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Chapter I

Introduction

Given an undirected graph G = (N, A) with positive arc weights c; > 0, a € A and P,
a subset of two or more nodes of N, the Steiner Tree problem on graphs (STG) is to find T, a
connected subgraph of G such that all the nodes of P are included in T and the sum of the
weights of the arcs in T is minimized. Though STG is NP-hard [16] in the general case, there
are some interesting special cases which can be solved in polynomial time. The first two special
- cases come from placing restrictions on the size of P. If |P| = 2, then STG is just the shortest
path problem, while if we have |P| = IN| — 1, then STG reduces to the minimum spanning tree
problem. Both of these problems have well known polynomial-time algorithms [26]. The second
class of STG problems which have polynomial-time algorithms comes from restrictions on the
graph G. If G is a series-parallel or Hamlin graph, then we can solve STG in linear time [37].
There are exact solution algorithms for the general case of STG, but as Winter states in his
survey paper [37] “. .. the problem seems to be extremely difficult and only small problem

instances (with up to 30 points) can be solved in less than one hour.”

A method of attacking NP-hard combinatorial problems, which has not been generally
exploited in the case of the Steiner tree problem, is that of polyhedral combinatorics. This
method of attack revolves around studying the characteristics of the convex hull of feasible
solutions, trying to identify classes of inequalities that describe facets or high dimensional faces
of this polytope, and then using these facets and faces in an algorithm to speed solution. (See
[12] for an example.) The most common use of these facets is as cutting planes in a linear
programming algorithm, although they can also be used in a Lagrangian relaxation approach

(See {5, 18, 19, 28, 30] for examples of these approaches to the Travelling Salesman Problem).




The facet identification method has recently been applied to several other combinatorial
problems including the set covering problem [3, 11], the three-index assignment problem [4] and

the set packing and knapsack problems {28, 29].

The purpose of this research is to study the facial structure of the convex hull of
solutions to STG on complete graphs. The main thrust of the research is to define classes of
facets that have the potential to be used as cutting planes which can then be added to the LP
relaxation of the problem or alternativly incorporated through the Lagrangian approach. The
choice of working with complete graphs is made to facilitate the identification of structures that
give rise to facets, and is not very restrictive, since every undirected graph is a subgraph of a

complete graph.

1.1 Definitions and Notation

A graph G = (N, A) consists of a set of n nodes, N, and a set A of m unordered pairs of
nodes called arcs. If ¢ and j are nodes of the graph and a € A is an arc of G with a = (3, ),
then i and j are called the end nodes of a, a is said to connect or join ¢ and j, and ¢ and j are

said to be incident to a. By convention we will always write (7, j) with ¢ < .

The cardinality, n, of the node set is called the order of the graph, and if (¢, j) € A for
all 1 and j in N, then the graph is called complete. The complete graph of order n will be

denoted by K,, and the cardinality of its arc set by

-1
mn:f%_"_Q__)_

Since we deal with complete graphs, any numbering assigned to the node set is totally arbitrary,

so we will always assume that P = {1, 2, ..., p}, where p = |P|.

If G = (N, A) with W _ N and V C A, then the set of arcs that have both end nodes

in W is denoted by A(W) and the set of nodes incident to the arcs in V is denoted by N(V). A




3
graph H = (V, E) is a subgraph of Gif V C N and E C A(V). If W and V are disjoint subsets
of N, then the set of arcs in A that have one end node in W and the other end node in V will be

denoted by (W, V). We will denote N — W by W, _nd the set (W, W) is called a cut.

A path T from sto tin G = (N, A), where s, tin N, is a sequence of nodes, n,. and
arcs, a; = (n,, "i+1):

F={s=m,a,n..,0,23.,n= i}.

The nodes s and 1 are called the end nodes of I', and k is the length of I'. If all nodes of T" are
distinct, then the path is called simple. If s = {, then the path is called a cycle, and if all nodes
except s = t are distinct, then the cycle is called simple. If there is a path between two nodes i
and jin N, then i and j and said to be connected. If all pairs of nodes in a graph are connected,
then the graph is said to be connected. If V C N, we say that V is connected if (V, A(V))is a

connected graph.

A tree T is a connected graph that contains no cycles. Any subgraph of a graph G that
contains no cycles is called a forest of G. A tree that is a subgraph of G and contains all the
nodes in G is called a spanning tree. Clearly, since all arc weights are positive, the solution to
STG will be a tree that connects the nodes of the set P. Such a tree is called a Steiner trec.
The set P C N of nodes taht we want to connect is called the set of terminal nodes. Any node
in the set S = N — P which is contained in T is called a Steiner node. A leaf or terminal node
1 of a tree is a node satisfying d(f) = 1, where d(?) denotes the degree of a node and equals the
number of arcs in the tree which are incident to t. Let L be the set of leaves of a Steiner tree T.

If L C P, then T is called a P-Steiner tree or a P-tree.

In order to examine the facial structure of STG, we need to relate the Steiner and
P-trees of Kn to R™™. To do this let A = {(i;, )y - (imys Jmp)} Thenif H = (V, E)isa

subgraph of Ky, the characteristic or incidence vector of H in R™™ will be the vector x satisfying




{ 1 if(ipj) €E

0 otherwise

The vector x is said to describe or induce the subgraph H on G. The specific ordering of the

arcs that we will use is the following. Arc a = (i, j) will correspond to component x where

v(a)

- — 1) — 2 .
wiin ===
This mapping corresponds to listing the arcs in the order (1, 2), (1, 3), (2, 3), (1, 4), (2, 4),
(3, 4), (1, 5), . . ., etc.. Throughout this dissertation, arc a = (i, j) will be denoted
interchangeably as a or (i, j), and the components of characteristic vectors will be denoted x,, -

X, OF Xy(ay The notation chosen will be clear from the context and will be used to place the

v(a
emphasis on either the arc itself, the end nodes of the are, or its order in a listing of all arcs,

whichever is appropriate.

Now that we have a relation between a graph G and R™, we need to define some of the
relevant ideas in polyhedral theory. The convex hull of a set of points X = {x"}f‘=l inR™ is

the set of all convex combinations of these points:

conv(X) = {x e R™ | x = _zk:l ax', a; > 0 and Zk: a; = 1}.
= =1
A hyperplane H in R™ is the set H = {x € R™| <x, y> = a}, where y € R™, with y # 0,
o € R and <x, y> is the inner product of x and y. A closed half space H' in R™ is the set
H' = {x € R™| <x, y> < a}. A polyhedron Q in R™ is the set of points satisfying a finite set
of linear equalities and weak inequalities, i.e., the intersection of a finite number of closed half
spaces. If Q is bounded, then Q is called a polytope. A polytope is both the intersection of a

finite number of closed half spaces and the convex hull of a finite set of points.




A set of points {x'.}ﬂ-‘=l in R™ are linearly independent if there is no solution to

I
o

k .
ZI\’-X‘
=1
otherthan A\; = 0,:=1,2,.. .,k IfA, =0,i=1,2,...,kis the unique solution to

the system

then the points {x'.}:-‘=1 are affinely independent. Linear independence implies affine indepen-
dence. If the characteristic vectors of a set of trees of a graph are affinely/linearly independent,

then we will say that the trees are affinely/linearly independent.

The dimension of a polytope Q, dim(Q) is k if the maximum number of affinely inde-
pendent points in Q is k¥ + 1. Let H be a hyperplane in R™, then if Q C R™ is a polytope with
QCcC H', H is said to be valid for Q, and if F = H N Q # 0, thea F is a face of Q. A face of Q
is also clearly a polytope in R™, so it is proper to speak of the dimension of a face. If
dim(F) = dim(Q), then F = Q and F is called an improper face of Q. If dim(F) = 0, then F is
a vertex of Q, and finally, if dim(F) = dim(Q) — 1, then F is a facet of Q. Since a half space
can be represented by an inequality, the inequality describing H' will also be called a facet of Q

equivalently, or will be said to induce (or define) a facet of Q.

IfX = {x"}f.‘=x is a set of k vectors in R™, then X, will denote the / x k matrix whose
columns are the first { components of the & vectors in X. The m x 1 vector of m 1’s will be

denoted by e,,. If A is an m x n matrix, then A will denote the (m + 1) x n matrix




If the m x n matrix A has rank n, then the columns of A are linearly independent. If A has

rank n, then the columns of A are affinely independent.

Finally, we need some definitions from matroid theory (See for example [14, 26]). Lct E
be a finite set, and 3 be a family of subsets of E. Then the structure M = (E, 3) is a matroid if
3 has the following properties.

1) 0e3

2) fl € 9and) C I, then] €9

3) If I and ] are in 3 with [I| = |J| 4 1, then there exists an element ¢ € I — J such

that J |J {e} € 3.

A subset I in 3 is called an independent set of the matroid, and a maximal independent set is
called a basis of the matroid. The rank r(V) of any subset V C E is the cardinality of a max-

imal independent subset of V.

To relate matroids to the Spanning Tree Problem we will use the well known Forest
matroid [17]. For a graph G = (N, A) let E = A and let 3 be the collection of all forests of (.
(Recall that a forest is any subgraph of G that contains no cycles.) M = (A, 3) is a matroid.

The rank of a set B C A is given by

(B) = |[N(B)| — !

where [ is the number of connected components in the subgraph (N(B). B). Spanning trees of G

are the bases of the Forest Matroid.




1.2 Current Work

Several complete characterizations have been given for the polytope of the Spanning
Tree Problem. The first comes from the work of Edmonds [14] in 1971. Edmonds proved that

for any matroid on a set E, the vertices of polytope described by

xe = r(E)
€E

®

xe < r(A), foral ACE

®
>

€

Xe > 0, foralle € A

are the incidence vectors of the bases of M. Since the bases of the Forest Matroid are the span-
ning trees of G, this will give us a complete linear characterization of the spanning tree poly-
tope. That same year, Fulkerson [15] conjectured that for a graph G = (N, A), the vertices of

the polyhedron described by the inequality system

Xag > (n—=1)—r(V) forall V C A, V closed
acA-v

Xag >0 forallaeg A

are precisely the incidence vectors of the spanning trees of G, where a set V C A is closed if
there is no cycle of G with |C ) (A — V)| = 1. Chopra [8] proved Fulkerson's conjecture in
1988. Both of these descriptions are complete, but neither is minimal. In 1977, Grétschel [17]
gave a complete non-redundant linear characterization of the polytope of the bases of a general
inatroid, and then specialized this characterization to the polytope of spanning trees of graphs.

Grotschel’s linear characterization for complete graphs is




Xg=n-—1
€

»
>

Xa <IW| =1 foral WCN,2<|W|l<n—1
a€A(W)

xa > 0 for all a € A.

There has been very little work done on the facial structure of the convex hull of
solutions of STG. In 1980, Aneja [1] formulated STG as a set covering problem in the following

fashion. Let (X, X) be a cut in G such that P [} X # @ and P (1 X # 0. Then the inequality

must be satisfied, since any tree connecting the nodes in P must have at least one arc in (X, X).
So the problem could be formulated as a set covering problem, i.e., trying to cover all the cuts
with the arcs. Aneja then presented an algorithm based on the set covering algorithm. Although
the number of constraints is exponential in the order of the graph, the algorithm only used these
constraints implicitly. In 1984, Wong [38] worked with a version of STG on a directed graph,
namely:
Given: A directed graph G = (N, A), P C N, an arbitrary node r in N—P, and arc
weights c3, a € A.
Find: The minimum weight set of arcs that span P |J {r} with every arc directed away
from r. (Such a set is called a Steiner arborescence).
Wong formulated this problem as a mixed integer program and developed a dual ascent method

for its solution.

In 1985, Prodon, Liebling and Groflin [32] considered the directed version of STG with

the modification that the underlying graph G be strongly connected, i.e., for every pair of nodes




9
s and j there exists a simple path directed from 1 to . They formed a strongly connected direct-
ed graph by replacing the arcs (i, j) of an undirected series-parallel graph with the directed arcs
(i, j) and (j, 5). They then proved that the extreme points of an unbounded polyhedron formed
by some cut type inequalities from this new graph were the characteristic vectors of the P-trees
(in the directed sense) of this graph. Later that year Prodon [31] extended these results by con-
structing a polyhedron whose extreme points were the characteristic vectors of the P-trees of an
undirected series-parallel graph in the following manner. Let F(k) = {V"}:.‘=l be any family of
connected subsets of N, such that each member of the family satisfies V! (P # 0 and

k .
(N = U V)P # 0. Then define the coefficient ra(F(k)) for each arc a = (4, j ) in A by

=1

(1 Vi e Fr), i g Vi je vh
ra(F(k)) = max
[{11 v e Fk), i e VI, 5 g VY

Then the polyhedron defined by

Q = {x € R | S" ra(F() xa > & for any family F())
aEA

has the characteristic vectors of P-trees of G as extreme points.

Finally, in 1987, Ball, Liu and Pulleyblank [7] studied two-terminal Steiner arbor-
escences in general directed graphs. They noticed that every two-terminal Steiner arborescence
consisted of a directed path from the root node r, to some node p, and directed paths from p to

the two terminal nodes s and {, where p could be one of r, s or t. Defining

d"(p) = the length of the shortest path from node r to node p,
d*(p) = the length of the shortest path from node p to node s,

d!(p) = the length of the shortest path from node p to node 1,
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for each node p of N, then the solution to the problem is to find that node p that determines

min d"(p) + d*(p) + d'(p).

