DTIC FILE COPY

MISSION CRITICAL
COMPUTER RESOURCES
MANAGEMENT GUIDE

AD-A217 718

SOFTWARE FIRMWARE HARDWARE

FEB 0T IQQDD @ =

Q@

PAPERWARE PEOPLEWARE

TECHNICAL MANAGEMENT

— SEPTEMBER 1988
[DISTRIBUT!ON STATEMENT K

Approved for public releasel
l?ilmbuticn Unhmuted

90 02 02 055

MISSION CRITICAL
COMPUTER RESOURCES
MANAGEMENT GUIDE

NODITIL
I-3S-0Wsd

06/9/1
ozey -1 18d Vv, INAWHIVIS

20

SOFTWARE
INPUT A 011010
INPUT B 111000
Ce A 8 101010

PAPERWARE

FIRMWARE

HARDWARE

PEOPLEWARE

NOJETHL

0do 2ad 00* 11$-401¥d

06/L/T

00

ccesion For

TECHNICAL MANAGEMENT

SEPTEMBER 1988

/ ,

For sale by the Superintendent of Documents, U.S. Government Printing Office o~

Washington, D.C. 20402

P
é“e
‘0

DTIC TAB
Unannounced
Justification

\
NTIS CRA&I e
a
)

ﬁ“s <

Avallabitity Codes

"1 Avail andjef

Dist Special

"

24 |

PREFACE

This document is one of a family of educational gquides
written from a Department of Defense (DOD) Perspective;
i.e.,non-service peculiar. These books are intended primarily
for use in the courses at the Defense Systems Management
College (DSMC) and secondarily as a desk reference for program
and project management personnel. The books are written for
current and potential DOD Acquisition Managers who have some
familiarity with the basic terms and definitions of the
acquisition process. It is intended to assist both the
Government and industry personnel in executing their management
responsibilities relative to the acquisition and support of
defense systems. This family of technical quidebooks includes:

- Integrated Logistics Support Guide; First Edition:
May 1986

- Systems Engineering Management Guide; Second
Edition: Dec 1986

- Department of Defense Manufacturing Management
Handbook for Program Managers; Second Edition: July
1984

This guidebook was developed by the following members of
the DSMC Technical Management Department staff:

Lt Col Israel I. Caro, USAF

Lt Col Ronald P. Higuera, USAF
Cdr Frank R. Kockler, USN

Mr. Sherwin J. Jacobson

Mr. Alan Roberts

TABLE OF CONTENTS

PRE FACE » . . . L] . L] L] . . . i.

CHAPTER 1
INTRODUCTION

INTRODUCT ION e o & o s e & o e+ e e e & e & » e & e e a 1 - 1
REFERENCE S o o . . . e . o 1 - 2

CHAPTER 2
INTRODUCTION TO COMPUTER RESOURCES

2.1 BASIC DEFINITIONS t s e 4t e e e e e e e s e e e e 2-1
2.3 SOFTWARE IMPACT ON SYSTEM e e s e s e s e e e e e e 2-4
2.4 LIFE CYCLE COST TRENDS v ¢ v &« o o o « o o o & 2-5
2.5 EVOLUTION OF DIGITAL SYSTEMS ¢ « ¢« & o o o« o & 2-17
2.6 WEAPON SYSTEM SOFTWARE & ¢ ¢ ¢ o o o o o o & 2-9
2.7 CURRENT STATE OF AFFAIRS & & & o & o o o « « + 2=10
2.8 HISTORICAL CONTRIBUTORS . . . + &« ¢ & « ¢ o o o o o » o« 2-11
2.9 PROGRAM MANAGEMENT GUIDANCE . . . ¢« ¢ + o« « ¢ « o ¢« « o 2=-13
2.10 REFERENCES . . ¢ ¢ ¢ v ¢ ¢ ¢ ¢ o o o o o o s o o o+ o« « 2~14

CHAPTER 3
SOFTWARE ACQUISITION POLICY

3.1 INTRODUCTION . ¢ « ¢ ¢ ¢« o« o o o o o o o o o o o & o 3-1
3.2 BROOKS BILL T 3-1
3.3 DOD DIRECTIVE 5000.29 ¢ e e e e e e e e e e e e e e 3-2
3.4 WARNER-NUNN AMENDMENT . . . ¢« . ¢ ¢ & o ¢ o o o s o o & 3-3
3.5 MCCR STANDARDIZATION & & & o o o o « o o o o 3-4
3.6 DOD DIRECTIVE 3405.2 v ¢ 4o o o o o o o o o & 3-4
3.7 DOD DIRECTIVE 3405.1 . .« . v ¢ & v ¢ o o o o o o o o & 3-6
3.8 THE Ada PROGRAMMING LANGUAGE . . . &« + 4« & & o« o « o« & 3-6
3.9 SOFTWARE ENGINEERING AND TECHNOLOGY . . . « « + & « . 3-7
3.10 SOFTWARE SUPPORT . . ¢ ¢ « v 4 o o o o o o o o o & & 3-9

ii

3.11 TOP LEVEL SERVICE DIRECTIVES AND GUIDELINES
3.12 SOFTWARE DATA RIGHTS « ¢« « « « « .
3.13 AUTOMATED INFORMATION SYSTEMS
3.14 SUMMARY . . . ¢ ¢ v ¢ o ¢ o o o o o o o o =
3.15 REFERENCES ¢ ¢ ¢ & & o ¢ ¢ o o o o

CHAPTER 4
TECHNICAL FOUNDATIONS

4,1 INTRODUCTION ¢ ¢ o o o« o o o o o » =

4.2 INSIDE THE COMPUTER
4.2.1 Input/Output Section . .
4.2.2 Central Processing Unit
4.2.3 Memory Unit e e e e
4.2.4 Computer Hardware . . .

e e o o

*« e o o o

*« o o s o
¢ .

« e o ¢

e * o e o

e e » =

4.3 COMPUTER RESOURCES
4.3.1 Embedded Computer Hardware

3.2 Software o v e o
3 Firmware .« e e

4 Peopleware
5 Documentation
6 Development/Support Facilit

4.3, . .
4.3, . .
4.3. . .
4.3. . .
4.3. ies
4.4 COMPUTER ARCHITECTURE e e 4 s e e s e e s
4.4.1 Bits and Bytes e e e e e e e e e e
4.4.2 Instruction Set Architecture
4.5 SOFTWARE LANGUAGES
.5.1 Machiae Language . . .
.5.2 Assembly Language . .
.5.3 .

(o)
4
4
4 High Order Language

e o o
* o o »
e * o o

. .
e o o o
> o o o
e e e o
« o . o

4.6 Ada DESIGN . . . ¢« . ¢ ¢ ¢ ¢ v ¢« o« o o o o @
4.7 FEATURES OF THE Ada LANGUAGE
4.8 TRANSITION TO Ada « « « v « o « o« o &
4.9 PROGRAM DESIGN LANGUAGES ¢« « « « +«
4.10 REFERENCES . . . ¢ & v o+ o o o o o o o o« o s

CHAPTER 5
SOFTWARE DEVELOPMENT PROCESS

5.1 INTRODUCTION . . . ¢ & o ¢ & « o o o o o o =

5.2 SUMMARY OF DEVELOPMENT ACTIVITIES

iii

s e e o e s o

3-10
3-11
3-12

3-12

|
[

|
NSNS WK

I o bch-h-hl'h-hb L o>
|
O

S
|

—

e

4-13
4-14
4-15
4-17
4-17
4-18

5.3 SYSTEM REQUIREMENTS ANALYSIS/DESIGN
5.3.1 System Design . . . « « « ¢« ¢ ¢ o« .

5.4 SOFTWARE DEVELOPMENT « .« .
5.4.1 Software Rewuirements Analysis
5.4.2 Preliminary Design
5.4.3 Detailed Design
5.4.4 Coding and CSU Testing . .
5.4.5 CSC Integration and Testing
5.4.6 CSCI Testing . . . +« « « .« .

e o s & e o
e e s & o o o
e o o & o o o

5.5 SYSTEM INTEGRATION AND TESTING
5.6 TAILORING « & « o ¢ o ¢ o o o o o &
5.7 SUMMARY . . . ¢ ¢ ¢ v o o s s o « « o o o =
5.8 REFERENCES « o ¢ ¢ o o o o o o @

CHAPTER 6
SOFTWARE TEST AND EVALUATION

6.1 TEST PLANNING ¢« « « s o o s o o o
6.1.1 System Support Computer Resources .
6.1.2 Mission Critical Computer Resources

6.2 COST OF SOFTWARE FIXES . . . « ¢« « ¢ « & o

6.3 SOURCES OF SOFTWARE ERRORS . ¢« « ¢ + o o &

6.4 TYPES OF TESTING

6.4.1 Human Testing « «
6.4.1.1 Inspections . . . ¢« « « « .« .
6.4.1.2 Walk-throughs
6.4.1.3 Desk Checking
6.4.1.4 Peer Ratings . . . «
6.4.1.5 Design Reviews
6.4.1.6 Benefits of Human Testing . .

6.4.2 Software Only Testing
6.4.2.1 Black Box Testing
6.4.2.2 White Box Testing
6.4.2.3 Top-Down/Bottom-Up Testlng .
6.4.2.4 Software System Testing . . .

6.4.3 Integration Testing
6.4.3.1 Hot Bench Testing
6.4.3.2 DT&E/OT&E Testing

6 L] 5 TE S T TOOL S L4 - L] . . . L] L] Ll . L] . L] . . L]
6 . 6 DE BUGG I NG L] . . L] L] . L) . L] L L) L] L L . L] *
6.7 PROGRAM MANAGEMENT GUIDANCE « e e e e e e

6 L] 8 REFERENCES . L4 . . L L . . . L] . - . L] . .

iv

* e o & o o

e ® o & o e o e o o o o e o e o

e e e o s o o

e s e e & s o

* & o v e .

* o e o e+ @ e o o o o 8 = &

e e o & o & o e @ o o e » ° e

L L L
HOWWOUWOORANNIIIONO o > N s =

NANAANANARAAANANRNNON O [+4] [=4] o W W)
|

o O
i
-

CHAPTER 7
POST DEPLOYMENT SOFTWARE SUPPORT

BACKGROUND . . . ¢« ¢ ¢ ¢ ¢« ¢ 4 ¢ ¢ o« & o o &
PROBLEM AREAS . . . ¢ v ¢« ¢« ¢« ¢ o 4 o o o o &
MANAGEMENT PERCEPTIONS+ + « « .
MANAGEMENT CONCERNS « « ¢ v ¢ o o & &
WHAT IS PDSS? . o &+ ¢ ¢« ¢« ¢ ¢ 4« & 4 o o o o
SOFTWARE LIFE CYCLE CONSIDERATIONS
IMPROVING THE PDSS PROCESS « +« « + &
PROGRAM MANAGEMENT GUIDANCE. . . . « « .« + &

REFERENCES ¢ e e e s e e s 4 e e e e e e e

CHAPTER 8
PLANNING FOR COMPUTER SOFTWARE

INTRODUCTION . . ¢ ¢ o ¢ ¢ o o o o o o o o o o

PLANS AND DOCUMENTATION . . ., . o e e s e e
8.2.1 Program Management Plan (PMP) o« . e .
8.2.2 Test and Evaluation Master Plan (TEMP)
8.2.3 Integrated Logistics Support Plan (ILSP)
8.2.4 Computer Resources Life Cycle Management

(CRLCMP) « + v v v v v v v o o o o

ENGINEERING STUDIES + ¢ ¢« « o o« o &
COMPUTER RESOURCES WORKING GROUP (CRWG)

CONTRACTUAL CONSIDERATIONS . . . « ¢« « « o «
8.5.1 Source Selection Plan (SSP) . . .
8.5.2 Request for Proposal Package (RFP) .

.5.2.1 Requirements Specification(s) .
Instructions to Offerors . . .

Proposal Evaluation Criteria

Statement of Work (SOW) . .

Work Breakdown Structure .

Deliverable Items

Special Contract Provisions

Selection Process

Draft RFP « « + « +

Populating the Source Selection

Organization

Evaluation Process

Evaluating Offeror's Proposal .

8.5.3

e e e & e e & & o o .

N0 U"U'IU'IU\U\Ul

w o ® mmmmmmmmmm
e e S e e e o o »
wwrH NNNNNN
e« o (Y o o & o & o

O W NH(D\IG\U‘I-hWN

(S S
- - L]
w W W

Review « + « o o o

\'/

__;-------llllIllIllli

o e o o o

e @ e o & e o e 2 » s o

Software Development Capablllty/CapaCLty

o o o o

|
—s

| DR
W W R

1
=}

{1 T I T O I |
HFEFOOWVWWOVWWOYVWONNNSN

lcocommmoao:? o o] @ o QN0 s o Je o} (o]

oomcloco
e o

8 L 6 REFERENCES L] L4 L L] L] . . L] L] L] L] L . L] . . .

CHAPTER 9
MANAGEMENT PRINCIPLES

9 L] 1 INTRODUCTION . . * . L L4 . L * L] L] . . L . L]
9.2 SOFTWARE ENGINEERING « +« & « o o &
9.3 GUIDELINES AND RULES . . . &+ . « o o o & o & &
9.4 PROCESS CONTROL . . &+« v &+ ¢ + 4 « o o o s s o @
9.5 REQUIREMENTS AND PROTOTYPING

9.5.1 Specification Development Tools

9.5.2 Rapid Prototyping

9.5.3 Incremental and Evolutionary Development
9.6 SUMMARY . . +. « &« ¢ o « & s o o o o o o s o o 4
9 . 7 REFERENCES - . L Ld . . L] * * * * Ld .

CHAPTER 10
SOFTWARE CONFIGURATION MANAGEMENT

10.1 INTRODUCTION . . . ¢ ¢ + + &+ 4 o o o o o« o & o
10.2 CONFIGURATION IDENTIFICATION « « « + .
10.3 CONFIGURATION CONTROL . . + + & & o« o o«
10.3.1 Interface Control
10.3.2 Baseline Management
10.3.3 Configuration Control Board
10.3.4 Software Configuration Review Board .
10.3.5 Configuration Control Process . . .
10.4 CONFIGURATION STATUS ACCOUNTING
10.4.1 Software Development Library
10.4.2 Software Development Folder e e e
10.5 CONFIGURATION AUDITS . . . v v 4 & o o o s o
10 L 6 SUmARY L4 L4 . . L . L] L] . . * . . L L] L . .
10 L] 7 REFERENCES L] . . L d L L] . L4 L . . . L] . . L] . .

CHAPTER 11
INDEPENDENT VERIFICATION AND VALIDATION

1 1 . 1 BACKGROUND . . . L L] L] L] . . . - L] - .
11 .2 VERIFICATION L] . . L] . L] . . L] * L] - L] . L] .

11 . 3 VALIDATION L] a .« - - . . - .

vi

8-17

10-1
10-1
10-3
10-5
10-6
10-6
10-7
10-9
10-10
10-11
10-11
10-12
10-12

10-13

11-1
11-2
11-2

11.4
11.5

11.6

12.1
12.2

12.3
12.4

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

CERTIFI

THE 1IV&
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5

CATION . . ¢ o v o ¢« ¢ o o« & o & &

V PROCESS
Determining the Need for IV&V .
Establishing the Scope of IV&V
Defining the IV&V Tasks . . .
Estimating Software IV&V Costs
Selecting IV&V Agent

REFERENCES . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o o o o &

INTRODU

CHAPTER 12
METRICS

CTION L . L) . . L4 L4 . . » . . L L] L]

PROGRAM MANAGER'S METRICS

12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.10

SUMMARY

REFEREN

INTRODU

Software Size and Cost Status . . .
Manpower Application Status . . .
Cost and Schedule Status
Resource Marglns . e o v e e
Quantitative Software Spec1f1catlon
Design/Development Status
Defects/Faults/Errors/Fixes . . .
Test Program Status .« . . .
Software Problem Reports Status .
Delivery Status

.

CES . . . -

CHAPTER 13
EPILOG

CTION 0

SOFTWARE COST UNCERTAINTIES

SOFTWARE ACQUISITION CYCLE

PROTOTY
SCHEDUL
TEAM SI

ASSESSI

pES - . L4 . L] . L] . L] - . L] . . . L]
ES AND MANNING+« « .
ZE AND MANAGEMENT

NG PERFORMANCE

PROGRAM MANAGEMENT GUIDANCE

REFEREN

CES

. s e e

Status

e e & & o o

11-3
11-3
11-4
11-4
11-5
11-7
11-8

11-9

12-1
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-9
12-10
12-10
12-12
12-13

12-13

13-1
13-3
13-5
13-6
13-7
13-8
13-10
13-10

13-12

EQ"JNUON@E

APPENDICES

LIST OF ACRONYMS

GLOSSARY OF TERMS

OUTLINE OF PROGRAM MANAGEMENT PLAN

TEST AND EVALUATION MASTER PLAN OUTLINE

INTEGRATED LOGISTICS SUPPORT PLAN OUTLINE

COMPUTER RESOURCES LIFE CYCLE MANAGEMENT PLAN OUTLINE
SOURCE SELECTION PLAN

SOFTWARE DATA ITEM DESCRIPTIONS (DIDs)

viii

Y CHAPTER 1
J INTRODUCTION

Mission Critical Computer Resources (MCCR) refers to the
totality of computer hardware and computer software that is
integral to a weapon system along with the asscciated
personnel, documentation, supplies and services. A natural
question to ask is "Why should a program manager be that
interested in MCCR. The answer is threefold. First, software
for embedded systems is on the "critical path" of system
development, so if software development falls behind schedule,
the entire weapon system development will also fall behind
schedule. Second, MCCR can produce development problems of
sufficient magnitude to result in costly program overruns. It
is nect uncommon for software development costs to exceed
initial budget estimates by as much as 50% to 100%. Third, the
performance of modern weapon systems is largely dependent on
the quality of their computer resources; the system is only
as good as its software.,)To further compound the problem, it
is an established fact at if the MCCR development falls
behind schedule, the evelopment lead times cannot be
shortened simply by applying mare resources. Money can't fix
the problem - only time can [1]. ©Once a program falls behind,
little can be done to save it!

Management of MCCR development cannot be ignored or
delegated. If the program manager leaves all MCCR management
considerations to the development contractor, there is the
strong possibility that the software development will
encounter significant difficulties. The management of MCCR
development may be compared with piloting an aircraft. Without
the proper application of the necessary control, it is
extremely unlikely that the aircraft will safely reach the
intended destination. Without the appropriate management
directives, it is unlikely that MCCR development will result
in a suitable product. There are no autopilots for MCCR
development. Effective MCCR acquisition management, like
piloting, is a difficult task but, with proper knowledge and
care, not impossible [2]. This guide will only cover the
basics by providing enough background to enable straight and
level flight. Aerobatics (i.e., unconventional developments)
depend on greater mastery of the fundamentals, which are
outside the scope of this guidebook.

The actual MCCR development will be accomplished by a
development organization belonging to a system development
contractor. On occasion, the "contractor" may be another DOD
agency. The development contractor has the responsibility of
dellverlng' a software product that meets all contractual
requirements. Unfortunately, it is not possible to precisely
and completely specify in a contract all the characteristics
of the final software product and its development process.
Experience has shown that the difference between successful
and unsuccessful development efforts is often the rigor and

1-1

timeliness of the direction given to the contractor by the
procuring agency's program management organization [2].

REFERENCES

1. Meinke, George H., "Airborne Software Acquisition
Management...A Guide for New Software Managers", Air Command
and Staff College Report Number 82-1685, Air University,
Maxwell AFB, Al 36112.

2. Rubey, Raymond J., "A Guide to the Management of Software
in Weapon Systems", 2nd Edition, March 1985.

1-2

CHAPTER 2
INTRODUCTION TO COMPUTER RESOURCES

2.1 BASIC DEFINITIONS

Before beginning a discussion of computer resources, it
is necessary to provide some basic definitions. These
definitions will not be exhaustive since they will merely
serve as a point of departure for the initial discussions.
As we progress through this guide, these definitions will
become clearer as more definitive information is provided.

Autonomous

A system that operates without human intervention. An
autonomous system, however, still requires initialization by
a human operator. An example would be a Trident missile which
requires a crew for launching but, once airborne, its
trajectory and warhead delivery sequence is solely determined
by on-board systems.

Digital Computer

An electronic machine that is capable of storing in
discrete numeric form a predefined set of instructions, and
all associated data, and subsequently executing these
instructions.

Digital Systems

Any system which incorporates digital computers and
software as integral functioning entities.

A computer system that is physically incorporated into
a larger system (not necessarily within it) whose function is
not data processing. It can be stand-alone, but it must still
be integral to the larger system. The computer system can be
used for other purposes provided the primary function is as
part of the weapon system.

Large Scale

Systems requiring massive amounts of software usually in
excess of one hundred thousand lines of instructions.

A system where a human operator must be an integral part
in order for the system to function as designed. An example
is an aircraft flown by a pilot.

Memory

The section of the computer that stores or holds all of
the software.

Mission Critical Computer Resources

Any computer resource that is an integral part of a
weapon system or an operational system and required by that
system for proper operation. ECR is a subset of mission
critical computer resources.

Real-Time

The immediate response to a stimulus. By immediate is
meant on the order of milliseconds (i.e. thousandths of a
second) .

Software

The pre-defined set of instructions and associated data
that are stored in a computer and are used to execute a
function or functions.

Software Engineering

The emerging technological and managerial discipline
dedicated to the development and support of computer software
systems, on time and within cost estimates, through the
creation and use of proven methods and automated tools [1].

Additional terms are defined in Appendix B.
2.2 HISTORICAL PERSPECTIVE

The development of computer software as a recognized
activity is less than 30 years old. During the infancy of
digital computers (1950's) all software or computer programs
were developed by engineers or scientists as an adjunct to
their work with computers. In the early 1960's, computer
technology was usually taught under the auspices of university
or college electrical engineering departments. It wasn't
until the late 1960's that computer science departments were
being established as separate entities. The term "software
engineering” was not coined until 1968 when the term was used
as a theme of several workshops held in West Germany and Italy
to address the growing problems associated with software
development ([2]. So unlike other disciplines, such as
electrical engineering, software engineering is a relative
newcomer. Because of this, its practitioners do not have at
their disposal the wealth of time-tested practices, procedures
and tools so readily available to its sister disciplines. 1In
circuit design, for example, an electrical engineer can use
off-the-shelf components and modules with the necessary
characteristics to build large portions of his system.

2-2

R

Off-the-shelf components or modules are not widely available
to the software engineer. Quite often attempts to use
existing software lead to major problems if the designers are
not careful when integrating the existing software into their
design. Designers must fully understand all of the
characteristics of existing software as well as its overall
performance and reliability. Software development is still
in its infancy. New innovations are being introduced every
day, but they are more evolutionary in nature than
revolutionary. Many of the problems associated with software
development are due to the relative immaturity of the
discipline. There is still too much art and craft and not
enough engineering in software development; although the trend
is definitely changing.

The introduction and growth of digital systems in the DOD
parallels the introduction and growth of digital systems in
the commercial market place. In fact, the stringent
requirements of military systems often spearheaded the
development of computers and software throughout the industry,
especially during the early years of computer development.
In the early 1950's all weapon systems were analog and it
wasn't until the mid-1950s that digital systems were
introduced into weapon systems. During the 1960s there was
a rapid incorporation of digital systems with an almost
exponential growth occurring in the 1970s. Some of the
reasons for this rapid growth were:

(a) Advances in integrated circuits (ICs), the basic
building blocks of electronic equipment and digital computers.
ICs were being developed with ever increasing capabilities and
an accompanying decrease in power requirements, size and cost.

(b) The introduction of the microprocessor, which is
essentially a computer on an chip, allowed designers to
replace many pieces of hardware with a single component
roughly the size of a postage stamp.

(c) The ever increasing Soviet threat and the need to
counter it in the face of decreasing defense budgets. This
drove the services to build fewer but smarter and technically
superior weapons relying more and more on computers and
software.

(d) The realization that software is inherently more
flexible than hardware and better able to accommodate the ever
changing threat.

(e) The tremendous advances made in the commercial
marketplace in computers and software.

Today, all weapon systems are dependent on computers and
software. This phenomenal growth of digital systems in
aircraft, for example, is shown in Figure 2-1. In 1965 the
FB-111 required an on-board computer memory of roughly 10,000

2-3

words but by 1980 the B-1B Bomber was approaching on-board
computer memory requirements of about one million words.
Current and future systems will greatly exceed these memory
requirements with large scale software systems being the norm.

5 4000} HE-3A
—
.§ 1000}
g 8 AIR FORCE Ws-18
§ s00r @ NAVY OF-18
- @P-3C
2 400}
-y
]
§ 30
E 0
- .F-15
g W/RADAR PSP
g. 2001
B-52 OAS
] WF-16 WyppaTE
T 100}
§ F/FB-111 @®Pr-3C @E-2C
] .C-SA [] B s
& FB-111
o 0 1 1 1 1 i 1 i 1 1 i 1 A 1 1
1965 1970 1975 1980

Fig. 2-1 Growth of Aircraft Digital Systems

2.3 SOFTWARE IMPACT ON SYSTEM

What does the curve in Figure 2-1 tell us? If one were
to use the analogy of constructing a brick wall, one can say
that a 3000 sq. ft. wall requires about three times as many
bricks as a 1000 sq. ft wall. It is not necessarily more
difficult to build, it just takes longer. Unfortunately this
analogy breaks down when it comes to software.

The impact of software on system design and development
is illustrated in Figure 2-2 [3]. The solid lines represent
the average influence of either software or hardware on system
design and development while the dashed lines on either side
represent the maximum and minimum range of influence. It is
very clear that in 1950 software had no influence on weapon
systems design. This is because these systems contained no
digital hardware. By 1980, however, the relative influence
of software on system design averaged about 50% with some
systems being influenced by as much as 70% or as little as
30%. This means that software considerations affected overall
system design and development about 50% of the time. System
engineers could no longer make hardware design decisions
without considering the software implications. As can be
seen, the trend seems to be for an ever increasing role for
software. What the figure shows is that software is no longer
merely a part of the system; software has become a system in

2-4

N o

its own right and has assumed the integration function for the
various subsystems of a weapon.

1.0

0.8

RELATIVE
INFLUENCE 06
ON SYSTEM
DESIGN AND
DEVELOPMENT

04

0.2

\‘\J

e A

1950 1960 1970 1980 1990 2000

Fig. 2-2 Impact of Software on System Design and Development

2.4 LIFE CYCLE COST TRENDS

Figure 2-2 implies that hardware has been traded for
software. But why should that be a problem? The problem is
one of cost as shown in Figure 2-3 [4]. This figure shows
that over the last 30 years the cost of the software, as a
percentage of total computer resources cost, has been growing
by leaps and bounds whereas the associated hardware has been
decreasing by an equally dramatic percentage. A personal
computer (PC) of today has more power than the large computers
which were the workhorses of early space programs and they
cost a mere fraction of their predecessors. In addition, a PC
will sit on a corner of your desk while the early computers
occupied a large room and required thousands of watts of
electricity and tons of air conditioning.

The decreasing size of computer hardware, along with
their ever increasing capabilities, has resulted in an
explosion of applications in our weapon systems. Software not
only performs many of the functions previously performed by
specialized hardware, it also performs many of the functions
which would be impossible or impractical to perform with just
dedicated hardware. But this tremendous use of computers has
come at a price. As Figure 2-3 shows, the ratio of hardware
and software expenditures has changed from a ratio of 80%
hardware and 20% software in 1960 to a ratio of 20% hardware
and 80% software in 1980. But there has been an equally
dramatic increase in the costs associated with supporting the
software once the system is delivered. The primary reason why

2-5

software development and support is so expensive is that both
functions are extremely labor intensive. It is an ironic fact
that an industry which has provided the means for other
segments of industry to automate, has itself failed to
automate. There are no machines and no computer programs that
will automatically generate computer programs directly from
a set of requirements.

100

80 HARDWARE
PERCENT O
OF
COST

40

20

1965 1970 1985

Fig. 2-3 Life Cycle Cost Trends

The cost of DOD software is immense as can be seen from
the chart in Figure 2-4. According to this Electronics
Industries Association study [5], by the year 1990 the cost
of software alone will be approximately $25.6 billion. To put
that figure in perspective, the total price tag for the B-1B
Bomber fleet was around $20 billion in 1981 dollars. That
included 100 aircraft, the initial spares, the weapon system
crew and maintenance trainers and the initial logistics
support. For the amount of money being spent on software
today, the DOD can almost double the new strategic bomber
fleet.

In contrast, the amount of money being spent on computer
hardware has barely increased. When one considers that
computer hardware is more powerful today that ever before, the
cost for comparable performance has actually decreased
immensely. Many factors have contributed to the decreasing
cost of computer hardware but certainly automation has been
a major contributor. Unfortunately it still requires a person
to program a computer and programmers and other software
specialists are expensive.

se 59 61 03 &5 L
st w5
29 34 30 HARDWARE
°
s e o7 s ® w0 n 2 N wu ”

Fig. 2-4 DoD Embedded Computer Market

2.5 EVOLUTION OF DIGITAL SYSTEMS

If one were to make a comparison of Korean War vintage
aircraft with modern day aircraft, one realizes that both
aircraft contain the same types of functional systems (Figure
2-5). A Korean War vintage aircraft contained flight controls,
navigational gear, radar, etc. A modern day aircraft has the
same types of systems except it now has a flight control
system, an inertial navigation system or INS, a radar, etc.
Let's examine some of these systems in greater detail.

A 1952 F-86 Sabre, for example, had a stick which was
physically attached to mechanical linkages which in turn were
attached to the various hydraulic actuators and control
surfaces such as elevators. When a pilot moved the stick,
there would be an accompanying movement of the control
surfaces because of the mechanical connection. The amount of
force required to move the stick depended on how fast the
aircraft was flying and its attitude. Contrast this with the
latest version of the F-16 where the mechanical linkages have
been replaced with electrical wires and motors. Movement of
the stick creates an electrical signal which travels down the
wires and activates the motors to physically move a control
surface. In addition, there may be two or more wires to
provide redundancy and a means to artificially give the pilot
"a feel" for moving the control surfaces since there is no
feedback from mechanical linkages. All of this is done with

modern computers. The signals traveling down the wire are
digital in nature and the redundancy checks and the
artificial "feel" are all controlled by computers.

Furthermore, the computer gives the flight control system the

2~-17

KOREAN VINTAGE MODERN DAY

FLIGHT CONTROLS FLIGHT CONTROL SYSTEM
NAVIGATION GEAR INERTIAL NAV SYS (INS)
RADAR RADAR

ENGINES A ENGINE CONTROL SYS

FUEL CONTROLS E FUEL MANAGEMENT S8YS
WEAPONS o WEAPONS MANAGEMENT SYS
RADIOS N COMMUNICATION 8YS
INSTRUMENTS CONTROLS & DISPLAYS (C&D)
PILOT PILOT

OTHER SUBSYSTEMS

Fig. 2-5 Evolution of Fighter Aircraft

ability to "fly"” the aircraft in ways not possible if the
pilot were the controlling element. The X-29, the forward
swept-wing experimental aircraft, would be virtually
impossible to fly without computers. The movement of the
stick allows the pilot to indicate where he wants the aircraft
to go, but the computer actually flies the airplane.

An F-86, for example, carried navigational gear on board
to allow the pilot to find his way to his destination. This
consisted of a magnetic compass, an altimeter for altitude
indication and perhaps some kind of radio direction finding
equipment. With this navigational gear the pilot was able to
navigate using dead reckoning techniques. Today we have an
Inertial Navigation System (INS) comprised of gyroscopes,
accelerometers, and computers to perform the same function.
The INS is aligned before takeoff and it allows the pilot to
accurately navigate from one point to another. This is only
possible because of the computer. Using a known model of the
error sources within the INS, the computer uses a mathematical
technique known as Kalman Filtering to keep track of the
aircraft's precise position over time.

The Korean War vintage cockpit, packed full of
instruments, has been replaced with a cockpit containing just
a few instruments and controls and display screens. Any
information required by the pilot is simply displayed on the
screens at the push of a button; anything from attitude
indications to the status of weapons. They are all under the
control of computers. More importantly, there are now new
subsystems that would not be possible without digital systems:
diagnostic systems that can display the health of all the
major subsystems and "expert systems" that provide the pilot
with information on the various options available during a
particular mission.

2-8

ﬁ——-——_

In summary, one can say that computers and software have
introduced a whole new dimension to our weapon systems;
improved system performance; become an aid to the decision
making process; expanded the capabilities of the human
operator and in many cases replaced the human operator. 1In
short, they have dramatically enlarged the performance
envelope of weapon systems far beyond what was possible less
than 30 years ago.

Without modern computers and the associated software,
modern weapon systems would not exist. Weapon systems have
evolved from systems where computers played a very minor role
to systems where their very existence depends entirely on
computers.

2.6 WEAPON SYSTEM SOFTWARE

The discussions so far have centered around the computers
and the software that are embedded in a weapon system and are
an integral part of that system. There is, however, a whole
host of software associated with every weapon system (Figure

DATA
REDUCTION
SOFTWARE

FLIGHT

MAINTENANCE
TRAINERS
SOFTWARE

MISSION \/kl/
PREPARATION) —+ — -

SOFTWARE

SOFTWARE

SCENARIO/
ANALYSIS
SOFTWARE

BATTLE
S‘gf{_ms;E CREW MANAGEMENT
TRAINING SOFTWARE

SOFTWARE

Fig. 2-6 Weapon System Software

2-6) that is not embedded in the system but is absolutely
essential nevertheless.

The software that has been discussed so far is referred
to as flight software but a wealth of other software is
required to support a weapon system. During ground and flight
testing, extensive data reduction computers and software are
required in order to aid in the analysis of literally millions
of data points generated as part of a major test program.

2-9

In order to train the various maintenance crews, various
subsystem trainers must be developed many of which require
literally hundreds of thousands of lines of code and numerous
computers, both large and small. Two examples are avionics
maintenance trainers and weapons load trainers. Operational
analysis personnel require very large scenario software to
perform tactics and war planning. Extensive and complex battle
management software may be required to develop mission
planning. Operational crews usually train on large software
intensive weapon system trainers whose functions are dependent
on millions of lines of software instructions. For logistics
support of electronic equipment, automatic test equipment
(ATE) and its associated software must be developed along with
hundreds of software packages called Test Program Sets (TPSs)
which allow technicians to 1isolate and repair failed
electronic components. Lastly, mission preparation software
may also be required for use by operational crews in planning
and carrying out their missions.

2.7 CURRENT STATE OF AFFAIRS

Examination of the current state of affairs with military
weapon systems reveals some very unpleasant facts:

(a) Most new systems are extremely complex. This is
due to a combination of several factors:

- extremely demanding requirements, which tend
to drive designers towards complex solutions;

- tight schedules and even tighter budgets,
which tend to negate elegant and simpler solutions;

- and, unfortunately, too many contractors who
are not fully skilled in software engineering techniques tend
to populate the "lowest bidder" category. These contractors
seem to thrive under our current procurement laws and
regulations.

(b) Digital systems are now the heart and soul of all
new weapon systems. The flexibility offered by digital
systems cannot be remotely approached by analog systems. This
trend will continue for the foreseeable future.

(c) Most systems are delivered late, have cost
overruns, rarely meet performance requirements upon initial
delivery and are often ridiculously expensive to maintain.

It would be very unfair to blame all of these unpleasant
facts just on digital systems and software, but it is
generally recognized that software is a major contributor, and
often the only contributor, to these problems. Software has
become the Achilles heel of weapon systems. Not only is it
in the critical path of the system development process but
system performance is dependent on the system software.

2-10

TR

2.8 HISTORICAL CONTRIBUTORS

One of the major contributors to the problems associated
with software development has been loose and very often
nonexistent management oversight. Since most program managers
know little or nothing about software, they concentrate their
efforts on hardware or system issues and often leave software
management to managers who are not always part of the
mainstream decision making process. They get involved only
when software starts affecting the overall schedule and by
then it is too late. This hands-off policy is changing but
not fast enough.

Another problem is that some software managers lack
relevant experience. But this is a universal problem with no
quick solutions in sight. Experienced software managers
within the government are a scarce commodity. Industry seems
to lure the good ones away and those that remain and rise to
management positions are not necessarily the most experienced.

A major problem that has plagued the DOD in the past has
been the uneven application of standards and, in some cases,
the lack of standards. As for the former, too often a
contract simply calls out all the applicable standards without
regard to the fact that many of them are contradictory or even
unnecessary. All standards and regulations should be tailored
for each program. It wasn't until recently, that standardized
programming standards were applied across all the services.

Throughout the 1960s and 1970s the total number of
programming languages used for military systems numbered in
the hundreds and none of them were compatible with each other.
Most systems used their own language and their own computer
so that transportability across systems was nonexistent. To
a great extent many systems still suffer from this problem.

Perhaps the most significant contributor to the software
problem has been the almost endemic lack of a disciplined
engineering approach to software development. The better
developers have the necessary discipline to do a good job
but even they encounter problems. Unfortunately, many
software developers only pay lip service to modern software
development methodologies such as top-down structured design,
quality assurance, configuration management, and completion
of prerequisite tasks prior to proceeding to the next step.
They may write convincing proposals but they can't always
deliver. On the government side, the problem is compounded
when the contractor is not forced to follow a disciplined
engineering approach. Too often, engineering discipline is
sacrificed to that holiest of sacred cows -- schedule and
cost.

Somewhat related is the fact that competent software
developers are not sufficient in numbers to satisfy the

2-11

demands of both the military and the civilian market place.
There are more software projects than there are competent
software developers, so the less skilled fill the vacuum.

Lastly one must remember that the software that is
developed for weapon systems is the most difficult and most
challenging type of software. Some of the reasons for this
difficulty are the following:

(a) Most weapon systems have real-time requirements
which add an additional level of complexity. The scftware
has to respond almost instantaneously and correctly, in spite
of noise and other types of interference that can seriously
degrade a system.

(b) Most weapon systems have a requirement for fault-
free operation or some level of fault tolerance. This adds
additional overhead to the software since more checks and
redundant capabilities have to be added. These requirements
run counter to the requirements for speed, simplicity, and
real-time response.

(c) Because of the complexity, many software
developments stretch over periods of three to five years.
During this time there is usually significant personnel
turnover, especially in the government. This results in loss
of continuity and provides ample opportunity for new "shakers
and movers" to express their leadership and managerial
"styles". It also provides plenty of time for Congress to
cut, slice, batter and reap havoc with the budget. Although
this is also true for hardware, it has a more severe impact
on software development.

(d) Because of the long development period and because
the threat is always evolving, the designers are shooting at
a moving target since requirements are usually not nailed
down until late in the development cycle.

(e) No human endeavor is entirely free of politics.
The program office is no exception. A program manager must
not only deal with management and technical problems but also
learn to navigate the more dangerous waters of internal and
external politics.

(f) Compounding the problem even further is the sad
reality that computer resources technology 1is rapidly
changing. What is state-of-the-art at the beginning of a major
weapon system development, is often obsolete by the time the
system is fielded. A program manager must be able to properly
balance the risk associated with using technology that is at
the cutting edge, but which is not yet fully proven, with the
risks associated with using more proven but less capable
technology.

2-12

2.9 PROGRAM MANAGEMENT GUIDANCE

Program managers, as well as software personnel, need to
be educated and trained. The Program Managers Course at the
Defense Systems Management College is an example of this type
of training. But this education and training must be made
available to all program office personnel. Even if one is
not directly involved with software, that person should still
have an appreciation for the difficulties involved since all
future hardware development will undoubtedly be impacted by
software. Program managers must allow their software personnel
to attend courses and seminars so that they can better learn
the process. This training is especially valuable for junior
and middle level software managers and engineers, many of whom
have little or no formal training in software engineering.
Program managers must never use the excuse that "we are too
busy to let them go now" because they will always be too busy.
Make the time and let program personnel attend seminars and
training classes.

All program personnel must lose their fear of software.
There is nothing magical about computers and software as long
as time is taken to learn at least some of the basics.
Software and computer illiteracy can no longer be tolerated
in a program office.

Software and hardware standards should be intelligently
applied. They should be scrutinized and tailored to a specific
program. Most standards are written to cover the entire
waterfront and particular programs only deal with a portion
of that waterfront. Failure to do so will create confusion
and will eventually impact those sacred cows -- schedule and
costs.

From day one, program managers must pay attention to
software and ensure that program personnel are doing the job
of enforcing the developer to follow a disciplined process.
The chief software person must be made visible by having to
report to the program manager on a weekly basis and on a
daily basis during critical periods. This person should be
totally aware of all of the developer's major activities and
have the facts readily available.

Most of all, the program manager must make absolutely
sure that program personnel actually read and critically
evaluate all software documents submitted by the developer.
If they are rubber-stamping documents, then they should be
replaced. If necessary, reviews such as Preliminary Design
Reviews (PDRs) and Critical Design Reviews (CDRs) should be
delayed until the proper documents have been thoroughly
reviewed. A developer should not be allowed to slip through
a gate until it has satisfied all the requirements for going
through that gate; or until everyone is fully aware of the
risks involved by proceeding.

N
I

13

As will be seen in a later section of this guide, early
and thorough planning is the onlv way that the software
problems can be minimized. This planning starts during the
concept exploration phase and continues to some degree until
the system is no longer used.

