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Abstract

The goal ot this project is the development ot pattern-recogni-
tion and signal-processing methods that will provide indices ot
responsivitv to challenge when applied to Army-supplied human cardio-
vascular and psychomotor data. Time-series and point-process tech-
niQues will torm the basis ot the approach. and the assumptions that
underlie the methods will be examined and tested. The relationship ot
treOuent and briet events, it any. to the indices will be elucidated.

This report oresents the results ot the work over the oast year.
which has proceeded along three parallel lines: the design. implemen-
tation. and testing ot data-preprocessing steps that restore phvsio-
logic integrity to noise-corruoted data: the preliminary implementa-
tion and evaluation ot several clustering and pattern-recognition
methods: and the selection ot a data-segmentation algorithm tor the
partitioning ot time-series data. The work tollowed naturally trom
that ot the previous year. in which we reviewed the state ot the art
ot the understanding ot the links between the noninvasive measurements
described here. and the underlying physiology.

Plans are described tar the third year ot the work. which will
combine those seoarate tasks into a single tool tor physiologic state
characterization.
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1. Introduction

The study at heart-rate variability (HRV) has become ot increas-
ing interest. especiallv in the 1(0 years since the Biological
Engineering Society held a meeting on the subject in London. In
addition to the studies dealing with underlying physiology. analysis
techniques, and applications to physiology. there has been work in
applications: e.e.. the estimation at levels at workload, and detec-
tion ot mental illness, using the HRV.

In a monitorine environment, where an individual's ability to
pertorm a task is to be described, it is imnortant to have a rapid.
Unambiguous measure. Because ot the relationship ot sleep and sleep

deorivation to pertormance. it seems reasonable to evaluate the
ettect at adding a sleep-related parameter to any kind at noninvasive
measurement system.

Accordingly, we are considering in this work the combination at
HRV and an activity measure (recorded with an actigraoh or actometer)
to assess pertormance. The ways in which the data are processed and
described are presented in the tollowing report.

2. Scooe ot Work and Progress to Date

Our aoproach makes use at pattern-recognition and signal pro-
cessing techniques in the development at methods tor classitying human
cardiovascular and psvchomotor response to challenge. Table L
oresents the sequence at tasks which constitute our ettort. Detailed
intormation about the topics represented by each box make up the bulk
ot this report.

It is important to note that a number ot the tasks have been
Droceeding in parallel. Tasks 2.2. 2.4 (development at computer
ororams). 2.6 and 2.9 (develooment at oroerams and oertormance
evaluation using sample data trom outside this project) are essen-
tially complete. The programs developed there are now ready tor
immediate application once Task 2.3 (segmentation at signals) has been
completed.

2.1 Data

The actigraph and R-R interval signals supplied by the Army were
each broken into 1(0 twenty-tour hour periods which are turther
subdivided into halt-hour tiles. The data are binary with no end-ot-
tile marks. These tiles have been converted into ASCII tiles.
uploaded onto the IBM 4341, and stored on a tape. A VAX iL/18(
version at that tape also has been produced.

The data come trom a study at the ettect at ditterent doses at
atropine on the heart and physical movement. Two males in their
twenties participated. The subjects were hospitalized, ambulatory but
restricted. During the experiment, an ECG and an actigraph signal
were continuously recorded. The subjects wore actigraphs on their
right wrists which recorded a voltage signal proportional to the
amount at g-torce at the wrist in the lateral-medial plane.
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TABLE I

TASK SEQUENCE

2. 1 Receive raw R-R interval and actigraph waveforms
from the Army.

Remove noise. Base algorithms on physiological
2.2 criteria and known instrumentation artifacts. Collect

statistics about number and kinds of problems.

2.3 Segment actigraph and R-R interval signals.

Extract features from each segment. Work in both the
time domain and frequrncy domain. Study

correlation among features. Choose those least

correlated.

Use clustering algorithms to learn the natural
groupings of the segments in feature space.

Use segment labels to be provided by Walter Reed
to evaluate the results of clustering.

Reduce the number of features using dimensionality-
2.7 reduction techniques.

Build classifiers. Examine both parametric and
nonparametric models.

Test classifiers with new data and evaluate
2.9 performance.
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The exoeriment was conducted over 3 non-contieuous days. one tor
each level ot atropine. Atropine was given about 30 minutes atter the
start ot each session, either in an intravenous or intramuscular torm.

Table 2 outlines the protocol used.

Table 2

EXPERIMENT PROTOCOL

Study Schedule Subiect I Subject

Day Start Time Dose Start Time Dose

I 0(U)/ U.0 (dld 1.0 mz IM

2 U/f/ U.J mg IM 084/ 2.0 me IV
3 O3D 1.0 mg IM 09*21 U.) mg IM

(183/ . mg IM (091 U.
D (P.J) U m L I' 0909 2.0 me Tm

The Army nertormed the tollowing operations on the data betore

nroviding it tor analysis. Both the ECG and activraohv sienals were

converted to digital torm. On playback, the actigraphv signal was
amolitied (Oxtord Event Demodulator Amplitier model PM-3) and tiltered

(bandpss tilter (.U4-4 Hz! by Coulbourn Instrument model S,)-3). The

signal was samoled with a proerammable digital oscilloscope (Noriand

model 3001A with 128K-word butter memory tot the channel). The signal
was sampled at an ettective rate ot 13 Hz and the RMS value ot each
2-sec interval stored in a Corona computer running under MS-DOS LOU.

For the ECG signal, the R-oeaks were detected using a maximum-slooe

detection alcorithm with a real sampling rate ot 400 Hz. The R-R

intervals were stored. Both the processed ECG and actigraphy data

were divided into halt-hour tiles.

2.2 Preprocessing

Betore the data can be analyzed, any noise produced by instrumen-
gation and physiological artitacts must be removed. Data adjustment
algorithms have been written to process R-R interval and actigraoh

data. Statistics on the number and kinds ot problems which appear in
the data will be kept tor tuture analysis which may lead to more
streamlined data-adjustment algorithms.

2.2.1 R-R Interval Data

Noise can be introduced into the ECG data in three ways: (1)
ohvsiolovic artitacts, (2) tape-drive-induced artitact. and (3)

residual instrument noise. To identity the noise in the signal. we

determined an acceptable range tor heart rate. We reviewed the

physiological literature which indicated that a normal heart rarely

tails below a resting heart rate ot 31 beats per minute (bpm) or above
200 bpm which can be reached during extremely vigorous exercise. A



reasonable acceptable range. theretore. is 4U bom to iWO bom (corre-
soonding to R-R intervals between J33 ms and 1499 ms). By this
standard, the ECG data are tairlv noise-tree. On average. only 2'" ot
the intervals in each 30-min-tte tile are out ot range.

A three-part algorithm, described in detail below, was developed
to eliminate the noise trom each ECO tile. The tirst part truncates
the (dt a tile to eliminate the tape stoppage noise which appears as a
cluster ot intervals less than 333 ms. about IJO intervals trom the
end ot each tile. The second part makes adjustments to the data in .a
conservative manner. The algorithm is designed so that most ot the
correction hapoens here. The third Dart is made up ot two sections.
both ot which are designed to change the data tile just enough to
allow the second part ot the algorithm to resume. The tlow chart ot
the tollowing algorithm can be tound in Appendix 1.

