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I. Summary of Research Accomplishments

\; This project was concemed with simulated annealing, a Monte Carlo method for obtaining glo-

bally optimal or nearly globally optimal solutions to a variety of optimization problems. - - "= :-
We have achieved key results in two main areas:

i)  characterizing the cooling rate necessary and sufficient for simulated annealing to hit the global
minimum, and

ii) obtaining a novel upperbound for the time-constant of convergence of simulated annealing at a
fixed temperature to its equilibrium distribution and studying the growth of this bound as the tem-

perature approaches zero asymptotically.

Simulated annealing with a time varying temperature gives rise to a time inhomogeneous Markov
chain. This Markov chain is difficult to analyze and study due to the time-inhomogeneity. We have
been able to obtain a novel theory for analyzing such processes. We have introduced a notion of
“‘recurrence order”’ associated with each state of a Markov chain. Essentially, this recurrence order
characterizes the rate of convergence of the occupation probability for the state. Our central result con-
sists of the discovery that these recurrence orders satisfy a ‘‘balance equation’’ across every cutset of
the graph of the chain for the general class of such Markov chains. For the special case of simulated
annealing with symmetric neighborhoods, ;hey even satisfy a ‘‘detailed balance’’ for every pair of

states.

These balance equations transform the analytical problem of determining the asymptotic behavior
of simulated annealing into a purely algebraic problem of solving the balance equations. We have

obtained graph theoretic algorithms for solving such balance equations in general, and for simulated

annealing in particular have obtained explicit solutions.

From the explicit solutions to the balance equations we have been able to characterize, i.c., obtain / _

» Codes
the necessary as well as sufficient condition for, the cooling rate in order for simulated annealing to hit nd/oer —
wib .al &




the global minimum of the optimization problem with probability one.
The above results are detailed in [1-3] of the attached list of Publications.

The behavior of simulated annealing at a fixed temperature can be modeled by a reversible time-
homogeneous Markov chain converging to an equilibrium distribution at that temperature. As the tem-
perature goes to zero asymptotically, the equilibrium distributions themselves converge to the optimal
distribution. In {4], we have obtained a novel upper bound for the second largest eigenvalue of a finite
reversible time-homogeneous Markov chain as a function of three parameters, namely, the smallest
transition probability, the underlying structure of the chain, and the skewness of the equilibrium distri-
bution. This eigenvalue bound enables us to bound the time-constant of convergence of a reversible
Markov chain to its equilibrium distribution. In particular, we can bound the time constant of conver-
gence of a fixed-temperature simulated annealing algorithm solving a particular instance “f an optuii-
zation problem. Moreover, we can study the growth of this bound as the temperature approaches zero
or skewness becomes arbitrarily large; thereby, providing a fairly good understanding of the tempera-
ture asymptotics of the simulated annealing algorithm, We exhibit a class of Markov chains on which
our bound, treated as a function of skewness alone, is asymptotically tighter than previously established
bounds based on a certain parameter known as the conductance of the Markov chain. We also show

that our bound is, in general, much easier to compute for simulated annealing chains.
[ ]

More recently, we have achieved what we believe to be a significant breakthrough in understand-
ing the size-asymptotics of a time-homogeneous simulated anne: g chain solving a particular com-
binatorial optimization problem known as the Integer Knapsack piobiem. For this NP-Hard problem,
we have been able to derive sufficient conditions under which the time-constant of convergence of a
fixed-temperature simulated annealing chain is a polynomial in the size of the problem. Combining
this with an in-depth study of cost distributions and density of states, we have shown that for certain

versions of the Integer Knapsack problem, a fixed-temperature simulated annealing algorithm can find a




e —

state with cost sufficiently close to the global minimum in polynomial time with overwhelming proba-
bility. The manuscript containing these results is still under preparation and will be made available as

soon as it is ready for publication.
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SIAM J CONTROU AND OPTIMIZATION 1989 Society or industeial and Applied Mathematics
Vol 27 No. 6, pp H430- 1461, November 1989 012

SIMULATED ANNEALING TYPE MARKOV CHAINS AND THEIR ORDER
BALANCE EQUATIONS*

DANIEL P. CONNORS* anp P. R. KUMAR:

Abstract. Generalized simulated-annealing type Markov chains where the transition probabilities ure
proportional to powers of a vanishing small parameter are considered. An “order of recurrence,” which
quantifies the asymptotic behavior of the state occupation probability, is associated with each state. These
orders of recurrence satisfy a fundamental balance equation across every edge-cut in the graph of the Markov
chain. Moreover, the Markov chain converges in a Cesaro-sense to the set of states having the largest
recurrence orders. These results convert the analytic problem of determining the asymptotic properties of
the time-inhomogeneous stochastic process into a purely algebraic problem of solving the balance equations
to determine the recurrence orders.

Graph theoretic algorithms are provided to determine the solutions of the balunce equations. By applying
these results to the problem of optimization by simulated annealing, it is shown that the sum of the recurrence
order and the cost is @ constant for all states in a certain connected set, whenever a “weak-reversibility”
condition is satistied. This allows the necessary and suflicient condition for the optimization algorithm to
hit the global minimum with probability one to be obtained.

Key words. simulated annealing, optimization, Markov chains
AMS(MOS) subject classifications. 60J10, 90C27

1. Introduction. We consider finite state Markov chains {x(1)} with transition
probabilities of the type

[J,,(”:(’,,F(I)""

where £11) is a small parameter converging to zero. In a previous paper [7] we have
shown that if we define “orders of recurrence’” by (more precise definitions are given
in §2)

B = sup{cz(): v E(I)‘w,(r)=+x}‘
I
then

(1) These recurrence orders satisfy a balance equation, max,. 4, + (8, - V,)=
max, 4, 4 (B, —V,), for every subset A; and

(11) The Markov process converges to the set of states with the largest orders of
recurrence.

This provides a novel approach to analyzing the asymptotic behavior of such
time-inhomogeneous Markov processes. Specifically, we use (i) to solve the balance
equations, and then (ii) provides the limiting behavior. Moreover, the orders of
recurrence also provide information about the rates of convergence of the state
occupation probabilities. This approach via recurrence orders therefore converts the
analytic problem of determining the asymptotic behavior of the time-inhomogeneous
process into a purely algebraic problem of solving the balance equations.

* Received by the editors July 11, 1988: accepted for publication (in revised form) December 30, 1988.
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University of inois, 1101 W. Springfield Avenue, Urbana, 1linois 61801,

1440

et y—— ——




SIMULATED ANNEALING 144]

A significant motivation for studying such Markov chains lies in the fact that in
the method of optimization by simulated annealing, if { W,} is the cost function whose
minimum is sought, then we obtain a Markov chain with

Pu1) = e (n)m oW,

Thus simulated annealing is a special case where the powers V,; satisfy
V;=max (0, W, - W),

for some {W,}.

To pursue the above approach to analyzing such time-inhomogeneous Markov
chains, it is necessary to be able to solve the balance equations. However, there can
be nonunique solutions to the balance equations. We present graph-theoretic circulation
based algorithms to obtain a solution, as wetll as all solutions, to the balance equations.
We show by an example the interesting phenomenon that such nonuniqueness can
arise when the asymptotic properties of the Markov process, and the recurrence orders,
depend not just on the exponents V,, but also on the proportionality constants c,.

By applying these results to the Markov chain arising from the method of optimiz-
ation by simulated annealing when the “weak reversibility” condition of Hajek [1]
holds, we show that the sum of the recurrence order and the cost is a constant on sets
connected by recurrent arcs. This allows us to obtain the necessary and sufficient
condition for the optimization algorithm to hit the global minimum with probability
one. Our necessity result is a stronger sample path result than is found in [1] or [2].

Background. Tsitsiklis [2] has also investigated Markov chains with transition
probabilities proportional to powers of a small time-varying parameter. His analysis
was based on observing that due to the slow variation of {¢(1)}, we can employ bounds
on the state occupation probabilities for stationary Markov chains, where £(t) is held
constant, to obtain bounds for the time-inhomogeneous case. His approach is quite
ditferent from ours.

Based on an analogy to the physical process of annealing, the sequence ¢(1) is
called the “‘cooling schedule,” and just as in the physical analogy it plays a key role
in determining asymptotic behavior. 1t has been shown by Geman and Geman [3],
Mitra, Romeo, and Sangiovanni-Vincentelli [4], and Gidas [3], that simulated annealing
converges in probability to a minimum of the optimization problem provided
V) Leln”=+x for large enough p. Hajek [1] has determined the necessary and
sufficient conditions on the value of p for the algorithm to converge in probability to
the minimum when a “weak reversibility”™ assumption is satisfied.

2. Orders of recurrence and balance equations. Consider a Markov chain over a
finite state space X whose transition probabilities are proportional to powers of a
vanishing time varying parameter «(r); that is, the transition probabilities p,(1):=
Prixtr+1)1=j|x(t)=1i) are given by

v '

(1) p,1)=c,Fit) forall i,jc X, i#j, andte ¥, and p,(t)=1-Y p,(1)

1*y

where
(2) 0=V,=+o forall i,je X,i#],
(3) ¢, 20 forallijeX, i*j and ¥ ¢, =1 forall i

!
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Regarding the small parameter {£(¢)}, we will assume that,

(4) 0<e(t)<l forall teZ”,
(5 IM < x such that c(t) = Me(s) whenever t = s, and
(6) 2 e(t)" <o for some pe[l, +oc).

=1
In what follows we will assume that in (1)-(3) we have
¢; =0V, =+,

which is clearly without any loss of generality. We shall denote by N, the set of all
states j with ¢, >0. Finally, we will assume that the Markov chain is “‘connected;”
i.e., for every i, je X, there exists a path i=iy, -, i,=j, with ;e N, for 1=/=p.

Let ,(t)=Pr(x(r)=1i) be the probability distribution of x(t), and let = (t):=
Pr(x{r)=1 x(1+1)=j) be the probability of a transition from state i to j at time 1.

The following example motivates the notion of “‘orders of recurrence” introduced
in {7].

Example 1. Suppose, for a certain Markov chain (with more than two states!},
we have

() =1/1"" m(ny=1/", e(t)y=1/1"".

Then note that ¥ e(f)m (1) is finite if ¢>B,:=2 and + if ¢=g,. Similarly,
N e ) is finite if ¢> Byi=1 and +oc if ¢=B,. Now m(t) converges to zero
more slowly than m.(f) and it is easy to see that this information is also captured by
the demarcation points 8, and 8., which thus provide a measure by which to rank
the rates at which (1) and =,(1) converge to zero.

Motivated by this we define the recurrence orders for the states and transitions of
the Markov process, as follows.

DeriniTion 1. The order of recurrence of a state i € X, denoted 3,, is

-x if ¥ omn <+,

[

B.=¢{p ifp:sup{cio: v F(l)"w,(1)=+~xv} and Y e(1)"m (1) < +x,

[t [y

Y
P ifp=max{c§0: ¥ f(r)‘fr,-(!)t+oo}.
A
We say a state i is transient if B, = —oc; otherwise we say the state is recurrent.
In a similar manner we define the order of recurrence of the transition from i 10 j.
DeriNiTIoN 2. The order of recurrence of the transition from state i to j, denoted

B.,. is

\
=x if ¥ g, (1)< +ax,
)

B.={ p ifpzsup{cZO: v f(t)‘w,,(l)=+oc} and Y e(0)"m, (1)< +x,

t 0 t-0

r ifpzmax{céO: Y r(t)"n',,(t)=+oc}_

(Y

Again, we say the transition from i to j is transient if B, = —c; otherwise we say
the transition is recurrent.

_—-—-—
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It is also convenient to define p, the order of cooling of {e(1)}, as follows.
Derinttion 3. The order of the cooling schedule {(r)}, denoted p, is defined as

- if ¥ e(r)< o,
rou

p={p ifp=sup{c§0: ¥ s(t)"=+00} and L (1) < +oc,

=0 =0
P ifp=max{c50: y s(l)"=+00}.
=0
The relationship between B, 8, and p is given in the following lemma. It will
be .convenient in the sequel to define the operation O™ as follows:

a@b::{ -0 ifa<b,
a—b, ifazhb.

Lenima 1. B, and B, are related by
(7) B,=B0OV, forallijcX,
while p and 3, are related by
8) max B.=p

Proof. 11 j€ N, thenitimmediately follows that 8, = —x . If je N,, then application
of the Chapman-Kolmogorov equation

m, )= 7 (t)p,(t)
= () omiln),

gives the first assertion. Similarly, since

Yen) =% ¥ e(1)"m(1),
t 0 Nt
the second assertion also follows. 0

Knowledge of the 8,’s provides useful information about the asymptotic properties
of {xtn)}. The following theorem shows that the time-inhomogeneous Markov chain
converges in a Cesaro sense to the set of states having the largest orders of recurrence.

TueoreM 1. Let .U be the set of states with the largest orders of recurrence:

M={ie X:B,=p}
Then
N
(9 limsup— N Pr(x(r)c.#)=1.
N s N rot
Proof. Let us first consider the set .ff defined by
7o {.l( il p=0,— or p  for some pe R, p>0,
© luUticX:B=p'} if p=p for some pe A, p>0.

Note that if p=p, then .# may be slightly larger than .# since it includes states, if
any, whose recurrence orders are p ; otherwise it is the same as .#. We will first show
that

1 X -~
(10) limsup— ¥ Pr(x(t)e.#)=1.
No-x Nl—l
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Consider first the case p > 0. Clearly, p =p or p~ for some p e R, where p>0. Let
Q={geR: for some ic M, B;=q or q"}.
Let 6 =inf,, o (p—g), where inf = +00. Let

_{0 if 6 < +oo,
YTp if 0=+,

Consider the states in .##° and observe that for sufficiently small § >0,

i Pr(x(t)e M )e(1)P"+? < +oo,

t=0
since the state space is finite. An application of Kronecker’s Lemma (see Chung [6])

gives

N
lim e(N)" " ¥ Pr(x(t)e.#)=0;

N ox =

that is,
1N _
(1 lim (Ne(N)" ") =— ¥ Pr(x(t)e.#)=0.
N N/

Now we claim that

(12) lim sup Ne(N)?77**>0.
N -x

Suppose not. Then,
lim Ne(N)P " **% =0

N+ x

>

and so

I/N

—_—— =0,
N g(N)r *é

In particular, we have

3

]/N (p-8)/(p-y+&)
i (o l2 )7 e

N-x \e(N)P **?
implying that

(1) N) 8o yea)
,!)Inx S(N)7? = +00,

However, since ¥, , £(1)" " =+oo, this would imply that
x 1 (p=8)/(p-y+8)
3 ("‘) =+00 for all small § >0,
Not AN
which is false. Hence, (12) holds and from (11) we deduce that

1 N -
(13) "E’il‘fﬁ,; Pr(x(t)e #°)=0.
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But since

1 N - 1 N p _
_— A + — Y=
N Y Pr(x(t)eH) NEI r(x(t)e M)=1,

t=1
the result (10) follows.
Now turn to the case p =0. Then clearly, Zio Pr(x(t)e #*) <+, and so (13)
is again true and the result (10) follows.
If p = —0, the result (10) is trivial.
To proceed from (10) to (9), it is clearly sufficient to show that in the case p=p
for some pe R, p>0,

fim Pr (x(1) € {i:Bi=p7}=0.

This involves some results on the structure of the recurrence orders and is demonstrated
in Lemma 5. O

Thus, knowledge of the recurrence orders {B;} provides knowledge about the
asymptotic properties of the time-inhomogeneous Markov chain. In fact, as the reader
may see from Example 1, the recurrence orders also provide information about the
rates of convergence.

