediction of growth rate of an incompressible mixing layer with

the same velocity and density ratio) has the built-in assumption that model 1 is

correct.

2.2.2 Oblique Waves at High Mach Number

The basic effect of compressibility is first considered for the temporal stability of I
the time-developing mixing layer with equal free-stream densities and temperatures,

and with a simple velocity profile: J
= tanh(2y) (2.51)

Equation (1.3) for the convective Mach number can be non-dimensionalized as fol- I
lOWS: 1-U 2 - Mlvf2(1- U2) (2.52) 1

M - c+ c2 I+V/P2

In the time-developing reference frame U2 = -1 and for P2 = 1 we have M 1 = Mc,

so the convective Mach number is the same as the Mach number of each of the

free-streams. j
Figure 2.6a shows the effect of increasing Mach number on the amplification rate

of two-dimensional waves. The observed trend is the same as found by Gropengiesser j
[1970] for the spatial theory, including the appearance of a second (supersonic) mode

of instability. This mode is characterized by a different phase speed Cr = Wr'ar, 1
as evident from the plot of w, shown in figure 2.6b. The effect of increasing Mach

number is to reduce the amplification rate and ultimately stabilize the subsonic two-

dimensional mode. Only the emergence of the second mode keeps the mixing layer
unstable to two-dimensional disturbances at high Mach numbers. The subsonic

(first) mode is stationary in the time-developing mixing layer reference frame, while i
the second mode travels to the left or right (see section 2.2.4). I
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The amplification rates of oblique waves at angles of 00, 300, and 600 are shown

in figures 2.7 through 2.9 for Mach numbers 0.01, 0.8, and 1.2 respectively. At

M = = 0.01 the most amplified wave is the two-dimensional wave (0 = 0°), as

expected from Squires theorem, which applies only to incompressible flow (Squire

[1933]). At MI = 0.8 it is found that waves of 00, 300 and 600 are all about equally

amplified, and by M 1 = 1.2 the wave at 600 is substantially more amplified than

the less oblique waves.

The increasing obliquity of the most amplified waves is better illustrated in fig-

ures 2.10 and 2.11. In these figures the amplification rate is plotted against 0 for

various Mach numbers, where for each Mach number the wavelength is fixed at

the most amplified wavelength (including oblique waves). Figure 2.10 is the plot

for the time-developing mixing layer from above, whereas figure 2.11 is for a spa-

tially developing mixing layer with T2 = 1.0 and U2 = 0.5, and with a compressible

laminar boundary-layer solution as the base flow. The plots are very similar for

the two cases, indicating that for mixing layers with equal densities the hyperbolic

tangent velocity profile can be reliably used to compute the fundamental effects

of compressibility. In each case the curves split into two regimes. For M, < 0.6

the two-dimensional wave is always the most amplified wave. Above M, = 0.6 a

three-dimensional wave of increasing obliquity is most amplified. The second mode

is amplified at high Mach number, but never more than the oblique first mode. The

cusp in the plots corresponds to the transition as one mode becomes more amplified

than the other.

The angle of the most amplified distu. bance was determined empirically to satisfy

Mc cos 0 - 0.6 (2.53)

This means that the Mach number perpendicular to the wave crest is approximately

0.6. This might be considered similar to the case of swept-back airfoils, where the

key Mach number is Mo. cos 0. In the mixing layer, waves at 0 = 90' are not

amplified and two-dimensional waves (0 = 0°) have growth rates that are strongly

reduced by compressibility effects (see section 2.2.4 and Chapter 4). The most

amplified wave has to be somewhere in between.

Table 2.5 shows values of M, cos 0 for spatially-developing mixing layers con-

structed in three different ways:
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(a) Equal temperatures and fixed velocity ratio: T2 = 1 and U2 = 0.5

(b) Equal stagnation enthalpies (dimensionally we have H* = c;T* + u' 2 /2, non-

dimensionally H = T/((y - 1)M2) + u 2/2 ) and zero velocity on the low-speed

side: H 2 = 1 and U2 = 0. This case corresponds to the earliest experiments

on the compressible mixing layer.

(c) Fixed Mach numbers M 1 = 2.0 and M 2 = 1.0. In this case the convective

Mach number is varied by changing the ratio of stagnation enthalpies and the

velocity ratio.

In each case a boundary-layer mean flow was used, for comparison with experi-

ments. The value of M, cos 9 is consistently between 0.58 and 0.59 for case (a) but

shows some deviation at high Mach number for the cases (b) and (c).

Table 2.5 Variation of M, cos 0 for oblique waves

T2 = 1,U2 =0.5 H2 = 1,U2 =0 M, =2,M2 = 1

M_ M, cos _ M_ M, cos 0 _ _ MC cos 0
0.6 0.587 0.854 0.571 0.610 0.599
0.8 0.585 1.122 0.623 0.773 0.601
1.0 0.588 1.311 0.734 0.888 0.628
1.2 0.582 0.973 0.651
1.4 0.581 1.045 0.699
1.6 0.586 1.107 0.769

2.2.3 Convective Mach Number

The variation of the amplification rate of the most unstable mode with Mach

number is shown in figure 2.12a for the temporal stability of the time-developing

mixing layer. The curve of the most amplified two-dimensional wave is found by

varying the wavenumber a, until a maximum is found, keeping 0 fixed at 0'. The

curve for oblique waves is found by varying both wavenumber and angle until a

maximum is obtained. Above Ml, = 0.6 the three-dimensional waves are the most

rapidly amplified and the curve of the most amplified oblique disturbance is a much

better fit to the existing experimental data (Papamoschou and Roshko 119881, see

also figure 2.14) than the two-dimensional curve. Figure 2.12b shows the extension j
of the curve for oblique waves to very high Mach numbers. It can be observed that,
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at least for the case of equal densities, the growth rate continues to decrease as

Mach number is increased.

To check the convective Mach number concept, and to provide data for compar-

ison with experiment, curves of the maximum spatial amplification rate, lailmax,

against convective Mach number were compiled. In each case the compressible

boundary-layer equations were solved for the mean flow, and the most amplified

disturbances (as a function of both frequency and angle) were determined. These
were normalized with the amplification rate of the most amplified disturbance at

M1 = 0.1, with the same velocity and density ratio. Figure 2.13 shows the graphs

of peak amplification rate against Mach number, using the three different methods

of varying the convective Mach number described in the previous section. A good

collapse of the data with Mc is obtained for Mc < 0.8, but there is some divergence

at high convective Mach numbers.

It appears from recent work by Papamoschou [1989] that the fundamental idea

behind the convective Mach number concept, of a large-scale structure convect-
ing in the flow and 'seeing' the relative Mach number of the free-streams, may be

flawed, since actual measured convective velocities do not agree with the theory.

An alternative viewpoint is that Me, as defined by equation (1.3), (i.e. the velocity
difference divided by twice the average sound speed) is just a dimensionless param-

eter that can include only the first-order effects of compressibility. With this latter
viewpoint we do not expect perfect collapse of growth rates at high Mach numbers.

It was mentioned in section 2.2.1 that a source of error in the normalization used

by Papamoschou and Roshko [19881 is the model for incompressible growth rate,

equation (2.49). An alternative method it to normalize experimental data by the

growth rate of the most amplified spatial instability wave, lailmax, at low Mach

number. This is shown on figure 2.14 for the available pitot thickness data from Pa-

pamoschou [19861, together with a typical curve for the linear theory with T2 = 1.0.

The linear theory curve has been anchored to be 0.6 at M1 = 0, using equation

(2.48a) and assuming that density thickness and pitot thickness are equal. Unfor-

tunately the large spread in the experimental data prevents a definitive conclusion

on the performance of this method of normalization.
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2.2.4 Supersonic Instability Modes

We have seen that the two-dimensional instability mode that is most amplified

at low Mach number becomes stable at high Mach number. Previous researchers

(Lessen et al. (1965,1966], Gropengiesser 11970]) have found o ,her modes of instabil-

ity at high Mach number which keep the mixing layer unstable in two-dimensions at

any Mach number. These modes have been described as 'radiating vorticity modes'

by Mack [1989], and are distinct from the 'Mack modes' found in supersonic wall

boundary layers, confined shear layers, and compressible wakes, which require the

presence of a region of trapped subsonic flow relative to the free-stream. The ra-

diating vorticity modes are supersonic with respect to one of the free-streams and
radiate energy into that stream. Two such modes exist in the mixing layer, one

mode supersonic relative to the low-speed stream, and the other mode supersonic

relative to the high-speed stream.

Jackson and Grosch 11988] investigated the supersonic modes for the mixing

layer described by a hyperbolic tangent profile in Howarth-transformed space (see

equation (2.16)). In the present work a similar case to Jackson and Grosch is

studied, but using a solution to the boundary-layer equations as the base flow. The

flow chosen has U2 = 0 and T2 = 1 and spatial stability theory is used. Figure 2.15

shows the variation in growth rate of the most amplified two-dimensional modes
with Mach number, in the interesting region around a free-stream Mach number

M1 = 2 (i.e. around Mc = 1 since for T2 = 1 and U2 = 0 the convective Mach

number is always one half the Mach number of the high speed stream). Figure 2.16
shows the phase speeds of these modes, which led Jackson and Grosch to classify

them as a fast supersonic mode, supersonic relative to the low speed stream, and

a slow supersonic mode, supersonic relative to the high speed stream. The various

modes are plotted as a function of frequency in figures 2.17 and 2.18 at M1 - 2.2.

Figure 2.17 shows the growth rate and figure 2.18 the phase speed. From these

plots we see that the most amplified mode is the fast mode. The second peak at

the left of the curve for the fast mode is the remnant of the subsonic mode, which

was the dominant mode at low Mach number. As Mach number is increased this

mode becomes less and less amplified, and the peak moves to longer and longer

wavelengths. From vortex sheet instability theory (Blumen et al. [1975]) we expect

this mode to finally become stable at M 1 = 2vr.
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The radiative nature of these instability waves becomes apparent when the eigen-

functions for pressure are plotted. The same case as above is chosen, with M1 = 2.2.

Figure 2.19a shows the pressure eigenfunction for the fast supersonic mode, radiat-

ing into the low speed side, and figure 2.19b shows the slow supersonic mode, which

radiates into the high-speed side. Figure 2.19c shows the subsonic non-radiating

mode. The eigenfunctions shown in figure 2.19 have the form of damped waves,

since we are considering amplified waves, and the disturbances away from the cen-

terline were created at an earlier time and then propagated into the free-stream.

Jackson and Grosch [1988] only showed eigenfunctions for the neutral instability

modes, which do not decay in the free-stream.

Which mode is most amplified depends upon the temperature ratio. At a tem-

perature ratio of 2 the fast mode is the dominant mode, while at a temperature

ratio of 0.5 the slow mode is dominant. Unlike the subsonic mode, increasing the

angle of the supersonic mode disturbance does not increase its amplification rate,

and for highly oblique disturbances these modes are stable.

The supersonic modes are very interesting from a physical perspective. However,

it should be remembered that the most amplified waves in the flow are the oblique

modes of the subsonic instability, and since these are amplified more rapidly by

a factor of 3 or 4 we expect the resulting flow to be dominated by the oblique
waves. The supersonic modes will come into play only if there is very strong two-

dimensional forcing of the mixing layer.

2.2.5 Eigensolution Structure

Eigenfunctions from the linear theory are used in following chapters as inputs
to direct numerical simulations. However they are interesting in their own right,

providing important clues to the structure and physics of the large scale motions

which develop from the linear instability. In this section eigenfunctions from two-

dimensional stability calculations for the time-developing mixing layer are presented

to illustrate the effects on compressibility on the linear eigenfunctions.

Figures 2.20 and 2.21 show the eigenfunctions fi,0,!,T as functions of the y

coordinate for M1 = 0.01 and M1 = 0.6 respectively. The main effect is the rise

in importance of the density and temperature eigenfunctions. These keep the same
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basic shape at M = 0.6 but are increased by four orders of magnitude relative to

the case M1 = 0.01.

Additional information can be found by generating contour plots of the eigen-

functions. For example the real part of the u velocity

u = U + A Real[fleiaj ]  (2.54)

can be found over one wavelength in the z direction, and similarly derivatives of

the flow variable can be easily found. Results are shown on figures 2.22a-g for

various flow quantities at M1 = 0.6. Note that the y axis has been stretched to

better illustrate the structure. The amplitude of the disturbance A is chosen to be

0.5 for the spanwise vorticity w, as well as for Wz/P and p, to better illustrate the

structure, which would otherwise be dominated by the mean flow. The remaining

plots use a disturbance amplitude of 0.01.

Even at M 1 = 0.6 the plots of wz and wz/p are little different from the vorticity

structure for the incompressible case, found by Michalke [1965a]. The two 'elemen-

tary vortices' in the eigensolution will subsequently rotate around each other in the

non-linear region of growth and merge to form the fundamental vortex in the mixing

layer. What is interesting is that the density and pressure disturbance fields (figures

2.22c,d) show striking similarities with the fields to be presented in Chapter 4 from

the non-linear roll-ups in the mixing layer. Low density and pressure perturbations

are found in the vortex core and high density and pressure are found in the region

between vortices where the braid will eventually form.

Some insight into mechanisms can be obtained by examining terms in the com-

pressible vorticity equations for the linear eigensolutions. The equations for w, and

for we/p are as follows.

_ au av (2.55)

Wz=ay az

Dt au z a+ "+ i ayaz) (2.55)

D(wz/p) 1 (apap apap (2.56)
Dt p3 a y a T)
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The terms on the right hand side are plotted on figures 2.22f and 2.22g. Both the
baroclinic and dilatational terms are negative (dashed contours) in precisely those

regions where the elementary vortices develop, and act to reduce the vorticity in the

region where vortex roll-up is trying to occur, Thus both these terms act to reduce

the growth rate of the two-dimensional instability as Mach number is increased.

Recent work by Lele and Shariff (private communication [1989]) suggests that the

advection term is more important than either of these terms and is the main reason

for the stabilizing effect of Mach number.

The appearance of the same physical processes in the linear eigensolutions as
are observed in the later non-linear development, as found by direct numerical

simulation, may help to explain the surprising finding that the linear amplification

rate is directly proportional to mixing layer growth rate.

2.3 Linear Instability Model for the Mixing Layer

Results from sections 2.2.1 and 2.2.5 suggest that linear processes may be im-
portant, even in the fully developed mixing layer. It is therefore worthwhile to

consider a simple linear instability model of the mixing layer flow. Some of the ar-

guments were presented by Monkewitz and Huerre 11982] to explain their successful

prediction of shear layer growth rate, and are extended here.

2.3.1 Model

Consider first the incompressible uniform density mixing layer. Experiments
show that the flow is dominated by the primary two-dimensional instability, and

the developed structures show strong coherence in the spanwise direction. The spa-
tial development of the flow can be described by the successive growth of linear

instability modes, with longer and longer wavelengths. The phases in the develop-

ment are as follows:

(1) Growth of the fundamental, most unstable, linear instability mode of the initial

profile. This mode, frequency w., grows until the layer has grown by a factor

of two in width, and then saturates out, neither growing nor diminishing.

(2) Growth of the first subharmonic wave, frequency w* /2. This mode grows

and eventually results in pairing of two of the fundamental mode structures.
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After the pairing the layer has again grown by a factor of two and this mode

saturates.

(3) Growth of the next subharmonic wave, frequency w* /4, again resulting in

pairing, doubling of width, and saturation.

The essential behavior of the model is shown on figure 2.23. The exponential

growth in a measure of energy, say E, of each mode is shown schematically. First

the fundamental mode (F) grows and saturates, and we associate the developed

structure with the neutral instability mode (see figure 2.24). The (non-dimensional)

frequency of the neutral mode wN is approximately twice the frequency of the most

amplified mode, w, where w is non-dimensionalized by w = w*6*/U . Since it is

the same wave which has grown and saturated, the dimensional frequency, w' is the

same for the two cases, and the layer must have grown by a factor of 2. Now that

the layer has doubled in width the frequency of the new 'most amplified wave' is

4/2, the first subharmonic wave (Si). This grows exponentially, following linear

theory, until it saturates, resulting in pairing of two of the neutral modes of the

original instability. The resulting structure can again be associated with a neutral

mode, since by the pairing the layer has grown by a factor of 2. The same process

of successive subharmonic growth, pairing, and saturation at the neutral mode,

continues ad infinitum in the streamwise direction, and is not Reynolds number

dependent.

The essential assumption of the linear instability model is that the time taken

during the exponential growth of an unstable wave is long compared to the time

taken for the ultimate non-linear process of pairing and saturation.

texponential growth tnon-linear (2.58)

However, in reality both linear and non-linear processes may be governed by similar

physical processes, and it may be that the time taken in the two stages are linked.

So, even if equation (2.58) is not satisfied exactly, the linear model may still give

good predictions.

Before discussing model predictions, we note that in reality the growth of sub-

harmonic waves in the mixing layer is dependent upon the phase of the growing

wave relative to the large-scale structure. The model considers only linear waves,

for which phasing is not important. In the real case there will be a random phasing
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of growing waves, which has the effect of moving the pairing locations around in

space, resulting in the time average of linear growth rather than as a series of steps.