At the beginning and end ot this process. intormation about the
original data set. the ditticultv ot the noise-elimination task. and
the resulting noise-tree data set is stored tor use in developing
confidence measures needed in tuture analysis. Specitically. the
tollowing intormation about each tile is kept:

i. the amount ot time truncated trom the data tile which
reoresents bad data due to tape stooage.

2. the number ot times the algorithm reached a point between
the second and third parts. a measure ot how ditticuit it
was to correct the data.

3. the number ot intervals less than 333 ms.

4. the number ot intervals between I10U and 2999 ms.

). the number ot intervals greater than 2999 msec..

h. the number and lengths ot runs ot intervals between 333 and
1499 ms. our acceptable range.

Atter truncation. the majority ot out-ot-range intervals in each
tile tall between 1()0 and 2999 ms. Those greater than 2999 ms
Constitute the next largest group. Intervals less than 333 ms rarely
occur.

2.2.1.1 Algorithm Part 1: Preprocessing and Elimination ot Noise
Caused by Stopping the Tape

The goal ot this part ot the algorithm is to cut the data tile at
the earliest interval in the cluster ot short intervals caused by
stopping the tape during processing. The method used is a search
procedure which locates this point by using our knowledge that a
cluster ot short intervals. occuring more densely than anywhere else
in the tile. occurs between 100 and 200 intervals trom the end ot each
tile.

First. tive non-overlaoping windows, which each hold tive
intervals, move as one window trom the end ot each tile toward the
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beginning, examining one interval at a time. When three out ot the
tive windows contain at least one interval less than 33 ms. the

search stops. We want our chosen interval to be in a region con-
taining many short intervals and not to be an isolated point. The
interval less than JJJ ms which is closest to the end ot the tile is
selected. From that interval, we jump 1U intervals back in time into
a section ot the tile which should be near the cluster ot short
intervals. At this ooint. 2 windows ot 1') intervals each are created.
They are moved back in time. in a step-wise. non-overlapping tashion.
until no short intervals are contained in the lett window. When this
occurs, the tocus switches to the right window which is moved one
interval at a time toward the end ot the tile (i.e.. to the right).
until the window contains at least three intervals smaller than 333
Ms. The tile is truncated at this earliest short interval.

2.2.1.2 Algorithm Part 2: Conservative Approach

For the remaining discussion ot the algorithm, it is usetul to
visualize an interval, with a lett neighborhood made up ot the inter-
vals which precede it in time, and a right neighborhood that contains

the intervals which tollow it in time. These neighborhoods will
always be qualitied by a number which is the 6ize ot the neighborhood
(i.e.. the number ot members in the set called neighborhood).

In Part 2. the out-ot-range data values (those not between 3

and 1499 ms) are broken into three cases. The tirst is called short
and contains all values less than 333 ms. The second is called medium
and contains the intervals between 1DUQ and 2999n ms. The large case
contains all intervals greater than 2999 ms.

Short intervals can be the result ot equipment-caused noise or an
extra systole which is a premature contraction ot the heart origi-
natin2 at a site other than the usual pacemaker. An extra svstole can
cause the cardiac cycle to lengthen slightly. In either case. a talse
R-oeak has been detected. This short interval probably belongs to one
ot its immediate neighbors (it it has been caused by noise), and its
sum with the neighbor should be close to the lengths ot the other
intervals surrounding it. It it is an extra systole. the length ot
the sum will be somewhat larger than that ot those intervals surroun-
dine it.

Case I. which deals with these short intervals, requires that
three intervals in the acceptable range lie on either side ot the
short interval. This short interval is than added to each neighbor.
and these two sums are compared with the mean ot the six closest
neighbors. The sum closer to the mean is chosen and accepted as the
correct interval, it it is less than 15UU ms.

Medium intervals are the result ot system noise. The average
heart interval is about DO0 ms, and 2999 ms, the longest medium
interval, represents tour 1oU-ms intervals. Our strategy, theretore.
is based on the tact that these intervals represent no more than three
missed peaks.

In Case 2, each medium interval is divided into equal sub-inter-
vals based on the size ot the median interval ot its surrounding
neighborhood. To quality tor this procedure, a medium interval must
have either tour contiguous neighbors on each side in the range ot 333

- 10 -



to 1499 ms. or three contiguous neighbors on each side in that range.

The median ot those neighbors is calculated.
We chose not to use an unequal number ot in-range neighbors trom

each side in order not to bias the median determination. Four and
three were chosen since they represent enough time to estimate the
rate in that area. Including more neighbors would give intluence to
intervals too tar awav in time to be related. It has been noted "12
that heart rate can be altered by the sympathetic system within a tew
beats at most and within a cycle at best.

The interval is partitioned into sub-intervals the size ot the
neighborhood median: any remaining time is distributed among the
sub-intervals. At this point, it any interval is greater than 1494 ms
or the remainder is ereater than halt the mediam. the original
interval is repartitioned into the number ot previous suhintervals
plus one, and the new remainder distributed.

Intervals exceeding 2999 ms arise when three or more consecutive
R-oeaks are missed: we call this situation the large case. Any

intormation about heart rate acceleration or deceleration would be
lost it this lareer span ot time simply were divided into equal
pieces. Another strategy has been chosen.

Again. two contiguous neighborhoods ot intervals in the accep-
table range are required, but this time each neighborhood is a
"spanning set" made up ot a varying number ot intervals whose total
time equals or just exceeds the amount ot time in the large interval.
From these spannine sets, we calculate a lett limit and a right limit
tor -n arithmetic proeression that is used to divide the large
interval. When the variation in a spanning set is in the ranee 2U',.
we use the mean ot the set as the limit associated with that spanning
set. Otherwise. we use the median, which is less attected by extreme
values.

2.2.1.3 Algorithm Part 3

The orogram iterates through Part 2 until there are no more
out-ot-range intervals which meet the requirements, principally that
3n interval must have intervals in the range ot Y33 to 1499 ms on
either side ot it. At this point. Section A ot Part 3 is invoked. All
intervals which meet its criteria are now adjusted. Again. the
tntervals are identitied as short, medium, and large but medium and
large are handled in the same way. The medium and large intervals are
merged into the class medium/large.

Both cases in Section A use an alternate approach trom that used
in Part 2 which required intervals in the acceptable range to be on
both sides. Here, only a contiguous string ot IU in-range intervals
which lie on one side ot the out-ot-range interval is required. Ten
intervals was chosen because an interval much tarther away would add
little intormation about the true nature ot the heart rate, while the
tewer might contain too little intormation about how the heart rate is
changing. The areas in which we are now working have clusters ot
out-ot-range intervals (there are only acceptable intervals on one
side). implying considerable noise.

For the short case, there could be a run ot ten intervals in the
acceptable range on either side it, in Part 2, the interval when added

- 11 -



to a neighbor was ereater than 1499 ms. Theretore. it is necessary to
check both sides ot the out-ot-range interval. The short interval is

added to either nearest neighbor which meets the criterion ot beine in
a run ot ten and. it more than one. the new value closer to the mean
ot its associated run ot ten is chosen as the correct interval.
Otherwise. it only one run ot ten was tound. the sum ot the interval
.4nd its near neighbor is accepted. This new interval must be less
than L-300 ms.