There are no magical solutions! Good software development
requires extensive planning and thorough vigilance. There are
no short cuts or cookbook solutions!

2.10 REFERENCES

1. Seidman, Arthur H. and Flores Ivan, Ed., "The Handbook
of Computers and Computing". New York: Van Nostrand Reinhold
Company Inc., 1984.

2. Fairley, Richard E.,"Software Engineering Concepts",
Tyngsboro, Mass.: McGraw Hill Book Co., 1985.

3. Grove, H. Mark, "DoD Policy for Acquisition of Embedded

Computer Resources", Concepts, The Journal of Defense Systems
Acquisition Management, Autumn 1982, Volume 5, Number 4.

4. Boehm, Barry, "Software Engineering", IEEE Transactions
on Computers, Vol. C-25, No. 12, December 1976.

5. Electronics Industries Association,"The Military Market:
Perspectives on Future Opportunities", Sponsored by the
Requirements Committee, Government Division, Nov 1985.

CHAPTER 3
SOFTWARE ACQUISITION POLICY

3.1 INTRODUCTION

This chapter summarizes the DOD's policies governing the
acquisition of mission critical computer resources (MCCR). In
dealing with policy, it may be useful to understand the
history behind its implementation. Towards that end, this
chapter will provide a historical perspective of the various
laws, regulations, and initiatives that relate to MCCR.

As indicated in the previous chapter, computers and
software have become an extremely vital component of a weapon
system. In a span of only twenty five to thirty years, the
dependence on software and cost of software has grown
tremendously. But with this growth, there has been an
accompanying rise in the technical and management problems
across all of the services.

3.2 BROOKS BILL

Prior to 30 October 1965, +here was no form of
standardization or control over tiie rrocurement of automatic
data processing (ADP) equiprent within the federal government.
On that date, however, Fublic Law 89-306 (otherwise known as
the Brooks Bill) was signed by President Johnson. This bill
was intended to promote competition and insure stability in
the procurement of ADP resources. By 1976, 36% of the systems
were procured in a fully competitive manner and, according to
the General Services Administration (GSA), over $681 million
in cost avoidance has been achieved in 302 competitive ADP
contracts [1].

Traditionally, computers and software have been viewed
by top level management as tools for improving efficiency and
conserving resources. Although this is true, computer
resources need to be treated in the same manner as other
acquisitions, not as mere tools. Although primarily directed
toward the procurement of ADP equipment, the Brooks Bill
forces federal agencies to analyze their ADP requirements,
like they would for other systems, and compete for the most
economic and efficient system. In an effort to achieve this
goal, the Brooks Bill assigned responsibilities as follows:
the GSA was given the authority for procuring ADP resources
required by federal agencies; the Office of Management and
Budget (OMB) was to provide policy guidance and overall
leadership (i.e., they were to act as mediator in resolving
any user and GSA disputes); and the National Bureau of
Standards (NBS) was to develop ADP standards.

The Brooks Bill, however, does not permit the GSA to
interfere with an agency's (user) determination of its ADP
requirements. The user determines its requirements for ADP
equipment and the potential method of procurement. The method

3-1

of procurement is then approved by the GSA and any disputes
resolved by the OMB.

The DOD considers MCCR exempt from the provisions of the
Brooks Bill because MCCR is not specifically addressed in the
ADP definition. Therefore, the DOD has continued to procure
MCCR as part of the weapon system using major system
acquisition guidelines. Additional legislation in the form
of the Warner-Nunn Amendment and various DOD Directives and
Instructions have further- approved this interpretation.

3.3 DOD DIRECTIVE 5000.29

DOD Directive 5000.29, "Management of Computer Resources
in Major Defense Systems" was published on 26 April 1976. Its
purpose was to establish a DOD policy for the management and
control of computer resources during the life cycle of major
weapon systems.

The directive was the first major step undertaken by the
DOD to address the growing software problem. It represented
the department's first formal recognition that software is
critical to weapon systems and should be managed as a
configuration item in the same manner as hardware. As such,
software requirements should be validated and risk analyses
performed prior to a Milestone II decision in order to insure
that the software requirements reflect the operational
requirements. All of the management tools used in the
development of hardware should be applied to software (e.qg.,
configuration management, baseline\milestone management, and
life cycle support planning). The directive also stressed the
need for a standardized HOL.

In an effort to help carry out the intent of this
directive, a Management Steering Committee for Embedded
Computer Resources was also established in 1976 and its
charter was contained in the directive. The purpose of the
steering committee is to increase the visibility and improve
the management of computer resources within the DOD, to
formulate a coordinated technological base program for
software, and to integrate computer resource policy into the
normal process of major system acquisitions.

The steering committee is composed of two boards: the
Executive Board and the Management Advisory Board. The
Executive Board is responsible for the development of policy
necessary for the acquisition and management of computer
resources in major defense systems. It consists of a
representative from the Assistant Secretary of Defense
(Installations and Logistics), who is the chairman, the Deputy
Director Research & Engineering; the Director, Telecommunica-
tions and Command and Control Systems; the Assistant Secretary
of Defense (Comptroller); and the Assistant Secretary of
Defense (Intelligence).

The Management Advisory Board 1is responsible for
coordinating technology efforts among the DOD components, for
conducting policy impact assessment for the Executive Board
relating to computer resources, and for reviewing computer
resource technology programs for policy consistency. It
consists of representatives from the Navy, Army, Air Force,
Office of Joint Chiefs of Staff, Defense Communications
Agency, National Security Agency, Defense Advanced Research
Projects Agency, and Deputy Director (T&E).

3.4 WARNER-NUNN AMENDMENT

The Warner-Nunn Amendment (Section 908 of Public Law
97-86, the DOD Authorization Act, 1982) was implemented in
order to broaden the range cf embedded computer resources
excluded from the provisions of the Brooks Bill. It was
intended to provide the DOD with more control over the
acquisition of computer resources that are an integral part
of weapon systems.

The Warner-Nunn Amendment defined <those computer
resources which are exempt from the Brooks Bill. It defined
MCCR as those computer resources that perform the following
functions, operation, or use [(2]:

(a) Involves intelligence activities;

(b) Involves cryptoanalytic activities related to
national security;

(c) Involves the command and control of military
forces;

(d) Involves equipment that is an integral part of a
weapon system;

(e) Is critical to the direct fulfillment of military
or intelligence missions.

The essential test as to whether the acquisition of
computer resources is covered by the Warner-Nunn Amendment or
the Brooks Bill is the intended use of the equipment and
services, and not their commercial market place availability.
Interpretation of these policies must not be 1lightly
rationalized and used as an excuse to depart from sound
business and management practices. Where there is doubt as to
the applicability, case-by-case determinations shall be made
by the Under Secretary of Defense (Research and Engineering)ﬂ
in coordination with the Assistant Secretary of Defense
(Comptroller) [3].

Since the time the Warner-Nunn Amendment was implemented, the Under Secretary of Defense
for Acquisition was given the responsibility for military software within the 00D.

3-3

3.5 MCCR STANDARDIZATION

The explosion in the number of weapon system computer
applications that occurred during the late 1960's and the
1970's, resulted in a comparable explosion in the number and
types of computers and programming languages. By the mid-
1970's, there were literally hundreds of different computer
programming languages being used to generate military systems
software. Along with these languages, there was an almost
equal number of different computers in use. The result was
that engineers, technicians, and computer programmers who were
supporting a particular weapon system could not support a
different weapon system without costly retraining and delays.
Rarely would two different weapon systems use the same

computer or the same programming language. This led to
needless duplication of effort and inefficient use of human
resources. Since each system had its own computer and

programming language, each system was unique and required
unique resources.

In order to minimize weapon system software support costs
and to promote interoperability between the various systems,
the DOD focused on three areas: higher order languages (HOLs),
the software development process, and computer hardware. The
specific policy and guidance for each area are the following:
HOLs

DOD Directive 3405.1 - Computer Programming Language
Policy

DOD Directive 3405.2 - Use of Ada in Weapon Systems
Software Development
DOD-STD-2167A - Defense System Software Development

DOD-STD-2168 - Defense System Software Quality Program.

Computer Hardware

MIL-STD-1750A - Airborne Computer Instruction Set
Architecture.

HOLs and computer hardware are discussed in Chapter 4. The
software development process described in DOD-STD-2167A and
DOD-STD-2168 are addressed in Chapter 5.
3.6 DOD DIRECTIVE 3405.2

Standardization of HOLs has been an issue within the DOD

since the early 1970's. In 1976 DOD Instruction 5000.31,
"Interim List of DOD Approved Higher Order Languages (HOL)",

3-4

was lissued as an interim measure to limit the number of DOD
approved HOLs to six:

DOD FORTRAN
COBOL
Army TACPOL
Navy CMS-2 (CMS-2M & CMS-2Y)

Air Force JOVIAL (Version J3 & J73)

A few years later that instruction was amended to include
ATLAS as an approved HOL for automatic test equipment.
Concurrently, the DOD initiated a fully competitive program
to develop a common, preferred, single HOL for DOD software
development programs. The outcome of these efforts was the Ada
programming language (see Chapter 4). On 30 March 1987, DOD
Directive 3405.2, "Use of Ada in Weapon Systems", was
published to establish DOD policy for using Ada as the single,
common, HOL in the development of computers integral to weapon
systems. Computers are defined as being integral to a weapon
systems if they are:

(a) Physically a part of, dedicated to, or essential
to the real time performance of the mission;

(b) Used for specialized training, diagnostic test and
maintenance, simulation, or calibration;

(c) Used for R & D of weapon systems.

The directive applies to all new weapon systems entering into
development (prior to Full Scale Development (FSD)) and to
major upgrades (greater than 1/3 modification) to existing
systems. There are three exceptions, however, to using Ada:

(a) I1f a programming language other than Ada was
already in use during the FSD phase of a weapon system on the
effective date of the directive, then that language may
continue to be used through deployment and software support
unless the system is undergoing a major software upgrade.

(b) Ada is preferred, but not required, as a test
language to be used solely for hardware unit under test
equipment.

(c) Ada is preferred, but not required, for
commercially available, off-the-shelf software that will not
be modified by the DOD.

Except for the conditions stated above, a waiver is
required. Authority for issuing waivers is delegated to each
DOD component only on a specific system or subsystem basis.
For each proposed waiver, a full justification will be

3-5

prepared and will include a developmental risk analysis; a
technical performance, cost, and schedule impact analysis; and
a life cycle cost analysis.

3.7 DOD DIRECTIVE 3405.1

The overall policy for DOD computer languages, DOD
Directive 3405.1, "Computer Programming Language Policy", was
published 2 April 1987, three days after the Ada directive.
It superseded DOD Instruction 5000.31 and revised the list of
approved DOD HOLs to be used for the development and support
of all computer resources managed under DOD Directive 5000.29
and DOD Directive 7920.1 (See Section 3.13). The approved list
of the DOD programming languages are: Ada, C/ATLAS, COBOL,
CMS-2M, CMS-2Y, FORTRAN, JOVIAL (J73), MINIMAL BASIC, PASCAL,
and SPL/1.

This directive stresses standardization of HOLs, and
establishes Ada as the single, common preferred language
within the DOD. When Ada is not used, only the other approved
standard languages listed shall be used. This directive serves
to limit the number of HOLs used in the DOD and facilitates
the transition to Ada. The order of preference is based upon
life cycle cost and impact as follows:

(a) Off-the-shelf applications packages and advanced
software technology;

(b) Ada-based software and tools;
(c) Approved standard HOLs.
3.8 THE Ada PROGRAMMING LANGUAGE

After the successful development of the first HOL
compiler, many new HOLs were quickly introduced. By the
mid-1970's, the proliferation of languages within DOD had
resulted in an unwieldy logistics problem. Hundreds of
different languages were being used and each had its own
unique support requirements. In 1975, Malcolm Currie, then
Under Secretary of Defense for Research and Engineering
(USDRE), suggested that the DOD consider using just one

software language. In 1976, an interim policy was issued
requiring the use of "approved" higher order languages listed
in DOD Instruction 5000.31. At about the same time a

committee called the Higher Order Language Working Group was
formed to review existing HOLs to determine candidates for a
single DOD language. Their charter was to look for HOLs
specifically geared for weapon system acquisition. One of
their goals was to find a language that supported both
real-time processing and large scale programs. The HOL was
also supposed to support modern programming techniques and
practices such as top-down and structured design.

Their January 1977 evaluation concluded that no existing
language met all the DOD requirements but that some, such as
Pascal, Algol, and PL/1 could form a good basis for designing
a "new" lanquage. In July 1977, as a result of an extensive
evaluation process, a new set of language requirements was
established. The government initiated four contracts for the
design of this new DOD language. After exhaustive design
evaluations, a final selection was made for one contractor to
develop the new language which became known as Ada. The
language was named after Lady Augusta Ada Byron, Countess of
Lovelace, who is credited with being the first programmer. She
was a well educated mathematician who suggested and wrote the
first programs for Charles Babbage's "Analytic Engine", a
predecessor of the modern computer. The winning contractor
was the French based Honeywell-Bull Corporation, and the
design team was led by Jean Ichbiah. Their product, the Ada
Programming Language Specification, MIL-STD-1815, was
officially published on 10 December 1980. In June 1983, it
became an American National Standards 1Institute (ANSI)
standard and was officially published as ANSI/MIL-STD-1815A
on 22 January 1983. In March 1987 it became an International
Standards Organization (ISO) standard. The European software
community has been quick to adopt the Ada Programming
Language.

In June 1983 when Dr. Delauer, then the USDRE, directed
that Ada be used on all new major programs, he had been led
to believe by the DOD software community that the necessary
technical support (i.e., compilers) for Ada would be ready.
Unfortunately, this was not the case and this lack of
supporting tools is probably responsible for a majority of the

bad initial publicity Ada may have received. The fact
remains, however, that Ada is a good language for use on MCCR
as well as for general purpose applications. What was

initialiy missing were the support resources required to
develop Ada software; the same resources that are required to
‘develop software in any HOL. The need for support was well
recognized and initial compilers and tool sets to aid in the
development of Ada software are now becoming available.

The major concept behind the use of Ada is the
enforcement of modern software engineering principles. It is
the real strength behind the Ada programming language.

3.9 SOFTWARE ENGINEERING AND TECHNOLOGY

A great deal of effort has been applied to the area of
software engineering, especially the application of systems
engineering to the software development process. Numerous
organizations have been created and/or tasked with evaluating
methods for improving software quality and reliability; for
reducing development and support costs; and for controlling
the management of software development. The main programs that
have been initiated are:

(a) Very High S ntegra Circuits (VHSIC) - The
VHSIC Program Office was created in 1980 by the DOD in order
to alleviate deficiencies in military integrated circuits
(ICs). Unlike the early days of IC technology, the DOD was no
longer the driving force behind technological innovation nor
the largest user of IC chips. The commercial market place was
now dictating IC developments by virtue of the fact that it
was by far the largest consumer of IC products. This meant
that military applications had become a specialty and a highly
customized business. The commercial market place had no need
for extremely fast, highly specialized, low-volume IC
products. So the DOD took the initiative, through the VHSIC
program, to accelerate the development of this technology.

Another problem plaguing military electronics has been
the unusually long time it takes to incorporate a new product
into a weapon system once the product is introduced into the
commercial market place. It is not unusual for a product to
appear in a weapon system up to five years after its
commercial appearance. In order to speed up this process, the
VHSIC Program has supported the development and insertion of
VHSIC chips into military systems. This gives developers and
acquisition managers a military qualified microelectronic
technology that 1is on a par with commercially available
technology. At least twenty seven major system insertion
efforts are presently being undertaken in which the use of
VHSIC technology provides the potential for improved system
performance [4]. As great advances are being made in computer
hardware, the challenge to the software community is to
capitalize on this wealth of hardware technology. Software
needs to be developed to fully use the capability of this new
hardware.

(b) Software Technology for Adaptable Reliable Systems
STARS) - The STARS Program Office was established in 1983

by the DOD to investigate ways of reducing software
development costs, to increase software systems reliability,
to investigate software automation techniques, and to look at
applications for reusable software.

(c) Software Engineering Institute (SEI) - The SEI,
located at Carnegie-Mellon University, was placed under
contract by the Air Force (Electronics System Division,
Hanscom AFB) in 1984. They are were tasked with investigating
the transition of new software technology, analyzing software
development environments, and providing education in the
software and system engineering process. The SEI has
recommended changes to the Federal Acquisition Regulations on
software data rights provisions [5]); developed an educational
program on software engineering; established liaisons with a
variety of educational institutions in order to disseminate
curriculum information and material for both undergraduate and

graduate education; and conducted numerous software
engineering conferences.

3-8

(d) Defense Science Board (DSB) - A DSB Task Force on
software was originally convened in 1981 by the Under
Secretary of Defense (Acquisition) to review a draft DOD
Instruction on standardizing computer hardware. It recommended
cancelling any further tasking in this area. The Air Force,
however, had already developed a standardized ISA for a
sixteen bit airborne computer (MIL-STD-1750A). Later the DSB
was tasked with reviewing overall software acquisition,
management, and computer resource technology procedures and
providing recommendations for rectifying any problems. The
Task Force's report published in September 1987, stated that
the major problems with military software development are not
technical problems, but management problems. They recommended
that the DOD re-examine and change the attitudes, policies,
and practices regarding software acquisition [5].

3.10 SOFTWARE SUPPORT

The Joint Logistics Commanders Joint Policy Coordination
Group on Computer Resources Management established a sub-panel
in 1979 to specifically look into post-deployment software
support (PDSS) and the procedures required to provide adequate
software support during and after transition. PDSS will be
discussed in Chapter 7.

3.11 TOP LEVEL SERVICE DIRECTIVES AND GUIDELINES

The following is a list of the guidance documents for the
respective services. All of these documents stem from the
guidance provided by DOD Directive 5000.29.

Navy

SECNAVINST 5200.32
Management of Embedded Computer Resources in
Department of the Navy Systems, 11 June 1979

OPNAVINST 5200.28
Life Cycle Management of Mission Critical Computer
Resources for Navy Systems, 25 September 1985

OPNAVINST 5230.21
Instruction on standard embedded computer resources

NAVELEXINST 5200.23
Instruction on general software management

TADSTANDS ,
Tactical Digital Systems Standards b through d on

standard computers, programming languages, and reserve
capacities.

Air Force

AFR 800-14
Life Cycle Management of Computer Resources in
Systems, 29 September 1986

AFSCP 800-14
Air Force Systems Command Software Quality Indicators:
Management Quality Insight, 20 January 1987

AFSCP 800-43
Air Force Systems Command Software Quality Indicators:
Management Insight", 31 January 1986

AFSCP 800-45
Software Risk Management (Draft)

AFSCP 800-5
Software Independent Verification and Validation
(IV&V) (Draft)

ASDP 800-5
Software Development Capability/Capacity Review, 10
September 1987

Army

DARCOM-R-70-16
Management of Computer Resources in Battlefield
Automated Systems, 16 July 1979

Asst Secretary of Army Policy Letter
Standardization of ECR, 1 July 1980

AMC-P 70-13
AMC Software Management Indicators, 31 January 1987

Marines

MCO 5200.23
Management of ECR in the Marine Corps, 19 August 1982

3.12 SOFTWARE DATA RIGHTS

The program office must address the issue of data rights
in all of its acquisitions. Before the issues of software data
rights are discussed, a few definitions should be understood.

Copyright - Protects the expression of an idea through
unauthorized copying or reproduction. Easy and inexpensive
to obtain by simply filing an application with the copyright
office with a copy for the Library of Congress. No examination
of the material is required.

Trade secret - Protects the underlying ideas, concepts,
procedures, formula, pattern, device or compilation that
derives economic value by not being readily available to
others. Must maintain secrecy (information is not public
domain).

Patent - Protection by trademark or trade name.
Expensive, uncertain, and time consuming (may take two years
to obtain). Destroys trade secret protection because patent
disclosures are quite complete.

Proprietary - A form of trade secret, copyright, or
patent. Provides protection to the contractor.

Restricted rights - Trade secrets developed at the
private expense of the contractor.

License agreements - Agreement between a contractor and
the government (or another contractor) limiting the use and
the copying of data which has been commercially sold (rights
to use, disclose, or reproduce).

The Federal cop;right laws, patent laws, and state trade
secret laws are .": main laws providing legal protection of
a contractor's c.mputer software. The Copyright Act of 1976
was amended ir 1980 to include computer programs. The Office
of Federal Procurement Policy (OFPP) was tasked by a 10 April
1987 Executive Order, to develop a firm national policy in
favor of commercial rights [6]. In the meantime, FAR Subpart
27.4 and 52.227-14 provide guidance to the program office on
software data rights. Specific language in accordance with
these clauses of the FAR should be included in the contract,
both for the protection of the government and the contractor.

3.13 AUTOMATED INFORMATION SYSTEMS

A program manager requires the use of many tools to
successfully manage the program office organization. One such
tool is an automated information system (AIS) for
confiquration control, intra-office communications, and other
administrative tasks. Since this chapter primarily deals with
computer resources associated with weapon systems, it may be
useful to briefly discuss the DOD policy on AIS.

After the DOD had taken steps to provide initial guidance
on the management aspects of weapon system computer resources,
it published DOD Directive 7920.1, "Life Cycle Management of
Automated Information Systems (AIS)" on 17 October 1978 and
DOD Instruction 7920.2, "Major Automated Information Systems
Approval Process" on 20 October 1978. These two documents
established the policy for the procurement of general purpose
computers or ADP equipment primarily intended for use in
business applications and subject to the provisions of the
Brooks Bill. AIS defines procedures for the acquisition of
equipment which is designed, built, operated, and maintained

3-11

for the sole purpose of collecting, recording, processing,
storing, retrieving, and displaying information. These systems
usually have large data storage requirements and are used for
business type applications such as payroll, accountlng, and
inventory. The function of these two DOD documents is very
similar to that of the DOD Directive 5000.29. Some of the
similarities include the promotion of life cycle management,
visibility, cost effectiveness, standardization of the
approval process, and emphasis on requirements validation.

3.14 SUMMARY

Proliferation of software and computer resources has
occurred since their introduction in the late nineteen
fifties. The Brooks Bill was passed in 1965 to promote
competition and to regulate how ADP should be acquired and
managed within the government. The empha51s in this chapter,
however, has been on the acquisition policy for software
exempted from the Brooks Bill.

The DOD provided guidance on the management of software
and MCCR in 1976 with DOD Directive 5000.29. The Management
Steering Committee for Embedded Computer Resources was
established to guide this effort. This was followed by
software workshops in 1979 conducted by the Joint Logistics
Commanders' Joint Policy Coordination Group on Computer
Resource Management. Standardization of the software life
cycle has been the main DOD focus.

3.15 REFERENCES

1. Thirty~-Eighth Report by the Committee on Government
Operations, "Administration of Public Law 89-306, Procurement
of ADP Resources by the Federal Government", 1 October 1976.

2. Section 2315 of Title 10, United States Code.

3. Memorandum of Deputy Secretary of Defense, "Acquisition
of Automatic Data Processing (ADP) Equipment and Services",
1 February 1982.

4. VHSIC Program Office, "VHSIC Annual Report for 1986",
Office of the Under Secretary of Defense for Acquisition, 31
December 1986.

5. Report of the Defense Science Board Task Force, "Military
Software", Office of the Under Secretary of Defense for
ACQUlSltlon, September 1987.

6. '"Commercial Rights Will Be Protected", Washington
Technology, 17 December 1987.

3-12

CHAPTER 4
TECHNICAL FOUNDATIONS

4.1 INTRODUCTION

This chapter addresses the basics of computer hardware
and software by describing how a computer works and by
defining the concepts of computer programs and languages.
These basics are intended to provide the uninitiated with an
understanding and appreciation for why a software development
project must follow a logical and proven process.

This chapter also provides a brief technical description
of the Ada Programming Language and a brief explanation of
its technical and management benefits.

4.2 INSIDE THE COMPUTER

In general terms, a computer is a device which receives
or "senses" data through input devices, processes that data
and provides an output in the form of information or an
action. This is illustrated in Figure 4-1. The incoming data
can originate from a human operator, external sensors, or
computer models used to simulate the external environment.

The incoming data is
processed by a computer

program which is a set of « RECEIVES INPUT DATA
instructions and data that
were previously loaded and | INPUT = ° PROCESSES AT => OUTPUT
stored in the computer. + OUTPUTS INFORMATION
The details of how these * DATA OR PERFORMS ACTION | . NFORMATION
instructions and data are . SENSORS « ACTIONS
generated and stored in the . MOBELS . SMULATIONS
computer will be discussed
later in this chapter.
PROGRAM

Once the data has been - INSTRUCTIONS

processed, the computer -

provides information to a
human operator; performs a
particular action such as
turning on an actuator or updating a data base; or provides

processed data to a computer simulation as part of its own
input data.

Fig. 4-1 Computer Definition

The major components of a computer are the input and
output (I/0) section, the central processing unit (CPU) and
the memory unit as depicted in Figure 4-2.

4.2.1 Input/Output Section
In order for the computer to be a useful device, it must

be able to communicate with people or devices outside of
itself. This communication is accomplished through input and

4~1

output devices. Examples of
input devices are terminals,
keyboards, and sensors such
as navigational instruments, EXTERNAL
altimeters, fuel level WORLD
sensors, and temperature
sensors. Examples of output
devices include printers,
displays, actuators, and

electro-mechanical devices

that are part of a weapon
system. In some instances,
the two functions are —ep
combined as they are on a
terminal which includes a

display screen and a
keyboard assembled into a Fig. 4-2 Computer Components

single unit. 1In short, it is the computer I/O that provides
the interface to the rest of the system.

4.2.2 Central Processing Unit

The central processing unit is the brain of the computer.
It is in the CPU where the actual processing or computations
take place. As already stated, the processing is based on the
computer program or set of instructions which have been stored
in the computer's memory.

As an example of the type of processing to be performed
by a CPU consider an aircraft avionics system which uses an
inertial platform and a computer program stored in memory to
perform the navigational function. An inertial platform is a
device that utilizes gyroscopes to maintain a fixed attitude
with respect to some external reference, usually the stars or
the earth's north pole, and accelerometers for measuring
acceleration. The process of navigation would involve the
following: Step 1l: Begin the process. This will require some
housekeeping and initialization to tell the computer the
initial starting position and the direction in which the
platform is pointing. Step 2: Obtain input data from the
navigational sensors: i.e.,the accelerometer outputs and the
gyroscopic attitude output. Step 3: Compute current position
and velocity based on the internally stored program. Step 4:
Output this information to the operator and/or guidance system
for further action. This process will be repeated at regular
intervals in order to provide a continuous flow of
navigational information. In order for the output to be
timely, the process needs to occur in real-time.

The CPU is in control during the entire time it is
executing these instructions. Step 3 above processed the data
received from the platform to produce the necessary
information. In this case, the computation involved
determining the change in direction relative to the referenced
stable platform and calculating the velocity by numerically

4-2

integrating the acceleration over time. By performing this
process in real-time and providing a continuous output, the
aircraft's position and velocity will be known at all times.

CORE MEMORY
MODULE-64K
(CMM-64)

GENERAL
PROCESSOR
MODULE (GPM)

INPUT/OUTPUT
MODULE (SIM-A)

Fig. 4-3 AN/AYK-14 Computer

4.2.3 Memory Unit

The third major component of the computer is the memory
unit. One of the important aspects of a computer is the
ability to store in its memory the instructions and data
required for the computer to perform its functions. By storing
different instructions and data, the computer can perform many
different tasks within the bounds imposed by the system's
design and implementation. 1In the previous example, a set of
instructions stored in memory allowed the computer to perform
navigational computations. Using a different set of
instructions, the computer could be used to determine the
health and status of the hardware components of the entire
system. This assumes that the appropriate input data is
provided by the various subsystems. The computer has the
capability to perform these functions and many more. This
ability to store and execute programs provides considerable
power. During execution of a program, the computer fetches an
instruction out of memory, performs that instruction and then
steps to the next instruction. This continues until all the
instructions have been performed. Memory i, located within
the computer, but memory can also be located externally in
memory devices such as fixed disks, or tape drives. Internal
memory is limited in capacity so external devices, which have

4-3

more capacity, are used for long term storage of large
programs and data.

4.2.4 Computer Hardware

Computer hardware comes in many shapes and sizes. Figure
4-3 shows the Navy standard computer, the AN/AYK-14, which is
used in the Navy's F/A-18 aircraft. This computer is about the
size of a bread box and its performance is comparable to the
original IBM personal computer. There are two of these plus
twenty-eight other special purpose processors in the F/A-18.

A much larger system is shown in Figure 4-4. This system
is the IBM System/400 computer and it is much more powerful
and larger than the AN/AYK-14 computer.

IBM Application System/400" Family
Mods! 810

Figure 4-4. IBM Application Systen/400 chpt;;er Vf-'anri iyV
4.3 COMPUTER RESOURCES

Now that the basics of a computer have been introduced,
it is time to address the bigger picture of what is commonly
referred to as computer resources. All too often important
aspects of a software project are arbitrarily relegated to
positions of insignificance because their importance is not
understood and, therefore, receive 1little or no program
management attention until it is too late. To preclude this
from happening, program managers must be familiar with all the

4-4

4:-----------IIlI-lIIIlllIlllllllllllllllllllllllllli

components that make up and support a computer system. Only
by fully understanding all the pieces of the puzzle, can they
properly manage computer resources. This doesn't mean that
they must have detailed knowledge of a computer processor's
operation or have the ability to generate software code for
their project. But they should have a basic understanding of
computer resources and know how these resources fit into the
overall weapon system architecture. The components of
computer resources are shown in Figure 4-5.

4.3.1 Embedded Computer Hardware

In weapon systems, the

program manager needs to be
concerned with mission SOFTWARE FIRMWARE HARDWARE

critical computer resources

INPUT A | 011010

as defined in Chapter 2. | .- | 000 [2 2]
Generally, a weapon system C- Ao | 101010 .
is designed with a special ‘ =
purpose computer because of ///’ &%2%
weight, power, application, P
or other technical Y
considerations. The special

purpose computer or

processor may take the form \\\

of a "blackbox", an assembly

of cards, or even a single

card which is embedded in

the system. This means that

the computer is an integral PAPERWARE PEOPLEWARE
part of the weapon system.

Fig.4-5 Computer Resources
With today's Very High

Speed Integrated Circuit (VHSIC) technology, a computer can
be built on a single integrated circuit, a piece of silicon
not much larger than a 1/4 by 1/4 inch square. To the
untrained eye, an embedded computer system may be physically
indistinguishable from the rest of the system. An example
would be a computer used in the flight control system of an
air-to-air missile or the navigational computer in a
satellite.

4.3.2 Software

Software is defined by the Federal Acquisition
Regulations (FAR) as the set of instructions and data that are
executed in a computer. This definition clearly distinguishes
data items, such as documentation and specifications that are
called out in the contract, from the deliverable software such
as an operational flight program. Although some common
definitions of software often include all the documentation
as well, the DOD definition includes only the executable form
of the instructions and data. Software is not something you
can touch or feel. It is intangible: is has no mass, no
volume, no color, no odor, no physical properties. It can only

4-5

be represented by a listing or other forms of documentation.
Software will be addressed in greater detail later in this
chapter.

4.3.3 Firmware

The evolution of computer hardware has also brought about
the marriage of hardware and software in a combination called
firmware. Firmware is defined as software that has been
implemented in hardware using memory devices such as read only
memory (ROM), programmable ROM (PROM), erasable PROM (EPROM),
and electrically erasable PROM devices (EEPROM). These
devices, and other similar devices, allow software to be
permanently implemented and not easily changed. 1In order to
change software that has been implemented in firmware, one of
two actions must be taken. If the firmware is ROM or PROM,
then these memories or ICs must be physically removed from a
circuit card and replaced with other ROMs or PROMs that have
been programmed with the new software. If the firmware is
EPROM, then the ICs must be removed, reprogrammed, and
reinstalled. The EEPROM can be altered in circuit but this
requires special additional equipment or circuitry. The EPROM
is usually altered using an ultra-violet light source and the
EEPROM can be altered using electrical means.

Because of the difficulty encountered in changing
software that has been implemented in firmware, firmware is
used only in applications that:

Require Speed - Many signal processing applications such
as electronic warfare systems must receive, analyze,
categorize and jam radar signals from hostile threats almost
instantaneously. They cannot tolerate the relatively slow
processing speeds associated with general purpose computers.
In these cases the various algorithms or programming steps are
implemented in firmware in order to significantly increase the
processing speed.

Require rotection from unauthorized amperin r
alterations - The software required to run a computer is
oftentimes stored in firmware. By using these devices,

computer manufacturers preclude programmers from inadvertently
changing the resident software, commonly referred to as the
operating system software, and possibly causing the computer
to fail or to operate improperly.

Require permanent software - Programs that have been
implemented in firmware are immediately available as part of
the memory and do not have to be loaded when the computer is
first powered up. This also provides a form of protection
from power failures. A thoroughly tested and stable program
is a good candidate for firmware.

Firmware also introduces an additional dimension to
software. Because it is software, all the configuration

4-6

management practices associated with software also apply to
firmware. Once the software is implemented in firmware, the
ICs are managed as hardware configuration items. In order to
provide for future support, a method must exist which traces
the specific software version to a unique piece part.

4.3.4 Peopleware

People are also an important part of the system. The
program manager tries to satisfy the user's need through a
reasonable system design, but it is the user and support
personnel who are the ultimate judge of the delivered
product's quality. This is why it is important that the
program manager involve the user in defining requirements, in
evaluating test results, and interpreting system interface
requirements. Other chapters will address the importance of
involving the user and support personnel in the development
process.

4.3.5 Documentation

Because software development is largely an intellectual
exercise, documentation is vital for communicating during the
software development and support phase. Documentation must be
a logical by-product of the development process. As software
development tools and computer programming languages become
more sophisticated, documentation will become more and more
of an automatic by-product of the development process. Until
then, however, the program manager must insure that adequate
documentation exists to accommodate development and follow-on
support. It is important to remember that software is
intangible, with no physical properties, and that
documentation is the only means available for describing and
keeping track of its development progress.

4.3.6 Development/Support Facilities

A computer system consists of hardware, software,
firmware, peopleware, and paperware as indicated in Figure
4-5. All these elements, which are brought together in a
support facility, must be available during the development and
support phases of the weapon system. The support facility is
an important aspect of computer resources. It includes not
only the physical property, such as the building, host
computers, and utilities, but also the supporting software
documentation needed for development and support. A software
development facility and a software support facility are
virtually identical since the same software and hardware tools
are required for both. The facility may consist of a host
computer, which may be either a large mainframe computer or
a minicomputer, along with terminals for the programmers,
analysts, testers, librarian, and other personnel (Figure
4-6). The facility may also be a networked system of
individual work stations. In order to perform software
development and support, several software programs are

4-7

required. These programs
include compilers, linkers,
loaders, simulators,
editors, and other
development and management
tools.

HOST COMPUTER

DATA

S/W

4.4 COMPUTER ARCHITECTURE JEST

The computer can be PLAN

thought of as a collection
of hundreds of thousands of OPERATOR'S
electrical switches. Each CONSOLE
of these switches can be in
one of two states, on or
off. Since the switch has
two states, the status of
any one switch can be

TEST
PROC

represented by a "0" or a Ll j@ﬁ
"1", i.e., on = 1 and off ,,,,,j.. =
=0. The binary numbering .

WORK WORK WORK WORK
system can be used to STATION sTaTION $TATION

STATION

represent the state of
these switches since it too
has only two digits, 0 and Fig. 4-6 Support Facility

1. Instructions and data

can therefore be represented by a string of 0's and 1's and
by using the rules of Boolean logic, named after the English
mathematician and logician George Boole. These switches are
interconnected to build modern electronic computers. Modern
computers, no matter how large or how small, perform the
following basic types of operations or instructions:

a) Arithmetic (add, subtract, multiply, divide)
b) Logical (AND, OR, NOT, EXCLUSIVE OR)

c) Transfer -.control (branching, loops, subroutines)
d) Data movement (load, store, move)

e) Input and Output (in, out)

f) System (HALT, interrupt)

4.4.1 Bits and Bytes

In the binary numbering system a bit represents one
digit, either a "0" or a "1". A word is a string of bits that
represent instructions or data; the larger the string the more
information it can represent. Any character can be
represented by using "coding" techniques. One widely used
technique is the American Standard Code for Information
Interchange (ASCII) which is used for encoding the alphabet,
numbers, and other special characters. There are 128
characters in the ASCII set and 256 characters in the IBM set,
another widely used coding technique. As an illustration,
part of the ASCII alphabet and number coding scheme is listed
below:

CHARACTER BINARY CODE DECIMAL EQUIVALENT
0 00110000 48
1 00110001 49
2 00110010 50
3 00110011 60
A 01000001 65
B 01000010 66
C 01000011 67
D 01000100 68
E 01000101 69
F 01000110 70

Notice that the ASCII standard uses eight bits or digits for
the binary representation. This eight bit word length is
commonly referred to as a BYTE and was usually the smallest
word size in earlier computers, particularly in personal
computers (PCs). The eight bit structure of PCs has been
replaced by the 16 bit word, with 32 bit structures quickly
taking their place. Large mainframes have always used larger
word sizes such as 32 or 64 bit word lengths. The advantage
of a larger word length is that it contains more information
in a single word and can access larger segments of stored
data. A computer architecture is designed around specific
word sizes since the internal communication between the CPU,
memory and I/0 is dependent on the number of bits in a word.
For example, a computer that has an eight bit architecture (8
bit buss) communicates eight bits at a time (in parallel)
while a 16 bit machine communicates 16 bits at a time. This
effectively doubles the throughput.

4.4.2 Instruction Set Architecture

The computer architecture and 1its 1internal logic
structure 1is designed and implemented by the computer
manufacturer to perform a finite and fixed set of
instructions. A computer with a minimal set of instructions
can perform the same computations as one with a larger set,
The difference, however, will appear in the execution time
and the sequence of instructions in the software program.
Let's assume that a programmer is required to generate a
computer program to perform a particular task. A program
written for a machine with a large set of instructions will
usually require fewer lines of machine instructions than a
program written for a machine with a smaller set of
instructions. The difference in actual machine instruction
sets is dependent on the manufacturer's objectives in design.
Computers can be designed and optimized for specific
applications. Some computers are designed to perform very
rapid mathematical computations; others are designed to
manipulate large amounts of data in a very efficient manner;
and still others are designed with a very powerful graphics
capability. No computer, however, can be built so that it can

4-9

perform equally well in all applications. There is no
industry standard for computer design and each manufacturer
is free to design and target their machines for the
application of their own choosing. This means that each
computer has its own internal and fixed repertoire of
instructions. This fixed set of instructions is called the
computer's instruction set architecture (ISA) and in order to
execute a computer program on a particular machine, that
program must be specifically targeted or written for that
machine's ISA. In other words, the binary instructions and
data that make up a software program are different for
computers with different ISAs. Instruction set architectures
are the "blueprints" that describes the interface to the set
of electronic hardware or circuitry to execute the different
types of operations or instructions.

Word size 1is an important part of the computer
architecture. Recall the -earlier discussion on the
communication of instructions and data within the machine.
Part of the basic design is determining the internal signal
communication paths. This internal communication is
accomplished through the use of an electronic component called
a buss. The buss provides parallel signal paths between the
CPU, memory, and external devices. A computer will typically
have two busses as shown in Figure 4-7. The design
architecture will also determine the internal communication
within a computer. A computer that has a 16 bit architecture
communicates internally 16 bits at a time (in parallel). A
computer that has a 32 bit architecture communicates 32 bits
at a time. This effectively gives the computer with 32 bits
a greater throughput or faster execution capability.

Although there are no
official standards for
commercial hardware designs
and computer architectures,
the surge of sales in
) personal computers has made
de-facto standards of some

ADDRESS BUSS

CONTRO!

INPUT ; Intel and Motorola computer

& =3 MEMORY architectures. Within the
DOD wev r

OUTPUT . however, there does

exist a standard for 1SaA,
| namely MIL-STD-1750A. This
standard has been used

I patTA & BUSS successfully in both Air
Force and Navy programs but

its application is usually
Fig.4-7 Computer Busses limited to airborne and
embedded computer

applications. This is because this ISA was initially designed
by the Air Force in the 1970s around a 16 bit word size. It
was specifically intended for airborne applications and it
has a limited memory capacity. Today's rapidly evolving
computer technology is quickly making MIL-STD-1750A 1ISA

4-10

e

somewhat obsolete. The advantage of standard ISAs is
portability of executable software.

4.5 SOFTWARE LANGUAGES

Software languages are the vocabulary or lexicon used to
instruct computers on the functions they will perform.
Software languages are categorized into three groups: machine
language, assembly language, and higher order language.

4.5.1 Machine Language

Machine language is the most primitive and basic of all
the languages and the only language understood by a computer.
It is written in binary code and provides the machine the
instructions it is to execute. The binary coded words are
those words that were designed for the machine's 1ISA.
Programming in machine language, forces the programmer to
structure the problem solving steps in the same way the
machine will execute them. When computers were first
introduced, that was exactly how engineers constructed their
computer programs. Since data, instructions, and memory
locations are represented by 0's and 1's (See Figure 4-8),
this method is very tedious and error prone and becomes nearly
impossible for practical problems. In addition, every
computer has its own unique machine language and because of
this, machine language programs are not transferable between
different type machines.