(see also Sandham and Reynolds [19891). Modes with certain phases will be more

amplified by the presence of large-scale structure, and modes with other phases will

have their growth rates diminished by the large-scale structure. The model relies

on these effects cancelling out in the long time average.

2.3.2 Prediction of Growth Rate

The first implication of the model is on growth rate. Spatial instability waves

grow exponentially like e- i . The z distance for the n'th most amplified wave to

grow by a factor of eN is N/jaimm. In this time the mixing layer has doubled in

width, so Ab = bn+ l - bn = bn or A(6/6 n ) = 1, so the growth rate is given by:

A( ) (2.59)

A(x/6 n)  N/Iailmax

In the long time average this gives

d6
Iailmax (2.60)

thus providing a theoretical basis for the relation found in section 2.2.1. (equation

(2.48)).

It should be noted that this derivation is dependent on the factor N being a

constant. This means that the ratio of the amplitude of a wave at saturation to the

amplitude when the wave was the most amplified wave from the previous saturated

state is assumed constant for all x locations.

2.3.3 Prediction of Convective Velocities

A second corollary of the model is that the large-scale structures found in the

mixing layer are linked to the neutral instability modes. The model picture, figure

2.23, is that what are observed in the mixing layer at any time are not the growing

instability waves, but the neutral mode from saturation of the previous instability.

The neutral modes are steady solutions of the parallel flow equations and, since they
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are neither growing nor decaying, would persist for a long time once generated in

the flow. For the hyperbolic tangent velocity profile the neutral instability modes

are a subset of the family of mixing layer vortices found by Stuart 11967]. The

Stuart vortices were compared to experimental mixing layer structures by Browand

and Weidman 119821. The comparison was qualitatively good, though some differ-

ences were found. Thus it may be that the neutral instability modes are a way to

understand features of the organized structures in free shear flows. In particular,

it is postulated here that the convective velocity of the large-scale structures in the

flow is close to the phase speed of the neutral mode.

It was found that the phase speeds of the neutral modes were dependent on

profile shapes. When a hyperbolic tangent was used for the mean velocity profile it

was found that results matched the convective velocity formula (1.2) almost exactly.

However, when the solution of the boundary-layer equations was used for the mean
velocity profile it was found that the phase speed of the neutral mode cN was

different to the U, formula (1.2). In fact it was always biassed towards the speed of

the free-stream with the highest density, as shown on table 2.6 for the Brown and

Roshko 11974] velocity and density ratios (recall T2 = 1/p2), at M 1 = 0.1.

Table 2.6 Phase speeds of neutral modes (low Mach number)

M1  U2  T2 cNUC

0.1 0.378 1.0 0.712 0.689
0.1 0.378 0.143 0.444 0.549
0.1 0.378 7.0 0.943 0.829
0.1 0.143 1.0 0.628 0.572
0.1 0.143 0.143 0.243 0.378
0.1 0.143 7.0 0.924 0.765

It is not surprising that the cN results for a hyperbolic tangent mean profile

match the Uc formula (1.2). The hyperbolic tangent velocity profile has an anti-

symmetry about the centerline. The same antisymmetry is in the structure model

from which the convective velocity formula (1.2) is derived. This effect may explain

some results of Lele [1989], who performed direct two-dimensional simulations of

spatially-developing compressible mixing layers beginning with a hyperbolic tangent

mean velocity profile, and found good agreement with the Uc formula. It may be

that this observation was not a confirmation of the Uc formula, but rather that an
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antisymmetry was built into the whole simulation by the choice of inflow velocity

profile.

Convective speeds for the compressible mixing layer have been measured ex-

perimentally by Papamoschou [1989]. Table 2.7 shows a comparison between the

measured convective velocity, the prediction of the U, formula (1.2) (matching cN

results from a hyperbolic tangent profile), and the phase speed of the neutral mode

cN using the boundary-layer mean flow. All except the last of the experimental
results show phase speed skewed towards the velocity of the more dense stream, as

in the CN yielded by stability theory with the boundary-layer mean flow. A plot of

MI versus M, 2 is shown on figure 2.25. This kind of plot was used by Papamoschou
to demonstrate how different the actual measured convective velocities were from

the U, prediction. The figure shows the straight line M 1 = M 2 (which is the
U, prediction), Papamoschou's data points, and the phase speeds of the neutral

modes, CN. The linear model seems on the whole to do a better job of predicting

the experimental data than the U. formula (1.2).

Table 2.7 Phase speeds of neutral modes compared with Papamoschou [1989]

M1 U2  T2  cN Uc expt

3.2 0.94 4.167 0.991 0.980 0.978
3.1 0.75 1.852 0.925 0.894 0.906
2.8 0.75 0.556 0.832 0.857 0.829
1.7 0.50 0.109 - 0.624 0.512
3.2 0.13 4.348 0.903 0.718 0.878
2.7 0.13 1.493 0.771 0.608 0.844
2.6 0.42 0.182 0.478 0.593 0.435
3.1 0.30 0.400 0.439 0.571 0.355
3.2 0.08 1.205 0.757 0.561 0.959
3.0 0.06 0.535 0.382 0.457 0.853

These results led Papamoschou [1989] to propose an alternative large-scale struc-
ture with shock waves, to account for the biassing of the convective velocity towards

one or other of the free-streams. The contention here is that this biassing is due to

the experimental mean profiles not having any built-in antisymmetry. When this

effect is put into the stability analysis (by using the boundary-layer mean flow) the

biassing is captured in the linear theory, without resort to such non-linear effects

as shock waves.

39



Other experimental measurements of convective velocities are limited. Brown

and Roshko [1974] measured one case, with U2 = I/v/7 and P2 = 7, and found

a structure velocity of Uc = 0.53, compared to the linear estimate of 0.444 and

the U formula estimate of 0.55 (table 2.6). For this case i. was found that the
mean profiles of velocity and density plotted by Brown and Roshko did not match

well with the solution to the boundary-layer equations. We note that the solution

for mean profiles from the boundary-layer equations is the same as solving the

self-similar mixing layer problem for the mean flow, assuming an eddy-viscosity

turbulence model. The linear theory is thus limited by the accuracy of the mean

flow upon which it is performed.

2.3.4 Prediction of Pairing Locations

Another use for the model is in generalizing the findings of Bradshaw [1966] that

approximately 1000 initial momentum thicknesses are required in the streamwise

direction before self-similarity occurs, and of Ho and Huerre [1984] who modeled
the downstream location of pairings in terms of the initial instability.

Using equation 2.48b above and the linear model of the growth process (figure

2.23), we can write

x to nth pairing = 2n+ l - 1 (2.61)
0.45lailmax

where x is normalized as z /6o (6w is 4 momentum thicknesses for the tanh profile).

The n = 0 event is the roll-up of the first structure.

As an example, consider the mixing layer simulated numerically by Lowery and

Reynolds [1986]. This was an incompressible simulation, with equal free-stream
densities and a velocity ratio U2 = 0.5. From table 2.2 we have that Iailmax is

0.12850. Using equation (2.61) we find that the first roll-up is predicted to occur
at z = 17.3, with the first pairing at z = 51.9 and the second pairing at x = 121.1,

all in good agreement with the simulations. The Bradshaw [1966] criterion for self-

similarity would occur for this case around the third pairing event x = 260.0, or

1040 in intial boundary-layer momentum thickness units. In view of the work of
Ho et al. [1988], who found phase decorrelation in mixing layers to be associated
with the pairing events, it may be that self-similarity is only achieved after enough
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pairings have happened, and the flow has forgotten the initial conditions. Three or

four levels of pairing would seem to be necessary to satisfy Bradshaw's criterion.

For incompressible mixing layers it is found that the ratio Wneutral/Wmost amplified

is always near 2. However for compressible mixing layers, using the boundary

layer velocity profile, this was not found to be always true. In this case multiple

interactions (e.g. triplings) may be more common, and equation (2.61) can be

rewritten as:

x to nth agglomeration = (5neutral / 1mst amplified)n+ 1 (2.62)0.451ailjmax (.2

It is hoped that this discussion of a linear instability model for the mixing layer

prompts more experimental measurements of growth rate, mean profiles, and the

details of the large scale structure in the flow, including convective velocities, average

pairing locations, number of structures involved in agglomerations etc. In this way

the limitations of the model can be explored and improvements made.

2.4 Chapter Summary

In this chapter it has been shown that the linear theory can be a very useful tool

for investigating the compressible mixing layer. In particular :

(1) The maximum amplification rate found from spatial theory, using the solution

of the compressible boundary-layer equations as the mean flow, appears to

be directly proportional to the growth rate of the developed mixing layer

(equation (2.48)). This was demonstrated for the effect of density and velocity

ratios on mixing layer growth rate at low Mach number.

(2) Oblique waves are dominant in the mixing layer above a convective Mach

number of 0.6. The obliquity of the most amplified wave selected by the linear

theory is such that the convective Mach number perpendicular to the wave

crest is approximately 0.6 (equation (2.53)).

(3) The experimental observation of Papamoschou [1989], that actual convective

velocities did not agree with the U, theory (equation (1.2)), was confirmed

in the linear regime by calculating the phase speeds of the neutral modes of

instability.
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CHAPTER 3

Numerical Formulation for Direct Simulations

In a direct simulation the time-dependent Navier-Stokes equations are solved in

full, with no turbulence model. This chapter describes the numerical methods used

to simulate the compressible time-developing mixing layer, which is assumed to be

periodic in the streamwise and spanwise directions (z and z). The code was written

in the VECTORAL language (Wray [1988]), and implemented on a Cray X-MP 4/8

at NASA-Ames.

3.1 Governing Equations

The conservation laws for mass, momentum and energy can be written in the

following form (Anderson, Tannehill and Pletcher [19841), using the conservative

variables (p*, p* u!, E.), cartesian tensor notation, and the superscript * for a di-

mensional quantity:

p* +  (p*u)i = 0 (3.1)

O(p*uj*) a(p* U + p*6 ) _oT3.
atI + a-- a- (3.2)

O +a9[ (E. + p*) u*] - tq* a (3.3)
ax; ax; a

where p* is the density, u! are the velocity components, p* is the pressure, r! is the

shear stress tensor and q is the heat flux vector. E* is the total energy, defined

by:

ET* P*(* +(3.4)
2

where e* is the internal energy per unit mass. The perfect gas law is

p* p*R*T* (3.5)
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where R* is the gas constant and T* the temperature. We assume a Newtonian

fluid and Fourier heat conduction, so the constitutive equations for r.* and q! are:

*OT*a -  a (3.7)
S

where j* is the viscosity and k* is the thermal conductivity.

Non-dimensionalization of these equations is obtained by:

Ui u* p* P" T =T* (3.8a)

* e* t* U X!

1- e- t= Xi =S (3.8b)

where the subscript 1 represents the upper (y > 0) free-stream value. The reference

length scale is 6*, the vorticity thickness of the initial velocity profile:

= - U2 (3.9)
Id-*/dy*Imax

The non-dimensional equations for continuity, momentum and energy are:

ap = 9(pui) (3.10)

at axi

a(pu) _ (Puui, + P6i) + rij (3.11)

at aO xj(.1

aET = at(ET + p)ui] _ aq + (u )(3.12)
at 8xi  +xi  axi
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with constitutive relations

(Oui +2_a ) (3.13)
Re a , a + zi 3 Ozk 5 3

= ('y - 1)MPrReazi (3.14)

The Reynolds number of the flow is defined by Re = 1*U It&*,, and the Prandtl

number by Pr = cp*/k*. The Prandtl number is assumed constant with value 1.

The viscosity is assumed to follow a power law, so non-dimensionally

A= T 0"67  (3.15)

The constant 0.67 is the value for nitrogen (White [1974]).

Constant specific heats are assumed, and if we set e* = 0 at T" = 0, we can write
e= cVT*. The non-dimensional form of the perfect gas law can then be written as

either:

p = p(H - 1)e (3.16)

or

^f, = Pc2  (3.17)

where c is the sound speed (normalized as c*/U ) and we have used the result for

the sound speed of a perfect gas with constant specific heats:

c.2 = -yR*T* (3.18)

In all the simulations a passive scalar field is computed. The dimensional equation

for the scalar f (see e.g. Kays and Crawford [19801) is

N(p*f) a(p*fu) =a 9f (3.19)
at* + ax* =lx A ("D: !

S I

where D, is the diffusion coefficient for the scalar. One can think of p*f as the

concentration per unit volume of a trace species. We define a Schmidt number by

Sc = 11*/p*D* and using the non-dimensionalization method of equation (3.8) we

have:
a(pf)+ 8(pf;) 1 ; (( 32f

a---t + -R eSc axj i (3.20)
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3.2 Time Advance

The time advance method is fully explicit. The variables (p, pu, pv, pw, ET) are

advanced using a three-step compact-storage third order Runge-Kutta scheme of

the family derived by Wray 11986]. Two storage locations are employed for each

time-dependent variable and at each substep these locations, say Q1 and Q2, are

updated simultaneously (using a feature of VECTORAL) as follows:

n aAtQd + Q2 d Qnew = a2 AtQold + Qold (3.21)

The constants (a1 ,a 2 ) are chosen to be (2/3,1/4) for substep 1, (5/12,3/20) for

substep 2 and (3/5,3/5) for substep 3. At the beginning of each full time step

Q, and Q2 are equal. The data in Q, is used to compute the right hand side of

equations (3.10) through (3.12). The computed right hand side is stored n Q,

(overwriting the old Qi). Equation (3.21) is then used to update Q1 and Q2.

An estimate of the time step limitation can be made by considering a model

convection-diffusion equation (Blaisdell [1988], private communication):

ao + it- + v-o + w- a20 (3.22)
Tt x ay Or - -axiax

Assuming periodic boundary condition in all directions we can Fourier transform

and rearrange this equation to give:

[t- + 4--2+ L+- +a4++L 2 +z (3.23)
Lx L+Lzw) L2k9 1

z Yj z

This equation can be compared with a simple ordinary differential equation:

d : bo (3.24)
dt

for which the time step limitation for stability is

At= (CFL)max (3.25)At- b~ma~x
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where CFL is the Courant-Friedrichs-Lewy number. The maximum CFL number

for stability is fixed by the time-advance method. For linear equations the limit is

V/3 for the third order Runge-Kutta method described above.

The magnitude of a complex number a+ib is less than Jal +bl, so we can substitute

absolute values for the terms on the right hand side of equation (3.23). We choose

the worst case for the terms in brackets in (3.23), i.e. k- Nx/2, u = c + Jul, etc.

The value for a in (3.22) is obtained from (3.14) as u/(y - 1)M2RePr, which is a

more stringent limitation than the momentum equation for M1 < 1.6 (for Pr = 1

and -y = 1.4). Letting Ax - Lx/Nz and similarly for Ay and Az we get:

CFL
At - (3.26a)Dc+ Du

where

Dc = r( h + + )+ 7r( Jl+ Lv. + Lw)(3.26b)

DIA ( 7r 2lp 1) (3.26c)

The worst-case cell is used to fix the time step.

Simulations with various time steps were made for a time-developing mixing layer

problem at M1 = 0.4 and Re = 400, initialized with the fundamental mode from

linear stability analysis. The simulations were run up to the non-linear saturation of

the instability. It was found that there was no numerical instability or degradation

of accuracy until the CFL number was raised above 4, indicating that the above

criteria is very conservative. In all the simulations a CFL number of 2 was used.

3.3 Evaluation of Derivatives

3.3.1 Periodic Directions

In the periodic directions x and z the Fourier method is used to calculate deriva-

tives. The quantity to be differentiated is transformed using the Fast Fourier Trans-

form, multiplied by ik, and inverse transformed. No attempt was made to dealias
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the non-linear products, since no complete method is known for the compressible

equations which have many terms involving divisions.

When an even-length Fourier transform is used there is one wavenumber kx =

Nx/2 which has no complex part. This wavenumber is commonly referred to as

the 'oddball' wavenumber. The Fourier component at the oddball wavenumber

is always zeroed out when taking derivatives. In an implicit scheme this Fourier

component is forced to remain zero. However in an explicit scheme, such as that

used here, roundoff error will accumulate at this wavenumber as one goes back

and forth between Fourier space and physical space. In the present code this is

compounded by conversions back and forth between 64 bit arithmetic representation

and 32 bit storage representation (Blaisdell [1988], private communication). It is

thus necessary to explicitly zero out the oddball component of the flow during any

computation. Blaisdell's procedure for doing this (for one direction) is to define a

filtered flowfield , subtracting the oddball as follows:

.f = Oj - O(Nx/2)ei2i 1r f N.  (3.27)

From the definition of a transform pair, we have

N / 2 i

,Oj= E k(kx)e 2
zk - (3.28)

N=4'(k=) = >i Jei22rkzI (3.29)

Substituting for ON./2 into equation 3.27 gives

j'? = 1L - (-1) j j (3.30)
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This method of removing the oddball in real space vectorizes efficiently and was

found to be substantially cheaper than the alternative method of Fourier trans-

forming, zeroing the oddball, and inverse transforming. The method was applied

at each substep of the integration.