Ball, Liu and Pulleyblank take this combinatorial algorithm and derive a linear pro-
gramming description of the problem from it using elimination and projection. They then turn
their attention to complete directed graphs and prove, in that case, that every inequality in the

formulation is a facet and therefore necessary.

1.3 Preliminaries

The approach that we have taken to this problem is similar to the general approach
that has been taken for the traveling salesman problem [19], and is also similar to that used by
Balas [2], Balas and Ng [3], and Balas and Saltzman [4] on other combinatorial! problems. The
approach is to define polytopes related to the problem, determine the dimension of those poly-
topes, and then study the problem for structures that might yield strong valid inequalities or
facets. Before proceeding we need to prove a few lemmas which we will use throughout the

dissertation.

Lemma L.I: my, + n=m_,,
Proof: By definition
n(n—1) n(n+1)
- ]

m,,+n=-—2-— +n=f=mn+l. 0

Lemma 1.2: Let {x"}f-‘=l be a set of points in R™ such that
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for some ! x m matrix A and !/ x 1 vector b. If y is an affine combination of the points x’, then

y also satisfies

Ay = b.

Proof: Let y = Xa, where X is the m x k matrix whose columns are the vectors x!, and

e;ra = 1. Then

Ay = A(Xa) = (AX)a = (beJ )a = b(efa) = b. O

Corollary 1.3: If y is a convex combination of the points x*, then

Lemma 1.4: Let X = {x'}L_, be a set of points in R™ and Az = b be a system of r inde-

pendent equations such that
AxXi =b i=1,...,k
Then
dim(conv(X)) < m — r.
Proof: Let Q = {z € R™| Az = b}. Then it is well known that
dim(Q) =m - r [22,27).

Thus, since conv(X) C Q, by Corollary 1.3, we have that

dim{conv(X)) < m — . O
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All of the proofs in this dissertation will establish that a set of vectors is either linearly

or affinely independent. The most common way to do this is to show the matrix A or A, whose

columns are these vectors has full column rank. The following propositions ease this task.

Proposition 1.5: Let M be the m x n matrix having upper triangular block form

All A1,2 Alk
0 Ay,
M=
AIH,I:
0 0 Ay

where A, . is m; x n;. If the columns of the diagonal blocks A, ; are linearly independent for

¢t = 1, ..., kthen the columns of M are linearly independent.

Proof: Consider the system

Mx =0 (*)
Clearly, x = 0 is a solution to (#). To prove that the columns of M are linearly independent we
need to show that if @ € R" is a solution to (*), then o = 0. So assume that a is a solution to
(+). We see from the last m, equations that a must satisfy

Ak'k an, = 0

where an, is the vector consisting of the last n, compcrents of a. The columns of A, , are

linearly independent, so an, = 0. Substituting this partial solution into the next set of m,_,




equations, we see that o must also satisfy

Api gt Ong | = 0

where an, is the the vector of components of o corresponding to these columns of A. Again

we see that a,, = 0 since the columns of A are linearly independent.
b‘l “l,b‘l

Clearly, as we continue to iterate this back substitution process all the components of a
will be forced to be 0. Therefore, if o is a solution to (*) then a = 0, and, hence, the columns

of M are linearly independent since the only solution to (*) is the trivial solution. O

Corollary 1.5.1: If M has lower triangular block form and the columns of the diagonal hlocks

are linearly independent, then the columns of M are linearly independent.

Proposition 1.6: Let M be the m x n matrix having the form

If the columns of A; and A, are affinely and linearly independent respectively, then the colinmns

of M are affinely independent.

Proof: Consider the matrix

- I -
A, | A,
M = 0 l Aa
—_—— === = -
e;,rl 1 e-,':a
L } J
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If M has linearly independent columns, then M has affinely independent columns. If we move

the last row of M up, we obtain the equivalent matrix

A, : A,

M = eIl l e,Ta
-——p — -~ l— — ——

0 I Aa

- ] -

which has linearly independent columns by Propositon 1.5 since the diagonal blocks have

linearly independent columns. Thus, M has affinely independent columns. 0

The next lemma relates the degree of nodes in any P-tree to p = [P|.

Lemma 1.7: Let K, be the complete undirected graph of order n, with N = P [JS, S P = &,

and |P| = p. In any P-treeif sis

1) contained in S, then d(s) < p

2) contained in P, then d(s) < p — 1.

Proof; First we show that if s is any non-terminal node of a tree with k leaves, then d(s) < &
Let deg(s) = d > 2. Now delete s and all of its incident arcs from the tree. The result is a
forest of d trees (some may be isolated nodes), each of which must contain at least one of the

leaves of the tree. Therefore, d < k.

Now, if T is a P-tree and s € P, then either s is a leaf of T, in which case
d(s) =1 < p—1,ord(s) 2 2. In the later case, there can be at most p — 1 leaves of T, so

d(s) < p — 1. If s € S, then by the above argument, d(s) < p. O




1.5 Organization

Define the polytope

Tp,n = conv{x € R™" | x is the characteristic vector of a P-tree of K}

15

Tha,n is the convex hull of spanning trees of Ky. In Chapter II we look at Tp,», then in Chapter

III we cover the other interesting special case, T, ,, the shortest path polytope. After covering
these two special cases, we consider the general STG polytope Tp n in Chapter IV. Chapter V

presents presents some areas for further research, and the appendix gives some counting results




Chapter II

The Spanning Tree Polytope Ty n

In this chapter we will consider the polytope

Tn,n = {x € R™| x is the characteristic vector of a spanning tree of K,}.

As we have noted, Grétschel has already developed a complete, minimal linear characterization
of Tn,a. In this chapter we show that the facet-inducing inequalities of Grétschel’s formulation
correspond to upper and lower bounds on the variables and to certain partitions of the node set
of Kn. Each of these inequalities is a facet of Ty 5, hence there exists a set of my — 1 affinely

independent spanning trees that satisfy each of them at equality. We prove the stronger result

that these sets of spanning trees are linearly independent. This strengthened property will be

very important when we generalize to P-trees in Chapter IV.

All of the proofs in this chapter either use induction or have an inductive flavor. To
avoid the tedious repetition of defining the same notation in each proof, we introduce that
notation now and use it throughout the chapter. Let {y"}f":l be the set of characteristic vectors
in R™ of k linearly independent spanning trees of K;. Let Y be the matrix whose columuns are
these vectors. The values of k and ¢ will be clear from each particular proof. For example. in
order to establish a result for Ky, we look at the subgraph K,,_,. Either through assumption. or
by invoking a previous result, we establish the existence of a set of & linear independent
spanning trees of K, ;. The columns of Y will be the characteristic vectors in R™™ 1 of these

trees.




2.1 The Dimension of Ty.»

Grotschel proved that the dimension of Ty n, dim(Tys,n) = my, — 1 [17]. We now show

how to construct my linearly independent spanning trees of K.

Proposition 2.1: There exist my linearly independent spanning trees of K.

Proof: We prove this by induction on n. If n = 2, then m, = 1 and clearly there is only one

spanning tree of two nodes. Now assume that there are m, linearly independent spanning trces

for some | > 2, and view K, as:

K, l\

>1+1

Let Y be the matrix whose columns are the characteristic vectors of the m; spanning trees. and

1o

for : = 1, ..., m define the spanning trees of K, as follows:

y} J € AK))
x;iz 1 i=(,I+1)

0 otherwise

These vectors correspond to each of the m; spanning trees of K; with node /+1 attached as a

leaf to node 1. For ¢ = 2, ..., ! define the | — 1 vectors

y! e AK)

ml+i
X =

) 1 j= (i 1+1)

0 otherwise
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These vectors correspond to the spanning tree y* of K, with node /41 attached as a leaf to each

of the nodes 2 through [ respectively. Finally, define

1 { 0 J € A(K))
X. =
i

1 otherwise

which is the tree with all nodes connected to node I4+-1. By Lemma 1.1 we now have a total of
m; + | = my, vectors which describe spanning trees of K, +1- Lo see that they are linearly

. m
independent, consider the matrix M = (x')‘-="lH. M has the form:

where Y! is the m; x (I — 1) matrix each of whose columns is the vector y'. To see that this
matrix has full rank consider the following sequence of elementary row and column operations.
Subtract each of the last I — 1 columns from column m; + 1, and add ({ — 1) times the first

column to column m; + 1 to get the matrix

Y 0 Y!
M = egl l 0
0 0 I,

Rearranging rows and columns gives us the matrix

— -

M'={ 0o Y, Y
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.. m
which has linearly independent columns by Proposition 1.5. So the vectors {x'}i=l-1H are linearly
independent for n = ! + 1. By induction there are my linearly independent spanning trees of

Knforalin>2 0O

2.2 The Trivial Inequalities

We now turn our attention to the so-called “trivial” inequalities, namely the inequalities

that define the boundary of the n-dimensional hypercube.

x; 20 )
j=1..,n
x, <1

Proposition 2.2: For n > 4 the inequality x; > 0 defines a facet of Ty, for every arc a € A. )

Proof: For n > 4 this comes directly from Grétschel’s results. The lower bounds, x; > @, do
not define facets for n = 2 or 3. In the case of n = 2, there is only one spanning tree, so no
spanning tree of K, will satisfy x; , = 0. Similarly, for n = 3, each of the three arcs is in two

of the three spanning trees, so only one spanning tree will satisfy x5 = 0, while mg ~ 1 = 2. O

Proposition 2.3: For n > 4 there exist m,, — 1 linearly independent spanning trees of K, sat-

isfying x; = 0 for all arcs a € A.

Proof: We assume that a = (1, n) without loss of generality, and view K, as

Kpy 1 '\

n—1 ¢
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Let {y"\:'_‘_:‘l" be a set of linearly independent spanning trees of K, ,. The existence of this set is

guarant. ' by Proposition 2.1. For i = 1, ..., m, , define m__; spanning trees of K, by

y;: ] € A(Kn-l)
x': = 1 J= (21 n)

0 otherwise

These vectors correspond to the spanning trees of K, ; with node n attached to node 2 as a leaf.

Next define the tree

1 i=@,n), 4<r<n-1

x’_"u-l"'l =

|
—

7= (1,2), (2, n)and (3, n)

0 otherwise

This tree satisfies x, , = 0 and has the form

[~~~ n—1

Now for ¢ = 3, ..., n—1 define n — 3 additional spanning trees by

y} ] € A(Kn-l)

mettt o b = (iw)

o
|

0 otherwise

These n — 3 trees are the spanning tree y' of K, , with node n attached as a leaf to each of




nodes 3 through (n—1), and hence satisfy x; ,= 0. The total number of points is

Mpy+ (=3 +1 =mp—1

my-1
=1

by Lemma 1.1. To see that they are linearly independent look at M = (x*)

Y X:::i-“ y! y!
0 0 0 0 row (1, n)
M= egn_l 1 0 0 row (2, n)
0 1 1 0
0 0 0 I 4
L -
where Y is the m,_, x (n — 4) matrix, each of whose columns is the vector y'. The columus of

the submatrices Y and Y'each contain n — 2 1’s since they represent spanning trees of K, .

m,.q+1

ma contains n — 3 1’s by construction. So, if we drop row (1, n), multiply

The vector x

row (2, n) by (n — 2) and subtract from it each of the rows above it, we get the matrix M’

~ ' -
0 i 1 2 ~—n i 2—n row (2, n)
M = 0
|
0 1 1 0
S - - =
0 0 0 : Li.s

Which has linearly independent columns by Proposition 1.5 since n > 4. 0O

Proposition 2.4: The inequality x; < 1 defines a facet of Ty n for all atcsa € A and » > 2.




Proof: By Grbtschel’s work, inequalities of the form
xa < IW| -1

a€A(W)

for all W C N, 2 < |W| < n are facets of Ty,n. Clearly, if we consider sets with |[W| = 2, i.c.,

W consists of any two nodes in N, we get the set of inequalities
Xa <1 forallae A. O

Proposition 2.5: For n > 2, there exist m, — 1 linearly independent spanning trees of K,

satisfying x; = 1 for all a € A.

Proof: We lose no generality in assuming that a = (1, n). Now view Ky, as

> n
i

By Proposition 2.1 there are m,_, linearly independent spanning trees of K, ;. Let {y"}l

K., 1 o\

n—1 ¢

-1
! be

their characteristic vectors. For 1 = 1, ..., m,, define spanning trees of Kn as follows:

vi 1€ A(K,)
x; = 1 ] = (1, n)

0 otherwise

These trees correspond to the spanning trees of K, .; with node n attached to node 1 as a leaf.

Now, for i = 2, ..., n—1 define n — 2 additional spanning trees of Ky by

[B]
(]




1 Jj=(2, 1, 3<r<n -1
xta ¥ b = (1, n) and (4 n)

0 otherwise

The trees xm""-‘-"l have the form shown below.

L~ -
1 a2 Ko — {1, 2) R T R P T
<
N \
t=2 1=3,...n—1

We now have the correct number of points. All that remains to be shown is that they are lin-

early independent. Consider the matrix M = (x‘);"="1'l.