4.5.2 Assembly Language 11010000 00001100 00000101 11000000
01010000 11010000 11000000 00111110

Early in computer 01000001 11010000 11000000 00111010
development engineers 01011000 01100000 11000000 10000010
learned to use the power 01000001 10110000 00000000 00000000
of the computer to assist 01000001 00110000 00000000 10000110
in _ the ' programming | oo coi0oi 00000000 00000100
1 1 0011001 0 100

gi?g::;; ué?iéeadbinagi 01000110 01100000 11000000 00010100

01011100 10100000 11000000 10100010

code, the engineer 01011101 10100000 11000000 10000010
developed a shorthand 11100001 01100000 00000000 00000000
notational language that 01011000 11010000 11000000 00111110
was easler to understand. 10011000 11101100 11010000 00001100
This notational language 00000111 11111110

was called assembly

language. Assembly 00000000 00000000 00000600 00010000
language represents each 00000000 Q0000006 00000000 00100000
instruction with a 00000006 00000000 00400000 00006110
mnemonic expression and 00000000 00000000 00000000 00000001
data is represented by its

equivalent decimal number. Fig. 4-8 Binary Object Code

The engineer or programmer

still structures the problem solving steps the same way the
machine executes them; but now the computer itself is used to
perform the translation from assembly language into machine

4-11

language. For example, the assembly language program in
Figure 4-9 will find the average of "N" number of grades.
STHT SOURCE STATEMENT

1 AVERAGE CSECT

2 STM 14,12,12(13)

3 % THIS PROGRAM FINDS THE AVERAGE OF N INTEGER VALUES*

4 BALR 12,8

5 USING %12

6 ST 13,SAVE+4

7 LA 13, SAVE

8 * STANDARD LINKAGE FROM OPERATING SYSTEM *

9 L 6,N *REGISTER 6 USED TO INCREMENT*
10 LA 11,0 *REGISTER 11 USED FOR SUMMING*
n LA 3,ADDR *ADDRESS OF FIRST NUMBER
12 LooP A 11,0 (3) ASUM=SUM+NEXT NUMBER
13 LA 3,4 (3) *GET ADDRESS OF NEXT NUMBER
14 BCT 6,L00P
15 M 10,=F'1' *EXTEND SIGN BIT TO HIGH ORDER
16 * *REGISTER PAIR
17 0 10,N XINTEGER PART OF AVERAGE IS
18 * *PLACED IN REGISTER 11 (IN HEX)
19 * XAND REMAINDER IS IN REGISTER 10
20 XOUMP
21 L 13, SAVE+4
22 LM 14,12,12 (13)

3 BR 14

26 SAVE DS 18F

25N bC F'é'

26 ADDR ©OC F'16,32,442,988,-26,388"
27 END

28 =1

Fig 4-9 Assembly Language Program

This program now needs to be translated into the binary
code that the machine can execute. This translation process
is known as "assembly" and it is performed by another program
called an "assembler". The software program written in
assembly language is known as the "“source" program and the
binary code created by the assembler is called the "object"
program or code. The assembly program (e.g., the source
program in Figure 4-9) would then become the object program
shown in Figure 4-8.

The introduction of assembly languages greatly simplified
computer programming and resulted in an increase in
productivity. Use of assembly language, however, does
introduce some inefficiency in execution because the
translation process introduces some overhead (additional
code). The general approach to translation employed by an
assembler can not always optimize the binary instructions to
be as efficient as binary code written directly by a good
programmer. Because the assembly language source program
makes it easier to understand and to crrrect errors, modifying
programs becomes easier and the benefits accrued from this far
outweigh the inefficiency introduced by the translation
process. Assembly language, however, is also computer

4-12

oot

dependent since every computer has its own assembly language
and assembly language programs are not transferrable between
different types of machines.

4.5.3 High Order Langquage

The next advance in programming occurred with the
introduction of higher order languages (HOLs). HOLs use
statements that are more English-like, easier to understand,
more productive, easier to support, and less dependent on the
computer design. Examples of higher order languages are
COBOL, FORTRAN, Pascal, and Ada. Although assembly languages
were an improvement over the laborious and error prone machine
languages, they retained a one for one correspondence with the
instruction set of a particular machine. This means that
every machine instruction set has a different assembly
language so when programming in that language, the programmer
has to tailor the problem solving steps to the particular
machine's repertoire of operations. Higher order languages
broke away from this dependence. FORTRAN, which is an acronym
for FORmula TRANslator, was developed for scientists and
engineers and allowed the creation of mathematical algorithms
and programs without the need to know the details of a
particular computer ISA. The COmmon Business Oriented
Language (COBOL) was created in order to help the business
community manage large amounts of data. Although these
languages can be used in applications other than those they
were designed for, they have found their broadest application
in the domain they are best suited for, namely scientific and
business applications respectively. Different problem domains
have created the need for new languages tailored to the
peculiarities of that problem solving process. As a result
of this need, hundreds of HOLs have been developed.

As with assembly language, a higher order language must
be translated into a particular machine code. This process
of translation is called "compiling" and the translator is a
software program called a compiler. A compiler is generally
a very large and complex program that translates the HOL
source program to the machine executable object program.
Because the object program is machine dependent, the compiler
translation is also machine dependent. That means that each
different computer must have its own unique compiler.

Compilers are typically designed with the flexibility for
translating HOL source code to many different machines. This
is done by designing the compiler with a front end and a back
end. When the translation is being performed, the source
program instructions are first processed by the front end to
create a program in a generic intermediate assembly-like
language. This front end process is the most difficult part
of the translation. The second step is to process this
intermediate program with the back end of the compiler. The
purpose of the back end, or code generator, is to translate
the intermediate code into the machine language of the

4-13

"target" computer (the one that will actually execute the
program). The code generation process of a compiler is
similar to an assembler. To translate to different target
computers, the developer has to build the unique code
generator for that particular target computer and the front
end, which is the toughest to develop, remains unchanged. 1In
industry, once the first compiler is developed, subsequent
compilers for different machines can be quickly constructed.
An example of the previous programs (Figures 4-8 and Figures
4-9) written in the Ada programming language is shown in
Figure 4-10.

4.6 Ada DESIGN
with ADA_IO;
The Lda programming | procedure AVERAGE is

: use ADA_IO;
l'.anguage was des'}gl?ed -- This procedure will compute the average of
with three overriding -- N number of grades (GRADE) using integer
concerns: program -- numbers. Declares INTEGER variables.
reliability and support, \
programming as a human GRADE,
activity, and efficiency AVE: INTEGER;
(1]. The result of these I: INTEGER:=0;
concerns was the) SUM: INTEGER:=0;
creation of a language | °%9™"

X put (“Enter the number of grades:”);
that embodies the put_Line (*);
principles of modern get (N);
software engineering toop;
ractices Applyin exit when (I>=N);

p s . pply g put ("Enter numerical grade:");
these principles, or get (GRADE);
tools of the trade, I=1+1;
helps one deal with two o e
very real and difficult put ("AVERAGE =);
aspects of large-scale put (AVE);
software developments: end AVERAGE;

complexity and change.

. Fig. 4-10 Ada Program

Ada was specifi-

cally designed to encourage or help the engineer or programmer
develop software that is reliable and simple to maintain. In
particular, Ada emphasizes program readability over ease of
writing. For example, the rules of the lanquage require that
program variables be explicitly declared a particular type
such as real, integer, Boolean, etc. Since the type of a
variable is unalterable, compilers can ensure that the only
operations performed on variables are those allowed by the
rules of the Ada language syntax. This prevents the
programmer from attempting to perform an illegal operation
such as multiplying an integer value with a string variable.
Furthermore, error-prone notations have been eliminated
because the language avoids the use of cryptic encoded forms
in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program
units in a way that facilitates program development and
support.

A major strength of Ada lies in its ability to perform
numerous checks both during compilation and at run time. The
richness of the syntax makes it more difficult for a
programmer to code and compile a program, but once compiled
an Ada program is more apt to run correctly than a program
written in any other language. In other words, Ada enforces
discipline into the programming process. This is a
significant contribution to reliable software.

Concern for the human programmer was also stressed during
the language design. Above all, an attempt was made to keep
the language as small as possible by trying to avoid the
pitfalls of excessive complexity. Ada uses simpler designs
to provide language constructs that correspond intuitively to
what the users would expect.

Like many other human activities, software programs are
becoming larger and their development is becoming ever more
decentralized and distributed. Consequently, the ability to
assemble a program from independently produced software
components was a central objective of the Ada design.

No high order language can avoid the problem of compiler
translation efficiency. Languages that require complex and
elaborate compilers; that result in the inefficient use of
storage; or slow down the execution times, force these
inefficiencies on all machines and on all programs. Every
construct of the Ada language was examined in the light of
current state-of-the-art compiler implementation techniques.
Any proposed construct whose implementation was unclear or
that required excessive machine resources was rejected [2].

4.7 FEATURES OF THE Ada LANGUAGE

The Ada programming language has incorporated the
following features:

Abstraction means to ascribe essential properties at a
given level. For example, a vehicle is an abstraction at a
general level. One can provide further detail to the class
of vehicles by identifying an automobile. Then one can
further describe the various characteristics of an automobile
such as a six cylinder engine, two door sedan and so on to
describe a specific automobile. This of course can continue
down to the smallest component necessary. Notice that each
lower level adds detail.

Information hiding is the technique of providing only the
essential information necessary for interfacing with a given
unit. A specification control drawing is an example of
information hiding. A drawing of this type provides
information on the inputs and outputs of a particular item or
device without providing any details on the internal structure
of the item or device. This prevents detailed information from

4-15

confusing essential information. Abstraction and information
hiding assist programmers in dealing with complexity.

Modularity is the principle of logical structuri=j. One
decomposes a design through levels of abstraction so that it
has the properties of loose coupling and tight cohesion. A
module can be described as an entity or unit whose internal
elements are tightly bound or related (cohesion) but with
light interconnections (coupling). In design, one would
collect all logically related resources into one module. This
is the principle of localization. Modularity and localization
help the programmer to deal with complexity as well as with
change. The effects of change can be better controlled or
isolated through modular design and localization.

All these features contribute to reliable, maintainable,
understandable, and efficient designs. They also allow the
programmer to cope with the complexities of large-scale
systems and the inevitability of change. Ada incorporates all
of these attributes. The different concepts embraced by Ada
are not new to programming langquages. What is unique about Ada
is that Ada is the first language to combine all these
features into a single language.

There are some unique features provided by Ada that are
not provided by any other production languages: the package,
exception handling, tasking, and generics.

A package is an entity or collection of related objects
and their operations. This collection of resources can be
viewed as a wall surrounding a collection of logically related
entities such as operations, data types, and related program
units [2]. The package encourages and enforces the principles
of modularity, localization, abstraction, and information
hiding.

Exception handling provides a controlled way to exit from
an abnormal event. In real-time operations, one cannot allow
an abnormal event such as division by zero or a register
overflow to halt the entire process. Through exception
handling, abnormal events are flagged during processing and
purposefully handled to prevent a catastrophic failure. This
is done in one of three ways: allowing execution to follow an
alternate path, restarting the operation at a controlled
point, or overriding the current data with default values.
Exception handling 1is one way of designing graceful
degradation into the software.

Tasking is another principle important in real time

operations. Simply stated, tasking allows concurrent or

parallel processing to occur in the same or separate

processors. In the real world, processes are generally

concurrent. This approach to design breaks the sequential

mindset and is one of the features of Ada that is most often

criticized. Real-time applications require fast, reliable
4-16

completion of tasks whose priorities are constantly changing.
Two often heard weaknesses of Ada are mentioned here. Ada
completes each task before starting another task and Ada fixes
priorities at compilation time and is therefore inflexible to
the changing environment or the real world [3].

Generics is a feature that reduces complexity and
encourages the production of reusable code components. The
concept of generics is similar to a template whereby a
structure and associated operations are defined for later use
in specific application. For example, a generic routine can
be created for sorting. The process of sorting is the same
whether one is sorting numbers, names, or objects. In other
languages, one creates different sort routines for each
application. With the generic capability in Ada, one routine
will suffice. This reduces the need for multiple programs to
perform the same task. This also aids in dealing with large
complex systems by introducing common generic packages.

It is important to understand that Ada provides a means
for achieving good designs because it embodies principles of
good systems and software engineering. It is also important
to know that the Ada programming language itself is only a
small part of the process of designing sound systems. The
design and development of good software requires more than
just a good programming language. One must still employ sound
design practices and procedures, strong configuration
management, good system design tools and aids, and sufficient
training on the use of these methods and tools.

4.8 TRANSITION TO Ada

It is important to understand that the Ada programming
language is in a period of transition [4]. There are several
factors to consider when evaluating the risk of using Ada.
Foreman and Goodenough provide an Ada survival checklist in
Figure 4-11. The Software Engineering Institute's publication
entitled "Ada Adoption Handbook: A Program Manager's Guide"
(4] provides considerable detail and suggestions for dealing
with Ada in today's environment. One must understand that
workarounds exist for many of the known deficiencies of Ada.

4.9 PROGRAM DESIGN LANGUAGES

One of the most important tools currently used for
designing software is a program design language (PDL). The
DOD's policy concerning PDLs is given in DOD Directive 3405.2,
"Use of Ada in Weapon Systems" which states:

"An Ada-based program design language shall be used
during the designing of software. Use of a PDL that
can be successfully compiled hy a validated Ada
compiler is encouraged in order to facilitate the
portability of the design".

4-17

A PDL 1is a formal language

(sometimes referred to as * Get experience and training
pseudo-code) for specifying the)

"blueprint" for software * Be conscious of Ada's shortfalls
implementation. When Ada is used * Select a contractor with & proven
as a PDL, the properties of the track record

language allow a PDL "blueprint" .

of a software design to be * Consider parallel development
actually run through an Ada * Consider development of tools
compiler, just 1like the final and development aids
product, with the restriction .)

that it doesn't execute. This Select a compiler based on:
allows the compiler to perform - Using more resources

all the syntactic and semantic

checks it normally performs. - Evaluation of perforsance
This 18 a capablllty not - Evaluation of environment
possessed by any other HOL and support services
currently in use. Several

Ada-based PDLs exist. The IEEE * Know your risk and manage it

Standard, IEEE-STD-990-1987, is Fig. 4-11 Ada Survival Checklist
one example.

A PDL is not a panacea for software development. Poor
software designs can be produced using a PDL. PDLs, however,
have major advantages which can make the process of software
design, code, test and integration a less painful process.

4.10 REFERENCES

1. ANSI/MTL-STD-1815A, "Ada Programming Language", 22 Jan
1983.

2. Booch, Grady, "Software Engineering With Ada", Menlo
Park, Ca: The Benjamin/Cummings Publishing Co.

3. Taft, Darryl K., "Revisions to Ada Standard Expected
After Reviews", Government Computer News, January 22, 1988.

4, Foreman, John and John Goodenough, "Ada Adoption
Handbook: A Program Manager's Guide", Software Engineering
Institute Technical Report CMU/SEI-87-TR-9, May 1987.

CHAPTER 5
SOFTWARE DEVELOPMENT PROCESS

5.1 INTRODUCTION

The development of a weapon system requires integrating
technical, administrative, and management disciplines into a
cohesive, well-planned, and rigorously controlled process. As
a critical component of a weapon system, software must be
developed under a similarly disciplined engineering process.
In his book "Software Engineering Concepts" (1], Richard
Fairley defines software engineering as:

"... the technological and managerial discipline
concerned with systematic production and maintenance
of software products that are developed and modified
on time and within cost estimates".

Barry Boehm [2] defines software engineering as a discipline
that:

"involves the practical application of scientific
knowledge to the design and construction of computer
programs and the associated documentation required
to develop, operate, and maintain them".

The main point is that the software development process
must be scientific and disciplined. This is not different
from the hardware development process. As with hardware, the
goal of the software development process is to consistently
produce a quality product, within schedule and cost.

With the publication of DOD-STD-2167, "Defense System
Software Development", the DOD took the first step toward a
standardized, systems engineering approach to software
development [3]. This standard is supported by other military
documents and describes a standard process and documentation
for computer software development. To use this standard
effectively, the program office must have a thorough
understanding of the system being developed; particularly the
overall system requirements and constraints. Requirements must
be defined early through trade studies and prototyping.
Traceability of requirements must be maintained throughout the
acquisition life cycle and any requirement that cannot be
traced up to a higher requirement should be modified or
eliminated.

The material presented in this chapter will describe
activities that occur in a "typical" program. The reader
should understand that real programs seldom actually follow
this "typical" profile. Phases can occur concurrently, they
can be bypassed altogether, protracted, or condensed to

satisfy the needs of the overall program objectives. The
point to understand is that although the process is somewhat
constant, its chronological occurrence is not fixed. The

5-1

following sections describes the classical approach to
software development.

5.2 SUMMARY OF DEVELOPMENT ACTIVITIES
Figure 5-1 presents an overview of the development

activities of an integrated software and hardware system as
reflected in DOD-STD-2167A.

Hardware
Development

HW Rqmts
Analysls

Prelim
Design

' Detailed
Design

>

Fabrication

HWCI
X Test @@
System . System _ : Svetem
Rqmts (SRR) (SDR)---------------@------- @ ----------- .- yoie S .
Anatyuiln“iqn ,. ,‘ TRR ‘In;:.g‘ @
) cscl b ‘@
CSC Integ| Test @
Coding 8] & Test ‘
Detailed|CSU Test
Prelim| Design
SW Ramts] oo on
Analysis Software
Development
! } { 4 4 | |
SRR SER S§R PDR CDR TRR FCA PgA FQR
Functional Allocated Devel Product
Baseline Baseline e e e ———> Baseline

Fig. 5-1 Software/Hardware Development

All weapon system development programs begin with a
determination of system level requirements. These activities
occur during the Concept Exploration (CE) and the
Demonstration and Validation (D/V) phases of the acquisition
cycle. :

The Systems Requirements Review (SRR) may be hela after
the initial determination of system functions (functional
analysis) and the preliminary allocation of these functions
to configuration items. The SRR provides an opportunity for
an initial insight into the developer's direction, progress
and convergence on a system configuration. The System Design
Review (SDR) is a review of the overall system requirements
in order to establish the functional baseline documented by
the system specification. The functional baseline should
allocate requirements to hardware and software configuration
items.

The development of both hardware and software can begin
once the Functional Baseline is established. These activities
occur in the Full Scale Development (FSD) phase and are
monitored through informal and formal reviews and audits as
described in MIL-STD-1521B, "Technical Reviews and Audits for

5-2

__

Systems, Equipment, and Computer Resources". The Allocated
Baseline for software should be established at the Software
Specification Review (SSR). For hardware the allocated
baseline is normally established at the Preliminary Design
Review (PDR); but no later than the Critical Design Review
(CDR) .

Building of the developmental products can start once the
design effort is completed. For hardware this building effort
is called fabrication and for software it is called coding and
testing. Testing is further subdivided into Computer Software
unit (CSU) testing and Computer Software Component (CSC)
integration and testing. After the items are built,
formalized testing should take place in accordance with
approved test plans and procedures. A Test Readiness Review
(TRR) will be conducted by the government in order to
determine the developer's readiness to perform formalized
acceptance testing. Completion of software testing will lead
to system integration and testing. Both Functional
Configuration Audits (FCA) and Physical Configuration Audits
(PCA) will be conducted on both hardware and software
configuration items in order to establish the respective
Product Baselines. After a Formal Qualification Review (FQR)
at the system level, the integrated system will be turned over
to the government for operational testing as defined in the
system's Test and Evaluation Master Plan (TEMP). Successful
completion of this testing indicates that the product is fully
defined and ready to be manufactured. For hardware, the
production line would begin to assemble carbon copy items. For
software, turning out copies is a trivial process since the
product is complete and needs only to be duplicated on the
required media for transfer to the target system computer.

5.3 SYSTEM REQUIREMENTS ANALYSIS/DESIGN

Figure -.-2 depicts the activities and products associated
with the CE and D/V phases. The CE and D/V phase activities
are system oriented to:

(a) Define overall project objectives;

(b) Determine project feasibility;

(c) Develop acquisition/development strategy;

(d) Establish resource cost and schedule;

(e) Define hardware/software interrelationships;

(f) Define technical and business functions and
performance.

The first step in any system development is to generate
the system level requirements and reflect them in a System/
Segment Specification (SSS) (Type A Specification). It doesn't

5-3

SYSTEM
REQUIREMENTS System Spec (Prelim)
ANALYSIS

System
Requirements
Review

System Spec
System/Segment Design Doc
SYSTEM Software Requirements Spec (Prelim)
interface Requirements Spec (Prelim)
DESIGN Sottware Development Plan
Configuration Mgmt Plan

System

Design =) Software
! Review Development
v ¥ v

SRR SDR SSR

Functional! Bassline

Fig. 5-2 System Requirements Analysis/Design

make any difference whether it is a hardware only, a software
only, or a hardware and software system; the most important
and critical aspect of weapon system development is to "nail
down" the system requirements. These requirements must first
be finalized at the functional level, before being allocated
to hardware and software.

The requirements are nailed down through a series of
engineering studies and tradeoffs. These studies include:

(a) Requirements Refinement - The overall system
requirements, including constraints, should be examined to
identify the factors that drive requirements for computer
resources. These factors may include system interfaces,
interoperability, communication functions, personnel
functions, the anticipated level and urgency of change, and
requirements for reliability and responsive support.

(b) Operational Concept Analysis - The operational
concept should be analyzed in order to determine the role of
computer resources. Particular attention is paid to

requirements for mission preparation, operator interface,
control functions, and mission analysis.

(c) Tradeoff and Optimization - The effects of system

constraints such as the operations concept, the support
concept, performance requirements, logistics, availability and
maturity of technology, and limitations on cost, schedule, and
resources are determined. Alternative computer resources
approaches are studied to:

- meet operational, interoperability, and
support requirements;

5-4

- determine how the system requirements for
reliability and maintainability will be satisfied;

- determine how requirements for system security
will be met;

A determination will also be made regarding the
suitability of standard computer languages and instruction set
architectures.

(d) Risk - For each approach, the risks associated
with computer resources are evaluated. Typical risk areas
include compiler maturity, availability and maturity of the
software support tools, loosely defined or incomplete
interface definitions, and lack of adequate computer memory
or throughput capability.

5.3.1 System Design

System Design begins on or about the time of the SRR.
The major function of System Design is to establish the
functional baseline of the system by updating and approving
the system specification and the operational concept; by
developing the initial subsystem/segment designs; and by
further refining the systems engineering planning activities
to be employed during system's development. Typical products

are:
(a) System Specification;
(b) System/Segment Designs;
(c) Configuration Management Plan (CMP);

(e) Computer Resources Life Cycle Management Plan
(CRLCMP) ;

(£) Preliminary Software Requirements Specification
(SRS);

(9) Preliminary Interface Requirements Specification
(IRS);

5.4 SOFTWARE DEVELOPMENT

Before undertaking a discussion of software development
it will be necessary to present the following definitions:

Computer Software Configuration JItem (CSCI) - A
configuration item for computer software.

Computer Software Component (CSC) - A distinct part of
a computer software configuration item (CSCI). CSCs may be

5-5

further decomposed into other CSCs and Computer Software
Units.

Computer Software Unit - An element specified in the
design of a Computer Software Component (CSC) that is
separately testable. A CSU is the lowest level of software
decomposition.

Weapon system software is partitioned into CSCIs based
on the program office's management strategy. Each CSCI is
managed individually and follows its own development cycle.
The software development cycle is defined in DOD-STD-2167A and
consists of eight major activities: Systems Requirements
Analysis/Design (See Section 5.3), Software Requirements
Analysis, Preliminary Design, Detailed Design, Coding and CSU
Testing, CSC Integration and Testing, and CSCI Testing,
Systems Integration and Testing (See Section 5.5). These
steps typically occur during FSD, although they may occur one
or more times during each of the system life cycle phases [4].
This is especially true if software prototyping is performed
during the Demonstration and Validation Phase. The steps are
not simply linear since software development is iterative in
nature and any step may be repeated many times during the
course of system development. For example, problems
discovered during software integration and testing may force
the software designers to go back and redo the Software
Requirements Analysis and all the subsequent steps.

Managing software is very similar to managing hardware;
both require discipline and control in order to succeed. An
important part of the control process is the formal
determination of whether or not the developer is ready to
proceed to the next step. This is usually determined through
a series of design reviews and audits. Software reviews and
audits can occur in conjunction with hardware reviews; but
they do not necessarily have to. It 1is important that
appropriate system level reviews be held at strategic
intervals. This will focus everyone's (hardware and software
personnel) attention on system design and leads to timely
baselines for the hardware, the software, and all the
interfaces. Software development has two major reviews that
are separate from hardware reviews: the Software Specification
Review (SSR) and the Test Readiness Review (TRR).

The SSR is a formal review of a CSCI's requirements as
specified in the software specifications . A collective SSR
for a group of configuration items, addressing each
configuration item individually, may be held when such an
approach is advantageous to the government. Its purpose is
to establish the allocated baseline for preliminary CSCI
design by demonstrating to the government the adequacy of the
software specifications.

The TRR is a formal review of the contractor's readiness
to begin formal CSCI testing. It is conducted after software

5-6

test procedures are available and CSC integration testing is
complete. The purpose of the TRR is to determine whether the
contractor is ready to begin formal CSCI testing that can be
witnessed by the government. A technical understanding must
be reached on the informal test results, and on the validity
and the degree of completeness of such documents as an
operator's manual, a user's manual, and a computer
programmer's manual.

5.4.1 Software Requirements Analysis

The first step in the software development cycle is the
Software Requirements Analysis (Figure 5-3). The purpose of
the Software Requirements Analysis is to establish detailed
functional, performance, interface, and qualification
requirements for each CSCI based on the System Specification.
The means of testing and examining the software are also
identified. During requirements analysis, prototype versions
of high risk areas, user interfaces, and/or systems skeletons

SOFTWARE
Software Requirements Specification
REQUIREMENTS intertace Requirements Specification
ANALYSIS

SOFTWARE

PRELIMINARY
, SPECIFICATION DESIGN
5 REVIEW
SOR SSR PDR

Functional Baseline Allocated Baseline

Fig. 5-3 Software Requirement Analysis

may be partially designed and coded. Prototyping is an
excellent tool for performing requirements analysis.

The developer should also identify support tools and
resources, and establish timing and sizing estimates. The
Program Manager must ensure that all software requirements,
as reflected in the software development specifications, are
traceable to the system specification and that the Software
Development Plan 1is wupdated to identify the required
resources, facilities, personnel, development schedule and
milestones, and software tools. The developer may also
customize the techniques, methodologies, standards and
procedures to be used in software development.

The outputs of the Software Requirements Analysis are
final versions of the software specifications, and an updated
Software Development Plan. These documents will be reviewed
at the SSR. The Computer Resources Life Cycle Management Plan
(CRLCMP) may also be updated.

$.4.2 Preliminary Design

After the software allocated baseline is established, the
developer proceeds into the Software Preliminary Design as
depicted in Figure 5-4. Preliminary design activity determines
the overall structure of the software to be built. Based on
the requirements, the developer partitions the software into
components and defines the function of each component and the
relationships between them. Input and output relationships
with external devices (such as displays and sensors) are
refined according to the hardware configuration and software
structure. The timing and memory budget for components are
established to ensure that the software requirements can be
satisfied within the hardware constraints.

SOFTWARE Software Design Document (Prelim)
PRELIMINARY Software Test Plan (Test Identification)
DESIGN Interface Design Document (Prelim)

PRELIMINARY

DESIGN
REVIEW

DETAILED
DESIGN

!]
SSR PDR CDR
1

Allocated Baseline Qs Developmental Conliguration smemesmm—t

Fig. 5-4 Software Preliminary Design

The developer should provide a preliminary design that
insures clear traceability of requirements from the software
specifications down to the software components for each CSCI.
The software design is reflected in the preliminary Software
Design Document (SDD) and Interface Design Document (IDD).
These documents will describe the system architecture, memory
and processing time allocations, interrupt requirements,
timing and sequencing considerations, and input/output
constraints for each software component. The developer should
also generate a Software Test Plan (STP) outlining the
proposed test program and escablishing test requirements for
software integration and testing.

The output of the contractor's efforts are preliminary
versions of the software design dccuments and the Software
Test Plan. These documents are reviewed during the PDR.
Throughout the development effort, the developer will conduct
informal design reviews, inspections, and walkthroughs to
evaluate the progress and correctness of the design for each
software component. The results of these inspections will
serve as the basis for material presented at the PDR.

5.4.3 Detailed Design

The purpose of the Detailed Design (Figure 5-5) activity
is to logically define and complete the detailed software
design (not coding) that satisfies the allocated requirements.
The level of detail of this design must be such that the
programming of the computer program can be accomplished by
someone other than the original designer. The component's
function, its inputs and outputs, plus any constraints (such
as memory size or response time) should be defined. Logical,
static, and dynamic relationships among the components should
be specified and the component and system integration test
procedures generated.

SOFTWARE Software Design Document (Detalled Des)
DETAILED Software Test Descriptions (Cases)
DESIGN Interface Design Document

CRITICAL

DESIGN CODING AND CSU

: REVIEW TESTING
CDR
P ? R @~ Developmental Contiguration PCA

Fig. 5-5 Software Detailed Design

A complete detailed design includes not only a
description of the computer processes to be performed but also
detailed descriptions of the data to be processed. A data
dictionary is an effective way of documenting this needed
design information. For software that processes or
manipulates a large amount of interrelated data, the structure
of the data itself should be defined.

Components which must be coded in assembly language or
another "non-standard" language should be clearly defined and
the reasons for the departure justified. Any special
conditions that must be followed when programming the

5-9

component should be similarly described and clearly documented
[5]. These exceptions are normally addressed in the Software
Development Plan.

During the entire design and development process the
contractor should document the development of each unit,
component, and CSCI in software development folders (SDFs).
A separate SDF should be maintained for each unit, each
component, and each CSCI. The SDFs are normally maintained
for the duration of the contract and made available for
government review upon request. A set of SDFs may include the
following information:

(a) Design considerations and constraints;
(b) Design documentation and data;

(c) Schedule and status information;

(d) Test requirements and responsibilities;
(e) Test cases, procedures and results.

The contractor documents and implements procedures for
establishing and maintaining SDFs in a Software Development
Library. The library is a management tool used by the
contractor to assist in developmental configuration
management. It serves as a "storage house" to control access
of software, documentation, and associated tools and
procedures used to facilitate the orderly development and
subsequent support of software [6].

A CDR is conducted at the conclusion of the detailed
design. The CDR should assure that the software design
satisfies the requirements of both the system level
specification and the software development specifications.
Following an acceptable CDR, and not before, the design should
be released for coding and unit testing. This process may
occur incrementally with individual releases of CSCIs.

5.4.4 Coding and CSU Testing

The purpose of programming is to translate the detailed
software design into a programming language such as Ada. It
is during the programming activity that listings of the source
program are dgenerated (Figure 5-€). Based on the detailed
software design presented in the design specification,
programming of each unit is accomplished by the assigned
programmer in the specified programming language, usually Ada.
As the programming of each unit is completed, the programmer
examines the program for errors. Only after the programmer
is satisfied that the source program correctly implements the
detailed design, should the program be compiled. Compiling
translates the source program to its machine executable form,
the object program.

5-10

“

CODING
&
CSU TESTING

SOURCE CODE
&
LISTINGS

CSC INTEGRATION
& TESTING

CDR TRR

Developmental Contiguration

Fig. 5-6 Coding and CSU Testing

If the detailed design is in error, is ambiguous, or is
not sufficiently complete to permit the programming to
continue without further definition, the programmer should
consult the original designer. The resolution should be
documented, and all affected requirements, design, and test
documentation updated accordingly.

The purpose of the unit testing activity is to eliminate
any errors that may exist in the units as they are programmed.
These errors may be due to mistakes by the programmer or
deficiencies in the software requirements and design
documentation. Usually, the test of a unit is the
responsibility of the programmer who programmed the unit. Unit
testing is the activity that permits the most control over
test conditions and visibility into software behavior. An
efficient software development effort requires rigorous unit
level test so that most errors are detected before CSC
Integration and Test.

Besides producing the source and object code and their
respective listings, the contractor develops and records in
software development folders the informal test procedures for
each unit test as well as the test results. The contractor
will usually conduct informal code inspections or walkthroughs
on each coded unit and component during several stages of its
development. There are no formal reviews scheduled during this
step of the development cycle.

5.4.5 CSC Integration and Testing

Once the software is programmed and each unit and
component is tested for compliance with its design
requirements, the contractor should begin CSC Integration and
Testing as illustrated in Figure 5-7. The purpose of CSC
Integration and Testing is to combine the software units and

5-11

components that have been independently tested into the total
software product and to demonstrate that this combination
fulfills the system design. The integration is done in a
phased manner with only a few components being combined at
first, additional ones added after the initial combination has
been tested, and the process repeated until all components
have been integrated. The phasing of this integration should
be based on the functional capabilities that can be
demonstrated by specific groups. There may be some overlap
with the previous step in that some software components may
be ready for integration while others are still being
programmed.

CSC INTEGRATION
& Software Test Descriptions

{Procedures)
TESTING

TEST
READINESS
REVIEW

CsCi
TESTING

TRR

Developmental Contiguration

Fig. 5-7 CSC Integration and Testing

Most testing performed during Coding and CSU Testing, and
CSC Integration and Testing is called "informal testing". This
term doesn't imply that the testing 1is “casual" or
"haphazard", but instead implies that the testing doesn't
require government approval. Some formal testing may be
accomplished during these steps, but most formal testing is
usually accomplished during the next step.

5.4.6 CSCI Testing

After completion of a successful TRR, the contractor will
proceed with, CSCI Testing (Figure 5-8), the last step of the
software development cycle. The purpose is to perform formal
tests, in accordance with the software test plans and
procedures, on each CSCI and to establish the software Product
Baseline. Testing during this step is intended to show that
the software satisfies the Software Requirements Specification
and the Interface Requirements Specification.

Software Test Reports

CscCi Computer System Operator’s Manual
REQUIREMENTS Software User's Manual
Software Programmer's Manual
TESTING Firmware Support Manual

Computer Resources Integrated Support Doc
Software Product Spec
Version Description Daoc

FUNCTIONAL/ SYSTEM INTEGRATION

PHYSICAL
CONFIGURATION AND TESTING
AUDITS
TRR FCA/PCA FQR

Developmental ConliguratioNam=p Product Baseline

Fig. 5-8 CSCI Testing

Throughout CSCI testing, the contractor should be
updating all previous software documentation, analyzing test
data, generating the Software Test Reports (STR), and
finalizing the Software Product Specification (SPS) (C-5
Specification). This will be the basis for the software
Product Baseline normally established at the PCA, which may
immediately follow, or be conducted concurrently with, the FCA
for a software only development. Normally, the PCA occurs
after the software is released for integration and testing
with the system following the software FCA as illustrated in
Figure 5-8. During the software FCA the government verifies
that the CSCIs perform in accordance with their respective
requirements and interface specifications by examining the
test results and reviewing the operational and support
documentation. The PCA is the formal technical examination
of the as-built software product against its design. This
includes the product specification and the as-coded
documentation.

The typical outputs of the contractor's efforts in CSCI
Testing are the Software Test Report (STR), operational and
support documentation such as the Computer System Operator's
Manual (CSOM), the Software Users Manual (SUM), the Software
Programmer's Manual (SPM), the Firmware Support Manual (FSM),
the Computer Resources Integrated Support Document (CRISD),
the Version Description Document (VDD), and the Software
Product Specification (SPS). Except for updates and/or
revisions, all deliverable documentation should be completed
at this time. Figure 5-9 contains a 1listing of the
standardized software documentation, as defined in
DOD-STD-2167A, that may be required for software development
programs.

Engineering
SSS
SRS
IRS Management opa ationals
SPS Support
SSDD i
vDD SDP
SDD Test
farh SQPP gm
FSM
CSOM sTP
CMP CRISD STD
STR
CRLCMP TEMP

Fig. 5-9 Software Products

5.5 SYSTEM INTEGRATION AND TESTING

The purpose of System Integration and Testing is to
ensure that the developed software works with the system in
the environment that it was designed for (Figure 5-10). The
system is turned over to the government after an acceptable
Formal Qualification Review (FQR). The FQR is a system-level
review that verifies that the actual system performance
complies with the system requirements. For computer
resources, it addresses the aspects of the software and
hardware performance that have been tested after the FCA and
P7A. A successful FQR is predicated on a determination that
the system meets the specified requirements in the hardware,
software and interface specifications.

The contractor's role will diminish significantly
subsequent to the FQR. Contractor confiquration control of the
software should terminate once the product baseline is
approved and the government assumes responsibility. aAll
updated documentation, source and object code listings, and
all other items stipulated in the contract will be delivered
to the government. The government will then assume
configuration control responsibility. The contractor, however,
will be available to support the government's test and
evaluation efforts and to conduct any required acceptance
tests.

5.6 TAILORING
The purpose of tailoring is to reduce the overall costs

of aa acquisition, primarily by reducing the amount and type
of documentation being delivered by the contractor and by

5-14

SYSTEM

INTEGRATION
&

TESTING

QUALIFICATION) ==t & el &
REVIEW EVALUATION SUPPORT

L4

FCA PCA FQR
Developmental -> Product
Configuration Baseline

Fig. 5-10 System Integration and Test

eliminating redundant or unnecessary testing or procedures.
Some questions whose answers will provide tailoring quidance
are:

(a) Is all of the documentation described in DOD-STD-
2167A necessary?

(b) What documentation is already available?

(c) Is it cost-effective to modify it?
(d) Is the contractor's format acceptable?
(e) How many copies are actually needed?

(f) How can DOD-STD-2167A be tailored?
(9) Is a formal design review necessary for each CSCI?
(h) How should they be scheduled?

DOD-STD-2167A states that the tailoring process for this
standard entails the deletion of non-applicable requirements.
But how does a program manager determine which requirements
are not applicable? Figure 5-11 illustrates the tailoring
process.

Most tailoring is implemented through the statement of
work (SOW). A thorough wunderstanding of requirements
(functional, performance, test, documentation) is required in
order to properly tailor the standards and specifications.

Is The No
Requirement >
Appropriate 9

l Yes

TAILOR OUT
THROUGH SOW

Requlrement Yes of TASK REQUIREMENT
Adequate ? THROUGH SOW

J No
y

Too Restrictive
Is The

Requirement - e
Too Restrictive
or Too Flexible ?

ELIMIANTE OR MODIFY
REQUIREMENTS
THROUGH sow

\ Too Flexible ADD OR QUALIEY

REQUIREMENTS
THROUGH SOw

Fig. 5-11 Ta.loring Process

The first step is to ask if the requirement is
appropriate? If not, then tailor it out through the SOW. If
the requirement is appropriate, then ask if the requirement
is adequate? If it is, then impose the requirement through the
SOW. If the requirement is not adequate, ask if the
requirement is too restrictive or too flexible? If it's too
restrictive, delete it or modify it in the SOW. If it's too
flexible, add to or modify the requirement in the SOW. Use
careful judgement when tailoring a program. Don't tailor areas
arbitrarily simply to reduce program costs because in the long
run, this may increase life cycle costs.

5.7 SUMMARY

Software that is part of a weapon system is managed by
partitioning into CSCIs. Each CSCI is managed individually
and follows its own software development cycle. Software
development activities can be broken down into six steps; any
of which can be repeated as many times as necessary during the
development cycle. These six steps are Software Requirements
Analysis, Preliminary Design, Detailed Design, Coding and CSU
Testing, CSC Integration and Testing, and CSCI Testing. These
steps typically occur during the Full Scale Development Phase.

DOD-STD-2167A is the approved standard to be used by DOD
agencies for software development. It is to be used in
conjunction with DOD-STD-2168, "Software Quality Program
Plan". These two standards are not intended to discourage the
use of any particular software development method, but
instead, aid the Program Manager in developing and maintaining
quality software. They should be wused throughout the
acquisition life cycle and tailored according to system needs.

5-16

T

It is especially important to develop the product as a
system. Never lose sight of the fact that hardware and
software development are intimately related. Although they
are developed in parallel, software is almost always in the
critical path and it is up to the Program Manager to insure
proper integration of the two through carefully planned
reviews and audits. The talents of an independent
verification and validation (IV&V) activity may be used to aid
in this process.

5.8 REFERENCES

1. Fairley, Richard E., "Software Engineering Concepts",
Tyngsboro, Mass: McGraw Hill Book Co., 1985.

2. Boehm, Barry, "Software Engineering Education: Some
Industry Needs", in Software Engineering Education: Needs and
Objectives, Edited by P. Freeman and A. Wasserman,
Springer-Verlag, Berlin 1976.

3. DOD-STD-2167A, "Defense System Software Development", 29
February 1988.

4. DOD Directive 5000.29, "Management of Computer Resources
in major defense Systems", 26 April 1976.

5. Rubey, Raymond J., "A Guide to the Management of Software
in Weapon Systems", 2nd Edition, March 1985.

6. Ferens, Daniel V., "Mission Critical Computer Resources
Software Support Management", Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, First Edition, May
1987.

CHAPTER 6
SOFTWARE TEST AND EVALUATION

Software test and evaluation is one of the most
difficult, frustrating, and expensive activities that is
performed during system development. Unfortunately, it is
also one of the most misunderstood functions of the entire
system acquisition cycle. Before discussing the details of
software testing, let us review the software development life
cycle and see how the software test process fits in.