In the three-dimensional code the oddball needs to be removed in each spectral

direction, z and z. Following the same procedure as above, the filter function is

derived as:

jk 'k 2 N3  (-1) N ( &k4,! = bk ( l kZ (-1) 4 'j,k' N __-)J*~

k'=1 j=l

(3.31)
(_l)J(_l)k N N,

+ NNz-
it=1 k'= 1

3.3.2 Normal Direction

In the normal direction (y) there are several alternative differentiation methods

which can be used. Firstly, one can subtract the mean flow from the quantity

to be differentiated, and use regular Fourier differentiation. This would only be

appropriate for a periodic array of mixing layers, which is not the case we wish

to consider here. Secondly, one can use a mapping (e.g. Cain et al. [1984]), to

transform an infinite physical domain onto a finite computational one. This method

was implemented, but was found to produce point-to-point oscillations in the free-

stream. This effect is probably due to a lack of resolution of sound waves in the

free-stream, where the grid spacing becomes very large. The method finally adopted

was to use high-order finite difference methods on a grid of finite extent in the

normal direction, and then to apply characteristic boundary conditions to simulate

an infinite flow domain.

A family of high order modified Padi schemes has been derived by Lele [1989].

These schemes can be written in the following form for the first derivative:

03l- + j-1 j+2- (3.32a)

a. + =_ +A - _- - 4 y3 2
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Solution for 0. is obtained by solving the tridiagonal system of equations. A family

of fourth order schemes are obtained if we choose:
2+4a 4-a(32bb = 2 + a C = 43 (3.32b)

33
For a = 4, the conventional Pad6 scheme is recovered, whilst with a = 3 we have a
sixth order scheme, used in all the current work. A similar scheme can be derived

for the second derivative:
0b 1 1r + b w Jr! + i 1  b 03-+ l - 2,0j + Oj-1 +J c j -+2 - 20j + 4'j-2 (3.33a)

3- 3Ay2 4Ay2

4a-4 10 - a

S3(3.33b)

This time a = 10 gives the usual Pade scheme, and a = 5.5 is a sixth order scheme,

used in this work.

The viscous terms in the governing equations require evaluation of successive
derivatives, for example the term

aya (/A ty (3.34)

When a spectral method is used there is no loss of accuracy if these are computed

by two applications of a first derivative. However, with finite difference methods we

find that two applications of a first derivative gives a much worse representation of
the high wavenumbers than a single second derivative computation. This is because

the modified wavenumber (Lele [1989]) goes to zero for the first derivative at high

wavenumbers. The remedy for this is to expand all terms in the y direction like

(3.34) into two terms (non-conservative formulation):

a2u 
(3.35)/0 j-y 2 ---y gg--y .5

A mapped grid is used in the normal direction to resolve the shear layer more

efficiently. The mapping function is a sinh function, which concentrates points

around y = 0 (Anderson, Tannehill and Pletcher [1984]):

Ly sinh(byi7)
2 sinh by
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where Ly is the box length in the normal direction. The mapped coordinate is 17,

and by is the stretching parameter in the y direction, chosen to be 1.7 in the current

work. If we define the metrics

h' = dy Ly by cosh(by7) (3.37)
dq 2 sinh by

h" d2y L b2 s (3.38)
=t =2 sinh by

then the first and second derivatives of a function 40 are evaluated as:

- (3.39)
61 h'ao~t

a2 0 1 02y h" a(4--2  w2a 7  (3.40)c y2  =h r2  'a 12 h 2 agy

3.4 Free-Stream Boundary Condition

In these simulations we are considering the problem of an unbounded compress-

ible mixing layer. The infinite extent could be obtained by using a mapping function,

but this would lead to poor resolution of the flow far away from the mixing layer.

In particular, sound waves would propagate into regions of the computation where

they would be poorly resolved, and might be reflected back and contaminate the

main flow. Thus, we require boundary conditions which simulate an infinite domain,

even though the computational domain is finite. Such schemes were investigated by

Thompson [1987], and his method is followed here. The basic idea is to consider the

characteristic form of the Euler equations at the boundary. Outgoing characteris-

tics use information within the computational domain, and can be computed with

no problem. Incoming characteristics are handled by setting the time derivative of

their amplitude equal to zero, thus ensuring that no waves enter the domain during

the simulation, giving the boundary conditions a non-reflecting character.
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We begin by writing the Euler equations in terms of the conservative variables

Q = (p,pu,pv,pw,ET,Pf)T

OQ CIG
-i- + ay = (r.h.s) (3.41)

G = (pu, puv,pv 2 + p,pVW, (ET + p)v,pvf)T (3.42)

We are concerned here oniy with the Euler derivatives in the y direction. Derivatives

in z and z, including viscous terms, are evaluated at the boundary using informa-
tion from the previous substep, and are included in the right hand side (r.h.s). The

flux Jacobian of G is more easily derived if we work with the non-conservative

flow variables U = (p,u,v,w,d,f)T, where d = pp-1. Setting B = 8G/8Q

(i.e. B(row i,col j) = OG(i)/8Q(j)) and R = aQ/aU, we have

U+ B U = R-l(r.h.s) (3.43)ay

and
aG au
OG = RB-y (3.44)

Now B can be diagonalized, B = T-1 AT, where the elements of the diagonal matrix

A are (v - c, v, v, V, v + c, V). Pressure is more easily found computationally than

the quantity d, so we use a new non-conservative vector V = (p, u, v, W, p, f)T and

define S = aU/V. Equation (3.44) can now be written

- = RT - 1 ATS a-) (3.45)

This is the relation that is used to calculate aG/ay in equation (3.41) at the bound-

ary.

The quantity in brackets in equation (3.45) is a vector. The sign of each of the

eigenvalues in A is used to determine the course of action for each element in the

vector. If the characteristic velocity is directed out of the computational domain
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(positive at the top boundary or negative at the bottom boundary), then the quan-

tity is calculated as is. On the other hand, if the characteristic is directed inwards

then the vector element is zeroed out. This gives the non-reflecting character of

the boundary condition. The final step is to premultiply the vector by the matrices

T - 1 and R. The various vectors and matrices required in the computation are:

Vau

ATS- = F- C .1 (3.46)

aw(V + C)[-R + pC "

ay Ty

0 0 1 0 0

0 0 0 0 0 (
10 00 0 0

0 0 0 00
0 0 0 0 01

R=(w o0 0 4 j (3.48)
U pu pv p 0 0
f 0 0 0 0 p0

c2  u2 + V2 + w 2

where a --= + 2
"7-1 2

The boundary condition for the two-dimensional code is a simple extract from

the above, removing the fourth row and column from each vector and matrix.
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3.5 Initial Conditions

To start the calculation we need to specify the values of all computational vari-

ables. The specifications are described in subsequent chapters.

3.6 Validation

The objective is to subject the code to as many checks as possible. We rely on

three methods: (a) validation in the incompressible limit using Taylor-Green flow,

(b) checking the Euler terms in the compressible equations by comparison of linear

growth rates with inviscid linear stability theory, and (c) checks of resolution by

monitoring energy spectra during simulations, to ensure that enough modes are

being used to fully resolve the flow. The only terms that cannot be verified using

these methods are the viscous terms involving auk/azk (equation (3.13)). Here we

must rely on thorough sight-checking of the code.

The Taylor-Green flow (Taylor [19231) consists of a decaying array of vortices in

the z - z plane, specified non-dimensionally by:

u = - v/A cos(27rkx) sin(2lrkz)e -8, 2k2 t/Re (3.49)

w = v/Asin(22rkz) cos(27rkz)e - 8 2 k 2 tlRe (3.50)

= - A[cos( 4 krkx) + cos(4lrkz)]e- 8ir2k2t/R (3.51)

We choose k = 1, Re = 1, a box size Lx = Lz = 1, and uniform conditions in y with

Ly = 2. The reference pressure is Pref = 1/(-yM1) • The reference Mach number

M1 was set to 0.2 and the constant A was tal.en as 0.0016, so that we begin with a

peak local Mach number of approximately 0.01, i.e. near the incompressible limit.

The Taylor-Green problem needs only a few Fourier modes. The test case was run

for the three-dimensional code with Nx x x Nz = 8 x 11 x 8 corresponding to

4 complex Fourier modes in each of the x and z directions. The solution for u at

x = 0.5 and z = 0.25 is shown on figure 3.1 as a function of time. The error at

time t = 1/(87r2 ), when the solution should have decayed by a factor e, is less than

0.03%. This remaining error is attributed to the slight difference in Mach number.
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The growth of linear disturbances in the three-dimensional code was checked
against the inviscid linear stability theory. The code was initialized with the eigen-

functions, and run at high Reynolds number through the linear regime. The linear

growth rate was extracted from the Fourier coefficients from the relation

d

w(kx) - ln{Real[O(kz)]} (3.52)

For the fundamental mode we have k. = 1. Plots of ln(Real[4(1)) are shown on

figure 3.2 for the functions 4) = (u,v,w,p,T,p). The simulation was for a 450
oblique wave growing in a mixing layer at M1 = 0.8, Re = 106. All functions

show the correct linear growth. In addition, the eigenfunctions at the end of the

simulation were renormalized and compared with the initial eigenfunctions. An

example is shown on figure 3.3 for temperature. All the eigenfunctions were found

to collapse on top of each other. The worst error in the growth rate compared to the

inviscid theory was approximately 2%, attributed to the finite Reynolds number,

and changes in the mean flow (setting up a small V velocity profile) during the
simulation. The latter effect could be removed by running for just one time step,

when the mean flow had no time to change; in that case the error dropped to 0.01%.

The effect of the positioning of the boundaries in the y direction was investigated

by running three simulations at M1 = 0.4, Re = 400. The length of the domain

in the streamwise direction was L. = 8.0554 and the length in the y direction was

varied, with Ly set to 6, 10 or 20. Ly = 10 means that the domain extends to

y = ±5 initial vorticity thicknesses on either side. The number of grid points in y

was chosen to be 61, 81 and 99 respectively. The growth of the vorticity thickness

is plotted on figure 3.4 for each case, and the developed structure at the same time

in the simulation is shown on figure 3.5 for Ly = 10 and figure 3.6 for LY = 6. The

physics of such simulations are discussed in more detail in the following chapter.

Here we note that with Ly _! 10 we get a converged solution for the growth history of

the flow. However, even the case with Ly = 6 captures most of the interesting roll-

up of large-scale structure. The detailed feature which arises when the boundaries

are too close is the development of low-level vorticity at the boundary, shown in

figure 3.6b. All calculations reported herein were run with Ly >_ 10.
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One of the most important checks on the code is that of resolution. In general if

the same result is obtained with two grids, one with twice as many points in each

direction as the other, then we have some confidence in the result. With a spectral

method there is an inbuilt check on resolution, namely the fall-off in the energy

spectrum at high wavenumbers. A large drop-off in energy at high wavenumbers

means that the flow is fully resolved, and adding -nodes would not improve the

solution. Any lack of resolution will show up as an upturning in the spectrum at

high k,. During the simulations the energy spectrum is monitored. The energy is

defined by:

E(k,) L JL/2 fi(k,)u4(k,)dy (3.53)

where I indicates a complex conjugate. A typical well-resolved spectrum for the

L= = 10 case above is plotted on figure 3.7, showing 9 orders of magnitude roll-off

in ennrgy. Monitoring of the spectrum is also used to improve the efficiency of the

code. When linear modes are used for initial conditions the code needs few modes

to resolve the flow. As the harmonics develop, and the flow becomes non-linear,

we need more and more modes to resolve the flow, until the flow is fully-developed

and the small diffusion scales get no smaller. The simulations were usually started
with few modes, e.g. 16 x 99 x 16 and then as the spectrum filled out the spectral

directions x and z were extended, ending up, for example, at 96 x 99 x 96. In the y

direction we need the full number of points right from the start in order to resolve

the mean flow. Factors of 2 were typically saved in run-time using this method.

As a last point on verification it is noted that the two-dimensxoval simulations

from the current work have been compared with results from an earlier code (Sand-

ham and Yee [1989]), which used TVD and MacCormack methods, and with the

simulations of Lele 11989]. All such comparisons show qualitatively similar behavior.
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CHAPTER 4

Two-Dimensional Simulations

In this chapter results are presented from direct simulations of the compressible

Navier-Stokes equations in two dimensions. The simulations show the effect of com-
pressibility on the development of the primary two-dimensional instability, which
has been observed to be the dominant mode in incompressible experiments.

4.1 Initial Conditions and Parameters

The simulations have been performed for the temporal development of the two-

dimensional time-developing mixing layer. Mean profiles of velocity and tempera-

ture need to be specified at the initial time. The mean velocity in the streamwise

direction is given by an error-function:

u = erf (yV//) (4.1)

The mean temperature is obtained from the mean velocity profile via the Crocco-

Busemann relation (equation (2.13)), which assumes parallel flow and unity Prandtl
number. Pressure is assumed uniform, and then density is obtained simply as the

inverse of temperature, since both density and temperature are normalized by the
value on the upper side of the mixing layer (equation (3.8)).

Perturbations are added to the mean profiles in the form of eigenfunctions of

unstable modes from the inviscid linear stability analysis (Chapter 2). For example:

u = -W + A Real{fi(y)e i az} (4.2)

and similarly for the v velocity, density and temperature. The amplitude A of

the disturbances was usually specified to be 0.05. The length of the box in the

streamwise direction (Li) was chosen to match the most unstable wavelength of

inviscid linear stability theory i.e. L_ = 27r/iWlmax.

Non-dimensional parameters for the flow also have to be specified. For most of

the simulations in this chapter an initial Reynolds number Re = 400 was chosen
based on the following considerations. The Reynolds number has to be chosen
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small enough so that the flow can be fully resolved, yet high enough to capture

the inviscid nature of the instability. The effect of Reynolds number on the linear

growth rate of the most amplified inviscid eigenfunction was investigated by running

the viscous code, initialized with an inviscid eigenfunction, for one time step. The

linear growth rate can be found directly from the change in the Fourier coefficient

for the relevant mode using equation (3.52). Results are shown in figure 4.1. The

asymptotic growth rate at high Reynolds numbers matches the inviscid theory to

within 0.1 percent. The drop in amplification as viscosity is increased can be clearly

observed. It should be noted that only the growth rate of the inviscid eigenfunction

is plotted. There will be a viscous eigenfunction, with a longer wavolength, that is

more amplified. Thus the curves at low Reynolds numbers for the most amplified

viscous wave will not drop so rapidly as these. However, these plots do give a good

idea of the range of Reynolds numbers where we expect to capture the basic inviscid

processes, as might be found in high Reynolds number experiments. In choosing

Reynolds numbers for the simulations, we would like at least to be in the region

where the inviscid eigenfunction is linearly amplified, and not damped. It can be

seen from the plot that as the Mach number is increased we have to move to higher

and higher Reynolds numbers to get near the asymptotic high-Re region.

The effect of Reynolds number on the non-linear development of a single struc-

ture at M 1 = 0.4 was computed. The growth of vorticity thickness is plotted on

figure 4.2, and the scalar and vorticity fields for the Re = 100 and Re = 800 cases

are shown on figures 4.3 and 4.4. At even lower Reynolds numbers, with the same

low amplitude forcing, the layer is laminar and grows with thickness proportional

to the square root of time. As the Reynolds number is increased, it can be seen that

the width of the strained diffusion layer in the stagnation region (x = 3L,/4, y = 0)

is reduced. Broadwell and Breidenthal [1982] predict that the width of this layer

varies in inverse proportion to the square root of the Reynolds number. This is the

small scale that makes flows at higher Reynolds number more difficult to resolve

numerically.

The Prandtl number and Schmidt number for the flow were chosen to be unity

(see section 3.1). The ratio of specific heats was set to -/ = 1.4, and the mixture I
fraction, f, was initialized with a hyperbolic tangent profile:

1|
f 1 (1 + tanh(2y)) (4.3)

2
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4.2 Mach Number Effects

In the time developing mixing layer U2 can be chosen as U2 = -1/p2, so that

the Mach number of each free-stream is the same as the convective Mach number

(equation (2.52)). Thus, in the simulations we can use free-stream Mach number
and convective Mach number interchangeably. Figure 4.5 shows the effect of Mach

number on the growth of the most amplified disturbance. The most amplified

wavelength was L. = 27r/a = (7.48,8.06,9.52.13.37) for each of the cases M 1 =

(0.2,0.4,0.6,0.8). The figure shows the growth in the vorticity thickness of the

layer, defined by equation (2.21). For each case a 64 x 81 grid was used, with

Re = 400, Ly = 10.0 and disturbance amplitude 0.05. Each wave grows until it

fills the computational box and saturates. If the computation is allowed to proceed
further in time, the behavior shown on figure 4.6, for M 1 = 0.4, is obtained. The
layer thickness exhibits a damped oscillation in time. Lele [1989] showed that this

behavior is associated with a 'nutation' (shape change) of the developed vortex,

which also produces sound waves that radiate away from the mixing layer. The

final structure is shown in figure 4.7. The vorticity field is reminiscent of the Stuart
vortices (Stuart [1967]), and the neutrally stable mode of linear analysis (Michalke

11965a]). The scalar is diffuse, since no new fluid is wrapped around the structure
in the nutation phase, only rotation of old fluid.