Our goal therefore is to determine the recurrence orders, and critical to that will
be the following result established in [7], which shows that there is a fundamental
balance of recurrence orders across every edge-cut in the graph of the Markov chain.

THeorEM 2 (Order Balance).

(14) max B, = max B, forevery Ac X
ie A je A A A
Equivalently, using the @ notation and (7),
(15) max B,OV;= max B,OV, forevery Ac X
Ao A icAjo A

Proof. We sketch the proof; see [7] for the precise proof. Choose A< X and note
that if {7(n)}, -, is the sequence of random times at which the process moves from A
to AY, while {¢(n)}, ., is the sequence of random times at which the process moves
from A' back to A, then we have

r(n)<o(n)<t(n+1),

where we have assumed, without loss of generality, that x(0)e A to give 7(1)<o(1).
Using this it follows from (5) that

+x

“,_5 e()I(x{)e A x(1+1Ye A)= ¥ ela(n))’
) [}

[ n

LAY

=M ¥ el(r(n))*
n 1

=M ¥ () T(x(1)e A, x(1+1)e A%)
)

[

o x

=M Y e(r(n+1) +Me(7(1))°

n=1\

=M* T e(a(n) + M*e(0)°

n=1

=M* +Zx e(1)I(x(1)e A5, x(1+1) € A)+ M™e(0)".

=0
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By taking expected values and using the Monotone Convergence Theorem, it follows
that

a0 a0
el T mi()<+08 Y e(1) Y ml1) <+
=0 icAje A' 1=0 icA'jc A
Hence both sides above converge or diverge together. Now if ¢ is so large that every
term on the left-hand side with ic A, je A€ converges, then clearly ¢ is also so large
that every term on the right-hand side converges. Thus,
¢> max B;&c> max B;.
A e A iCAJEA®
Likewise if ¢ is small enough so that some term on the left-hand side diverges, then
¢ is also small enough so that some term on the right-hand side diverges, and so
€= max B;©c= max B;. 0
€A je A €A jeA
Note that through Theorems 1 and 2 we have converted the problem of determining
the asymptotic properties of the time-inhomogeneous Markov chain into an algebraic
problem of solving the balance equations (14). Note that (14) provides a maximum
of 2*' equations, one for each edgecut.

3. The modified balance equations. Note that if (8,,8,, - - » Bix;) satisfy (15),
then (8,-a,B:~a, - -, Bix;—a) also satisfy (15) for every q, i.e., the solution set is
translation invariant. Thus (8), which fixes the maximum of the B,’s, also needs to be
taken into account.

However, (15), (8) together can still possess nonunique solutions for sufficiently
small values of p. In this section, we will show how we can obtain one solution to
(15), (8); in the next section we show how to obtain all solutions.

In cases where there is a unique solution to the order balance equations, the
algorithm of this section gives an O(X[*) algorithm for determining it, compared to
the algorithm of § 4 for obtaining all solutions (in the nonunique case), which is
exponential in [X|. Also, the results of this section are used in the analysis of the
simulated annealing algorithm in § 5.

It is convenient to consider the following “modified”” balance equations that, as
we show in the sequel, always possess a unique solution. Given p =0 and V,20 for
,j=1, -, 1X{with i # j, consider the problem of determining A := (A, - - -, A x)) such
that

(16) max A, -V, = max A, -V, forevery Ac{l,---,|X|},

oAy AT A A
and
amn max A; = p,
We call (16), (17) the “modified” balance equations. Observe that (16) differs from
(15) in that the operation “~" s used in place of “©." Also. the A's can be negative
in (16).

We have introduced the modified balance equations to avoid the difficulties in
handling —oc that occur under the “©" operation.

THEOREM 3 (Properties of Order Balance and Modified Balance Equations). (1) If
A satisfies the modified balance equations for a given p and V, then B defined by
(18) B:= 1,600

satisfies the order balance equations (15), (8) for the given p and V.

-
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(2) For every given p and V, there exists a unique solution A to the modified balance
equations. Moreover, the solutions for different values of p are translates of each other.

(3) Whenever p is large enough, there exists a unique solution to the order balance
equations (15), (8). These unique solutions are all translates of the solutions for the
modified balance equations.

Proof. Suppose that for a fixed p and V, there exist two distinct solutions 8 and
ﬁ to the order balance equations. Define

A={ke X: B, =B.}.
Then we claim that
max B,0OV,= max B,OV,=-w

i A A icAe A

and
max ﬁ,-@ V,= max ﬁ,@ V= —co.

iv Aje A iv Ajec A
We need only consider the case where A # J and A # X (otherwise the claim is trivially
true), and let us suppose to the contrary that both expressions are nonnegative. Then

max B,©V,= max B,OV,> max B,OV,= max BOV,=Z max BOV,,

A A iAo A 1 A A it Aje A ic A A
which is a contradiction. The other two cases follow similarly, and so the claim is true.
This shows that solutions to the order balance equations do not differ arbitrarily;

specifically, all the arcs that separate A from A‘ are transient.
Hence in particular, whenever we can show that

(19) BOV,z0 forallij, withi#j and V;<+oo,

there can only exist one solution to the order balance equations for the given (p, V).
Now we show that this is indeed the case when p is large, which will prove the
first part of the assertion (3) above. Specifically, suppose now that p=25¥, . v.. .. V,.
Let iy€ X be a state with B, = p. For arbitrary se€ X, let (i* =iy, i,, - -, i,=s) be
a path from i* to s such that V, y<tocfork=1,---,pand i # i, for k # m. Let
I(i) =arg min, V. With A= {i.} and applying the Order Balance Theorem 2, it is easy
to see that

(20) B, OV, ,=B,0V, 1, =max(B,0V, ).
J#i
To prove that B, Zmax, .y V, <+, it is sufficient to show that for k=1,---, p,
along the path from i* to s,
(21) Bi‘ zﬂa._ Vl...l.+ ‘/:,.l(:,i_ ‘/i..r:+ V’:.I(i:)_. T Vu ..u+ ‘/:A_Iu,,h

Since ﬁ'o =p z2 ZI.IZ V,-+x Vu~
We prove (21) by induction. For k =1, from (20) we see that

(22) Bi(.e Vn‘.,.:.éﬂi.e V-‘,.I(i,l-

Clearly, the left-hand side of (22) is nonnegative, implying that the right-hand side is
also nonnegative. Thus, we can replace “©" with *“—" giving

(23) BiZ By~ Vit Vi
Now assume (21) holds for k—1. From (20) we have
(24) By, OV, . =B.OV, i
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The left-hand side of (24) is nonnegative and so
Bil EBM a ‘/ik—l-ik+ ViA.I(ik)
zB,— Vit Virip = Vit Viaan = - - = Vi

i,

wt Vi i,

which completes the induction proof. This proves (19), and therefore there exist; a
unique solution whenever p is large enough, which is the first half of assertion (3) above.

Moreover, for the large enough p specified earlier, due to (19), we have B,OV, =
B.— V;. Hence {B;} itself satisfies the modified balance equations. In fact, this solution
is unique to the modified balance equations since, if A is any other solution, then we
can prove in a fashion similar to the above, that A, Z Vj; for all je N,, thus yielding
that A,© V; = A, — V;;, which in turn proves that A is yet another solution to the order
balance equations, which is a contradiction.

Hence, at least for large enough values of p we have proved the existence of a
unique solution to the modified balance equations. However, it is easy to see that if
A satisfies the modified equations for a given (p, V), then A — & satisfies the modified
balance equations for ( p — 8, V), thus proving the existence of a unique solution to
the modified balance equations for all (p, V). This proves the assertion (2) as well as
the second half of the assertion (3) above.

Now we turn to the proof of assertion (1) above. Let A be arbitrary, and let {A,}
be the solution of the modified balance equations, and define 8, = A;©0. Suppose

max A;—V;<0.
ic AjeA’

Then by (16) we also have

max A;—V; <0
icAjo A

However, then for each i€ A and je A",
Bi=A <V, and B,=A,<V,.
Hence,
BOV,=—x and B,OV,=-ox,
and so

max B,OV,= max B,OYV,,

icAje A ic Ay A
thus satisfying the original order balance equations. If, however,

max A, -V;=820,
1o Aje A

then by (16}

v

max A, —V;=820.

ic A je A
Suppose that (i}, j,)€ AX A and (i,, j,) € A“ X A are such that
A"l_‘/"|.J'|==AI'2—-‘/I‘ =3d.

2012

Then since

Ai|= Vi|‘j,+8;0 and /\bz Vi:.i_s+8;0

“

e, .
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we have

B,=A, and B, =A,,
and so

Bi,— Vis, = B~ Viviv-
Also, since A, Z B, we have

max B;OV,= max A0V,

ivA,je A ic Ajc A

ItA

max A~V
ivAje A

"‘/\il_vi

ot
=B~ Vi
=B,O Vi -
Similarly, max, 4, a B;©OV, =8,0V,..,, and so
max B,OV,= max B,OV.

i AJo A e Age A

This proves the assertion (1) and the theorem. |

Remark 1. 1t is interesting to note that the existence of a solution to the modified
balance equations has been proved by relying on the existence of a solution to the
order balance equations, which in turn is guaranteed by the probabilistic arguments
of Theorem 2. A separate independent constructive proof of existence, which does not
use probabilistic arguments, can be found in [8].

We now give an algorithm for determining the unique solution to the modified
balance equations. An illustrative example is convenient.

Example 2. Let p =5 and

* 4 3 1
2
Vo(V,]= 6 % 3
6 2 X 4
2 6 5 %
Our goal is to determine A =(A,, "+, Ay), which satisfies (16), (17). We shall refer to

A, =V, as the A-flow along the arc (i, j}. Consider first the modified balance equation
for the edge cut A ={i},

(25) max A, — V, =max A, - V).
I

121
Observe that the left-hand side of (25} can be written as

A, —minV,,
X

and so the arc of maximum A-flow out of A = {i} is the arc (i, 1(i)} where

{i)=argmin V,.
(Note that /(i) may not be unique.)
We now construct the directed graph G, =(V,, E;), with V,={{1},---,{4}} and
(i,j)€ E, if j=1(i). See Fig. 1.
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F1G. 1. The graph G, of Example 2.

Note that G, has two directed cycles {1} {4} > {1} and {2} > {3} > {2}. Let us
examine the A-flows on the directed cycle {1} —» {4} > {1}. Since A, — V|, is the maximum
A-flow out of {1}, it is not smaller than any A-flow into {1}, and so in particular

Ay - Vmg Ay~ Vu-
Also, Ay~ V,, is the maximum A-flow out of {4} and so
A= Vaza -V

We thus observe that the A-flows along the directed cycle {1}~ {4} » {1} are equal; that
is,

A|“ Vm:)hz— le»

and so
(26) N=1=Ag—2.
Thus, we have determined the difference between A, and A,.

In exactly the same way, from the directed cycle {2} - {3} > {2} we see that
27) A:—3=A3—2,
thus determining the difference between A, and A;.

At the next step of the algorithm, consider the modified balance equations for the

edge cut (A, A°) where A={1,4} and A°={2,3}. Observe that for A={l,4}, the
left-hand side of the modified balance equation

(28) max A,—V,= max A\ -V;
icAje A i€ A je A

can be written as
max (A= Vig, Ay = Via, A= Vg, A~ Vaa);
that is,

max (’\l~49 A‘—3, Ag'“6, A4—5).

AW A s
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We have previously determined that A,—A, =1, and so the maximum is achieved by
A,— Vis= A ~3, and the arc of maximum A-flow out of {1, 4} is the arc (1,3).

In a similar fashion, examining the right-hand side of the modified balance
equation (28), we determine that the maximum A-flow out of {2, 3} is achieved by
A:— Vig= Ay ~4, and so the arc of maximum A-flow out of {2, 3} is (3, 4).

We now consider the directed graph G, =V,, E,), with V,={{1, 4}, {2, 3}} and
£.=1{(1,3),(3, 4)} shown in Fig. 2. Note that E; is the set of the arcs of maximum
A-flow out of the edge cuts in V;.

>‘1 - V13
A3 ~ Vg,

Fi1c;. 2. The graph G. of Example 2.

Observe that G- has a directed cycle {1, 4} » {2, 3} > {1, 4}. Now note that A, - V/,
is the maximum A-flow out of {1, 4} and A, — V;, is the maximum A-flow out of {2, 3}
and so

A= Via=A- Vg
that is,
(29) M=3=A—4
Combining (26), (27), and (29), we obtain
(30} A=3=A-5=A,—4=A,—-4
We now know the pairwise differences between all of the A;’s, and so we do not need

to consider any additional edge cuts. To fix the values of {A,}, we use the value of p
to give

Tﬁ“"zf):i

Since, from (30}, A, is the largest, we set A,=5. We thus obtain the solution to the
modified balance equations:

A|=3., A3=5, /\1=l\4':4

The principal idea used to solve the modified balance equations in Example 2 is
summarized in the following lemma.

Lemma 2. (1) Given A< X for which we know the pairwise differences between all
the A,’s for states in A, we can determine the arc of maximum A-flow out of A (without
knowing the A;’s themselves). .

(2) Let A\, Ay, -+, A, be a partition of X and suppose for each A, we know all
the pairwise differences between the A,’s for all states in A,. Let (i, ji) denote the arc
of maximum A-flow out of A,. Construct the directed graph G ={(V, E), with V=
{A, .- A} and E={(i,, ji).* -+, Ui, J,)}. There exists a directed cycle on G. If

ot P e e

el
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{A,, "+, A,,} is the list of vertices, in order, along the directed cycle, then the A-flow
on the directed cycle is constant; that is, .

e ez A V. s

Ai, — [
"y "o fiy o dn,

'"I""I
and we can determine the pairwise differences between the values of the A,’s for all the
states in U, A,,.

Proof. (1) Without loss of generality, suppose A is the set of states {1,2,- - -, r}.
Let a,= A, —A;. (We know the a;’s.) Then

max A, —-V,= max A,—a;-V;=A~ min (a;+V,).
Ay A i€ AJCA® iC A A

Thus, the arc

(i*, j*):=arg min (a,+ V)
ic A e A
is an arc of maximum A-flow out of A.
(2) The out-degree of each vertex of G is at least one, and so from elementary
graph theory it follows that G has a directed cycle. Suppose

An\_’ An:"’ I Anm e An,

is such a directed cycle. Then we have the situation shown in Fig. 3. Now (i, j. ) is
the arc of maximum A-flow our of A, , and so the A-flow on this arc is not less than
the A-flow of any arc info A, . In particular,

NV Zh o Vi oy, fOrk=10 m,
where, for convenience, we implicitly identify i, with i, and j, with j, . Thus,
)\,"m— V,“m. o, = )""... T V,-”m L
=N, Vi
ZA,, V"-. i
ZA, -V,

F1G. 3. A directed cycle of maximum A-flows in Lemma 3.

- S
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Therefore, the A-flow on the directed cycle is a constant:

(31) )‘i,, - Vi,,(,;,,. = A:,,"‘ Vi,,’,,’,,‘= = Ai,, - V:

" I,

For each A, in the directed cycle, we know the pairwise differences between the A;'s
for states in A, . Using (31) we can now easily determine the pairwise differences
between all the A,’s for states in U7, A,,. D

The algorithm for solving the modified balance equations is outlined below.

ALGORITHM TO SOLVE MoODIFIED BALANCE EQUATIONS.