6.1 TEST PLANNING

Test and Evaluation (T&E) planning is initiated at the
inception of the development process. During the Concept
Exploration (CE) Phase the initial draft of the Test and
Evaluation Master Plan (TEMP) is developed. The TEMP is the
basic planning document for all T&E related to a particular
system acquisition and is used by the Office of the Secretary
of Defense (OSD) and all DOD components in planning,
reviewing, and approving all T&E activities. The TEMP
provides the basis and authority for all other detailed T&E
planning documents.

The TEMP addresses two types of computer resources:
system support and embedded computer resources.

6.1.1 System Support Computer Resources

System support computer resources include all the
government and contractor planned software and computer
resources, required to fully test the overall system. These
test resources include [1]:

Test Support Equipment - All unique or modified test
support equipment required to conduct the planned test

program including any special calibration and software
requirements.

Threat Systems - All threat simulators against which the
system will be tested including the number and timing
requirements.

Simulators, Models, and Testbeds - All system simulations
required including computer-driven simulation models and
hardware-in-the-loop testbeds identified by specific test

phase.
Special Requirements - All non-instrumentaticn

capabilities and resources such as special data
processing or databases.

For all of these test resources the system requirements

are compared with existing and programmed capabilities in
order to identify any major shortfalls.

6-1

6.1.2 Mission Critical Computer Resources

The initial draft of the TEMP will include a preliminary
Software Test and Evaluation Plan as an appendix. This plan
describes the anticipated software testing necessary to
demonstrate the ability of the mission critical computer
resources to achieve the system objectives. The types and
extent of testing will be discussed in greater detail later
in this chapter. Detailed information on the TEMP may be
found in DOD Directive 5000.3-M-3, "Test and Evaluation Master
Plan (TEMP) Guidelines".

During the Demonstration and Validation (D/V) Phase, the
TEMP is updated to reflect further refinements in the
objectives and evaluation criteria of the weapon system
computer resources and to include plans for Developmental Test
and Evaluation (DT&E) and Operational Test and Evaluation
(OT&E). As part of contractor involvement, a Software
Development Plan (SDP) is generated along with a Software Test
Plan (STP). The contractor developed STP must reflect the
overall Software Test and Evaluation Plan as stated in the
TEMP. Along with the SDP, they become the basic documents
governing the conduct of the mission critical computer
resources development and test activities.

Once the Software Requirements Specification (SRS) and
the Interface Requirements Specification (IRS) have been
grnerated and approved, the
preliminary software design
is initiated (Figure 6-1).

SOFTWARE §

P.eliminary design is the REQMTS
development of an overall 8PEC
skeletal structure or {8R8)
architecture for the

i clude such things as the
types, names and number of caD AVIONICS Fcs
scftware modules; their :nn
celling sequence and their
i, put and output parameters;

tleir approximate execution |oFFensive | |oerensive| |auin] [|
times; and other pertinent

scftware. The overall
structure is defined to

relationships that should Fig. 6-1 Preliminary Design
exist between the various
modules. Since Ada modules and packages can be compiled

without the requirement that lower level code be available,
preliminary design using an Ada-based Program Design Language
(PDL) is very valuable.

Official government approval will be provided once a
preliminary design has been completed and a Preliminary Design
Review (PDR) has been held. The PDR should be approached with
care and preparation since its completion is a signal to the
contractor to prnceed with the detailed desigr.

6-2

During the detailed
design (Figure 6-2), the |: . 0
overall architecture ! P [L
developed during the | L s
preliminary design is
fleshed out with detailed
algorithms and logic
implementation details. 1In | - L ;
the past, pseudo-code | . L ‘ L C);
(English-1like programming | oo T L '
statements) was often used ~~ t
in this phase. DOD policy, CSC TESTING
however, now requires that
the detailed design also be
developed using Ada or an Ada based PDL. Once again, use of
Ada as a design language will be immensely useful because the
actual coding of the detailed design will be a natural
follow-on to the detailed design. During both the preliminary
and detailed design phases, software "test" practices such as
inspections and walk-throughs (which will be discussed in
detail later in this chapter) will be immensely useful in
finding errors or inconsistencies in the overall system
design. The Critical Design Review (CDR) officially
terminates the detailed design phase.

Fig. 6-2 Detailed Design

After successful
completion of the CDR, task WARNING is
coding initiates the entry FAULT_IN_SENSOR;
process of building sub- entry OUT_OF_LIMITS (ON_SENSOR: in SENSOR_NAME;
modules. These submodules [end WARNING;

are progressively combined
with other submodules to
form larger and more task RECORDIN&;T::U (OF SENSOR: in S
complex modules and blocks | Y LsRSTATS (orseuon: i i e
of software (Figure 6-3). WITH_STATE: in SENSOR_STATE);
With each submodule or unit end RECORDING;

coded, individual and group
computer software component
(CSC) testing can start.
This testing 1is usually
informal in nature and is performed by the programmer.
Formalized testing, as described in the Software Development
Plan and the Software Test Plan, can begin after the
completion of coding and informal programmer testing. The
contractor can conduct his own formalized testing but any
formal testing which is to be witnessed by the government,
doesn't begin until a formal Test Readiness Review (TRR) has
been conducted. The purpose of the TRR is to determine
whether the contractor has completed his own testing and has
the resources and the plans and procedures to formally

demonstrate to the government that the software works as an
entity.

Fig. 6-3 Coding

Software integration testing exercises a single Computer
Software Configuration Item (CSCI). This type of testing

6-3

usually requires a dedicated

mainframe computer since (g . 1O°T CoMPuTER T
other software or subsystem | .Lg ‘ -
simulations will have to be ST

used (Figure 6-4). Sometimes & s
the actual target computer [~

(or an engineering model) may , — Test

be used to test the software.] C |
The actual hardware, however, ~ "
typically is not available at anaET s S\ | TEsT
this time and a simulation or | courvren consoLe PROC
emulation is substituted. One

of the primary purposes of Fig. 6-4 Software Integration Testing

this detailed software system

testing is to ensure that the software is inherently sound
and that it demonstrates the potential for performing its
function once it is married to the system hardware in a test
setup called a hot bench.

Hot bench integration or |
testing is perhaps one of the v] [Cres] [Coom] [eo] [x]
most frustrating parts of I
software T&E (Figure 6-5).

Once the software is married Lremewenna] || coururen | ar
to the actual hardware, the

difficult part begins. The
first step is to establish a Ljp
hot bench or Systems /”

Integration Lab (SIL), as it Tﬁr . MAINFRAME
is sometimes called. The ”wc TERMINAL

next step is to populate the

SIL with actual black boxes, Fig. 6-5 Hot Bench Integration

cable runs, power supplies,

displays and system computers all coi.figured as closely as
possible to the final article. Unfortunately, a laboratory
environment can only approximate the real world since a
laboratory is a relatively benign environment. In spite of
this, intermittent, spurious, and often mysterious problems
seem to arise. These and other problems will be discussed
later in the chapter.

DT&E and OT&E can begin once hot bench testing is
successfully completed (Figure 6-6). Although the two tests
are sometimes combined because of schedule constraints, the
objectives of the two test are different and the kinds and
amount of data required by each are different. Usually the
level of detail required for DT&E is much more than that
required for OT&E. This means that the hardware and software
testing required for DT&E is usually more stringent than that
required for OT&E.

6.2 COST OF SOFTWARE FIXES

Before discussing the details of software testing, it
would be instructive to examine the cost of removing errors

6-4

A R

from software. Figure 6-7
shows the cost of a typical §§ -
software development project -

broken down by the various g S

phases of development [2]. As L /////

one can see, the cost of " - ‘i
finding and correcting a o /o
software problem in the early \L\\JL‘ ’
phases is insignificant when aAM E
compared to the cost of RADAR

finding and correcting that

same problem once the
software has been delivered. Fig. 6-6 DTA&E/OTAE Testing
Although these are not

absolute numbers that apply all development projects, the

message is clear; "Spend more time up front finding errors and
you will reduce your overall cost".

The question that needs
to be asked is "Why does it
cost so much less to find and

REQUIREMENTS

correct errors in the earlier oEMaN
stages of software develop- -
ment?" There are several TRt
reasons that have been put INTEGRATION
forth: Teay

SYBTEM TRST
(a) At the beginning

the pressure is less intense | ““mm "

and, since there is little or MAINTENANCE

no code to examine, there is

more time to look for the

problem.

Fig. 6-7 Cost of Software Fixes
(b) The amount of

paperwork and the amount of

detail to be examined is much less. Top-level design
requirements, interfaces, and test requirements are being
examined without regard to implementation details.

(¢) Errors introduced at the top level, such as in
requirements or overall system design, will be propagated
manyfold into the detailed design and coding of the discrete
software components.

(d) Software programmers seem to undergo a psycho-
logical change once code has been generated and computer based
testing has begun [3]. They seem to be less sensitive about
their mistakes when dealing with requirements and design
considerations than they are about errors in coding.

(e) Once computer based testing begins, major resources
are tied up in testing. Mainframe computers, weapon system
hardware, technicians, and system analysts can escalate cost
very dquickly; hence, once a problem is found there is a

6-5

tremendous psychological pressure to correct it as soon as
possible. Unfortunately, the amount of paperwork involved in
the correction procedure is immense and the impact of one
software error wusually has propagated throughout other
modules. Corrections are not always complete or totally
accurate [3].

In summary, it is very clear that the greatest return on
the dollars invested in finding and correcting software
problems occur during the early stages of software
development: the requirements and design phases.

6.3 SOURCES OF SOFTWARE ERRORS

If one examines where the typical software errors occur,
it is somewhat surprising to learn that they also occur mostly
in the early stages of software development. As can be seen
from Figure 6-8, about 40% of all software errors are
attributed to problems in

specification. Twenty-eight
percent are due to incomplete CATEGORY PERCENTAGE
or erroneous specifications
and 12% are due to INCOMPLETE/ERRONEOUS SPEC 28
. . s INTENTIONAL DEVIATION FROM SPEC 12
intentional deviations from | yioation or PROGRAMMING STDS 10
the specification. ERRONEOUS DATA ACCESSING 10
Violations of programming | ERRONEOUS LOGIC 12
standards contribute another §:§2’:§g”§sg$’l‘$“”°"s 2
10%. Errors due to coding | ;yppoper InTERRUPTS 4
and programming mistakes WRONG CONSTANTS/DATA VALUES 3
(i.e., erroneous data DOCUMENTATION _8
accessing, erroneous logic,

. TOTAL 100
erroneous computations,
improper interrupts ’ wrong Fig. 6-8 Sources of Software Errors

constants and data values)
comprise only about 38% of all errors [2].

Comparison of this figure with the previous figure is
very revealing. It tells us that the bulk of the errors occur
during those phases of software development when errors are
the least expensive to fix. The conclusion is very obvious:
the more time and effort that is put into requirements
definition and design, the fewer the mistakes and the cheaper
it will be to correct them. The more you pay now, the less
that you will pay later.

6.4 TYPES OF TESTING

Software testing can be broken up into three general
categories: human testing, software only testing, and
integration testing.

6.4.1 Human Testing

Human testing is defined as an informal, non-computer-
based method of examining computer program architectures,

6-6

R

designs and internal and external interfaces for the express
purpose of determining how well they reflect overall system
requirements [3]. Human testing is comprised of inspections,
walk-throughs, desk checking, peer ratings, and design
reviews.

6.4.1.1 Inspections

During an inspection, the programmer explains to a group
of three or four peers the overall approach, rationale, choice
of algorithms, logic, and overall module structure of the
program. The purpose is to ensure correctness and consistency
in structure, coding conventions such as variable definitions
and use, programming standards and procedures, and overall
unity of design. At the end of the inspections, which usually
last about two hours, all errors, inconsistencies, and
omissions are 1listed and given to the programmer for
correction. Under no circumstances is the list of errors ever
allowed to be reviewed by the programmer's supervisor or
anyone else. The purpose of the inspection is to improve the
final product in a non-threatening environment and not to
appraise the programmer's performance. Statistics are also
collected in order determine the quality of the product and
the progress being made in the development process.

6.4.1.2 Walk-throughs

During a walk-through, the group of three or four peers
come prepared with test cases so that they can "play computer"
and mentally step through the design and the logic flow. 1In
a similar fashion to inspections, all errors, inconsistencies,
and omissions are summarized and given to the programmer for
correction. The results are also confidential and are never
seen by anyone outside the group, including the programmer's
supervisor. The climax of both inspections and walk-throughs
is a meeting of the minds between all the participants [3].
Statistics may once again be gathered.

6.4.1.3 Desk Checking

Desk checking is the least productive of all human
testing since it involves the programmer sitting at his desk
and reviewing his work. It is human nature to miss errors
that one has committed. Desk checking, however, can be
performed individually at any time and without the need for
convening a meeting with other individuals. It is better than
doing nothing at all.

6.4.1.4 Peer Ratings
Peer ratings involve a group of programmers reviewing
each other's work. Each programer submits 1 or 2 modules to

his peers and everyone anonymously reviews each others work.
Results are tabulated and passed around. Like inspections and

6-7

walk-throughs, peer reviews are very beneficial in improving
commonality, overall consistency, and program integrity.

There are other benefits to inspections, walk-throughs,
and peer ratings beside the obvious one of finding errors and
inconsistencies. The participants themselves benefit because
they are exposed to other programming styles and new
techniques which they may want to adapt for their own use.

6.4.1.5 Design Reviews

PDRs and CDRs are not normally considered by the
government as part of the test process. This is unfortunate
because the contractor considers the completion of the PDR as
a signal that the preliminary design is acceptable and that
he can proceed with the detailed design. Likewise, completion
of the CDR is the contractor's signal to begin coding and
checkout. Very often the government fails to really do a
thorough review of all the documentation submitted prior to
either the PDR or the CDR. Because of this, the actual PDRs
and CDRs may be superficially conducted and the contractors
may proceed into detailed design without a thorough review of
the overall design and without assurances that the overall
system requirements are actually reflected in the design.

There is no immediate solution to this problem since it
is often due to thz lack of adequate manpower. Documentation
review prior to design reviews may always be inadequate.
Alternatives are to thoroughly review only critical portions
of the design, thoroughly review only the module interfaces,
or augment the engineering staff with outside help. 1If the
funding is available, an Independent Verification and
Validation (IV&V) contractor can be used. Outside consultants
can be brought in or help can be sought from the various
military a labs or software support agencies throughout each
service.

Another solution is to hold incremental PDRs and CDRs.
By spreading out the reviews the available staff can pay more
attention to details. This of course has to be weighed
against overall schedule slippage. One must remember,
however, that an incompletely reviewed software design is
guaranteed to introduce schedule slippage anyway. As the
commercial states, "You can pay me now, Or you can pay me
later".

6.4.1.6 Benefits of Human Testing
Human testing is a very productive undertaking. 1In his

book, The Art of Software Testing, Myers [3] discusses the
following positive qualities of human testing:

(a) Experience has shown that it is quite effective in
finding errors and it should be used on every programming
effort;

6-8

T

(b) Since it is usually applied between the start of
design and the beginning of computer based testing, it
substantially contributes to productivity and reliability;

(c) It leads to finding 30 to 70% of the design and
coding errors;

(d) There is a higher probability of proper error
correction since they are found early in the development
phase. Programmers tend to make more errors correcting errors
found during computer-based software testing;

(e) It results in errors being found in clusters or
batches as opposed to computer-based testing which finds
errors one at a time;

(£) It lowers the cost of software testing since the
costs involved are a few programmer's man-hours as opposed to
the computer resources and the large number of personnel
invoived in computer-based testing.

In summary, human testing provides the highest return on
your investment of valuable software test and evaluation
dollars.

6.4.2 Software Only Testing

Software only testing is defined as that testing that is
performed solely for the purpose of determining the integrity
of the software when it is tested as an entity. 1In other
words, one wants the assurance that the software works before
it is married to the hardware. The reason for this is that
software is usually integrated with newly developed hardware
which has its own maturation problems. Integrating untested
software with unproven hardware makes it very difficult to
determine where the problems lie: hardware or software.

6.4.2.1 Black Box Testing

Black box testing
entails testing a particular
software unit without any { weur
knowledge about the internal DATA
structure or logic of that
unit (Figure 6-9). Various
test cases are Qgenerated
based on the specification
and the requirements of the
unit. The correctness of the
internal structure of that

QUTPUT
DATA

software unit is then Fig. 6-9 Black Box Testing
determined by the output data
generated in response to the input data. This is done by

designing the test cases with two types of input data. The
first type of input data falls within the boundaries expected

6-9

by the software unit and the second type of data falls outside
these boundaries. The reason for the latter 1is that
oftentimes it is those parameters (i.e. invalid) that do not
fall within the expected limits that cause the biggest
problems. It is an old dictum in software development that
ensuring that the software doesn't do the unexpected is as
important as ensuring that it does what it is supposed to do.

The primary objective of software testing 1is to
demonstrate performance and reliability. Often it is useful,
if not essential, to approach software tecsting (particularly
at the lower levels) with the attitude of "Let's try to break
it". This is to demonstrate the ability of the software to
recover from abnormal events or to degqrade in a graceful or
controlled manner. Since complete and exhaustive testing of
any practical sized software is impossible, one must develop

an acceptable level of maturity in the software. This is
often measured by the number of faults that are occurring
during test. As software matures, the faults discovered

decrease and, as a minimum, become controllable (i.e., the
configuration is stable).

The reason that exhaustive testing of software 1is a
practical impossibility is that the number of valid and
invalid test cases are infinite. For example if a certain
input parameter should fall within the values of 1 and 10,
truly exhaustive testing would test all the values between 1
and 10. This is clearly an impossibility since there are an
infinite number of valid values in between these two limits.
Likewise, exhaustive testing of all invalid parameters is also
impossible because these are =2)so infinite.

To summarize, software of any practical size can never
be exhaustively tested and can never be guaranteed to be
totally error free. Because of this, the goal of software
testing 1s to demonstrate a certain level of performance so
that there are reasonable assurances +that the software
performs according to the specification. How reasonable the
assurances are is a simple matter of economics, how much can
one afford to test?

6.4.2.2 White Box Testing

Unlike black box testing, white box testing is concerned
with the internal structure and logic of the software unit.
The test cases are generated using a listing of the code as
cpposed to the requirements specification (Figure 6-10).
Generation of the input data., however, is very similar to the
generation of input data for black box testing. Both valid
and invalid input data are generated for the test cases and
the output data 1s analyzed to determine the correctness of
the computer code. Exhaustive white Dbox testing is also
prohibitive for the same reasons that exhaustive black box
testing is 1mpossible.

Exhaustive white box
testing, however, does have

another dimension other than weur | 71 f . outeur
all the possible valid and oA, N DATA
invalid input parameters.
Since the tester has

knowledge of the internal
logic and program structure,
a goal would be to test all
possible logic paths that S
exist within the code. fig. 6-10 White Box Testing
Although all paths can be

executed, it 1s impossible to test all combinations. As an
example, consider the logic flow of Figure 6-11 which shows
a simple logic sequence that contains two loops that execute
up to 12 times. This sequence contains 10 raised to the 20th
power different finite paths. If one could test one logical
path every nanosecond (trillionth of a second), it would take
4000 years to test all the
different paths. Using a
real example, it would take
over 60,000 vyears to - taTEs < 12 Tives
perform a similar type of P

. ~
exhaustive test on the / N s
Titan III missile guidance _{é//A:k | I\ {7\

LOGICAL

software. JOPC-0—0 OO~
\\\\[jf E],
The goal of white box 20
testing <then 1is also to ¢ 10 DIFFERENT PATHS

minimize the number of
errors in the delivered
code and to provide
reasonable assurances that
the software performs according to the specification.

* 4000 YEARS @ 1 LOGICAL PATH PER NANOSECOND

Fig. 6-11 Software Complexity

6.4.2.3 Top-Down/Bottom-Up Testing

In actual practice the best course of action is to
develop a sofitware test strategy that incorporates both black
box and white box testing philosophy. Test procedures,
therefore, should make use of both the specifications and the
existing listing. But regardless of what test philosophy is
used, there remains the choice of whether to perform bottom-up
testing or top-down testing.

Bottom-up testing begins with the lowest level module or
unit (i.e. one that does not call any other module or unit)
and tests them through the use of dummy modules or units
called "drivers" (Figure 6-12). These drivers are coded and
used for the specific module test and then replaced when the
next higher level module is coded and integrated.

Top-down testing begins by testing the highest level

module first and then progressively integrating and testing
lower level modules. A higher level module requiring lower

6-11

level modules wuses dummy
modules that are called
"stubs" (Figure 6-13). The
stub may be as simple as
sending a message such as
"This %tub is a greplacement MODULE MODULE
for the sorting module" or as [__;1___1
complicated as performing

dummy commands to simulate MODULE MODULE MODULE
actual processing times.

DRIVER DRIVER

There are benefits and Fig. 6-12 Bottom-Up Testing
problems associated with both
approaches. In the bottom-up approach a substantial amount
of time_is spent in designing, coding, and testing module
drivers’. Since these
drivers will only be used for
testing, it is somewhat
wasteful of a programmer's
time. In addition many
significant timing problems L 1
may be masked and not MODULE MomufJ sTUB
discovered until late in the
test cycle when both { —1
schedules and resources are
tight. On the plus side, if STuB STus
the driver was properly
designed, the next higher Fig. 6-13 Top-Down Testing
level module can be tested
with some assurances that the lower level modules are correct.

EXEC

In the top-down approach, there is a tendency to code the
easier modules first. Often complex and critical modules are
not coded and tested until late in the test cycle because of
the difficulty in predicting module complexity. These modules
may sometimes require more time and energy than was initially
planned or is currently available. On the plus side, once a
higher level module is coded and tested, it is repeatedly
tested as more and more stubs are replaced by fully
functioning modules. This repeated testing will test the
internal consistency of each module and its interface with
- .e rest of the software. It will also reveal major timing
problems very early in the test cycle while there are
sufficient resources to adequately solve major problems. This
evolutionary approach helps to build up maturity and
confidence in the software.

In a1 anner analogous to black box and white box testing,
the testing philosophy should incorporate both top-down and
bottom~-up testing. At the outset, the most complex and

Software drivers should never be discarded since they will be needed during the support
phase.

“:

critical modules may be designed and coded from the bottom-up
and the rest of the system can be designed and tested from the
top-down. The key is to accurately determine the critical and
complex modules; not always an easy task.

6.4.2.4 Software System Testing

Integration and testing of the software as a whole entity
can begin once all the modules in the configuration item have
been coded and individually tested by the programmer. One
must remember that when the software is tested as a system,
you are not trying to duplicate the results of the various
lower level tests. The main purpose of the software system
test 1s to ensure that the coded software, meets the overall
performance objectives of the software requirements and system
specifications. In other words, does the assembled software
package meet the overall system requirements?

In order to conduct
software system tests, it

is necessary to use the
target computer or to

DATA
SIMULATION
SOFTWARE

emulate/simulate it in the
software workstation or
mainframe. One must also
simulate the rest of the Al
hardware and the external @
environment (Figure 6-14).
In addition large amounts | et =~ OPERATORS
of data may have to be CONSOLE
generated and introduced

into the software according Fig. 6-14 Software System Test
to approved test plans and
procedures. Since the simulations required are sometimes

extensive, the software tester must have assurances that the
simulations are correct, something that may not be all that
simple. Lack of adequate simulations is a major contributor
to delays in software system testing. If the program is
sharing computer resources with other programs or
organizations, allocation of computer time and priorities must
be carefully considered. Many programs have been delayed by
too many organizations vying for the same resources.
Purchasing, installing, and checking out another computer
system takes months and leasing time on an off-site computer
is not only expensive but also slows down the turn-around
time.

6.4.3 Integration Testing

Upon completion of software system testing, systems
developers embark on perhaps the most difficult,
time-consuming and frustrating part of integrated testing--
hot bench testing.

6.4.3.1 Hot Bench Testing

If the system software works when tested as a CSCI, the
next step is to marry it to actual system hardware configured
in a test setup known as a hot bench (Figure 6-5). Other
common names for the hot bench are systems integration lab
(SIL) or systems integration facility (SIF). The objectives
are to test the software in a laboratory environment which
closely approximates the actual system to be fielded. Besides
the actual black boxes, the hot bench will include actual
cable and wire runs, actual data busses, and any ancillary
equipment required to test the system (e.g., terminals,
printers).

Once you start testing the software with real hardware,
you will discover that the real world is a very "noisy"
environment. All of a sudden problems will be propagated
throughout the hot bench that are due to external causes. For
example, a large air conditioning compressor kicks in or the
copying machine next door is getting extensive use and large
transients are induced into your equipment. Electrical
transients in digital system can create all sorts of unwelcome
behavior. Sensitive instruments are affected by stray radio
frequency (RF) signals and computers do funny things when the
humidity climbs above a certain threshold level. Couple this
with the traditional difficulty encountered in determining
whether a problem is caused by the hardware or the software
and one soon realizes that an inordinate amount of time is
spent chasing ghosts, random malfunctions, and other elusive
spirits.

Since this testing usually takes place towards the end
of Full Scale Development and coincides with the initial phase
of Production, test personnel are vying for resources with
various other groups. This means that the available black
boxes are in demand by the production people, who are
attempting to build the systems, the Automatic Test Equipment
(ATE) £olks, who are building the automated software to test
these same black boxes, and the test personnel conducting
quality, environmental and stress tests.

Obtaining these black boxes may become very difficult and
lack of adequate backups for failed components is a major
contributor to test delays. Because of the usually high cost
of these items, early planning for these assets will not solve
all the availability problems. One may not be able to afford
to simply buy more of the hardware required. A compromise is
to share the black boxes. Test schedules are often driven,
not by the complexity of the tests, but by the availability
of resources. Asset management is an important aspect of any
hot bench testing.

Other factors which must be considered are the facilities

and the scheduling of these facilities. To perform hot bench
testing the facility must have adequate power and auir

6-14

e —

conditioning to handle the anticipated power and heat loads.
TEMPEST requirements, as well as other security requirements,
must be adhered to if the testing will generate or use
classified data. All of this requires careful planning since
design and development schedules may change and the facilities
may not be available when they are needed. In addition, if
the hot bench testing slips too much, conflicts may arise with
other programs which may have planned to use the same facility
space. For these reasons, it is a good idea to plan for these
unexpected contingencies.

Many of these problems can be minimized if the test
requirements are adequately addressed in the TEMP and the
Software Test Plan.

6.4.3.2 DT&E/OT&E Testing

The next phase of testing is by far the most expensive
of all. It involves performing field tests in an environment
which closely approximates the environment of the anticipated
threat. If flight testing is involved, one must include the
test aircraft, chase aircraft, test ranges, logistics support
for all the aircraft and test equipment, large data reduction
systems and software and the hundreds of personnel required
to conduct and coordinate the various tests (Figure 6-6).
Clearly hundreds of thousands to millions of dollars are tied
up in field testing major systems.

Logistic support for DT&E must also be planned. Failure
rates for electronic equipment must be anticipated and
provisions made for backups and repair of failed components.
Repairs may be done organically for OT&E but for DT&E the
repairs are usually performed by the contractor.

Scheduling of "national assets" such as the China Lake
Naval Weapons Center or the Edwards Flight Test Center will
have to be done years in advance when the crystal ball is
pretty cloudy. Schedule uncertainties, unpredictable weather
and unforseen technical problems will force the test manager
to constantly generate contingency test plans to accommodate
program requirements with those of other legitimate DOD users
requiring the use of these same national assets.

Data reduction can be a significant bottleneck. During
any major field testing activities, prodigious amounts of data
can be (generated. Adequate computer resources and
sufficiently tested support software packages are required.
It is not uncommon to wait one or two weeks for data to be
reduced and presented in a format suitable for engineering
analysis. If in addition to your own generated data, you are
required to have a test range or some other facility record
data for your test, additional bureaucratic delays can further
add time to your test program.

The most important thing, however, is to realize that
field testing should confirm hot bench results. If you're not
ready, don't fly. If it doesn't completely work in the lab,
don't waste program resources using the field as a laboratory.

6.5 TEST TOOLS

It is an ironic fact that the very industry that has
automated major segments of other industries, has itself
failed to automate. Thanks to computers and software, robots
and automation are major players in such diverse industries
as automobile manufacturing, publishing, and textiles. When
it comes to software development, however, it is all virtually
manual labor. It still requires a person to translate a set
of requirements into a set of computer instructions.
Computers that generate code directly from human languages are
still far in the future.

This doesn't mean that there are no software tools that
can be used during software development. Numerous tools do
exist and, although they all require extensive human
participation, they are very useful nevertheless. These test
tools can be classified into the following categories:

Requirements Analysis Tools - Provide the capability to
incrementally state system requirements and to systematically
check for consistency and completeness.

Text Editors - Used to insert, delete, or manipulate
portions of any text such as documentation, test data or code.

Test Generators - Allow test data input files to be
developed in a systematic and standardized fashion. Sometimes
the test data can be automatically generated during the coding
process.

Static Analysis Tools - Perform a static analysis of a
particular program to produce a listing of questionable coding
practices, departures from programming and coding standards,
isolated code, symbol tables, etc.

Debugging Tools - On-line tools that enable programmers
to interact with their program during program execution in
order to assist them in locating errors.

Environmental Simulators - Allow for the simulation of
the environment of a particular system when testing in the
real environment is either impractical or too expensive.

System Simulators - Simulations of other systems which
interact with the system under development or simulations of
major subsystems not yet available.

Data Reduction/Analysis Tools - Software and computer
packages that allow large volumes of data to be analyzed and

6-16

e

reduced to a format easily digestible by engineers and
managers.

6.6 DEBUGGING

Debugging is the activity of finding and correcting a
known error. It is performed after a test run has uncovered
errors in a program. There are several methods for debugging:
brute force, induction, deduction, backtracking, and testing
(2].

The brute force method, although requiring 1little
thought, is the most inefficient of all debugging methods.
This is because it usually takes the form of (1) core dumps,
(2) scattering print statements in the code or (3) using
automated debugging tools which require labor intensive
analysis to trace the error.

Debugging by induction requires careful thought and
follows the classical inductive method of examining the data,
looking for relationships, devising a hypothesis and proving
the hypothesis by locating the error.

Debugging by deductive reasoning proceeds from general
theories or premises about the cause of an error, eliminates
and refines the premises, arrives at a conclusion and finds
the error.

Backtracking involves starting at the point where the
incorrect result was produced and reverse engineering the
program to discover the source of the error.

Debugging by testing involves the generation of small
samples of test data in an attempt to isolate the problem.

Of all programming activities, debugging is probably the
most disliked of all. This is because debugging is a mentally
taxing effort and quite often it is very damaging to sensitive
egos that see programming errors as personal failures or
indictments of their programming competence. It can be very
difficult because many faults can be caused by errors in a
program statement anywhere in the entire program.
Developments in the state-of-practice of software engineering
are minimizing these types of errors.

There are certain debugging principles that have arisen
out of the collective experience of programming [2]. These
are:

(a) Beware of using debugging tools. They often
introduce more problems then they solve and often require a
non-trivial investment of time in order to become proficient
with the tool;

(b) Experience has shown that where there is one bug,
there are usually more because it has been shown that errors
tend to cluster;

(c) The probability of a fix being correct is never
100%. Correction of an error often introduces additional
errors requiring further debugging;

(d) It is always best to change the source code and not
the object code. Correcting the object code throws the source
code and the object code out of sync and may produce
disastrous results elsewhere in the program or later on in the
execution;

6.7 PROGRAM MANAGEMENT GUIDANCE

The following suggestions are presented to provide some
general guidance during the planning and execution of software
test and evaluation.

(a) If an IV&V organization is going to be used, bring
them on board as early as possible; preferably during the
Concept Evaluation phase. Just a handful of people (2-3)
performing an IV&V role can be invaluable.

(b) When evaluating contractors' proposals and Software
Development Plans make sure that some organization other than
the one developing the software performs the testing. The
developing organization may develop test plans, but it should
not test its own software. This independence can be internal
or external to the contractor;

(c) As part of the evaluation process, insure that a
good quality assurance organization is in place. Since
software development is so labor intensive, it is important
that an organization exists to impose programming standards,
procedures and regimentation on the development process and
to evaluate both the process and the product;

(d) Perhaps one of the most important things to
remember is that failure to impose strict discipline into the
software development process is the quickest way to ensure
disaster. But this discipline must exist in the program
office as well. The program manager must be absolutely
resolute in insisting that a software developer complete an
activity before proceeding to the next one. If the developer
is not ready for a PDR or CDR then reschedule them. If they
haven't finished software testing, then don't proceed into hot
bench integration.

(e) The program office should have the eventual user,
the supporting activity, and the IV&V contractor (if there is
one) participate in the thorough review of the Software Test
Plan. They should be critically examining whether:

6-18

- all test resources have been identified;

- all the test software tools are available, are
matured and currently in use;

- the test schedule is adequate. Remember that
software development is almost always on the
critical path;

- the developer really understands software testing
principles;

- testing is complete and has demonstrated
operational performance and reliability.

(£f) Seek help at the very beginning of the program
don't wait until software development is in trouble because
then it is too late. It doesn't hurt to have an outside
organization examine the status of the software at critical
intervals during the development cycle;

(9) Insist that program office personnel attend
software training courses on a periodic basis, especially
young software project officers. Your program will derive
benefits by allowing your personnel to keep up with software
practice and technology.

(h) Make absolutely sure that the program office
engineering and software personnel perform a thorough review
of:

- preliminary software design;
- test plans and procedures;

- traceability of requirements from the system
specification all the way down to the test
procedures;

- the developer's configuration management
organization and procedures. On a major software
development, keeping track of the various versions
of software is a non-trivial task. Many a major
test program has been severely impacted because the
wrong version of the software has been tested.

(1) Never, never, never test software that contains
patches! A patch is defined as a piece of machine language
code that is overwritten over an existing piece of object
code.

(3) Testing software with patches is nothing more than
a game of Russian Roulette. You may get by once, but
eventually your test program is going to blow up in your face!

6-19

(k) Insist that software errors be corrected at the
source code level. Treat error correction as redevelopment by
tracing all the way back from the system requirements through
design and by ensuring that the documentation is updated.

(1) The only time a software patch is justified in a
software test program is when it is necessary to disable a
function for safety reasons or when it is impossible to
conduct a particular test without the use of a patch. At any,
rate once these tests are over get rid of the patch!

(m) Don't even think about fielding into an operational
environment any software package containing patches!

6.8 REFERENCES

1. AFR 800-14, "Lifecycle Management of Computer Resources
in Systems", 29 September 1986.

2. McCabe, Thomas J. and Gordon Schulmeyer, "The Pareto
Principle Applied to Software Quality Assurance", Handbook of
Software Quaiity Assurance, Ed. G. Gordon Schulmeyer and James
I. McManus, New York, NY, Van Nostrand Reinhold Company Inc.,
1987.

3. Myers, Glenford J., "The Art of Software Testing", New
York, John Wiley & Sons, 1979.

6-20

CHAPTER 7
POST DEPLOYMENT SOFTWARE SUPPORT

7.1 BACKGROUND

More than two-thirds of the DOD's expenditure for
software is for Post Deployment Software Support (PDSS)
efforts [1]. The Electronics Industry Association (EIA) has
predicted that Mission Critical Computer Software could cost
the Department of Defense ten percent of it's total budget by
the year 1990. Software costs are rising and will continue
to rise at a proportionately greater rate than other system
costs. This high cost of software will continue to rise
dramatically unless corrective measures are taken to include:
a greater awareness by program managers about the problems
faced by software engineers; an understanding of the problems
that arise in the software development process and how they
can be corrected; and a change in the attitudes about software
support.

7.2 PROBLEM AREAS

As discussed in Chapter 2, the growth in the use of
computer technology, especially in the last twenty five years,
has drastically increased the requirements for software. 1In
the 1960's the Air Force's F-111 aircraft required less than
100 thousand software instructions. In the 1970's the Navy's
P-3C aircraft required about 500 thousand software
instructions. In the 1980's the B-1B is estimated to have
over 1 million software instructions just for the operational
flight programs and the E-3A AWACS program has about 4 million
soitware instructions. Projections for the Space Station call
for about 80 million software instructions and the future
software requirements for the next generation of systems seems
to be unlimited. These trends in fielded software are depicted
in Figure 7-1 [1].

This increase in the amount of fielded software has
obviously increased the requirement for software support
services. However, this increase in software support and the
lack of qualified personnel to provide these services, make
software support more difficult to manage. Dr. Edith Martin
in a speech presented in 1984 to the Joint Logistics
Commanders Workshop entitled "The Relationship Between PDSS
and Advanced Technology", estimated that the requirement for
software support personnel was increasing at a rate of 12
percent per year. However, the availability of personnel
qualified to do this type of work was only increasing at a
rate of 4 percent. If one makes the assumption that a
productivity rate of 4 percent can be achieved annually then
there still exists a 4 percent shortfall in the amount of
available personnel. Based on these estimates, and assuming
nothing else changes, by 1990 the number of personnel required
will exceed the number of personnel available by one million.
There is a need to find an effective way to control both cost

7-1

@ ©SHUTTLE/OPERATIONAL
Tom SKYLAS 2 SHUTTLE/OFT
APOLLO 17@ MANNED SPACE MISSION CONTROL
E APOLLO 7@ (BYTES)
3 GEMINt 120
§ wmf QBN 30 SHUTTLE/OFT
B1A AAWACS MANNED SYSTEMS
g 500K |- PaCA (INSTRUCTIONS)
w
E GALILEO
APOLLO 11
100k } E-2C
g @ MERCURY 3 P3CA S ZDSFA, 5 PERSNI:O Wl (ED)
3 s}l SKYLAB 2 TiTAN 34D (iUS)
é GEMINI 8 /Souoﬁ; " TITAN 34D (0%) UNMANNED SYSTEMS
z FAIAA CsA @ VIKING (INSTRUCTIONS)
§ 0 AATOE @ PERSHING IAD)
GEMINI 3 / O TRIDENT C4
E 1ok} TITAN HIC o @ VOYAGER
N
£
SKE-
PERSHING IA o0® POSEIDON C-3
TITAN It
t !Pensmuo ‘ MARINER
SURVEYOR 4 VENUS MERCURY
‘K 1] | M L L T 1 1 T L3 R 1 1
‘80 '70 '80 90

DATE OF FLIGHT

Fig. 7-1 Trends in Software

and schedule as well as to properly train, develop, and retain
a cadre of software professionals for both the development of
new software and the support of existing software. Possible
solutions to these problems will be discussed later in this
cnapter.

The EIA study discussed in Chapter 2 predicted that by
1990 software will cost the DOD about 25.6 billion dollars,
and computer hardware will cost about 5.6 billion dollars.
Figure 7-2 indicates that software support services will
account for about seventy percent of this anticipated software
cost and software development will account, for the remaining
thirty percent. It is all too apparent that if something is
not done quickly, the government will not be able to afford
the software required by modern weapon systems.

Compounding the problem of controlling cost is the fact
that software support funding is fragmented. In 1984, the
Industry/Government Workforce Mix Panel of the Joint Logistics
Commanders (JLC) Workshop on PDSS [2] addressed the Air Force
funding of system acquisition and software support. Even after
deployment, hardware and software are budgeted, funded, and
prioritized by separate processes and channels. Multiple
procedures for budgeting and funding often are required for
the same item; as opposed to separate budget and funding codes

-2

FY-90 DOD FTWARE LIFE CY
COMPUTER BUDGET COST
COMPUTER = . - e
HA??VBV;RE SOFTWARE

$25.68

\

------------------------- // SOFTWARE
SOFTWARE DEVELOPMENT
SUPPORT 3o%

70%

Fig. 7-2 Software Costs

for separate but related items. All of this creates confusion
for the program manager or anyone else trying to get a handle
on life cycle costs. Actual cost tracking can be difficult
to deal with and requires careful coordination of one-year R&D
software money with three-year hardware procurement money for
system modifications. Further difficulties can develop when
one considers that PDSS may be divided between depot and
field-level activities.

The Air Force has problems in clearly defining the
responsibilities of the depot and those of the field
activities. This not only makes it difficult to split up the
workload, but adds to the funding problem. The other services
have similar problems that make the funding process difficult.
If the government is to get a handle on cost, then the method
used to fund the development process and PDSS must be
streamlined. There should be a common budgeting procedure
used by all of the services and by all levels within the
government. These procedures should identify appropriations,
budget programs, program elements, and specific funding codes
for weapon systems using a single, simplified process for
setting priorities. If this is accomplished, the government
and program managers may at least get a better picture of the
funding issues while affording them a way to deal with it in
an intelligent manner. The way to deal with the current
situation is to become aware of the difficulties and to plan
in advance the transition of software support. This is done
by clearly defining the roles and responsibilities of the
various support organizations, including the funding, in the
Computer Resources Life Cycle Management Flan (See Section
7-7).

7.3 MANAGEMENT PERCEPTIONS

One of the realities of life is that people have
perceptions about software which may not be true. Most p=ople

7-3

understand that hardware is tangible, material intensive and
produced by machine, while software is intangible, labor
intensive, and produced by hand. They further accept that
hardware deteriorates over time, is hard to change, requires
preventive maintenance, and has relatively high production
costs. Software is believed to have exactly the opposite
characteristics. Software does improve over time with
updates, requires no preventive maintenance, and has only
trivial production costs; but is never easy to change
correctly. From a historical perspective, these perceptions
tend to cause a management problem which needs to be resolved
if PDSS costs are to be brought down.