Another measure of thickness was tested, based on the mass-weighted mean ve-

locity profile:

I =U2 (4.4)

Figure 4.8 shows this measure compared with the conventional vorticity thickness,

defined by equation 4.4. Two Mach numbers are considered. At M1 = 0.2 there

is no difference between the two measures, while at M 1 = 0.8 the mass-weighted
vorticity thickness has a higher value than the usual vorticity thickness. It is not

clear what the significance of this difference is. In all the following simulations the

usual vorticity thickness is used.

The growth in energy E(k_ = 1) of the disturbances, computed by equation

(3.53), is plotted on figure 4.9. There is initially an exponential growth of the
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disturbance energy, a straight line on this semilog plot. This is followed by slower

growth with eventual saturation and decay in mode energy.

The effect of Mach number on the developed structure is shown in a series of

contour plots of mixture fraction, pressure, vorticity and vorticity divided by den-

sity. These are plotted for Mach numbers M1 = 0.2, 0.4, 0.6 and 0.8 on figures

4.10 through 4.13. All such contour plots show equally spaced contours between

the maximum and minimum values shown. Dashed contour lines are used wherever

a function is negative. Plots of mixture fraction are for f - 0.5 and show how fluid

from each of the free streams is wrapped into the large-scale structure. The pressure

fields show reduced pressure in the vortex cores (at z = L_/4, y = 0), and increased

pressure (near the isentropic stagnation pressure) at the saddle point (x = 3Lx/4,

y = 0). At M1 = 0.2 the pressure is reduced by 5.9% in the core, relative to the

free-stream, and raised by 2.5% at the saddle point. At M 1 = 0.8 the reduction in

the core is 37.5%, and the rise at the saddle point is 48.7%.

A comparison is made in table 4.1 of the rise in fluid properties at the saddle

point, compared to the rise assuming an isentropic stagnation process (Liepmann

and Roshko [1957]) from the free-stream to the stagnation point:

T0 -1+ M2 (4.5a)

T, 2

PO = (1 + I -1M2)/(-1) (4.5b)

Pi ~ 2 1

PO = (1 + ' - 1M2)1/(7_1) (4.5c)

P1 
2

where the subscript 0 represents stagnation conditions. The comparison gets better

later in the simulation, as the remaining vorticity is moved away from the saddle

point by the local strain field. It can be seen that, at least for the cases of equal

density considered here, the assumption of an isentropic process to predict fluid

conditions at the saddle point is quite good.
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Table 4.1 Comparison of computed rise in fluid properties at the saddle

point with rise assuming an isentropic process.

M1  time Ap/Api Ap/Api AT/ATi.

0.2 15.0 0.875 0.791 1.085
0.4 17.6 0.872 0.803 1.049
0.6 24.0 0.882 0.833 1.016
0.8 37.2 0.936 0.844 1.170

The plots of vorticity and vorticity divided by density show a clear change in

structure as the Mach number is raised. The vortices become very elongated in the

streamwise direction at high Mach numbers. The effect is much more noticeable in

the plots of vorticity w,, but is still evident in the plots of Wz/p. To understand this

change in structure we turn to the compressible vorticity equations (2.29)-(2.31).

Terms from these equations are plotted on figure 4.14 for M 1 = 0.6. The equation

for w, has both a dilatational term and a baroclinic term on the right hand side.

It was found that for mixing layers with equal free-stream densities the dilatation

term was larger by a factor of 3 or 4. This term is plotted on figure 4.14c, and

shows a quadrupole structure.

A physical explanation of the shape change will now be suggested. A fluid element

approaching the structure from the upper left hand side experiences an expanding

flow (u/axi > 0), and a redu,:tion in vorticity, until it is alongside the vortex.
Then the element is subject to a compression (aui/axi < 0), with an associated

increase in vorticity as it approaches the trailing edge of the vortex, and the stag-

nation region behind. A similar process affects fluid elements approaching from the

lower right hand side. The overall effect is to reduce vorticity above and below

the vortex, and to increase vorticity in front and behind the vortex, leading to a

structure elongated in the streamwise direction.

The same basic structure is found for the baroclinic term, figure 4.14d, on the

right hand side of the equation for wz/p. Hence this term leads to elongation of

the wz/p structure in x. For this equation the term on the right hand side, though

large enough to cause the elongation effect, is small enough to make wz/p nearly a

conserved quantity. Fluid particles follow more closely the wz/p contours than the

wz contours. This is demonstrated by observing that the contours of the mixture
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fraction, figure 4.12a, which tracks fluid elements during the simulation, show that

fluid has been transported around paths resembling the wz/p contours.

The change in structure can be related to growth rate by considering the efficiency

of the various structures at entraining new fluid. Consder the limiting cases of

a circular vortex, and a fully elongated vortex. The fully elongated vortex (i.e.

parallel flow) does not wrap any new fluid around the structure, and it cannot then

be engulfed and mixed, and there is only growth by viscous diffusion. The circular

vortex wraps fluid from the free-streams around itself, and grows strongly. If we

assume a monotonic trend between these two limiting cases then we see that the

effect of an elongated vortex structure is to reduce the growth rate of the mixing

layer.

4.3 Effect of Mach Number on Pairing

At low Mach numbers the non-linear mechanism by which the mixing layer

changes its lateral scale is observed in experiments to be the vortex pairing pro-

cess (Winant and Browand 11974]). Two simulations were run, at M1 = 0.2 and

M1 = 0.6, with an initial Reynolds number of 200, to investigate the effect of Mach

number on pairing. The fundamental (F) and first subharmonic (Si) wavelengths

were included in the initial conditions, with a relative amplitude of 2:1

u = U + A Real{fiF(y)ei (aFX+I)} + A Real{fSl(y)eiaslz} (4.6)

2

where 4 is the phase difference between the two modes. Figure 4.15 shows the

various options for phase. The case € = 7r/2 was chosen, since this is the optimum to

enhance pairing. The opposite case is when 0 = 37r/2, which corresponds to a slow

tearing process, where one vortex is trapped in the strain field of the subharmonic

and is pulled apart. All other phases result in pairing or tearing in various degrees.

The time histories of the vorticity thickness are shown on figure 4.16 and the

growth in energy on figure 4.17, for Mach numbers 0.2 and 0.6. The energy plot

shows how the fundamental mode grows first and saturates, and then the subhar-

monic wave takes over. The vorticity thickness is very sensitive to the structure

of the flow. Other measures, such as integrated momentum thickness, or visual
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thickness, do not show all the detail of the vorticity thickness. Events in the vor-

ticity thickness time history can be related to specific events in the flow. This is
illustrated in the following sequence for the M1 = 0.2 simulation.

(1) The fundamental mode grows and saturates. Figure 4.18 shows the mixture

fraction, pressure and vorticity at time t = 9 during roll-up of the fundamental

instability.

(2) After saturation of the fundamental mode, the subharmonic mode grows and

two of the primary structures begin to rotate around each other. When the

structures have rotated such that when viewed in the x direction they are two

separate vortices, there is an event in the vorticity thickness time history. At

M1 = 0.2 this occurs at t = 20, and is illustrated in figure 4.19.

(3) Rotation continues and the peak in vorticity thickness is reached when the

structures lie one above the other. The structure shortly following this, time

t = 24 is shown on figure 4.20. Now the structure on top is beginning to move

downwards, and the two vortices are rotating around each other.

(4) The next event in the vorticity thickness occurs when the vortices once again

lie above each other, having rotated by 1800. This occurs at time t = 27, and

is shown on figure 4.21.

(5) The last point shown here is at time t = 32, figure 4.22, where the vortices have

rotated all the way around. If the simulation is carried further, the core of the

structure continues to rotate and the vorticity thickness continues a damped

oscillatory behavior, similar to that found for a single structure (figure 4.5). In

practice the next subharmonic would now grow and the process would repeat,

beginning with step 2 above.

The same sequence was observed at M1 = 0.6, though the pairing process was
slowed both linearly and non-linearly. Figures 4.23 through 4.26 show the structure

of the flow at times 16, 29, 37 and 47, corresponding approximately to items 1 to

4 in the above pairing process. If we associate the process between items 1 and

2 as the linear growth of the subharmonic, and the remaining processes as non-

linear, then it can be seen from figure 4.1t that both linear and non-linear aspects

of pairing are slowed by compressibility. Some delay is expected due to the increase
in wavelength of the most amplified disturbances as Mach number is increased. A

simulation was therefore performed at M1 = 0.2 with the same wavelengths as the
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M1 = 0.6 case. Figure 4.27 shows the growth rate comparison with wavelength

effects removed, showing that both linear and non-linear growth is indeed slowed

by compressibility.

The slowing of the growth of the initial stage of pairing is accounted for by the

effect of Mach number in reducing the linear amplification rate of the subharmonic

disturbance. There are several possible reasons for the reduction in growth rate

in the non-linear region: (i) the shape of the pairing vortices has changed, and

the more elongated structures may be less inclined to pair, (ii) the delay in the

Biot-Savart type of vortex induction process, due to the finite sound speed, may

make the pairing process less efficient, and (iii) continued compressibility effects due

to dilatational and baroclinic torques may be slowing the rotation of the vortices

around each other. It is not clear from the current study which of these effects is

dominant, or whether they are all important.

The pairing involves a displacement of the vortices into the free-stream, which

distorts the streamlines outside the vortical region, and creates regions of locally

high velocity. During the pairing at M 1 = 0.6 it was found that for a short period of

time, around the peak in the vorticity thickness curve, there was a region of super-

sonic flow above and below the structures, although this did not persist long enough

to generate shock waves. At any higher Mach number shock waves would certainly

form during the two-dimensional pairing. It is interesting to note the evidence that

the flow would prefer not to have shock waves. Lele (private communication [1988])

has shown that tearingi may be more common at higher Mach numbers, and Ragab

and Wu [1989] have shown that a helical pairing may be preferred even as low as

M, = 0.4. This, and the tendency toward three-dimensional structures at high

Mach numbers (see Chapter 5), seems to indicate that the flow will try to avoid

generating shock waves if at all possible. However, there is no general theory to

predict why this is so.

4.4 Two-Dimensional Structure

In this section the two-dimensional structure, under the influence of compress-

ibility, is explored. The evolution of the vorticity and scalar fields at this Mach

number have already been described in section 4.2. Here we consider the behavior

of other fluid properties, such as stagnation enthalpy, entropy, and strain rate.
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Contours of temperature at M 1 = 0.6 are shown on figure 4.28a. They show

high temperature at the stagnation point in the braid, and lower temperature in

the vortex core. The stagnation enthalpy for a perfect gas with constant specific

heats is given by:

U*2 + *2

fH* c cT* + + (4.7a)
!2

and non-dimensionally:

c2 u2 + V2 4.7b)
(-y- 1) +  2

A contour plot of H is shown on figure 4.28b. The stagnation enthalpy is lowest in

the vortex core, and remains approximately constant in the rest of the flow. This

effect can be understood by considering an inviscid, non-conducting form of the

energy equation (Liepmann and Roshko [1957]).

DH lap (4.8)

Dt P at

In the cores of the structures during roll-up the pressure is reducing with time, so a

fluid particle being wrapped around the developing structure experiences decreasing

pressure, and by equation (4.8) the stagnation enthalpy drops. In situations where

the two free streams have different stagnation enthalpies the reduced H in the core

is overshadowed by the mean H profile.

The entropy of the flow (non-dimensionalized as s = s*T*TU 2 since e is normal-

ized by U 2 ), relative to the free-stream 1, is defined by

m nT In p
S = 1)M M (4.9)j( -1)M2 _M

A contour plot is shown on figure 4.28c. The entropy structure is similar to the

vorticity, with high entropy found in the center of the vortex. The assumption of

an isentropic process from the free streams to the saddle point can be seen to be

valid for free-streams with equal entropy.

65



Strain rate in the flow is of interest from two perspectives. Firstly, because it

strongly affects the development of streamwise vorticity in the flow, and strain rate

near the saddle point can lead to the 'collapse' of streamwise vorticity into stream-

wise vortices (Lin and Corcos 11984]). This produces mushroom structures in the

scalar field, observed experimentally by Bernal and Roshko 11986]. Secondly, strain

rate is of interest when applications to combustion are considered. If the strain rate

is too high in any region of the flow then any flame that forms may be quenched,

and reactions generating heat release may be prevented. Unlike incompressible flow,

the strain rate tensor is not trace-free and there are alternative ways to document

the strain rate magnitude. The usual definition of strain rate tensor is

Si- = I(u + u,,) (4.10)

An anisotropic strain rate tensor can also be defined (Reynolds [1988]):

Skk6ij (4.11)
tjSa. - ___3
: 3

The magnitudes of the strain rates for each case are defined by:

ASI= V S-i (4.12)

isa = S5a.Sj (4.13)

For the simulations presented here it was found that the high strain rate regions

in the flow were not associated with regions of high dilatation, so the values for

peak strain rate magnitude were not affected by choice of equation (4.12) or (4.13).

At different times in the simulation for M1 = 0.6 contour plots of the strain rate

field are shown on figures 4.29 and 4.30, and slices through the flow at various x

locations are shown on figure 4.31. It can be seen that the usual picture of strain

rate, high in the braid regions and low in the cores, is observed at time t = 18.2

during the early stage of roll-up. However at later times, e.g. at t = 24.0, figure

4.31b, the strain rate peak in the braid is not dominant, and regions of high strain

rate are also found within the vortex core.

For combustion application, it would be useful to be able to model the magnitude

of the peak strain rate in the flow. The time history of the peak strain rate is shown
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on figure 4.32. When normalized by the initial vorticity thickness and free-stream
velocity, the strain rate is seen to decrease during the simulation. When the strain

rate is renormalized by the local vorticity thickness and velocity difference, shown
on curve 2 of figure 4.32, we find that the strain rate increases slightly during roll-

up, and then declines. In the latter case the non-dimensional peak strain rate is

always of order unity, so that peak strain rate in the mixing layer can be modeled

by the ratio of the free-stream velocity difference to the local vorticity thickness.

4.5 Effect of Density Ratio

Most compressible mixing layer experiments are performed for free-streams with
unequai densities. Additional baroclinic torques can appear in the flow, especially

in the braid region where the two free-streams are brought close together and steep

density gradients are formed. To investigate these effects, two simulations are com-

pared; one has free-streams of equal density, and the other has a density ratio

P2 = 0.5 (T2 = 2).

The simulations are run at M, = 0.6, with a Reynolds number of 400. To check

the convective velocity formula, we arrange U2 so that the predicted convective

velocity is zero. For the density ratio of 0.5, this means setting U2 = -v/2 The

velocity profile is then obtained from the error function as:

u= [2 + U2 + (1 - U2)erf(yV/7) (4.14)

The temperature profile is obtained from the velocity profile in the usual way (equa-

tion (2.13)).

The growth in vorticity thickness for each simulation is shown on figure 4.33,
and the growth in integrated energy E(1) (the fundamental mode), on figure 4.34.

The plots of E(1) show that the simulations start from a different origin. This

is simply a reflection of differences in the shape of the eigenfunctions, since the
normalization is done by amplitude of the u eigenfunction, and not by integrated

energy. The developed structure is shown on figure 4.25, and can be compared with

the simulation for uniform density shown on figure 4.12. It can be seen that there is

generation of vorticity with the opposite sign to that of the dominant roll-up, which
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can be explained by considerations of the baroclinic torque acting in the saddle-

point region of the mixing layer. A sketch of the saddle region is shown on figure

4.36. In region 1 the gradients of pressure and density are nearly perpendicular

to each other and application of a right hand rule shows that clockwise vorticity

(positive in the current definition) is produced. This is then convected away from

the saddle point by the local strain rate field, and becomes wrapped around the

structure to the left. In region 2 the pressure and density gradients act to produce

vorticity with the opposite sign to the main roll-up (anti-clockwise), which becomes

wrapped around the structure to the right. The counter-clockwise vortiity does not

produce vortices of the opposite sign, it merely modifies the path of fluid particles

rotating around the main structure, and results in a more asymmetric scalar field.

A simulation was run with a density ratio of 0.2 to investigate the U, formula

(1.2), compared with the predictions of the linear instability theory. For this case

(T2 = 5, U2 = -v/5) the convective velocity formula predicts zero convective veloc-

ity, whilst from the linear theory the phase speed of the growing wave is 0.05 and

the phase speed of the neutral mode is 0.16, which are both very definitely non-zero.

The developed structure is shown in figures 4.37. The scalar field is highly asym-

metric due to the baroclinic terms. Figure 4.38 shows the initial and final pressure

contours. Initially the pressure minima is at x = Lx/4 and the pressure maxima is

at x = 3Lx/4. At the later time the pressure minima has moved to x = Lx/2 and

the pressure maxima is at x = Lx/6. The structure has moved to the right. The

approximate convective velocity, based on the movement of the stagnation point

(a peak in presbure) is 0.15. It is 0.12 based on the movement of the minima of

pressure in the vortex core. The reason for the difference is that the structure is

evolving and the convective velocity changes depending on which feature of the flow

we look at. These rough estimates agree better with the phase speed of the neutral

mode than with the U, formula (1.2), which would predict no convection.