M has the form

and clearly has full column rank by Proposition 1.5. Thus, the spanning trees which we con-

structed are linearly independent. O

2.3 Inequalities Generated by Partitions of the Node Set of K»

Grotschel proved that inequalities of the form

(2.1) Y xa<IWl-i
acA(W)
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are facets of Ty » for all W C N, 2 < |W| < n. Further, all spanning trees of K, must satisfy

(2.2) Xa=n— 1.
agA

If we subtract (2.1) from (2.2) we get the inequality

(2.3) S xa2a-—IWl
aEA-A(W)

which defines the same facet as (2.1), but has a different graphical interpretation. Let |[W| = 1,
and assume without loss of generality that W = {n—t+1, n—{+2, ..., n}. Define a partition
{V‘}‘;';"" of the node set N by setting V! = {i} fori = 1, ..., n—t and vt — W, Let

k = n — t + 1, then the inequality can be rewritten as

(2.4) i’: zk: L Y xa:| > k-1

=1 J=it1 G(V‘.Vj)

Inequality (2.4) states that the number of arcs in any spanning tree crossing between the sets of

the partition must be at least k — 1, where t is the number of sets in the partition.

Proposition 2.6: Let the family of sets {Vi}f.-=1’ k < n be a partition of the node set of K, such

that [V = 1,i=1,..., k — 1and |V¥| = (n — k + 1). Then (2.4) induces a facet of Tn,a.
Proof; This follows directly from Grotschel’s work and the discussion above. O
Corollary 2.7; If (X,X) is a cut in Ky, and either |[X| = 1 or |[X| = 1, then the inequality

Xa > 1 (2.5)
a€(x.X)




defines a facet of SP,,.

Proposition 2.8: There exist my, — 1 linearly independent spanning trees of K, satisfying

k-1 k

> Y xa =k-1 (26)

=1 | j=i41 aG(Vi Vj)

where {Vi}f=1 is a partition of N satisfying the conditions in Proposition 2.6.

Proof: Let k > 2 be given. Without loss of generality we assume that V' = {i} for 1 = 1, ..

k—1 and that V¥ = {k, ..., n} and proceed by induction on n. For n = %k + 1 we can view

KH—l as:

o k+1

By Proposition 2.1, there are m, linearly independent spanning trees of k.. We lose no
generality by assuming that at least one tree has node k as a leaf. Let Y be the matrix whose
columns are the characteristic vectors of these trees, with y! denoting the tree having node k as
a leaf. By adding node k+1 to node k as a leaf we can construct spanning trees of K, that

satisfy (2.6). Namely, for i = 1, ..., m, define




yi € AKy)

1 j=(k k+1)

L
I

0 otherwise

k-1
Now, we note that | ] V, = K, , and define k — 1 additional trees as follows. For

=]

i=1,..,k—1let

Y} J€ A(Kb.1)
=1 = (k1) and k1)

0 otherwise

These trees correspond to spanning tree y! of K, with leaf k sheared off, node k+1 is attached to
node i, and node k is reattached as a leaf to node k+1. These trees satisfy (2.6) since they arc
spanning trees of nodes 1, ..., k—1 plus a single arc to the set VE. The matrix whose columns

are the characteristic vectors of these M+, — 1 spanning trees has the form:

( Y YV
M= 0 T
T T
em, €y J
The columns of M are clearly linearly independent, hence we have constructed m, — 1

linearly independent spanning trees satisfying (2.6).

Now, assume that there exist m; — 1 linearly independent spanning trees of K,
satisfying (2.6) for some { > k + 1 with V¥ = {k, ..., I}. We now look at K4 which can be

viewed as:




(B
-1

ok

ol "

o I+1

By the assumption, there exist m; — 1 linearly independent spanning trees of K, satisfying

M

i Z Xa =k-1
=1 | j=i41 aG(Ui,Uj)

-

forU' =V, i=1,2 .., k—1,and vt = vk - {I+1}. Let Y be the matrix whose columns
are the characteristic vectors of these trees, We note that if we add node 41, as a leaf to one of
the nodes in the set V¥ — {I+1}, we obtain a spanning tree of K, | which satisfies (2.6). So

define the following trees for i=1..,m — L

)’; J € A(K))
x;I: 1 = 1+1)

0 otherwise

Now, for i = 1, ..., ¥ — 1 define the k — 1 additional trees




1
1
x;nl-l-{—i - 1
1
0

These trees have the form

i=(ni, 1<r<i

i=Gr), i<r<k-1
j=(nD k<r<i-—1
j= (4 I+1)and (} I+1)

otherwise

U v’ \ I+1
L -

/
< VE— (li+1) | vE
\

and are easily seen to satisfy (2.6). For i = k, ..., | — 1 define [ — k more spanning trees

1
1
x;n"l-H - 1
1
0

These trees have the form

J=(,n), 2<r<k-1
i=(n, k<r<
=), i<r<li
J= (1, {+1)and (i, +1)

otherwise

v N 141

\

\

< vE — i1} | Ve

/




and also satisfy (2.6). Finally, define the tree having thc for.a

14;}/( {0, 1+1)

\ =
\V
/

v#

This tree satisfies (2.6) and can be described by

1 7= (1, ), 2<r<hk-1
1 =(rl+1), k<r<li
e 7= )
: =
1 =1
0 otherwise

The matrix whose columns are the characteristic vectors of these my, - 1 trees has the form.

B I l m -1
v xml+1 | X, | x “+1 T
{ |
0 1 | 0 €L | 0
M= 0 0 U o ! 0
[ |
0 0 ] L €Lk
| |
e;,-l 1 | eIQ 0 ‘ 1
L J

Each column represents a spanning tree on | + 1 nodes, so it is easy to see that each column of

R m -1
the submatrix Y contains | — 1 1’s, while all the vectors x!, except x 1

I’s in the first m;, rows. The last vector contains k — 1 1'’s in the first m; rows. So multiph

the last row by [ — 1 and subtract each of the first m, rows. The result is

. contain only / — 2
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[ Y LT x! bt ]
Lo oy
0 1 : 0 e : 0
!
M = 0 0 |1, 0 + 0
| [
0 1 el 0 ' I—k
L l . _

Subtracting rows (1, [+1) to (k—1, I+1) from the last row, then adding rows (k, I+1) through

({—1, 141) to the last row gives us the matrix

[ Y xml+l xl me'l-1 ]
0 1 0 e 0
M = 0 0 I, 0 0
0 0 0 Il-k e’_k
0 0 0 0 2(1 - k)

which has linearly independent columns by Proposition 1.5 since ! > k + 1. Therefore, the
m,,, — 1 spanning trees satisfying (2.6) that we constructed are linearly independent, and hence
by induction, there exist m, — 1 linearly independent spanning trees of K, satisfying (2.6) at

equality for all n > k. 0O

We can also establish upper bounds on the dimension of any face induced by a general

partition, and give an exact dimension for faces induced by general cuts in Ky.

Proposition 2.9: Let {\/"}f-‘=1 be a family of sets that partitions the node set N of K,. Let ¢ be

the number of sets in this family having more than one member. Then (2.4) describes a face of

Ta,n of dimension at most m, — (¢ + 1).
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Proof: Construct the following graph. For each set V' in the partition add node v*, and let arc
(v‘, v’) be in the graph if there is an arc in K, connecting any two nodes in V* and V', Since
the family {Vi}f=1 is a partition of the nodes of K,, it is clear that the transformation of Kk, is
just K;. Any spanning tree of K, must induce a spanning tree on K,. Thus the number of arcs
crossing between the sets V' must be at least £ — 1. So (2.4) is a valid inequality for all
spanning trees of Kn. Now consider any spanning tree T that satisfies (2.4) at equality. If we
remove the k — 1 arcs which are in the sets (V?, Vj) for all 1 and j, we are left with & connected
components, some of which may be single nodes. Further, it is easy to see that each component

is a spanning tree of one of the sets A4 Thus, for any set V' that conta.ns more than one node.

T must satisfy

Z Xa =|Vi| - 1.

a€A(VY)

Therefore, each spanning tree T satisfying (2.4) at equality must also satisfy ¢ additional
equalities, one for each of the ¢ sets V* having more than one member. Each of these cqualities
deals with a different set of variables, so they are linearly independent. So, by Proposition 1.4

the dimension of the face of Ty described by (2.4) is at most m, — (¢ + 1). O

Proposition 2.10: Let (X,X) be an arbitrary cut in K, with 1 < |X| < n — 1, then the cut-set

inequality (2.5) defines a face of Ty,n of dimension exactly m, — 3.

Proof: {X, X} is a special partition of N, with ¢ = 2. Thus, by Proposition 2.9, the dimension
of the face described by the inequality is at most my, — 3. Now, we construct m, — 2 lincarly
independent spanning trees of K, satisfving (2.5) at equality to establish that the dimension of

the face induced by a general cut is exactly m, — 3.  Without loss of generality, let X = {1, 2.

...k} and X = {k+1, .., n} where 1 < k < n. By Proposition 2.1 there exist m, linearly




independent spanning trees of G(X,A(X)) and m__, linearly independent spanning trees of
G(X,A(X)). Let Y and Z, respectively, be the matrices whose columns are the characteristic
vectors of these sets of spanning trees. For this proof, we associate the arcs of the graph with
the components of the vectors in R™" in the following fashion. The first m, components will
correspond to the arcs in G(X,A(X)), the next (n — k) components will correspond to the arcs
in (X,X), and the last m__, components will correspond to the arcs in G(X,A(X)). Within each
of these three divisions, the arcs are ordered in the usual manner. Now, define m, ~ 2 spanning

trees of K, as follows. Fori =1, ..., m define

vi i€ AX)

1 7= (1,k+1)
X! =
7 ) -

4 j € AX)

0 otherwise

These trees have spanning tree 2! of G(X, A(X)) attached to each spanning tree of G(X, A(X))

by arc (1, k+1). Fora € (X,X) — {(1, k+1)} define

y; 7€ AKX)
.
xv;»(a)-l — J
! 2l jeAR)
0 otherwise

Finally, for i = 2, ..., m. . define

¥ 7€ AX)

my+k(n-k)-24 1 j=(1, k+1)
X.

’ Z jeAX)

0 otherwise

These trees consist of the spanning tree y! of G(X, A(X)) being connected to each of the
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spanning trees, except z', of G(X, A(X)). Each of these trees contains exactly one arc in (X,X)
and thus satisfies (2.5) at equality. To see that these trees are linearly independent consider the

matrix whose columns are the characteristic vectors of these trees.

Y Y!? Y!?
T

= em, 0 e;":u-k'l
0 L(n-byr 0
YA VA yA

Where Z' = Z — {z'}. We can use the rows containing the submatrix Ik("_k)_z to clear the Y'
from the rows above it and the Z! from the rows below it. Then subtract the .ﬁrst column from

each of the last m__, — 1 columns to get the resulting matrix

— | -
Y | 0 0
|
em 0 0
M = .
T -0_ ] o] 0
L k(n-k)-ll
YA 0o 'z'-27
L | -

The columns of Z' — Z! are linearly independent [26], so M/ satisfies the conditions of Corollary

1.5.1 for having linearly independent columns. Therefore, the dimension of the face of Ty,»

described by (2.5) is my — 3. O




Chapter III

The (s, t)}-Path Problem Polytope: IM

The previous chapter presents results for the polytope T, n, representing the special case
when STG reduces to the minimum spanning tree problem. When the order of P is two, STG re-
duces to another important special case, the shortest (s, t)-path problem. The results for the
shortest (s, t)-path polytope are presented separately from the case of general p for two reasons.
First, it is an important problem in its own right; second, and perhaps more importantly, the

polytope

T,, = conv{ x € R"" | x is a P-tree of K}
2,n

is not full dimensional, whereas T, , has full dimension if p > 3. The proof techniques uscd in
this chapter lay the groundwork for the results in the next chapter, which covers the case of

general p.

In Chapter II we defined a generic set {y*}%_, of k characteristic vectors in R™%. We

will use such sets in this chapter, with Y denoting the matrix whose columns are these vectors.

As before, the values of k and ¢ will be clear from the proofs.

3.1 The Dimension of T

Yol —_— X A2

One factor which separates the case of p = 2 from that of p > 3 is that the palytope
T, , is not full dimensional, while for p > 3 it will be. In the case of n = 2, there is only one

arc, and only one P-tree, so the dimension of T, =0 < 1 = m,




Proposition 3.1: For n > 2, dim(T, ,) = ms, — 2

Proof: Since |P| = 2, both nodes in P must be leaves of any P-tree in K, so every P-trec must

satisfy the two equations:

n
.Z x, ;= 1, (3.1)
=2
n
X392 + Z X,; =L (3.2)

|
\ =
|
These two equations are independent, therefore, by Lemma 1.4
|
dim(T, ;) £ m, — 2.  (3.3)
| We now list m, — 1 linearly independent points of T, ,, which satisfy (3.3) at equality. As in

the previous chapter we will proceed by induction on n. For n = 3, my — 1 = 2, and there

are only two P-trees, namely

0 | and | 1
0 1
These two trees are clearly linearly independent. Now assume that, for n = [ there are m; — |

linearly independent spanning trees of K,, for some [ > 3, and let’s look at K, ;. We can view

Ky, as:




i+1.