The medium/larqe case is a variation ot the large case in Part 2.

Part 2 bridges the qap created by the out-ot-range value by tilline in
values with an arithmetic progression run trom the mean ot the lett
neighborhood to that ot the right. In the medium/large case. however.
since we have already identitied a run ot ten intervals in the
:acceptable ranee on one side. we have one ot those neighborhood
statistics. What we do not have is something tor the other end ot the
progression.

Our solution works only with the tive intervals closest to the
out-ot-ranee interval, among the run ot IU. One limit is the median ot
that neighborhood ot tive. It serves as one end ot the arithmetic
procression. The other end ot the progression is the average ot: (1)
twice the mean ot the neighborhood ot tive: (2) the mean ot whatever
intervals in the acceptable range are tound within tive intervals on
the other side. Whatever close, in-range intervals exist on the other
side should have some limited intluence on the nature ot the arith-
metic orogression. Atter the arithmetic progression is calculated.
the remaining time is distributed unitormly.

It no out-ot-range intervals could be changed in Section A.
Section B is used because someching has to be altered to allow Part 2
to resume. Hence. only one or two out-ot-range intervals are changed.
The two cases are again short and medium/large.

First. the longest run ot in-range intervals in the entire tile
is identitied. The medium/large out-ot-range values at either end are
chosen tirst. The medium/laree case is similar to that tound in
Section A. One end ot the arithmetic progression is the median ot the
tive closest in-range values or however many in-range values there are
in the run. The other end is the mean ot that tive (or howevermanv
in-ranee values there are in the run), moditied by any in-range values

lvin within tive ot the medium/large value. Any remainder atter the
Progression has been calculated is unitormly distributed.

A short interval is adjusted only it nothing has been changed by
the Section B medium/large algorithm, because this procedure is the
most arbitrary. The short interval is simply added to its smaller
neighbor and no test tor variability or size is made.

2.2.2 Noise Removal: Actigraph Data

Each data tile has an ottset which must be subtracted to produce
a zero-minimum signal. The signals are otherwise quite clean.
These are true time-series data. ot tixed length per tile.

- 12 -



2.3 Segwentation

Once the noise has been removed, we will subdivide the signals
into pieces at points where the nature ot the signal changes. Since
each 24-hour R-R interval signal has a companion 24-hour actigraph
signal. several approaches are available. First. the R-R interval
signal and the actigraph signal may be segmented separately and the
correspondence ot their boundaries examined.

A second approach is a hierarchical one in which the segmentation
ot one signal would determine the boundaries ot the other. The
hierarchical technioue will be examined during the next year. The
actigraoh signal will guide the process because it represents only

activity, a simpler physiological event than heart rate which contains
many components like respiratory sinus arrhythmia (RSA) and bio-
rhythms. Statistics on the number and lengths ot segments will be
kept to aid in the evaluation ot the method.

The segmentation algorithm we have chosen 131 looks tor ditter-

ences in the parameters between two segments ot the signal which have

been modeled as autoregressive (AR) processes ot the same order, and
tixes a boundary between dissimilar pieces.

The approach is to model the tinite-duration random time series

by a stationary. normally-distributed autoregressive orocess ot order
a. Stationaritv means. qualitativelv. that the graph ot the time

series looks about the same near one time as near another. More
tormally. all statistical properties ot stationary time series remain
unchanged when the period ot observation is shitted torward or
backward in time. In particular, the mean and the variance (as well
as the higher-order moments) do not change with time. and the autoco-
variance between two values separated by T time units depends only on
T. Although many real time series may not tultill those conditions
pertectly. the tools that are derived under the assumption ot station-
aritv otten work quite well on those series.

By autoregressive ot order p. we mean that the series ir(t)i.
t=.2..N can be written

p

.3 r(t-i) - a u(t)

where aOji and a,. a2,... .ap are coetticients that allow r(t) to be
expressed in terms ot the p previous values ot the series. The error.
or disturbance, term au(t) is assumed to be an uncorrelated stationary
normally-distributed series with variance a2.

Standard methods 14J exist tor estimating the parameters ai. and

it two time series r(t) and s(t) exist, it is possible to compute the
joint likelihood (probabiLity) ot Ir(t)' and is(t)' conditioned on the
tirst p observations ot each sequence. We thus can tind the maximum
likelihood under the null hypothesis that the parameter sets are equal
and compare it to the maximum likelihood under the alternative
hypothesis that the parameters are arbitrary. A maximum-likelihood
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ratio then can be tound that can be transtormed into a distance
measure d such that d=O tor sequences having identical parameter sets.
This measure is derived in 1.31 as tollows:

The joint likelihood ot ir(t)t and is(t)O is

--V -N; ' VTr
S=(aR-71)- (152 e'XD 7r -= CR aa - aCs sS -7 R R 2Rexp -R -.*) R

where S

NR= length ot ir(t).H
NS = len gth ot s(t ) '
p = order ot process

N'R= NR- P
N'S = NS - p

CR and CS are the covariance matrices ot Ir(t) and (s(t).
respectively

a = (auala ...ap )

Let I denote the maximum likelihood under the null hypothesis that

aR = aS and OR = aS  Thus IU can be written as

-(N+ NU)
I) = (a ,',2) exp < - - (N' + N')p - , R S S

T\

where a = aT C a and

a= pooled estimate ot r.

p

Similarly let I 1denote the maximum likelihood under arbitrary para-

meters settines. I is written as:
- I

-N' -N'
it = (aR v") (SV2W) exp --- (N + NS)I ' R

The maximum likelihood ratio is given by

I -(N' + N;) N • N'
I S R S

Detine d as

d - -2 In k
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In general

N' ( + N') In o7 - Nin a + N in a (1

R S P R R

with a and C being romputed separately tor R.S. and P.

Thus d is a measure ot the statistical ditterences between the
two signal segments. The larger d is. the more the parameters ot the
segments are expected to be ditterent. Because a logarithm was used
in the derivation ot d to make it zero tor identical sets. it is
called an "entroov distance" by Chen 13).

The order p ot the autoregressive model, the size ot the window
w. and the threshold dIth, above which the segments are considered
ditterent. must all be estimated. A suggestion tor estimating the
threshold dth is to construct a histogram ot the entropy distances
which have been calculated tor all adjacent pairs ot segments ot the
signal atter it has been initially segmented into equal-length pieces.
each ot size w. They observe that such a histogram seems to have

Chi-square distribution which miqht helo in selecting a cut-ott. It
is noted I D? that w (1I 3 2 where r is the order ot the underiving AR
process, because "...in any ergodic time series where statistical
parameters are c3Iculated as time averages a minimum interval ot
length L is necessary to estimate the statistical parameters with

sutticient accuracy" Ip. Jtl. In general. however, selecting p.w. 3nd

dth requires exoerience and a general understanding ot the character-
istics ot the signal.

Our segmentation aleorithm consists ot a broad initial search tor
an ootimum boundary tollowed by a soecitic ooint-bv-ooint search.
These two parts. themselves, are each broken down into two sub-
sections. Part I begins with Rough Boundary Searching. tollowed by
Optimum Boundary Searching. The tinal search, carried out in Part 2.
takes one ot two torms. The choice is based on the location ot the
currently selected optimum boundary ooint.