4.6 Embedded Shock Waves

In two-dimensional simulations above a convective Mach number of 0.7 it was

found that shock waves developed in the flow. Pressure contours for a simulation

at MI = 0.8 at a Reynolds number of 400 are shown on figure 4.39a, and show

the location of the shock waves. Local Mach contours are shown on figure 4.39b.
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Flow around the top of the vortex is accelerated to supersonic speeds, and then has

to stagnate at the saddle point in the braid. It does this by compression through

a weak (Mmax ;4 1.2) near-normal shock wave. The process is similar to the flow
around a transonic airfoil. The same process occurs for the lower stream moving

from right to left below the vortex. Profiles of pressure, density and temperature

through the shock wave are shown on figure 4.40. They show that for this flow

condition the shock wave is adequately captured by the numerical method, using a
grid with 192 points in the streamwise direction.

The computational problem is that at lower Reynolds numbers (e.g. 200) the
roll-up of the vortex is not strong enough to generate a shock wave (i.e. we are in a
viscous regime), while at higher Reynolds numbers the shock is stronger, and thin-

ner, so that a prohibitively large number of modes are required to resolve it properly.
During an earlier phase of this project, TVD (Total Variation Diminishing) numeri-

cal methods were tested for mixing layer flows. These numerical methods are of the

shock-capturing genre (Yee [1989]), and were found to do a good job of capturing

the shock waves, no matter how strong, without encountering numerical difficulties.

However, this shock capturing capability is obtained by introducing extra dissipa-
tion in regions of the flow where oscillations develop. This extra dissipation also

tends to damp out the growth of the large-scale structure in the flow. It was found

that with the TVD schemes a large number of grid points were required in order to
capture the instability correctly (Sandham and Yee [1989]). Neither spectral meth-

ods (relying on shock resolution), nor TVD methods (shock capturing) were found

to be efficient for flows involving both shock waves and growth of instabilities.

A model two-dimensional large-scale structure with shock waves has been pro-
posed by Papamoschou [1989], and separately by Dimotakis [1989], to explain some

of Papamoschou's experimental results concerning convective velocities. (An al-

ternative explanation of the results using linear stability theory was presented in

section 2.4.) The shock waves proposed by Papamoschou are strong and are in-

clined to the streamwise direction, so that there is a large entropy rise through

the shock wave. This breaks the symmetry in the convective velocity formula, and
was offered as an explanation of the experimental finding that convective speeds

L.re biassed towards one free-stream speed or the other (Papamoschou [1989]). The

model structure made no prediction of the angle or strength of the shock waves.
However, the shocks observed in the current work were always weak, nearly normal
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to the streamwise direction, and were found on both sides of the vortices. Thus,
they are not reminiscent of the model shock structure proposed by Papamoschou

and by Dimotakis.

4.7 Simulation of Supersonic Mode Instability

The 'radiating vorticity' modes of instability, supersonic with respect to one of
the free-streams, are the most amplified modes in two dimensions above a convective

Mach number of approximately 1 (see section 2.2.4). Although we expect three-
dimensional modes to be dominant at these Mach numbers, it is interesting to

simulate the non-linear development of these modes, which might be excited in

experiments by strong two-dimensional forcing of the mixing layer.

The time-developing mixing layer with equal densities at a Mach number of 1.05
was chosen for simulation. The Reynolds number was fixed at 800, which is just

high enough so that the inviscid eigenfunction is amplified. The high Reynolds

number necessary for simulation of this weak instability means that shock waves

cannot resolved, since these will be very thin. The computations have to be stopped

as soon as shock waves form.

The mode that is supersonic with respect to the lower stream was simulated. The

other mode, supersonic relative to the upper stream, will have the same behavior.

From the linear stability theory the amplification rate of this mode is 29% of the
amplification rate of the most amplified three-dimensional wave (angle 560).

The growth in vorticity thickness and energy E(1) for this supersonic mode are
shown in figures 4.41 and 4.42 respectively. Contours of relevant features are shown
on figure 4.43 at time t = 82. We see that roll-up does occur, so that this is indeed
a 'vortical' instability mode, which can act to mix fluid from the two streams.

However, the roll-up is very weak and takes a long time to develop. The structure,
shown for example in the contours of density on figure 4.43b, seems to reside on the

upper side of the mixing layer, and the contours of mixture fraction show that the

cores of the structures are mostly fluid from the upper stream, i.e. the stream that is

subsonic relative to the structure. The pressure contours, figure 4.43c, show clearly
the radiating nature of the instability. On the upper side we have the usual picture

of pressure: high at the stagnation point and low in the vortical structure. However
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on the lower side, where the free-stream is supersonic relative to the structure,

we find an arrangement of expansion and compression waves. The compression

waves develop into shock waves during the simulation. At a later time t = 92.5

the structure, shown on figure 4.44, has developed shock waves which can no longer
be resolved on the computational grid; oscillations can be observed in the pressure

contours in the lower left corner of the plot.

The presence of walls in experiments would cause the waves to reflect back into

the shear layer. Such a mechanism lies at the heart of the wall-modes and Mack

modes proposed by other authors (Greenough et al.[1989], Mack [1989]), though is

is not clear that those modes are vortical modes that could act to mix fluid. In any

case, as long as the walls aren't too close, the three-dimensional instability is more

amplified, and this is the subject of the next chapter.

4.8 Chapter Summary

The main effect of compressibility in two-dimensional simulations is to damp

the growth of the instability, both linearly and non-linearly. As Mach number

is increased the developed vortical structure becomes elongated in the streamwise

direction and less efficient at wrapping new fluid into the mixing layer. The pairing

process is also slowed by compressibility. For convective Mach numbers above 0.7

we find weak shock waves developing in the flow.

Above a convective Mach number of 1 the only unstable two-dimensional modes

in the mixing layer are the weakly amplified supersonic modes. Simulation of these

modes showed that the structures developing from these instabilities are weakly
vortical, and are able to mix fluid. The structures are supersonic relative the one

of the free-streams, and on that side a pattern of shocks and expansion fans forms.
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CHAPTER 5

Three-Dimensional Simulations

In this chapter simulations are presented of the three-dimensional instabilities,

which are expected to dominate the mixing layer at high Mach number. The large-

scale structures which develop from the non-linear growth of these instabilities are

analyzed.

5.1 Initial Conditions and Parameters

The time-developing mixing layer is again chosen for simulation. The initial

mean flow is the same as for the two-dimensional simulations of Chapter 4, with

the mean velocity given by equation (4.1) and the mean temperature by equation

(2.13).

Three Mach numbers were selected for detailed study. A free-stream Mach

number M1 = 0.4 was chosen as a low Mach number where we expect to find
near-incompressible behavior. An intermediate Mach number was chosen to be

M= = 0.8. At this Mach number an oblique wave is slightly more amplified than
the two-dimensional wave, and a broad range of waves in between are about equally

amplified. Mach number M1 = 1.05 was selected as the high Mach number case for

study.

The instability characteristics of the flow change around a convective Mach num-

ber of 1. Just below M, = 1 the two-dimensional wave, though no longer the most

amplified wave, is still only a factor of about 2 less amplified than the most ampli-

fied wave, and may still be expected to an effect on the development of the

flow. Above M, = 1 the two-dimensional ,x is much more weakly amplified than

the oblique waves, and the flow is expected to be dominated by a narrow band of

oblique waves. This change is illustrated on figure 5.1, where the linear amplifica-

tion rate is plotted as a function of angle at Mach numbers M1 = 0.95 and 1.05 for

the time-developing mixing layer with equal free-stream densities. The simulation

at M1 = 1.05 is expected to be typical of higher Mach number mixing layers, since
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the only further change in the stability characteristics of the flow is the increasing

obliquity of the most amplified disturbances.

The Reynolds numbers for the simulations were chosen by considering the effect

of viscosity on the growth rate of an eigenfunction from inviscid linear stability

analysis. Figure 5.2 shows the effect of Reynolds number on the amplification rate

for three different oblique waves: a 450 wave at M1 = 0.4, a 45' wave at M1 = 0.8,

and a 600 wave at M 1 = 1.05. The latter two are expected to be the most amplified

waves at their respective Mach numbers. Ideally, we would like to be at the high

Reynolds number end of these curves in order to capture the inviscid nature of

the instabilities. The Reynolds number was selected to be 400, 600 nr 800 for the

Mach numbers 0.4, 0.8 and 1.05 respectively. The problem with simulating high

Mach number flows is the higher Reynolds numbers that are required to capture

the instability. The higher the Reynolds number the more modes are required later

in the simulation in order to resolve the flow. For this reason the highest Mach

number simulated was 1.05.

The three-dimensional simulations presented in this chapter were all run for

a Prandtl number of 1 and a Schmidt number of 1. Initial perturbations were

usually specified as eigenfunctions from the linear stability analysis. However, some

simulations (sections 5.4 and 5.6) were performed with random initial conditions, to

check that the most amplified waves were indeed those predicted by linear stability

analysis. The simulations were usually started on a 16 x 99 x 16 grid, with boundary

conditions applied at y = ±5 initial vorticity thicknesses away from the mixing layer

centerline. As the high wavenumbers gained energy the number of points used in x

and z was extended, ending at typically 96 x 99 x 96.

5.2 Simulations at Low Mach Number

At M1 = 0.4 we expect to get nearly incompressible behavior. This case there-

fore partially serves as a check on the code, comparing against previous incompress-

ible mixing layer simulations and against incompressible secondary stability theory.

However, some compressibility effects may be evident even at this low Mach num-

ber since Ragab and Wu [1989] found some changes from incompressible secondary

stability behavior at M1 = 0.4.
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The major work in secondary stability analysis for the incompressible mixing

layer is that of Pierrehumbert and Widnall [1982]. They used Stuart [1967] vortices

as the base flow and solved the resulting Floquet problem for both fundamental and

subharmonic instabilities. The fundamental instabilities were of the core 'bulging'

or core 'translative' kinds, while the subharmonic instabilities were either regular

pairing or a 'helical pairing'. Simulations of all these instabilities can be made by

choosing an initial disturbance field of a two-dimensional wave, and two equal and

opposite oblique waves.

The fundamental mode instabilities have the same streamwise wavelength as the

initial roll-up. The initial disturbance field is specified by:

u1 = AiReal{ (a,O)e(az+O)} + A 2Real{fi(a, 3)e (a X+fz) + t(a, -/3)ei(a-xfz)}

(5.1)

where fi(a, #) is an eigenfunction of the linear instability wave with streamwise

wavelength Lx = 27r/a and spanwise wavelength L, = 2r//3. Similar disturbances

are added for p', vi , w/ and T'. The phase of the oblique waves relative to each

other is not important, since this does not change the basic pattern of the addition

of two oblique waves, only translating it in space. However the phase, 46, of the

two-dimensional wave relative to the pair of oblique waves is important.

With the phase 0 = 0 we get the 'bulging' mode of Pierrehumbert and Widnall

[1982]. The structure of the initial field for this case can be shown by a cut through

the x-z plane at y = 0, figure 5.3. Pressure contours are shown on figure 5.3a

and contours of w, wy and w, on figures 5.3b-d respectively. The pressure minima,

which shows where the core of the vortical structure will form, is at z = Lx/4, and is

fairly uniform across the span. The contours of wx and w1y show a pattern of counter-

rotating vortices, resulting from the addition of the two equal and opposite oblique

waves. For these plots the sign of vorticity has been chosen so that clockwise motion

is shown with solid contours and counter clockwise motion with dashed contours.

It can be seen that the effect of these vortices is to distort the core of the two-

dimensional instability and give it a varying cross-sectional area in the spanwise

direction.

With the phase 4) changed to 7r/2 we get the 'translative' mode of Pierrehumbert

and Widnall [1982]. The initial condition is shown on figure 5.4. Now the primary

roller is at x = 0, which coincides with a peak in both streamwise and vertical
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components of vorticity. The effect is to make the pressure minima oscillate in the

spanwise direction, alternately forcing it forwards or backwards.

Direct simulations were made for both the bulging and translative modes at

M1 = 0.4. The Reynolds number was set to 400 and the disturbance amplitudes

were A 1 = 0.05 and A 2 = 0.025 (equation (5.1)). The angle for the most amplified

disturbance from Pierrehumbert and Widnall was 56.30, but the variation with

angle was weak. It was found that at this angle and Reynolds number the initial

instability wave was damped. A smaller angle is needed in order to get a disturbance

that grows on the mean flow and 450 was selected. Plots of the vorticity thickness

growth for the two simulations are shown on figure 5.5, and the time history of the

energy E (equation (3.53)) is shown on figure 5.6 for the bulging mode and on figure

5.7 for the translative mode. Modes are defined by (ks, k,) where k. and k. are

integer wavenumbers in the x and z directions. Mode (1,0) is the two-dimensional

wave, and (1, 1) and (1, -1) are the two oblique waves. For these simulations the

oblique waves are equal and opposite, and grow in exactly the same way. There

is a line of symmetry in the simulations at z = L,/2, the preservation of which

serves as another check on the code. Comparison of figures 5.6 and 5.7 shows that

the (1, 0) mode is unaffected by its phasing relative to the oblique waves. However

the growth of the three-dimensional waves is much stronger for the phase 4 = 7r/2

than for 4, = 0, which agrees with Pierrehumbert and Widnall's finding that the

translative mode of instability is more amplified than the bulging mode.

The best method that was found for identification of rotational regions in the

flow was to search for a local minima in pressure. Perspective views of a surface of

constant pressure, enclosing a region of low pressure, are shown on figures 5.8 and

5.9 for the bulging and translative modes respectively. The bulging mode appears to

be only weakly unstable, and the developed structure is very two-dimensional. The

translative mode results in a vortex core that oscillates in the spanwise direction.

The fate of the streamwise and vertical vorticity initially in the saddle point

region of high strain between two large spanwise rollers is of much interest, since

Lin and Corcos [1984] showed that straining of vorticity in this region can lead to the

formation of streamwise vortices. These vortices produce mushroom-like structures

in a scalar field, as observed in experiments by Bernal and Roshko (1986]. For the

initial condition of the bulging mode (figure 5.3) the saddle point lies between two

of the regions of streamwise vorticity. Development of the primary roller creates
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a straining in this region, which pulls the streamwise and vertical vorticity away

from the saddle point. A perspective view of the developed streamwise vorticity

is shown on figure 5.10, corresponding to the pressure field of figure 5.8. There is

no streamwise vorticity in the saddle region, and the streamwise vorticity from the

initial condition has been pulled away from the saddle point towards the vortex

core.

In the initial condition for the translative mode (figure 5.4) there is streamwise
and vertical vorticity centered on the saddle point (located by the pressure peak at

z = L./2). Now the straining field acts to pull this vorticity into long thin regions of

vorticity (the braids). If the initial vorticity is strong enough Lin and Corcos [1984]
predict a 'collapse' of the streamwise and vertical vorticity into vortices aligned with

the principal axis of strain. This effect has been confirmed in the incompressible

numerical simulations of Rogers and Moser [1989]. Figure 5.11 shows the streamwise
vorticity for the structure that develops from the translative instability at M 1 =

0.4. The vorticity has indeed become elongated in the saddle region, but for this

initial condition there has been no collapse into the near-circular vortices of Lin and

Corcos. A higher amplitude of initial disturbances would be required in order to

get these structures.

The subharmonic instabilities of Pierrehumbert and Widnall [1982] are those

with wavelength twice that of the primary roll-up. The two-dimensional subhar-

monic instability is the two-dimensional pairing process, described in section 4.3
of this work. The other subharmonic instability was labeled a 'helical pairing' by

Pierrehumbert and Widnall, and has not been simulated numerically before. This

mode can be obtained by the following combination of instability waves:

u1 = AiReal{2(2a,O)ei(2axz+)) + A 2Real{ti(a, O)e( az+Pz) + a(a, -)e'(az-Pz)}

(5.2)

The computational box length is L. = 2/a and the box width is Lz = 27r/f. The

initial field with phase 0i = 7r/2 is shown on figure 5.12. The spanwise vortices are
located by the pressure minima at z = 0, L,/2. The 'helical' instability occurs when

the streamwise and vertical vorticity from the oblique waves is superimposed on the

centers of these structures. At z = Lz/2 the left structure is lifted and moved to

the right, while the right structure is pushed down and moved to the left. At z = 0

the situation is reversed.
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A 'helical' pairing simulation was run with an initial Reynolds number of 200, a
box size of L. = Lz = 15.7 (i.e. the 450 oblique subharmonic wave was excited), and

boundaries at y = ±10. The growth in vorticity thickness is shown on figure 5.13
and the growth in mode energies on figure 5.14. Mode (2, 0) is the two-dimensional

fundamental wave, and modes (1, 1) and (1, -1) are the oblique subharmonic waves.
The structure after roll-up of the primary instability is shown as a perspective view

of pressure on figure 5.15. The two vortices have been perturbed by the action of

the oblique waves. At a later time the structure is shown on figure 5.16. The per-

turbation shape has developed into strong oscillation of the vortices in the spanwise
direction. However, contrary to Pierrehumbert and Widnall's interpretation, we

find no evidence for rotation of the two vortices around each other, in other words
no merging by pairing. Instead the flow has evolved into a subharmonic structure,
with wavelength twice that of the original roll-up. The final structure resembles the

hairpin structures found in wall boundary layer transition, though here there is an

antisymmetry between the upper and lower parts of the vortex tubes, and there are

4 heads and 4 legs per periodic structure. Near the head of the hairpins there is an
induced motion due to the legs, which will tend to pull the structure into a more

upright orientation, and will oppose any tendency to rotate around neighboring

structures. This prevents the 'helical' instability becoming a 'helical pairing'. The
presence of any two-dimensional wave would eventually lead to pairing, but if the

time to reach this pairing is long compared to the time taken for the next stage of

instability to develop we may see structures similar to those on figure 5.16.