Step 1. Set A} ={i} fori=1,---,|X|. We call the AF's coalitions at step k. Note
that for every i, the pairwise differences between the A-values for all states
in A/ are (trivially) known. Set A':= {A;, A}, - - -, Alx/}. Let N(1) =|A'|=: the
number of elements in the set A' = number of coalitions at Step 1.

Step k. Given A*:={A}, A%, - -, A%}, where for each A*e A* the pairwise
differences between all of the A,’s for i’s in A¥ are known, construct A**' as
follows. Using Lemma 2, identify the directed cycles in the graph. (There
exists at least one directed cycle.) The elements of A**' consist of the directed
cycles identified in the graph, and those A € A* that are not in any directed
cycle. (More precisely, if {A},, A%, - - -, A} }isadirected cycle,then U, A,
isanelementof A**'.) Note that forevery A; *' € A**", the pairwise differences
between all of the A,’s for i’sin A} "' are known. Furthermore, if N(k):=|A*|,
then N(k+1)< N(k).

Last Step. Stop when N(k)=1. Note that the pairwise differences between all
A/’s are known, and the A satisfying the modified balance equations can be
obtained by a translation by using the given value of p. 0

4. An algorithm to obtain all solutions of the order balance equations. We now
characterize all solutions to the order balance equations, and describe an algorithm
for generating all these solutions. To do so we will use the coalitions {AY} generated
by the algorithm of the preceding section. Let us call A,~ V, and B, = B,OV, as the
A-flow and B-flow, respectively, along the arc (i, j).

LemMMA 3. (1) If (i, j) is an arc of maximum A-flow out of A, then it is also an
arc of maximum B-flow out of Af.

(2) If {AY, - - -, A}} is a directed cycle obtained at step k, then the B-flow along the
directed cvcle is a constant.

(3) If the B-flow along the directed cvcle {AY, - - -, AL} obtained at step k is —c,
then the B-flow along any directed cycle obtained at step n> k containing A} =U" | At
as a node, is also —x.

(4) If the B-flow along the directed cycle {A},- - -, AL} obtained at step k is =0,
then for every i, je A} = UL ., A}, there exists a path (i=1i,, i, - -, i, =j) such that
inc A" ana B, ., =0 for0=m=gq-1.

Proof. We will first prove (1)-(3) by induction. Consider k = 1. Since Af is then
just a singleton, say Af ={I}, an arc (I, m) of maximum A-flow out of {1} is just one
for which V,,, = min, V,,. Clearly this is also an arc for which 8,0 V,,, = min, 8,0 V,,.
Now suppose that {A}, - - -, Ak} is a directed cycle of such maximum flows. Then an
application of the Order Baiance Theorem to each A shows that Bia=Bu=""=0p.
Suppose now that B8,, =, =- =g, =—co. Then if (I, m) is an arc of maximum
B-flow out of U!, A}, clearly 8, = B,,,, = —%. Thus the assertion is true for k=1.

Now suppose that the assertion is true for 1,2,- - -, k—1. Consider a coalition
A} . If the B-flow along some directed cycle {A7, - -, A}} at some step n< k with
AF=U7_, A" was —o0, then clearly the maximum 8-flow out of A} is —o0, and so any

P G R T O S Y
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arc out of A} is an arc of maximum S-flow. On the other hand if the 8-flow along the
directed cycle {A], -, A7} is =0, then the differences between the B;'s for states
ic A¥ are the same as the differences between the A;’s, i.e.,

(32) B:i—B;=A—A; foralli jeA},

and so the arc of maximum A-flow out from Af is also an arc of maximum g-flow out
from AL. Moreover, if {A}, - - -, Af} is a directed cycle at step k, then an application
of the Order Balance Theorem to each A} shows that the B-flow along the directed
cycle is a constant. Finally, if this 8-flow is —co, suppose that (r, m) is a maximum
flow arc out of Uf-, Af. Suppose that re Af. Then clearly maX;c 4t je At By = Bm and
s0 B, = —¢. This completes the induction and the proof.

Finally, to see (4), note first that from (1), (2), and (3), the B-flow along any
directed cycles contained within A" is 20. Since A} "' is formed as the union of such
directed cycles, the result follows. 0

Motivated by (3) and (4) above, we introduce the following definition.

DeriNiTiON 4. We shall say that i is recurrently connected to j if there exists a
path (i=iy, i, -+, i,=j)with B, ., ZO0for0=m=gqg-1.

We shall say that a set A< X is a recurrently connected set if for every i, j€ A and
ke A°, i is recurrently connected to j but not to k.

From Lemma 3 it follows that recurrently connected sets are precisely those A}'s
for which the B-flow out of A% is —co, while the 8-flows along the directed cycles
contained within A} are =0. Note also that the recurrently connected sets form a
partition of X.

We now proceed to determine which sets are possible candidates for being
recurrently connected sets. Consider a typical candidate A¥*' Let F denote the B-flow
on the cycle {A}, -+, A'}, where A}"'=U”, A}. Then if (i,, j.) is the arc of
maximum flow out of A}, (and, by construction, into Af,,., meap)> W€ must have

-9::3.'—‘/' :ﬁlgg‘/i:,i:——_'.'=ﬁlr-—‘/l,_vyrgo~,

max B, —-V, <0, max B =p
i Ay jeal"! IRV

11

We will now attempt to determine whether there exist {8,: i€ Af "'} that satisfy these
conditions. Note that if this is not feasible, then A} ™' cannot be a recurrently connected

set.

Let (x, ») denote the arc of maximum B-flow out of Af*". Then B, < V... Fix m
to be an arbitrarily chosen state from A}"'. Then for every state he Af "' we know the
value of (B, —B.,,) from Lemma 3 above. Let us define

&= Bn = B
Then
F=B,~ Vi
=Bmt i~ Vi,
=B =L+ 8-V,

< ny—{x+§i,_ Vi../.z: Mlv

giving an upper bound on %.
We must also satisfy the constraint max,. 44+ B; = p, and so let

@:=arg max {,.
ir:A‘,"

.

e - gy = - g S——
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Then it is clear that 8, = max,. 4+~ B;. Thus,

pZBs
=Bntde
‘_‘Bi."gi“"{u

=B~ Vi, t Vo, 8t

iy
=F+ V., ,— &t
and so
Fzp-Vi ;T8 —=M,,

giving yet another upper bound on % (Note. If A}*'={i}, then M,=min;V, and
M: = p)
Any choice of F from the interval

UAI ) =[0, M) N[0, M,]

will allow assignments for the recurrence orders of states in Af "' consistent with the

assumption that the coalition A} "' is a recurrently connected set. If Q(Af*') = then
then there is no assignment, and so A} *' is not a recurrently connected set.

We still need to determine the set of all recurrently connected sets. To do this we
construct a rooted tree having the coalitions produced by the general procedure as
nodes, and having a directed edge from coalition A;*' to A} if A}"' 2> AX. Hence,
the root of the tree is X, and its leaves are the singleton sets {1}, {2},- - -, {n}. Let D,
be the set of the leaves of the tree that are descendants of the node i in the rooted tree.

We say that a set = of nodes is a proper cover if

U D,‘=X
A=

and
D,NDy=0 forA# A"

Now the algorithm to determine all the solutions of (15), (8) proceeds as follows.
Let aset =Z:={A,, A;,- -+, A} be a proper cover. Now we will determine whether =
can be a set of all recurrently connected sets, as follows. First we determine ((A,) for
every A, €=, (Note that if we guess X to be a recurrently connected set, then
Q(X)=[0, M,], since the M, upper bound is +c because there is no maximal flow
out of X. Also, if we guess the singleton {i} to be a recurrently connected set, then
Qi = —cU([0, M )N [0, M,]). If any of the Q(A;)’s is empty, then the guess Z is
not a feasible set of recurrently connected sets. If every (1(A;) is nonempty, then let
Z,=sup Q(A;). If this “sup” is not attained, then we cannot assign p to any state in
A,. If this “sup” is attained, then we determine for each such A, whether, with the
choice of F,, there is a state i, € A; with B8, = p. If no such state exists for any A,, then
again = is not a feasible set of recurrently connected sets. Finally, if there exist such
A,’s then let 54(Z) be the set of all such A;'s. Now, the set of all solutions corresponding
to = is obtained by picking, in turn, an A; from #(=), fixing its flow as %, and choosing
all other #,'s arbitrarily from the 2(A;)’s. By checking every proper cover =, we thus
determine all solutions to the order balance equations, as the following theorem shows.

Tueorem 4. All solutions to the order balance equations can be generated by using
the method described above.

s 5 3 il ndhe £33 0w
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Proof. Suppose B satisfies the order balance equations. Then for this solution
determine the set = of recurrently connected sets. This set must be a proper cover.
For this set =, there must be some A; with corresponding B-flow equal ¥, Now
determine the B-flows on the recurrently connected sets. We generate this solution 8
when we choose Z as the set of recurrently connected sets, and A, as the coalition
with maximum flow equal to %, and assign the correct 8-flows on the other recurrently
connected sets. 0

This algorithm takes an exponential in [ X| number of steps, due to the necessity
of checking all proper covers. However, the complexity issue is not the primary concern
here, since the problem of asymptotic analysis of the stochastic process is not a priori
known to be a problem resolvable by a finite algorithm.

We illustrate the procedure for determining all solutions to the order balance
equations.

Example 3. We construct all solutions to the order balance equations for Example
2 when p = 4. See Fig. 4 for the rooted tree. We check the proper covers:

(1) =Z={X}: Q(X) is empty, so X cannot be a recurrently connected set.

(2) ==1{{1,4},{2, 3}}: Using the method described above we obtain

8i=a, B.=4, B:=3, Bi=l+c

here 1= a <3.
={{1, 4}, {2}, {3}}: max,_y B: <4, a contradiction.
={{1},14}, {2, 3}}:

Bi=v, B:=4, B;=3, B,=80

where y=—-xor0=y<l,and f=—-oCcor0=60<2.
(5) ==441}, {2}, 43}, {41} max,, x Bi<4, and so {{1}, {2}, {3}, {4}} is not a set of

recurrently connected sets.

Fic; 4. The rooted tree of Example 3.

N

[t £

Ve have checked all proper covers. Hence the set of all solutions is {(a, 4,3, 1+ a): 1 =
a<3tU{(y,4,3,0): y=—0or0=y<iand #=-0or0=6<2}.

How can nonunique solutions to the order balance equations arise, and what is
the implication of such nonuniqueness? First let us consider the case where a unique
solution exists. Since such a solution is uniquely determined by the algorithm, it is
clear that the recurrence orders of the states, and thus the rates of convergence of the
transition probabilities, depend only on the Vs in the transition probabilities p;(¢) =
cel(t) Y., and not on the proportionality constants {c;}. However, in the case of
nonunique solutions, the following example shows that the recurrenge orders may even
depend on the proportionality constants {c,}.

- -
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Example 4. Let X ={1,2,3} and V,=max {0, j—i}. Let c;x=can=1, ¢, =1-q,
and c;» =@, where a€(0, 1). Set ¢; =0 for all other i, j. See Fig. 5. Let the cooling
schedule be ¢(1) = 1/1. Then the complete set of order balance equations obtained by
using all edge cuts is:

B-© V:.\:B}@ Via, BiOVy=B,0V;,
max (B:@ V:h Ble V”) = max (B"e V_lzy B1e V}I)a
with the maximum given by,

max 8, =1.
X

The assignments
Bi=1, B:=v B:i=-%

satisfy the order balance equations for every y € {—20} U [0, 1). Thus any value of B.<1
gives a solution of the order balance equations.

However, a calculation that can be found in [8] shows that the correct order of
recurrence of state 2 is

B:=a.

Thus, the order of recurrence, and the rate of convergence of the probability Pr (x(r) = 2)
to zero, depends on the proportionality constant ¢:» = a involved.

Based on the above resuits, we obtain the following property of ‘-~ orders of
recurrence of the states in a recurrently connected set,

Lemma 4. Consider a recurrently connected set A.

(1) If' B,€ R for some ic A, then B,e & for a!' j< A.

(2) If for some ic A, B,=p. for some p,€ R, then for every j€ A, B,=p, for some
peA.

Proof. The proof follows immediately from (32). 0

Po3ft) = elt)

Py4ft) = eft)?

Fic;. 5. The Markov process of Example 4.
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Thus all recurrence orders in a recurrently connected set are of the same type,
i.e., either they are all real numbers p;, or they are all of the type p;, or they are all
—o0 (see Definition 1).

This gives us the following lemma, which completes the proof of Theorem 1.

LeEmMMA 5. Suppose the rate of cooling is p=pe R, with p> 0, i.e., the maximum is
achieved in Definition 3. If there is a state i € X for which B, =p~, then lim, ., Pr(x(1) =
iy=0.

Proof. Suppose A is the recurrently connected class to which i belongs. Since all
arcs between recurrently connected sets are transient, it follows from the Borel-Cantelli
Lemma that along almost every sample path o there can only be a finite number of
transitions between different recurrently connected sets. Hence for almost every o,
{x(t, w)} converges to some recurrently connected set. Hence the limit lim,_, Pr(x(1)e
A) exists. Now we show that this limit is zero. Suppose not, i.e., suppose
lim,.. ¥, 4 m(1)=86>0. Then it follows that ., e(1)" ¥, 4 m(1) =+cc. Hence for
some j€ A, B; = p. But then by Lemma 4, B, € R, which gives a contradiction. a

5. Weak reversibility and simulated annealing. We now turn our attention to the
special class of Markov chains arising from the method of optimization by simulated
annealing. Recall that the Markov chains in this class satisfy (1)-(6) with the special
choice of

V,=max {0, W, - W,}.

In (7] it was shown that under the “‘symmetric neighborhood™ assumption, ¢, >0 if
and only if ¢, >0, the orders of recurrence satisfy the following detailed order balance:

B, =B, foreveryi jeX.

It is easy to see that the detailed order balance above is equivalent to the sum of the
order of recurrence of a state and its cost being constant on recurrently connected sets.

In this section we will show that this constancy property of the sum of the
recurrence order and cost on recurrently connected sets continues to hold under the
much weaker assumption of “weak reversibility™ introduced by Hajek in [1].

DEFINITION 5. A state i is said to be reachable from state j if there is a sequence
of states j=1iy,4,, - ",i,=isuchthatc, , >0for0=k=p-1.

DEFINITION 6. A state i is reachable at height H from j if there is a path from j
to i as in Definition S for which W, = H for 0=k =p.

AssumpTiON 1(Weak Reversibility). For any real number H and any two states
i and j, i is reachable at height H from j if and only if j is reachable at height H from i,

In what follows we assume weak reversibility.

THeEOREM 5 (The Potential Theorem). Under Assumption 1, for every recurrently
connected set A there exists a constant a(A) such that B;+ W, = a(A) for every i€ A.

Proof. We fix our attention on a particular recurrently connected set A. Assume
to the contrary that A can be partitioned into equipotential sets C,, C,,- -+, C, such
that 8, + W, = a(C,) for every i € C,, where the a(C,)’s are distinct constants. We will
show that there is only one equipotential set, namely, A.