2.3.1 Part I

2.3.1.1 Rough Boundary Searching

Once w. the window length, and p. the order ot the autoregressive
process, have been selected the signal is partitioned into w-length
seements. each labeled as in Figure 1. The last point in each segment

s i is called a node and labeled n i . For consistency, the tirst
segment begins at point 2 ot the signal, and point I is labeled no .
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Figure I

This crude seqmentation at the signal is retined in the remaining
sections ot the alorithm. It is imoortant to note that the number ot
segment baund3ries. which is initially a tunction at the window length
w. is 3 tixed unDer Limit. The number at boundaries can only de-
crease.

The entropy distance between each pair at adjacent segments si
and si+ [ is oalculated using Eq.(1). and that value. labeled
'(si.si+j ). is associated with the intervening node ni .

An entropy distance threshold dth is calculated tor the data.
This threshold is used during Optimum Boundary Searching.

For the remainder ot the discussion at the seamentation aleor-
ithm. the tirst point in the data tile will be reterred to as the
lettmost point and the last as the rightmost point.

Z.3.I.2 Optimum Boundary Searching

Locate the riehtmost d~s.si+1 ) which is greater than "th. the
threshold distance. All the ni associated with each d(sipsi+ [ ) ( dth
3re no longer boundaries because the seements si and si+j are consi-
dered statistically similar since their entropy distances are below
the threshold. It no d(si.si+i) is greater than dth. then the chosen
threshold should be re-evaluated.

The rightmost d(si.s i+i) Z dth is associated with node ni and is
cailled the current optimum boundary between the two seements. When
the characteristics ot the signal change between any two consecuive
seements. the entropy distance between those segments will exceed the
threshold. A tiner search is then conducted in si+j tor a better
optimum boundary. The lett segment si is not searched at this time.
It will be searched it the tinal optimum boundary is to the lett at
si+ I atter the completion at Part ') at the algorithm. We divide si+l
into enual subsegments at length w s . The nodes are labeled in the
same manner as betore: Node n i is relabeled m0 and the tollowing
points are mt.m.L ..... mn. The last subseement mn is also labeled hi+j .
The labelinz at this section at the signal is shown in Figure 2.
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Figure 2

Two oairs ot windows s.s +1 ) and (s'!si+i) are created.
InitiallY. si=si. ) They are shown in Figure 3. We call s i and

test windows. a nd s+ I and s'!+I reterence windows I.i!. A
window must be at least w points long.

test vlr , refertemn Vl iW

rIll. nI  nl,,

m0  m I . . . mn
I~ (';I - 24., ) I

tat r w rWerem l fw

Flgure 3

These windows move through si+ 1 in ws increments in a search tor
3 better optimum boundary than the currently selected one. The
orocess will stop atter mnL is considered. Stopping at mn_ / rather
than at mn is a departure trom Chen's specitication. It was done to
simolitv the Doint-bv-ooint search carried out in Part "_'. The sizes
ot the windows will vary over time. The only conditions are (1) that
both test windows always start at ni_ [. (') that s"+1 is always w
ionq (the minimum window length), and (3) that both reterence windows
14ways end at the same point.

At the start. the windows are positioned as in Figure J. Test
windows sl and sj begin at nit. These test windows end at the
same point at which their reterence windows begin: namely sj+j at mi)
and s1+ 1 on mi . The junction ot both s' windows is always the
current optimum boundary and is labeled bi. Theretore. mU z bi . The
junction ot both s" windows is always labeled bi+t. Theretore. mi
b+i. Both reterence windows end at the point bi+i + w.

The entropy distance between the s' windows is calculated again
using Eq.(I). The value is associated with bi . The entropy distance
between the s" windows is likewise calculated and associated with
bi+j. The point associated with the larger entropy distance is
chosen as the current optimum boundary. It the distances are the same
then the current optimum boundary is not changed.
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The end ot sI is now moved to the current optimum boundary and
the end ot s" is moved a distance w5 trom its tormer position. The
label b i again is associated with the optimum boundary and the end ot
s'. The end ot s'l is associated with bi+i. It is necessary to
check that s!+1 and s'-+ both end at bi+1 + w.

A new pair ot entropy distances is calculated, the lareer
selected. and the windows moved. The procedure is tollowed over all
subsegments uo to and includinz mn-1. The tinal optimum boundary is
located at b i.

2.3.2 Part 2

The search continues to the lett and right ot bi in a point-by-
point manner. The range to be covered is (bi - ws, bi + ws), and the
search is carried out in the same manner as betore. The point bi - w.
is considered the current ootimum bondary. The only ditterence is
that when sl changes position, it moves up only one point. Figure 4 I
shows the arrangement ot the windows.

n) -W Tw

I+--- '7 --- I1 S1., I

F Igurs 4

Atter all points are examined and it bi nj mo nn then the point
associated with bi is accepted as the optimum boundary. However, it bi

- nn, then the point at bi is accepted only it the tinal bi is
either at mgj or to the right at mn0. It bi is to the Lett ot in0, then
it is necessary to look at the entropy distance associated with the
previous pair ot windows d(si . S). It d(si.....s ) dth then no
boundary is accepted. It d(sojist) < db mthen we consider d(siosi)
to be greater than dth and search tor an optimum boundarv in those
seemenets.

The alorithm is repeated tor all d(sitsi+j) Z a b i
The limitations ot this algorithm are minor. First. the data

tile initially must be segmented into equal pieces. Rarely will this
division come out equally, so some points at the end ot the tile will
be lost. Second. the tirst segment will not be searched because only
ond is conaidered. and similarly, the last segment will never be

searched because ot the requirement that sj must be u points long.
However, these lost points represent only a small traction ot total in
the tile.
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2.4 Feature Extraction

Features will be extracted trom each segment. The goal ot
teature extraction is the characterization ot each segment by a set ot
measurements (the teature rector) that are invariant in the presence
ot noise or sample-to-sample ditterences. Ideally, the teature
vectors will be similar tor segments ot the same type. and easily
distinguished trom each other tor dissimilar segments. The notion ot
teature extraction trom a sample mav be thought ot conveniently as the
location ot a point in an n-dimensional space. The coordinates ot
the point are the values ot the n teatures, and the label ot the
oaint is its class. Thus. we intend that non-identical segments ot
the same class will have representations which are close to each
other. The pattern recognition problem then is equivalent to the
construction ot boundaries in the n-dimension i space that result in
the separation ot groups ot points on one label trom groups ot points
with other labels. Ideally, each group would contain points all
having the same label.

Our candidate teaures will include time-domain measurements
(e.g.. the number ot zero-crossings, amplitude-based measures
Imean-sauare, other moments, histogram shapeJ, inter-peak intervals
and slopes, autoregressive (AR) parameters, and trequency-domain
measurements (e.g.. shape ot the power spectrum: location ot
maximum-power band. number ot maxima).