Cuts through the mixture fraction and pressure fields at the plane y = 0 are
shown on figure 5.17. The final structure found here is very similar to that which

will be presented for high Mach number flows in section 5.5. The difference is that

here the oblique waves grow on a base flow of developed spanwise rollers, whereas

in section 5.5 the oblique waves grow on the unperturbed mean flow.

Evidence for the existence of these structures in experiments is slim, but a 'he-
lical' structure was claimed to have been observed by Chandrsuda et al. [19781,
which may have been due to an underlying structure like the one in figure 5.16.
For incompressible flows this instability is less amplified than the classical two-

dimensional pairing, so it may only be found in experiments with high levels of
background noise, where local disturbances might excite its development. However,

the secondary stability analysis of Ragab and Wu 11989] shows that this mode can
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become important when compressibility is included, and may be important down
to M 1 = 0.4.

5.3 Effect of Mach Number

Most of the three-dimensional effects observed in experiments were captured in
the simulations of the translative mode of instability in the previous section. It
was therefore decided to use this combination of instability waves to investigate the
effect of Mach number. Three simulations were made, at Mach numbers M1 = 0.4,
0.8 and 1.05, with Reynolds numbers 400, 600, 800 and box lengths corresponding

to the most amplified wavelengths of L. = 7.85, 13.37, 18.48 and Lz = 7.85, 13.37,
12.465 respectively. The angles of the oblique instability waves were 450 for the

M1 = 0.4 and 0.8 cases, and 600 for the case MI = 1.05. The wave combination was
the fundamental two-dimensional wave and two equal and opposite oblique waves
with the same wavelength. The amplitudes were chosen to be A1 = A 2 = 0.025
(equation (5.1)), with 0 = r/2.

The effect of Mach number on the growth of the mixing layer is shown on

figure 5.18. The growth in the energy for the amplified waves is shown on fig-

ures 5.19 through 5.21. At M 1 = 0.4 it can be seen that the (1,0) wave is the

most amplified initially and is always more energetic than the oblique waves. At

MI = 0.8 the oblique waves (1,1) and (1,-1) are slightly more amplified than

the two-dimensional wave and, although they start with slightly less energy, they

soon overtake the (1,0) wave. Again the linear behavior persists in the non-linear

regime and the oblique waves have a higher energy content in the developed struc-

ture than the two-dimensional waves, although at this intermediate Mach num-

ber both two-dimensional and oblique waves are important. At the highest Mach

number, M, = 1.05, the oblique waves have a much larger growth rate than the

two-dimensional waves and by the end of the simulation the energy content of the

(1, 1) and (1,-1) modes is one and a half orders of magnitude higher than the (1,0)

mode.

In each of the simulations the linear theory correctly predicts the initial growth

rate of the instability waves. The most amplified wave is also the most important

wave in the developed structure. The dominance of oblique waves at high Mach
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numbers, predicted by the linear stability theory, extends to the non-linear regime

in the simulations studied here.

To illustrate the resolution of these simulations the energy content of all the

modes is shown in carpet plots of E(kx, k,) at the y = 0 plane (the mixing layer

centerline) on figures 5.22 through 5.24 for Mach numbers 0.4, 0.8 and 1.05. The

drop off in energy from the most energetic wave to the highest wavenumbers was

kept to about 8 orders of magnitude by increasing the resolution during the simu-

lations. When the highest wavenumbers became important the simulations had to

be stopped. The plots are shown for the last time step in the simulation, when the

resolution was considered to be adequate.

The high frequency part of these spectra should not be mistaken for small eddies

in the flow. These high wavenumbers arise from the Fourier representation of the

large structures in the flow; a steep gradient at some point in the structure requires

many Fourier modes to resolve it. For example, a purely two-dimensional flow would

have energy only along the k_- = 0 line. At low Mach number the carpet plot (figure

5.22) shows oblique ridges, due to oblique steep gradients that need to be resolved.

The plots at higher Mach numbers (figures 5.23 and 5.24) show the development

of ridges in the k. direction, along the k_ = 0 line. These indicate the presence of

steep spanwise gradients in the flow.

Low pressure regions are associated with strong rotation. Perspective views of a

pressure surface, that encloses a minima of pressure, are shown on figure 5.25 for

M 1 = 0.4 and on figures 5.27 and 5.28 for Mach numbers 0.8 and 1.05, and show the

change in large-scale structure in the flow as Mach number is increased. At M 1 = 0.4

we have the translative mode discussed in the previous section, with the vortex tube

oscillating in the spanwise direction. Again we have pre-collapse streamwise and

vertical vorticity in the saddle region between adjacent rollers, shown by the surface

of strearmwise vorticity on figure 5.26.

At M 1 = 0.8 (figure 5.27) we find a weakening of the spanwise structure, and

the development of oblique vortices in the saddle point region where at lower Mach

numbers the streamwise braid vortices would form. By MI = 1.05 (figure 5.28) we

find that the two-dimensional mode has all but vanished, and we are left with a

pattern of four regions of rotating fluid. There is one pair of equal and opposite

oblique vortices in the region where the spanwise vortex was located at lower Mach
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number (z = 0), and another pair of counter-rotating vortices, with opposite sense

to the first two, in the region of the low Mach number saddle point (z = Lx/2).

The essential change in structure is shown on figures 5.29 through 5.31, where two

vortex l:.,es (lines tangent to the local vorticity vector) per structure are plotted. At

low Mach number one of these lines is the spanwise structure, while the other weaves

back and forth and appears as the streamwise vortices in the saddle point region.

At higher Mach number both vortex lines have a zig-zag structure, or a 'double

hairpin with peak-valley splitting' structure, using boundary-layer terminology. The

pressure minima in figures 5.27 and 5.28 show the positions along the vortex lines

where there is strong rotation taking place. At other regions, for example near the

heads of the hairpins, there is very little rotation of fluid taking place. The presence

of a vortex line in this region should not be mistaken for the presence of a vortex.

The sense of rotation of the vortices is always clockwise if a cut through the x - y

plane is cunsidered, which can be clearly seen in the mixture fraction field. Cuts

through the pressure and mixture fraction fields at the plane y = 0 are shown on

figure 5.32 for M 1 = 0.4 and on figures 5.33 and 5.34 for M 1 = 0.8 and M 1 = 1.05

respectively. Fluid from below the mixing layer being moved upward appears as

a local minima in the mixture fraction, and vice versa for fluid from above being

moved down. To enhance the effect contour plots are made with 0.5 subtracted

from the mixture fraction, which lies between 0 and 1. Negative values are shown

with dashed contours, labeling fluid from below the mixing layer which has been

moved upwards. Positive values are shown with solid contours and show fluid from

above that has been moved downwards.

The effect of Mach number on the bulging mode is now considered. At low Mach

numbers this mode was not important, while at high Mach numbers the structure

is expected to develop from oblique instability waves alone, with no effect from the

relative phase of any two-dimensional mode. At the intermediate Mach number

M1 = 0.8 a simulation was run with phase 0 = 0 (equation (5.1)). The growth in

vorticity thickness and mode energies for this simulation are shown on figures 5.35

and 5.36, and the developed structure on figure 5.37. As with the other simulation

at this Mach number the oblique waves are the most amplified instability waves

through both the linear and non-linear stages of roll-up. The final structure, though

different in detail, is just as three-dimensional as that which developed with phase

r = r/4. It also contains oblique inclined vortical regions. It is concluded that at
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intermediate Mach numbers the phase of the two-dimensional wave relative to the
oblique waves has an effect on the final structure. However the trend towards more
three-dimensionality at higher Mach numbers is not affected.

5.4 Simulations with Random Initial Conditions

The purpose of these simulations is to check that the linear stability theory

is correctly predicting the most amplified waves in the flow, and to check for the
presence of modes other than those found in the linear analysis. The box length was

chosen to be 40 initial vorticity thicknesses in both the x and z directions, which is
long enough to allow approximately 5 of the most amplified waves to grow at Mach
number M1 - 0.4, or 3 waves at M 1 = 0.8, or about 2 waves at the highest Mach

number M1 = 1.05. The initial condition was specified by adding a small random
number to each of the computational variables Q = (p, pu, pv, pw, e) at each mesh
point. For example

p(x, y, z) = p(z, y, z) + Are- y
2 (5.3)

where r is a random number uniformly distributed between -0.5 and 0.5, and the
amplitude A was set to 0.0001. The exponential term is used to ensure that the

disturbances decay to zero in the free-stream. The random numbers were initially
applied to a 16 x 33 x 16 grid, which was then extended to 32 x 33 x 32 so that
random numbers in the highest frequency modes could not alias back and affect the

growth rates of low wavenumber modes.

The simulations were run for the same conditions as in the previous section
i.e. at M 1 = 0.4 (Re = 400), M 1 = 0.8 (Re = 600) and M 1 = 1.05 (Re = 800).

The simulations were run through the linear regime of small disturbance growth.

During this time the mean flow changes by viscous diffusion. This is illustrated
by the variation in vorticity thickness during these simulations, shown on figure

5.38. The mean flow sets the length scale for the growth of small disturbances,

so the variation in the mean flow means that different wavelength disturbances are

more rapidly amplified at different times during the simulations. Specifically, longer
wavelengths will become more rapidly amplified as the simulations proceed, which
needs to be kept in mind when analyzing the results.
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The growth in energy E(kx, kz) for selected modes is shown on figures 5.39 though

5.41 for the Mach numbers M 1 = 0.4, 0.8 and 1.05 respectively. At M 1 = 0.4 the

growth of the two-dimensional modes is plotted. Initially the (5, 0) mode is the most

amplified of those shown, in agreement with linear stability theory. However, by

the end of the simulation, when the layer has grown by viscous diffusion, the (3,0)

mode is the most amplified. Modes with wavelengths longer than the initially most

amplified wavelength have growth rates that increase with time, whereas modes with

shorter wavelengths have growth rates that diminish with time. At M 1 = 0.8 the

(3,4) mode is more amplified than the (3,0), (3,2) for (3,6) modes. At M 1 = 1.05

the (2,4) mode is the most amplified wave, growing more strongly than the (2,0),

(2,2) or (2,6) modes. Both these results are in general agreement with the linear

stability result that the most amplified waves satisfy M, cos 0 = 0.6.

The final flowfield at M 1 = 0.4 is shown on figure 5.42 by plotting a single contour

of zero vertical velocity in the x - z plane at y = 0. This contour divides fluid

moving upwards from fluid moving downwards and gives an idea of the dominant

structures in the flow. Clearly there is a preference for structures oriented in the

spanwise direction, though there is no strong coherence.

The lack of the strong coherence exhibited here at M 1 = 0.4, compared to incom-

pressible experiments, may have many causes. In the simulations all waves (0,0)

through (7, 7) and (7, -7) were seeded, so there are many waves with approximately

the correct orientation to grow nearly as strongly as the most amplified wave. The

actual amplitude at the end of the simulations depends upon how well the particular

instability mode was initialized. Other possible causes are compressibility effects,

non-linear effects, or the variation in the mean flow during the simulation. It may

also be due to effects peculiar to the experiments. For example, the flow is espe-

cially receptive to disturbances at the splitter plate edge, which is two-dimensional.

Also, the experiments which show strong spanwise coherence are 'clean' experiments

with laminar boundary-layers coming off the splitter plate. These boundary-layers

will contain instability waves which, though not of high amplitude, may have been

growing for a long enough time to have sorted out the two-dimensional Tollmien-

Schlichting waves. These would then be a forcing on the mixing layer, tending to

make it more two-dimensional.

The changing nature of the most unstable waves due to compressibility is clearly

illustrated in the sequence of figures 5.42 through 5.44. These show the v = 0
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contour in a cut through the x - z plane at y = 0 for Mach numbers 0.4, 0.8 and

1.05 respectively. At M1 = 0.8 there is no longer any tendency towards a spanwise

coherence, and waves at about 450 are most common. The situation is clearer at

M 1 = 1.05 where the linear theory predicts a fairly narrow band of waves around

60' to be most amplified. The contours of v = 0 on figure 5.44 show strong evidence
for waves at this angle. There are regions where the + and - oblique waves are

amplified separately, and regions where both are amplified at the same region in

space.

The simulations with random initial conditions confirmed the linear stability

finding that oblique waves become the most amplified waves as the Mach number

of the mixing layer is increased. No evidence was found for the existence of modes

other than those already considered in the linear stability analysis.

5.5 Structure at High Mach Number

Using results from the previous sections we can make some predictions about

the kind of large-scale structures which may grow from the inflectional instability

in the mixing layer at high Mach number, especially above MC = 1 where the

oblique waves are much more strongly amplified than the two-dimensional waves.

From figure 5.44, which showed the structure growing from low amplitude random

noise, we see that there are regions in the flow where one of the oblique waves

seems to dominate over the other, and regions where both oblique waves seem to

be about equally important. Therefore two simulations were run, one with a single

oblique wave and the other with a pair of equal and opposite oblique waves. The

Mach number for these simulations was chosen to be 0.8, so that a lower Reynolds

number of 400 could be used, to simulate further into the non-linear development.

The two-dimensional wave was not included in the initial field, so these structures

are expected to be more typical of flows at higher Mach numbers, except that those

structures are expected to become more oblique. A wave angle of 45' was selected,

since this is the most amplified wave at M1 = 0.8. The growth in vorticity thickness

is shown on figure 5.45.

The developed structure arising from a single oblique wave is, not surprisingly,

an oblique vortex. The structure developing from two equal and opposite oblique
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waves is more complex. Pressure surfaces are shown on figures 5.46 and 5.47 for the

two cases. In the structure developing from the pair of oblique waves there are four

main regions of rotating fluid. At x = 0 there are two counter rotating vortices,
L inclined in y relative to the z axis, and oblique in z relative to the x axis. There are

two more vortices at x = Lx/2 similar to the first two, but with the opposite sense

of wx rotation. The region where two of the vortices come close may be consideredinlie inyrltvmotexaiad biu nzrltvotexaxi.Teryr

similar to the hairpin structures found in transitional boundary-layer flows. The

induced motion of the head of the hairpin due to the legs is alternately up or down,

explaining the inclined nature of the vortices. In fact, the vortices become more

inclined as the simulation proceeds. The actual rotation at the heads of the hairpins

is weak, and there is no suggestion of rotation of the head of one hairpin around

the tail of the hairpin beneath it. The structure can be thought of as two vortex

lines, passing through the peaks in vorticity. One line passes through the vortices

at x = 0 , z = Lz/4,3Lz/4 and the other passes through the vortices at x = Lx/2,

z = LZ/4,3L/4. Perspective and top views of the vortex lines are shown on figure

5.48. These vortex lines are staggered in the streamwise direction, similar to the

peak valley splitting of boundary-layer transition. However, the boundary layer

case is a subharmonic secondary instability, whereas the case described here is a

fundamental primary instability.

The mixture fraction field for the structure resulting from two equal and opposite

oblique waves is especially rich in detail. The mixture fraction, f, was initially

specified by a hyperbolic tangent profile (4.3), and tags fluid from the free-streams

with a value between 0 (lower stream) and 1 (upper stream). Contours are plotted

of f - 0.5, with negative contours dashed, so that solid contours mark fluid that

originated on the upper side, and dashed contours mark fluid that originated on

the lower side. A cut through the x - z plane at y = 0 is shown on figure 5.49. The

four main vortices show clearly. The regions of strong mixture fraction gradient

at z = Lx/4,3Lx/4, z = Lz/4, 3Lz/4 are complex three-dimensional saddle points,

where fluid is being brought to rest, and high pressure ensues. Cuts of mixture

fraction through the y - z plane at x = Lz/4 and x = Lx/2 are shown on figure

5.50. Mushroom structures are found at x = 0, Lx/2 due to the counter-rotating

vortices. Examples of cuts in the x - y plane are shown on figure 5.51 for z = Lz/4

and z = L,/2. This illustrates that care is needed when interpreting experimental

cuts in the x - y plane or span averaged photographs such as Schlieren. The cuts
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at z = Lz/4, 3Lz/4 are at first glance reminiscent of the two-dimensional low Mach

number structure, even though the complete structure is highly three-dimensional.

We note that there are two of the hairpin structures per period, which may explain

the reduction in structure spacing to thickness ratio observed by Papamoschou

[1986] above a convective Mach number of 0.8.

5.6 Sensitivity to Initial Conditions

In this section we present simulations in which random noise was added to the ini-

tial condition. The objective of these simulations was to see whether the structures

presented in the previous sections are strongly affected by background noise, and in

particular whether non-linear interactions act to disrupt the organized structure.