There is a widespread belief that PDSS is a trivial task
and less importent than software design. Unfortunately, this
results in less qualified personnel being assigned to do
software support rather than the more skilled technicians and
managers. The feeling is that software support personnel
should possess the same skill levels as the local auto
mechanic while software design personnel should have the
skills of automotive engineers.

/ LANGUAGE TRANSLATORS | PROGRAM EDITORS | TEST TOOLS\

/ PROGRAM LINKERS | SYSTEM SIMULATORS DESIGN TOOLS \
ENVIRONMENT | PROGRAM DESCRIPTION | CONFIGURATION MANAGEMENT
SIMULATORS DOCUMENTATION PROCEDURES

/ DIAGNOSTIC SOFTWARE | USERS MANUALS | TEST PLANS FLOW CHARTERS\

L DEVELOPMENT TOOLS TEST DRIVERS | DEVELOPMENT STANDARDS | PERSONNEL }

PROGRAM DESIGN DOCUMENTS { INTERFACE DOCUMENTS TRAINING

Figure 7-3 The Software Iceberg

Another misconception that plagues some program managers
is a lack of understanding as to what constitutes the software
products that must be supported. The software iceberg (Figure
7-3) is a graphic description of some of the various tools,
documentation, etc., that form the total software package.
In order for the PDSS facility to properly support the
product, it must have the same basic tools and information
that was available to the developer. One should also realize
that many of these items can have their own icebergs. There
is a tendency to cut costs in software programs by cutting out
those things that are required later on in the program's

7-4

life-cycle. There seems to be a lack of understanding on the
part of some program managers on the value of procuring items
such as simulators, editors, compilers, test tools other
software tools, and documentation. Some may even feel that
such items are gold plating. The fact is that without these
items software cannot be properly supported.

7.4 MANAGEMENT CONCERNS

Program Managers must understand the needs of the user.
They are often faced with the need to change the software
because of a new requirement (e.g., a changing threat) or to
correct a problem. All program managers should ensure that
not only is the software developed to be supportable, but that
the capability to support the software by the government or
industry exists. This determination of support must include
the people who will actually do the work as well as the
facilities and tools necessary to accomplish this effort.
Cost and schedule are obvious drivers in the decision process.
However, software considerations must be put in perspective
with the total weapon system. Any change to the software may
have an impact on the hardware. In addition, any changes made
to the software may impact other software and/or future system
requirements, just like hardware changes have impact on the
system.

7.5 WHAT IS PDSS?

Software does not fail in the classical sense. Hardware
degrades over time as components wear out. A software problem
is due to an error that has existed since its creation. When
a problem caused by a component failure is found in hardware,
the solution entails bringing the item back to the original
configuration. In software when a problem is found and
corrected, a new configuration is created. Software does not
wear out like hardware; so "software maintenance" is a
misnomer. The appropriate name for this effort is "software
support". The Joint Logistics Commanders in 1984 decided that
in order to answer the many questions about software support,
a definition of Post Deployment Software Support was needed.
Further, such a definition should provide a uniform basis for
understanding and dealing with software support issues. The
JLCs have defined PDSS as follows:

"Post Deployment Software Support is the sum of all
activities required to ensure that, during the
production/deployment phase of a mission critical
computer system's life, the implemented and fielded
software/system continues to support its original
operational mission and subsequent mission
modifications and production improvement efforts."

This means that software is modified to either correct

a problem or to add a capability to the software. There are
other ways to look at the various software support activities

7-5

Swanson’'s Categories Reutter's Categories

Corrective Maintenance Emergency Repairs

- Performed to identify - Performed when
and correct software immediate repair is
failures, performance necessary to continue
failures, and imple- user service

mentation failures

Corrective coding

- Performed to correctly
reflect the specifica-
tions or to correctly
utilize system resources

Adaptive Maintenance Upgrades

- Performed to adapt - Performed to adapt to
software to changes changes in processing
in the data require- requirements
ments or the proces-
sing environments Changes in Conditions

- Performed to adapt to
changes in business
conditions due to
regulatory situations
or other situations
beyond the control of
the organization

Perfective Maintenance Growth

- Performed to enhance - Performed to adapt to
performance, improve changes in data requi-
cost-effectiveness, rements or the addi-
improve processing tion of new programs,
efficiency, or improve new users

maintainability
Enhancements
- Performaned in response
to user requests for
changes and additions
to the system

Support

- Performed to explain
system capabilities, to
plan for future support,
to measure performance

Fig. 7-4 Types of Software Support Efforts

other than breaking down the efforts into modification and
the addition of capabilities. Figure 7-4 [3] looks at two
different approaches. Swanson [4] breaks down software support
into three categories. The first category talks about
corrective efforts, examples of which might be the correction
of a problem in reading a file in a record properly, or a
failure to test for all possible conditions. The second
category deals with adaptive efforts which include such things
as improving processing speed or adjustments to add new input
or output devices. The last category includes software that
is modified to make enhancements in response to new
requirements, or to give the operator more flexibility.
Reutter [5] refined these by breaking them into the seven
categories shown in Figure 7-4. Reutter's seven categories

7-6

separate support from each of Swanson's three categories. The
intention of this breakout is to emphasize the communication
between the user and the support activity. It also shows the
importance of planning for support.

There is some disagreement among software people as to
whether the above efforts should be called software support
or software maintenance. The term software maintenance gives
the impression that the effort involves preventing components
from wearing out or breaking as in the case of hardware. As
already indicated, this is not the case for software and the
reason why the JLCs use the term software support. Also the
term maintenance does not convey a feeling that design work
is being carried out. In any case, the amount of work required
to correct deficiencies in software accounts for only about
twenty percent of the total software support effort [6]. This
means that about eighty percent of the PDSS efforts are spent
in adding new capability to the software; or at least adding
things not clearly spelled out in the original requirements.
This is one of the primary reasons to produce specifications
and requirements which clearly reflect the user's needs.

7.6 SOFTWARE LIFE CYCLE CONSIDERATIONS

One of the major reasons for the high cost of software
support is that it costs much more to correct problems after
the initial design has been completed than it does to correct
problems early in the development phase. Modifications
require the same development activities as the original
process because software support is redevelopment. It is
extremely difficult to understand someone else's design, to
figure out what they were trying to accomplish, to correct any
problems, or to add new capabilities. This can become
impossible if the documentation is poor.

Figure 7-5 indicates that while most errors are
introduced during the early phases of the software life cycle,
they are not usually found until the sof“imre is being
validated or supported. Barry W. Boehm [1] in.iic:tes that the
cost of correcting software or adding 1linc- of code to
existing software increases as the life cycle progresses. 1In
fact, there can be as much as a hundred to one increase in
costs. In a study performed in 1978 [7], the DOD found that
the average cost of generating a line of code is about seventy
five dollars while the average cost of modifying a line of
code late in the development cycle or after software delivery
is four thousand dollars. This high cost of modifying
software, coupled with the fact that most errors are not
uncovered until late in the development cycle, tends to
significantly increase software life cycle costs.

7.7 IMPROVING THE PDSS PROCESS

There are a number of actions that can be taken to
improve the PDSS process and to reduce software life cycle

7-7

DEV § ERRORS ERRORS RELATIVE
INTRODUCED FOUND COST OF ERRORS
REQUIREMENTS 5% 55% 18% 1.0
ANALYSIS
DESIGN 25% 30% 10% 1-1.5
CODE AND 10%
UNIT TEST
INTEGRATION 50% 10% 50% 1.5-5.0
AND TESTING
VALIDATION AND 10%
DOCUMENTATION
OPERATIONS & -- 5% 22% 10-100
MAINTENANCE
Figure 7-5 Software Life Cycle Considerations
costs. One of the most important is the creation of a

document that spells out all of the activities that must be
accomplished during the life of the software program. Within
the DOD this document is called the Computer Resources Life
Cycle Management Plan (CRLCMP). The CRLCMP is developed early
in the acquisition cycle to ensure that all issues and
resources relevant to the acquisition, testing, and support
are properly accounted for. Both the Navy, with OPNAVINST
5200.28 [8] and the Air Force with AFR 800-14 [9]) require that
the CRLCMP be initiated by the developing activity during
Concept Exploration and updated as the program progresses.
The CRLCMP is approved prior to Full Scale Development.
However, it should be clearly understood that the CRLCMP is
a living document and should be updated whenever the software
is modified. A rule of thumb is to update the CRLCMP at least
annually.

The CRLCMP describes the total software support strategy.
It defines the criteria for measuring progress and identifies
the resources needed to develop, test, acquire, and support
computer resources (e.g., facilities, personnel, hardware,
software, training, funding, tools). The CRLCMP identifies
the regulations and operating instructions that will be used
to manage the system software. It also identifies all the
organizations involved in the acquisition and support and
their roles, responsibilities and relationships. The
Integrated Logistics Support Plan (ILSP) is the parent
document to the CRLCMP and defines the overall supportability
strategy. Therefore, the CRLCMP should be closely coordinated
with the ILSP.

Managing PDSS 1is managing change. It is therefore
important to put a rigorous change control process in place
during development that can transition ard be effective after
deployment. The program manager and/or support manager must

7-8

understand why software changes are needed and what resources
are needed to make appropriate economic and technical trade
offs. An effective change control system allows the program
manager to make these decisions.

PDSS managers must possess an understanding of their role
in the PDSS process. They must understand the motivation for
a software change. Is a change required to add a capability
that the user needs, or to correct a deficiency? If a change
is required, are the personnel necessary to implement the
change available and capable of performing the task? Has the
program office provided the software support personnel the
tools and resources necessary to successfully make changes?
When a change is to be made, will there be any disruption to
current services? What is the length of time required to make
these changes? What will be the impact on the integrity of the
software as a whole and what are the ramifications of this
change for future changes?

In 1984 the JLC report on the "Cost of Ownership" [2]
concluded that program managers must have an understanding of
how each PDSS activity was organized and how it functions
within their own services. To this end, they provided the
following descriptions of PDSS centers:

Army: The Army PDSS center is a center within a
DARCOM subordinate command established to support
the software subsystems of all battlefield automated
systems for which that command has logistics support
responsibility. Each center normally supports
numerous systems.

Navy: The Navy PDSS centers' functions and staffing
are provided for by the In-Service Engineering
Activity assigned the life cycle system support
responsibility. Note: that system may be an
aircraft avionics package, a shipboard navigational
system, or @& shore-based Command, Control,
Communications and Intelligence system.

Air Force: The Air Force provides for a PDSS center
as part of Integrated Support Facility (ISF) which
is used to provide all hardware and software
engineering support. This ISF is located in the
engineering division or branch which supports the
system program director (SPD) in an Air Logistics
Center.

Marine Corps: The Marine Corps has established a
single PDSS center completely separate from hardware

maintenance facilities. This center provides
support for designated Marine Corps Software
programs.

1. Organization Chain:

Within the services, PDSS centers are located
either in a 1logistics chain, a Research and
Development (R&D) chain or a combination of the two.
The Navy has a combination chain with a single boss.
The Air Force PDSS center is in the logistics chain,
but receives direction from a logistics boss via the
R&D chain. The Army established 11 PDSS centers
located at the development commands, but funded by
the readiness organizations within combined
commands. Overall management of the PDSS effort is
performed by DARCOM.

Coordination between R&D and 1logistics is
always difficult. Having a single boss reduces the
difficulty to some degree.

2. Development of Policy and Compliances:

Higher level headquarters establishes policy,
publishes implementing instruction and ensures
compliance by the PDSS centers within their
individual commands.

3. How Funded:

The Air Force is Operations and Maintenance
(O&M) funded unless a major rebuild is required;
then the system goes back to the developer and R&D
funds are used. The Navy primarily uses O&M funds,
but would also send major modifications back into
a R&D cycle. The Marine Corps uses R&D funds. The
Army uses a plethora of funding ranging from
numerous types of O&M, procurement and R&D dollars.

A standard approach to funding and a better
definition of maintenance would help reduce some of
these overly burdensome requisition and accounting
functions.

4. Acquire Software Environment:

In all the services, the PDSS centers, in
conjunction with the developer, identify support
requirements. In the Navy and Air Force the
acquisition manager is responsible for procuring
the initial suites of equipments, and the PDSS
center is responsible for updating/replacing that
equipment. In the Army, no defined responsibility
exists to ensure that the developer acquires the
support environment, including mockups and
simulators.

5. How Location Is Determined:

The Air Force locates the PDSS centers within
the system program directorate (Air Logistics
Center) where sustaining engineering is also
located. The Navy collocates the PDSS centers with
the activity responsible for in-service engineering
support. The Marine Corps only has one PDSS center
whose command has the logistics responsibility for
the system or has computer resources. In the event
that the system is a command and control system,
the PDSS center is collocated with the battlefield
functional area school.

6. How System is Learned:

The Army and Air Force PDSS centers become
involved at the beginning of the development cycle
through either participation in the developmental
process or by being the IV&V agency. The Navy may
follow the same procedure, depending on when the
PDSS center is designated. The Marine Corps PDSS
center has previously been involved as part of the
development responsibility and have replaced it with
more of an IV&V type role.

The involvement of the PDSS centers throughout
the development cycle, commencing with Milestone I,
is considered to be critical to the successful
execution of performing PDSS work.

7. Use Of the PDSS Center For IV&V:

There is currently no stated requirement to
perform IV&V in any of the services, and there is
a wide variance of how the services accomplish IV&V.
In those programs where there is a requirement for
IV&V, the PDSS center is a logical choice and should
be used to the maximum extent practical.

8. Software Configuration Control:

The PDSS centers of all services perform
configuration control, but none are tasked with
performing configuration management.

9. Type of Changes:

There are basically three types of changes:
those brought about by latent defects; those brought
about by enhancement requests from the users; and
major product improvements. In all the services,
the PDSS centers perform the changes brought about
by the first two. Changes resulting from major
product improvements are usually accomplished by a

7-11

-

contractor, with the PDSS center providing
background information and support.

10. Evaluation Of Complaint:

The Army maintenance directorate sends
logistic support representatives to the user
activity to investigate complaints. Once the
problem is identified and verified to exist, the
maintenance directorate notifies the PDSS centers
who then attempt to duplicate the problem. 1In the
other services, the PDSS centers receive the trouble
report directly from the user and attempt to
duplicate the problem. Responses back to the
complaining user vary from periodic status reports
about the complaint to not providing any follow-up
information.

11. Develop Software Engineering Change Solution:

In all the services, once the problem has been
identified, the cause is explored by software
engineers within the PDSS center. Solutions are
developed and testing is conducted. This testing
is to ensure that the original problem has in fact
been solved and that additional problems have not
been created.

12. Integration Testing:

In all the services, integration testing is
performed when the PDSS center has completed system
testing. With the exception of the Navy, testing
is always performed on the actual equipment being
integrated. In the Navy, the size of the
integration problem often prevents the PDSS center
from conducting the integration testing in a totally
realistic environment. The software which has been
modified is run on actual system hardware, but those
systems with which it communicates (i.e.,
integrated) may be simulated. The limitations on
integration testing of Navy shipboard combat systems
due to the availability of actual systems are
recognized and organic integration facilities have
been or are being established. These facilities are
outside the PDSS centers' responsibility and
control, but are available to the PDSS center for
use.

13. Interoperability Testing:
All the service PDSS centers conduct

interoperability testing to ensure that changes made
to correct problems will in no way interfere with

7-12

—

the capabilities of the system to communicate with
other systems.

14. Documentation Update:

All the service PDSS centers update
documentation for every change made. The major
problem being experienced is the inadequacy of
standards and resulting initial documentation.
Standards must be published that meet the needs of
all services and contracts must be written to
require documentation in accordance with these
standards. Waivers must not be permitted.

15. Distribution Of Software Corrections To Users:

For systems where there is limited
distribution, changes are hand-delivered and
accompanied by sufficient instruction to allow the
user to execute a smooth transition. In those cases
where there is a large number of equipment in which
changes must be installed, they are supplied with
a written instruction package through a distribution
process.

7.8 PROGRAM MANAGEMENT GUIDANCE.

By changing the traditional prejudices toward software
support, by following sound engineering practices, and through
the use of good management tools and plans, program managers
can begin to deal with the software life cycle support
problems. The following represents a set of guidelines which
can be followed by the program manager and can ultimately lead
to more cost effective software support:

(a) The program manager must ensure that sound software
engineering design techniques are used during the development
process where the majority of all errors are induced and that
the software is designed for supportability;

(b) The CRLCMP must be developed early in the program

life cycle (Concept Exploration) and periodically updated and
adhered to;

(c) Personnel and productivity are important issues,
It is incumbent upon program managers to acquire and retain
a qualified and stable workforce. This may require the
program manager to develop a continuous training program for
software personnel. In order to get more out of the personnel,

program managers must provide the supporting activity modern
tools and facilities;

(d) Documentation and support software tend to be cut
out of programs early in the development process in order to
save money. This causes severe problems later on in the

7-13

program. It is important that all the tools necessary to
provide software support are delivered to the support
facility;

(e) The software baseline must be controlled throughout
its 1life cycle by using good configuration management
techniques;

(f) It is important that the program manager involve
the PDSS organization early in the development. The personnel
at these facilities have a wealth of knowledge about what is
required to support a program and about the associated
problems. This provides the program manager with a real time
lessons learned;

(g) It 1is imperative that the program manager
appropriately plan, budgets, and fund the PDSS effort.

7.8 REFERENCES

1. Boehm, Barry W., Software Engineering Economics,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

2. Final Report of the Joint Logistics Commanders Workshop
on Post Deployment Software Support for Mission Critical

Computer Resources, Volume II - Workshop Proceedings, June
1984.
3. Martin, James and Carma McClure, Software Maintenance -

The Problem and its Solutions, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983.

4. Swanson, E., "The Dimension of Maintenance”, 2nd

International Conference on Software Engineering, Proceedings
(San Francisco), October 13-15, 1976, pp. 492-497.

5. Reutter, John, "Maintenance Is a Management Problem and
a Programmer's Opportunity", AFIPS Conference Proceedings on
1981 National Computer Conference (Chicago), Vol. 50, May 4-
7, 1981, pp.343-347.

6. Lientz, B., and E. Swanson, Software Maintenance
Management, Reading, MA: Addison-Wesley Publishing Co.,
Inc.,1980, pp. 151-157.

7. De Rosel, B., and T. Nyman, "The Software Life Cycle -
A Management and Technological Challenge in the Department of
Defense", IEEE_Transactions on Software Eng.neering, Vol.
SE-4, No. 4 , July 1978, pp. 309-318.

8. OPNAVINSTR 5200.28, "Life Cycle Management of Mission
Critical Computer Resources", 25 September 1986.

9. AF Regulation 800-14, "Life Cycle Management of Computer
Resources in System", 29 September 1986.

7-14

;_

CHAPTER 8
PLANNING FOR COMPUTER SOFTWARE

8.1 INTRODUCTION

This chapter will discuss the software planning
activities that must be conducted during the various phases
of software acquisition. The success of any project is
greatly determined by how much care and time is put into the
planning process. Software development and acquisition is no
different!

Planning for computer software begins during the Concept
Exploration (CE) Phase and intensifies during the
Demonstration and Validation (D/V) Phase. By the time the
program enters the Full Scale Development (FSD) Phase, most
of the necessary software planning documents should have been
generated.

8.2 PLANS AND DOCUMENTATION

The major plans and documents generated by the program
office are the Program Management Plan (PMP), the Test and
Evaluation Master Plan (TEMP), the Integrated Logistics
Support Plan (ILSP), the Computer Resources Lifecycle
Management Plan (CRLCMP), and the System/Segment Specification
(SSS).

8.2.1 Program Management Plan (PMP)

The purpose of the PMP is to guide all program office
personnel toward a common goal. The PMP provides essential
information on the overall program strategy and goals. It can
be viewed as the game plan for the program office and includes
a schedule of the major events leading to the initial
operating capability (IOC).

The PMP should be updated and kept current, particularly
with respect to the schedules. It should be mandatory reading
for every newcomer into the organization. This is especially
true in software development since software is usually in the
critical path. A detailed outline of the PMP is given in
Appendix C.

8.2.2 Test and Evaluation Master Plan (TEMP)

The TEMP is the basic planning document for all test and
evaluation (T&E) related to a particular system acquisition.
It is used by the Office of the Secretary of Defense (OSD) and
all DOD components in planning, reviewing, and approving T&E.
The TEMP provides the basis for all other detailed T&E
planning documents.

The TEMP should address the effects of human performance
on the weapon system's operational effectiveness and the

8-1

ability of the system to meet performance standards, including
reliability and maintainability.

The TEMP should address the system's critical technical
performance thresholds and their relationship to the system's
required operational characteristics. It should clearly
outline the planned T&E process through which the test
objectives will be met. It should also describe the physical
hardware tests and any analysis required to provide data not
gained from actual testing.

The TEMP should clearly describe the required T&E
activities along with all the necessary resources to fully
test the operational suitability of the weapons system.

The TEMP is intended to be a 1living document that
addresses the changing critical issues affecting any
acquisition program. Major changes in program requirements,
schedule, or funding usually result in a change to the test
program. To ensure that T&E requirements are current, the
TEMP shall be reviewed for updating on at least an annual
basis until all significant testing is complete. The update
shall reflect the T&E program changes due to test results,
changes in the scope or schedule of the T&E program, changes
in the required characteristics, changes in the reassessment
of test resource provisions and limitations, or any changes
deemed necessary by the OSD. A detailed outline of the TEMP
is found in Appendix D.

8.2.3 Integrated Logistics Support Plan (ILSP)

The ILSP describes and documents the integrated logistics
support program. It is the principal logistics document for
an acquisition program and serves as a source document for
summary and consolidated information required in other program
management documents. It is summarized in the System Concept
Paper (SCP) and the Decision Coordination Paper (DCP).

The purpose of the ILSP is to:

(a) Provide a complete plan for support of the fielded
system;

(b) Provide details of the ILS program and its
relationship with overall program management;

(c) Provide decision making bodies with the necessary
information on ILS aspects for making sound decisions on
further development and production of the basic system;

(d) Provide the basis for the preparation of the ILS
sections of the procurement package, e.g., statement of work

(SOW), specification, and source selection and evaluation
criteria;

8-2

(e) Describe how readiness and sustainability will be
achieved.

The ILSP is initially a section of the Program Management
Plan (PMP) but, early in the Demonstration and Validation
Phase, it is removed from the PMP and becomes a stand-alone
document. At a minimum, the ILSP is updated annually. A
detailed outline of the ILSP is found in Appendix E.

8.2.4 Computer Resources Life Cycle Management Plan (CRLCMP)

The CRLCMP is the primary planning document for computer
resources throughout the system life cycle. It complements
the ILSP. The purpose of the CRLCMP is to:

(a) Document the software support concept and the
resources needed to achieve the support posture;

(b) Document the computer resources development
strategy;

(c) Identify the applicable directives (regulations,
operating instructions, technical orders, etc.) for managing
computer resources in the system;

(d) Define any changes or new directives needed for the
operation or support of computer resources;

(e) Define the scope of independent verification and
validation (IV&V) efforts.

Development of the CRLCMP is initiated during the Concept
Exploration phase. The CRLCMP is coordinated with the user
and supporting organizations before release of the Full Scale
Development solicitation.

During the Production and Deployment phases, the CRLCMP
is updated, as required, to reflect significant changes in the
system or its support environment. When updating the CRLCMP,
sections that refer to accomplished events should be reworded
as historical notes or deleted. After the system is
transitioned to the user the software support activity will
assume responsibility for the CRLCMP. A detailed outline of
the CRLCMP is found in Appendix F.

8.3 ENGINEERING STUDIES

Systems engineering studies are based on the concept of
a hierarchy of requirements starting with system level
requirements and ending with detailed engineering
specifications and data. System definition proceeds by
refining each level of requirement into subordinate
requirements until the entire system is described. Computer
resources are considered as an integral part of the system and

8-3

are subject to tradeoff and optimization studies. Systems
engineering studies will normally include:
Requirements Definition. Requirements definitions begins

with a preliminary allocation of requirements to either
hardware or software. The requirements for each software
configuration item are documented in a Software Requirements
Specification (SRS). The SRS is authenticated at the Software
Specification Review (SSR) which is normally held during the
FSD phase.

Interface Definition. The Computer Resources Working
Group (CRWG), in conjunction with the Interface Control
Working Group, addresses system and subsystem interface
requirements that may affect computer resources. The
requirements for interfaces between Computer Software
Configuration Items (CSCIs) and other system configuration
items are documented in one or more Interface Requirements
Specifications (IRS) that are also authenticated at the SSR.
The SRS and the IRS form the CSCI allocated baseline.

Tradeoff and Optimization. Tradeoff and optimization
studies should consider such issues as:

(a) Tradeoffs between computer software and computer
hardware;

(b) Required computer processor architectural features
such as memory size, processor speed, input and output
capacity, and spare capacity;

(c) Use of standard equipment, higher order languages,
instruction set architectures, and interfaces;

(d) Alternate approaches for meeting system security
requirements;

(e) Improved supportability versus improved
performance;

(f) Use of existing government resources or commercial
off-the-shelf resources versus new development.

ibilit Studies. These studies determine the
feasibility of alternative allocations of system requirements
to computer resources and the derivation of data for
formulating budgets and schedules.

Risk Apnalysis. Using Table 8-1, the program office can
identify the major risks to the software development effort.
Plans for managing these risks are incorporated into the
system level risk management plan or the CRLCMP.

SUOJIDY BA)}D81I0D 0|qivsOd

pu® 8)8|Y UOWWOD “1-8 #|qE]

‘8108 0)viedes OJuUl SIBM)}OS WeISAS pus
®1WM]}O8 UC|SS|W JO UO|IBIRdes @Yy} O} eousieype shosobiy

‘sydeouoo jsoddns esemijos peupjep Ajs00d 10 peujjepurn

‘spues) sjuswesjnbes jo uvojjosfosd pur ‘vojjecoiiw L310
-2du0 JO emefAes ojporied {8104A00)1) #Y) jo seswyd jioddns
pus juswdojeAsp Bujinp Ajjoedeo sseds 10) Bujuumid Ajie3

‘oBrio)e
Aiepuooss puw ‘yndinosindul ‘Asowew ‘pesds J0se800sd
‘8°®) Ajjoedeo ssempiey seindwoo siewds Sjenbepe jo you

‘8®|}|1108} PUB ‘sesnp
-200)d pus einjonsies juswebeusw ‘jeuvosied Juswdo|eAsp jo
Ajjoudud pue A3|11qQEde0 SSSSSE O) S3}{S JOIS}jO [O SMejASH

juewuosjaus jio0ddne
SujwweiBosd ¥ (si0pe0o] ‘sIBNU]| ‘'sie]|dwOD "B°8) §)00} JUSW
-dojeAsp siwm)jos peiviBejuy A§400d JOo ‘sinjswwi ‘sjenbepeu|

‘juswdoleAsp siem)joe 05 Ajjosded
10 AKjlliqudeo seBwuvw uo(iisinbov puw Jedojeasp S)enbepeu)

‘00JNOS
e)Bu)s ® WOI) POAJIOP SHIBUWI|ISS ,SPOD JO BBU||, UO SAIBW
1380 |i® Buiseg PIOAY ‘s|epow pus senbjuyoe) Bujswiise

)0 Ajefisa v BujSh S0P WI(ISe SNPOYOS PUB 1800 80INOS-|}INN

‘jueWdOo(sASD S0INOSRS) 10)NAWO0 JO) SOJVW]IEE
SINPOYOS PUT IBCO UBIS|XSUOU JO ‘pouljep Kj100d ‘ejesnoomy]

‘sjueuodwoo pue ‘sjdesuod
‘swyllioBie Aey jo juswdojeasp sieoj|dnp 10 BujdAjojoid

‘yiw Oyl j0 ejeys 8yl ysnd vy sjuswes)nbes souswiojied

‘UO|JEP|ICA PUR UOIISO(JiJOA JUSPUSdEpU] JO O8N

‘SMO|ASI O)pOlIed jo Jied piwpumis ® 8Q pihoyse
We)sAe €jy} Jo Indino eyl ‘swel| Asls YbBIy pejjiiuep] joO
sNjels SY) YO BIEP 108100 O} WO sAs BujnevI) Y8l ® jO esN

‘Welsks oy} jo sjueuodwoD SSBY) 10} SEM UL UIYIIM

joAe| ejvjidosdde ey} Bujuiwietep 10} uoCI|I0 Asswpid ® 8)
0001n0s0s JOINdWOO X8I YBjy pus 801310 JO AJIHIQISIA ‘'SEM
oy} AQ usA|Ip sAem(® jsow|w 8su senbjuyoe; seey}l 8OU|E
‘seuo)sejlw ejqeeingsew jsuieBe ssesfiosd enjeA peuise

0} UOjIUSII® (NjeIBO Yiim senbluyos) Bu)yosI) SOUBWIO)

-J0d puw ‘sINPeyYos ‘3800 (BUO|IIPRI} JO UOJIEO||dde SNOIOBIY

‘310}}® JUSWAOoAMP
@ EM))08 8,10)0811UCO Sy} OJU} AJ[11GISIA JUSWUIGAOS jO NOB"

‘s)iwd siquebeusw
siow ‘se|jews u) sjuswelinbes pooysiepun Ajjood puse ‘xe\d
W00 ‘eBiw) S1NOW] YOIUMm so|BeIBIIS JUSWAOIGAD |BIUSWEIDOYY

‘sosAjsus jjoepesy
pus ‘sjooid e80uU3091200 ‘Bujjepow RO IRWEYIBW ‘UO|IWIRW]S
‘sesAjsue |BUO)IOUN) 8¢ YONne senbjuyos) BujsesulBue weisig

juswdojsasp
Bupinp sjuswesinbes e01nossl seindwoo u) A)|iIqee jO yOBT

‘s00®jINIU] UsWNY Buipniou] ‘seosjin V|
WelsAs-J0)U| PUR ~BIJU] S|QRISUN JO ‘XO|FWOO ‘pouljep AjJ00d

‘weiB0id sy} Butanjonns
0} 10134 sjuswei|nbe) souUBWIO}Ied 10 ‘Ji0ddns ‘eOBIBU)
‘fRuUOjoun) 90JN0SeI JOINAWOD §0 uojtiuljep ejenbepe jo NOBY

NOILDV

3Isnva

8~5

Software Support Studies. Software support studies are
conducted to refine the system support concept and to allocate

software support requirements. These studies determine how

operational system software will be identified. Two potential
methods are self-identification of executing software and
identification plates affixed to the outside of the computer.

8.4 COMPUTER RESOURCES WORKING GROUP (CRWG)

A CRWG should be established as early as possible during
the CE Phase but no later than Milestone I. For modification
programs, and those acquisitions closely related to ongoing
programs, an existing CRWG may be used. The CRWG's role is to
actively participate, in an advisory capacity, in all aspects
of the program involving computer resources. This includes
program management reviews, source selection evaluation
boards, design reviews, and audits.

The CRWG is formally chartered by the program manager and
should coordinate its activities with the operational user,
the supporting organization, the interface control working
group, and any other organization with an active interest in
the program. At a minimum the CRWG will:

(a) Advise the program manager in all areas relating
to the acquisition and support of computer resources;

(b) Generate the initial CRLCMP and update it as the
program progresses;

(c) Select a software support concept and document it
in the CRLCMP;

(d) Monitor compliance of the program with computer
resources policy, plans, procedures, and standards;

(e) Insure that software testing is adequately
addressed in the Test and Evaluation Master Plan (TEMP) and
monitor compliance with this document as the program matures;

(f) Identify and prioritize the required software
quality factors such as interoperability, portability,
flexibility, useability, reusability, maintainability,
integrity, reliability, correctness, testability, and
efficiency;

(g9) Define the appropriate scope of the IV&V effort and
develop a recommended approach using contractor personnel or
another government organization;

(1) Evaluate the use of standard equipment, higher
order languages, instruction set architectures, and
interfaces;

(3) Evaluate the need for development of software tools
and recommend an approach to their development.

8.5 CONTRACTUAL CONSIDERATIONS

A recurring activity conducted by the program office is
that of selecting one or more contractors and putting them on
contract. Although the intensity of the activity and the
number of contractors to be evaluated may differ, the process
of selecting a contractor(s) is the same regardless of the
phase of development. The three major activities performed
are: generating a source selection plan, generating a request
for proposal package, and conducting the source selection
process.

8.5.1 Source Selection Plan (SSP)

An outline of a typical SSP is given in Appendix G. The
SSP is a key document for initiating and conducting a source
selection. As shown in Appendix G, the SSP should address
mission critical computer resources. It is prepared by the
program office and must reflect applicable Program Management
Directive (PMD) guidance or direction. The SSP is a plan for
organizing and conducting the evaluation and analysis of
proposals and a roadmap for the selection of a source or
sources.

The SSP must be submitted sufficiently in advance of the
planned acquisition action to facilitate review and approval
by the Source Selection Authority (SSA) and early
establishment of the Source Selection Advisory Council (SSAC)
and the Source Selection Evaluation Board (SSEB).

8.5.2 Request for Proposal Package (RFP)

The RFP package must be sufficiently detailed to allow
responding offerors to adequately address system requirements
and to provide other information necessary for evaluation and
award. The RFP package typically consists of a requirements
specification(s), instructions to offerors, proposal
evaluation criteria, a statement of work, a work breakdown
structure, requirements for deliverable items, and special
contract provisions. Supporting information that expands on
the system operations and support concepts, including the
CRLCMP, will be attached to the RFP package.

Even though the RFP is prepared by the program office,
it is good practice to solicit inputs from the using and
supporting organizations. They usually provide valuable
insight into the operational and support environment.
8.5.2.1 Requirements Specification(s)

The requirements specification(s) included in the RFP is
dependent on the phase of the system development being

8-7

undertaken. If one is contracting for the Concept Exploration
phase, then the specification would be an overall system
specification. For the Demonstration and Validation phase, the
specification would be the System/Segment Specification and
for the Full Scale Development phase, the specifications would
be the Software Requirements Specification and the Interface
Requirements Specification. Appendix H lists the various Data
Item Descriptions (DIDs) called out by DOD-STD-2167A which
govern the format and content of the required specifications.

8.5.2.2 Instructions to Offerors

In addition to specifying proposal form and content, the
instructions to offerors must require submission of such
documents as a Software Development Plan, a Configuration
Management Plan, and a Software Quality Program Plan as part
of the proposal. These plans must include the offeror's
software development and management concepts and the
procedures for controlling and assessing progress during the
development process. Appendix H lists the various DIDs which
describe the format and content of these documents.

The instructions to offerors is the mechanism for
ensuring offerors address critical software issues such as:

(a) The methodology used to perform software sizing and
cost estimating and the approach to be followed during
software development;

(b) The rationale used for the computer resources
timing and sizing estimates;

(c} A description of any teaming and subcontractor
arrangenments;

(d) The skill levels required for computer resources
development and their availability within the corporate
structure;

(e) The method to be used for risk control;

(f) Any planned use of firmware;

(g) Any plans for reusing or modifying existing
software;

(h) A clear definition of all assumptions used during
proposal preparation;

(i) Plans for the development of prototype software;

(3) Plans and procedures for generating and using
software metrics.

8.5.2.3 Proposal Evaluation Criteria

The evaluation criteria must cover all of the
requirements within the RFP. This includes computer resource
development and management activities and the offeror's
software management plans described in the Software
Development Plan and other applicable documents. The criteria
in the RFP should be listed in relative order of importance.
The evaluation criteria must include the availability of
software, documentation, and the rights necessary to meet life
cycle needs and the compatibility of the proposed design with
the support concept defined in the CRLCMP. This will ensure
that the design is modifiable and that proposed support
resources and methods are adequate. When the processing of
sensitive or classified information is involved, the program
office must ensure that computer security is also included in
the evaluation criteria.

8.5.2.4 Statement of Work (SOW)

The SOW will identify the applicable program management,
development, test, training, installation and support tasks
that are to be performed under the contract. More
specifically, the SOW will:

(a) Identify clear and concise statements of specific
task;

(b) Address the planned use of an Independent
Verification and Validation contractor and the type and amount
of support expected from the software development contractor;

(c) Tailor all contractually required standards and
specifications to the needs of the program;

(d) Address the planned use of government provided
operational and environmental simulators, support equipment,
or other software programs (e.g., compilers);

(e) Require comprehensive layout of program schedules
to include reviews, technical interchange meetings, audits,
and testing;

(f) Address the requirements for prototype software
development;

(9) Address the requirements for generating and using
software metrics data.

8.5.2.5 Work Breakdown Structure
A preliminary work breakdown structure (WBS) may be
included in the RFP package. The contractor will be expected

to develop their own WBS containing additional levels of
detail.

8-9

8.5.2.6 Deliverable Items

Deliverable computer hardware and software, including
support and test software, will be specified as contract line
items (CLINs) in the schedule of the contract. The CLINs
should specifically call out deliveries of such items as
operational flight programs (OFPs), test program sets (TPSs),
simulation software, and incremental deliveries of various
versions of all of these. Documentation requirements will be
identified in the Contract Data Requirements List (CDRL), and
software media delivery requirements will be specified in the
Software Requirements Specification which will be listed in
the CDRL. For software, deliverable items will include
complete source code in a form suitable for compilation or
assembly and the complete object code in a form suitable for
loading and executing in either operational or support
computers. The CDRL will include the documentation needed for
developing, testing, operating, and supporting the system and
for training personnel. Appendix H lists the various DIDs for
this additional documentation. If all the documentation needs
cannot be identified before contract award, the CDRL will
include a report that will identify data items needed to
satisfy the system support and operational concepts. A Data
Accession List should be used to identify the contractor's
informal documentation to be made available for government
review.

8.5.2.7 Special Contract Provisions

Special provisions will be incorporated into the contract
to insure the government's right to computer software and to
provide adequate protection whenever commercial off-the-shelf
software is used.

Proprietary Software - The RFP shall require the offeror
to identify and cost all proprietary computer software or
equipment, associated 'documentation, and support items
required to be delivered, or subject to order, under the
contract. The offeror must also identify any other software
which may have limited or restricted rights.

Commercial Off-the-shelf Software - Procedures must be
developed and incorporated into the contract to ensure that
the contractor reviews all subcontractor or vendor products
and that all commercial hardware and software in the system
is maintained to the correct configuration level. The
contractor must be made responsible for maintaining
engineering compatibility between all system hardware and
software, including the incorporation of newly released
versions of software. Operating system software falls into
this category.

8-10

8.5.3 Source Selection Process

The principal objective of the source selection process
is to select the source whose proposal has the highest degree
of credibility and whose performance can be expected to best
meet the government's requirements at an affordable cost. The
process must provide an impartial, equitable, and
comprehensive evaluation of the competitors' proposals and
related capabilities. The process should be accomplished with
minimum complexity and maximum efficiency and effectiveness.
It should be structured to properly balance technical,
financial, and economic considerations consistent with the
phase of the acquisition, program requirements, and business
and legal constraints. A typical source selection process is
depicted in Figure 8-1.

BIDDERS

INTERNAL

PREPARE

BIDDERS

\ | PROPOSALS
"] noepenpenT } %t
REVIEW FINAL
DRAFT EVALUATE
ReP RE:EF:SED PROPOSALS FACT FINDING
8/W DEVELOPMENT
INDUSTR
| prkp il } CAPABILITY/CAPAGITY
REVIEW
RATE
INTERNAL
GONTRACT 8OURCE INDEPENDENT PROPOSALS
anRD | SELECTION |4mmmmme REEY - EVALUATION
AUTHORITY A CRITERIA

Fig. 8-1 Source Selection Process

8.5.3.1 Draft RFP

If it is at all possible, the process should begin with
a draft RFP which consists of preliminary versions of a
statement of work, a specification, schedules, a contract data
requirements list (CDRL), and evaluation criteria.
Unfortunately, time and resources do not always permit a
program office to generate and circulate a draft RFP.

By circulating a draft RFP among the various internal
government organizations such as contracts, legal, and other
organizations that normally coordinate on a procurement
package, the RFP can be evaluated for consistency and content.
These organizations can provide valuable information and
comments which help to ensure that the final RFP doesn't
become bogged down because of major shortcomings.

8-~11

Industry review can also be very helpful. They may
provide constructive information on the potential technical,
schedule, and cost risks associated with the intended
procurement. For example, they may provide alternative
approaches to high risk areas and indicate those areas which
are ambiguous, contradictory, or likely to be major cost
drivers.

All industry comments, however, should be carefully
examined to separate fact from marketing information. Some
companies may not be able to resist the temptation to suggest
changes or additions to the RFP which could enhance their
competitive posture. In spite of this danger, industry
comments can be tremendously useful.

Once the comments have been received from both industry
and internal organizations, a final RFP can be prepared and
released. While the bidders are preparing their proposals,
the program office will be finalizing the source selection
organization and the proposal evaluation criteria. Although
the general evaluation criteria has already been released with
the RFP, specific sub-criteria and factors may still require
fine tuning.