2.5 Clustering

Clustering seeks to partition a given data set into homogeneous
subsets (clusters) by considering similarities ot data points (teature
vectors) in each subset and their relationshia to the elements ot
other subsets. Typical similarity measures are: the Euclidean
distance, the city-block distance, the Minkowski metric (a generalized
Euclidean distance), and a quadratic distance tunction 161. The use
ot such metrics as similarity measures can be justitied by the
heuristic argument made above that points in the same cluster should
be close to each other and, at the same time, distant trom the
elements ot other clusters.

There are basically two approaches to clustering. The tirst,
known as the dvnamic clustering method, uses an iterative algorithm
to optimize a clustering criterion tunction. Various criteria ot
clustering have been suggested in the literature. Among these, the
most usetul have proved to be the tamily ot tunctions that quantity
the average attinity ot data points to cluster representatives. At
each iteration ot a dynamic clustering algorithm, data points are
assigned to clusters, the number ot which must be specitied in
advance. The assignment is pertormed on the basis ot the points'
similarity with the current cluster representatives. In subsequent
steps. the cluster representatives are updated to retlect any changes
in the data-point assignments. Those new cluster models are used in
the next iteration to reclassity the data, and the process is
continued until a stable partition is obtained.
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A second approach. known as hierarchic.1 clusterine,. is non-iter-
ative. At any stage ot a hierarchical clustering algorithm the two
most-similar existine clusters are merged, thus reducing the number ot
potential clusters by one. Atter n-i steps where a is the cardinalitv
ot the set being analyzed. the algorithm terminates. The number ot
clusters in the data set need not be known a 'D-or. Rather, natural
clusters ot points in the data set. tor a given measure ot similarity.
are detected by assessing the changes in the values ot the measure at
various stages ot the algorithm.

A number ot very qood algorithms ot both tves are documented in
the literature i i. |. These algorithms will be evaluated using the
teatures extracted as indicated above.

2.6 Evaluation

At this stage ot the work, the Army will provide the
physiological-state labels. and the times at which they begin in each
ot the ten 24-hour signals. This intormation will permit evaluation
ot the segmentation method and ot the several clustering methods. It
the algorithms are working well. then (1) the partitions tound in this
work will agree with the beginning-points ot the states provided by
the Army. and (-) most ot the points in a given cluster will have the
same label.

2.1 Feature Selection

The teatures chosen will be prewhitened both aporoximatelv (by
removing all but one ot the teatures making up a set ot
highly-correlated teatures) and exactly (by a diagonalization ot the
teatures' correlation matrix). The resulting sets will be evaluated
in several ways:

(I) by the probabilitv ot error associated with their use in a

classitier (see below)

(2) by the Karhunen-Loeve transtormation (which uses the
eigenvalues ot the teatures' covariance matrix to rank them according
to their intrinsic ability to separate the samples); and

(3) by the homogeneity ot the clusters tound in Sec. 2.j.

Z.8 Classitier Design

2.8.1 Parametric Methods

2.8.1.1 Introduction

The purpose ot pattern recognition is to determine to which
category or class a given sample belongs. Feature extraction provides
a set ot numbers which make up the observation vector. The
observation vector serves as the input to a decision rule by which we
assign the sample to one ot the given classes. Let us assume that the
observation vector is a random vector whose conditional density
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tunction depends on its class. It the conditional density tunction
tor each class is known ( this is the parametric case . then the
pattern recognition problem becomes a problem in statistical
hvoothesis testing.

Here we discuss the two-class problem, which arises because each
samie belongs to one ot two classes. 'l or ,, ). The conditional
density tunctions ind the a prior! probabilities are assumed to be
known. See ApoendiN F tor variable detinitions.

2.8.1.2 The Bayes Decision Rule tor Minimum Error

Let X be a teature vector, and let it be our purpose to determine
whether X belongs to w, or " A decision rule based simplv on
probabilities may be written as tollows:

P( I/X) < PV,. X ,

The d rosterio-i orobabilities P(. /X) may be calculated trom the aI

priori probabilities P .) and the conditional density tunctions

o(X/ .). using Bares theorem, that is1

o(X/w. ) P(W.)
P(W,. X) =

I p(X)

Since n(X) is common to both sides ot the inequality (.8.1-1). the
decision rule ot (_.8.1-1) can be expressed as

o(X/. )P(U ) < p(X/w,)P(, -) X

or
P( XI/ ) < P( W

I(X) X .( p(XI) P( l) 8'-

The term I(X) is called the likelihood ratio (related to, but not the
same as. that used in seementation) and is the basic auantitv in
hypothesis testing. We call P(w 2 )/P(w0) the threshold value ot the
likelihood ratio tot the decision. Sometimes it is more convenient to
write the minus-log-likelilhood ratio rather than writine the likeli-
hood ratio itselt. In that case, the decision rule (2.8.1-2) becomes

-In I(X) - in O(XIw) + in O(X/i) > In iP(wI )/P(w_) - X E I

2.8. 1-3)
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The direction ot the ineaualitv is chaneed because we have used the
nezative 1ogarithm.

Equation (2.'.L-_) or (2.8.1-3) is called the Bares test tor
,m7ni''um e zcrv.

In qenerai. the decision rule ot (-. .I-3). or any other decision
rule. does not Lead to pertect classitication. In order to evaluate
the pertormance ot a decision rule, we must calculate the probabilityr
ot ezrror, that is. the orobabilitv that a sample is assiened to the
wrone class.

Let I I and I be the regions in the domain ot X such that
P( 1 /X) > P(v.)/X) and P(w 1 IX) < P(w.,IX). respectively. Then.
it X C li, we assign the sample to class wi . The probability ot
error can be calculated as toliows:

= Pr ierrorf = Pr ierror/wj)P(wj) + Prierrorlw2AP(w.)

It the sample belongs to w1. an error occurs whenever X £ I.,. and.
similarly, it the samole belones to tw.. an error occurs whenever X e
[1. Thus.

PriX E 1.,/w )P(w + PrX E I I / . P( W.,

P(.
1

) IP(XIW )dX + P(,.) f p(X/w.,) dX

P(W )E + P ( '. ) E.'

We can distinguish two types ot errors: one which results trom
misclassitying samples trom w, and the other which results trom
misclassitying samples trom w2 . The total error is a weighted sum
ot these errors.

The problem ot calculatine the probability ot error is solved
essentially by the integration ot density tunctions in an n-dimen-
sional space. Theretore. it is sometimes more convenient to integrate
the density tunction ot the likelihood ratio p( l/wi).which is
one-dimensional.

f~ ~.)/Plmw
2 1 p(l/e )dl (2.8.1-4)

+OD

p(lW2)dl
P( / . )/P(w Idi

where the region ot integration ot (2.8.1-4) is trom U to PNwy) /(Pwj)

because the likelihood ratio is always positive.
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In the common case when the p(Xl/i)'s are normal with expected
vectors Mi .and covariance matrices Li, the decision rule ot (2. .L-3)
becomes

h(X) = - In I(X)

I ( IX - M.)TL I(X - M.,1) + in 1-= (X-M)2 XM-C-1.,(

P(Wi ,

In -C) X E 2 .8. 1-:)

Equation (-.B.I-J) shows that the decision boundary is given bv a
Quadratic torm in X.