For each equipotential set C;, determine an arc of maximum B-flow out of the
set. From Lemma 2, there exists a directed cycle of these equipotential sets, and the
B-flow along the directed cycle is constant. Moreover, from Lemma 3, since A is «
recurrently connected set, these B-flows are all nonnegative. Without loss of generality,
label the sets along the directed cycle C,, C,, - - -, C, such that the constant a(C))
associated with the set C, is smallest. Let (i,, j,) be the arc of maximum g-flow out

]
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of the set C,. By construction, i; € C, and j; € C1+51moap and

Bij,=Bii="=8,Z0.
Knowing that 8, ; 0 we consider the two cases: (1) W, = W; or (2) W, < W,
If case (1) is true then since j, is reachable at height W, from i,, by the weak
reversibility assumption there exists a path from j, back to i, that does not go through
any states with costs larger than W, . Let (k, [) be the particular arc of that path that
exits C.. Note that

Bil-h = ﬂ":-.iz
'zﬂkla

because B.. . is the arc of maximum B-flow out of C,. If B, Z 0then 8, = B, + W, — W,.
If By <0 then B, + W, — W, <0. In either case, since 8, ;, =0, we have that

B, =Bt W, -Wzp+ W -W.
Now by the weak reversibility assumption, W, = W, and so
Bi,+ W, ZB+ W,
that is,
a(C))Z a(Cy),

which is a contradiction.

If case (2) is true, then there is a path from j, to i, that does not pass through
any states with costs larger than i,. Again, identify the particular arc of that path that
exits C, as (k, I). Note that

BH = ﬁ'hll
zﬁi:./:
Z Bu-

Using similar arguments as in case (1), since 8, 20 we have 8, = 8, + W, — W,. Now
by the weak reversibility assumption W, 2 W), and so a(C,) = a((5), which is again
a contradiction.

Hence there is only one equipotential set, A. ]

Since W, + B8, =a(A) for all ie A, where A is a recurrently connected set, we
obtain the following necessary and sufficient condition for simulated annealing to hit
a global minimum with probability one from all states i€ X.

Let M :={ic X: W, =< W, for all je X} be the set of global minima. We now have
the following definition due to [1].

DEeFINITION 7. Let d* be the smallest number with the property that for every
i€ X there exists a path (i =iy, -+, i,) with ¢, >0 for0=k=p-1 and ending in
a minimizer ‘, € M such that

W, -W,=sd* fork=1,---,p
We shall call d* the depth of the minimization problem.
THeOREM 6 (Necessary and Sufficient Condition to Hit Global Minimum With

Probability One). Suppose that weak reversibility holds.
(1) If ¥, e()*" =+c0, then for every initial condition x(0) € X,

PRIy

l N
Iimsupﬁ Y Pr(x(t)eM)=1,
=1

N-x

and the global minimum is hit with probability one.

.
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(2) If £, e(1)*" < +co, then there exists an initial condition x(0) € X for which
Pr(x(t)e M  forallt=1)>0.

Proof. The proof is the same as in Theorem (4.6) in [7] except that if (i=
ig,* ", i, =j) is a path from i to j with ¢, ;,,>0and W, — W, =y for ISk =p, then
instead of using the reversed path (j=i,,---,i;=1i) given by the assumption of
symmetric neighborhoods, we use the path (j=1/,---,[ =i) with ¢,.1,.,>0 and
W, — W, =y for 1 = k = q, guaranteed by the weak reversibility assumption. 0

Tke same condition ¥, £(1)?" =0 has been shown earlier by Hajek [1] to be
necessary and sufficient for lim, .. Pr (x(¢) € M) =1, i.e., for convergence in probability.
Thus while result (1) above is weaker than his, since it involves Cesaro as opposed to
regular convergence, the result (2) is a stronger sample path result.

The above result has been proved earlier in [7] under the stronger assumption of
symmetric neighborhoods, c¢;>0& ¢; > 0. Moreover, under this assumption Connors
and Kumar {7] have proved a detailed balance result that we can obtain as a corollary
of Theorem 5, as we show below.

CoroLrAry | (Detailed Balance). Under the symmetric neighborhood assumption,

Bi;=B; foreveryi, je X

Proof. If i and j are not neighbors, then B8, = B;; = —cc.
If i and j are neighbors and i€ R and je T, where R is the set of recurrent states
and T is the set of transient states, then

Bix=— forall k
and so

- =max B4 =ma i Z By
ng B]k k*’)_‘ Bkl B:/a

showing that B8, = B8;, = —%. A similar argument holds if i€ T and j¢ R.

Finally, if i and j are neighbors and i, j € R, without loss of generality let us
assume that W, = W,. Then 8;= 8,20, and s0 i and j belong to a common recurrently
connected set. Hence by Theorem 5, B,+ W, =B+ W,. Since B,=p8, and B; =
B+ W, — W, it follows that 8; = B;. 0

Note that by the above results, if the order of recurrence of even one state in a
connected component is known, then the orders of recurrence for all the states belonging
to the connected component are determined. However, as Example 4 shows, it is not
always possible to determine the order of recurrence of even one state in a connected
component from the order balance equations alone. In that example, the connected
components of recurrent states are the sets {1} and {2}, and the detailed balance
equations do not determine the order of recurrence 8, of the single state in the connected
cnmponent {2}. The reason for this inadequacy, as mentioned earlier in Example 4, is
that the orders of recurrence do depend on the proportionality constants c, involved
in the transition probabilities. In any case, the B-flows do satisfy Corollary 1.

6. Conclusions. The notion of order of recurrence provides a novel approach for
analyzing the class of Markov chains whose transition probabilities are proportional
to powers of a time-varying parameter £(t). These recurrence orders satisfy a set of
balance equations, and the Markov chain converges in a Cesaro sense to the set of
states with the largest recurrence orders. We have given an algorithm for generating
a solution to the order balance equations and have also provided a method for
characterizing all solutions to these equations. The algebraic methods presented in this

“
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paper for solving the order balance equations are not always sufficient for determining
the recurrence orders. In some situations where nonunique solutions exist, the orders
of recurrence can depend on the proportionality constants involved in the transition
probabilities, and not just on their orders of magnitude. This problem remains an open
issue. The method of optimization by simulated annealing falls within the framework
of this class of Markov chains. We have shown that if the Markov process is weakly
reversible, then the sum of the recurrence order and the cost are constants on each
sets of states connected by recurrent arcs. This allows us to determine the necessary
and sufficient conditions on the cooling rate for the optimization algorithm to hit a
global minimum with probability one from all initial states.
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SIMULATED-ANNEALING TYPE MARKOV CHAINS
~ AND THEIR ORDER BALANCE EQUATIONS®

D. P. Connors! and P. R. Kumar
Department of Electrical and Computer Engineering
Coordinated Science Laboratory
University of llinois
1101 W. Springfield Avenue
Urbana, lllinois 61801

Abstract

Wae coasider generalized simulated-ansealing type Markov chains
where the transition probabilities are proportional to powers of &
vanishing small parameter. One can associate with esch state an
“order of recurrence” which quaatifies the asymptotic behavior of
the state occupation probability. These orders of recurrence satisfy
a faadamental balance equation across every edge-cut in the graph
of the Matkov chain. Moreover, the Markov chain coaverges in &
Cesaro-sease to the set of states having the largest recurrence orders.
We provide graph theoretic algorithms to determine the solutioas of
the balance equations. By applying these results to the problem of
optimization by simulated ansealing, we show that the sum of the
recurrence order and the cost is a constaat for all states in & certain
connected set, whenever & “weak-reversibility” condition is satisfied.

1 Introduction

We consider finite state Markov chains {z(1)} with transition prod-
abilities of the type,

pi(t) = cije(0)%,
where ¢(t) is a small parameter coaverging to zeto. Is a previous
paper [1] we have shown that if one defines “orders of recurrence” by
(rmore precise definitions are gives in Section 2),

Bi:=eup{e20: ic(t)‘r.'(t) = 400},
[ ]
thea
(i) thess recurrencs orders satisly & balance equation,

B = Vii)y

D= Vi) = max,

€ASEA*
for every subset A, and

(ii) the Markov process converges to the set of states with the largest
orders of recurrencs.

Thie provides a sovel approach to asalysing the asymptatic be-
havior of such time-inhomogeneous Markov processes. Specifically,
one wses (1) to mive the balance equations, and then (i) provides
the limiting bebavior. Moreover the orders of recurrenca aleo provide
information about the rates of convergence of the state occupation
probabilities. This approach via recurrencs orders therefore converts
the analytic problem of determining the asymptotic behavior of the

*This ressarch bao boun supported in part by APOSR Contract No. AFOSR-
$0-0101, USARO Comtract Ne. DAAL-63-88-K0046, aad JSEP Centract Ne.
Nao14-84-C.0148.

! Now with I jonel Dusiwem Macki

Corporation, Thomus J. Waissn
Rassssch Contet, Ben 218, Yerktown Heights, NY 10346,

88CH2531-2/88/0000-1496$1.00 ® 1988 IEEE
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time-inhomogeseous process into a purely algebraic problem of solv-
ing the balaace equations.

A dignificant motivation for studying such Mackov chaias lies in
the fact that in the method of optimization by simulated annealing, if
{W;) is the cost function whose minimum is sought, then one obtaine
a Markov chaia with,

3 Pii(8) = cije(t)=ari®W=We),

Thus simulated annealing is & special case where the powers V; sat-
isfy,
Vij = max(0, W; - W),

for some {W;}.

In order to pursue the above approach for analyzing such time-
inhomogeneous Markov chains, it is necessary to be able to solve the
balance equations. However, there caa be non-unique solutions to
the balance equations. We present graph-theorstic circulation based
algorithms to obtain e solution, as well as all salutious, to the balance
equations. We show by an example the interesting phenomenon that
such non-uniqueness can arise when the asymptotic properties of the
Markov process, and the recurrence orders, depend not just on the
exponents V;;, but also oa the proportionalily constants c;;.

By applying these results to the Markov chain arising from the
mathod of optimization by simulated annealing when the “weak re-
versibility” coadition of Hajek (2] holds, we show that the sum of
the recurrence order and the cost is a constant oa sets connected by
recurrent arcs. This allows us to obtain the necessary and sufficient
condition for the optimizatioa algorithm to hit the global minimum
with probability one. Our necessity result is & stronger sample path
result than is found ia [2] or (3]

Background

Titsiklis (3] has also investigated Markov chaina with transition
probabilities propostional to powers of a small time-varying parame-
ter. His analysis was based on obeerving that due to the slow varia
tion of {¢(t)}, cne can employ bounds om the state occupation prob-
abilities for stationary Markov chains, where ¢(t) is held constant,
to obtaia bounds for the time-inhomogensous case. His approach is
quite differeat from ours.

Based on an analogy to the physical process of annealing, the
sequence ¢(t) is called the “cooling schedule,” and just as in the
physical analogy it plays a key role in determining asymprotic be-
havior. It was shown by Geman aad Geman (4], Mitra, Romeo and

Sangiovanni- Vincenteli {3}, and Gidas {6], that simulated annealing
converges in probability to a minimum of*the optimisation probiem
provided T304 ¢(1) = +00 for large enough p. Hajek (2] has deter-
rained the necessary and sufficient conditions on the value of p for the
algorithm to coaverge in prodebilily to the minimum when & “weak
reversibility” assumption is satisfied.
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2 Orders of Recurrence and Balance Equa-
tions

&‘*4-—4

oasider a Markov chain over a fisile state space X whose transitioa
‘probabilities are propartional to powers of a vanishing time varying
parameter ¢(t); that is, the transition probabilities p;;(t) := Pr(z(t+
. )= jla(8) = i) ase given by,

polt) = (),  forallijEX,i#j, aadte2%, (1)

where

20, forallijeX,ifj and Jcimlforallic (3)
3

iegarding the small parameter {¢(t)}, we will assume thas,
0<et)<l, forallteZ* )
3M < oo such that «(8) S M(s) whesever £ 2 4, (5)

f:c(t)' <o, for some p € (1, +0) ®
[ 1)

1 what follows we will assume that ia (1-3) we have
¢; =0 e V;= oo

~hich is clearly without any loss of geaerality.

Lat #,(¢) := Pe(2(t) = s) be the probability distribution of z(t),
<ad %(8) ;= Pr(z(s) = i, 2(¢ + 1) = j) be the probability of a
transition from state i to § at time ¢,

We defiae the mcurrence orders for the states and traasitions of

w Markov process, as fallows.
Deflnition 2.1 The onder of recurrence of ¢ state i € X, denoted
Bi, is .
-0 vmt;(l) < +00,
gml? rp=aup{c20:Ti2o¢(1)'si(t) = +00)
ond T4 «(2Pxi(2) < 00,
?» Vpamax{e2 0:T 0 c(t)'ri(s) = +00}.

.Ja say a state i is transient if §; = —c0; otherwise we say the state
is recurrent.
[a a similasr manaer wa define the erder of recurrence of the tran-
tion from i te j, §i;, by replacing ;(t) with £,;(t) in the defini-
«o8 above. Agaia, we say the trassition from i to j is trunsent if
8;; = ~co; otherwise we say the traasition is recurvent.
It is also convenient (o deflne p, the onder of cavling of {¢(1)}, as
ows.
Deflnition 3.2 The order of the conling scheduls (c(t)}, denoied p,
‘s defined as,
-00 vmt(o("‘“v
im P~ Ipmenp{e2 0:Ling(t)' = +00)
' ond T8, (tY < 400,
?  pmmax{e20: L0, (t) = +oo).

[he relatiosship betwass 5, 5i; and p i given in the followiag
Lemma 2.1. 1t will be convenient in the sequal (o define the operatios
= * as follows:

-0 ife<d

| ‘9"'{.-0 fe2b

q 1ma 2.1 5; end i are reisied by

B;mMOVy, frdlijeX, o
04rpulﬂsmullldh.
| nyh = s ®
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Proof: See {1). »

Koowledge of the 5, provides useful information about the
asymptotic properties of (z(t)}. The following theorem shows that
the time-inhomogeneous Markov chain coaverges in a Cesaro sense
to the set of states having the largest orders of recurrence.

Theorem 2.1 Let M be the set of states with the largest orders of
recurrence,
M:={ie X :8; =p).
Then
1 N
msup FEPr(:(:) EM)=1, {9

Proof: See [7). L)

Our goal therefors is to determine the recurrence orders, and criti-
cal to that will be the following result eatablished ia [1), which shows
that there is a fundamental balance of recurresce arders across every
edge-cut in the graph of the Markov chain.

Theorem 2.2 (Order Balancs)

.‘“wﬂu m““&-""' Jor every AG X. (10)

Equivalently, umg the “Q" notation and (7),

ICA.)CA'A ov;= .Q:“x‘n‘a’ e Vi Jorevery AG X. (11)

Proof: Ses [1). |

Note that through Theorems 2.1 and 2.2 we have coaverted
the problem of determising the asymptotic properties of the time-
inhomogensous Markov chaia into an algebraic problem of salving
the balance equatioas (10).

3 The Modified Balance Equations

Note that if (fh,5s,...,Hx;) satisfy (11), thea (fh - o, =
6,...,Aix) — «) also satisly (11) for every a, i.e. the salution set
is translation inveriant. Thus the equatioa (8) which fixes the maz-
imum of the 5;'s nesds 1o also be takea into accouat.

HKowever, (11, 8) can together still possase uon-uaique solutions for
sufficiently amall values of p. In this section, we will show how one
can obtaia one solutioa to (11, 8); in the next sectioa we show how
to obtaia ell solutions.

1t is convenient to cousider the following “modified™ balaace equa-
tious, which as we show in the sequal, always possess a unique so-
lution. Given p 2 0 and V;; 2 G for i,j = 1,...,)X] with i # j,
coasider the problem of determising A := (Aq,...,A1x;) such that

-M.)u-)‘ Vn' R Ai = Vi b’“‘f"g(l'---.ll(r'z};
1

and
maxA; = 5 . (13)

We call (12, 13) the “modified” balance equations. Observe that (12)
differs from (11) in that the operation “~" is used in place of “©."
Also, the A's caa be aegative ia (12).