A simulation at M 1 = 0.8 showed that the growth of the linear eigenfunctions was

not significantly affected by the presence of random noise. This simulation was run

with the same Reynolds number, box size and configuration of instability waves as

in section 5.3 (Re = 600, Lx = Lz = 13.37, forcing with a two-dimensional wave and

a pair of equal and opposite oblique waves). The amplitude of each wave was 0.025.

Random noise was added to this initial condition in the same way as in section 5.4,

with amplitude A = 0.025 (equation (5.3)). All modes from (0,0) through (7,7) and

(7,-7) were seeded. The growth in mode energies of the unstable waves are shown

on figure 5.52, and are nearly indistinguishable from the growth rates shown on

figure 5.20, where there was no random noise. The final structure was very similar

to that of the simulation described in section 5.4 and is not presented again here.

A more stringent test was run in which the initial eigenfunctions were not put

into the simulations, and the flow had to sort out the most amplified waves from

an initial field consisting only of random noise. The same Mach number, Reynolds

number and box size were used as in section 5.3 and in the preceding paragraph. The

random noise was added with amplitude A = 0.025, seeding modes (0,0) through

(7,7) and (7,-7) in the usual way. A carpet plot of the initial mode energies is shown

on figure 5.53a, and a cut through the pressure field at the y = 0 plane is shown on

figure 5.53b. The simulation was run forward in time and a carpet plot and pressure

field at time t = 29.6 are shown on figures 5.54a and 5.54b respectively. From the

carpet plot it can be seen that the energy that was initially put into modes with
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high kx has decayed very rapidly. The peaks that have appeared in the carpet plot

are the unstable waves. From linear stability theory waves (1,0), (1,1), (1,-i), (1,2)

and (1,-2) are all unstable. Other parts of the carpet plot are associated either with

the Fourier representation of the non-linear structure that is developing from the

linear instabilities, or with the decaying initial random number field.

The amplitude of each wave is dependent not only on the growth rate, but also

on the initial random field. From the carpet plot (figure 5.54a) it appears that

the (1,1) mode was most strongly seeded, followed by the (1,-2) and (1,-i) modes.

As time advances in the simulation we see more of the effect of amplification rate,

and less of the effect of the initial conditions. The pressure field shown on figure

5.54b shows that one of the oblique waves is stronger than the others for this initial

random field.

The simulation with purely random initial conditions was run long enough for the

instability waves to grow to near-saturation conditions. Organized structure was

found. At time t = 52.0 the carpet plot of mode energies, and the pressure field at

y = 0 are shown on figures 5.55a and 5.55b respectively. The energy spectra has now

filled out. This is attributed to the Fourier modes needed to resolve the large-scale

structure in the flowfield. An oblique view of a surface of constant pressure is shown

on figure 5.56. This can be compared with figure 5.27 (structure developing from

a two-dimensional wave and a pair of oblique waves with relative phase 4 = 7r/2),

figure 5.37 (same but with 0 = 0), and figure 5.47 (structure developing from a pair

of oblique waves alone). The developed structure is similar to the case of figure

5.47, where the structure was allowed to develop from a pair of equal and opposite

oblique instability waves.

Figure 5.57 shows how the linearly unstable waves grow from out of the random

initial condition. There is an adjustment period, extending up to about t = 10,

during which the unstable waves emerge from the background noise. Depending on

the initial field different waves may emerge first. It is apparent that the (1,1) mode

was most strongly seeded in this case. This wave grows at the same rate as the

(1,-i) wave but appears to start from an earlier time (approximately 5 time units).

The two-dimensional wave was not strongly seeded in this simulation, and does not

play a significant role in the evolution of this flow.

A plot of the growth in vorticity thickness (equation (2.20)) is shown on figure

5.58a, and a plot of the growth in vorticity thickness based on a mass-weighted

87



velocity profile is shown on figure 5.58b. As was noted in section 4.3 the vorticity

thickness is very sensitive to features of the large-scale structure. Figure 5.58a

shows a dip in the vorticity thickness for times between 40 and 50, while figure

5.58b shows a strong increase at these times. These effects are probably specific to

this simulation, and may be associated with the 'collapse' of vorticity into vortices,

which occurs at about these times.

The conclusions of these simulations are (1) that the linear instability processes

are not very sensitive to the presence of background noise, and (2) that an organized

structure develops from simulations started with random initial conditions. This

organized structure is similar to that which was presented in earlier sections, where

the structures developed from combinations of the instability waves with the highest

linear amplification rates.

The apparent 'cleanliness' of these simulations is not due to the choice of initial

conditions, but to the dominance of the primary (inviscid inflectional) instability

in this prototypical free shear layer. Even with random initial conditions the un-

stable modes eventually dominate the flow. For reasons of computational expense

the simulations have not been run to later times, when secondary instabilities will

presumably develop, or through to the 'mixing transition' which (by analogy with

the incompressible flow) is when small eddies develop in the mixing layer. However,

even beyond these stages the strong instability mechanism will certainly persist, and

it is felt that the large-scale organized structure in the compressible mixing layer

will result from the saturation of the various combinations of instability waves, as

simulated in this thesis.

5.7 Chapter Summary

The three-dimensional simulations presented in this chapter confirm the earlier

linear stability finding that oblique waves are more amplified than two-dimensional

waves at high Mach numbers. Simulations with random initial conditions showed

that the structures developing from linear instabilities become more oblique as Mach

number is increased. No evidence was found for any modes of instability other than

those already found in the lin'ar stability analysis.

At convective Mach number M, = 0.8 it was found that the oblique wave was

more amplified than the two-dimensional wave during the entire simulation, and
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oblique modes contained more energy than two-dimensional modes. With the con-

vective Mach number above 1 (Mc = 1.05) it was found that the two-dimensional

instability played only a small role in the development of large-scale structure.

The expected structures at high Mach number were examined in more detail in
two more simulations - one of a single oblique wave and the other of a pair of equal

and opposite oblique waves. The oblique wave developed into an oblique vortex,
while the pair of waves developed into a complex structure consisting of four regions

of strong rotation, placed along two vortex lines with hairpin shapes in the spanwise

direction, and with peak-valley splitting in the streamwise direction.

Simulations with random initial conditions were run to check the sensitivity of
the organized structure to initial conditions. A very similar structure was found to
develop. The growth rate of the linear instabilities was found to be insensitive to

the presence of finite amplitude random noise.

No shock waves were found in any of the three-dimensional simulations, even
with the free-stream Mach number above 1. Whilst this does not prove that there

will never be shock waves in mixing layers at high Mach number, it does appear
that the flow can adjust in a three-dimensional manner so that shock waves are not

required at high Mach numbers.

The expected structure of the compressible mixing layer can be summarized as

follows. Below M, = 0.4 we expect the usual two-dimensional rollers that have

been found in incompressible experiments and simulations. Above Mc = 1 we
expect to find the double hairpin structure, which develops from pairs of oblique

waves. In between the situation is more complex, since a broad range of instability
waves are strongly amplified. Between M, = 0.4 and Me = 0.6 we expect that the

roller structure will disappear. Above Mc = 0.6 we expect to see more and more

evidence of structures with strong streamwise vorticity, such as might develop from
combinations of two-dimensional and oblique instability waves.
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CHAPTER 6

Conclusions and Recommendations

This work has been concerned with a numerical study of the compressible mix-

ing layer. The methods used were linear stability analysis and direct numerical

simulation of the compressible Navier-Stokes equations. The stability equations

were solved by a shooting method. The full equations were solved by an explicit

code, with derivatives evaluated spectrally or with high order finite differences.

The conclusions are divided into the three main areas of study: linear stability,

two-dimensional simulations and three-dimensional simulations.

Linear Stability Theory:

" Linear stability theory can be used to predict mixing layer growth rates. The

relation 6' - Jailmax gives the correct trends in growth rate due to velocity

ratio, density ratio and Mach number. The amplification rate of the most am-

plified wave has to be computed using spatial stability theory, with a solution

to the boundary-layer equations as the base state.

" The experimental finding of Papamoschou [1989] that convective velocities do

not match the prediction of the Uc formula (1.2) was reproduced in the linear

theory, using the phase speed of the neutral modes as a prediction of convective

velocities of large-scale structures.

" Oblique waves were found to be more amplified above a convective Mach

number of 0.6. A simple relation, M, cos 0 = 0.6 was proposed to give an

approximate orientation of the most amplified waves in the flow.

" Several different methods of achieving high convective Mach numbers were

compared. There was no overall collapse of growth rates at high Mach num-

bers, indicating that the convective Mach number Mc = (U - U2)/(c* + c*)

may be only a first order measure of compressibility effects.
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Two-Dimensional Simulations:

" The growth rate of the two-dimensional mixing layer was observed to drop

rapidly as the Mach number was increased, nonlinearly as well as linearly.

* The reduction in growth rate was associated with a change in shape of the

developed vortices. These became more elongated in the streamwise direction

as Mach number was increased.

" Shock waves were observed in two-dimensional simulations above a convective

Mach number of 0.7.

" Peak strain rate in the simulations was found to be always the same order as

the global strain rate, indicating that the global strain rate can be used to

predict the magnitude of local strain rate in the mixing layer.

" Simulations with a density ratio of 0.2 were performed for a case where the

Uc formula (1.2) would predict zero convection speed. It was found that the

structures did indeed move, in agreement with the phase speed of the neutrally

stable mode.

* The supersonic modes of instability, which are the only unstable modes in two-

dimensions at high Mach number, were simulated. The modes were confirmed

to be radiating, with a pattern of shock and expansion waves forming on the

side of the mixing layer relative to which the instability was supersonic. These

modes were found to be vortical, and did lead to roll-up. However, the growth

rate was very small.

Three-Dimensional Simulations:

* At low Mach numbers it was found that the phase of a two-dimensional wave

relative to a pair of equal and opposite oblique waves could be chosen to give

the 'bulging' or 'translative' secondary stability modes of Pierrehumbert and

Widnall 11982]. Simulations of these cases confirmed their finding that there

was significant instability only for the translative mode.

* Raising the Mach number, with the phasing chosen to give the translative

mode, was found to lead to a change in structure. The linear stability result

that oblique waves are more amplified than two-dimensional waves was found

92



to carry over into the nonlinear regime. Above a convective Mach number of
0.6 the oblique modes of the developed structure were found to contain more
energy than the two-dimensional mode.

" Above a convective Mach number of 1 there was found to be very little influ-
ence of the two-dimensional wave on the developed structure.

" No shock waves were found in the three-dimensional simulations, even above
a convective Mach number of 1.

" Simulations with random initial conditions confirmed the linear stability find-

ing of oblique waves being more amplified at high Mach numbers. The linear
theory was found to predict well the angle of the most unstable modes as

Mach number was increased. No evidence was found for any modes of insta-
bility other than those already found in the linear stability analysis.

" The addition of random noise did not significantly change the growth rate of

linear instability waves.

" Typical structures which may be found in the mixing layer at high Mach
numbers were computed, based on the nonlinear evolution of oblique instability
waves. A single oblique wave led to an oblique vortex. A pair of equal and
opposite oblique waves led to a structure with four regions of strong rotation,

arranged along two kinked spanwise vortex tubes, staggered in the streamwise
direction. The structure resembles a peak-valley splitting arrangement of the

hairpin structures found in boundary-layer transition.

" A simulation starting with random initial conditions developed a large-scale
structure very similar to that computed from the non-linear development of
combinations of instability waves.

" The mixing layer below a convective Mach number M, = 0.4 is expected to
have a 'roller' structure similar to the incompressible flow. Between Mc = 0.4
and Me = 1.0 we expect to find a complex structure, due to many instability
waves being equally amplified, but with a tendency to stronger streamwise
and oblique vortices as the Mach number is raised. Above Mc = 1 we expect
to find a cleaner structure of pairs of hairpins, which develop from pairs of

oblique instability waves.
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Open Questions for Future Research

Numerical simulation of compressible turbulent flows is a relatively new area of

research and many questions remain to be answered. Future work could be directed

towards some of the following questions, which arose from this work.

Linear Instability Model:

* What are the limitations of the model discussed in section 2.3?

The immediate need is for more experimental measurements of growth rates

and convective velocities as a function of density ratio and Mach number. Sta-

bility analysis of actual self-similar experimental velocity and density profiles

may help to isolate some of the limitations of the simple model.

Subharmonic Growth Mechanism:

* What is the high Mach number analog of the vortex pairing process?

There is presumed to be some mechanism by which the largest structures in

flow merge so that the mixing layer cross-stream length scale can grow and the

mixing layer can be self-similar. At high Mach numbers this probably involves

oblique subharmonic waves. It is not clear what kind of 'oblique pairing' of

vortices, or 'merging of hairpin structures', will take place. Simulation of this

process will be expensive, since twice the resolution in each direction will be

required, compared to the current work.

Mixing Transition:

e How do small eddies form in a free-shear layer?

The mechanism is not understood even in incompressible flow, but the experi-

mental observation is of a large increase in formation of products of a chemical

reaction at some point in the mixing layer development (Breidenthal [1981]).

The resolution required for the Reynolds numbers at which mixing transition

occurs is probably near current supercomputer capability.

Statistics:

e How do we make engineering computations of compressible turbulent flows?

Traditional models require a knowledge of the time-averaged character of the

flow. Statistical information from compressible turbulence simulations could

be used to point to the relevant terms in the equations which need to be

94



modelled differently at higher Mach numbers. However it is felt that no

simulation has yet produced a statistically self-similar mixing layer, even in

two-dimensional incompressible flow. A large enough sample of the largest

structures (e.g. 60-100) would have to be accumulated to get reliable statistics

(Sandham and Reynolds [1989]). A logical sequence for progress on statistics

seems to be: two-dimensional incompressible, three-dimensional incompress-

ible, and finally three-dimensional compressible. Compressible simulations

typically require twice the storage and three times the CPU time of incom-

pressible simulations.

Mixing:

* Does the scalar pdf change at the higher Mach numbers?

The change in large-scale structure suggests that the scalar probability density

function (pdf) will be different at higher Mach number-. A change in the pdf

also means that fast chemical reactions will behave differently to the low Mach

number flow. Scalar pdf's can be accumulated from the simulations presented

here. However, they are of limited value since we are not simulating through

the mixing transition, and have no small-scales doing the mixing. Also we

do not have a self-similar mixing layer, so the pdf varies with time in the

simulations.

Chemical Reactions:

9 How to make supersonic combustion more efficient?

We need to understand how heat release affects the compressible mixing layer

flow. One possible avenue for research is to follow the procedure of this thesis.

First of all, the stability problem could be solved for the compressible mixing

layer, with an artificial temperature profile to reflect the effects of heat release.

Then direct numerical simulations could be performed with two species, in-

cluding reaction rate terms. The effect of changes in the instability of the flow

could be studied, as well as the effect of finite-rate chemistry.
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APPENDIX A

A Direct Method for Linear Stability Analysis

In Chapter 2 the linearized equations were reduced to a single equation which

was then solved by shooting. In this appendix an alternative procedure is de-

scribed, which makes use of a spectral representation of the mean and perturbed

flow to formulate the linear stability problem as a matrix eigenvalue problem. This

method was developed in collaboration with J. H. Chen; results for compressible

wake instability can be found in Chen et al. [1989].

We begin with the linearized equations which were derived in section 2.1.2. As

before the notation D is used for the d/dy operator. The linearized continuity

equation is:

Ai(diu- - w) + ODp +-[i(atl + Ptb) + DO] = 0 (A.1)

After substituting for the linearized perfect gas law, equation (2.39), the linearized

momentum equations in the x, y and z directions become:

-[i(du- - w)i + ODUI] = -i( + (A.2)

" i( -to) =-'DT + tDr + oD-T + TDA)
(QU ) M2 (A.3)

Ti( flt = -iT2 + AT) (A.4)

and the linearized energy equation is:

[i(o- w)t + ODT] =-(y - 1)[i(afi + 06) + DO] (A.5)

The first step is to rearrange these equations into the form of a matrix multiplied

by a vector, with the desired eigenvalue isolated. For temporal stability calculations

we wish to isolate w, so we write the above equations as:

Ati = wi (A.6)
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where - is a column vector of the eigenfunctions - = (&, , 0, tD, flT and the matrix
At is given by

aii ci -i(Dp + TD) fi 0

At -i(DT+TD) 0o-u -i( D' +'D) (A7
AA = 0 0 (A.7)

f 0 0 )

For spatial stability we isolate a, and write:

Asi = aBs (A.8)

where the matrix A, is given by:

w 0 i(D- + ;D) -/ 0
0 W iD-u 0 0

i(DT+TD) 0 w 0 i(D'p+-D)

As  ;57 M-2 PyM (A.9)
0 w

o o i(DT + (-)D) -(--1)0
p p

and the matrix B, is given by:

T a1

Ba- 0 0 V 0 0 (A.10)
0 0 0 0 0
00 (2o0 U

p

The next step is to derive a matrix form of the operator D. The mapped Fourier
method of Cain et al. [19841 was selected since it allows solution over an infinite
physical domain. We start with the definition of a Fourier transform pair:

N-I

k = (,7j),- ik21Y (A.11)
j=0
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N/2-1

: Z kek 2 1rqj (A.12)
k=-N/2

where N is the number of points, ivj are the grid points, 0 is the function and 4 is

the transformed function. Cain et al. [1984] defined a cotangent mapping:

y = -accotan(27rtl) (A.13)

where a, is a constant that determines the amount of stretching in the mapping.