8.5.3.2 Populating the Source Selection Organization

One of the constant problems faced by program managers
is finding qualified software individuals willing and able to
be away from their jobs for an extended period of time. Source
selections can take anywhere from three to six months to
complete. Since quality software individuals are already in
short supply, a program manager may have to resort to
innovative means for acquiring them. If one or two experienced
software people are already on the staff, then the problem
becomes more manageable. The task of finding additional
knowledgeable but less experienced software people is a bit
easier.

If a program manager doesn't have in-house expertise, the
problem is more difficult. The first place to look for
experienced software personnel is another program office that
may be willing to release individual(s) for the duration of
the source selection. Another source could be the various
laboratories within the command or service. A sister service
may be able to provide temporary software expertise. There
are also federally established, not-for-profit organizations
such as the Aerospace Corp., the Mitre Corp., and the Software
Engineering Institute whose employees routinely participate
in government source selections. Other corporations exist
which may be able to participate in a source selection. These
corporations are primarily analysis oriented and normally do
not produce or develop hardware for the commercial market. The
Rand Corp. and the Charles Draper Laboratory fall into this
category. The lead software individual, however, must be a
government employee.

8-12

8.5.3.3 Evaluation Process

The evaluation process itself is well defined and
requlated by the various DOD and service peculiar regulations
and procedures. Figure 8-2 depicts the typical evaluation
process which begins with the receipt of cost, technical and
management proposal volumes, as a minimum. The Source
Selection Evaluation Board (SSEB) is comprised of the

DETAILED
PROPOSAL EVAL
FORMAL
SSEB PROPOSAL
EVAL
EVAL
g SSAC ANALYSIS
8 FINDINGS
SSA

SELECTION
— DECISION

Fig. 8-2 Evaluation Process

functional area experts who actually perform the detailed
evaluation. Since this is a time-consuming but critical step,
it is important that the lead individual expedite the process.
Endless discussions over trivial or irrelevant points cannot
be tolerated. Even when serious topics are the source of
major disagreements among the evaluators, the lead software
individual must force the people involved to come to a
reasonable and timely consensus. Minority opinions and views
should be aired and, at the discretion of the lead software
person, documented and presented to the Source Selection
Advisory Council (SSAC) for resolution. By the same token,
an individual's infatuation with a particular technology
should not be allowed to unduly bias the proposal ratings.
For example, if an individual is convinced that relational
data bases is the only solution to a particular problem, the
lead software person must ensure that this individual has
given the other approaches a fair evaluation.

Once the SSEB completes its evaluation, the results are
presented to the SSAC. The SSAC, which is composed of senior
government personnel, then evaluates the analysis and findings
of the SSEB and presents the results to the Source Selection
Authority (SSA). The SSA is the official designated to direct

8-13

the source selection and to make the final source selection
decision.

8.5.3.4 Evaluating Offeror's Proposal

Since every program has unique requirements, it is beyond
the scope of this guidebook to provide specific information
on what is important in a software source selection. In
general, however, the software evaluation assesses the
technical adequacy of the proposed computer system
architecture to satisfy the weapon system requirements. Items
that are evaluated are:

(a) The throughput and memory capability of the
proposed computers;

(b) Future vendor support for commercially supplied
items such as tape drives, disk drives, controllers, etc.;

(c) Computer resources interfaces to the rest of the
system architecture and human operators;

(d) Adequacy of the operating system or software
executive;

(e) Availability, currency, and usage of software
development tools;

(f) Organic supportability of computer hardware and
software;

(g9) The offeror's Software Development Plan and
software development standards and procedures;

(h) The offeror's software development capability and
capacity.

It is important to emphasize the need to perform an
integrated, comprehensive evaluation of the offerors' total
proposal. This usually means that technical evaluators must
also review the management and cost proposals. The cost
evaluators normally concentrate on accounting and costing
consistency and completeness. They are not qualified to pass
judgment on whether a proposed number of manhours is
sufficient for a particular analysis or effort. Only the
technical evaluators can make this assessment. Likewise the
technical evaluators can also assess whether a particular
management organization or procedure is consistent with the
technical effort proposed. One is not advocating that all
technical evaluators review cost and management data. What
is being proposed is that one or two key individuals from the
technical panel make a top-level review of cost and management
data for realism and consistency.

8-14

8.5.3.5 Software Development Capability/Capacity Review

Figure 8-1 shows a software development capability and
capacity review (SDCCR) occurring as part of the source
selection process. The SDCCR has been successfully used at the
Aeronautical Systems Division of the Air Force Systems Command
at Wright-Patterson AFB. It is described in ASD Pamphlet 800-
5, "Software Development Capability/Capacity Review" [1].

Purpose - The SDCCR is intended to review and assess an
offeror's specific capability and capacity to develop the
software required on a particular weapon system program as
defined in the RFP. This review process is designed to be
incorporated as an integral part of the FSD source selection
process. The review process accomplishes three related
objectives. First, the acquisition management team gains an
understanding of the offeror's software development methods
and tools. Second, the capability and capacity of the offeror
to develop the required software in a disciplined software
development process is determined. Third, the review process
elicits a contractual commitment by the offeror to implement
the methods, tools, practices and procedures which form the
discipline and structure for this software development process

[1].

Process Summary - The SDCCR process is accomplished
during the FSD RFP preparation and source selection phase. The
RFP includes the requirement that the offeror team provides
specific information describing their software development
methods, and include examples of how the methods have been
applied on past or on-going programs. The SDCCR source
selection team reviews this information and then conducts an
in-plant review with the offeror's team. This review is based
on a specific set of SDCCR questions which are provided with
the RFP to the offerors and are found in Attachment 4 of ASD
Pamphlet 800-5. Following this one to two day in-plant re-
view, the offeror's capability and capacity to develop the
software required on the program is assessed and evaluated
using the predefined RFP standards. This evaluation becomes
an integral part of the program source selection and forms
part of the basis for the award. It is highly recommended
that offerors conduct this review with their subcontractors
prior to the government's in-plant review [1].

Review Areas and Factors - The SDCCR is usually organized
into five major areas: management approach, management tools,
development process, personnel resources, and Ada technology.
These areas are in turn organized into factors as shown in
Table 8-2. Other factors may be added to this review as a
function of unique program requirements.

Team Composition - The SDCCR is performed by the source
selection team. This approach is fundamental to achieving the
multiple objectives of the SDCCR. The usual team composition
is as follows:

8-15

NANAGENENT APPROACH
- Management Organization
- Software Management System
- Software Configuration Management
- Software System Organization and Structure
- Software Subcontracting
- Software Planning
- Software Quality/Product Assurance
- Contract Control Methods

MANAGENENY TOOLS
- Internal Management Standards and Tools
- Software Size, Manpower, Schedule and Cost Estimating
- Contract Work Breakdown Structure (CWBS)
- Software Work Definition
- Schedule Definition and Statusing
- Software Cost Performance Reporting System

DEVELOPMENT PROCESS
- Internal Development Standards and Procedures
- Software Engineering
- Software Development Tools and Facilities
- Software Test and Verification
- Software Documentation Approach
- Internal Independent Verification and validation

PERSONNEL RESOURCES
- Estimating Software Personnel Requirements
- Manpower Needs and Qualifications
- Managing Software Personnel Resources
- Company Workload Profile

Ada TECHNOLOGY
- Management Process
- Development Process and Environment (Yool Set)
- Design Process and Methodology
- Personnel Skills and Qualifications
- Capability Demonstration and Risk Management

Table 8-2 SDCCR Factors

(a) Team Chief - Computer resources systems engineer
or senior software engineer from the engineering staff;

(b) Program Manager/Project Manager;

(c) Software Manager;

(d) Software Engineer;

(e) Contracting Officer;
For smaller programs, it is possible for one individual to
perform the program/project and software management role, and
one individual to perform the chief/lead and software
engineering role. In addition, it is desireable to include the

following participation on the team:

(a) Product/Quality Assurance;

8-16

N

(b) Configuration/Data Management;

(¢c) Logistics;

(d) Cost Analyst;

(e) Contract Administrative Service/AFPRO/NAVPRO.
It is recognized that too large a team is counterproductive.
The key is to perform the review with a small, knowledgeable
group of software experienced acquisition personnel.
8.6 REFERENCES
1. ASD Pamphlet 800-5, "Software Development Capability and

Capacity Review", HQ Aeronautical Systems Division, Wright-
Patterson AFB, Ohio 45432, 10 September 1987.

8-17

CHAPTER 9
MANAGEMENT PRINCIPLES

9.1 INTRODUCTION

Managing software development is one of the biggest
challenges facing today's government program manager (PM).
The classic problems contributing to this challenge are
illustrated in Figure 9-1. Some of these problems are beyond
the control of the PM. For example, there is very little a
PM can do about changing or growing requirements because of
an evolving threat, or fuzzy requirements because of lack of
details on the threat. Long lead times often force systems
development to be initiated before the threat has been
completely evaluated. Shooting at a moving taroe% of changing
or evolving requirements is a reality of all new systems
acquisitions.

CAUSES

RESULTS
CHANGING -
RQMTS

BEHIND SCHEDULE

RQMTS GROWTH
COST OVERRUN

HARDWARE POOR PERFORMANCE
CONSTRAINTS DOCUMENTATION NOT TO SPEC
POOR
LACK OF ENVIRONMENT DIFFICULT
DISCIPLINE
TO MAINTAIN

POOR
VISIBILUTY

POOR
PLANNING

POOR
COMMUNICATION

BRI
e

FIG. 9-1 Classic Software Development Problems

There are, however, many problems which can be minimized
or eliminated by the PM. For example, there are certain
actions that can be taken by a PM to eliminate poor
engineering discipline, poor documentation, or poor planning.
This chapter will address methods and principles which can
help a PM deal with the complexity and difficulty of large
scale software system development. In dealing with these
problems, the common denominator is a disciplined systems
engineering approach incorporating the principles of software
engineering.

9.2 SOFTWARE ENGINEERING

The term software engineering is relatively new. It was
first used in 1968 as the theme for several workshops
associated with software development [1]. Today there is some
debate as to what constitutes software engineering, but most
people agree that applying the term software engineering to
the software development process implies:

(a) The application of proven methods at each step of
the development process which includes accepted practices,
standards and procedures;

(b) The development and use of software tools and aids;

(c) The generation of specific documents during the
various stages of the development process;

(d) The existence of a traceable path from the system
requirements down to the final deliverable product.

For these proven methods to be effective in controlling
software development, they must be accepted and practiced by
the software developer. Mere proposal promises and
contractual lanquage is not sufficient. To achieve quality
software which performs to specifications, is reliable, and
is reasonably priced, these methods must be ingrained in the
contractor's software organization. Table 9-1 lists some of
the proven methods for software development.

All engineering disciplines develop tools and aids to
help the practitioner apply the theory. Because software
engineering is a relatively young discipline, it doesn't have
the wealth of tools so readily available to its older sister
disciplines. Much progress 1is being made, however, and
currently available tools and aids include:

(a) Structured design and programming;

(b) Inspections and walkthroughs;

(c) Computer aided software engineering;

(d) Program design languages;

(e) The Ada programming language;

(f) Object Oriented Design and Programming.

Documenting each step of the software development process
is absolutely essential. Not only does one need an effective
way to communicate the rate of progress, one also needs a well
documented final product. Since documentation is the only

tangible evidence of the resulting product, documentation must
be generated as one progresses through the various stages of

9-2

e

software development. One cannot do a very effective job of
generating software documentation after the fact.

* VISIBLE TRAINING AND EDUCATION PROGRAM

* INSTITUTIONALIZED PRACTICES AND PROCEDURES

* DEFINED ROLES WITH SYSTEMS, HARDWARE, AND TEST ORGANIZATIONS
* ADHERENCE TO A SOFTWARE DEVELOPMENT PLAN

* INSTITUTIONALIZED INTERNAL INSPECTION PROCEDURES

* STRUCTURED DESIGN AND PROGRAMMING
* PRODUCT ORIENTED WBS FOR FINANCIAL CONTROL
* INTERNAL INDEPENDENT VERIFICATION AND VALIDATION (IV&V)
* STRONG CONFIGURATION MANAGEMENT
- SOFTWARE DEVELOPMENT LIBRARY
- PROBLEM/TROUBLE REPORTING SYSTEM

* VISIBLE STATUS INFORMATION

Table 9-1 Proven Hethods for Software Development

To ensure that the delivered product satisfies the
requirements of the system, one must have a clearly definable
path from the top level system requirements down to the
various modules or units of code. This can be accomplished
through the use of a requirements matrix which shows how each
system level requirement is satisfied by a particular module
or segment of code. This process can be automated.

9.3 GUIDELINES AND RULES

Over the past 30 years, certain gquidelines and rules have
evolved to help a PM successfully complete a software
development program. One must keep in mind that the
guidelines and rules given below are not just recipes or
checklists to be blindly followed in order to ensure success.
PMs must understand how to customize these gquidelines and
rules to the requirements of the program. They may choose to
ignore any one of them as long as they are aware of the risks
and have planned for dealing with them. The following
guidelines provide the PM with software development planning
and organizational principles which place software development
in the perspective of the overall picture of system
development:

(a) When planning and directing a program, PMs must
make decisions based on a "system" perspective. They must
review their alternatives and not allow either hardware or
software to exclusively drive their decision. All decisions
must consider the long term system effects.

9-3

(b) PMs must provide a forum for integrating the system
development. Several techniques are available and should be
part of both the government's and the contractor's review
process. These techniques include stringent interface
controls, reviews, and audits. All interfaces between
software modules and between software and hardware must be
clearly defined and strenuously controlled. Techniques such
as reviews and audits will be discussed in the next section.

(c) Large investments up front can have significant
leverage on reducing later system operation and support costs.
Investing resources during the system and software
requirements analysis phases can result in a better
understanding of the user's requirements and a more stable
baseline for design. Early expenditure of resources also
provides the greatest amount of leverage in preventing errors.
The bulk of the errors (30% to 70%) can be detected during the
time when error correction is the cheapest [2].

(d) Software resource planning must remain stable once
the program starts'. Software development has an inherent
resource and schedule profile which means that the overall
schedule cannot be stretched out without adversely affecting
software development. More importantly, squeezing the
schedule (trying to do a program too fast) can be a
prescription for disaster. It is not always possible to add
manpower to solve a software schedule slip [3].

(e) The software architecture should be the major
driver in determining how the hardware is partitioned. 1In the
past, PMs chose hardware first because they understood it
best. Today the PM must consider the real-time requirements
of the system and whether parallel processing and/or
distributed processing will meet the overall requirements. In
other words, the software architecture will often drive the
hardware architecture.

(f) Identification of the software architecture must
be performed simultaneously with the requirements definition
and systems analysis tasks. 1In order to accomplish adequate
hardware and software tradeoffs, the software must be viewed
not only as the system integrator but as a system in its own
right. Today's software development is usually in the
critical path of the overall system development.

(g9) The Program Manager should stimulate innovation and
not be stifled by rules and regulation. "Think first,

Portions of the remaining discussion in this section, Guidelines and Rules, are taken from

a speech printed in Government Computer News and delivered by Dr. Kenneth Richardson, Executive Vice
President of Hughes Aircraft Co. at a March 1988 National Security Industrial Association conference
on software quality and reliability in Arlington, Va.

9-4

regulations second" should be the theme pursued by all system
managers. New approaches should not be surreptitiously
dismissed. For example, DOD-STD-2167A, "Defense System
Software Development”, is only a start and one must recognize
that better approaches will evolve as more is learned about
software development. This is not to say that DOD-STD-2167A
stifles innovation. Although the standard embraces the
"waterfall" approach to software development, it does allow
for other advances such as rapid prototyping and evolutionary
development.

(h) PMs must plan for growth and evolution. The
software architecture and implementation should be
specifically pointed toward maximum modularity, changeability,
and growth potential. The PM's primary concern should be life
cycle cost. As such, post deployment software support
considerations need to be examined early during development
to provide for cost effective lifetime support.

(1) The procurement process should allow for a
flexible, robust, growable software design and find ways to
reward innovative contractors. Some suggestions are to
consider award fee or cost incentives based on operation and
support after system delivery. The fees or incentives could
be based on the ability to perform the intended functions,
ease of support/maintenance, ease of modification, utility of
documentation, and the effectiveness of the human interfaces.
The intent should be to force the developer to focus on long
term goals and a supportable systems. Also important, but
more difficult to identify, are the front end decisions and
methods that achieve these goals. 1In other words, it is what
the developer does in the beginning that has the most
influence on the end product. The developer must begin with
a good process already in place.

9.4 PROCESS CONTROL

Process control is the key to achieving software quality.
The process is the method used by the contractor for
developing software. Achieving control of the process means
that the process is predictable and measurable. A controlled
process will minimize variability. How does a PM assess the
contractor's process control system and procedures? Table 9-
2 provides a series of questions developed by the Software
Engineering Institute (4] as an aid in making this assessment.
The PM must know that the process represents the contractor'’s
commitment, philosophy, methodology, procedures, and standards
for doing business. Process control and process management
are principles of the Deming philosophy (5] for customer
satisfaction. Application of Deming's philosophy requires the
commitment of top management. That is why it is so important
to select the right contractor; these values are not learned
overnight.

* IS A MECHANISM USED FOR ENSURING TRACEABILITY BETWEEN THE SOFTWARE TOP-LEVEL AND DETAILED
DESIGNS?

* ARE INTERNAL SOFTWARE DESIGN REVIEWS CONDUCTED?
* IS A MECHANISM USED FOR CONTROLLING CHANGES TO THE SOFTWARE DESIGN?

* 1S A MECHANISM USED FOR ENSURING TRACEABILITY BETWEEN THE SOFTWARE DETAILED DESIGN AND THE
CODE?

*® ARE FORMAL RECORDS MAINTAINED OF UNIT (MODULE) DEVELOPMENT PROGRESS?
* ARE SOFTWARE CODE REVIEWS CONDUCTED?

* IS A MECHANISM USED FOR CONTROLLING CHANGES TO THE CODE? (WHO CAN MAKE CHANGES AND UNDER
WHICH CIRCUMSTANCES?)

* IS A MECHANISM USED FOR CONFIGURATION MANAGEMENT OF THE SOFTWARE TOOLS USED IN THE
DEVELOPMENT PROCESS?

* IS A MECHANISM USED FOR VERIFYING THAT THE SAMPLES EXAMINED BY SOFTWARE QUALITY ASSURANCE
ARE TRULY REPRESENTATIVE OF THE WORK PERFORMED?

* IS THERE A MECHANISM FOR ASSURING THAT REGRESSION TESTING IS ROUTINELY PERFORMED?
* IS THERE A MECHANISM FOR ASSURING THE ADEQUACY OF REGRESSION TESTING?

* ARE FORMAL TEST CASE REVIEWS CONDUCTED?

Table 9-2 Process Control

What follows are some program management guidelines which
focus on the day-to-day management of software development.

All Software Tasks Must be Discrete - This guideline is
fundamental in determining how well the contractor can plan
the effort. PMs must not allow level of effort or percent
complete approaches because this closes the door on program
progress visibility. The contractor must be able to define
the work packages associated with the work breakdown structure
(WBS) in sufficient detail to control and manage the effort.
Each task should have a definite start, a definite end date,
and a specific output. These tasks are normally on the order
of 30 to 90 man-days in duration. Planning is usually
accomplished as a rolling wave, the immediate six months or
more are planned in detail with the remaining effort generally
only visible at higher levels in the WBS. The entire effort
must be totally scoped in time and resources at the very
beginning of the project.

Quantitative Regquirements are Managed Through Margins -

Quantitative requirements lend themselves to measurable
control methods. For example, computer memory and throughput
are often tracked during development. In the beginning,
estimates of software size and timing will be made and
compared against target values to determine margins. Later,
design language estimates can be made and these estimates will
continue through the design process. As code is written,

9-6

actual measurements can be made. Early planning should allow
for contractor and government margins with the use of a
disciplined and documented control system. One approach is
to baseline an estimate of the memory and throughput
utilization on a monthly basis. An alert or trigger threshold
value can initiate action should the threshold values be
exceeded.

Identify and Track Risk Areas - The contractor and PM
should be working as a team to manage program risk. An
important ingredient of any program is to assess and reduce
the risk as early as possible and before Milestone II. Risk
management is an ongoing process. The first step is to
identify risk areas, document them in the Software Development
Plan, and devise a scheme for dealing with each risk item.
These items are then tracked throughout development. A
convenient method is to have a "Top Ten" list of risk areas
that are tracked at least on a monthly basis along with a
contingency plan for mitigating the identified risks. The
plan should establish risk reduction objectives and schedules,
assign responsibility and priority for risk reduction tasks,
and develop a method for periodic reviews and assessments.
Various management techniques to reduce risk have already been
mentioned and include:

(a) Rapid prototyping;

(b) Incremental development;

(c) Internal (government) program reviews (at least
monthly);

(d) Top Ten list review;

(e) Early demonstrations and testing of risk items;

(f) Government inspections and audits of the software
development process.

Some potential problem areas include:

(a) Unrealistic cost and schedule;

(b) Vague or incomplete requirements;

(c) Inexperienced developers;

(d) Inadequate development environment (tools and
methodology) .

Identify and Track Special Interest Items - Special
interest items such as Government Furnished Items (hardware,

software and data) and subcontract items should also be
tracked. Any items delivered to the contractor or received
from the contractor are candidates for tracking. Certain
critical internal deliveries such as code delivered for
testing are candidates as well. The same approach used for
tracking the risk items above can also be used to track
special interest items.

i ent Must e Test d Traceabl -

Requirements must be testable in order to validate the system
performance. In some cases, actual testing may be impractical

9-7

due to physical constraints, cost, or other considerations.
When this is the case, system performance must be validated
through inference or analysis and reflected in a testability
matrix. Traceability is a key factor throughout development
and becomes even more important during follow-on support.
Requirements must be traceable from the system specification
down through design, integration testing and DT&E.
Traceability must occur in both directions--results of a test
report must track back to the requirements. The only
effective way to handle this for large programs is through
some form of automation. Requirements traceability should be
an integral part of the contractor's configuration management
process.

Use Checklists for Design Reviews - Without adequate
preparation design reviews can become nothing more than hectic
"dog and pony shows". Design Reviews should be a major part
of the software quality program. Program office personnel
should be prepared for a review by arming themselves with
appropriate analyses and a checklist of important and critical
questions and adhering as much, as possible, to an agreed to
formal agenda. The PM must do his homework through
verification and analyses of critical areas that support the
design approach. MIL-STD-1521B, "Technical Reviews and Audits
for Systems, Equipments, and Computer Software", provides
guidance on preparing checklists for various reviews. The
checklists should also include special interest items and risk
areas.

Formal Reviews Must be Viewed as Quality Gates - PMs must
approach the formal review as a checkpoint for determining
whether or not the project is ready to proceed to the next
phase. A contractor should not be allowed to complete a
design review if it hasn't satisfied all the requirements
imposed by the design review. If the PM decides to proceed to
the next phase with a less than satisfactory technical review,
because of political or schedule considerations, the risks
involved must be known and a contingency plan developed. Too
often, however, the risks are much higher than perceived. It
is essential to have a stable baseline since early mistakes
become much harder and costlier (in time and money) to correct
when they are discovered late in the development process.
Proceeding before one is ready, usually increases the program
risk.

Conduct Periodic Inspections and Audits - Periodic
government inspections and audits can be useful when applied
consistently. Inspections generally use a checklist to

determine the specification and design completeness. Audits
are similar to inspections with the additional factor of
determining requirements traceability. These techniques can
be valuable when applied to the interfaces. What better way
to integrate the system than to ensure that the hardware and
software properly communicate with each other? 1In addition

9-8

to inspections, the contractor should also conduct
walkthroughs as a standard business practice [6].

Use Statistics Generated by Contractor Internal Reviews -
The contractor must have a system in place that includes a

means of assessing the quality and progress of the work. The
Software Development Plan should identify the software
development system and indicate how government visibility will
be provided. This is generally accomplished by contractually
requiring the developer to provide the assessment data to the
program office. The purpose is not for the government to
manage the contractor's work (that's the contractor's job) but
to communicate program development status and product quality.
The contractor should gather statistics from the internal
walkthroughs and inspections and use this data to manage the
software development. The mechanisms the contractor has in
place for software development constitutes the process control
system. The contractor's software process control system is
analogous to a manufacturing process control. Statistics at
this level will provide valuable trends and indicators to
program management.

Integration Must be Visible on Master Schedule -
Integration brings the interfaces together. They occur at all
levels: software to software, software to hardware and
software to systems. Integration and integration testing must
be planned and be highly visible to the government PM. It is
important that the development of hardware and software be
approached as a maturing process strategy. Pieces of the
system should be brought together in a planned, logical
fashion. Some level of confidence in both the hardware and
software components must be established before proceeding with
higher level integration. If this isn't done, problems that
occur during integration will be difficult to diagnose since
they may be in either component--hardware or software.
Integration of the system, particularly the critical
components, are likely candidates for special interest or risk
item tracking.

9.5 REQUIREMENTS AND PROTOTYPING

The PM can have a major impact on the success of the
program during the requirements definition phase. Investment
of time and resources 1in requirements definition has the
biggest program payoff in both schedule and cost. Clear and
unambiguous requirements, however, seem to be the most elusive
ingredient in any program. Since software development is an
exercise in abstraction and an intellectual process that must
be captured in some tangible form, how does one approach
requirements definitions? Two tools available to aid the
process are formal specification development tools and rapid
prototyping.

9.5.1 Specification Development Tools

Since specifications are generally written in prose, they
suffer from significant interpretation and traceability
problems as well as being very error prone. Formal
specification development tools such as those listed below are
designed to alleviate these problems. Because the formal
specification language is much more specific than prose, it
can be automated. This provides the use of computer
assistance to check for errors, completeness, consistency, and
traceability. Some commonly used formal specification
development tools are:

PSL/PSA Problem Statement Language/Problem Statement
Analyzer: Originally developed for data
processing applications. Widely used in other
applications (7].

RSL/REVS Requirements Statement Language/Requirements
Engineering Validation System: Real-time
process control [8].

SADT Structured Analysis and Design Technique:
Interconnection structure for any large,
complex system. Not restricted to software
systems [9].

SSA Structured System Analysis: Gane and Sarson
version used in data processing applications
that have database requirements. DeMarco
version suited to data flow analysis of
software systems [10,11].

Gist Textural language developed at USC/Information
Sciences Institute: Object-oriented
specification and design. Refinement of

specifications into source code [12].
9.5.2 Rapid Prototyping

Rapid prototyping may be the most powerful tool available
to analyze and refine requirements and should be encouraged
as a requirements definition tool from the very beginning.
The PM should incorporate rapid prototyping as part of the
contract.

A software rapid prototype is an analytical tool for
refining software requirements. It is used during the
requirements analysis phase with minimal constraints on choice
of programming languages, documentation, and use of standards.
In essence, it entails the almost unconstrained development
of a software package with the primary goal of achieving quick
results. The objective is to compare these quick results with
the initial system requirements. By allowing the user a quick
look at the potential end product, they will be better able

9-10

R e]

to answer the questions "Is this what you wanted?" or "Is this
what you meant?" Documentation is minimal and it is not
deliverable. Once a decision is made to deliver, it ceases
to be a rapid prototype. This is analogous to the hardware
requirements and design process of using engineering models,
breadboards and brassboards. This is not to say that one
would not use an approach of developing software using a
"prototype" (as opposed to a "rapid prototype") for delivery
and operation. This is yet another method called evolutionary
development and it will be discussed later in this chapter.
The value of a rapid prototype is in the capability to better
communicate software requirements during the requirements
analysis process. What better way to communicate with the
users than to present them with an artifact that represents
the system? Often the rapid prototype will represent the user
interface (controls and displays) providing for both input and

output. It may execute representative scenarios or
operational profiles to determine the validity of the
specifications. The prototype can be wused throughout

development, including Full Scale Development, to test out
design concepts as well as develop a priori test results for
future testing of the actual product. One must remember that
a rapid prototype does not evolve into a deliverable software
product. It should be discarded once it is used to clarify
and refine the requirements.

9.5.3 Incremental and Evolutionary Development

Incremental and evolutionary development are techniques
for dealing with large, complex systems. Figure 9-2
illustrates this approach. Design begins after the system and
software requirements have been baselined.

The objective of incremental development is to produce
a complex software product by building the total system
capability in ever increasing increments. The second software
delivery or increment will have more capability than the first
delivery, the third more than the second and so on. As the
saying goes "If you have to eat an elephant, eat him one bite
at a time". Software development for Inter-Continental
Ballistic Missiles (ICBMs), for example, is developed this
way. The Operational Flight Program (OFP) may be designed and
developed in three increments. This incremental approach must
be preplanned with the overall development strategy and test
plan. The first system level capability to be demonstrated
is the capability to fly from point "A" to point "B". This
requires the appropriate planning for developing and
integrating both hardware and software components in support
of the scheduled events. The first increment would have the
basic flight control, navigation, guidance, and task control
functions. The next increment would add the system capability
for multiple reentry vehicle deployment. Again, meticulous
planning would have preceded this activity to make sure that
the appropriate hardware and software components are designed
and developed on an integrated schedule. For the software,

9-11

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

SYSTEM

DESIGN
DETAIL CODE INTEGRATION
DESIGN TEST
DETAIL CODE INTEGRATION
DESIGN TEST
DETAIL CODE INTEGRATION
DESIGN TEST

SYSTEM
TEST

QUALIFICATION

OPERATIONS

Fig. 9-2 Incremental Development

this second increment or "build" would have the same
capabilities as the first increment plus the capability to
deploy multiple reentry vehicles during a flight. The final
software increment may contain maintenance diagnostic
capability and continuous navigation instrument calibration
capability. One begins with a minimal program and then adds
additional capability until the complete system is developed.

Evolutionary development is very similar to incremental
development but it is more long term. While incremental
development occurs during a single development phase,
typically during FSD, evolutionary development can occur over
several phases or be part of a preplanned product improvement
approach. Evolutionary development is the recommended approach
fo; large Command, Control, Communications and Intelligence
(C’I) systems. Rapid prototyping can be combined with this
approach to help define the requirements. The evolutionary
approach helps to deal with "fuzzy" requirements where the
general requ1rements are known but the details are lacking.
For example, in a large c’1 program the PM may know that he
must design a system to communicate with multiple users, be
able to react to rapidly changing threats, and be able to
adapt to the environment in real-time. He may not, however,
know the requirements of all the users, who may in turn not
know themselves until they are able to work with the actual
equipment in a scecario or simulated environment. The
evolutionary development approach would develop an early model
with flexibility and growth specifically as part of its
design. This model would then be used under actual or
simulated conditions with feedback from actual operation

9-12

_

cycled back to update the requirements. This approach could
continue indefinitely.

9.6 SUMMARY

The problems associated with managing software
development can be overwhelming. But software development is
manageable. This chapter has discussed some of the tools
available to the program manager to help in planning a
development strategy as well as to assist in the daily
management of the program. The Proyram Management Checklist
in Figure 9-3 serves as an additional reminder of the key
elements that have been discussed throughout this text.

* Plan
-- Cost and schedule
-- Development and support
* Select tangible inchstones
* Review schedule after requirements are defined
* Scrub requirements
* Build rapid prototypes
* Create/Update S/W size and cost estimates
* Design within systemm" constraints
* Don't Let hardware needlessly constrain software development
* Establish CRWG and provide for software support
* Beware of government furnished products and subcontracts
* strongly consider incremental development for large developments
* Create and manage margin (schedule/memory/throughput)
* Understand the contractor's development process
* Establish an internal control system
* Use software metrics
* Select resources and language
* 1f performing 1V&V, then do it early
* Build SIL/SIF

Fig. 9-3 Program Management Checklist

9.7 REFERENCES

1. Fairley, Richard E., "“Software Engineering Concepts",
Tyungsboro, Mass., McGraw Hill Book Co., 1985.

9-13

2. McCabe, Thomas J. and G. Gordon Schulmeyer, "The Pareto
Principle Applied to Software Quality Assurance", Handbook of
Software Quality Assurance, Ed. G. Gordon Schulmeyer and James
I. McManus, New York, NY, Van Norstrand Reinhold Company Inc.,
1987.

3. Brooks, Frederick P., "The Mythical Man-Month: Essays on
Software Engineering", Addison Wesley, July 1978, Second
Printing.

4. "A Method for Assessing the Software Engineering
Capability of Contractors", Software Engineering Institute,
September 1987.

5. Deming, W. Edwards,"Out of the Crisis",

6. Fagan, M., "Design and Code Inspections to Reduce Errors
in Program Development", IBM Journal, Vol. 15, No.3, 19.6.

7. Teichow, D. and Hershey, E., "PSL/PSA: A Computer Aided
Technique for Structured Documentation and Analysis of

Information Processing Systems", Transactions Software
Engineering, Vol. SE-3, No. 1, January 1977.

8. Alford, M., "A Requirements Engineering Methodology of

Real-Time Processing Requirements", Transactions Software
Engineering, Vol. SE-3, No. 1, January 1977.

9. Ross, D., "Structured Analysis (SA): A Language for

Communicating Ideas", Transactions Software Engineering, Vol.
SE-3, No. 1, January 1977.

10. Gane, C. and T. Sarson, "Structured Systems Analysis:
Tools and Techniques", Prentice-Hall, Engle Cliffs, NJ, 1972.

11. DeMarco, T., "Structured Analysis and System
Specification", Yourdon Press, New York, 1978.

12. Balzer, R., "Gist Final Report”, Information Sciences
Institute, University of Southern California, February 1981.

CHAPTER 10
SOFTWARE CONFIGURATION MANAGEMENT

10.1 INTRODUCTION

The dictionary defines configuration as the "relative
disposition of the parts or elements of an item" and defines
management as the "act or manner of handling, directing, or
controlling" ([1]. Configuration management, then, can be
generally defined as the act of controlling all elements of
a particular item. When applied to weapon systems,
configuration management is the systems engineering management
process that identifies the functional and physical
characteristics of system components, controls changes to
those characteristics, and records the status of the changes
implemented. It is the means through which the integrity and
continuity of the design, engineering, and cost trade-off
decisions made between technical performance, producibility,
operability, and supportability are reported, communicated,
and controlled [2].

Software configuration management is formally defined as
the discipline of identifying the software configuration of
a system at discrete points in time for the purposes of
systematically controlling changes to this configuration and
maintaining the integrity and traceability of this
configuration throughout the system life cycle. This chapter
explains the basic elements that constitute the discipline of
software configuration management and shows how the
application of thes. elements to the software development
cycle facilitates the transformation of software into a
visible, manageable entity ([3]. Fiqure 10-1 illustrates the
interrelationship of the four functions of software
configuration management (SCM): identification, control,
status accounting, and audits.

Both the developer (a contractor or another government
agency) and the government procuring agency may apply
configuration management procedures to a specific development
program. This chapter will concentrate on the government's
configuration management practices as described in
DOD-STD-480A, "Configuration Control, Engineering Changes,
Deviations, and Waivers", and MI1-STD-483A, "Configuration
Management Practices for Systems, Equipment, Munitions, and
Computer Resources". Whenever it becomes necessary to
illustrate a specific point, the contractor's configuration
management practices will be referenced.

10.2 CONFIGURATION IDENTIFICATION

Configuration identification determines how the software
system will be divided for ease in managing and controlling
change. The configuration of a system is comprised of a
physical and a functional configuration. Physical
configuration refers to the detailed design or physical

10-1

attributes of a system or item. It is normally described by
hardware drawings and software code 1listings. Functional
confiqguration addresses the functions a system or unit
performs. It is primarily established by hardware and
software requirements documents [3].

CONFIGURATION MANAGEMENT

Does the system satisfy the stated needs ?

STATUS
ACCOUNTING

What changes have been made to the system ?

How do | control changes to the system ?

CONTROL

IDENTIFICATION

What is the system conftiguration 7

Software Configuration Management-
An Investment In Product Integrity; 1980

Fig. 10-1 Configuration Management Functions

For software, configuration identification actually
specifies and identifies all components of a software system
throughout its 1life cycle, from the development of
specifications to the generation of actual code [4]. Computer
software configuration items (CSCIs), along with their
functional and physical characteristics, will normally be
determined during the Demonstration and Validation (D/V) phase
of the acquisition life cycle and prior to the System Design
Review (SDR). MIL-STD-483A, Appendix XVII, provides the
following guidance for selecting configuration items (CIs):

(a) Select configuration items based on functional and
performance parameters which must be controlled to satisfy an
overall end use function (e.g., defensive avionics system
software);

(b) Select configuration items which require ar optimum
level of government control during acquisition (e.g., code
verification software);

(c) Select configuration items based on the need to
control a CI's inherent characteristics or to control that

10-2

CI's interface with other CIs (e.g., controls and displays
software); '

(d) When selecting CIs, evaluate other factors such as
schedule, the engineering release system, financial impact,
and new, modified, or existing design parameters.

One has to be careful in selecting the number of
configuration items. Too many configuration items may increase
the management and administrative efforts required to
adequately track and control the status of the CSCIs. This
additional effort may delay the schedule and increase the cost
of the software development. On the other hand, too few CSCIs
may not only minimize the program office's visibility into the
software development process, but tend to reduce control of
the software design and possibly 1lead to operational
deficiencies.

Configuration identification provides a means for
isolating the system components as a basis for controlling
their development. There are three steps to software
configuration identification: first, the software system must
be broken down into a number of known manageable parts or
CSCIs; second, these parts must be uniquely named; and third,
as these parts change with time, the various versions that
appear must also be uniquely identified. The first step is
closely associated with the processes of specification,
analysis, and design. The other two steps require rigorously
enforced standards and procedures {4]. Figure 10-2 represents
a generic breakdown of a software system into its various
parts of CSCIs, computer software components (CSCs), and
computer software units (CSUs). The contractor will normally
propose a list of CSCIs based on the design requirements,
management structure, and available resources. These
selections will be included in the Software Development Plan
and reflected in the Configuration Management Plan along with
the contractor's configuration management methodology. These
documents are delivered to the government for approval in
accordance with the provisions of the Contract Data
Requirements List (CDRL).

10.3 CONFIGURATION CONTROL

Once the system configuration is established, the next
logical step is to devise a method to control changes to that
configuration. Unlike hardware, software is an intangible
product difficult to "see" and more difficult to manage.
Software can still be properly managed, however, by imposing
configuration control methods on its development process and
on the resultant products of that process. Edward Bersoff
defines software configuration control as "...the
orchestration of the processes by which the software portion
of a system can achieve and maintain visibility throughout its
journey through the life cycle. It provides the tools (i.e.,
documentation, procedures, and an organizational body) to

10-3

control the system implementation as well as changes to it"

[4].

SYSTEM
{ss8)

'

SEQMENT
(888)

1

SEQMENT
{88s8)

| | | | i 1

HWCI

HWCI
{(PIDS) {P1os)

]|

HWCI
(PIDS)

e] L= | [

LEGEND
(91 Critical Item Development Spec PIDS Prime Item Development Spec
csc Computer Software Component SSS System/Segment Spec
csu Computer Software Unit SRS Software Requirements Spec
IRS Interface Requirements Spec
he Y

Fig. 10-2 Breakdown of Software System

The configuration control process includes
areas: interface control, baseline management,
control boards (CCBs), software configuration
(SCRB), software problem reports (SPRs),

the following
configuration
review boards
and software

engineering change proposals (ECPs).

As previously stated,

once a "baseline" has been established or identified, the next
step is to monitor any change to that baseline, maintain a
record of that change, and update the necessary elements of
that change.

Before discussing the configuration control process, one
has to understand the differences between the two categories
of change proposals: Class I and Class II changes. Class I
changes affect form, fit, or function; although other factors,
such as cost or schedule, can cause a Class I change. All
Class I changes must be submitted to the CCB for approval.
All other changes are Class II changes. Examples of Class II

10-4

__~v_'_‘_________________________:jlllll-lllllllllIIllIIIlIlIIlIIlIIlIIlll'llIlllllllllllll.llJ

changes are editorial changes in documentation or minor
changes which don't affect the established baselines. Class
II changes only require government concurrence on the
classification. This is usually accomplished by government
plant representatives. A more detailed discussion relating to
software Class I and II changes can be found in Appendix XIV
to MIL-STD-483A.

10.3.1 Interface Control

An interface is defined as the functional or physical
characteristics which serve as a common boundary between two
or more items. With respect to system development, these
boundaries are found between hardware and software, hardware
and hardware, and software and software configuration items.
The interfaces are defined by mechanical and electrical
characteristics, reliability and maintainability requirements
and software format, timing, and programming languages
requirements. Interoperability requirements with other
systems and subsystems will also define the system under
development.

Due to the increasing complexity of today's systems, the
procram manager must establish a government Interface Control
Working Group (ICWG) during the D/V phase. The ICWG is
usually chaired by the procuring agency's engineering
representative and is comprised of representatives from the
development organizations, user organizations, and software
support activities as shown in Figure 10-3. The ICWG, in

Chqi
PROCURING
AGENCY
TWAR
SSOUFPPOARTE DEVELOPMENT o USER
RGANIZATIONS
ACTIVITY ORGANIZATIONS

Fig. 10-3 Interface Control Working Group

coordination with the Computer Resources Working Group (CRWG),
defines current and proposed software and hardware interfaces,
obtains and assesses quantitative data on the interfaces, and
investigates interoperability requirements between various
systems and subsystems.