We have iatroduced the modified balance equations in order to
avoid the difficulties in haadling —00 that occur under the “8" op-
eration. The following theorem gives properties of solutioas to the
order balasce and modified balaace equations

Theorem 3.1 1. [f A satisfies the modified balance equations for
o given p and V, then 3 defined by,

Hii=A80 (14)
saliafies the order balence equations (11, §) for the given p and
V.

",
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2. For every givenpand V, lhmuuualmqundutwnAMIM
modified balance equations. A , the solutions for different
values of p are translates of each ollm'

3. Whenever p is large enough, there erists a unigue solution to the
order balance equations (11, 8). These unigque solutions are all
translates of the solutions for the modified balance equations.

Proof: See {7}, |

We now give an algorithm for determining the snique solution to
the modified balance equations. As illustrative example is conve-
nient.

Example 3.1 Let p =5 and

« 431
¢ » 37
VaVils 62« 4
265 »

Our goal is to determine A = (Ay,...,Aq) which satisfies (12, 13).
We shall refer to A; = Vi; as the A-flow along the arc (5, ). Consider
first the modified balance equation foe the edge cat A = (i},

?:.;&-V.-j-l‘l"l:'_:o\,-Vj‘. (18)

Observe that the LHS of (15) can be written as
A“?*hviio .
and 00 the arc of mesimam )-flow out of A = {i} is the arc (3,I(i))

where
(i) = ugl’_nig Vij.

(Note that (i) may not be uaique.)

We now coastruct the directed graph Gy = (W, ), with V; =
{{1}...,{4}} aad (i,j) € B if § = Ki). Note that G, has two
directed cycles {1} — {4) — {1} aad {2} — {3} — (2). Lat
s examine the M-flows on the directed cycle {1} — (4} — {1).
Sincs Ay = Vi is the maximum A-flow out of {1}, it is act smaller
thaa aay M-flow iato {1}, and so in particular

M=Wi2r=-Va.
Also, Aq = V4, is the maximum A-Bow out of {4} aad 0
A=Va 2 M = Vie.

We thus obesrve that the M-Bows along the directed cycle {1} —
£2) == {1} are equel; that is,
M =VimA=Vy,
asd 00
M=-1lmi=2

Thus, we have determined the difference between Ay aad Ay,
In exactly the same way, from the directed cycle {2} — (3} —
{2} we see that

(16)

Mq=Islg=-2

thes determiniag the difference between A aad Ay,

At the next step of the algorithm, coasider the modified balance
equations for the edge cut (4, 4°) where A = (1,4} aad 4* = {2,3).
Observe that for A = (1,4}, the LHS of the modified balance equa-

an

tioa
€PN =V = max A - Vg (18)
caa be written as
max(My = Vi3, Ay = Vig, Aq = Vi, A¢ = V)i
that is,
M“‘“o‘l"v“d“ﬂ‘“'”‘
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We have previously determined that Ay = A; = 1, and so the max-
Imum lo achieved by A\ = Vi3 = Ay =~ 3, and the arc of maximum
A-flow out of (1,4} Is the are (1,3).

In a similar fashion, examining the RHS of the modified balance
Equation (18), we determine that the maximum A-fow out of {2,1)
is achieved by A3 = V3¢ = Xy = 4, and 90 the arc of maximum A-flow
out of (2,3} is the arc (3,4).

We now consider the directed graph G = (V3,E;), with V3 =
{{1,4),{2,3}} and E; = {(1,3),(3,4)). Note that E; is the set of
the arcs of maximum A-flow out of the edge cuts in Vj.

Obeerve that G; has a directed cycle {1,4} = {2,3} — {1,4}.
Now note that Ay ~ Vi3 is the maximum A-flow out of (1,4} and
A3 = V3¢ is the maximum A-flow out of {2,3)} and s0

~Va=as -V
that is,

M=3m)y—4. (19)
Combining (16, 17, 19) gives
AM=3mlg=-8mig=-4m) -4 (20)

Wa now know the psirwise differences between all of the A;'s, and
0 we do not need to consider any additional edge cuts. To fix the
values of {A;}, we use the valus of p to give,

- '-"i?'\‘ =pmy
Siace, from (20), Aq is the largest, we set A; = S. We thus obtain
the solutioa to the modified balaace equations as,

““3' *135‘ &8&84.
-

The priacipal idea used to solve the modified balance equations in
Example 3.1 is summarized in the following lemma.
Lemma 3.1

1. Given A G X for which we know the pairwise differences between
all the X;'s for states in A, we canrdetermine the are of mazimsm
A-flow out of A (without knowing the A;'s themselves).

2 Let Ay, Ag,..., Ay be & partition of X and suppose for cach Ay
we know all the pairwise differences between the \;'s for all states
in Ay. Let (iy, ja) denote the are of masimum A-flow out of A,.
Conastruct the directed graph G = (V,E), with V = (Ay,...,4,)
and E = {(iy,j1)se-(ipsJp)}. There ezists a directed cycle on
G. If {Aayy... 1 Ans) is the list of vertices, in order, along the
dmdqdc Mmmxﬂo.mlhcdwtdqcbummt,

that is,

&_‘-V;.“-.‘ meem A = Vi dans
and we can determine the pairwise differences between the values
of the X;'s for all the states in ULy, Ax

Proof: See [7]. ]
The algorithm for solving the nodm«l balance equations is out-
lined below.
Algorithm to solve madified balance equations

Step 1: Set A} = (i} for i = 1,...,|X|. We call the A*"s coalitions
at step k. Note that for every i, the pairwise differences between
the A-values for all states in A} are (trivially) known. Set A! :=
{4}, 4},...,Alx)). Let N(1) = |A!| =: the number of elements
in the set A' = number of coalitions at Step 1.

Stap ki Given A" :m (A}, 43,..., 4%}, where for each 4! € A*
the pairwise differences betwees all of the A's for i's in A ace
known, constrect A*** as follows. Using Lemma 3.1, identify
the directed cycles in the graph. (There exista at least one di-
rected cycls.) The elements of A**! consist of the directed cycles
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ideatified in the graph, aad those A} € A* which are not ia any
directed cycle. (More precisely, if (A}, ,A8,,..., A%} is 2 &
rected cycle, then U3, Aa, is aa dlement of A**'). Note thas
for avery AY*' € A**), the pairwise differences between all of
the A;'s for i's ia AY? are kaown. Furthermore, if N(k) := |4%|,
then N(k + 1) < N(k).

wt Step: Stop whea N(k) = 1. Note that the pairwise differences
batween all A;'s are kaown, aad the ) satislying the modified

balaace equations can be obtained by a translation by using the
n

givea value of p.

An Algorithmw to Obtain All Solutions of
the Order Balance Equations

» now characterize all solutions to the order balance equations,
d deacribe an algorithm for geserating oll these solutions. To do
we will use the coalitions {A}} generated by the algorithm of the
eceding saction. Let us call \; - ¥;; and ;; = 3,8 V;; as the )-flow
d §-flow, respectivaly, aloag the are (i, j).

ynma 4.1 L If (i,]) is the are of mezimum A-flow out of A},
then it is also the arc of mezimum J-flow out A},

L If (A},..., AL} is @ directed cycle obtained ot atep k, then the
B-flow elong the directed cycle is & constant.

I. If the 3-flow along the diracted cycie {AY, ..., A} obtained at
step k is ~00, then the J-flow slong any directed cycle oblained
ot step n > k containing A} = |, A} & & node, is oo —co.

. If the B-flow along the directed cychs (A},..., A} obtained ot
sicp k is 2 0, then for every i,j € AFM .xu_.,,«&m
esists & path (i m g, iy,... iy = j) such thet iy € AFT! end
Bimimer 20 for0smg -1

roof See (7], ' : ]
Motivated by 3) aad 4) above, we introduce the followiag defiai-
a. -

finition 4.1 We shell say thet i is recurreatly cosmected 0 j
there ezists & path (i = i iy,..., 09 » j) with 5., 2 0 for
Cm<eg-1.

We shall say that @ set A G X is & recurreatly cosnected set if
reveryi,J € A and k € A*, i is recurrently connected Lo § but not
k.

From Lemma 4.1 it follows that recurrestly cousected sets are
sisely thase A}'s for which the §-Bow out of A} is —co, while the
Bows along the directed cycles contained within A} are 2 0. Nots
o that the recusrently connected sets form a pertition of X.

We aow proceed to determine which sets are possible caadidates
' being recusrently comnected ssts. Comsider a typical candidate
*!. Let F desots the S-flow oa the cycle {A},...,A}), where
*1 2 (L., AL Thea if (im, ju) is tho arc of maximam flow out of
\ (and, by cosstruction, iato Al ,|\meq,): ¥e must have,

Fap~Viamsby-Vou=nh-V,;20
LD

::.g.ﬂs se

1 will 0w aitempt to detarmine whether there axist {; : i € A}*')
iich satisfy thass conditions. Note that if this is act feasible, thes
+1 cannol be a recurreatly consected set. "

w(:,p)m.lhmdwmﬁlwmd.d " Thea
<V,,.l'lxatobouuﬂnuny¢h-mh..4, . Thaa
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for avery state A € A,"' we know the value of () ~ S ) from Lemma
4.1 above. Let us define

= Oy - P
Then
F = ﬂ"l 'v"u'l
= p“*'(n 'Vl'\.)'l
= ﬂ"‘l+(“|-yl'|.)'|
< V=G +6 =Via =M,

giving an upper bouad o F.
We must also satisfy the coastraint “mg'ﬂ.- < p, and so let
Al

= u‘“u:'gl Gie

Then it is clear that fy 2 max fi. Thus,
.*‘A'DQI

r 2 h
= Bt
= p"|"d'|+°
® By=ViatVai =G +G
w8 F4Vig =G +G,

aad s0
;s"vﬁa +6| -C":ui'
giving yet another upper bound o F. (Note: if AF*! = (i}, thea
M.-nh,-ngudug-'.)
Any choice of F from the interval

DAY = {0, My )() [0, M3)

wil] allow assigaments for the recurrencs orders of states is A}*?
consistent with the assumption that the coalition Af*! is a recur
rently connected set. If D(AF*') = ¢ then there is 0o assignmest,
and 50 A* Is not & recusrently consected set.

We still aeed to determine the set of all recurrently connected sets.
To do this we coastruct a rooled tree having the coalitions produced
by the geaeral procedure as nodes, aad having a directed edge from
coalition A3+ to A2 if A+ 2 A{Y. Heace, the root of the tres is
X, and its leaves are the singleton sets {1},{2},...,{n). Let D; be
the set of the leaves of the tres which are descendants of the node i
in the rooted tres.

We say that & set = of nodes is a proper cover if

UDAOX
Ae2

and
Da(\Duw=¢ forA#A.

Now the algorithm to determine all the solutions of (11,8) procesds
as follows. Let aset Z := {A;, A3, ..., A4} be & proper cover. Now we
will determine whether = can be a set of all recucreatly connected
sats, a follows. First we determine f}(A;) for every 4; € . I
any of the f}{A;)'s is empty, thea the guess = is not a feasible sat
of recurrently coanected sets. If every }(4;) is aca-empty, then let
F; :m max i A;), and for each A; determine whether with the choice
of 7 there is a state i; € A; with 8;, = p. If no such state exists for
any A;, thea again Z is not a foasible set of recurrently comnected
sets. Fiaally, if there exist such A;'s, then let A(Z) be the set of
all such 4;'s. Now, the set of all solutions correspoadiag to E is
abtained by picking, i tum, ss A; from A(Z), fxing its fow as F,
and choosing all other F;'s arbitrarily from the fi(4;)'s. By checking
mmm!.nthud.mhcmnmmwmwd«
balaace equations. See [7) for the preciss prool.

Woilllunuthpmudunktmnhiudlwluﬁouwth
ocder balance equations.




'Example 4.1 We construct all solutions to the order balance equa-
tioua for Example 3.1 whea o = 4. We check the proper covers:

= {X): 0({1,4)) is empty, o0 X cannot be a recurrently
eonuctd set.

2. 2 = {{1,4),{2.3}): Using the method dacnbed above we ob-
tain

fh=a, MH=4, H=) fi=lto,

where 1 < a <.
S= ((‘l‘)"z)! {3)): ?‘?p‘ < 4, a contradiction.

4 2= {{1h {41 {23}):
b=y, =4  Bi=d A=,
where y = ~c0oc0S7<,sad = ~c0or 0502
5 2 = {{1),{21{3}, {4)): maxh <4, aad 00 {{1,4},{2.3}} is

sot a set of recurreatly connected sets.

We have checked all proper covers. Hence the set of all solutions is
{(e,4.3,1 4+a):1 Sa<IU{(1.43M):7= -0or0 < v <
land 0= ~wor050<2). . ]

FRow caa aon-uaiqee solutions to the order balance equations arise,
and what is the implication of such noa-uniqueness? First let us con-
sider the case whare a unique solution exists. Siace such a solation is
uniquely determined by the algorithm, it is clear that the recurrence
orders of the states, aad thus the rates of convergence of the tran-
sition probabilities, depend only on the V;;'s in the transition prob-
abilities py;(t) = ¢;;¢(t)*, and not om the proportionality constaats
{e;;}. However, in the case of non-enique solutions, the following
exampie shows that the recurrence orders may ever depend on the

Example 4.3 Let X = {1,2,3) aad V;; = max{0,j - i}. Let i3 =
eaml,cn = l-aand cy; =a, wherea € (0,1). Set ¢;; = 0 for all
other i,5. Let the cooliag schedule be ¢(t) = 1/¢. Then the complete
sat of order balance vquations obtained by using ell edge cuta is,

50Vn = Aoy,
. eV = fhoWs
m("evﬂﬁplevﬂ) i ﬂ“l(ﬁsevn.ﬂsevsl)-

with the maximum gives by,

w.l.

The sssignments
Hi=l, huyg,

satisfly the order balance equations for every 7 € (-00}U{0,1). Thus
any valee of f; < 1 gives a soletion of the order balaace equations.

However, a caiculation, which can be found in {7], shows that the
correct order of recurrence of state 2 is

h=a

Thus, the order of recurrence, and the rate of coavergence of the
probability Pr(z(t) = 2) to 0, depeads on the proportionality con-
staat oy = o involved. [ |

Based on the above results, we obtain the following property of
the orders of recurrence of the states ia & recurrently conmected set.

Lemma 4.3 Consider ¢ recurvently connected set A.
LUBKERforoomeiCA then i €R forall j€ A

Py = 00
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2 [ffor some i € A, B, = p; Jor some p; € R, lhcn/orenry
F€ A, 0 =g} for some p; € R.

Proof: This follows immediately from the proof of Lemma 4.1. &
Thus all recurrence orders in a recurrently connected set are of the
same type, i.e. either they are all real numbers p;, or they are all of
the type p;’, or they are all =co (see Definition 2.1).
This gives us the following Lemma which completes the proof of
Theorem 2.1.

Lemma 4.3 Suppose the rate of cooling isp = p € R, with p > 0,
i.e. the mazimum is achieved in Definition 2.2. If there is a state
i € X for which §; = p~, then limy.o Pr(z(t) = i) = 0.