Any P-tree of K, is also a P-tree of Ki4,- By the assumption there exists a set of m, — 1

linearly independent P-trees of K;. Let Y be the matrix whose columns are the characteristic
m

vectors of these trees in R . Define ! additional P-trees of K 1+ by the following set of

characteristic vectors. Let the first two vectors be

{ 1 7= (1, 141)and (2, I+1)

X; =
0 otherwise
and,
1 71=1(1,3), (2, 14+1)and (3, I+1)
2
X7 =
! { 0 otherwise

1 I+1 2 13 +1 2
X! x2
Define the remaining { — 2 P-trees as follows, for : = 3, ..., {

{ 1 j=1(24), (1, I+1) and (i, I+1)

0 otherwise




This family of vectors corresponds to the family of P-trees of the following form:

The total number of P-trees is (m; — 1) + I, which by Lemma 1.1is m;,, — 1. To see that
these vectors are linearly independent consider the m, , x (m,, — 1) matrix M whose

columns are the vectors Y and X. M has the form:

~ | -
T A
0 1 0 lle,3
|
M= o ; 1 1 o ' o
|
|
0 0 1 1+ 0
L o - - _ - __ - - -
r
0 0 0 o 1,3_]

By Proposition 1.5 the columns of M are linearly independent. Therefore,

dim(T,,,) = my — 2

foralln >3. 0

We now turn our attention to inequalities that describe facets of T, ,. As in Chapter

I1, we start with the hypercube bounding inequalities.

The hypercube bounding inequalities are those of the form:

37
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Xa >0
(3.4)
Xa <1
for any arc a € A. They are clearly valid for T, ,, so for each possible value of n > 3 we need
only demonstrate mn, — 2 affinely independent points satisfying each of these inequalities at

equality in order to show that it is a facet. In the case of n = 3, dim(T, ;) = 1 so the only

possible facets of T, 3 are its two vertices.

1 0
0 | and | 1
0 1

Clearly one of these two vectors satisfies each of the six bounding inequalities (3.4) at equality.

Thus, the inequalities (3.4) describe facets of T, 3. Forn >4, however, we need to consider the

location of the arc a, i.e.,isa = (1, 2) = A(P),oris a € (P, S) or A(S)?

3.2.1 The Lower-Bound Inequalities

Proposition 3.2: For p = 2 and n > 4, the inequality x; , > 0 induces a facet of T, ,.

Proof: The proof will be by induction on n. For n = 4 there exactly four P-trees that satisfy

Xy,2 = 0, namely

1 2 1 2 1 2 1 2
3 4 3 4 3 4

(1) (2) 3) {4)

Figure 3-1
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The matrix of characteristic vectors of these trees is

OO = O
S = = 0 o O
[T = N — L e —]
— D e e OO

which is easily seen to have full column rank. Thus there are m, — 2 = 4 linearly independent

points in T, 4 satisfying x, , = 0, and hence x; 5 > 0 induces a facet of T ,.

Now assume that there exist m; — 2 linearly independent P-trees of K, for some { > 4

and look at Kl+l'

K, ;E

I+1.

d

Every P-tree of K, is also a P-tree of K ;. By the assumption there exist m; — 2 lincarly
. m,-2
independent P-trees of K, satisfying x; , = 0. Let Y = {y'}zgl be a set of characteristic

m
R ! of these trees. Now notice that the set X of [ vectors constructed in the proof

vectors in
of Proposition 3.1 all satisfy x, , = 0. Furthermore, the arguments used in that proof to

establish the linear independence of the total set of P-trees only required the columns of Y to be

linearly independent. This independence follows by assumption. Therefore, we have
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linearly independent P-trees of K, which satisfy x, , = 0, and hence, x; » > 0 induces a facet

of T2,I+1' By the induction principle, this inequality induces a facet of T, , forall n > 4. O

Since T, ,, is not full dimensional, there may be several representations of facets. To

illustrate this, consider the following corollary.

Corollary 3.3: The inequality

induces a facet of T, .

Proof: Consider the facet x; , > 0. If we multiply this facet by (—2) and add to it the two
equations (3.1) and (3.2) that all P-trees in this category must satisfy, we get the inequality

above. 0

In the case of n = 4, the arc (1, 2) turns out to be the only arc whose corresponding

lower bound inequality induces a facet.

Lemma 3.4: For n = 4, x5 > 0 is a face of T, 4 of dimension 2 for all arcs a € A, except

(1, 2).

Proof: There are only five P-trees in this case, the four listed in Figure 3-1 above plus the trec




The matrix whose columns are these five vectors is

A quick examination shows that every arc a € A, except (1, 2), is contained in exactly two
trees. So for any arc a € A, a # (1, 2), there are three trees that satisfy x; = 0. These trees
are linearly independent since all five of the trees are linearly independent. Therefore, x5 > 0

describes a face of T, 4 of dimension 2 for all arcs a € A except (1,2). DO

We now turn our attention to the arcs in (P, S) and n > 5.

Proposition 3.5: For n > 5, the inequality x, > 0 describes a facet of T, , for all arcs

a € (P,9S).

Proof: We lose no generality by assuming that a = (1, n). We view K, as

Y
i

n—l/

and notice that any P-tree of K, _, is a P-tree of K, satisfying X; n = 0. By Proposition 3.1,

41




there are m, , — 1 linearly independent P-trees of K, ,, so let Y represent these trees. Now

define n — 3 additional P-trees. For 1 = 1, ..., n — 3 define

. { 1 7= (2, n), (1+2, n) and (1, 14+2)
x! =

0 otherwise

These trees satisfy x; , = 0, and have the form

Define one last P-tree by

{ 1 ] = (11 3)‘ (21 4)9 (3v 11.) and (4' ")

0 otherwise

x™2 represents the tree

P
$co
s
NN
boo

which satisfies x; , = 0. The total number of trees is

mg, — 1+ n=-2)=my — 2

by Lemma 1.1, so all that remains to be shown is that they are linearly independent. Let M be

the matrix (Y, X). Then
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-
y | Xm, 7
S
0 | 0 0 0 0 row (1, n)
|
o, 1 1 el . 0
M=
o | 1 0 0 1
|
0 1 0 1 0 1
I
o , 0 0 I, 0

- | —
Y | Xm,
_____________ 1
0 | 1 1 o el
|
M = o , 1 0 1 "o
]
o ' 0 1 110
Lo— - - - - — _ _ - - = -
0 0 0 0 | L

The columns of M/ are linearly independent by Proposition 1.5. Therefore, x; > 0 induces a

facet of T2,n for all arcs 2 € (P, S). O

As in the case of arcs in (P, S), the arcs in A(S) all have facet inducing lower bound

inequalities.

Proposition 3.6: For n > 5, the inequality x; > 0 induces a facet of T, , for all arcs a € A(S).

Proof: Without loss of generality, we can assume a = (n—1, n). Look at K, as




n—l/

We will list mp — 2 linearly independent P-trees satisfying Xp.1,n 2 0 at equality to prove that
the inequality is a facet of T, ,. As in the previous proof, there are m, ; — 1 linearly
independent P-trees of K, _,, all of which satisfy Xp.yq = 0. Let Y be the matrix whose columns
are the characteristic vectors of these trees. Now define n — 2 additional trees in the following

manner. First, let

x! =

{ 1 J=1(1,3), (2, n)and (3, n)

0 otherwise

which satisfies x; = 0 and has the form

pr—s
[~

p3

beO

Now define x? as

{ 1 7 = (1, n) and (2, n)

0 otherwise

which has the form

1 n 2
*—————e
x2

And finally, for 1 = 3, ..., n — 2 define the remaining n — 4 trees by




AV

{ 1 7= (1, n), (2, i) and (4, n)

0 otherwise

These trees all satisfy x,,.; , = 0 and they represent the family of P-trees

As in the proof of Proposition 3.3 we have m, — 2 vectors, and the matrix M whose columns

are these vectors has the last row whose elements are all 0’s. If we drop this row we have the

matrix

~ ' _
Yo Xm,
o | 0 1 1 —: el s
1
M/ = 0 1 1 o ! o
| [
0 L ! 0 1 0
0 0 0 0 : I,

The columns of M’ are linearly independent by Proposition 1.5. Therefore, the columns of M

are linearly independent. 0O

3.2.2 The Upper-Bound Inequalities

We now turn to the upper bound inequalities. Recall, that for T, 5. both the upper-

and lower-bound inequalities define facets, so we need only look at the case of n > 4.

Lemma 3.7: For n > 4, the inequality x, , < 1 describes a vertex of T, .
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Proof: For any n > 2 there is exactly one P-tree satisfying x; , = 1, namely

1 2

—o

Thus, for any n, x; , < 1 can only describe a vertex of T, ,. O

Proposition 3.8: For n = 4, the inequality xa < 1 describes a face of T, , of dimension 1 for all

a € A, except (1, 2).

Proof: As was noted in the proof of Proposition 3.2, there are only two P-trees containing any

arc a € A, except (1, 2). These two trees are linearly independent, so the dimension of the face

described by x5 < 1is 1. O

Proposition 3.9: For n > 5, the inequality x5 < 1 describes a face of T, , of dimension at most

m, , — 2 for any arc a € (P, S).

Proof: Without loss of generality, let a = (1, n). Since |P| = 2, all P-trees are contained in an
equality space of dimension at least 2, because they must satisfy (3.1) and (3.2). But since any
P-tree satisfying x, , = 1 has node 1 attached to node n, and node 1 must be a leaf of the tree,

we can replace (3.1) with the n — 1 independent equalities




must be satisfied. Each of these n 4 1 equations involves different variables, so they are

independent.  Therefore, by Lemma 1.4, the face described by x, , < 1 has dimension at most
my—(n+1l)=mp—-—(n-1)-2=m,,—2.0
Finally, we turn our attention to arcs in A(S).

Proposition 3.10: For n > 5, the inequality x3 < 1 describes a face of T, ,, of dimension at

most m, — 6 for any arc a € A(S).

Proof: Without loss of generality, let a = (n—1, n). As in the proof of the previous

proposition, any P-tree satisfying x,,_.; , = 1 must also satisfy the two equations (3.1) and (3.2)
as wel] as:

1) xl’2 = 0,

n-2
3) z Xk’n_l = 1.
k=1

Equation (1) tells us that arc (1, 2) cannot be in the tree, while equations (2) and (3) force the
degree of nodes n—1 and n to be 2. All six equations are clearly independent, so by Lemma 1.4

the face of T, , described by x,,; , < 1is at most m, — 6. D

3.3 Cut-Set Inequalities

In Chapter Il we examined inequalities generated from cuts in K, and from partitions of
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the node set. In the case of p = 2, it is easy to see that the only partitions that generate valid

inequalities are cuts, because the P-tree

will violate any > inequality with 0, 1 coefficients whose right hand side is greater than 1, and
the P-tree which is a (1, 2) path spanning all the nodes of K, will violate any < inequality with
0, 1 coefficients whose right hand side is less than n — 1. First, we establish which cut-set

inequalities are valid.

Lemma 3.11: Let (X, X) be a cut in K,. The inequality

Y xa21 (3.5)

a€(X,X)

is valid for T, , if and only if X YP # 0and X N P # 0.

Proof: Assume that (3.5) is valid. This implies that every P-tree has at least one arc in (X, X).
In particular, the arc (1, 2) is in (X, X) which implies that X (YP # @and X | P # 0.
Conversely, if this latter condition is satisfied, then at least one arc in any P-tree must cross the

cut. Thus, (3.5) is valid. O

If (X, X) generates a valid inequality and has the property that either X or X contains a
single node, then (3.5) reduces to one of the equalities (3.1) or (3.2). So, if either X or X is a

singleton, then (3.5) is an improper face of T, ,. All other valid cuts are facets of T, ,.

Proposition 3.12: For n > 4, if (X, X)is a cut in Ky such that X (YP # @, XN P # @, and

1 < IX| < n = 1, the inequality (3.5) induces a facet of T, ,.
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Proof: The inequality is valid by Lemma 3.11, so we need only demonstrate that we can find
my, — 2 affinely independent P-trees satisfying () at equality for any such cut (X, X). To do
this we let |IX| = £ — 1 > 2 be given and proceed by induction on n. Without loss of gene-
rality, let X = {1, 3, 4, ..., k} and X = N — X. Proceeding by induction, first let n = k + 1.

View KH—I as

le
Joe
2 o k+1
X
X ke
Kk

If we restrict (x) to K, we get the inequality

k
X2 + E X, 21
1=3
which must be satisfied at equality by every P-tree of K, since it is one of the equalities which
defines the space. By Proposition 3.1 there exist m;, — 1 linearly independent P-trees of K.
These trees clearly satisfy the inequality (#) at equality. We now construct & — 1 additional

trees as follows. First, define

e

{ 1 J= (1, k+1) and (2, k+1)

0 otherwise,

which has the form

1 k+1

[ 1)
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and satisfies (3.5) at equality. Now, for i = 3, ..., k define

1 7= (1,19), (2, k+1) and (i, k+1)

0 otherwise

These trees have the form

1 3 k+1 2

and satisfy (3.5) at equality since the only arc ir (X, X) is (4, k+1). We now have

P-trees by Lemma 1.1. To see that these P-trees are linearly independent consider the matrix M

whose columns are their characteristic vectors.

_ | -
L me
0 ! 1 0
M= | -
0 | 1 ek_z
J
0 | 0 L,

M clearly has linearly independent columns by Proposition 1.5. Thus, the P-trees we construc-

ted satisfying (3.5) are linearly independent, and the proposition holds for n = & + 1.