Under this mapping the mixing layer physical domain -oo < y < co maps onto

0 < tj < 1/2. The computational domain 0 < 17 < 1 is periodic, allowing the use of

Fourier methods.

Derivatives are calculated as:

d -- (A.14)

dy h'd(A

where h' = dy/dq is the metric. For Cain's mapping this is given by:

1 1 in2(27rr) = 1 [l-ei2(21wt) + -i2(27rn)

S21rac ra 2 1(A.15)
Substituting this into (A.14), using (A.12) and combining terms, gives an expression

for the derivative at grid point j:

N/2-1 i(k+ 2) ir

y j' l Z 1 [ik4 k4i(k -2)k - 4)k+2J eik2 " (A.16)
ck=-N /2+1

where all terms with wavenumbers outside the summation limits are discarded.

The next step is to substitute in for 4 from equation (A.11), and compare with

a matrix formulation:

yIl =dlj(j) 
(A.17)
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The dij are terms of a matrix, given by:

dj 2aN1 N _2- ik - i(k - 2) i41t,, i(k + 2) .- i4zri. ei21rk( rj ) (A.18)
k=N/2+1

This expression can be simplified using trigonometry and geometric series.

For I - j we obtain:

dj (N -1) sin(47r~j) (A.19a)

acN

and for I j:

1 - cos(4 (7r(I- j) sin(47rni,) sinr(/ - j)(-Adij _ -(rr)4ac (-1)1-jcot N ) acN N-in[ 19b

= 4a~ a~N sin[lLi ]

As a last step we use the symmetry of the Cain mapping to reduce the size of

the matrix from N x N to N* x N*, where N* = N/2 + 1. A new matrix e13 is

defined as follows.

For j = 1 and j = N*:
ety = dij (A.20a)

and for j - 2 to N* - 1:

ely =dy + d(N+2_y) (A.20b)

This matrix is used to represent derivative terms in matrices At (equation (A.7))

and A. (equation (A.9)). The result is a 5N* x 5N* matrix (5 x 5 matrices at

each grid point). The eigenvalues and eigenvectors of this matrix were found using

standard (IMSL) subroutines.

The performance of the method was checked by running the test case of table 2.2.

Curves of amplification rate against wavenumber are shown on figure A.1 for several

values of N*, and compared with the result from the shooting method of Chapter 2.

It can be seen that convergence of the direct method is good for the most amplified

wave, but very poor near the neutral mode and at very low w. In general, it was

found that weakly amplified waves were difficult to resolve with the direct method.

At high Mach numbers it was difficult to capture the weakly amplified instability

modes, even using N* as high as 60.
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Figure 2.1 Comparison of velocity profile from solution of the boundary-layer

equations with a hyperbolic tangent (a) U2 = 0, (b) U2 -= 0.5.
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Figure 2.2 Velocity and density profiles computed from the boundary-layer equa-

tions, showing the effect of density ratio: (a) velocity profiles, (b)

density profiles.
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Figure 2.10 Variation of temporal amplification rate with angle of disturbance for
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Figure 2.11 Variation of spatial amplification rate with angle of disturbance for

the mixing layer with T2 = 1.0 and U2 = 0.5, with velocity profile

from solution of the boundary-layer equations.
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vective Mach number.
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Figure 2.19 Eigenfunctions of pressure at M1 = 2.2 for (a) the fast supersonic

mode, (b) the slow supersonic modes and (c) the subsonic mode.
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Figure 2.21 Eigenfunctions from temporal stability analysis at M1 = 0.6 (a) fi,
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Figure 2.22 Contour plots from linear eigenfunctions at M = 0.6 (a) ,, (b)

Owz/p, (c) density, (d) pressure, (e) dilatation, (f) dilatation term, (g)

baroclinic term.
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Figure 3.1 Decay of u velocity at x = 0.5 z = 0.25, for Taylor-Green problem.
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Figure 3.2 Check on linear growth rates for the inviscid eigenfunctions in the

three-dimensional code.
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Figure 3.4 Growth of vorticity thickness with time, showing the effect of changing

the position of the free-stream boundary condition.
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Figure 4.1 Linear amplification rate of the inviscid eigenfunction, as a function
of Reynolds number.
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Figure 4.2 Effect of Reynolds number on the growth history of vorticity thickness

at M1 = 0.4.
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Figure 4.3 Developed structure at M1 = 0.4, Re = 100 (a) mixture fraction (b)

vorticity.
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Figure 4.4 Developed structure at MI = 0.4, Re = 800 (a) mixture fraction (b)

vorticity.
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Figure 4.5 Effect of Mach number M 1 on the growth of the fundamental, most
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Figure 4.6 Long-time behavior of vorticity thickness at MI = 0.4.
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Figure 4.7 Structure at long time (a) mixture fraction, (b) vorticity.
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Figure 4.8 Comparison of vorticity thickness measures, based on mean velocity

profile (R), or mass-weighted mean velocity profile (MW).
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Figure 4.9 Effect of Mach n.mber on the growth in mode energy E of the most

amplified disturbance.
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Figure 4.10 Developed structure at MI = 0.2 (a) mixture fraction, (b) pressure,
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Figure 4.11 Developed structure at MI 0.4 (a) mixture fraction, (b) pressure,

146



(a) max=O.500 min=-O.500 (b) max=2.47 min=1.29

5.0 5.0

-5.0 -- 5.0__
0.00 9.52 0.00 9.52

(c) max=1.30 min=-2.25e-2 (d) max=1.92 min=-2.25e-2

5.05.

-5.0 1 -5.0
0.00 9.52 0.00 9.52

x x

Figure 4.12 Developed structure at MI = 0.6 (a) mixture fraction, (b) pressure,
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Figure 4.13 Developed structure at M1 = 0.8 (a) mixture fraction, (b) pressure,
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Figure 4.14 Developed structure at MI 0.6 (a) density, (b) dilatation, (c) di-latational term in vorticity equation, (d) baroclinic term.
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Figure 4.16 Growth in vorticity thickness, comparing M 1 = 0.2 with M = 0.6.
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Figure 4.18 Step 1 in pairing process at M, 0.2 (a) mixture fraction, (b) pres-

sure, (c) w, (d) wz/Ip.
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Figure 4.19 Step 2 in pairing process at M, 0.2 (a) mixture fraction, (b) pres-

sure, (c) w, (d) wz/p.
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Figure 4.20 Step 3 in pairing process at Ml : 0.2 (a) mixture fraction, (b) pres-
sure, (c) wz, (d) wz/p.

154



(a) max=O.500 min=-O.500 (b) max==18.3 min=16.4

7.5 7.5

-7.51 -7.51
0.00 14.96 0.00 14.96

(c) max=1.48 rnin=-7.81e-2 (d) max= 1.58 min=-7.83e-2

7.5 7.5

-7.5 -7.51
0.00 %4.96 0.00 14.96

x x

Figure 4.21 Step 4 in pairing process at MI 0.2 (a) mixture fraction, (b) pres-
sure, (c) w.,, (d) w,Ip.
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Figure 4.22 Step 5 in pairing process at MI 0.2 (a) mixture fraction, (b) pres-

sure, (c) w, (d) wZ/p.
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Figure 4.23 Step 1 in pairing process at M1 = 0.6 (a) mixture fraction, (b) pres-

sure, (c) w., (d) Wz/p.
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Figure 4.24 Step 2 in pairing process at MI 0.6 (a) mixture fraction, (b) pres-

sure, (c) w, (d) wZ/p.
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Figure 4.25 Step 3 in pairing process at M 1 = 0.6 (a) mixture fraction, (b) pres-

sure, (c) wz, (d) wz/P.
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Figure 4.26 Step 4 in pairing process at MI 0.6 (a) mixture fraction, (b) pres-

sure, (c) w, (d) wz/Ip.
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Figure 4.27 Comparison of vorticity thickness growth at two Mach numbers where

the initial wavelengths are the same.
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Figure 4.28 Developed structure at M, 0.6 (a) temperature, (b) stagnation

enthalpy, (c) entropy.
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Figure 4.29 Plot of strain rate and mixture fraction at M1 =0.6, t =18.2 (a)

mixture fraction, (b) strain rate S.
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Figure 4.30 Plot of strain rate and mixture fraction at M1 =0.6, t =24.0 (a)

mixture fraction, (b) strain rate S.
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Figure 4.31 Slices through the strain rate field (a) t = 18.2, (b) t = .4.0.
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Figure 4.32 Time history of the peak strain rate. Non-dimensionalized as S =

S*b6lU (norm 1), or as S = S*6*U; (norm 2).
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Figure 4.33 Growth in vorticity thickness for temperature ratios 1 and 2.
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Figure 4.34 Growth in mode energy E, for temperature ratios 1 and 2.
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Figure 4.35 Developed structure at M, 0.6, T'2 = 2 (a) mixture fraction, (b)
pressure, (c) wz, (d) wz/p.
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Figure 4.36 Generation of baroclinic torques in the saddle region.
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Figure 4.37 Developed structure at MI 0.6, T2 = 5 (a) mixture fraction, (b)
pressure, (c) wz, (d) wz/p.
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Figure 4.38 Convection of structure at T'2 = 5 shown by pressure contours (a)

t = 0.0, (b) t = 26.4.
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Figure 4.39 Embedded shock waves (a) pressure contours, (b) Mach contours M

Viu T+/C.
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Figure 4.40 Profiles through the shock wave (a) density, (b) pressure.
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Figure 4.41 Growth of vorticity thickness for supersonic instability mode.
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Figure 4.42 Growth of mode energy for supersonic instability mode.
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Figure 4.43 Non-linear structure developing from supersonic mode instability: (a)

mixture fraction, (b) vorticity, (c) density, (d) pressure.
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Figure 4.44 Pressure contours showing development of shock waves from super-

sonic mode instability.
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Figure 5.1 Linear temporal amplification rate versus wave angle at Mach num-

bers 0.95 and 1.05.
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Figure 5.2 Effect of Reynolds number on the temporal amplification rate of

oblique disturbances in the compressible mixing layer.
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Figure 5.5 Vorticity thickness growth for the bulging and translative modes at

MI= 0.4.
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Figure 5.6 Growth in energy for the bulging instability at M 1 = 0.4. (1, 0) is the

two-dimensional wave. (1,1) and (1, -1) are the oblique waves.
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Figure 5.7 Growth in energy for the translative instability at M 1 = 0.4. (1, 0) is
the two-dimensional wave. (1, 1) and (1, -1) are the oblique waves.
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Figure 5.8 Surface of constant pressure showing the rotational region in the struc-

ture developing from the bulging instability at M1 = 0.4.

/t
Figure 5.9 Surface of constant pressure showing the rotational region in the struc-

ture developing from the translative instability at MI = 0.4.
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Figure 5.10 Perspective view of streamwise vorticity in the structure that devel-

oped from the bulging mode of instability at M 1 = 0.4

I
Figure 5.11 Perspective view of streamwise vorticity in the structure that devel-

oped from the translative mode of instability at M, = 0.4
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Figue 5.13 Vorticity thickness growth for the helical subhrmonic mode at M;
0.4.
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Figure 5.14 Growth in energy for the bulging instability at M, = 0.4. (2,0) is the

two-dimensional wave. (1, 1) and (1, -1) are the oblique waves.
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Figure 5.15 Perspective view of the pressure minima at time t = 12.63 for the

helical subharmonic mode of instability, showing vortex cores at sat-

uration on the fundamental instability.
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Figure 5.16 Perspective view of the pressure minima at time t - 27.90 for the he-

lical subharmonic mode of instability, showing the final subharmonic

Istructure.
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Figure 5.17 Cuts at y = 0 through the final structure developed from the helical

subharmonic mode (a) mixture fraction (b) pressure.
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Figure 5.18 Effect of Mach number on the vorticity thickness growth, forcing with

a two-dimensional wave and two equal and opposite oblique waves.
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Figure 5.19 Growth in mode energies at MI = 0.4 (1,0) is the two-dimensional

mode. (1, 1) and (1, -1) are the oblique waves.
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Figure 5.20 Growth in mode energies at M, = 0.8 (1,0) is the two-dimensional

mode. (1,1) and (1, - 1) are the oblique waves.
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Figure 5.21 Growth in mode energies at M1 = 1.05 (1,0) is the two-dimensional

mode. (1,1) and (1, - 1) are the oblique waves.
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Figure 5.22 Carpet plot of the modal energy contents at the end of the three-

dimensional simulation at M1 0.4

0

OOr

~~"1

Figure 5.23 Carpet plot of the modal energy contents at the end of the three-

dimensional simulation at M 1 = 0.8
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Figure 5.24 Carpet plot of the modal energy contents at the end of the three-

dimensional simulation at M1 = 1.05
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Figure 5.25 Surface of constant pressure showing the rotational region in the struc-

ture developing at M 1 = 0.4.

Figure 5.26 Perspective view of streamwise vorticity in the structure that devel-

Ioped at M 1 = 0.4
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Figure 5.27 Surface of constant pressure showing the rotational region in the struc-

ture developing at M 1 = 0.8.

Figure 5.28 Surface of constant pressure showing the rotational region in the struc-

ture developing at MI = 1.05.
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(b)

Figure 5.29 Vortex lines through the peaks of vorticity for the developed structure

at M1 = 0.4 (a) perspective view (b) top view.
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(a)

(b)

Figure 5.30 Vortex lines through the peaks of vorticity for the developed structure

at M1 = 0.8 (a) perspective view (b) top view.

196
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(b)

Figure 5.31 Vortex lines through the peaks of vorticity for the developed structure

at M,1 = 1.05 (a) perspective view (b) top view.
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Figure 5.32 Cuts at y = 0 through the final structure developed at M1 =0.4 (a)

mixture fraction (b) pressure.
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Figure 5.33 Cuts at y = 0 through the final structure developed at M 1  0.8 (a)

mixture fraction (b) pressure.
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Figure 5.34 Cuts at y = 0 through the final structure developed at M, 1.05 (a)

mixture fraction (b) pressure.
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Figure 5.35 Vorticity thickness growth for simulation of the bulging mode at M1 =

0.8.
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Figure 5.36 Growth in energy for the bulging instability mode at M1 - 0.8.
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Figure 5.37 Surface of constant pressure showing the rotational region in the struc-

ture developing from the bulging mode at M1 = 0.8.
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Figure 5.38 Growth in vorticity thickness for the simulations beginning with ran-

dom numbers.
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Figure 5.39 Growth in energy for selected modes from the simulation beginning
with random numbers at M1 = 0.4
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Figure 5.40 Growth in energy for selected modes from the simulation beginning

with random numbers at M 1 - 0.8
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Figure 5.41 Growth in energy for selected modes from the simulation beginning

with random numbers at M 1 = 1.05
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Figure 5.42 Flowfield at the end of the linear stage of instability growth at M 1 =

0.4, shown by the v = 0 contour.

40.0

0.0
0.0 40.0

, Figure 5.43 Flowfield at the end of the linear stage of instability growth at M1 =

I0.8, shown by the v = 0 contour.
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Figure 5.44 Flowfield at the end of the linear stage of instability growth at M1 =

1.05, shown by the v = 0 contour.
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Figure 5.45 Vorticity thickness growth for a single versus a pair of oblique wave-,
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Figure 5.46 Surface of constant pressure, showing structure developed from a sin-

gle oblique wave.

Figure 5.47 Surface of constant pressure, showing structure developed from a pair

of equal and opposite oblique waves.
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(b)

Figure 5.48 Vortex lines through structure developing from a pair of equal and

opposite oblique waves.
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Figure 5.49 Mixture fraction cut through the x - z plane at y = 0.
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Figure 5.50 Cuts through the y - z plane at (a) x L.,/4 and (b) x L /2.
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Figure 5.51 Cuts through the z - y plane at (a) z = L/4 and (b) z = L/2.
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Figure 5.52 Growth in mode energies of the unstable waves in the presence of

background noise.
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Figure 5.53 Simulation with random initial conditions at time t = 0 (a) carpet

plot of mode energies, (b) pressure cut at y = 0.
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Figure 5.54 Simulation with random initial conditions at time t =29.6 (a) carpet

plot of mode energies, (b) pressure cut at y = 0.
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Figure 5.55 Simulation with random initial conditions at time t = 52.0 (a) carpet

plot of mode energies, (b) pressure cut at y = 0.
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Figure 5.56 Surface of constant pressure for the simulation beginning with purely

random initial conditions.
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Figure 5.57 Growth in mode energies of the unstable waves in the simulation be-

ginning with purely random initial conditions.
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Figure 5.58 Growth in vorticity thickness for the simulation beginning with purely

random initial conditions (a) regular vorticity thickness, (b) vorticity

thickness based on mass-weighted velocity profile.
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Figure A.1 Illustration of the convergence of the direct method. The number of

points used (N*) is given in the legend. The correct solution, as found

by the shooting method, is also shown.
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