When 2. = 1. = 2. the boundary becomes a linear tunction ot x. as

h(X) = (M- M TI-IX + (M T C-I M. T -IM.,)

P(u L)

in -+ E)( ,in

2.8.2 A nonparametric Method: The Empirical Processing Algorithm

(EPA)

2.8.2.1 Origin ot the EPA and the Structure ot Its Classitier

2.8.2.1.1 Background and Development ot the EPA

A nonoarametric problem in two-class oattern recognition was
considered bv Henrichon 191 and by Loew and Fu 110J: one aporoach
involved the use ot the emoirical distribution tunction as an
approximation to the underlying distribution tunction. A principal
result obtained there in the case ot one-dimensional observations
(i.e.. the teature vector has only one element) was an algorithm tot
determining the relative extrema ot the tunction:

t(xIl ) - 1. x E w

t (x .,) < 1 . x E , (2 .1

Here t(x!w i ) and t(xlw2) are the (assumed) continuous cumulative
distibution tunctions (cdts) tor the populations (classes) W, and W.,.

The need to tind the relative extrema ot (2-I) was motivated by
the tollowing observations. It we assume equal 3 priori class
probabilitites, and equal costs ot misclassitic.ation, then the
likelihood-ratio test yields the optimal decision boundaries (those
which minimize the expected risk). In the two-class case, the
resulting decision rule is. it



t(d ) 1

t( 1, x C W.,

where t( x! I ) and t(x! ) are the probability densitv tunctions

(odt's) tor the two classes. The decision boundary ot (2-2) can then

be expressed as

t(.xkij) - t(xIw') = 0

But the same result can be obtained it the locations ot the maxima and

minima ot (2-1) can be tound.

The algorithm tor tinding those extrema makes use ot the emoir-

ical cdt's tot the two classes, and assumes that they are both

continuous and monotonically increasing. The empirical cdt is detined

as

number ot xx x < x

F (x) = - n.nl n

In 1 9 the asvmptotic ontimalitv at the algorithm is oroved. that is,

that the boundaries obtained trom it converge to the optimal ones
which would be determined trom (2-") In addition, expressions tor

the irobabilitv ot misclassitications are tound.

The method described above has the advantage ot requiring little

3 orior' intormation: it assumes that the underlying distributions
are continuous, which in most cases is not a serious restriction. It

is able to deal with multimodal distributions and mulitple decision

boundaries.
Two principal disadvantages, however, are noted when an attempt

is made to use the method in multidimensional and/or multiclass

oroblems. as would typity the present work. We observe that. tor the

multidimensional-teature-vector case, the multivariate analog ot a

tunction composed as the ditterence ot empirical cdts cannot be

stored in a computer in a torm amenable to convenient extrema

determination. In the n-class case, the only possibility tor
implementation ot the algorithm would seem to be the committee

solution technique [I. which requires all two-class comparisons to

be made; then the class with a majority ot tavorable decisions is

elected. For large problems this approach might not be acceptable,

however, since n(n-1)/2 individual two-class classitiers would be

required.

A method is proposed in 19.IJ which is an attempt at avoiding

the ditticulties listed above. Instead ot approximating the
ditterence ot distribution tunctions. the procedure partitions the

combined rank ordering ot the multiclass samples. It is suitable tor
both multidimensional and multiclass classitication. The next section

presents the general structure ot the classitier. and Section 2.8.2.2
gives the method and an algorithm tor determining the specitications
ot that structure.
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Z.8.2.1.2 The General Classitier Structure

The basic building block ot the classitier is called the basic
selection unit (BSU). and as many BSU's as required are interconnected
to torm the classitier. A typical BSU is shown in Figure 2-1. The
vector F is a I-dimensional teature vector to be classitied by the BSU
as cominq trom one ot the m+1 pattern classes , 'm!......m, where
denotes indecision. As will be explained in Section 2.6.2.i. it a
decisoin is made that the pattern class is a member ot ' w.. . m.
the procedure stops: it the BSU is unable to make a classitication
trom that set. its decision is w0, and the procedure continues. The
BSU allows tor these two possibilities by having two kinds ot output
lines: a decision line 3nd a set ot selection lines. It w() is the
decision made by a particular BSU, then one ot a selection lines,

si(i=1 ..... ) . arom that BSU will become active. A logical one ([)
shall be used to indicate an active state ot a selection line, i.e.,
s i = 1: and a logical zero (0) tor an inactive state (st=O). We
denote by s. k the ith selection line turm the ith BSU in the kth
laver ot the classitier (see Fieure 2-2). The selection line pertorms
the tunction ot triggering the active state (I) ot a BSU in the next
(i.e.. (k+1)st) laver ot the classitier. Unless the selection line
enterine a BSU is active (s=l), that BSU will remain inactive, and no
processing will occur within it.

The decision line dj.k originates at the jth BSU in the kth
laver. and is active onfv it the BSU has decided that the Dattern
represented by F is an element ot wj,..., m. Thus. the
allowable states tor di.k are

i. it class ,. is decided. iei .... m (active states)
d
i.k  0. it class U is decided (inactive state).

The BSU. then. serves to either (1) reach a decision as to which
ot m classes ".....m should be assigned to the input. ot (2)
decide which subsequent BSU should repeat the process. For any given
input to a structure ot BSU's there can be at most one BSU which has
an active decision line. Other constraints on BSU operation also
tollow trom the structure detinitions given above, and can be
summarized by the tollowine expressions.

U inactive state, all i.. and k.
5I . =

'.j,k I active state,

(2) - 9 i - . all i and k.i~j,k-
i-I

This says that, at most. one selction line per BSU can be active.
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1.i~k ,k 0

The decision line and selection Line states are mutually exclusive.

q

(4) 7 .i .k + .k > tS.... k-t=

i=j

A BSU is inhibited unless there is an active selection line input to
it trom the previous layer.

Figure 2-J indicates the conceptual structure ot a BSU. Each ot
its three main components as well as the interconnection scheme is
discussed in the next section.

2.8.2.2 Construction of the Classifier

2.8.2.2.1 Introduction

The three subunits ot a BSU, as shown in Figure 2-3. are the
transgeneration box (optional). which augments the incoming teature
F by torming new teatures which are combinations ot the components ot
F: the component selection box selects one ot the teatures (original
or transgenerated) as an inout x to the threshold unit. The
threshold unit activates one ot the a selection lines, or the decision
line. depending on the value ot x.

In the tollowine discussions the decision lines, selection line
labels. and component selection box will be omitted trom the structure
diaerams. A circled number next to a terminal region in the threshold
unit shall indicate which pattern class is selected. The aleorithm
which tollows determines which teature component x should be selected
in each BSU. and the intervals, corresponding to the domain ot x,
which should be connected to the selection and decision lines.

2.8.2.2.2 The Algorithm

Let Xzx ..... xnl be a set ot n, independent observations
trom class wl. and let Y - lYl,'.yn&0 be a set ot n2
independent observations trom class W2 . Let K and 8 be two
prespecitied parameters determined from the combined sample size
ninl+n2. (Some guidelines tor the choices ot K and 9 are
discussed below.)

Step 1. Order the combined sample set X+Y according to
increasing numerical value to torm an ordered set Z. Partition the
set Z into successive groups ot K samples. (See Figures 2-4(a) -
Z-4(c).)