Now, assume that there exist m; — 2 linearly independent P-trees satisfying (3.5) at

equality for some [ > k + 1. We can view K

4 38




K,

®2
o k+1

o l+1
ol X

Every P-tree of K| is also a P-tree of K M1 and further, every P-tree of K, satisfying

will satisfy (3.5) at equality. But, by the assumption, there exist m; — 2 linearly independent

Xa-':l

a€(X.,X-{i+1})

P-trees of K, satisfying the above equation. Let Y be the matrix whose columns are the

characteristic vectors of these trees. Now construct ! additional trees. First, let

:
and

x:
Then, for i = 3, ..., { define

j= (1, 1+1) and (2, I+1)

otherwise

i= (1, 1+1), (2, k+1) and (k+1, I+1)

otherwise

7= (1,19, (2, I1+1)and (¢, {+1)

otherwise

These [ trees all clearly satisfy (3.5) at equality and they have the forms shown below.

5l
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p—

I+1 2 1 41 k+1 2

x! x?

Po—a

i 412

x*i=3..,1

Now consider the matrix whose columns are the characteristic vectors of these m, +1 — 2 trees.

Y x}nl x?,,l Xml' xf,."l'l X,,.I"
0 1 1 0 0
T T
0 1 0 €y 1 €l k1
M=
0 0 0 L, 0 0
0 0 1 0 1 0 row (k+1, 1+1)
0 0 0 0 0 Lk

Subtracting the column corresponding to x**1 from the column corresponding to x° gives us the
g g g

matrix

Y | x',,,,
PR — -_ 1. -— — - -_— - _l
0 1 1 0
M= | |
0 1 -1 ' e,
L - — - - - “4 - - - -
0 0 0 I,

which clearly has linearly independent columns by Proposition 1.5. Therefore, the P-trees that

we constructed are linearly independent, and by the principle of induction (3.5) induces a facet
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of T, , forany n > 4. O

3.4 Other Facet-Inducing Inequalities

In any P-tree, every node in S will either have degree 0, or degree 2. The inequality

that expresses this fact induces a facet of T, ,.
Proposition 3.13: Let n > 4. Then for each node s € S, the inequality

2x20+ > x,,<2 (3.6
LEN-{s}

induces a facet of T, ,,.

Proof: Any P-tree falls into eactly one of the following three cases.
1) The P-tree consists of the arc (1, 2) in which case (3.6) is satisfied at equality.
2) The arc (1, 2) is not in the P-tree and
a) node s is in the tree having degree 2. In this case (3.6) is satisfied at equality.
b) node s is not in the tree, so the left hand side of (3.6) is 0.
Thus, the inequality is valid. Now, we must show that for any value of n > 4 and any node
s € S, there exist my — 2 affinely independent P-trees satisfying (3.6) at equality. We show, in
fact, that the required number of P-trees are linearly independent. Without loss of generality,
let s =3. We proceed by induction on n. For n = 4, there are exactly my, — 2 = 4 P-trees

that satisfy (3.6) at equality, namely:

1 2 1 2 1 2 1 2
L X
3 3 4 3 4




The matrix whose columns are the characteristic vectors of these trees is

o O O O © =
O OO e = D
[l B — B T N ]
= S — B —

which is easily seen to have full column rank.

Now, assume that there exist m;, — 2 linearly independent P-trees of K, that satisfy

(3.6) at equality for some I > 4. We can view K, as:

1
N
2 o

[+1

K :
e

The assumed m; — 2 linearly independent P-trees of K, satisfying

2 Xy2 + Z X,k <2
EEN-{3,1+1}

are also P-trees of K, satisfying

2 xll2 + Z x"k S 2.
kEN-{3}

Let Y the matrix whose columns are the characteristic vectors of these trees. Now construct {

additional P-trees as follows. First, let
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{ 1 J=1(2,3),(3,1+1) and (1, I+1)
1 _

0 otherwise

1 71=1(1,3), (2, 141)and (3, I+1)
2
X< =
! { 0 otherwise
and
1 71 =1(1,3),(3,4), (4, I+1) and (2, I+1)
3
X. =
! { 0 otherwise
These trees have the forms
1 4+1 1 3 1 3
.——T >y 34
—t —db
2 3 2 I+1 2 1+1

Finally, for 1+ = 4, ..., | define the trees

{ 1 j=(1,3)(2 ) (3 I+1)and (1 I+]1)

0 otherwise

which have the form

All of these trees satisfy (3.6) at equality. The matrix whose columns are the characteristic vec-

tors of these trees has the form
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_ \ -
Y | xl,.l x?,.] x?“l xfnl X"‘II
0 : 1 0 0 0—: 0
0 0 1 1 o |
M= | !
(- 1 1 0 1, e,
|
0o ' o 0 ] 1 0
S A
0 0 0 0 o ! 1,
]

This matrix has linearly independent columns by Proposition 1.5. Therefore, the m, +1 — 2
P-trees which we constructed that satisfied (3.6) at equality are linearly independent, and by in-

duction this proves that (3.6) induces a facet of T, ,, for n > 4 and any node s € S. O




Chapter IV

The P-tree Polytope Tp.»

In this chapter we consider the case of 3 < p < n — 1, and we look at the polytope

Tp,n = conv{ x € R™™ | x is the characteristic vector of a P-tree on Ky}.

Prior to proving that the polytope is full dimensional, we set up some tools that will facilitate

all the proofs in this chapter.

Lemma 4.1: If a matrix has one of the following forms

Q=[e] k22

-
1 e
Q= I“ k> 3,
€k1 Yk
-
1 0 e
Q= P

then the columns of that matrix are affinely independent. Furthermore, the columns are

linearly independent if the matrix is equivalent to QZ.




Proof: Qi: Consider the (k+1) x (k+1) matrix

— 1 e
T _ k k
U = ez- 1

Subtracting the first k rows from the last row gives the equivalent matrix

which has linearly independent columns for k > 2 by Proposition 1.5. Thus, Qi has affinely

independent columns for £ > 2.

Qi: Rearranging the rows and columns of Qf gives us the equivalent matrix

Ik-l €k
T
ey 1

This matrix, however, is identical to Q_i_;, which has full rank if ¥ — 1 > 2. Therefore, for

k > 3 the columns of Qi are linearly independent, and hence affinely independent.

Q3: Consider the (k+1) x (k+1) matrix

1 0 €,

Qi =| €1 1 T
T

1 1 €

subtracting the second column from the first yields the equivalent matrix

! T

- _l -4 _0_ - cf"_
0 i (‘/:-1 ll‘-l
U “Ix
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The lower right k x k submatrix is equivalent to Qz, which has linearly independent columns for
k > 3. Thus, by Proposition 1.5, the columns of af are linearly independent. Thus C?z has full

rank, and the columns of Qf are affinely independent. O

As in Chapters II and III, many of the proofs will be inductive, and will either through
assumption or by invoking a previous result, establish the existence of a set of k affinely
independent P-trees of K, for ¢ = p, (n — 1), or some generic . As in the previous chapters we
define {y"}f-‘=l to be the set of characteristic vectors in R %of these k P-trees, and Y to be the
matrix whose columns are these vectors. The values of ¢ and k will be clear from the context of

the proof. Now we proceed to prove that the polytope Tp n has full dimension.

4.1 The Dimension of Ty

Proposition 4.2: For any p > 3, there are Mot + 1 affinely independent P-trees in Kp+1.

Proof: Let p > 3 be given. Then Kp+l has the form

10\

I\'p >p+1

pe

Clearly, every spanning tree of P is a P-tree of Kp+l’ and by Lemma 2.1 there are my linearly
independent spanning trees of K,. Let Y be the matrix whose columns are the characteristic

vectors of these trees. Now define p + 1 additional P-trees as follows. First

1 J=1(1,2), (2, p+1) and (3, p+1)
=1 j=@n4<r<y

] otherwise




x! is the spanning tree of Kp +; shown below.

lo— 2
P - {2, 3} p+1.
\
— 3

Next, for i = 2, ..., p define

1 J=(1, p+1)and (4, p+1)
1 Jj=(nd) 2<r<i
1 j=(@r) i<k<p

0 otherwise

This family of p — 1 spanning trees of Kp+l has the form shown below.

1
P - {1,1} p+1.
\
] 1

Finally, define the P-tree xtH by

=

{1 J=(rnp+l) 1 <r<p
=

0 otherwise

which has all the nodes of P connected to node p+1 as leaves. The number of P-trees is
m,,+p+l=mp+l+l

from Lemma 1.1. As before we demonstrate their affine independence by letting M be the
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matrix whose columns are the vectors X and Y and looking at

Y xinp x?np x:,’np X'mp 0
0 0 1 1 e 1
0 1 1 0 0 1
M=
0 1 0 1 0 1
0 0 0 0 I ep.3
em, 1 1 1 e s 1

The columns of Y are spanning trees of K, and thus contain p — 1 1’s. By their construction
the columns of Xm, each contain p — 2 1’s. Thus, if we multiply the last row of Mbyp—1

and subtract each of the first mp, rows we get the matrix

Y x}np x,2np x?np X'mp 0
T
0 0 1 1 €3 1
0 1 1 0 0 1
M =
0 1 0 1 0 1
0 0 0 0 I3 €p.3
0 1 1 1 e s p—1
Now multiply the last row by 2 and subtract each of the p rows immediately above it. The final

result is the matrix




Y : Xh, X, Xmpy  X'm, 0
- - - - - - - - R R
0 | 0 1 1 | &3 1
|
o , 1 1 N | 1
iviii
M’ = |
0 :_ 1 0 1 1 0 1
i e S
0 0 0 0 | I €.
0 0 0 o ! 0 p—2
u ( _

which is upper block triangular with diagonal blocks that have linearly independent columns.
Thus, by Proposition 1.5, the columns of M are linearly independent and, hence, the P-trees we

constructed are affinely independent. D

Proposition 4.3: For3 < p < n — 1,dim(Tpn) = ma.

Proof: Let p > 3 be given. We need to show that there are m, + 1 affinely independent P-trecs
of K, for all values of n > p + 1. We proceed by induction on n. First, for n = p + 1, we
have m, + 1 affinely independent points in Typ,» by Lemma 4.2. Now assume that therc are
m, + 1 affinely independent points in T, ; for some [ > p + 1. This implies that there are

m, + 1 affinely independent P-trees in K,. Look at Kig

A

+1

K, /

All P-trees of K, are also P-trees of KI+1' Let Y be the matrix whose columns are the

characteristic vectors of a set of m; + 1 affinely independent P-trees of K,. Now form {
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additional P-trees as follows. First, define x' by

{1 Jj=(rnl+1) 1<r<yp

0 otherwise

This corresponds to the P-tree with all nodes in P adjacent to node I+ 1, and is illustrated in (1)

of Figure 4-1. Fori = 2, 3, ..., p define

1 j=(1, I+1) and (i, I+1)

1 j=(ri) 2<r<i

oL,

1 ij=(r) i<k<p

0 otherwise

which corresponds to the family of trees shown in (2) of Figure 4-1. Finally, for i = p + 1 to /

define
1 7= (1, {+1) and (3, I+1)
=41 j=(ni) 2<r<p

0 otherwise

giving us [ — p P-trees of form (3) in Figure 4-1.



641

P 2 P -{l,1i}
1 2 p=1 p /3
AN a 1 41 /:
[~ep—1
+1 P
(1) (2)
/02 P - {1}
3
1 I+1 i /.
[ ~ep—1
\p
3)
Figure 4-1

By Lemma 1.1 we now have my, + 1 P-trees, and all that remains to be shown is that they

are affinely independent. So consider the matrix whose columns are the vectors X and Y. This

matrix has the form

r ] —

Y | Xm,
—-— - — ’_ —-— — [P — .‘

T
0 1 e;—_l | €y
M= |
0 €p.) L,' o
T

L . P

The center diagonal submatrix is equivalent to Q",;, and since p > 3, this submatrix has linearly
independent columns by Lemma 4.1. Thus, M has affinely independent columns by Proposition

1.6. Therefore,

dim(Tle_l) =m,.
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And so by induction,

dim(Tp'n) = My

for all valuesof nwith3 < p<n—1. 0

Now that we have established the dimension of Tp n, we turn our attention to the

hypercube bounding inequalities.

4.2 The Trivial Inequalities

4.2.1 The Lower-Bound Inequalities

As in Chapter III we need to consider the location of the arc. First we consider the

special case of p = 3.

Proposition 4.4: For p = 3 and n > 4, x5 > 0 describes a facet of T , for all arcs a € A(P).

Proof: Without loss of generality, assume that a = (1, 2). We need to list m, affinely

independent points satisfy-ing x; , = 0 for all values of n > 4. We proceed by induction on n.
For n = 4 there are six arcs (m; = 6) and there are only six P-trees satisfying x; , = 0. They

are

12 ] 2

A N [ ]

\/ 3 4 3 4
3

12 12 ;2
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Let M be the matrix of characteristic vectors of these trees, then

=l

I
L — R — N — 2 L
—_ S e e o =
[ I — N S N -
—_ e O = = D o
I R R S — T — T =)

which is easily seen to have rank 6. So for n = 4 there are m, = 6 affinely independent P-
trees, and x; , > 0 describes a facet of T3 ,. Now assume that there are m, affinely indc-

pendent P-trees of K, satisfying x, ,= 0 for some [ > 4. View K, as

PN

+1

K, A

and again note, that every P-tree of K is also a P-tree of Ki4,- LetY be the matrix whose
columns are a set of m, affinely independent characteristic vectors of P-trees satisfying x, ,= 0.

and define [ additional trees in the following manner. Let

{1 (1, 1+1), (2, I+1) and (3, i+1)

x]' =

0 otherwise

1 (1, I+1), (2, {+1) and (2, 3)
x? =
I { 0 otherwise

and




-

{ 1 (1, 14+1), (3, I+1) and (2, 3)

0 otherwise

For the last | — 3 trees definefor i = 4, ..., |
1 7 = (1, 14+1) and (4, I4+1)

x;j ={1 71=1(2,4) and (3, i)

0 otherwise

All of these trees satisfy x, ,= 0. They have the forms shown below.