Proof Suppose A is the recurrently connected class to which i be-
longs. Since all arcs belween recurrently ted sets are transient

it follows from the Borel-Cantelli Lemma that along almost cvery
sample path w there caa only be a finite aumber of transitions be-
twaen different recurrently connected sets. Hence for aimost every
w, {2(t,w)} converges to some recurrently connected set. Hence the
limit Lim¢eeas Pr(z{t) € A) exists. Now we show that this limit is
0. Suppose not, i.e. suppose Emiwgy g4 7i(t) = § > 0. Then
it follows that T30 {t)” T4 7i(t) = +00. Hence for some j € 4,
B; = p. But then by Lemma 4.2, §; € R, which gives a contradiction,
thus proving the lemma. »

5 Weak Reversibility and Simulated An-
nealing

We now tarn our attentioa to the special class of Markov chains aris-
ing from the method of optimization by simulated annealing. Recall
that the Markov chains in this class satisfy (1-6) with the special
choice of

Vi = max{0, W; - W;}.

In (1] it was shown that under the “symmetric neighborhood™ as-
sumption, ¢; > 0 if aad only if ¢;; > 0, the orders of recurrence
satisfy the following detailed order balance,

Bi; = B

It is easy to see that the detailed order balance above is equivalent
to the sum of the order of recurrence of a state and its cost being
constant on recurrently connected sets.

In this section we will show that this coastancy property of the
sum of the recurrence order and cost on recurently connected sets
coatinues to hold under the much weaker assumption of “weak re-
versibility” introduced by Hajek ia [2].

foreveryi,j€ X.

Definition 8.1 A state i is said (o be reachable from state j if there
is & sequence of states j = ig,iy,..., 4 = i such thot c;, ;,,, > 0 for
0<kgp-1.

Definition 8.2 A state i is reachoble at height H from j if there iz a
path from j to i as in Definition 8.1 for which W;, < H for0 < k < p.

Assumption 5.1 (Weak Raversibility) For any real number H
and any lwo states i and j, i is reachabdle at height 11 from j if and
only if j is reachable at height H from i,

Ia what follows we assume wesk reversibility.

Theorem §.1 (The Potential Theorem) Under
Asmmption 5.1, for every recurrently connected sct A lhere crinta
@ constant a( A) sech that §; + W; = a(A) for everyi € A.
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* Proof See [T}, N

Since W; + f; = a(A) for all i € A, where A is a recusreatly con.
nected set, we abtaia the following necessary and sufficient condition
for simulated aanealing to hit a glodal minimum with probability one
from all states i € X. .

Lat M = (i € X : W, S W, forall § € X} be the set of global
minima. We now have the following definition due to [2].

Definition 5.3 Let d* be the smallest number with the property that
Jor every i € X there exista @ path (i = ig,...,ip) with &, ,,,, > 0
Jor 0 < k < p and ending in @« minimizer iy € M such that

W, -W;Sd& fork=sl,....p

We shall call & the depth of the minimization problem.

Theorem §.2 Suppose that wesk reversibility Aolds.
L Y2, (1) = +0o, then for cvery initial condition 2(0) € X,

1 N
li:_l:vigl’rh(l)ﬂl)-l.

L TR ()" < +0o, then thers esists en initial condition
2(0) € X for whick,

Pr(z(t) € M® forallt 21)> 0.

Prool The proof is the same as in Theorem (4.6) ia [1] except that
(i mig,.cniymf)isaputhfromitojwithe, -, - Oand Wi, ~
W, S vfor 1 <k < p,thea instead of using the reversed path (j =
igy- -+ fq = §) givan by the assumption of symur :tric neighborhoods,
one uses the path (f m lg,... [y m ) with ¢y, 4, > Qand Wi, ~Wi §
7608 1 S & £ g, guaraatesd by the wea" reversibility assumptioa. B

The same condition T2, «(£)* = 00 has beea earlier shows by
Hajek {2) to be necessary aad sufficient for liny_e Pr(2(t) € M) =
1, i, for convergence in probability. Thus while result 1) above
is weaker thaa his sisce it iavolves Cesaro as opposed to regular
canvergeace, the result 2) is & stroager sample path result.

1t is also worth aoting thas if one additionally assumes the property
of symmetric neiphborhoods, c;; > 0 «mp cj; > 0, thea the detailed
bulancs result of {1] kollows as a corollary of Theorem 3.1, a8 we show
Lalow.

Carollery 8.1 (Detailed Balance) Under the symmetric neigh-
burhood essumption,

B = B for everyi,j € X.

Proof: Ses [7]. u

Note that by the above resalts, if the order of recurrence of evea
wiwr «lals in & counected compoaent is kaows, thes the orders of
inurrence for all the states beloaging to the coanected component
sic detesmined. However, as Example 4.2 shows, it is not always
p-enible (o determine the order of recusrencs of eves one state in &
(unaected composent. [a that example, the consected components of
10 urrunt states are the sets {1} and (3). We do sat kaow the order
of recurresce of the single state in the cousected componeat (2},
withuut taking into accoust the proportioaality coastasts iavolved
s the transition probabilities. Thus, for this example the detailed
Lalance equations are not sufliciens for determining f. However,
arae that the f-llows do satiefly Carollacy 8.1
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6 Conclusions

The notion of order of recurrance provides a novel approach for an-
alyting the class of Markov chains whose transition probabilities are
proportional ta powers of a time-varying parameter ¢(t). Thesa re-
currence orders satisfly a set of balaace equations, and the Markov
chaia converges in a Cesaro sense to the set of states with the largest
recurreace orders. Wae have given an algorithm foc generating a solu-
tion to the order balance equations aad have alsa provided a metbod
for characterizing all solutioas to these equations. [a some situa-
tioas where noa-unique solutions exist, the arders of recurrenca caa
depend on the proportiosality coastants iavolved in the transitioa
prababilities, and not just oa their orders of magnitude. This prob-
lem remains an opes issue.

The mathod of optimizatios by simulated annealing falls withia the
framework of this class of Markov chains, We have showa that if the
Markov process is weakly reversible, thes the sum of the recurrence
order and the cost is a coastast on each set of states coanected
by recurreat arcs. This allows us to determine the necessary and
sufficient oa the cooliag rate for the optimization algorithm to hit a
global minimum with probability ome from all initial states.
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SIMULATED ANNEALING AND BALANCE OF RECURRENCE ORDERS
P.R. Kumar

University of Illinois
Coordinated Science Laboratory
1101 W. Springfield Avenue

Urbana, Illinois 61801/USA _

ABSTRACT

Several important problems in diverse application areas such as image restoration, code design, and VLSI design, contain at
their core an optimization problem whose solution crucially determines the performance of the resulting engineering system.
Standard descent algorithms for such optimization problems, however, typically get trapped in local minima, and fail to reach
solutions at or near the global minimum. Motivated by the problems of determining the global minima of optimization prob-
lems, the algorithm of simulated annealing for optimization has been proposed. Here we present recent results on the perfor-
mance of this algorithm in reaching the global minimum of combinatorial optimization problems.

1, INTRODUCTION

Several imporiant application areas as diverse as image resmmtion,1 code design.2 and VLSI dwign} require at their core '

the solution of an optimization problem, typically combinatorial optimization problems. It is for this reason that the subject
of combinatorial optimization has attracted much attention, e.g.,  in recent years.

However, such combinatorial optimization problems possess a large number of local minima, and standard descent schemes
for solving them typically get stuck in guch local minima, and fail to reach solutions at or near the global minimum. A good
illustration of this fact can be found in” for the well-known traveling salesman problem, and this is one of the prime reasons
why such problems are intrinsically hard. Indeed for the traveling salesman problem, which is one of the most well known
examples of ‘‘intractable’* problems, no non-trivial choice of neighborhood structure can eliminate the possibility of
existence of local minima,

Mgtivated by the critical need to solve such problems, the algorithm for optimization by simulated annealing was proposcd
in". It is inspired by the problem of growing crystals in statistical mechanics, where *‘annealing®” is the process by which a
solid is initially heated to a high temperature, and then cooled so slowly that it settles into a crystalline state corresponding to
a global minimum of the cnergy state. The cooling needs to be slow, since (0o rapid a cooling schedule traps the solid in
higher energy local minima which can correspond to defects in the crystalline structure.

By an analogy with the physical process of cooling which can attain states near the global minima, see also.7 the simulated
annealing procedure for optimization is a Monte-Carlo algorithm which is a slight, but important, modification of descent
algorithms. It occasionally, and randomly, accepts uphill moves, in addition to always accepting downhill moves. The
paramcter governing the acceptance of uphill moves, is analogous to the *‘temperature’’ and it is gradually reduced to zero.
The object of such a scheme is that at high *‘temperature’ the algorithm will escape local minima, and then slowly evolve
into a pure descent scheme which seeks out a global minimum.

Being inspired by statistical physics, motivated by the solution of engineering problems, and pasing several mathematical
questions, this algorithm has attracted the attention of physicists, engineers and mathematicians alike.

In the rest of this paper we will present some key results that have been obtained on the performance of this algorithm, as
well as, an open issue on which more research is needed.
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Let X be a finite set, and Jet W: X—R be a given cost function on X, The goal is to minimize W(x) over x ¢ X,

Corresponding 1o each state i € X, let Ni X be a deleted neighborhood of X, withi ¢ X, Let {qy: i€ X, je NiJ be such that
420 and Y en g=1. Finally, let O<e(t)<1 be a cooling schedule with lim,. €(t) = 0. For simplicity, one may also

assume that (e(t)) is monotone decreasing.

Consider the Markov chain [x(t}) on X with transition probabilities defined by
P =qie@™ ™" for je N,
= l—k&pﬁ(&) for j=1i

The simulated anncaling procedure consists of moving through the state space X according to this Markov chain.

Essentially, the scheme consists of two steps at each iteration. Suppose that at an iteration t, x(t) =i. Then one chooses a
neighbor j randomly from N; according to the probabilities g;. If W;SW;, then j is accepted and x(t+1) is set to j. Thus
downhill moves are readily accepted. On the other hand, if W;> W, then j is accepted with probability € Y% and rejected
with probability 1-€ (t)w" ', If j is accepted then x(1+1) is set to j; otherwise if j is rejected thet\: x(t+1) remains at i,

Thus the scheme is seen to be a simple modification of standard descent algorithms. The parameter € (1) is the analog of tem-
perature,

In an application such as the traveling salesman problem, X will denote the set of all tours. A neighborhood structure can be
imposed by deleting two arcs in the tour and replacing them with two other arcs; see” for examples.

37, SIMULATED ANNEALING TYPE MARKOV CHAINS

More generally, simulated annealing gives rise 10 a time inhomogeneous Markov chain over a finite state space X with transi-
tion probabilities given by: -

P =qie®™ if je N;

= l-ﬁ&m(!) Fi
where V;;20. If m(t) denotes the probability of occupying state i at time t, then the goal is to determine the asymptotic
behavior of (x(t)) as well as {m;(t)}.
4, RE RDERS AND BALANCE EQUATIONS

ln8 we have shown that one may analyze the asymptotic behavior of such Markov chains by examining quantitics which we
call “‘recurrence orders:"* 1.et us define (B : i€ X) by

Pim—es  if gm(t) < 4o
=sup(clc 20 and g"e(t)‘u,-(t) < 4o0] otherwise,

If the supremum above is not attained, we will denote B; by ¢ rather than c. Let us also define
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Bym—ee if Bi<Vy
=P~ Vy otherwise.
We shall call B; as the recurrence order of state i, and Bj; as the recurrence order of the transition from i 1 j (see® for more
precise details).
The following fundamental result was obtained in®.
Theorem: Balance of Recurrence Orders
Forevery Ac X,
M JM' i= J‘EA B
It is worth noting that this balance equation differs fundamentally from traditional balance equations which represent balance

of flow between two spaually separate sets in equnhbnum In contrast, our balance equation is for a process which is not in
equilibrium; moreover it is a balance in “‘time."’ :

The advantage of this balance equation is that it convens the difficult analytical problem of determining the asymptotic
behavior of a time - inhomogeneous stochastic process into a purely algebraic problem of solving the balance equations.

9

In” we have obtained circulation based graph theoretic algorithms to solve these balance equations.

It has also shown that the Markov process converges in a Cesaro-sense o the set of states with the largest recurrence
orders; see”. Thus, the solution of the algebraic problem gives the asymptotic behavior.

It should be noted that Tsitsiklism has also investigated such general Markov chains. His approach which essentially obtains
bounds on the state occupation probabilities for time-invariant Markov chains, and then employs them for time-
inhomogeneous chains sampled over long time intervals, is quite different from ours.

3, APPLICATION TO SIMULATED ANNEALING

Simulated anmlmg conesponds to the special case where Vj; = [W~W]*. For simplicity let us suppose that the ncighbor-
hood structure is symmetric, i.e., i € Nj if and only if je N;.
Then we have obtained a considerably stronger statement of "detailed balance”, sees.

Theorem: Detailed Balance for Simulated Annealing

Bi=P; for all j,i.

Using this result we have obtained m8 the necessary and sufficient condition on the cooling rate of (e(t)) for simulated
anncaling 1o hit the global minimum with probability one starting from all states. It is necessary to introduce the notion of
‘‘depth’* of an optimization problem.

Definition: Depth of an optimization problem

Let d be the smallest number such that for every i € X, there exists a path i = ig.i1, . . . , ing), With ing) 8 global minimizer of W,
satisfying ixs1 € Ny fork =0, 1,...,n(i)~1, and such that W(ix)-W(i) S d for k = 0 I,....n()-1

Essentially, the depth measures the decpness of local minima.

ln8 we have proved the following Theorem.

R
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Theorem: Necessary and Sufficient Conditions to Hit a Global Minimum
P[x(t)) hits a global minimum for some t 2 0] =1

if and only if f; e(t)d = +oo.
t=)

Earlier, it has been shown inl! that a similar condition is necessary for the simulated annealing Markov chain to converge in.

probability to the set of global minmizers. Cur proof of necessity of this condition to guarantee ever hitting the global
minimum is a stronger sample path statement.

generalized this result to Markov chains which do not satisfy a symmetry condition, but satisfy instead what
f lalso ‘weak reversibility condition.*

6. CONCLUDING REMARKS

At this stage we have a good undastanding of the time vs. lemperature asymptotics of simulated annealing. It is of consider-
able interest to study the asymptotic behavior of the simulated annealing algorithm as the size of problem instances grows,
much as in the theory of computational complexity. The results obtained can be used to measure the complexity of the algo-
rithm in probabilistic terms.