Step 2. For each group count the total number ot x's and v's
and assign a class label as follows:
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Nt number ot x's 0 6. assign class
number ot v's > 6. assign class ,

otherwise. assign class w

Then merge adjacent reqions which were assigned the same class
(Figures 2-4(d) - 2-4(e)).

Step 3. Adjust the boundaries by perturbing them a maximum ot
K/2 samoles in either direction and relocate them at positions where

the most improvement in classitication accuracy is obtained (Figure

2-4(t)).
Steo 4. It tewer than K/2 samoles remain in any one region.

dissolve that region and place its samples (preserving the rank order)

among the neighboring two regions so as to yield the least increase in
misclassitication (Figure 2-4(g)).

Step . Repeat Step -. For this tinal partition compute the

empirical classitication probability, or SCORE. as

SCORE = number ot samples correctly classitied.

This training procedure thus yields a set ot thresholds to which

the (single) teature value ot an unknown input sample would be

comoared: its class would then be assigned according to the label ot
the region along the "teature axis" in Figure 2-4(g) in which it tell.

The procedure can be extended to the case ot a multidimensional

teature soace by apolving the algorithm to each teature seoaratelv.

and the SCORE (trom Step ) or each component is recorded). The
dimension associated with the highest SCORE is selected as the
dominant dimension. The observation space is then partitioned by

parallel hvoerolanes which have the dominant dimension as the common

normal vector and intersect it at the boundaries determined by the
algorithm tor this teature. For each region tormed by the above

oartitions. the procedure is repeated until no new regions are
produced. Each time one or more regions ot class w0 (indecision) in

a laver ot the classitier are subdivided, an additional layer is
added, and this is what produces the selection lines ot Figure 2-2.

As mentioned in Section 2.8.2.1.1. one ot the disadvantages ot
the extrema-determination algorithm was that the extension to the

multiclass case would involve a substantial amount ot additional

calculation.
That disadvantage does not exist tor the algorithm just

discussed: the extension is direct. The original procedure tor
labeling the partitioned regions was: it

number ot x's > e. assign w,
number ot y's > 6. assign wi
otherwise, assign wo.

This step can be retormulated by considering n pattern classes

...... Wn (letting wo continue to denote indecision). Let xwi

represent an observation whose true class is wi. Then the
retormulated assignment rule tor each block is: it

number ot xi's > 6 tor some i, assign wi

otherwise. assign wo
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The classitier structure ot Figure 2-2 remains as it was in the
two-class case.

2.8.2.2.3 Coments on the use ot the Algorithm

The choice ot K in Step I ot the algorithm is not ot concern in
the concept at the procedure. but does play a part in the
implementation ot the method. The purpose ot partitioning the
combined sample set (ot size n. say) is to reduce the number ot
partitions which need be considered. This also has the ettect ot
placing an upper bound on the complexity ot the classitier at the
outset. since the tirst BSU in the classitier will not require more
than K thresholds, and subsequent BSU's (it any) will, in general.
have tewer thresholds than the tirst. The only constraint required on
K. theretore. is that it does not increase as tast as n does. i.e..

kn n
In the experiments described below, K was chosen proportional to
N0 1 2 .

An obvious condition on the value ot 8 used in Step 2 is that
8K/-. It 8 < K/2. then conceivably two or more classes would satistv
the inequality governing the assignment ot classes to the groups ot
samples. resultine in an ambiguous procedure. Henrichon t91 has
empirically tound that good results are obtained with 8 = 0.6K + (3),
where 0 S S & . This approximation. with various values ot A. was
used in the experiments presented below.

The SCORE computed in Step ot the algorithm is used in the
multidimensional case to determine the order in which teatures should
be chosen by the component selection boxes (Figure 2-3) ot the BSU's.
As soecitied in Step '. the SCORE was simply the number ot correctly
classitied samples. This is a reasonable approach as long as the
number ot training samples per class remains the same trom teature to
teatur4. In some situations. however, the number ot samples available
per teature varies. A straighttorward solution in that case is to use
A normalized SCORE. i.e.. a percentage. Where necessary, then, the
SCORE will be detined as

number ot correctly c'assitied sampies
total number ot samples

Z.8.3 Examples

To test the design process tor the two kinds ot classitiers
described above, we must use data trom some real cases. Because the
segmentation routine is still under development, we have chosen to use
some data that describe ultrasound signals acquired during examination
ot human livers. The goal is to use teatures extracted trom the
signals to classity a liver as normal or abnormal (in this case,
hepatitis).

Four teatures were used:
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I) d. the averace soacine between scatterers
-1 '. the ratio ot the specular to the dittuse backscatter

intensities
3 ) a. the ratio ot the standard deviation ot the specular

backscatter to the dittuse backscatter
(4) c. the attenuation coetticient.

In the tollowine. the tour teatures are abbreviated.
respectivelv. as D.R., V. and A.

The classitier designs were the tollowinz:

(i) Parametric case
The Bayes classitier was used under two alternative

cases: (a) that the covariance matrices were ditterent tor the
ditterent classes (resultinz in a nonlinear boundary in teature
soace). and (b) that the matrices were the same (resulting in a linear
boundary). The design data were separated by class tor estimation ot
the covariance matrices in the tirst case, and pooled in the second
case.

(2) Nonoarametric Case
The design aLgorithm was tollowed. tor various values

ot K and 0.

The results tor a1l ot these trials are presented in the next
section.

2.9 Classifier Testing

The probability ot error is the key quantity in pattern
recognition: the estimation ot that quantity, theretore. deserves
special consideration. There are two kinds ot problems. The tirst is
the estimation ot the probability ot error trom available samples.
issumine that a classitier is given. The second is the estimation ot
the probability ot error tor given distributions. For this problem.
the probability ot error depends on the classitier to be used as well
as on the distributions. Theretore, we tirst have to specity the
nature ot the classitier (e.g., the Bayes classitier tor minimum error
that was detined above): the task then becomes one ot tinding a way to
use available samples tor designing the classitier and evaluatine the
error. Since we have only a tinite number ot samples, we cannot
design the optimum classitier, and the parameters ot the classiter
are. theretore, also random variables. Furthermore, based on this
random classiter. we have to estimate the probability ot error.

It we assume that sutticient data are available tor estimating
accurately the class-conditional density (and distribution) functions
ot our teatures. then classical methods exist 1121 tcr estimating the
probability ot error trom N samples drawn from those distributions.
Those methods will be employed, with random sampling, to estimate
error probabilities and their confidence intervals for the Army data.



To continue the examples presented in Sec. 2.8. however, we must
use the second ot our aporoaches. namely, that tor the limited-data
case. When N samples are given without a classitier design, we have
to use those samples to design a classitier as well as to test it. 7
The probability ot error to be estimated depends on the given
distributions and on the classitier to be used. A number ot usetul
theoretical results have been obtained 113J tor the case ot the Bayes
classitier tor minimum error: we will use those results not only tor
the Bayes classitiers but also tor the nonparametric classitiers. all
as described in Sec. -.8.

We described two approaches: (1) N samples are used to design
the Bayes classitier and the same N samples are tested. This method
has been shown I13I to yield an optimistic bias ot the probability ot
error: ('2) N samples are used to design the Bayes classitier. and the
samples trom the true distributions are used tor testing. This method
also yields a biased estimate ot the probability ot error, but the
bias is such that the expected value is an upper bound. The samples
trom the true distribution, however, may be replaced by the samples
which are not used to design the ciassitier and which are independent
ot them. As the number ot test samples increases, the distributions
ot the test samoles tend toward the true distributions.