1 ) 1 2 1 2
3 I+1 3 I+1 3 1+1
xl x2 x3
1 2 3
I+1 1
X', i=4,.,1
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We now have m; + | = m,,, P-trees. If they are affinely independent, then x, , > 0 induces a

facet of T, 1 The matrix whose columns are the columns of Y and X is

r |
Y | Xm,
_-0_‘:—;———1-__1-? e
M= 0 ! 1 1 0: 0
T N S B
i 0 0 0 o: I, |
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Clearly by Proposition 1.6, the columns of M are affinely independent. Thus, the m;, columns
of Y and X are affinely independent, and x; , > 0 induces a facet of Ta, 1 So by the principle

of induction, the lower bound inequality x; > 0 defines a facet of Tj , for all » and any arc

a€ A(P). D

Proposition 4.5: For p > 4 and n > p + 1, the inequality x5 > 0 describes a facet of Ty » for

all arcs a € A(P).

Proof: Let p > 4 be given. Then, without loss of generality, we assume that a = (1, 2). We
now demonstrate my affinely independent P-trees satisfying x, , = O forall n > p + 1.

Working by induction, let n = p + 1 and view Kp R

10\1
K, >P+l

pe—"|

Every spanning tree of K, is a P-tree of K By Proposition 2.3 there exists a set of m, — 1

r+
linearly independent spanning trees of K, satisfying x; , = 0. Let Y be the matrix whose

columns are characteristic vectors of these spanning trees. Now construct p + 1 additional

P-trees as follows. For i = 2, ..., p define

1 J=(1, p+1) and (3, p+1)
1 i=(rni) 2<r<
1 I=(@r)i<k<yp

0 otherwise

Then define
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1 j=(np+tl) 1 <r<p
xJ’-’ = {
0 otherwise
and
1 j=(rnp+l) 2<r<p
P =J1 j=(1,3)
0 otherwise
These trees have the forms
/2 P — {1, 14}
3
1 p+l /.:
[~ep—1
4
x*Loi=2,..,p
P 2 P — {13}
1 2 r-lop /
\ '\ / / 1 3 p+ /
~p—1
p+1 \P

|4 1
X XP+

We now have LW P-trees by Lemma 1.1. Let M be the matrix (Y, X), and look at
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0 xf,:;l T
1 0

p-1 €p-1

1 1

The columns of Y are spanning trees of K, and hence contain p — 1 I’'s. The columns of X’mp

each contain p — 2 1’s by construction, and xf,,':l

contains exactly one 1. So multiply the last

row by p — 1 and subtract the first m, rows and the rows containing the submatrix I, ; from it.

The resulting matrix is

{ )

Y + X'n 0 X
- — — ’— — —— - — — -_—
T 1

0 €5 1 | 0

!
L ST I
0 0 0 =1

which, by lemma 4.1, satisfies the conditions of Proposition 1.5 for having linearly independent

columns. Thus the mo P-trees that we constructed are affinely independent. So there are

mo4 affinely independent P-trees of Ko+ satisfying x; ,= 0.

Now assume that there are m, affinely independent P-trees of K for some { > p + 1.

and look at KI-H‘

I+1




Any P-tree of K, is also a P-tree of K- Let Y be the matrix whose columns are the
characteristic vectors of a set of m, affinely independent P-trees of K, which satisfy x; , = 0.
Using the same construction as in the induction step of the proof of Proposition 4.3 gives a
matrix M with the same form as that shown on page 64, but in the present case the columns of
Y are affinely independent and not linearly independent. Since all columns of X satisfy x, ., = 0
by construction, Proposition 1.6 enables us to conclude that the columns of (Y, X) are the
characteristic vectors of m; + | = My affinely independent P-trees of K4, all of which
satisfy x; = 0. Thus, by the induction principle, the inequality X;,2 2 0, and hence any

inequality of the form x; > 0, a € A(P), is a facet of Tpn forany n > p + 1. O

We turn now to the arcs in (P, S), and immediately need to treat a special casc.

Lemma 4.6: For p = 3 and n = 4, the inequality x5 > 0 defines a face of T3 , of dimiension 3

for all arcs a € (P, S).

Proof: If an arc a € (P, S), say a = (1, 4) is not allowed to be in a P-tree, then the only

possible P-trees are the three spanning trees of P and the two trees of the form:

1 2 1 2
-—9 I ¢
S

3 4 3 4

1 1 0 1 o ]
1 0 1 0 1
o 1 1 0 0
M=| 0 0 0 0 o
o 0 o0 1 1
o 0 o0 1 1
L1 11
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can quickly be seen to have rank 4. So the dimension of the face described by the inequality

xa >0is3. 0O

Proposition 4.7: For p > 4 and n = p + 1, the inequality x; > 0 induces a facet of T, ,4. for

any arc a € (P, S).

Proof: Let p > 4 be given. Without loss of generality, let a = (1, p+1). The inequality
X) pt1 > 0 is clearly valid for Tp,p+1’ 30 we need only show that there are ™o affinely

independent P-trees in K’,_*_1 satisfying X p41 = 0. Kp+l can be viewed as

le
K, P oep+1
pe

Any spanning tree of P is a P-tree of Kp_,_1 satisfying x, 1 = 0. By Proposition 2.1 there are
my linearly independent spanning trees of P. Let Y be the matrix whose columns are the char-

acteristic vectors of these trees. Now define p additional P-trees. First, for i = 3, .. ., p define

1 7=1(1,2), (2, p+1)and (i, p+1)

1 j=(ni) 3<r<i

xi? =
’ 1 j=(Gr) i<k<p
0 otherwise
Then define the two trees
1 ] = (]» 2)
x)’.’": 1 J=(rp+1) 2<r<y

0 otherwise




and

1 J=1(,3)and (2, 3)
xf = 1 j=(f,?+1)3STSP

0 otherwise

These trees satisfy x, p+1 = 0, and are shown below.

/3 P — {1, 2} ] /4 P — {12 3]
4 5

P+ /._. 3t :

w-l

P

x xP

—
[3%]

-
(3]

Let M be the matrix (Y, X). Since row (1, p+1) is all 0's, drop it and look at

- -
Y X'mp xh X,
0 e 1 0 row (2, p+1)
M =
0 I,., €p.o €0
pr e;j? 1 )
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The columns of Y are spanning trees of K, and hence contain p — 1 1’s. The columns of X',,.,’J
each contain p — 2 1’s by construction. Finally, vector x,’};; contains exactly one 1 and vector
xf,.tl contains two 1’s. So multiply the last row by p — 1 and subtract the first m, rows and

the rows containing the submatrix I, , from it. the resulting matrix is

_ , 1
Y | X’m, xf,;; xf,.p
——o—l__T___I_' 0 2, p+1
p-2 '
- e . row (2, p+1)
t
0 'L 1,,_2 €2 | €2
0 0 0 | -1
— ] -

which has linearly independent columns by Propositions 4.1 and 1.5 . Thus, the moy P-trees
that we constructed are affinely independent and x; > 0 induces a facet of Tp",_{_l for all arcs

a€eA. 0O

Proposition 4.8: For p > 3 and n > p + 2, the inequality x5 > 0 induces a facet of Tp » for all

arcs a € (P, S).

P of: Let p > 3 be given. Without loss of generality, assume a = (1, p+1). The inequality is
clearly valid for Tp n, so we need to find my affinely independent P-trees that satisfy xa = 0.

We proceed by induction on n. For n = p + 2, we view Kp+2 as

op+2

K
r+1 p+1le

and have two cases to consider. If p > 4. then by Proposition 4.7, there are o affinely inde-
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pendent P-trees of Kp_‘_1 satisfying x; ., = 0. We then define p + 1 additional P-trees exactly
as was done in the proof of Proposition 4.3 with { = p + 1. By their construction these trees
satisfy Xy gy = 0, and by Proposition 1.6, the total set of Mmoo P-trees are affinely

independent, so we are done. If p = 3, however, we need to look at the following 10 P-trees

that satisfy x, 4, = 0.
1 2 1 2 v 1 2 1 2
3 3 3 3 4 3 5
1 2 1 2 1 2 3
3 5 3 5 5 4
1 2 3 1 3 2
4 5 4 5

Let M be the matrix of characteristic vectors of these trees, then

=l
!
=
=
=
—_
=
=
=
—_
=
—_




which has rank 10. So these trees form the set we need.

Now assume that there are m, affinely independent P-trees of K;, which do not usec arc

a=(1,p+ 1) forsomel> p + 2, and look at K.

P

41
K,

By the assumption, there are m, affinely independent P-trees of K, satisfying Xy pp1 = 0. and
every P-tree of K, is also a P-tree of KH-I' Let Y be the matrix whose columns are the
characteristic vectors of these trees, and X be the matrix whose columns are the characteristic
vectors of the [ P-trees constructed in the proof of Proposition 4.3. We see that we now have a
set of m P-trees that satisfy Xip41 = 0 and are affinely independent by Proposition 1.6.
Therefore X|p41 2 0 describes a facet of Tp,l+1' By the induction principle x5 > 0 will

describe a facet of Tpn for p > 3and n > p + 2and allarcs a € (P,S). O

Last, we turn to the lower-bound inequalities involving arcs in A(S).

Proposition 4.9: For p > 3 and n > p + 2. the inequality x5 > 0 induces a facet of T, for

any arc a € A(S).

Proof: Let p > 3 be given. Without loss of generality, let a = (n—1, n). The inequality is
clearly valid, so we need only demonstrate my, affinely independent P-trees satisfying

Xp.i,n = 0. View Ky as




-]
-1

The diagram is drawn for n > p + 4, for the purpose of clarity, but as will become clear by the
construction of the trees satisfying x,,_; , = 0, we can prove the result for n > p + 2. By
Proposition 4.2, there are m,_; + 1 affinely independent P-trees of K,,.;. None of these trees
uses arc (n—1, n). Let Y be tne matrix whose columns are the characteristic vectors of these

trees. We can now construct n — 2 additional P-trees by letting

{1 j=(nn) 1<r<yp

xj =
0 otherwise
Fori = 2,..., pdefine
1 7= (1, n) and (4, n)
1 j=(ni) 2<r<i
x€ =
J

1 j=rn) i<k<Lyp

0 otherwise

andifn > p + 2, thenfori = p + 1 to n — 2 define

1 J = (1, n) and (1, n)

xJ‘: 1 j=(rn1) 2<r<p
0 otherwise
These n — 2 vectors satisfy x,_, , = 0 since they do not use arc (n—1. n). and correspond to




the trees

The total number of trees is

My, +14+4Mm=-2)=m,; +(n—1) = my,.

To see that these vectors are affinely independent let M be the matrix (Y, X).

r ] -
Y | Xm, ,
- - - - - - T T 7 3
T T
0 | 1 €1 | Cpap
M= I L, ' o
L - - - - - - Lo -
0 0 0 L2y
—_— - e - e - = o
0 0 0 0 row (n—1, n)
L .

Dropping row (n—1, n) from M, we see that the matrix has affinely independent columns by

o
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Proposition 1.6. Thus the inequality x; > 0 induces a facet of Ty n for p > 3, n > p + 2 and

all arcsa € A(S). O

In summary, except in the case of p = 3, n = 4 with a € (P, S), the inequality x5 > 0
induces a facet of Tpn, for p > 3, n > p + 1 and all arcs a € A. This will not prove to be the

case for the upper-bound inequalities.

4.2.2 The Upper-Bound Inequalities

As in the case of the lower bounds, we will consider the inequalities by the location of

the arc a, starting with a € A(P). We immediately have a special case.

Proposition 4.10: For p =3, n > p + 1, and a € A(P), the inequality x5 < 1 induces a face

of T3 , of dimension at most mp, — 3.

Proof: Without loss of generality, let a = (1, 2). To establish this upper bound on the

dimension of the face we demonstrate that every P-tree that satisfies x; , = 1 must also satisfy
two other independent equations. Since nodes 1 and 2 are connected, node 3 must be a leaf. so

we have the equation

n
X;3 + Xp3 + Z X35 = 1.
=4

Also, either node 1 or node 2 must be the other leaf, so only one other arc can be incident 10

either of nodes 1 and 2. This can be expressed in the equation

n

Z (xw- + x,;) =1L

=5

Each of the three equations deals with different variables, so they are independent. Therefore,




80
there are three independent equations that all P-trees which include arc (1, 2) must satisfy.

Thus, by Lemma 1.3, the dimension of the face described by x; , < 1 is at most my, — 3. 0O

For p > 4, however, we have the following result.

Proposition 4.11: For p > 4and n > p + 1, the inequality x; < 1 describes a facet of Ty,» for

each arc a € A(P).