1scallcdm
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ABSTRACT

This paper presents a novel upper bound for the second largest eigenvalue of a finite reversible
time-homogeneous Markov chain as a function of three parameters, namely, the smallest transition pro-
bability, the underlying structure of the chain, and the skewness of the equilibrium distribution. This
eigenvalue bound enables us to bound the time constant of convergence of a reversible Markov chain
to its equilibrium distribution. Simulated Annealing (SA), is an example of a probabilistic algorithm
that is widely used for solving combinatorial optimization problems, wherein the transition probabilities
are controlled by a certain temperature parameter T>0. The behavior of SA at a fixed temperature
T>0 can be modeled by a reversible time-homogeneous Markov chain converging to an equilibrium
distribution at that temperature. As the temperature T—0, the equlibrium distributions themselves con-
verge to the optimal distribution. Using the results of this paper, we can not only bound the time con-
stant of convergence of SA to equilibrium at any arbitrarily small but fixed temperature T>0, but also
study the growth of this bound as T—0; thereby, providing a fairly good understanding of the rem-
perature asymptotics of the simulated annealing algorithm. The eigenvalue bound of this paper is
compared with the bound derived by Jerrum and Sinclair in [4]. We exhibit a class of Markov chains
on which our bound, treated as a function of skewness alone, is asymptotigally tighter than the Jerrum
and Sinclair bound. We also show that our bound is, in general, much easier to compute for SA
chains.
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1. INTRODUCTION

Let Q= {1,2,...,N} be a discrete state space, and consider a time-homogeneous Markov chain

( X (k) ) on  with an NXN probability transition matrix P = [p;;] such that for any i, jeQ, and time
k20,

pij = Prob (X (k+1)=j | X (k)=i ) (1.1)

Let v(k) =[v;(k)] be the I1xN dis'ribution vector describing the chain at time k£ such that

v; (k) = Prob (X (k)=i); it follows that v(k+1) = v(k) P.
Suppose the Markov chain converges to an equilibrium distribution vector &, i.e.,

lim v(k)=xn==x P.
Jim vik)=m 1.2)
In this paper, we are primarily interested in the speed of convergence of v(k) to m. Let
1=A;2|A,|2 - - - 2|Ay | denote the eigenvalues of P arranged in descending order of magnitude. It is
then well known [1] that the error at time & can be bounded by

vy - =l < Ay [A,]* (13)
where || - || is any I, norm and Ay is a constant independent of time k. For our purposes it suffices
to consider only the [, norm. One can rewrite (1.3) in the form ||v(k) - x|| < Ay e™*'* where

T = —QogA )" (1.4)

is said to be the time constant of convergence of the Markov chain to its equilibrium distribution. It
follows that if |A,|<1-1/g for some ¢=»1, then t<q. Furthermore, given any 0<d<1 we will have
|Iv(k) - =|| 8 whenever k > [ log(Ay) + log(1/8) ] T. Therefore, the rate at which the Markov
chain achieves equilibrium is determined by the time constant T and hence by the eigenvalue of second

largest magnitude A,.




The main result of this paper is the derivation of an upper bound on the eigenvalue of second
largest magnitude of a reversible Markov chain. In his remarkable paper [3], Alon established the
relationship between the second smallest eigenvalue W (Q) of the Laplacian matrix Q of a graph G,
and a certain expansion parameter c(G) of the graph. A direct application of his ideas to Markov
chains leads to a useful bound only for the case of symmetric Markov chains as shown in [2]. A sym-
metric Markov chain, however, can only have the uniform equilibrium distribution, namely, x;=1/N for
all ieQ. In this paper we seek a useful bound for reversible Markov chains which, in general, could
have non-uniform equilibrium distributions,

The bound derived in this paper is of the form |A,|<1-1/q, where g is related to the minimum
non-zero off-diagonal entry in P, the skewness of its equilibrium distribution vector (a measure of the
non-uniformity of the distribution defined by (2.1) in Section 2), and p,(Q). Recently, Jerrum and
Sinclair 4] have derived an alternate bound of the form |A,|$1-¢%2, where ¢ is a certain conductance
parameter associated with the reversible Markov chain which is an extension of the expansion idea for
edge-weighted graphs. We compare the two bounds and exhibit a class of Markov chains for which
our bound, treated as a function of skewness alone, is asymptotically tighter than the Jerrum and Sin-

clair bound.

Reversible Markov chains are of interest because they can be used to model stochastic algorithms
for combinatorial optimization such as Simulated Annealing (SA) [6]. As an application of our results,
we will consider using SA at a fixed temperature to solve some specific combinatorial optimization

problems and derive bounds on the time constant of convergence of such chains.

The rest of this paper is organized as follows. In Section 2, we establish some notation and
definitions, and present some basic results from Linear Algebra and Non-negative matrices that are

required for the rest of the paper. A new upper bound for the second largest eigenvalue of a reversible
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transition matrix is presented in Section 3. The SA algorithm is briefly described in Section 4 fol-
lowed by a discussion of the temperature asymptotics of the corresponding reversible Markov chains.
A comparison between our new bound and that derived by Jerrum and Sinclair is also made along with
an analysis of the time constant of convergence of such chafns. Finally, in Section 5, we summarize

our conclusions.

—y————
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2. PRELIMINARIES AND DEFINITIONS

We study a time-homogeneous Markov chain ( X (k) ) on a finite state space Q={1.2,...,N}
with transition matrix P = (p;]. We begin by reviewing some basic material on nonnegative matrices

in general. In this paper we are using the standard graph-theoretic terminology from [5].

Definition 2.1 : The underlying directed graph of P is a directed graph G,(V, E;) with vertex set
V=Q, and an arc (i,j) directed from vertex i to vertex j if and only if p;;#0. The matrix P is irredu-
cible if there exists a directed path from each vertex to every other vertex in its underlying directed
graph G,. For an irreducible matrix, let » denote the greatest common divisor of the lengths of all the
directed cycles in its underlying directed graph. If r=1 the matrix is said to be primitive.

A primitive matrix P also has the property that there exists an integer m >0 such that 7™ has all
strictly positive entries. The Markov chain itself is said to be irreducible (primitive) if its transition
matrix P is irreducible (primitive). Some authors refer to irreducible Markov chains as ergodic chains,
and to primitive chains as regular chains. We summarize some basic facts in the following theorem

from the Perron-Frobenius theory of nonnegative matrices.

Theorem 2.2 : [1] Consider an irreducible Markov chain with transition matrix P and distribution

vector v(k). Then
(1) A=l is the largest eigenvalue of P. Moreover, 1 is a simple eigenvalue.

(2) Let x be the left eigenvector corresponding to the eigenvalue 1 of P, i.e,, & = nP, satisfying

N
3 x;=1. Then x; >0 for all ieQ. Furthermore, any right eigenvector x corresponding to any

im]

N
other cigenvalue A<1 of P must be orthogonal to x, i.e., 3 m;x; = 0.

i=]
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(3) Let y be the right eigenvector corresponding to the eigenvalue 1 of P, i.e., Y= P¥, satisfying

N
Y ¥;=1. Theny; = I/N for all ieQ. Furthermore, a left eigenvector corresponding to any other

i=l
eigenvalue of P must be orthogonal to .

(4) Given any starting distribution vector v(0), the distribution vector v(k) at time k converges in

1 k-1

Cesaro sense to nt defined in (2) as k—eo, ie., klun; Y v()=m=. If, however, the Markov
==K (a0

chain is primitive, then v (k) actually converges to x in the regular sense, i.e., klimv(k) =T,
—)oo

The left eigenvector n defined in (2) above is called the equilibrium distribution vector of the
irreducible Markov chain. It must be noted that from (4) above convergence to the equilibrium vector
is guaranteed only for primitive chains. For general irreducible chains, convergence occurs only in a

weak Cesaro sense.

Definition 2.3 : Consider a Markov chain with a structurally-symmetric transition matrix P, i.c., pi;>0
if and only if p;>0. Its underlying undirected graph is a simple undirected graph G (V, E) obtained
from the underlying directed graph G,(V, E,) by deleting all self-loops and replacing directed 2-cycles

by simple edges. Thus, arcs (i,j) and (j,i) in G4 are replaced by a single edge {i,j} in G.

Definition 2.4 : For an irreducible Markov chain with equilibrium distribution &, we define the skew-

ness s, of the chain to be

$p= max — 2.1
"-.',,'ennj @1

Clearly, s for an irreducible Markov chain is well defined since such a chain has ;>0 for each ie Q

from part (2) of Theorem 2.2. The main result of this paper deals with reversible Mar.ov chains,




which we now define as follows.

Definition 2.5 : An irreducible Markov chain with transition matrix P and equilibrium distribution

vector % is said to be reversible if, for all i,je Q, we have

Pij % = Pi % .2)
A reversible Markov chain has the following interesting property. The proof is an easy conse-

quence of the discussion above, and is therefore omitted.

Proposition 2.6 : Consider a reversible Markov chain with transition matrix P and equilibrium distri-
bution vector x. Define d; = r; for each i€ Q, and the diagonal matrix D = diag[ d\,d,, - - - ,dy).

Then,
() D?P is a symmetric matrix.
(ii) D P D7!is a symmetric matrix.

(iii) Consequently, P is diagonalizable and has real eigenvalues.

In general, for any KxK matrix M with real eigenvalues, let A, (M)2A;(M)2 - - - 2Ax (M) denote the
eigenvalues of M arranged in descending order. Thus, A;(M) denotes the largest eigenvalue, A,(M)
denotes the second largest eigenvalue etc. Using this notation, Theorem 2.2, and the above proposi-

tion, it is clear thot for a transition matrix P of a reversible Markov chain we have
1= (P)> MP)2MP)2 - -+ 2Ay(P). - 2.3)

There are several symmetric matrices associated with undirected graphs. For this paper it suffices to

consider only one of them.

Definition 2.7 : Given a simple undirected graph G(V,E) on N vertices (i.e., no self loops and no

e b . i e e 20 e A1 oot
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multiple edges). Let deg (i) denote the degree of vertex ieV which is the total number of edges in E

incident on the ventex i. Then the Laplacian matrix Q (G) is an NxN matrix with entries defined as

deg (i) if j=i
q; = {-1if {i.j)eE. 2.4)
0 otherwise

Clearly, the Laplacian matrix Q(G) is a symmetric matrix. The following theorem (stated without

proof) provides some more information about Q (G ).

Theorem 2.8 : If G(V ,E) is a connected simple graph with a Laplacian matrix Q, then
(1) @1=0Q, where 1 is a vector with each entry = 1. Hence, 0 has an eigenvalue 0 with eigenvec-
tor 1. Moreover, 0 is a simple eigenvalue of Q, i.e., rank(Q) = N-1.

(2) The quadratic form x"Qx = ¥ (x; —x}
. {ij)eE

(3) There exists a N—1xN matrix B of full rank such that Q = BTB.

In general, for any KXK' matrix M with real eigenvalues let p,(M)<p,(M)S - - - Spg (M) denote
the eigenvalues of M arranged in ascending order. Thus, j1;(M) denotes the smallest eigenvalue,
H2(M) denotes the second smallest eigenvalue etc. From Theorem 2.8, we have Q is positive semi-

definite, and has eigenvalues

0=111(Q)<p2(Q)s - - - SUN(Q). 2.5)

The following results will prove useful in deriving our eigenvalue bound in the next section.

Lemma 2.9 (Min-max principle [13]) : If A and B are any two symmetric K xK matrices such that

A-B is positive semi-definite, then foreach i = 1,2, . .. ,K, we have p;(B) < p;(4).




Lemma 2.10 : Let B be any N—1xN matrix of full rank. Then, foreachi =12, ... 6N-I, we have

w;(BBT) = p;,,(BTB).

Consequently, the smallest eigenvalue of BBT is the second smallest eigenvalue of BT B, the second
smallest eigenvalue of BBT is the third smallest eigenvalue of BTB, and so on. We use these to prove

the next result.

Theorem 211 : Let Q be any NxN symmetric and positive semi-definite matrix with
rank(Q)=N-1, Z be a NxN diagonal matrix with strictly positive diagonal entries, and ©,,;,>0

denote the smallest diagonal entry in Z. Then,
(1) The NxN matrix ZQ X is symmetric and positive semi-definite.

(2) Also, p(EOT) 2 62,1(0).

Proo-f : The proof of (1) is obvious. To prove (2), use Equation (2.4) to write Q = BTB, where
B is an N—1xN matrix of full rank. Define C = BE. Clearly C is also of full rank since Z is a
diagonal matrix with strictly positive diagonal entries. Also, ZQX = ZBTBX = CTC. Therefore,
by Lemma 2.10,

KAZQT) = p(CTC) = py(CCT) (2.6)
But CCT = BX*BT. Also, for any vector xe RV~!, the quadratic form

N-1
xTccT -6%,BBT)ix = ¥ (a2-o2 )yl 2 0. @7

im}
where we have defined y = BTx. Therefore the matrix CCT — 02.BBT is positive semi-definite
by definition; hence, by Lemma 2.9, we conclude that

Ki(CCT 20411 (BBT) 2.8)
Applying Lemma 2.10 once again, we get

fs




mBBT) = uy(BTB) = py(Q) .9
Combining (2.6), (2.8), and (2.9) proves this theorem.
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3. A NEW EIGENVALUE BOUND FOR REVERSIBLE MARKOV CHAINS

A reversible Markov chain has a structurally-symmetric transition matrix P, and hence has an
underlying undirected graph G which is both connected and simple. Furthermore, Proposition 2.6 says
that P has the second largest eigenvalue A,<1. The main result of this paper is to obtain a tighter

upper bound for A, of P. This bound will be expressed in terms of the following quantities:
(1) a=min{ p;; : i#j , p;j>0 }, the smallest non-zero off-diagonal entry in P,
(2) s = the skewness of the equilibrium distribution x of P, and

(3) (@) = the second smallest eigenvalue of the Laplacian matrix ¢ of the underlying undirected

graph G(V.E) of P.

Theorem 3.1 : Let Q= {12, - ,N}, and consider a reversible Markov chain on the state space )
with transition matrix P, and equilibrium distribution ®. Also, let ¢, s,, and p,(Q) be as defined

above. If A < 1 is any eigenvalue of P, then

o H(Q)
sﬂ

A< 1- 3.1

Proof : Let d;=+n;, for each ieQ, and define the NxN diagonal matrix
D =diag [ d;, d,, - - -,dy ). Since P is imreducible, x; > O for each ie Q from part (2) of Theorem

2.2. Therefore d;>0, D is invertible, and D' = diag [ di', -, dy' ).

Let A < 1 be any eigenvalue of P and let xeR" be the corresponding right eigenvector, i.e.,
Px = hx. Therefore, x? D*%(I-P)x = (1-A)x” D%, which can be written as
Tin2_
1-A = X (D°-Wh (3.2)

xT D%
where we have defined the matrix W = D?P, ie.,



—-

11

w; =d?p; = m; p (3.3)
The reversibility condition of (2.2) implies that W is symmetric. Also, the irreducibility of P implies

that W1 = D?P1 = D?], by Theorem 2.2 part (1). Therefore, for eachi = 1,2, ...,N we have

N

r = Zwij 34
=

Now, consider the quadratic form in the numerator of (3.2) which can be written as

‘ N N N
D~ Wix =3 (m-wix? - T T wyxx (3.5)
i=1 i=l j=1 '
yIr
Using (3.4) we get
- N N 2
xD°-Wiyx=3% ¥ w; x"~xxp) (3.6)
= s ‘
G

Now consider G (V, E) the underlying undirected graph of P. This is aiso the underlying graph of W,
since for j#i, we have p;#0 if and only if w;;#0. Also, w;; =w;; since W is symmetric. Hence,

(3.6) can be written as

xT(D*-w)x = E wij (x,-—xj)2 2PB Z (x,--xj)z. G.7
{ijleE {ig)eE
where
B =min { w;: (i,j)eE ). (3.8)

denotes the smallest non-zero off-diagonal entry in W. Define n,,, = rpa&( iy Mopin = r_nig w;, and
L€ i€

a=min { p;: {i,j}eE }. 3.9
as the smallest non-zero off-diagonal entry in P. Since, by definition, w;; = mn;p;;, we immediately get

B2anr,, (3.10)
Applying Theorem 2.8 part (2) to the right hand side of (3.7) and using (3.10) we get

xT(D? - W)x 2 & Ry xT Ox 3.11
where Q is the Laplacian matrix associated with the underlying graph G. Combining (3.2) and (3.11)

P
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results in

T
1= > ar. 20X '
Toin T2 (3.12)

It must be noted that x is a right eigenvector of P with eigenvalue A<1, while & = 1"D?%is a left
eigenvector of P with eigenvalue 1. Theorem 2.2 part (2) immediately shows that x and ® must be
orthogonal, i.e., 1TD% = 0. So consider the following constrained optimization problem :

Minimize zTQz over all ze RV

such that 1TD% =0 and z7TD% =1.