There are several ways to realize this second approach. The
tirst is to divide available samples into two groups and use one ot
them tor designing the classitier and the other tor testing. The
second is a retinement ot the tirst: we take out one sample. design a
classitier by usinQ N-1 samples, and test the unused sample. This is
called the leavine-one-out method. This operation is repeated N times
and the number ot misclassitied samples is counted. The proportion ot
the total that that number represents is then the estimate ot the
orobabilitv ot error. A disadvantage ot this method is that N
classitiers must be designed. For the nonparametric case. however, it
is the only ettective conservative approach.

Appendix B contains contusion matrices tor the examples ot Sec.
2.8. computed using both methods -- testing using the design set. and
leavine-one-out.

3. Results

We now consider the results ot appiying these classitiers to the
two kinds ot liver disease. Three ditterent kinds ot classitiers are
used tor each ot the tour teatures. In addition, all possible subsets
ot the tour teatures are used to evaluate the pertormance ot multiple
measurements. In all cases, a standard tormat is used: the contusion
matrix. The contusion matrix has as its rows the names ot the two
correct classes and as its columns the names ot the classes ot the
decisions made by the classitier. Hence, an ideal classitier would
have all entries on the diagonal, indicating pertect classitication.
We compute error probability as the total number ot misclassitied

samples divided by the total number ot samples.
The three classitier cases we consider are: the leave-one-out

case with the Bayes rule tor normally distributed data with equal
covariance matrices. (Note that the tourth equality ot the covar-
lance matrices by pooling the data tor the covariance calculation.):
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the second case keeps the two classes separate and computes covariance
matrices individually. Again. the terms "linear" and "nonlinear" are
used because ot the nature ot the decision boundary that results trom
the two kinds ot covariance matrices. The third kind ot classitier
again uses two separately-computed covariance matrices but now the
desizn set ot data is also used as the testine set. As was noted
earlier, this yields an optimistic estimate ot error probability tor
the ciassitier.

Appendix B presents the three contusion matrices tor each teature
and combination ot teatures. A total ot 4/ samoles was used: eiehteen
trom the normal class and twenty-nine trom the abnormal. Note the
relatively hieh probabilities ot error tor all three classitiers tor
certain teatures and eroups ot teatures. These relatively high values
are due in oart to the error associated with estimatine parameters ot
the probability density tunction ot a small number ot samples. We may
contrast these results with the second set shown in Appendix B; here
we have 19 samples total. Note that the errors are in general
smaller.

In any oattern recognition problem. teature selection is a very
important step. From a set ot candidate teatures -- even atter they
have been de-correlated -- one generally seeks to use the smallest
number sutticient to achieve the desired error probabilitv. Several
recent results tL4.1ji make it clear that in order to choose the best
subset ot any given size ot an initial candidate set ot teatures. one
must examine all possible subsets. In tact. it is possible to do
arbitrarily badly it the search is non-exhaustive. In light ot those
results, we examined the titteen possible subsets ot our tour tea-
tures. Figures I and 2 in Appendix B Illustrate the variation in
probability ot error tor ditterent kinds ot classitiers when ditterent
subsets ot teatures are used. For example, in the case in which we
have 4/ samples all together, we note that the two best teatures using
the nonlinear round-robin or leave-one-out classitier were R and D.
but the best set ot two teatures were D and V. This illustrates the
tact that in general. the best two teatures are not necessarily the
two best. Note also that it we instead use the linear leave-one-out
classitier shown in the lett ot each set ot three bars in the tieure.
that the two best teatures are D and V, and that the best are also D
and V. Thus we may generalize to say trom this example that the best
two are not necessarily the two best. That is true as well in the
case ot three-at-a-time. where the best three are A. R and D, but the
three best are D? R. and V. It theretore is important to pertorm an
exhaustive search ot all possible subsets it the goal is to tind the
best pertormance at a given number ot teatures. In the /9-sample
case. in both ot the leave-one-out cases (the lett bar and center bar
ot each triplet) we see that the two best teatures are V and D and
that the best two teatures are also D and V. Note also that the best
triplets. D.R,V and DV,A. are both composed ot the best pair. DV. In
the previous data set (the 4/-sample case) the best triplet, D,R.V as
measured by the nonlinear leave-one-out method was indeed composed ot
the best two (D.V): but when we examine the linear leave-one-out case,
there is a tie tor the best set (D,V.A and DR.A) the latter ot which
is composed neither ot the best two nor ot the second best two.
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We are led to conclude that any kind ot steo-wise search tor i

best subset ot teatures will not in general produce optimal results.

This experimental conclusion supoorts the theoretical results cited
earlier.

The non-parametric orocedure was applied to the set ot /'9
samules. The contustion matrices that resulted are shown in Appendix
B. Notice that tor the teatures used individually. i.e.. stooping the

process at the tirst staqe. yields results not tar ditterent trom what
we achieved earlier. In the case. however, where we had two teatures

being used. that is. either D and V or D and R. our Dertormance

improved considerably (0.14 error probability). Although the method

has not vet been tested with the leave-one-out orocedure. that

programming is nearly comolete and is exoected to yield similar

results.

4. Conclusions

Work to date has yielded a set ot tools that will now work well

once teatures have been extracted trom the actual time-series data

that we have. The experimental results on the liver ultrasound data

are very encouraging and we believe that there will be good Dertor-
mance once the physiological data are analyzed. This set ot toots.

3lone with the segmentation routines, should yield results early in

the third year ot this study.

b. Plans tor the Conine Year

Durine the coming year we expect to segment all ot the time-

series data. independently tor both the activity and the heart-rate

data. Seoaratelv. we will use a hierarchical approach. reterred to

earlier in this reoort. in which we will allow the seements apoarent

in the activity data to guide the segmentation ot the heart-rate data.

Again. the rationale tor this is that the activity data are in general
cleaner than the heart-rate data. Once a set ot segments has been

established the teatures that are extracted will be submitted to the

classitiers that have been described above. The classitication

accuracy, concordance with physiological truth (as supplied by the

Army). the number ot teatures. and their ease ot extraction all will

be evaluated with the goal ot eventually constructing a very simole

signal-processinv system tor determination ot physiological state.
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APPENDIX A

Flowcharts tor preprocessing and noise removal program
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APPENDIX D

Plots ot ECG data betore and atter preprocessing and noise removal
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APPENDIX E

Part one ot segmentation program
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APPENDIX F

Classitier Variable Detinitions
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The variables are:

Jmax = number ot components in the teature vector

N = number ot observations

Di = observation point in Jmax-space

D(J) = arrav ot the N observations ranked accordine to the Jth

complement

R i = a region in Jmax-space

Ci = classitication assigned to Ri

INi = rank ot tirst point in DIJ) which is contained in Ri

FNi = rank ot last point in D(J) which is contained in Ri

K = the size ot the blocks into which the teature-value axis is
initiallv partitioned

Imax = number ot new reeions tormed

S( = stored value ot

- 44 -