Proof: Let p > 4 be given. Without loss of generality, let a = (1, 2). The inequality is valid
for Tp,n, so we list mn linearly independent P-trees of Ty, n satisfying x; ,= 1 for any

n > p + 1. By induction, let n = p + 1 and view Kp+1 as

K, : >p+1

Every spanning tiee of P is a P-tree of Kp +1 and by Proposition 2.2, there exists a set of
my — 1 linearly independent spanning trees of P satisfying x; , = 1. Let Y be the matrix

whose columns are the characteristic vectors of these trees. Now define two P-trees by

1 71=1(1,2),(2 p+1) and (3, p+1)

1 j=@,r) 4<r<p

0 otherwise
and
1 1=1(1,2),(2 3), (3, p+1) and (4, p+1)
x2=41 J=(4,r) 5<r<y

0 otherwise
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These two trees satisfy x; , = 1 and have the forms shown below. Please note that the trees are

illustrated for a value of p > 7 for clarity sake, but they apply for the case of p > 4.

— 92 33
1 2 P {17 -y 3J
. /04
iqfl
p+1 p
x!
1 9 3 P - {lv 21 3' 4}
/05
4 .

Qz:—l
p+1 P

%

Now for t = 3, ..., p define the p — 2 additional P-trees

1 7=(1,2), (1, p+1) and (1, p+1)
1 Jj=(ni) 3<r<i
1 j=(ni<r<p

0 otherwise

These trees also satisfy x; , = 1 and have the form

p+1 P




Finally, define

1 i=(,2)
xPHl =41 j=(rnp+l) 2<r<yp
0 otherwise

which has all nodes except node 1 attached to node p+1. Node 1 is attached to node 2 as a leaf.

We now have

my—1+3+(p-2=m+p=m,,

P-trees, all satisfying x; , = 1. Let M be the m, . X m ., matrix whose columns are the

1

characteristic vectors of these trees. Then

Y x},,p x?np me’ xi’n';l
0 0 0 1 1 ey, 0
0 1 0 0 0 0 1
M=
0 1 1 1 0 0 1
0 0 1 0 1 0 1
0 0 0 0 0 I €
- -

where row 1 is all 1's. The columns of Y are spanning trees of Ky containing p — 1 1's. The

2 . " - .
vectors xﬁnp and Xy each contain p — 2 1’s by construction, the columns of ,\mp' also contain

p—2 1% xf,,";l contains exactly one 1. Multiply row 1 by p — 2, subtract rows 2 to mj from

it and append it as an extra row at the bottom of the matrix. Note that this new matrix, M',

has the same column rank as M.




[y Xy Xhn, Xmp' xhh |
0 0 0 1 1 e q 0
0 1 0 0 0 0 1
M = 0 1 1 1 0 0 1
0 0 1 0 1 0 1
0 0 0 0 0 I, e,.q
0 1 1 1 1 ey .4 p—2

- . -
Y i X}np xgnp me xfn“;l
0o 0 0 1 1 el 0
|
R 0 0 o ! 0 1
| n
M = 0o 1 1 1 0 0 1
n
0 0 1 0 . 0 !
L oo - - - - - - Lo - - - — - -
0 0 0 0 0 1 I, €p.4
!
0 0 0 0 0 0 p—3

which satisfies the conditions of Proposition 1.5 for having linearly independent columns.

Therefore, we constructed m,.o linearly independent P-trees satisfying x, , = 1.

Now assume that there are m, linearly independent P-trees of K, satisfying x, , = 1 for

some ! > p 4+ 1 and iook at K ;.

P

I+1
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We will find m;, linearly independent P-trees of K., satisfying x,, = 1. Since every P-tree

of K, is also a P-tree of K, +10 let Y be the matrix whose columns are the characteristic vectors

of m, linearly indeppendent P-trees of K, that satisfy x; , = 1. Now define the P-trees

xﬁ—l
I
—

and

N

For i = 3, ..., p define the trees

and fori = p + 1, ..., | define

—

The total number of P-trees is

i=(1,2), (2 i+1) and (3, I+1)
=@ 4<r<p

otherwise

1=1(1,2),(2,3), (3, I+1) and (4, I+1)
j=M@4,r) 5<r<yp

otherwise

i=1(1,2), (1, I+1) and (i. I4+1)
j=(n1) 3<r<
J=(@,r 1<rLp

otherwise

J=1(1,2), (1, I+1) and (3, I+1)
j=(i,7‘) 3<r<yp

otherwise




and they all satisfy x; , = 1. The trees that the vectors correspond to are listed below.

L P — {1,2, 3]
4
3 —
Q—l
+1 P
x!
1 9 3 P - {1, 2v 3‘ 4}
5
4 /.
+1 \P
x2
_ 9
i 5 P — {1, 2, i}
/3

w—l
I+1 P
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All that remains to be shown is that these P-trees are linearly independent, so look at the -

matrix M = (Y, X).

— ] —
Y | Xmp
- Sy - - - - T T 007 - T
0 | 0 0 1 li €py
0o ! 1 0 0 0o ! 0
M= | I
0 1 1 1 0 0
| |
ooy r ooty
0 0 0 0 0o ! I
i R

The columns of M are linearly independent by Proposition 1.5. Thus, there exist m,_ linearly
independent P-trees of K4, satisfying x, , = 1, and hence, by the principle of induction,

X1,2 < 1 defines a facet of Ty, for p >3and n > p + 1. 0O

When we consider the arcs in (P, S) we see that the upper-bound inequalities do not
induce facets unless n > p + 2. Similarly, for arcs in A(S) the upper-bound inequalities do not

induce facets unless n > p + 3.

Proposition 4.12: For p > 3 and n = p 4 1, the inequality x5 < 1 describes a face of Tp,p+x

of dimension m 4, — 2 for all arcs 2 € (P, S).

Proof; Since n = p + 1, and arc a € (P, S) is forced to be in the P-tree, the P-tree is also a

spanning tree of Ky+ Therefore, any P-tree satisfying x = 1 must also satisfy

1

mp+l
X; = p.

1=l




These two equations are clearly independent, so by Lemma 1.4, the dimension of the face
described by x; < 1 can be at most Moy — 2 for all arcs a € (P, S). We will now
demonstrate mo -1 linearly independent P-trees satisfying x3 = 1 to prove that the

dimension is exactly moy = 2. Let p > 3 be given. As always, view Kp_Has:

p+1

Without loss of generality, let a = (1, p+1). By Proposition 2.5 there exist mp — 1 linearly
independent spanning trees of K, satisfying x) , = 1. Let Y be the matrix whose columns are

the characteristic vectors of these trees. Now, define m, P-trees of K, 4, as follows. First,

define
1 71 =1(1,2), (1, p+1)and (3, p+1)
x)‘-: 1 Ii=@3,nN4<r<yp
0 otherwise
and then, for 1 = 1, ..., mp — 1 define

yi  jeAP) - {(12)
P =11 j=(1,p+1)and (2, p+1)
0 otherwise

The tree x! has the form:

2 1 p+l g/p/-{m.s}

\\

on
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and the mp — 1treesx’, i=2,..., m correspond to the spanning trees Y of Kp with arc (1, 2)
P ? p

replaced by the two arcs (1, p+1) and (2, p+1). Note that these trees do not use arc (1, 2).

We now construct p — 2 additional trees in the following manner. For i = 3, ..., p deiinc

1 7= (1, p+1)and (i, p+1)
. _ ) < )
mptiz 1 J=(ni), 2<r<i

1 i=(@r), i<r<p

0 otherwise

These trees satisfy x, p+1 = 1 and have the form

1 p+l P - {1, 3}

All of these trees use the arc (1, p+1), and do not use arc (1, 2). Finally, define the tree

m -1
X. 2 of S

{1 j=(np+l) 1<r<p
J

0 otherwise

This tree satisfies x, .., = 1, does not use arc (1, 2), and has the form

1ol
: >p+l

P p:oﬂ

We now have constructed m,, , — 1 P-trees satisfying Xy p41 = 1. To see that they are
linearly independent, consider the matrix whose columns are the characteristic vectors of thesc

trees. This matrix has the form

.
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i 1 0 0 0 0 i row {1, 2)
v y! M x’m, 0
= 1 e_,‘,:p_l 1 ela 1 row {1, p+1)
0 €mp-1 0 0 1 row (2, p+1)
1 0 1 0 1 row (3, p+1)
0 0 0 €3
L -

Where Y/ is composed of the last mp — 1 rows of Y. Use the first row to clear the first column.

Then multiply row (1, p+1) by (p — 2). The resulting matrix is

[ 1 0 0 0 0 ] row (1, 2)
0 Y/ mpH X'm, 0
" 0 (r—2) eI,.x pP-2 (p—-2e, p-—2 row (1, p+1)
- 0 e-"’;r" 0 0 1 row (2, p+1)
0 0 1 0 1 row (3. p+1)
0 0 0 L. €3
L -

. 1 . .
Each of the columns of the submatrices Y' and Xmp, and the vector xm"+ contain (p — 2) I's
by construction, so subtract the rows containing these submatrices from row (1, p+1). Then

move the resulting row to the bottom of the matrix. The result is
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1 ] 0 0 0 0 row (1, 2)
—- -t -=-19
o 4 Y o, ™ X m, 0
| T |
0 e, _ 0 0 1 row (2, p+1
M” — L -— _ﬂlp_l 4_ ______________ ( P )
0 0 i 1 0 1 row (3, p+1)
|
0 0 | 0 I3 €p.3
0 0 : 0 0 p—2 row (1, p+1)

v!
The matrix | -I is Y with its first row moved to the bottom, and has full column rank
emp-l J
since Y has full column rank. Hence M’/ satisfies the requirement of Proposition 1.5 to have
linearly independent columns. Therefore, the dimension of the face of Tp p1 described by

Xa<lism,,, —2forae(P,S). O

?
Proposition 4.13: For p > 3and n = p + 2, the inequality x5 < 1 describes a face of Tv.p+’.'
of dimension m, 1, — 2 for all arcs in A(S).
Proof: As above, any P-tree satisfying x5 = 1 for the arc a € A(S), must be a spanning tree of
KP+2 and must, therefore, satisfy

Tpt2

x;=p+ L
=1

making the dimension of the face that it describes at most m 4, — 2. We can now construct
Mo, — 1 linearly idependent P-trees satisfying x; = 1, proving that the dimension of the face

is exactly mo .= 2. Let p > 3 be given. As before, view KP‘{_2 as:




l\\

P~
: p+2

p+1 ]

Kr+x

The only arc in A(S) is (p+1, p+2). Therefore, we need to construct mo,—1 linearly

independent P-trees satisfying T 1. By the proof of Proposition 4.12, there exists a

set of Moy — 1 linearly independent P-trees of K’,+l satisfying X p41 = L. Let Y be the

91

matrix whose columns are the characteristic vectors of these trees. Now, construct Myt P-trees

of Kr+2 as follows. First, let

1 7= (p+1, p+2), (1, p+1) and (2, p

x! 1 i=@,r3<r<,

0 otherwise

and then,fori=1,..., m +1— 1 define

4

v i€ AK,,) — {1 p+1))

Xt

1 Jj= (1, p+2) and (p+1, p+2)

0 otherwise

Each of these trees satisfies Xobipt2 = 1. The tree x' has the form:

"
1 p+l p+2 2 —[ P-{1,2}

/

9

)




92
As in the proof of Proposition 4.12, the Moy — 1 trees x‘, i =2, ..., mp correspond to the
P-trees Y of K,y with arc (1, p+1) replaced by the two arcs (1, p+2) and (p+1, p+2). We

now construct p additional trees in the following manner. First, define

1 I= (1’ 3)v 3, p+1)a (2v P+2) and (p+1, P+2)
+1
x;n"'*'l ={1 i=(2,r4<r<yp

0 otherwise

and for t = 3, ..., p define

1 1=1(1,2), (2, p+1), (i, p+2) and (p+1, p+2)

i 1 Jj=(ni 3<r<i

1 j=(r) i<r<p

0 otherwise

These trees satisfy Xpp1p42 = 1 and have the forms

[ Lo
w

p+1 p+24_2< P - {1,2,3)

x"‘p+1"'1

—
[ ]

1 2 p+l p+2 i TP —{1,2,4}
- ~— T ———
~—~——_
P

m 411
x r+1

=3, ...,

Finally, define the tree
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1 7 =(1,p+1)
x; P = 11 j=(r,p+2) 2< r < p+l

0 otherwise

This tree satisfies Xpp1p42 = 1 and has the form

—F - (1)
~—~——_

1  p+1 p42 :

We now have constructed M4, — 1 P-trees. They all satisfy Xpt1p+2 = L and none of them,
except for the first and last, use arc (1, p+1). To see that they are linearly independent
consider the matrix whose columns are the characteristic vectors of these trees. If we move rows

(1, p+1) and (p+1, p+2) to the positions shown, this matrix has the form

i 1 0 0 0 1 _row(l.p+1)
v Y T X, 0
V= 1 e;p’l 1 e;r.z 1 row {p+1, p+2)
0 €yl 0 0 0 row (1, p+2)
1 0 1 0 1 row (2, p+2)
0 0 0 €)n

where Y/ is Y with row (1, p+1) deleted. The structure is similar to that of the matrix in the
proof of Proposition 4.12. As before, use the first row to clear the first column. Then subtract

row (p+1, p+2) from row (1, p+2). The resulting matrix is
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i 1 0 0 0 1 i row (1, p+1)
0 Y LT X
! = 0 eIP_l 1 elz 0 row (p+1. p+2)
- 0 0 -1 —e;r_z 0 row (I. p+2)
0 0 1 0 0 row (2, p+2)
0 0 0 I €,.2

Add each of the last p — 1 rows to row (1, p+2). Then move the resulting row to the bottom

of the matrix. The result,

- -

1 0 0 0 1 row (1. p+1)
L +1

! Mp ! ,
0 | Y \ X M-l Y
0o e:‘n- -1 ' 1 elz 0 row (p+1. p+2)
M = Lo T _
0 0 i 1 0 0 row (2, p+2)
l
0 0 | 0 P €y 2
0 0 : 0 0 p—2 row (1. p+2)

satisfies the conditions of Proposition 1.5 for have linearly independent columns since

Y= T

e
mp-1

Therefore, the Moo — 1 P-trees we constructed are linearly independent, and the dimension

of the face of Tp-p+2 described by x5 < 1, a2 € A(S)ism, , — 2. O

Forn>p+2,a€(P,S)and n > p + 3, a € A(S), the upper-bound inequalities do




95

define facets of Tp,n.