Settingy =Dz orz = D"y, the problem becomes equivalent to
Minimize y'D'QD "'y over all ye R"

such that 1"Dy =0 and yTy = 1.

Recall from Section 2, that Q is a symmetric positive semi-definite matrix with eigenvalues
O=p1(Q)<uQ)< - - - SUN(Q). Also, 1 is an eigenvector of Q for eigenvalue pu,(Q) = 0. Theorem
2.11 part (1) shows that D7'QD! is also a symmetric positive semi-definite matrix, by treating
T =D"! Moreover, D™'QD™' D1 = 0, i.e., D1 is an eigenvector of D~!QD! with eigenvalue 0.
Therefore, the above optimization problem is to minimize the quadratic form y"D~'QD""y over all
normalized vectors ye RV that are orthogonal to D1, the eigenvector corresponding to the smallest
eigenvalue 0 of the matrix D~'QD ™!, From quadratic programming theory [14], the minimum value of

the quadratic form is clearly u(D~'QD ™), the second smallest eigenvalue of D~'QD~!. Therefore,

T
L SN, s T (3.13)
x'D%x

Applying Theorem 2.11 part (2) to the right hand side of (3.13), with £ = D™}, gives
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D10D™Y) 2 ——1,(Q)
W (D~ QDY) — H2(Q (3.14)
So finally, combining (3.12), (3.13), and (3.14), we get
’ Tmin o w(Q)
1-A > o = — 3.32
o B Q) = — (3.3

thus proving the theorem. O

For some graphs G, the second smallest eigenvalue Wy(Q(G)) is easy to compute analytically.

Two examples are given below.

Cycle graphs: If G is a simple-cycle on N vertices, then the eigenvalues of its Laplacian matrix Q

can be shown to be [10]

®; (@) =201 — cos(2n(i —1)/N)) (3.15)
foreachi = 1.2, - - - ,N. Consequently, p,(Q) = 2(1 - cos(2/N)) which approaches 0 as N —oo.

Hypercube graphs: If G is an n-dimensional hypercube having N = 2" vertices, then its Laplacian

matrix Q has n+1 distinct eigenvalues [11] given by

Ex=2m ;m=012,...,n (3.16)
with eigenvalue 2m having an algebraic multiplicity L’:'] Consequently, the second smallest eigen-

value u,(Q) = 2 which is independent of N, the size of the matrix.

For graphs G in which p,(Q(G)) is not easy to compute, one can use a lower bound derived by
Alon (3] given below. This bound requires a certain expansion parameter of the undirected graph G

which we now define as follows.

Definition 3.2 : Let G(V, E) be an undirected graph. If ScV is any subset of vertices in G, we
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define the deleted neighborhood Nbd(S) to be the set of vertices in V—S which are joined to some

vertex in § by an edge in E.

Definition 3.3 : The expansion parameter ¢(G ) of an undirected graph G (V, E) is defined as

cG) = min—‘ﬂ’%lﬁl- )

where the minimization is performed over all subsets SCV such that 0<|S [<}4]V |.

Theorem 3.2 : [3) Let G(V, E) be graph with Laplacian matrix @ and expansion parameter c¢. If

p > 0 is any eigenvalue of Q, then

> —£ . 1
Py G18)

P2 b W0
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4. APPLICATIONS OF THE EIGENVALUE BOUND

As an application of the results of Section 3, we consider the Simulated Annealing (SA) algo-
rithm. This algorithm was first proposed as a probabilistic algorithm for solving difficult combina-
torial optimization problems [6]. It has been used with some success in problems such as VLSI lay-

out optimization, the design of FIR filters with finite precision, and image restoration.

We describe the SA algorithm bﬁeﬂ);. Let 2= {1, - - - N} be a set of states with a cost func-
tion C: Q - R. The SA algorithm attempts to find a state with globally minimum cost. Let x(k)
denote the state of the algorithm at time k. With each state i e, we associate a set of neighboring

states N; <2, which satisfy the following assumptions:
(4.1)  The neighboring sets are symmetric; that is, je N; if and only if ieN;.

(4.2)  Given any two states i and j in Q, there exists a finite sequence of states ig,iy, - - * ,i,, such

that ig=i, im=j, and §,,eN;, for each [=0,1, - - - ;m—1. This condition is often referred to as
the reachability requirement.

To simply matters we make an additional assumptions which is satisfied in most applications.

(43) |N;| =p for each i Q, i.e., all neighbor sets are of the same size.

Suppose that the present state is x(k)=i. The algorithm then randomly picks a state jeN; with

_probability V|N;|. If C(j) < C(i), it sets the next state to be x(k+1) = j. However, if C()>CG),

it sets the next state to be x(k+1) = j with probability p = e€@CUM and x(k+1) = i with proba-
bility 1~p. In other words, if C(j) > C (i), then the algorithm accepts j as the next state with proba-
bility p or remains in the present state i with probability 1-p. The parameter T>0 plays the analo-

gous role of temperature in the physical annnealing process. We define
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e=e VT (4.4)
to simplify notation. Note that T = (logs")“. So, if 0<T <+ then O<e<l. Also, as T—0 we have

£—-0.

The SA algorithm thus simulates a time-homogeneous Markov chain on state space £ with transition
matrix P = [ p;; ] with off-diagonal entries ({#/ ) given by
L etrecOr it jen,
_3° 4.5)
Py = 0 if jeQ-N;
where {z]* denotes the positive part of a real number z, ie., [z]"=z if 250, and (z]*=0 if 2<0. The

diagonal entries of £ are given by

pi = 1-3%p; (4.6)

J
It must be emphasized that we have assumed a fixed temperature T>0 for all time k of the SA
algorithm. This is often referred to as Fixed-Temperature-Simulated-Annealing (FTSA) as opposed 10
a situation wherein the temperature is allowed to vary with time & according 10 a prespecified cooling
schedule (see [7,8,9] for details) which results in a time-inhomogeneous Markov chain. In this paper,

however we focus only on the FTSA algorithm.

It is easy to check that that the assumptions (4.1) and (4.2) on the neighboring sets result in P
being primitive and structurally symmetric for any O<e<l. Furthermore, with assumption (4.3), the

equilibrium distribution vector x(€) can be shown (see [9]) to have entrics

(6 = £
T (€)=

T Sen 4.7
1=

which is often called the Boltzmann distribution at temperature 7 = (loge™')™'. Using (4.5), and (4.7),

one can easily verify that the FTSA Markov chain is reversible.

Pt
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Let $*'cQ denote the set of all global minima. The optimal distribution vector =" is a vector

with entries defined as 17 = 0 if i is not a global minimum, and & = —— if { is a global minimum.

Al
Temperature Asymptotics : For the FTSA chain, it is clear from (4.7) that
i e-x"|] =0
lim | |(e) - »°|| (4.8)
i.e., the equilibrium distribution %(¢) approaches the optimal distribution as e—0. For a chosen O<e<1,
let v¢(k) denote the distribution vector of the FTSA chain at time k20 as defined in Section 1. From

Theorem 2.2 part (4) we have

lim [[ve(k) - =@)|] = 0 4.9)

Hence, given any arbitrary real 6>0, from (4.8) and (4.9) there is an €>0 and a time kg, such that the
distribution vector of FTSA (at the chosen €) satisfies

[lvek) - x°|] < & 4.10)
for all time k 2k,,.

In this section we are primarily interested in the rate of convergence of (4.9) as a function of
€—0. We refer to this as the temperature asymptotics of FTSA. From the discussion in Section 1,
it is clear that for a particular £>0, the rate of convergence of (4.9) is governed by the time-constant of
convergence T, Cefined by (1.4), of the FTSA Markov chain with transition matrix P. Using (1.4) and

(3.1) we now derive a bound for T and study the behavior of this bound as e—0.

From Theorem 3.1 we can obtain an upper bound on the eigenvalue of the transition P with
second largest algebraic value. However, to obtain a meaningful bound on t, the time-constant of
convergence, we need an upper bound on the eigenvalue of P of second largest magnitude. To this

end, we consider a new Markov chain corresponding to the matrix

X a3

e
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P = %(I+P). @.11)
Clearly, P has non-negative eigenvalues; thus, the algebraic value and the magnitude of an eigenvalue

of P are the same. Also, # has the same equilibrium distribution as P. Furthermore, the off-diagonal
entries of P are half the corresponding entries of P; hence, P is also reversible by (2.2) and has the

same underlying undirected graph as P. We will therefore work with the new P instead of P.

Let us now relate the parameters used in the bound of Theorem 3.1 to the parameters of the

optimization problem being solved by an FTSA Markov chain. Define

A= m C@)y-Ccy
max |c@)-Ccy) | @.12)
as the maximum cost difference between any two states. Let G(V,E) be the underlying undirected

graph of P (or P) with Laplacian matrix Q and define

8= max, [C@)-cy) | 4.13)

as the maximum difference in costs between any two neighboring states in the Markov chain. Then,

from (4.7) it follows that the skewness of the chain is given by

sp=¢4 4.14)
The smallest non-zero off-diagonal entry of P can be computed from (4.5), (4.11), and (4.13) 1o be

ed

2
where p is the number of neighboring states for each state as given by Assumption (4.3). Using (3.1),

(4.15)

(4.14), and (4.15) we get

Q) e
2p
from which one can bound the time-constant for convergence for sufficiently smail € using (1.4)

0sM@P)s1 - (4.16)

2

< _
2 Q) @1

. - p—— P cne
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as a function of € or using (4.14)

ZP sx(l-islA)
TS —m—— (4.18)
12AQ)
as a function of the skewness s,. In case p,(Q) is not easily computable, one could use Alon’s result
of (3.42) to get

T S 4(142c7Yp 5,015 (4.19)
where ¢ is the expansion parameter of the graph G. Since 8SA by definition, one can get a less

stringent bound as
T < 4142 p sl (4.20)
For a fixed optimization problem (i.e., fixed N, p, c, etc.), (4.20) suggests that the time-constant
for convergence of the FTSA Markov chain to its equilibrium distribution with skewness s, is

T=0(s,?). In practice, usually S«A which yields T = O(sy). Furthermore, the bound in (3.1) may

not be tight suggesting an even slower growth of T as a function of the skewness s .

We now provide an example of a cost distribution on a state space for which the eigenvalue
bound of (3.1) for the FTSA transition matrix is the best possible bound when treated as a function of
skewness alone. We will also compare our bound with that of Jerrum and Sinclair [4] for this exam-

ple. To this end we need the following definitions.

Definition 4.1 : (4] Given a reversible Markov chain on state space @ with transition matrix P and

equilibrium distribution . The conductance parameter is defined as

] E PijTi
oP) = minﬂl—“'%-— 4.21)
ieS ‘
where the above minimization is performed over all subsets S of states with 0< ), x;<1/2.

ieS
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Theorem 4.2 : [4] For a reversible transition matrix P satisfying p; 2 1/2 for all i e 2, we have
) 4
1-26(P) < M) < 1- 28X 4.22)

2

Example 4.3 : Consider a simple cycle on N=4n vertices as the underlying graph of a FTSA Markov

chain with a cost function defined as follows :

i if 1<i<n

2n+1-i if n+1<i<2n
i=2n if 2n4+1<i<3n

4n+1-i if 3n+1<i<4n

c@) = 4.23)

Using these costs, p = 2, and some &0, define the transition matrix P using (4.5) and (4.6) and set

P = %(I+P). For transition matrix # it can be shown that

A=n-1 , 8=1 4.24)
o =-:; , Skewness s =¢ D (4.25)
=1 - cos(—"-
K2AQ) = 2(1 - cos( o ) (4.26)
en—l _ e;l
=& -t 4.27
¢ a0 =) 4.27)
Thus, our bound from (3.1) gives
1 A & 4
- A(P) 2 =— (1 - cos(==)) (4.28)
2 2n ‘

while the Jerrum and Sinclair bound from (4.22) gives

[
1-20(P) 2 =TS (4.29)

for sufficiently small € and large n.

JERER AT o NP
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For a fixed n>2 (i.e., a fixed problem), it is clear that our bound in (4.28) is superior to the Jerrum and
Sinclair bound in (4.29) for

0 < € < {8(1 - cos(n/2n))} -2
and the bound in (4.28) gets even better as €-0. Using the lower bound in (4.22) and our bound in
4.28) and we get bounds for the time-constant for convergence to equilibrium as a function of skew-

ness s rather than € as

2 (1+1/(n-1))
2s £18 —08m——— ¢ )
d 1 - cos(m/2n) (4.30)

For example, if we consider n=11, (4.30) reduces to
2s <1< 1965 s (4.31)
indicating that our upper bound for the time-constant T is a fairly tight bound for large skewness s (or

small ).

The i)umose of Example 4.3 was merely to illustrate an example of a reversible Markov chain for
which the eigenvalue bound (hence, a bound on the rate of convergence) is fairly tight. The
corresponding optimization problem, however, is very easy, since, by construction, the states 1, 2n,
2n+1, and 4n have the globally minimum cost of 1. The following example illustrates a difficult and
more realistic optimization problem for which one can still use our eigenvalue bound of (3.1) to obtain
a meaningful bound the time-constant of convergence of the corresponding FTSA Markov chain.
Estimating the conductance parameter for this chain, however, is not straight forward; hence, the Jer-
rum and Sinclair eigenvalue bound of (4.22) is not directly useful in obta';ning a meaningful bound for
the time-constant in this case. However, with considerable ingenuity, Jerrum and Sinclair have been
successful in obtaining good lower bounds for the cunductance of certain classes of reversible chains

(4]. Indeed, for these chains, the conductance is much larger than O (s,"); hence, our upper-bound by

AN e e Y
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(3.1) is not tight in this case. Our bound, on the other hand is very simple to compute in general, as
the following example will demonstrate, and is also tight on certain chains (as considered in Example

4.3).

Example 4.4 : Let {a,<a,< - - * <a,} be a set of given positive integers n ascending order and define

+ayt - -
K = 2z : b 4.32)

Let Q denote the state space of all binary vectors of length n and consider a state w=(uu,, . . ., u,)

where u;e {0,1}. Define the cost of the state as

Cw)=IK ~ _f‘;a.-u.-l (4.33)

i
Define the neighbors of a state 4 as all states differing from u in exactly one bit. Consider an FTSA
algorithm to find the state of minimum cost. This is the optimization version c;f the SET_PARTITION
problem that is known to be NP-Complete [12]. Clearly, N =2", p=n, 8d=a,, A =K, skewness
s =€X, and the underlying graph is the n-dimensional hypercube. Therefore, u,(Q)=2. Using

(4.16) we immediately get

K +a,

MP) s 1-£ (4.34)
n
and from (4.18) we have a bound for the time-constant in terms of the skewness 5 as
1< stk (4.35)

For example, if the given integers are {3,5,6,11,15}, we have n = 5, a, = 15, and K = 20. From
(4.35), the time-constant for an FTSA algorithm to solve the given instance to reach an equilibrium

distribution of skewness s = 10* is bounded above by © < 5x107 iterations.

-
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5. CONCLUSIONS

In this paper we have derived a new upper bound on the second largest eigenvalue of a reversible
Markov chain. The bound is a simple function of the skewness of the equilibrium distribution of the
chain and we give examples of reversible chains where the upper bound is fairly tight. The upper
bound on the eigenvalue enables us to study the time constant of convergence of the Markov chain to
its equilibrium distribution. In particular, we can bound the time constant of convergence of a fixed
temperature simulated annealing (FTSA) algorithm solving a particular instance of an optimization
problem. Moreover, we can study the growth of this bound as the temperature approaches zero or

skewness becomes arbitrarily large.

o —
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