10-5

The prime contractor will also establish an ICWG to
address the system interface requirements, especially when
more than one contractor is involved in developing the weapon
system. The contractor's ICWG will usually be chaired by an
individual from the engineering organization, with all
associate contractors as .iiwembers and the responsible DOD
agency as an observer. The ICWG documents agreements on the
interfaces affecting CSCIs and hardware configuration items
(HWCIs) involving more than one contractor. The contractor's
ICWG should review all interface changes before submitting
then to the Program Office [5].

10.3.2 Baseline Management

Several phases have been established to monitor the
progress of a weapon systems acquisition. Once specific
objectives have been achieved for each phase, the acquisition
process can proceed into the next phase of the life cycle.
Specific reviews have been established to examine the
appropriate documentation such as specifications, design
documents, and test reports for correctness and requirements
traceability. Once these documents are approved, a baseline
is established to allow the performance of both the developer
and the system to be measured. As the baseline is changed,
the provisions to the contract require that the system
integrity be maintained throughout the development process.
The bottom line of baseline management is the establishment
of a common technical relationship between the developing
agency and the developer. In the <case of software
configuration management, that relationship is based on the
CSCI.

There are three baselines associated with the acquisition
of a weapon system: functional, allocated, and product
baselines. The functional baseline is typically established
at the completion of the System Design Review (SDR) upon
approval of the Type A system specification. Formal
configuration control for the system is initiated once the
system specification has been approved. The allocated
baseline for the system is established once the allocated
baseline for all confiquration items is determined and the
Type B specifications for each configuration item have been
approved. For hardware, this normally occurs at the Prelimi-
nary Design Review (PDR), but no later than the Critical
Design Review (CDR). For software, the allocated baseline is
established at the completion of the Software Specification
Review (SSR). The product baseline is typically established
at the completion of the Physical Confiquration Audit (PCA)
after the Type C specifications are approved.

10.3.3 Configuration Control Board
The Configuration Control Board is the organizational

body within the development organization responsible for
formal processing of changes to established baselines. The

10-6

R

L

cce

CHAIR: SENIOR MGR (PRIME)
CO-CHAIR: SYSTEM CONFIG MGR (PRIME)
CO-CHAIR: SYSTEM CONFIG MGR (VENDOR)

PROJ MGR VENDOR ADDL REPS
TECH SUPP STAFF SYSTEMS MGR SENIOR MGT
-SYSTEMS HW MGR HUMAN FACTORS
-HARDWARE SW MGR TRAINING
-SOF TWARE PROGRAM MGR T&E
QA MGR
QA MGR Ivav
HW CONFIG MGR HW CONFIG MGR
SW CONFIG MGR sw §°“F'° MGR
SR USER REPS OC MGR

Fig. 10-4 contractor CCB

function of the CCB is to approve, monitor, and control
changes to the system. Figures 10-4 and 10-5 illustrate
typical membership of government and contractor CCBs. The
composition of both CCBs are very similar; however, the
responsibility of the government CCB is at the system level.
The contractor has additional <configuration control
responsibilities at lower hierarchical levels for both
software and hardware as depicted in Figure 10-6 [3].

10.3.4 Software Configuration Review Board

The Software Configuration Review Board (SCRB) reviews
and evaluates all proposed changes to the software baselines
and determines the processing and disposition of software
problem reports. The SCRB
serves as a filter for the
CCB on software related cea
matters. Software problem CHAIR: COMMAND CONFIG MGR
reports, incident reports, CONFIG MOMT SECRETARIAT
change requests, and change
proposals will first Dbe
submitted to the SCRB for

. . VOTING MEMBERS ADDL REPS
review and evaluation. The ° —— -

3 3 3 ENGINEERING ROGRAM MGR
SCRB will determine if the aTICH REP eraTEMS ENG
pending software changes TRAINING REP PROGRAM CONFIG MGR

PROGRAM LOG MGR
PROGRAM TRNG MGR

CONTRACT REP
SUPPLY/BUPPORT REP
DOC MANAGEMENT REP

should be disapproved or
forwarded to the CCB for SAFETY MGR
formal approval as baseline USER REPS
changes. Prior to its PROGAAM TAE MaR
decision, the SCRB would
have reviewed a number of
proposed software changes,
prioritized their urgency, and determined if the changes
should be made singly or in compatible groupings or block
changes.

fig. 10-5 Government CCB

10-7

As with the Configuration Control Board, the SCRB is also
used by both the government and the contractor. Figure 10-7
illustrates the typical composition of these two SCRBs.

cCB
HARDWARE | CCB SOFTWARE | CCB
CHAIR: HW CONFIG MGR (PRIME) CHAIR: SW CONFIG MGR (PRIME)
CO-CHAIR: HW CONFIG MGR (VENDOR) CO-CHAIR: SW CONFIG MGR (VENDOR)
PRIME VENDOR PRIME VENDOR
PROJECT MGR PROGRAM MGR PROJ MGR PROGRAM MGR
SYSTEMS ENG SYSTEMS MGR SYSTEMS ENG SYSTEMS MGR
SW CONFIG MGR HW MGR SW ENG SW MGR
QA MGR SW MGR HW CONFIG MGR HW CONFIG MGR
USER REPS SW CONFIG MGR QA MGR QA MGR
QA MGR USER REPS HW REPS
SW REPS

Fig. 10-6 Configuration Control Board

In the government, the SCRB normally functions during
the production/support phases of the acquisition cycle of a
weapon system. That is one of the reasons for including the
Software Support Activity as part of its membership. During
the transition to organic support, the program manager may
choose to have the contractor as a non-voting member of the
SCRB. As a minimum, the SCRB should be conducted annually in
conjunction with planned upgrades (or releases) of the
software system. However, the SCRB may be convened at any time
for major (critical) deficiencies discovered in the software.
The Software Support Activity or contractor may be assigned
the action to resolve these deficiencies and change proposals
will be submitted to the CCB for approval.

The software developer normally employs the SCRB during
development. Since the SCRB is a software board, its
membership is made up of mostly software oriented
representatives. The software manager chairs the board and has
final approval authority. The SCRB should meet routinely to
act on all submitted software problem reports (SPRs). Any
change that effects program baselines must be transmitted to
the CCB for final disposition [6].

A key member of the developer's SCRB is the softvare
development library (SDL) librarian who acts as the recorder
for the board. Since the SCRB is administered and supported
through the SDL, the SDL librarian is responsible for tracking
the status of the SPRs, forwarding the recommended SPRs to the
CCB for approval, incorporating the approved changes in the

10-8

_.-------------ll--lIllllllllllllllllllllllllllli

SDL, and maintaining
up-to-date records of
these reports.

10.3.5 Configuration
Control Process

The configuration
control process (Figure
10-8) 1is a very time
consuming and active

GOVERNMENT

CONTRACTOR

CHAIRMAN
PROG MGR OFF

CHAIRMAN
SOFTWARE MGR

|

il

ENGINEERING
LOGISTICS
TEST & EVAL
QA
8W SUPP AGENCY
ivav
DEVELOPER
USER REPS

8W TECH REPS
TEST & EVAL
SYSTEM ENG
PROJ ENG
QA
8W CONFIG MGR
INTEGRATION REPS
SOL LIBRARIAN

process. It is the heart
of the configuration
control function. This
section will concentrate
on the processing and
controlling of software changes. Both the government and the
developer follow a similar internal change control process
which results in software ECPs forwarded to the government CCB

for evaluation and approval.

TECHNICAL, COST &
SCHEDULE IMPACT EWMLUATE

I
| _, cuse:

Gov?
CONCURRENCE

Fig. 10-7 Software Configuration Review Board

CLASS |

CCB REVIEW
(DEVELOPER)

—<—

PREPARE PREPARE

PRELIMINARY {
OOCUMENTATION
=
(GOVT)

GENERATE
IMPLEMENTATION PLAN

MODIFY
CONTRACT

MONITOR/RECORD
IMPLEMENTATION STATUS

APPROWL

Fig. 10-8 Change Control Process

The configuration control process begins with the
initialization of a change to an established baseline (e.q.,
SRS, 1IRS). These changes may be initiated by government
direction, ICWG activity, or contractor/subcontractor
activity. The cognizant engineering activity (developer), in
coordination with its ICWG, will perform impact analyses on
the technical, cost, and schedule aspects of the proposed
change. Once all changes, including software changes, have

10-9

been reviewed and evaluated, the developer will categorize
them as either Class I or II changes. Any software related
issues will be forwarded to the SCRB for review, evaluation,
and disposition.

Class II changes will be submitted to the government for
concurrence on the classification. The government's plant
representative (AFPRO, NAVPRO, or DCASPRO) may approve the
classification and sign off on the change. However, it is
strongly recommended that the program manager work with the
prime contractor to establish an informal body of government
technical representatives to be located at/near the plant
representative office. Their function would be to assist the
plant representative offices in evaluating proposed changes
and to provide liaison between the engineering disciplines of
both the government and developer. Once the classification of
a Class II change 1is approved by the government, the
contractor may implement and monitor the status of the change.
Class II changes which do not receive government concurrence
may be submitted as Class I changes.

Class I changes follow a more formal route through the
CCB. The developer will submit all proposed Class I changes
to its CCB for review and disposition. The CCB will determine
if the change should be formally submitted to the government.
If they decide not to, they may choose to follow an informal
route by submitting preliminary documentation consisting of
an Advanced Change/Study Notice, an Engineering Change
Request, or a preliminary ECP. If this informal documentation
is approved, the government will notify the developer to
submit formal documentation. The formal documentation may
consist of an ECP, a Specification Change Notice with
specification page changes, a Request for Deviation/Waiver,
an Interface Revision Notice, and supporting cost data. Once
approved, the program office will notify the contractor and
both will monitor the implementation status.

10.4 CONFIGURATION STATUS ACCOUNTING

Configuration status accounting is the management
information system that provides traceability of changes to
configuration baselines and facilitates the effective
implementation of changes. It consists of reports and records
documenting change actions affecting CSCIs. The basic
documentation includes the Configuration Identification Index
and Status Accounting Report which describe the current and
approved configuration. MIL-STD-482A standardizes data
elements with regard to format, frequency, and record keeping
(2]. . For software, the Software Development Library is one
of the key developmental configuration management tools used
by the contractor for status accounting of software changes
on all software products.

10-10

10.4.1 Software Development Library

The contractor's Software Development Library (SDL) is
defined in DOD-STD-2167A as a controlled collection of
software, documentation, and associated tools and procedures
used to facilitate the orderly development and subsequent
support of software. An SDL provides storage of, and
controlled access to, software and documentation in
human-readable form, machine-readable form, or both. The SDL
maintains established project baselines, and monitors and
controls the project development configuration baselines and
data products. Software products consist of documentation and
listings, source code, executable (machine) code, and status
records for all major software elements. The SDL
responsibilities consist of:

(a) Technical control and project monitoring of
baseline content and quality;

(b) Technical control and project monitoring of the
development configuration;

(c) Organizational facilities for baselining and
controlling the content of structure or software products;

(d) Reporting procedures for software design or
implementation issues and documentation of library contents
of data products (5].

The SDL librarian 1is responsible for managing the
software development library. The librarian stores the
original software products in the SDL, maintains current
listings and copies of these products, updates them as
required, and distributes copies to appropriate personnel.
As recorder for the SCRB, the SDL librarian schedules and
coordinates the SCRB meetings and reviews the software problem
reports (SPRs) to insure that these reports are ready for
discussion at the SCRB. The librarian tracks, monitors, and
records the status of action items assigned to the SPRs, and
prepares and distributes the minutes of SCRB meetings.

10.4.2 Software Development Folder

A Software Development Folder (SDF) is defined in
DOD-STD-2167A as a repository for a collection of material
pertinent to the development configuration. The contents of
the SDF typically include (either directly or by reference)
design considerations and constraints, design documentation
and data, schedules and status information, test requirements,
test cases, test procedures, and test results. The contractor
shall document the development of each computer software unit
(CSU), computer software component (CSC), and CSCI in SDFs.
He will also establish a separate SDF for each CSU, CSC, and
CSCI or logically related groups of CSUs or CSCs. The SDFs
shall be maintained for the duration of the contract. The SDFs

10-11

will be part of the SDL and be made available for government
review upon request.

10.5 CONFIGURATION AUDITS

The fourth function of configuration management is to
perform a set of configuration audits to verify that the
selected configquration items conform to the specifications and
related technical data. There are two types of audits
conducted: a Functional Configuration Audit (FCA) and a
Physical Configuration Audit (PCA). The details of these
audits are described in MIL-STD-1521B, "Technical Reviews and
Audits for Systems, Equipments, and Computer Software".

The software FCA is a formal examination of the
functional characteristics of a CSCI prior to acceptance to
verify that the CSCI has achieved the performance specified
in its Software Requirements Specification (SRS) and Interface
Requirements Specification (IRS). Other technical documenta-
tion such as the Software Test Plan (STP), the Software Test
Descriptions (STD), the Software Test Reports (STR), and
minutes of the design reviews are evaluated for completeness.
The FCA is a means of validating that the development of a
CSCI has been satisfactorily completed and that the CSCI
performs as required.

The PCA is a formal examination of the "as-built" version
of the CSCI as described in the Software Product Specification
(SPS). The source code for each CSCI is compared with the
associated documentation (SRS, IRS, software design documents
(SDD), Interface Design Documents (IDD), and Version
Description Documents (VDD)) for accuracy and completeness.
The PCA is a means of establishing the product baseline for
each CSCI and generally occurs prior to system integration and
testing. However, system level PCAs are often delayed until
after system integration and testing is completed. The PCA
also verifies that the tested object code can be recreated or
compiled from the baselined source code.

10.6 SUMMARY

Configuration management is essential to the development
of mission critical computer resources; it provides the needed
program visibility. It allows for the control of the software
requirements, design, and final product. It defines the
limits imposed on and by the contractor during the development
of a software product. Configuration management is especially
important for software since the physical and functional
characteristics of software cannot be assessed by visual
inspection like hardware (6]. Embracing the configuration
management discipline means making a continuous, firm
commitment to the principle of keeping track of the current
status of information that is changing [7].

10-12

Without the structure of a sound software configuration
management program, the development of complex software
systems would be impossible. Sound configuration management
is extremely important for life cycle support of software.

10.7 REFERENCES

1. College Dictionary, Random House Inc., New York, NY,
1968.
2. "Configuration Management", System Engineering Management

Guide, Defense Systems Management College, Ft. Belvoir, VA,
October 1986.

3. DOD Directive 5010.19, "Configquration Management", 1 May
1979.

4. Bersoff, Edward H. Software Configuration Management, An
Investment in Product _Integrity, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1980.

5. Buckle, J. K., Software Configuration Management,
McMillan Press, Ltd., 1982.

6. Ferens, Daniel V. Mission Critical Computer Software
Support Management, Air Force Institute of Technology, School
of Systems and Logistics, Wright-Patterson AFB, OH., First
Edition, May 1987.

7. Evans, Michael W., Software OQuality Assurance and
Management, John Wiley and Sons, 1987.

10-13

CHAPTER 11
INDEPENDENT VERIFICATION AND VALIDATION

11.1 BACKGROUND

Independent Verification and Validation (IV&V) of
software was born during the early days of the space and
missile programs. Both NASA and the military realized that
software developed for spacecraft and missiles had to perform
correctly the first time. For example, if the software did
not perform as required during the launch phase of a missile,
there were no second chances. Software failures usually meant
the loss of the mission, the launch vehicle, and the personnel
on board.

Because of the importance and criticality of spacecraft
software, money and time were set aside for an independent
organization or contractor, other than the software developer,
to perform several functions:

(a) Independently test the performance of the developed
software;

(b) Ascertain that the developed software satisfied all
of the system level requirements;

(c) Independently develop a separate software package
for those functions deemed to be critical to the success of
the mission.

This type of IV&V effort did not come cheap! A full
blown IV&V effort could sometimes exceed 50 percent of the
software development cost [1]. The «criticality of the
missions, however, justified these kinds of expenditures.
The same was not true when the IV&V philosophy was introduced
into non-missile weapon system programs. Many programs failed
to tailor the IV&V approach of the space and missile programs

to the requirements of their own programs. Much of the
software developed for aircraft, tanks, and ships could be
classified as noncritical. This meant that many software

failures had no impact on critical subsystems and did not
affect crew safety. For example, a failure in a built-in-test
(BIT) or other diagnostic on-line subsystem, usually did not
have any bearing on the success or safety of a particular
mission. Likewise, failure in a piece of automatic test
equipment (ATE) or in a data reduction program was not
catastrophic. Unfortunately, large amounts of program funds
were needlessly spent in the IV&V of non-critical or secondary
software. This has resulted in two schools of thought. One
school feels that software IV&V is an unnecessary expense for
most weapon systems while the other school feels that IVaV
should be performed on all software developments. Neither is
entirely true! Software IV&V is indeed an important aspect
of developing quality software; but it has to be focused on

11~-1

those areas that are critical to the success or safety of a
mission.

Although 1IV&V 1is an effective management tool in
developing quality software, caution must be taken in placing
too much emphasis on it. IV&V never alleviates the prime
contractor's responsibility for mission success, system
safety, or other quality assurance practices. To be an
effective quality assurance tool, IV&V must complement and
reinforce the contractor's software engineering process,
configuration management, and qualification test functions
[1].

Before discussing the scope and usefulness of an IV&V
effort, it will be useful to define some terms.

11.2 VERIFICATION

Verification 1is Computer Software Configuration Item
(CSCI) oriented. As illustrated in Figqure 11-1, it is the
iterative process of determining whether the product of
selected steps of the CSCI development process fulfills the
requirements levied by previous steps. Specific task areas
that make up the CSCI verification process include:

(a) Systems engineering analytical activities carried
out to ensure that the Software Requirements Specification
(SRS) reflects the requirements allocated from the System
Specification;

(b) Design evaluation activities carried out to ensure
that the CSCI design continues to meet the requirements of
the SRS as the design proceeds to greater levels of detail
(design verification);

(c) Informal testing of the CSCI and its components
carried out by the developer to assist in development, provide
visibility of progress, and prepare for formal testing
(computer program verification);

(d) Formal testing of the CSCI (Formal Qualification
Test [FQT]) carried out by the developer in accordance with
government approved test plans and procedures to verify that
the CSCI fulfills the requirements of the SRS and to provide
the basis for CSCI acceptance by the government [1].

11.3 VALIDATION

Validation 1is system oriented. It comprises those
evaluation, integration, and test activities carried out at
the system level to ensure that the system that is finally
developed satisfies the requirements of the System
Specification. Specific validation tasks include:

11-2

- —

(a) Systems engineering activities carried out to
ensure that the requirements in the system specification

accurately respond to the operational needs called for in the
Statement of Need (SON);

(b) CSCI integration activities carried out to assemble

and check out previously qgqualified CSCIs as a fully
functioning system;

(c) The software aspects of system validation carried
out during System Developmental Test & Evaluation (DT&E) and
Operational Test and Evaluation (OT&E) to demonstrate that the
completed system meets the requirements called for in the
system specification (validating the system).

CONCEPT DEM / FULL-SCALE l PROD/
EXPLORATION VAL DEVELOPMENT l SUPPORT
TATEMENT SOF TWARE

8 SYSTEM SOFTWARE INTEGRATED OPERATIONAL

OF |—»} > REQMNTS || DESIGN |[—s] C8CI fp] ,{

STEM
NEED SPEC sPEC poc SYSTEM SYSTE

ﬂl L | 4 a8

4{1

WL VER VER VER

SYSTEM DTSE VALIDATION

OT&E CERTIFICATION

Fig. 11-1 Verification/validation/Certification

11.4 CERTIFICATION

Certification refers to the using command's agreement,
at the conclusion of OT&E, that the acquired system satisfies
its intended operational mission. During OT&E the system
undergoes test and evaluation aimed at assuring operational

effectiveness and suitability under operational conditions
(2].

11.5 THE IV&V PROCESS

AFSC/AFLCP 800-5, "Software Independent Verification and

Validation (IV&V), Draft" (2] is an excellent source of
information on how to:

(a) Determine the need for IV&V

(b) Establish the scope of IV&V

11-3

(c) Define the IV&V tasks
(d) Estimate software IV&V cost
(e) Select IV&V agent.

Since this document already addresses these issues, this
section will briefly summarize the contents of AFSC/AFLCP 800-
5.

11.5.1 Determining the Need for IV&V

Before establishing a software 1IV&V program it is
necessary to determine whether the system being considered
warrants an IV&V effort. This determination should be made
during the system Demonstration and Validation phase by
identifying and examining software requirements. The
identification and examination of requirements should be a by-
product of the System/Segment Specification (SSS) and the
preliminary Software Requirements Specification (SRS). The
requirements within each CSCI should be assessed to determine
if an undetected error has the potential for causing death or
personnel injury, mission failure, or catastrophic equipment
loss or damage. A determination should be made to see if the
software development effort is to be considered medium to high
risk due to technical reasons (i.e., complexity, state-of-the
art, system integration, maturity of tools). The CSCIs that
meet any of these criteria should be supplemented with an IV&V
effort. 1In addition, the software safety analysis performed
as specified in MIL-STD-882 may also determine the need for
IV&V.

11.5.2 Establishing the Scope of IV&V

The 1IV&V effort should be tailored so that it is
commensurate with the level of -riticality of the software
being developed. After determining the need for IV&V, its
scope can be established by performing a criticality analysis
of the software. This analysis should be done at the CSCI
level using the SRS and Interface Requirements Specification
(IRS). In many cases, this level of detail is not always
available prior to the FSD contract. In these cases, the
analysis can be performed at the SSS level. Unfortunately,
this may lead to an overall IV&V effort that is too detailed
for some CSCIs or not detailed enough for others. The program
manager can partially deal with this problem by placing the
IV&V agent on a level of effort type contract until the effort
can be better defined.

Regardless of whether one uses the SSS or SRS, the

criticality of software requirements is performed using the

following six-step procedure (See AFSC/AFLCP 800-5 for
detailed information):

(a) List the software requirements;

11-4

(b) Identify the potential impact of undetected
software errors or faults on the software requirements ;

(c) Estimate the probability of occurrence for each
error;

(d) Calculate the criticality value of the requirements
as shown in Table 11-1 (See ASFC/AFLCP 800-5 for details);

Probability Impact Categories

of
Occurrence Catastrophic Critical Marginal Negligible
Frequent 12 9 6 3
Probable 8 6 4 2
Improbable 4 3 2 1
Impossible 0 0 0 o

Table 11-1 Requirement Criticality values

(e) Calculate the overall criticality value for the
system or for each CSCI.

(£) Select the appropriate level of IV&V based on
system's/CSCI's criticality value.

11.5.3 Defining the IV&V Tasks

Once the «criticality values are calculated the
appropriate level of IV&V can be selected as shown below:

Criticality Value Appropriate IV&V Level
6-12 I
3-6 II
2-3 III
0-2 None-1I11I

Where the three levels of IV&V tasks include various tasks
that grow in scope and complexity as you progress from one
level to the next. The IV&V levels are defined as:
eve I
{(a) Evaluation of software documentation;

(b) Participation in milestone reviews and formal
qualification testing, evaluate test plans;

(c) Identification of critical requirements and design
issues;

11-5

(d) Monitoring the development process and providing
technical consultation;

(e) Evaluation of critical test results;
(f) Performing selected audits.
Level II
Same tasks as Level III plus the following:
(a) Analysis of selected critical functions;
(b) Spot checking design performance;
(c) Independently testing critical code;
(d) Analysis of developer's test results;

(e) Independent evaluation of all software problem
reports.

Level 1
Same tasks as level II plus the following:

(a) Structural and functional analysis of requirements,
design, and code;

(b) Propose alternative designs for critical design
areas;

(c) Redevelop key code;

(d) Conduct special test in critical areas beyond
contractor's formal qualification tests (i.e., stress testing,
simulations).

Each IV&V 1level 1is progressively more detailed and
comprehensive than the previous level. The realism of the
criticality values depend on the experience level and
background of the people performing the analysis. To select
the scope of IV&V and to ensure that its results are not
biased, someone other than the software developer or potential
IV&V agent should perform the analysis.

It is important to note that IV&V involves activities
over the entire software life cycle and that it is more than
just another software test activity. Too often the majority
of the IV&V effort doesn't start until the software is in the
test phase when problems become more visible. Waiting until
testing to identify and remove problems loses most of the
benefits associated with IV&V.

11-6

The tasks performed by the IV&V agent can vary with
respect to costs versus benefit. The program office should
make provisions to terminate an IV&V task when its costs
exceeds its benefit. The program office should establish
criteria and/or thresholds for terminating IV&V support. If
the IV&V agent is the supporting command for example, program
management responsibility transfer might be chosen as the
termination point. If the IV&V contractor is for level III
tasks, then completion of reviews on the operations and
maintenance manuals may be the termination criteria. A
termination clause for an IV&V effort should be included in
all IV&V contracts or tasking documents.

11.5.4 Estimating Software IV&V Costs

There are no magic formulas to help predict IV&V costs.
IV&V cost estimating requires a thorough understanding of the
system software and sound judgement. This section provides
some simple guidelines to follow when estimating IV&V costs.
These guidelines are based on historical trend data and past
experience.

In general, the cost of software IV&V can range from 10
to 50 percent of the cost of developing the software depending
on the IV&V level selected [1]. The majority of IV&V programs
are usually at the lower end of this cost range. Figure 11-
2 graphically depicts the relationship between the IV&V level
and cost as a percent of software development cost. From this
figure and the software's criticality value, the IV&V cost as
a percentage of the total software or CSCI's development cost
can be estimated. These estimates may be on the high side
because they were taken from programs that did not use DOD-
STD-2167A, "Defense System Software Development" or MIL-STD-
1815A, "Ada Programming Language". Use of these two standards
should decrease IV&V costs because both standards increase the
engineering discipline in the software development process
which improves software quality and makes the IV&V effort
easier.

The above guidelines assume that the software development
cost has been correctly estimated and accurately defined in
terms of:

(a) Size (lines of code);

(b) Complexity;

(c) Volatility of requirements;

(d) Programming language;

(e) Quality of existing software and documentation
(when modifying or using existing software);

(g9) Maturity of system software and development tools.

11-7

0.66
0.50

J

1

0.45

1

0.40

ivav cost 035

(Percent ot ¢csci 0.30
Development Cost) 0.25

1 1 1 1

0.20

0.15

0.10 —

005 =

° Frrrrrrtririv 1011
1 2 3 6 45

6 7 8 9 10 11 12 13

CSCl! CRITICALITY VALUE

Fig. 11-2 IV& Cost Vs. Criticality values

Variations in any of these factors can impact software
development cost and subsequently IV&V cost. Before
attempting to estimate IV&V cost, it is very important to have
a thorough understanding of the software requirements.

IV&V costs should seldom, if ever, exceed 50 percent of
the software development cost. Above the 50 percent level,
it means that one expects software failures to have
catastrophic effects on the program and that such failures are
highly likely to occur. If this is the case, it probably
means that the application is beyond the state-of-the-art or
at the very least on the leading edge of technology and may
not be ready to proceed into full scale development.

11.5.5 Selecting IV&V Agent

Selecting an IV&V agent is always the responsibility of
the program office. The 1IV&V agent selected must be
autonomous from the software developer. The IV&V agent may
be a part of the prime's organization but must report to a
level above the head of the software development team (similar
to any contractor's quality assurance organization). However,
there can be significant benefits from using the software
support activity (SSA) as the IV&V agent. This gives the SSA
a vested interest in the software development since they must
support the system after system delivery.

The following guidelines should help the program office
in selecting the best qualified IV&V source:

11-8

(a) IV&V Experience. IV&V involves the use of
specialized techniques performed by highly skilled personnel
for detecting errors not usually found by the software
developer. Therefore, one of the most important
qualifications of a potential IV&V agent is experience. The
IV&V agent must have a strong background in the latest IV&V
techniques and have a successful track record. A large amount
of IV&V experience gives the IV&V agent the intuitive insight
into where problems most likely occur; the ability to quickly
recognize problem areas and pit falls; expeditiously recommend
sound solutions; and experience in working harmoniously with
the software developer in a pressure filled environment. It
is imperative that the agent's IV&V experience be commensurate
with the level of IV&V desired on that application. One does
not want an IV&V agent working on a level I IV&V effort
whose entire experience is limited to level III 1IVaV.

(b) Application Experience. The IV&V agent must have
experience in developing or performing IV&V on similar type
systems and be qualified in the technology area under
development;

(c) Personnel Experience. The management and technical
personnel must have a strong background in conducting IV&V on
similar programs and be proficient in using their company's
IV&V tools. In addition, they must also have detailed
knowledge of similar systems and the technology areas being
developed;

(d) IV&V Tool Library. The IV&V agent should have IV&V
tools that are appropriate for the specified IV&V level.
These tools should have been regularly used in the past and
not require inordinately specialized talent to use. The
existence of a large tool library is of little value if the
tools cannot be easily used or the IV&V agent is not
thoroughly familiar with their use and limitations.

To determine the qualifications of an IV&V agent the
program manager has two options. The first is to review the
agent's past performance on similar applications. The second
is to perform a software capability/capacity review on the
IVv&V agent as described in Chapter 8.

11.6 REFERENCES

1. AFSC/AFLCP 800-5, "Software Independent Verification and
Validation (IV&V)", 1988.

2. ESD-TR-77-326, "Software Acquisiticn Management
Guidebook: Validation and Certification", Elect. onic Systems
Division, Hanscomb AFB, MA, August 1977.

11-9

CHAPTER 12
METRICS

12.1 INTRODUCTION

This chapter deals with the mechanics of measuring the
progress of a software development effort. The material is
addressed from a top level perspective and is typical of the
data that is usually presented to a program manager. Because
the data will be summary level data, additional data at the
next level of detail may be required to support a thorough
review. The software manager should have more details and
ready access to the contractor's data. To receive metrics
data requires that this requirement be clearly called out in
the contract. It is important to examine the contractor's
process to determine what data is available and to use the
contractor's system rather than to impose unnecessary
requirements such as peculiar formats. If the data is not
available, it may indicate a weakness in the contractor's
ability to provide visibility to the program office.

There are many different software metrics available but
few of them are proven. The state-of-practice in software
metrics is far from perfect, but there are a few recommended
metrics that are appropriate for all programs. Metrics are
generally relevant only to an individual program and indicate
trends or alert flags; they are not absolutes. In other
words, a specific value may not describe absolute performance
or cost but the collective data may provide a level of
confidence on the range of performance or cost.

The following material is extracted almost entirely from
the Air Force Systems Command, Electronics Systems Division
and MITRE document, ESD-TR-88-001, "Software Management
Metrics".

12.2 PROGRAM MANAGER'S METRICS * Software Size and Cost Status
Table 12-1 lists the metrics * Manpower Application Status

that should normally be available, * Cost and Schedule Status

at least monthly, to the program

manager. The basic method * Resource Margins

requires an initial planned
estimate as a baseline to measure
progress against. ~Actuals are
then tracked against the baseline * Design and Development Status
plan and trends or thresholds are
analyzed for progress or problems.

* Quantitative Software
Specification Status

* Defects/Faults/Errors/Fixes

* Software Problem Report Status
Although there are many more

meirics available, the 1list in * Test Program Status
Table 12-1 is an attempt to * Delivery Status
provide the program manager with a -
"Top Ten List". Table 12-1 Metrics

12-1

12.2.1 Software Size and Cost Status

The software size metric tracks the magnitude of the
software development effort while the cost metric tracks
expenditure of resources (Figure 12-1). The metrics for each
Computer Software Configuration Item (CSCI) are normally
tracked individually. The trend should be fairly stable,
although a. deviation may indicate a better understanding of
the requirements. One should look for an unstable baseline,
requirements growth, and poor planning. The software size
metric is generally the input to a cost model such as COCOMO
[1). Changes in size requires more resources and reflect a
change in cost. The cost model is not shown.

160 ‘ e
; I
5 @== TOTALSLOC
: w77 NEW SLOC
i 5 s MODIFIED
120 A : SLOC -
— . wam REUSED SLOC
< 80
8 V4
s ///////
@ ///
/s ///

SRR SDR SSR PDR CDR

Fig. 12-1 Software Size

Rules of Thumb for Software Size and Cost Metrics

(a) Estimates should not vary by more than 5% from month
to month. Variation may indicate a better understanding of
the requirements or problems with the contractor's development
process.

(b) Typical effective weights for source lines of code
(SLOC) should be: New code 100%, Modified code 50% , Existing

code 10%.
(c) SLOC requirements divectly impacts manpower
requirements.

(d) Use higher order languages.
(e) Tailor the metrics by tracking:

- Equivalent SLOC (weighted);

12-2

- Each programming language;
- The metrics for each CSCI separately;
- Object code size.

12.2.2 Manpower Application Status

Tracking planned versus actual manpower loading provides
visibility into future schedule problems (Figure 12-2).
Resources should be identified as either experienced/senior
personnel or inexperienced/junior personnel. Tracking losses
is also important, particularly if the losses are in key
positions such as the chief programmer.

800 . i i i [
ENS PLANNED]
w ACTUAL
600 TOTAL g8 —
........ i
400 3
g s -----EX?ERIENCED
8 2m + H
MD LOSSES
0 ; ;
| ‘ I
-20
40
PDR CDR TRR

Fig. 12-2 Software Personnel

Rules of Thumb for Manpower Metrics

(a) The ratio of total to experienced personnel should
never exceed 6:1. A ratio of 3:1 is typical.

(b) Initial staffing usually comprises about 25% of
total personnel requirements.

(c) The front end should be leveraged with more
experienced personnel.

(d) The development schedule depends on the amount of
man-months expended:

- Understaffing is an early sign of schedule
slippage;

- If you are behind, you can't always catch up by
adding more manpower. Adding manpower may even
further delay the schedule;

- Judicious use of overtime may help;

12-3

- Additional use of manpower may work but only for
tasks that can be separated or isolated;

(e) High turnover or loss of key personnel is a sign of
problems;

(f) Tailor the metrics by tracking the staffing for
each:

- Development task;

- Skill (e.g. Ada, Data Base Management Systems,
Artificial Intelligence);

- Organization (e.g. Software, Quality Assurance,
Test).

NAVIGATION AND GUIDANCE CSCI

MILLIONS OF DOLLARS

12

10

6
n
2 -
O — ljl_l_l_%ilgj'il lJ| 14%4 Llrl lilll%g
JAN APR JUL OCT JAN APR JUL OCT JAN APR
| 87 | 88 I 89 |

TIME IN MONTHS

—— BCWS —+— BCWP —¥— ACWP
fig. 12-3 software Cost and Schedule

12.2.3 Cost and Schedule Status

Financial reporting provides the status of work performed
and actual cost of work performed versus the plan (Figure 12~
3). This is the traditional Cost/Schedule and Control System.
Typically, the data reported to the government provides little
visibility into the software development status. This usually
occurs because of inadequate definition of the software WBS
as well as the level of reporting. The WBS levels must
provide reasonable visibility to the program manager. One way
to do this is by defining a product oriented Work Breakdown
Structure (WBS) for the software.

12-4

Rules of Thumb for Cost and Schedule Metrics

(a) Be alert to variation thresholds exceeding 10%.

(b) Beware of efficiencies that are projected to
improve. Past performance is a measure of productivity and
efficiency and it is very useful for forecasting estimates to
complete. Efficiencies don't usually improve that much.

(c) Tailor metrics by tracking:

.~ Each CSCI;
- Support software development.

100 , ‘ , v
| __
i =
AANNNY MmORY
80 wam 1/O CHANNEL
60
E PLANNED SPARE
]
g 40 NN\
“\\\\\h\\\\\\\T
“\3_\\
20
0
TRR

Fig. 12-4 Computer Resource Margins

12.2.4 Resource Margins

Resources describe the hardware limitations of the

systems. These include Central Processing Unit (CPU)
throughput, memory size, and Input/Output channel capacity and
rate (Figure 12-4). Resources can have a direct impact on

software productivity and design efficiency. The development
resource margins are as important as the target resources
particularly for planning software support.

Rules of Thumb for Resource Margin Metrics

(a) CPU utilization should allow for a 50% margin at
delivery (this means that only half of the resource has been
used);

(b) Memory utilization should allow 50% margin at
delivery;

12-5

(c) I/0 utilization (channels and data rates) should
allow 50% margin at delivery;

(d) For real-time systems, performance/productivity
deteriorates quickly above 70% utilization;

(e) Consider hardware resource limitations (e.g. memory
addressing as a hardware limit);

(f) Resource utilization tends to increase with time so
plan for expansion;

(9) Schedule and cost "bomb" at 10% margin (in other
words you'll already have seen an exponential rise in the
effort required to squeeze, pare, re-code, fix, etc.);

(h) Tailor metrics by tracking:
- According to architecture (e.g. multiple CPUs);

- Average and worst case;
- Host and Target equipment;

100
P
=== OPEN SAls
s NEW SAls
80 I
60
N
40
X N
ﬂ?ﬁ\
Y N\ N A
20 >
\k\\\\\\‘\\\\ \ \§ A\
0
SSR PDR CDR

Fig. 12-5 Software Volatility/Action ltems

12.2.5 Quantitative Software Specification Status

A baseline plan is initially estimated for the quantity
of discrete software requirements to include both functional
requirements and interface requirements. Actual progress is
tracked against the plan. This metric provides visibility
into the progress of the requirements analysis as well as the
growth of the requirements in the baseline (Figure 12-5 and
12-6).

12-6

500
| == TOTAL
REQUIREMENTS
- AW CUMULATIVE | 400
CHANGES
E 300
o
: 2
: B
=2
2 200
"4
100
0
CDR

Fig. 12-6 Software Volatility/Requirements Changes

Rules of Thumb for Specification Metrics

(a) Each requirement should have a planned completion
date;

(b) Requirements growth, no matter how small, will
impact planned resources and should be contained from the
beginning;

(c) Requirement uncertainty leads to Engineering Change
Proposals (ECPs);

(d) Requirements are baselined at the Software
Specification Review (SSR);

(e) I1f the requirements are not stable by the Critical
Design Review (CDR), the program is in serious trouble;

(£) Requirements change after CDR will most probably
impact the schedule;

(9) Phase incremental development to allow the
requirements to be revisited before the Preliminary Design
Review (PDR) of the next increment;

(h) Software action items should not remain open beyond
60 days.

12.2.6 Design/Development Status
The contractor should describe in the Software Development

Plan the process for inspections, walkthroughs and internal
design reviews. These events can be tracked to determine the

12-7

200

150 b b oott® B \\,*ﬁ\\ j \\\\\\ ;

REQUIREMENTS
N
‘

lm m

=== TOTAL

REQUIREMENTS
$0 AT o AN WU WU SOOI WS U \) 4 " s ORIGINAL “
e N REVISED PLAN
4 O ACTUAL
0 H i 4 3
SRR SDR SSR —# (SSR) PDR
Fig. 12-7 Design Process
1000
P
mmm PLANNED ...
mmu ACTUAL
2 .
4] ¥ Csus
INTEGRATED
PDR CDR TRR

Fig. 12-8 Development Progress

rate of progress. On a large project these events can number
in the thousands (Figures 12-7 and 12-8).

Rules of Thumb for Design Metrics

(a) The Software Requirements Specification (SRS) should
be complete before the Software Specification Review (SSR);

(b) The Software Design Document (SDD) should be
complete before the PDR;

12-8

Rules of Thumb for Development Metrics
{(a) The CSU design should be complete before the CDR;

(b) CSCI integration and test must be completed before
the Test Readiness Review (TRR);

(c) Diverging from plan may mean schedule delays;
(d) Track to cost model (e.g. COCOMO);

(e) Source Lines of Code (SLOC) per staff month can be
categorized as:

Easy Code - 150
Moderate Code - 70
Difficult Code - 30

(£) Tailor metrics by tracking:

- Each CSCI;

- Internal reviews of program design languages
(PDLs) ;

(c) Delaying development to obtain a better
understanding of the requirements is usually a wise decision.
Tradeoffs may be made to reduce requirements for gains in
schedule;

(d) Diverging from the plan means that the requirements
are less understood. You may not be ready for the SSR;

(e) Tailor the metrics by tracking more detail, from the
SDD to the Computer Software Unit (CSU).

12.2.7 Defects/Faults/Errors/Fixes

Tracking the actual performance of the process provides
some visibility into the product quality. This is only true
if the contractor has a controlled, repeatable process. Ad
Hoc software development is not predictable.

A defect is an anomaly in the requirements and design.
A fault is an anomaly in implementation (code). An error is
the source of a fault and a fix is a correction of an error.
Errors and fixes are tracked through the Software Problem
Reporting (SPR) system (Figure 12-9)

Rules of Thumb for Defects/Faults/Errors/Fixes/Metrics

(a) Defect/fault/error rates are an early indication of
product reliability.

(b) The contractor's process should focus on defect
prevention and early fault detection.

12-9

NEW AND RESOLVED SOFTWARE FAULTS

RATE OF DEFECTS,FAULTS

160
140

120

100

e N\

40 - . - P

60 -

20 - : L e

(A WS U W U 1NN (N A TN I N N NS O A GO N Y A |
Olll%llI'Lll_LlrllI;JllT } } } }

JAN MAY SEP JAN MAY SEP JAN MAY SEP JAN MAY
86 | 87 I 88 | 89

DEVELOPMENT TIME

—— NEW FAULTS —+— RESOLVED FAULTS

Fig. 12-9 Defects/Faults/Errors/Fixes

12.2.8 Test Program Status

The entire test process can be tracked from the beginning
of planning through detection of errors and correction (Figure
12-10). Quantitative measures can start with a requirements
and test cross reference matrix. Progress can also be
measured on planned versus actual tests performed.

12.2.9 Software Problem Reports Status
Software Problem Reports (SPRs) provide feedback on the
correction of errors and are an indication of product quality
(Fig. 12-11)
o Rules of Thumb for SPRs

(a) Planning should account for the iterative and
interactive nature of testing;

(b) The number of tests completed should converge on the
number of tests planned;

(c) Use trends to predict schedule;
(d) Unresolved problems should decrease to zero as you

approach the TRR and again as you approach the Physical
Configuration Audit (PCA);

12-10

1500

1000 CSCl

Fig. 12-10 Test Program Status

500 : i j i i L]
I
Smm NEW SPRs
: wes OPENSPRS 2
i SN SPR
; DENSITY -
Lo @
e s @
10 g
5
0 - - - 0
TRR ~# (TRR) PCA —% (PCA)

Fig. 12-11 Software Problem Reports

(e) The number of SPRs is an indication of the testing
adequacy and the code quality. Too many SPRs may indicate
poor quality; too few may mean inadequate testing. It takes
a process change to improve the rate and the quality. In
today's state of practice a typical range is 5 to 30 SPRs per
1000 SLOC.

(f) If the slope of open SPRs is positive then problems

are being found faster than they are being fixed. 1If the
slope is negative then the schedule can be predicted.

12-11

(f) If the slope of open SPRs is positive then problems
are being found faster than they are being fixed. If the
slope is negative then the schedule can be predicted.

(9) Tailor the metrics by tracking:

- The number of days SPRs are open (e.g. 0-30, 30-
60, 60-90, over 90);

- Open SPRs by type of software (e.g. application,
support, test, operating system);

- Open SPRs by priority (e.g. critical to operation,
critical for integration, other);

- SPR density (SPRs per 1000 SLOC in categories
0-10, 11-20, 21-30, and over 30)

12.2.10 Delivery Status

A good indicator of progress is to track both internal and
external incremental delivery status (Figure 12-12). For
example, one can track internal delivery to the test organiza-
tion for integration and test and external delivery to an IV&V
agency. Otten, early problems in a release may be deferred
to a later release. This delay should recognize the shift in
resource requirements. Too many deferrals can spell disaster.

1000

Fig. 12-12 Incremental Release Count

Rules of Thumb for Delivery Status Metrics

(a) The number of CSUs per release should remain stable
(within 10%).

(b) Increments or "builds" should demonstrate useful
capabilities as early as practical.

12-12

.

12.3 SUMMARY

Metrics should provide the program manager a tool for much
greater visibility into the software development than in the
past. The metrics discussed in this chapter focused primarily
on tracking progress. There are other techniques available
to monitor product quality, although these are much harder to
quantify. It is important that the contractor have the right
mechanisms in place for proper discipline and commitment to
quality.

12.4 REFERENCES

1. Boehm, Barry W., Software Engineering Economics, Prentice
Hall, 1981.

12-13

CHAPTER 13
EPILOGUE

13.1 INTRODUCTION

Improvements in software productivity are coming slowly.
Present conventional techniques for software production make
use of libraries of primitive functions or algorithms (See
Figure 13-1). There 1is 1little carryover from past
developments. The primary development effort is in-line with

process At

System Designand || CPCI Test
Design Development
System Test

Tools On-Line Developers

Simulators, PDL,

Requirement| |configuration Test Support

Analyzers, | |Management,| [Generators | [Environments

Word Workbench

Processors

Showroom System Structure

[HOL| | Compilers | = |

Math Operating
Functions| | Systems

1L
l Algorithmsl
Subroutine *k - —
i Off-Line
Libraries Developers T

Fig. 13-1 Conventional Techniques

the delivery of the software product or capabilities and is
dedicated to a single system. There is little ability to
leverage the development investment and provide products for
use on the next system. The resulting system structure is
typified by many unique modules with complex interfaces
requiring significant effort to integrate, test and maintain.

The communications among the various players (user,
system designer, programmer) involved in software development,
acquisition, delivery and use is constrained. The constraints
arise from a number of factors including geography, personnel
availability, lack of software development tools, procurement
and acquisition policy restrictions, and the diverse
backgrounds and training of the players. The resulting
situation might be characterized as each player tossing
requirements, designs, and comments over a wall to one
another.

13-1

These constrained communications, and the unique and
customized implementations which result from our present ways
of building software, usually require that the computer
programmers play a key role in the delivery and transition of
the system to the user. 1In fact, in many systems even the
system designers and the system test group have a difficult
time discovering critical failure modes and correcting
problems economically when they are discovered. The need to
use the software development organization during transition
is often underestimated; especially when the software
development organization is not the prime contractor. The
prime usually phases out these programmers and performs the
final system test and operational test and evaluation without
them. Unfortunately, current software development practice
makes it difficult for the prime to perform these functions
adequately.

Process
Program Design Code Test
& Development
o P CPCI Test
Program
integration System Test
Tools On-Line Developers
Simulators PDL,

Prototypes, Symesizers', CAD/CAM, Test %ommon
Simulated | | Automated, On-Line Generators upport
Exercises Catalog, Function Environments

Formal Spec Libraries

Showroom System Structure

ADA

Packages
Resource Data Base x* *

Allocator Manager
Display R**

FFT Generator
Processor ﬂ**
Message f.Li

Handlers | | Off-Line
Developers

Fig. 13-2 Reusability

There may be another way to build software and overcome
some of the drawbacks of our present techniques. A model of
an alternate software development technique is shown in Figure
13-2. In this model, showrooms of larger more capable
piecesare developed off-line for later integration and use in
multiple systems. The in-line activities are, therefore, more
heavily directed towards program integration than to design
and development. The testing emphasis is more on system
testing than code or CPCI testing. Such an approach may
support the use of computer aided design and manufacturing
(CAD/CAM) for software. The resulting system structure is

13-2

more regular, has simpler interfaces and is easier to test.
Less in-line development is required for the delivery of a
software product or capabilities. This allows the off-line
development effort to support a larger number of systems.

However, reusing software on multiple systems is a tough
job. How can the performance and interface of the modules be
described? How well can they be tested? What is their run
time? How are they catalogued? Who owns the data rights?
How are they quaranteed?

The technology and the management infrastructure needed
to fully exploit reusability is not yet available. Efforts
in the STARS program and at the Software Engineering Institute
are investigating the technical and management advances
required to answer these questions and to bring reusability
closer to practice. In the meantime, greater use of best
existing practice, tailored acquisition strategies, and
improvement of tools and techniques are required to help
manage the software acquisition process.

4x

2x
1.5x
1.25x
Relative x
Cost B
Range 0.8x
0.67x
0.5x
Product Detailed
0.25 Concept of Requirements Design Design Accepted
el Operation Specifications - Specifications Specitications Software
A A A A A

SOURCE: Software Engineering Economics; Barry W. Boehm

Fig. 13-3 Software Cost Estimating

13.2 SOFTWARE COST UNCERTAINTIES

Because the current nature of the software development
process is more like model shop or custom tailoring then like
mass production, software cost estimating accuracy is a very
strong function of the program phase. The uncertainty in the
software development process is captured in Figure 13-3 {1]}.
Errors on the order of 4 to 1 are likely when estimating
software costs at the start of a project.

13-3

These early cost estimates require difficult judgments
of complexity, productivity and size. Experience indicates
that the curve should be one-sided because software costs are
never overestimated; they are always underestimated.

How is it then that most cost estimators advertise
techniques which purport to provide 10 to 20% accuracy? Most
of these estimates make use of regression analyses and deal
with the process from the perspective of the right end of the
curve. With present techniques, if you want better accuracy,
you have to do something to move toward the greater experience
part of the curve.

Fig. 13-4 Estimating Techniques

This can be done by building prototypes, making use of
previously designed and developed products, using commercial
off-the-shelf software, or finding an acquisition strategy
which includes a contract definition phase or incremental
development. A strategy is needed to delay major fund
commitments until better software requirements and
implementation definitions are obtained.

Early software cost estimating may be likened to the
story of the old farmer who had a unique way of estimating
the weight of pigs (See Figure 13-4). "I don't need any of
these newfangled scales to do that," he said. He had an easy
way to weigh pigs without scales. He laid a plank across a

13-4

R e

pail, put a stone on one end, a pig on the other, and balanced
the plank. Then he guessed the weight of the stone. From
that he could easily calculate the weight of the pig --to
three significant figures. With current model shop
techniques, one cannot write better specifications or obtain
better cost estimates without first doing some part of the job
to be specified or estimated.

13.3 SOFTWARE ACQUISITION CYCLE

The ideal acquisition <cycle includes a concept
exploration phase, a demonstration/validation phase, a full
scale engineering development phase, a production phase and
a deployment phase. In most Command, Control and
Communications (C°) systems acquisitions and in many
non-developmental item (NDI) acquisitions, the normal weapon
life cycle is compressed (See Figure 13-5) [2].

Idealized Cycle

Concept
Explor-
ation

Demonstra-
tion s
Validation

Full-Scale
Development

Production

Deployment

— o \ /
e s v

Usuat C3 Cycle

Concept
Explor-
ation

Full-Scale Development/

Production Deployment

Fig. 13-5 System Acquisition Cycle

Although a concept exploration phase may take place, the
demonstration/validation phase is generally omitted and the
full scale development and production phases are combined.
When no demonstration/validation phase is present, time
somehow must be allowed for definition and detailed design.
Many acquisition schedules call for preliminary design reviews
as soon as three months after contract award. The contractor
is forced to either accomplish the top level design in the
proposal phase or in the short time available after award.

The use of top-down design has been recommended as an

orderly and disciplined way to develop and test software. For
new programs, however, one cannot perform top down design and

13-5

development without some knowledge of the bottom (See Figure
13-6). One must have some assurance that allocations of
requirements, from one baseline to the next, will still be
valid when the lower level designs are developed.
Historically, most BAir Defense programs have run out cf
processing resources as a result of a poor understanding of
the need to carefully sort tracks before attempting radar data
correlation. Prototypes or breadboards of the difficult parts
of the design help validate requirement allocations and avoid
breakage and rework.

‘“You can’t do top down
without knowledge
of the bottom”’

A. Roberts

L
i

Ny)
AP

AL
A

.

Fig. 13-6 TYop-Down Design

13.4 PROTOTYPES

Prototypes are useful in two ways. They help resolve
requirements uncertainties by providing better user insight
and lessening the misunderstanding that arises from just
looking at paper requirements and specifications. They also
help reveal implementation difficulties or constraints.

Prototypes generally make use of special operating
procedures and operating systems and have limitec interfaces
and lcading. They have no provisions for startover,
continuity of operation, or maintenance, and use computers and
code that are not intended for the target system. Too often
the government uses the information from the prototype to
generate high level system performance specifications for

13-6

A

competitive bid with a new set of contractors. Much of the
experience gained from the prototype development is lost in
the process if the prototype developer is not the winner.
With today's state-of-the-art software production techniques,
it is very difficult to convert a developer's experience into
specifications of sufficient quality to allow someone else to
gain that know.edge and experience. Unless the original
players, both user and development contractor, remain the same
and the early prototype is very close to the end item, a
second prototype must be built. Otherwise, some strategy such
as incremental development must be used to help manage the
requirements and implementation uncertainties.

13.5 SCHEDULES AND MANNING
The amount of time the government allows for design, and

the rate at which the contractor staffs the software
development activity, have a major impact on the success of

EXPERIENCE PROPOSED

NUMBER
OF STAFF

9 l 18 27 45

in TiME | L
PR C TRR obs

Fig. 13-7 Software Manpower Phasing

|

the program. A thesis [3]), written by Captain Thomas Devenney
in 1976 at the Air Force Institute of Technology, examined 16
major acquisition programs at the Electronic Systems Division
(ESD) at Hanscom AFB, Massachusetts. He found that in every
case the contractor manned up as soon as possible and that the
manning level was constant throughout the program. The
absence of a ‘'demonstration/validation phase and the
requirement to hold PDR in the first few months of the
contract forced this manning profile. About ten years ago,
Roberts (4] suggested a revised manning profile and model
schedule for the early design activities leading to PDR and
CDR (See Figure 13-7). The intent of this manning profile
is to allow more time for design analysis and breadboarding
of the difficult parts of the job and to perform some work at
a level below the level one is attempting to baseline. This
allows for the validation of the top level design and
performance allocation before building up the development

13-7

team. The experience on several ESD programs indicates that
with existing practice development specifications are not
completed until 10-15 months after contract award. This is a
true measure of the time needed for validating top level
designs (See Figure 13-8).

System A De\ét:;gg:'e(g; e B
PreI|m|.n.ary 3:::33 c:.
Cnﬂmﬂ;t:%& "llll

System B Develop Spec. (B) ‘ .
PDR () |

System C Develop. Spec. (B) c:]
PDR .
CDR a

‘ Planned Completion . Actual Completion

Fig. 13-8 Experience Example

Over time the schedule for the PDR has been increasing
and is now generally six months after contract award. What
do all those people do while the top level design is being
developed? They start into detailed design and coding in
order to meet schedule. This premature design and code must
often be redone and the changes and uncertainties lead to
frustration and poor morale for the entire team.

In updating his COCOMO model for Ada implications, Barry
Boehm has suggested a schedule similar to the one shown in
Figure 13-7. He allows time before the PDR to compile the
PDL statements, validate interfaces, and perform semantic
checks. The longer time produces A more orderly process with
less breakage and rework.

13.6 TEAM SIZE AND MANAGEMENT
Large, complex software jobs often require hundreds of

people. An article [5] by the people who managed Sidewinder,
a very successful air-to-air missile, addresses the size and

13-8

behavior of research and engineering teams. It points out
that the nature of complex acquisitions is such that the
assignment of too few people may require an infinite time to
complete the job. On the other hand, the assignment of
additional engineering personnel above a certain level may not
only proportionately reduce total time, but may, in fact,
increase the total time to accomplishment (See Figure 13-9).

The author of the
referenced article
recalls being asked in
grade school to solve
the following problem:
"1f two men can dig a
well in eight hours, how
long does it take four
men to dig the same
well". He "... <can
recall being haunted by
the suspicion that
perhaps there was only
room down the well for
two men; in which case
the extra two men might Number of People
have some difficulty in
usefully contributing". Fig. 13-9 Productivity
A similar phenomenon has
been reported by Brooks in "The Mythical Man-Month" [6].

Time to Completion

If the schedule for a previous job was longer than
desired as the result of over-staffing, the tendency may be
to add more people to improve the schedule on the next job.
This will happen if the inter-dependent nature of the tasks
and the over-staffing are not understood. Care must be taken
in using past experience to set objectives for future jobs.

The size job a given organization can handle is not only
a function of the available number of qualified and
experienced personnel. To some extent, jobs can be balanced
with resources. When the job grows in size, complexity, and
interdependence, the developer must provide appropriate
infrastructures (i.e., organization and documentation) to
support technical interchange, progress reporting, and
increased span of control (See Figure 13-10). If a large job
is broken into pieces tc get it accomplished, a mechanism must
be devised for pulling it back together again.

Failures often occur when firms take on larger jobs than
they have previously undertaken. They generally use a small
team and face-to-face communications for coordination and
control. When the number of people grows, there are no
established procedures, tools or documentation to support the
necessary technical and management interchanges.

13

§
Y]

Jobs Resources

infrastructure

Fig. 13-10 Management

13.7 ASSESSING PERFORMANCE

There are a number of new techniques for assessing a
contractor's experience, tools and procedures. Visits to
contractor facilities by a team of experienced government
software personnel during source selections are being used.
The team assesses and verifies contractor experience, maturity
of procedures, quality management capabilities and job
understanding. At the Electronic Systems Division these teams
are called "Greybeards." At the Aeronautical Systems
Division, they are called "Capability/Capacity Review Teams"
(See Chapter 8). Work at the Software Engineering Institute
and at MITRE Corporation (7] has led to a process for
assessing the software engineering capability of contractors.
A short software engineering exercise has been designed to
audit the contractor's use of proposed tools and procedures.

In addition, a set of metrics has been developed for use
by the contractor during the software development process as
an aid visibility and control [{8]. A number of contracts now
require the use and reporting of metrics. The cost for this
should not be high since a competent contractor normally
generates metrics for his own internal use.

13.8 PROGRAM MANAGEMENT GUIDANCE
With present techniques, software development and
acquisition is a tough job and will remain so for several

years. A number of actions are required to overcome the
roadblocks associated with the present process.

13~-10

Choose a good contractor. During source selection use
in-plant inspections (greybeards), software exercises, and
contractor capability assessment techniques to aid the
selection process. Include the support requirements for these
activities in the RFP.

Allow time for design and iteration. Don't baseline
without some experience at lower levels of design.

Make maximum use of off-the-shelf software. Try to make
the job smaller and more manageable. Change the requirements
for well defined, less «critical functions to fit with
available packages.

Breadboard and prototype the difficult parts of the job.
Prototypes help the user see what he is getting and help the

developer understand implementation difficulties. Prototypes
generally are not suitable for the end product unless they
have been especially designed for that purpose.

Schedule preliminary design reviews consistent with the
degree of validation. Don't force contractor top level
designs to be accomplished in the proposal stage. Allow time
to validate the top level design.

Apply discipline and new tools. Contractors should have
a good software development plan, established procedures, and
tools to aid development, configuration management, test
generation, and status keeping.

Require metrics for visibility and control. The
contractor should have his own means for determining status

and the rate of progress. Trends are the basis for predicting
future progress. Impose the requirement to generate and use
metrics on the contractor.

Have more than one phase. Have a place to put new
requirements as opposed to impacting ongoing efforts. Use the
second phase t) deal with shortfalls in the first phase.
Often the user no longer wants the same capabilities which
were thought desirable early in the process.

Deliver in useful increments. Try to keep the deliveries
consistent with the degree of knowledge one has developed of
requirements and implementation difficulties. To avoid
retraining, design user interfaces so that they don't change
with each increment.

Maintain schedule; deliver, then add. Every change in
schedule opens the door to new requirements. Delivery
provides feedback on performance which is necessary for
further evolution.

13-11

13.9 REFERENCES

1. Boehm, Barry W., Software Engineering Economics, Prentice
Hall, 1981.
2. Roberts, Alan J., "Some Software Implications of System

Acquisition, Signal Magazine, July 1982, pages 19-25.

3. Devenney, Capt. Thomas J., "An Exploratory Study of
Software Cost Estimating at the Electronic Systems Division,"
Masters Thesis, Air Force Institute of Technology, July 1976.

4, Roberts, Alan J., "ESD System Acquisition Practices -
Design Reviews", The MITRE Corporation, Internal Memo, May
1977.

5. Kirschner. R. B., "The Size of Research and Engineering
Teams," Proceedings of the 11l1th National Conference on the
Administration of Research, Pennsylvania State University
Press, September 1957.

6. Brooks, F. P., The Mythical Man Month, Addison-Wesley,
1975.
7. A Method for Assessing the Software Engineering

Capability of Contractors, Software Engineering Institute,
ESD-TR-87-186, CMU/SEI-87-TR-23, 23 September 1987.

8. Schultz, Herman P., Software Management Metrics,
ESD-TR-88-011, May 1988.

13-12

ADP
AFSCP
AFLC
AFB
AFR
AIS
AMC
ANST
ASCII
ASDP
ATE

BIT
BITE

CCB
CDR
CDRL
CE
CLIN
CI
CIDS

CPU
CRISD
CRWG
CsC
CsCI
CsSOoM
Ccsu
CRLCMP
CRWG

DARCOM
DCP
DID
DOD
DODD
DOD-STD
DSB
DT&E
D/V

ECP
ECR
EPROM
EEPROM

FAR
FCA
FQOR

APPENDIX A
LIST OF ACRONYMS

Automatic Data Processing

Air Force System Command Pamphlet

Air Force Logistics Command

Air Force Base

Air Force Regulation

Automated Information Systems

Army Materiel Command

American National Standards Institute
American Standard Code for Information Interchange
Aeronautical Systems Division Pamphlet
Automatic Test Equipment

Built-in-test
Built-in-test Equipment

Configuration Control Board

Critical Design Review

Contract Data Requirements List

Concept Exploration

Contract Line Item Number

Configuration Item

Critical Item Development Spec

Configuration Management

Configuration Management Plan

Central Processing Unit

Computer Resources Integrated Support Document
Computer Resources Working Group

Computer Software Component

Computer Software Configuration Item

Computer System Operator's Manual

Computer Software Unit

Computer Resources Life Cycle Management Plan
Computer Resources Working Group

U.S.Army Material Development & Readiness Command
Decision Coordination Paper

Data Item Description

Department of Defense

Department of Defense Directive

Department of Defense Standard

Defense Science Board

Developmental Test and Evaluation

Demonstration and Validation

Engineering Change Proposal
Embedded Computer Resources
Erasable Programmable Read Only Memory
Electrically Eraseable PROM

Federal Acquisition Regulations

Functional Configuration Audit
Formal Qualification Review

A-1

FQT Formal Qualification Test

FSD Full Scale Development

FSM Firmware Support Manual

HOL Higher Order Language

HWCI Hardware Configuration Item

IC Integrated Circuit

ICBM Inter-Continental Ballistic Missile

ICWG Interface Control Working Group

IDD Interface Design Document

IEEE Institute of Electric and Electronic Engineering

ILSP Integrated Logistics Support Plan

1/0 Input/Output

10C Initial Operating Capability

IR&D Independent Research and Development

IRS Interface Requirement Specification

ISA Instruction Set Architecture

IV&V Independent Verification and Validation

JLC Joint Logistics Commanders

MCCR Mission Critical Computer Resources

MIL-STD Military Standard

NBS National Bureau of Standards

OFP Operational Flight Program

oMB Office of Management and Budget

OSD Office of Secretary of Defense

OT&E Operational Test and Evaluation

PC Personal Computer

PCA Physical Configuration Audit

PDL Program Design Language

PDR Preliminary Design Review

PDSS Post-Deployment Software Support

PIDS Prime Item Development Spec

PM Program Manager

PMD Program Management Directive

PMP Program Management Plan

PMRT Program Management Responsibility Transfer

PO Program Office

PROM Programmable Read Only Memory

QA Quality Assurance

RAM Random Access Memory

R&D Research and Development

RF Radio Frequency

RFP Request for Proposal

ROM Read Only Memory

SCM System Concept Paper

SCP System Concept Paper

SCRB Software Configuration Review Board
A-2

SDCCR
SDD
SDF
SDL
SDP
SDR
SEI
SIL
SIF
SON
SOow
SPD
SPM
SPO
SPR
SPS
SRR
SRS
SSA
SSA
SSAC
SSEB
SSDD
ssp
SSR
SSS
STARS
STD
STE
STP
STR
SUM
S/W

TADSTAND

T&E

TPS

VDD
VHSIC

Software Development Capability/Capacity Review
Softwarz Design Document

Software Development Folder (File)
Software Development Library
Software Development Plan

System Design Review

Software Engineering Institute
Systems Integration Laboratory
Systems Integration Facility
Statement of Need

Statement of Work

System Program Director

Software Programmer's Manual
System Program Office

Software Problem Report

Software Product Specification
Systems Requirements Review
Software Requirements Specification
Software Support Activity

Source Selection Authority

Source Selection Advisory Council
Source Selection Evaluation Board
System/Segment Design Document
Source Selection Plan

Software Specification Review
System/Segment Specification
Software Technology for Adaptable Reliable Systems
Standard

Special Test Equipment

Software Test Plan

Software Test Report

Software User's Manual

Software

Tactical Digital Systems Standard
Test and Evaluation

Test and Evaluation Master Plan
Technical Order

Test Program Set

Test Readiness Review

Unit Development Folder

Version Description Document
Very High Speed Integrated Circuit

Work Breakdown Structure

APPENDIX B
GLOSSARY OF TERMS

Address
Specifies the location of word, data or instruction
in memory.

Allocated Baseline
The development specification which defines
performance requirements for each CSCI.

Analog
Being or relating to a mechanism in which data is
represented by continuously variable physical
quantities [1].

Assembler
A computer program that translates assembly language
instructions into machine language. When an

assembler is used, typically one assembly language
instruction is translated into one corresponding

machine language instruction. Both the assembly
and machine languages are unique to a particular
computer.

Assembly Language
Assembly language allow the use of abbreviated names
(mnemonics) for machine language instructions and
operands in place of binary (0s and 1s) machine
codes.

Bit
A binary digit whose value is either a 1 or a 0.

Built-in Test Equipment (BITE)
Any device permanently mounted in the prime
equipment and used for the express purpose of
testing the prime equipment, either independently
or in association with external test equipment.

Byte
An eight (8) bit word.

Buss
See Digital Data Buss

Central Processing Unit (CPU)
Fetches, decodes and executes the instructions of
the computer program.

Compilation or Compiling
The translation process accomplished by a compiler.

Compiler
A computer program which translates a HOL into
machine language. The HOL statements are called

source code and the output of the compiler is called
object code.

Component
A Computer Software Component (CSC) is a distinct
part of a computer software configuration item
(CSCI). CSCs may be further decomposed into other
CSCs and CSUs.

Computer Program

A series of instructions or statements in a form
acceptable to computer equipment and designed to
cause the execution of an operation or series of
operations. Computer programs include such items
as operating systems, assemblers, compilers,
interpreters, data management systems, utility
programs, and maintenance or diagnostic programs.
They also include application programs such as
payroll, inventory control, operational flight,
strategic, tactical, automatic test, crew simulator,
and engineering analysis programs. Computer
programs may be either machine-dependent or machine-
independent, and may be general purpose in nature
or designed to satisfy the requirements of a
specialized process or particular users.

Debugging
The process of locating and eliminating errors that
have been shown to exist in a computer program.

Digital Data Buss
A group of circuits and interconnections between two
or more devices, such as between the CPU and memory
or between the computer and external devices, that
provide a communication path for digital data.

Error Message
A message printed out by a computer after detecting
a programming error.

Emulator
A combination of computer programs and computer
hardware that mimic the instructions and execution
speed of another computer.

Executive
The operating system in an avionics suite.

Expert Systems

Systems that utilize artificial intelligence (AI)
to perform their functions.

B-2

Pirmware

Computer programs and data that have been written
into read only memories (ROMs).

Pormal Qualification Review (FQR)
A system level configuration audit conducted after
system testing is completed to ensure that the
performance requirements of the system specification
have been met.

Punctional Baseline
The system requirements. Provides basis for
contracting and controlling the system design.

Puncticnal Configquration Audit (FCA)
The formal examination of test data to determine the
functional characteristics of a CSCI, prior to
acceptance, to verify that the item has achieved
the performance specified in its functional or
allocated configuration identification.

Higher Order lLanguage (HOL)
Higher order languages have been developed in order
to make writing and understanding programs easier.
In a HCL, the program is written in a series of
statements which typically resemble mathematical
formulas or English expressions.

Host Computer
The ccmputer on which a compiler executes.

Integrated Circuit (IC)
Tiny complex of electronic components and their
connections that is produced in or on a small slice
of material such as silicon {1). The basic building
blocks of modern electronics.

Intermediate Language
An assembly-like language used by a compiler as an
interim step in the process of compilation.

Interpreter
A computer program that converts and executes a HOL
source program statement directly into machine
language, one statement at a time.

Linker
A computer program that links or ties together

progrars that have been separately compiled or
assembled.

Loader

The computer program that loads the computer program
into memory.

Machine Language

The binary codes (0s and 1s) which are understood
directly by a computer. A typical machine language
instruction consists of an operation code (or
op-code) and one or more operand fields. The
operation code specifies the computer function
(e.g., add, subtract, test for zero) to be performed
while the operand fields specify where in the
computer the data for that function is located.

Microprocessor
A Central Processing Unit (CPU) constructed from one
large scale integration device or chip.

Module -
See Unit

Module Testing
The execution of a single module to determine its
correctness before the module is combined or
integrated with other modules.

Mnemonic
Symbolic names for machine langquage instructions
which allow a programmer to generate programs in
assembly language without having to use binary
codes.

Operating System
A computer program that controls the execution of
other computer programs in a computer. It schedules
the time when computer programs are run, assigns
memory, and provides diagnostic and accounting
information about a program's execution.

Patching
Making changes to the machine code (object code)
representation of a computer program.

Regression Testing
The testing of the program that is performed to
confirm that functions, that were previously
performed correctly, continue to perform correctly
after a change has been made.

Rehosting

Modifying a computer program so that it operates on
a different host computer.

Retargeting
Modifying a compiler so that it generates object
code for a different target computer.

Software
The combination of computer programs or instructions
required to cause the computer hardware to perform
a certain task or tasks.

Stub
A stub takes the place of a module that has not yet
been coded or tested.

Syntax
The rules for writing computer programs in a
particular programming language.

Syntax Error
A syntax error is generated when a programmer has
violated the rules of a particular programming
language.

Target Computer
The computer for which the compiler generates object
code.

Test Program Set (TPS)
Computer programs written in a HOL, usually ATLAS,
used in conjunction with automatic test equipment
(ATE) to isolate a failed electronic subsystem or
component. TPSs typically are used to generate and
inject test patterns into digital circuit boards.

Unit
A Computer Software Unit (CSU) is the smallest
element specified in a Computer Software Component
(CSC) that is separately testable.

Validation
The process of confirming that the software (i.e.,
documentation and computer program) satisfies all
user requirements when operating in the user's
environment.

Verification
The process of confirming that the products of each
software development phase (e.g., requirements
analysis, design, coding) are complete, correct,
and consistent with respect to the products of the
previous phase.

Word
A data packet of information for the computer; it
is usually composed of many bits. The length of a
computer word typically ranges from 8 bits for
microprocessors to 64 or more bits for the larger
computers. The memory of a computer is divided into
segments called words.

REFERENCES

1. Webster's Ninth New Collegiate Dictionary,
Merriam-Webster Inc., Springfield, MA, 1984.

APPENDIX C ,
OUTLINE OF PROGRAM MANAGEMENT PLAN

Table C~1 shows a typical outline of a PMP based on AFR
800-2, "Acquisition Program Management", Attachment 3. The
other services use a similar outline. Note that six of the
sections contain an asterisk to indicate that these sections
must address mission critical computer resources (MCCR). This
doesn't mean that these are the only sections that address
MCCR. Depending on the program, there may be other sections
that may need to address software.

e
m
ix]
-

SUBJECT

Program Summary and Authorization
Intelligence

Program Management

Systems Engineering & Configuration
Test and Evaluation

Information Systems

Operations

Civil Engineering

Logistics

10 * Manpower and Organization

1 Personnel Training

12 Security

13 * Directives, Specifications and Standards

*» ¥ ¥ %

VOONOAWVNHIWNN - l

* Addresses MCCR

Table C-1 PMP Outline

C.1 INTELLIGENCE (Sect 2)
This section includes:

(a) Identification of the Threat. This paragraph

should consist of a listing of all relevant threats that have
been obtained from the Defense Intelligence Agency (DIA) or
other DOD or armed service agencies. Since software will
probably be the major player in countering these threats, it
is important that the entire spectrum of threats be addressed.

(b) entification of Relevant Fo .
Since the U.S. is no longer the undisputed world leader in
technology, it is Jimportant that foreign technology,
especially that of our allies, be examined to determined
whether any of it can be used in the proposed system. Our
European allies, for example, have embraced Ada, the DoD
standard computer language, with fervor and have made
significant strides in the area of Ada software tools, some
of which could be useful.

C.2 PROGRAM MANAGEMENT (Sect 3)

This section provides a description of the objectives and
program strategy (or approach) in somewhat more detail than
Section 1. At a minimum, the schedules contained in this
section should include the following:

(a) Operational system software development
schedules

(b) Training schedules including the procurement
and development of all maintenance and operational crew
trainers

(c) Support equipment development and delivery
schedule including ATE and other software intensive special
test equipment

(d) Development and delivery schedule for the TPSs
associated with the ATE.

C.3 SYSTEMS ENGINEERING & CONFIGURATION MANAGEMENT (Sect 4)

This section should describe when and how the functions
of hardware and software configuration management will be
accomplished to include the Configuration Control Board (CCB)
and the Software CCB.

C.4 TEST AND EVALUATION (Sect 5)

This section addresses DT&E and OT&E schedules including
the overall software test and integration schedules. It also
describes the major software support tools and major test
facilities required.

C.5 MANPOWER AND ORGANIZATION (Sect 10)

This section describes the organization of the program
office and summarize the relationships and roles of other
military and government & -¢~cies and laboratories. In
particular, the software or¢«niration and its relation to the
other program office organize' uns should be described. The
required software manpower and software skill levels should
also be addressed along with possible sources of key software
personnel.

C.6 DIRECTIVES, SPECIFICATIONS, AND STANDARDS (Sect 13)

This section lists all the directives, specifications,
and standards that will be imposed on the program including
those related to software and computers. For example, if the
data buss standard, MIL-STD-1553B, or the Ada programming
language standard, MIL-STD-1815, is inappropriate, the reasons
why should be stated in this section and the waiver process
initiated.

c-2

e —

APPENDIX D
TEST AND EVALUATION MASTER PLAN OUTLINE

The foimal outline for the TEMP is given in DOD Direc-
tive 5000.3-M-1 and it is shown in Table D-1. The TEMP is
broken up into five major sections and four appendices.

Software must be addressed in sections III.l.e , V.7, and
Appendix 3.
PARY SUBJECT
1 System Details
I1 Program Summary
I DT&E outline
II1l.1.e * Software Test & Evaluation
v OT&E Outline
v T&E Resource Summary
v.7 * Simulators, Models & Testbeds (MCCR)
APPENDICES
1 References
2 Bibliography
3 * Software T&E Plan (Embedded Computers)
4 Definitions
* Addresses MCCR

Table D-1. TEMP Outline

D.1 SOFTWARE TEST & EVALUATION (Part III.l.e)

This section describes the software testing of all the
mission critical computer resources required to demonstrate
a quality product, including post-milestone III updates. When
identifying the MCCR, only non-embedded computer resources are
addressed. ~“mbedded resources are addressed in Appendix 3.
Some of the non-embedded MCCR resources to be identified
include:

(a) All data reduction and analysis computers and soft-
ware required for T&E;

(b) All special test equipment (STE) containing
computers and software;

(c) All the automatic test equipment (ATE) and
associated software required to test and maintain all of the
weapon system electronics equipment;

(d) All the system and subsystem trainers required to
train the weapon system operational and maintenance crews.

D.2 TEST & EVALUATION RESOURCE SUMMARY (Part V)

This section provides a summary of all key resources,
both government and contractor, required during the course of
the acquisition program. The initial TEMP should project
those Kkey resources, including major range and unique
instrumentation requirements, threat simulators, and targets,
necessary to accomplish DT&E and OT&E objectives. As system
development progresses, test resource requirements should be
reassessed and subsequent TEMP updates should reflect any
changed system concepts or requirements, and/or updated threat
assessments. Specifically, Part V.7, Simulators, Models, and
Testbeds, identifies, for each specific test and evaluation
phase, the system simulations required, including computer
driven simulation models and hardware-in-the-loop testbeds,
to conduct the planned test program. These system simulation
requirements should be compared with existing and programmed
capabilities and any major shortfalls should be highlighted.

D.3 SOFTWARE T&E PLAN (Appendix 3)

This section describes the software testing necessary to
demonstrate the ability of embedded MCCR to achieve system
objectives. As the program development progresses, this
initial Software T&E Plan is incorporated intc the software
developer's test plans and the Software Development Plan.

APPENDIX E
INTEGRATED LOGISTICS SUPPORT PLAN OUTLINE

Table E-1 shows a typical outline of an ILSP. Guidance
for this document is found in AR 700-127, Integrated Logistics
Support, AFR 800-8, Integrated Logistics Support Program, and
SECNAVINST 5000.39, Integrated Logistics Support in the
Acquisition Process. The sections marked by an asterisk
sections may address MCCR.

PART SUBJECT
1 General
(4)) System Description
2) Program Management
3) Applicable Documents
11 Concepts/Strategy
&) Operational and Organizational Concept
2) * Maintenance Concept
3 Logistics Support Analysis
(%) * Acquisition Strategy
5 Test and Evaluation
6) Spares Acquisition Concept
(¢p] Planning for Deployment
® Support Resource Funds
9) Post Fielding Assessments
(4] B Computer Resources
(1) = Training
111 Milestones Schedule Charts
% Addresses MCCR

Table E-1 ILSP Outiine

E.1 MAINTENANCE CONCEPT (Part II.2)

This section normally describes the three traditional

levels of maintenance: organizational or field level
maintenance, intermediate level maintenance, and depot level
maintenance. Since modern weapon systems are heavily

dependent on electronics, this section will discuss the types
and number of automatic test equipment (ATE) contemplated for
the three levels of support; the associated Test Program Sets
(TPS) which are used in conjunction with the ATE to isolate
failed electronics components; and any other computer and
software dependent piece of calibration or test equipment.

E.2 ACQUISITION STRATEGY (Part II.4)

This section merely summarizes the acquisition strategy

described in the Acquisition Plan. For software and
computers, this section should briefly describe how the
software for the logistics support will be acquired. For

example, who will develop the ATE and TPSs, the prime

E-1

developer, a subcontractor, or another government agency?
Will the program office delegate the responsibility for
acquiring the ATE and TPSs to another government agency (a
common occurrence in the Air Force)? Bear in mind that
development by anyone other than the prime contractor involves
additional contractual considerations (e.g., separate RFPs,
source selections, and contracts). How will calibration and
special logistics support test equipment be acquired?

E.3 COMPUTER RESOURCES (Part II.10)

This section describes the facilities, hardware,
software, documentation, manpower, and personnel needed to
operate and support the embedded computer systems. Particular
attention should be paid to the ATE and the associated TPSs
required to isolate problems in Line Replaceable Units (LRUs)
and electronic circuit cards. Organic maintenance and support
cannot be initiated until the ATE and the TPSs are delivered.

E.4 TRAINING (Part IX.11)

This section addresses the requirements for training all
the personnel required to support the system. Since this
usually requires complex and computer intensive trainers, the
various types and numbers of trainers, their anticipated
location, and availability dates should given. Examples of
some of the potential trainers required are: avionics
maintenance trainers, weapons loading trainers, and ATE
trainers.

APPENDIX F
COMPUTER RESOURCES LIFE CYCLE MANAGEMENT PLAN OUTLINE

Table F-1 shows the CRLCMP format found in Attachment 11
of AFR 800-14, "Life Cycle Management of Computer Resources
in Systems". Although the other services do not have a

standard format, the formats used are very similar.

SECT SUBJECT SECT SUBJECT
1. Introduction 7. Documentation
a. Overview a. Types of Documents
b. Scope and Applicability b. Data Rights
c. References c. Data Manageament
2. Systems Concept 8. Acquisition Management Practices
a. Operational Concept a. Software Development Strategy
b. Support Concepts b. Boards and Committees
c. Configuration Management
3. System Description d. Documentation Review or Approval
a. Overview e. Reviews and Audits
b. Computer Hardware f. Test and Evaluation
c. Computer Software 9. Software Quality
h. Security
4. Computer Resources Design
a. System Architecture 9. Transition Management Practices
and Integration a. Configuration Management
b. Product Improvements b. Turnover
c. Software Development Tools €. Support During Transition
d. Reusability d. Transfer
e, Interoperability
f. Additional Design 10. Deployment Management Practices
Constraints a. Boards and Committees
b. Configuration Management
5. Organizational Roles c. Security
a. Implementing Command d. Training
b. Supporting Command
c. Operating Command 1. Schedules
d. Using Command a. Major Milestones
(If Applicable) b. Contract Delivery Schedule
e. Participating Commands c. Support Capabilities
f. Other Agencies
Appendices
6. Resources A Acronyms and Abbreviations
a. Personnel 8 Glossary of Terms
b. Facilities C List of Key Personnel
c. Training] CRUG Charter
d. Hardware £ Risk Management Plan
e. Software F Detailed System Description
f. Integrated Logistics G Security Assistance
Support

Table F-1 CRLCHP Outline

F.1 INTRODUCTION

This section states the purpose of the CRLCMP, lists the
approved system nomenclature, and 1lists the appropriate
requirements documents such as the Statement of Need (SON) and
the System Operational Concept (SOC).

F-1

F.2 SYSTEM CONCEPTS

This section describes the system operational and support
concepts. It briefly describes the mission of the system with
emphasis on computer resources; identifies the system
functions which are expected to require frequent changes to
accommodate the operational environment; and describes the
hardware support concept for the system and for the software.

F.3 SYSTEM DESCRIPTION

States the purpose of the operational system and
describes how the computer resources relate to the overall
operational system. Identifies and describes the
characteristics and functions of the processors in the system
and the functions to be implemented in software or firmware.

F.4 COMPUTER RESOURCES DESIGN

This section addresses the following:

(a) System Architecture and Design - Identifies the
required hardware and software architectures for the system.

(b) Product Improvements - Identifies parts of the
system which will most likely require future expansion (e.qg.,
memory size, processing capacity, number of interfaces).

(c) Software Development Tools - Identifies and briefly

describes the required software development tools and their
environment for usage. Indicates whether each tool is GFE,
or GFP, commercially available or contractor developed.

(d) Reusability ~ Identifies and briefly describes any
developed software, t