Proposition 4.14: For p > 3 and n > p + 2, the inequality xa < 1 induces a facet of Ty, n for

all arcs a € (P, S).

Proof: Let p > 3 be given. We will proceed by induction on n. First, for n = p + 2, look at

Kr+2 as

e p+2

K p+1 e

p+1

Without loss of generality, let a = (1, p+1). Now, by the proof of Proposition 4.12, there exists
a set of Moy = 1 linearly independent P-trees of K?_H satisfying X|pt1 = 1. These trees are
also P-trees of K’J +2- Let Y be the matrix whose columns are the characteristic vectors of these

trees, and define the following two P-trees.

1 7= (1, p+1), (1, p+2) and (2, p+2)
x; =11 j=(rnp+l) 3<r<p
0 otherwise

and

1 7= (1, p+1), (2, p+1), (2, p+2) and (3, p+2)

>
N

i

b

i=@,r)4<r<y

0 otherwise

Both of these trees satisfy Xy p1 = 1. They have the forms




\

P - {1,2)

]

+
™~
[

/
|

\

P — {1, 2 3}

Now, for 1 = 2, ..., p define the p — 1 P-trees

i

Each of the trees in this family satisfies Xy pt1

1 p+1 p+2
1 =
Finally, define the tree
1
x’»’+2 = 1

0

7= (1, p+1), (3, p+2) and (p+1, p+2)

i=(ni) 1Sr<i
Jj=(ni) i<r<p
otherwise

= 1, and has the form

L
1 P —{1,1}
[
2,..,p
LI = (1 p+l)
J=(rnp+2) 2<r<ptl

otherwise

96
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which also satisfies x, 1 = 1. This tree has all nodes except node 1 attached to node p+2.
Node 1 is attached to node p+1 as a leaf. By Lemma 1.1, the total nuinber of P-trees we have

is
Mpg1 — 1+(+2)= Moo

To see that they are linearly independent, let M be the matrix whose columns are the
characteristic vectors of these trees. Let M’ be M with row (1, p+1) repeated as row

(1, p+l)* in the position shown below:

i Y Xmo 41 0
eTP+l,1 1 1 1 1 ey 3 1 row (1, p+1)*
0 1 0 0 0 0 0 row (1, p+2)
M = 0 1 1 1 0 0 1 row (2, p+2)
0 0 1 0 1 0 1 row (3, p+2)
0 0 0 0 0 Is e,
0 0 0 1 1 els 1 row (p+1, p+2)

Note that M/ and M have the same column rank. Each of the columns of Y is a P-tree of Kp+l
which contains node p+1, thus it is also a spanning tree of p + 1 nodes and hence the columns
of Y contain p 1’s. By construction, each of the columns of the submatrix me+lcont.ains
p — 1 1’s. So, if we multiply row (1, p+l)* by p and subtract from it each of the first

m, 4 FOWS, We get the resulting matrix
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~
Y Xm ot 0
0 ! 1 1 1 el p | row (1, p+1)*
0 1 0 0 0 0 0 row (1, p+2)
0 1 1 1 0 0 1 row (2, p+2)
0 0 1 0 1 0 1 row (3, p+2)
0 0 0 0 0 1.3 €3
0 0 0 1 1 ey s 1 | row (p+1, p+2)

Subtracting row (1, p+2) from rows (1, p+l)* and (2, p+2), and subtracting row (p+1, p+2)

from row (1, p+l)* gives us the matrix

Y xmp_H 0

0 0 1 0 0 0 p—1 | row(1, p+)¥
0 1 0 0 0 0 0 row (1, p+2)

0 0 1 1 0 0 1 row (2, p+2)

0 0 1 -0 1 0 1 row (3, p+2)

0 0 0 0 0 Ls e

0 0 0 1 1 els 1 row (p+1, p+2)

Finally, subtract row (1, p+l)* from rows (2, p+2) and (3, p+2) and then subtract these two

rows and the rows containing the submatrix I, 5 from row (p+1, p+2) to get
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_.Y_:____ Xmpts -_.__01
0 : 0 1 0 0 0 p—1 |row(, p+D)*
0 11 0 0 0 0 0 row (1, p+2)
0 : 0 0 1 0 0 2—p |row (2, p+2)
0 : 0 0 0 1 0 2—p |row(3 p+2)
0 ' 0 0 0 0 Ls s
0 : 0 0 0 0 0 p | row (p+1, p+2)

|
Thus, M has linearly independent columns by Proposition 1.5. and the Moty P-trees that we
constructed are lineatly independent.
Now, assume that there exist m, linearly independent P-trees satisfying x, 1 = 1 for

some ! > p + 2, and look at K ,.

P

p+1 o I+1

K, v

Each P-tree of K, is also a P-tree of Kl+1’ so let Y be the matrix whose columns are the
characteristic vectors of m; linearly independent P-trees of K; satisfying x, 41 = 1. Next,

define l additional trees of K, | beginning with

1 5= (1 p+1), (2, p+1), (2, 1+1) and (3, I+1)
xi=d1 j=@r4<r<yp

0 otherwise




This tree satisfies X\ gy = 1 and has the form

For i = 2, ..., p define the trees

1
. 1
x! =
’ 1
0
and for s = p + 2, ..., | define
1
1
x‘:'l =
’ 1
0

i=(Q, p+1), (1, I+1) and (4, I+1)
Jj=(np+l) 2<r<i
J=(np+l) i<r<yp

otherwise
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7= (1, p+1), (1, I+1), (2, p+1) and (4, I+1)

j=(i9r) 1<r<p

otherwise

These two families of trees satisfy the equality and have the forms

P+V%l, i}

and

/

/
2 p+l 1 I+1 i 7 [P-{1,2)
; —_

/




101
Finally, define
1 7=, p+1) and (p+1, I+1)
xk=4¢1 j=(rni+1) 2<r<p

0 otherwise

which has nodes 2, ..., p+1 connected to node I+1 and node 1 attached to node p+1 as a leaf.
This gives us a total of m,, P-trees satisfying X 41 = 1. To see that these trees are linearly

independent consider the matrix whose columns are the characteristic vectors of these trees.

g l haa
T Xmy Y
0 | 0 1 1 T T 0 (1, 1+1)
_ | 3 CL(p+) row {4
{
0, 1 1 o ' 0 0 1
|
[
M= 0 1 0 1 0 0 1
Lo : _______ -
0 0 0 0 | I 0 €3
0 0 0 o b o 0 1 row (p+1, I+1)
|
0 0 0 0 | 0 II-(p+1) 0

M has linearly independent columns by Proposition 1.5. Thus, by the principle of induction,

Xa < 1 induces a facet of Tpn for p > 3and n > p + 2 and all arcsa € (P, S). O

Proposition 4.15: For p > 3 and n > p + 3, the inequality x5 < 1 induces a facet of Tp,n for

all arcs a € A(S).

Proof: Let p > 3 be given. Without loss of generality, let a = (p+1, p+2). We will proceed

by induction on n. For n = p + 3, look at Kpta
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P J
N

p+1 o——>- p+3

p+2 /

Kr+2

By Proposition 4.13, there exist Moo — 1 linearly independent P-trees of K 42 satisfying
Xpt1p42 = 1. These trees are also P-trees of Kp+3' Let Y be the matrix whose columns are

the characteristic vectors of these trees. Define the following two P-trees.

1 1= (1, p43) and (p+1, p+2)

1 7 = (2, p+3)and (2, p+1)

X. =
’ 1 J=(np+2) 3<r<yp
0 otherwise
and
1 i = (1, p+2), (2, p+1) and (p+1, p+2)
1 7= (2, p+3)and (3, p+3)
2
X. =

1 j=@r) 4<r<p

0 otherwise

Both of these trees satisfy Xpp1p42 = 1. They have the forms

1 p+3 2 p+l p+2 ~T P - {12}
- v~ \

\

1 p+2 p+l 2
-— \/<P—{l,2,3}

3
<+
@
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Now, for ¢t = 2, ..., p define the p — 1 P-trees

1 7= (1, p+2)and (p+1, p+2)

1 J = (4 p+3) and (p+1, p+3)

Il
—

x;-+1 j=(ni) 2<r<i
1 Jj=(@Gr i<r<p

0 otherwise

Each of the trees in this family satisfies Xpp1p+2 = 1, and has the form

L
1 p+2 p+l p+3 i~ |P - {14

~———

t=2,..,p

Finally, define the two trees

1 j= (1, p+2)and (p+1, p+2)

¥2= 41 j=(np+3) 2< 1< ptl
0 otherwise
and
1 7= (1, p+1)(p+1, p+2) and (p+2. p+3)
T =81 j=(np+3) 2< < ptl

0 otherwise

which also satisfy x, p+1 = 1. These trees have the forms

1
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1 p+2 p+l p+3 —T P — {1}
|

2
x"+

1 p+l p+2 p-i-3/{{l}
<__|

xx’+3

The total number of P-trees we have is

My — 1+ (p+3)=my,

To see that they are linearly independent, let M be the matrix whose columns are the
characteristic vectors of these trees, and let M’ be M with row M, 4, repeated as row

(p+1, p+2)*. M’ has the form

- -
I T -

T i T *
e"‘p+2'1 | 1 1 1 1 €p.3 1 1 (p+1, p+2)
0 , 1 0 0 0 0 0 0 (1, p+3)

0 : 1 1 1 0 0 1 1 (2, p+3)
0 ' o0 1 0 1 0 1 1 (3, p+3)
[
0 | 0 0 0 0 Ly es e
! T
0 | 0 0 1 1 €p.3 1 0 {p+1, p+3)
o 'o 0 0 0 0 0 1 (p+2, p+ )
— ' w—d




and has the same column rank as M. Each of the columns of Y is a P-tree of Kp+2 which

contains nodes p+1 and p+2, thus it is also a spanning tree of p + 2 nodes and hence the

columns of Y contain p + 1 1’s. By construction, each of the columns of the submatrix
p y

xmp+2

, except the last two, contain p 1’s. The last two columns of Xm

p+2

contain exactly two

I’s. So, multiply row (p+1, p+2)* by p + 1 and subtract from it each of the rows above it.

The resulting matrix is

_E_:_______z('"ﬁ’_-
0 1 1 1 1 e, p—1p—1
0 : 1 0 0 0 0 0 0
0 : 1 1 1 0 0 1 1
o "o 1 0 1 0 1 1
0 : 0 0 0 0 Ip-3 €,.3 €,.3
0 : 0 0 1 1 ey 1 0
0 ; 0 0 0 0 0 0 1

(p+1, p+3)

(p+2. p+3)

Subtract row (1, p+3) from rows (p+1, p+2)* and (2, p+3), and subtract row (p+1, p+3)

from row (p+1, p+2)* to get the matrix

_ Y_ -: - x"‘p+2
0o o 1 0 0
0 : 1 0 0 0
0 : 0 1 1 0
0 : 0 1 0 1
0 0 0 0 0
0 : 0 0 1 1
0o ' 0 0 0 0

0 0 0
0 1 1
0 1 1

eIa 1 0
0 0 1

(p+1, p+‘2)*
(1, p+3)
(2. p+3)

3, p+3)

(p+1i, p+3)

{p+2. p+H)




106

Finally, subtract row (p+1, p+2)* from rows (2, p+3) and (3, p+3), and then subtract these

two rows and the rows containing the submatrix I,_5 from row (p+1, p+3) to get

y !
- - 4 - _

o ' oo 1 0
|

0 1 1 0 0
|

o 0 0 1

o o 0 0
|

0 1 0 0 0
|

o 0 0 0

0 oo 0 0
L i

0 p—-2—p:I
0 0 0
0 3-p 2-79p
0 3—p 2-7p
s &3 e
0 p—2 p—-1
0 0 1

(p+1, p+2)*
(1, p+3)
(2, p+3)

(3, p+3)

(p+1, p+3)

(p+2, p+3)

By Proposition 1.5, M/ has linearly independent columns. Thus, the mo4s P-trees that we

constructed are linearly independent.

Now, assume that there exist m; linearly independent P-trees satisfying Xppipps = 1

for some [ > p + 3, and look at Kl+1'

K,

P

pt+1 o I+1

S

Each P-tree of K, is also a P-tree of Kl+1' Let Y be the matrix whose columns are the

characteristic vectors of these m, trees. Next, define | additional trees of K, , beginning with
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1 7= Q, p+2), (2, 14+1) and (3, {+1)
1 j = (p+1, p+2) and (2, p+1)
1 j=@n4<r<yp

0 otherwise

This tree satisfies the desired equality and has the form

1 p+2 p+l 2 141 3 TP -{1,2,3)
'\\

For i = 2, ..., p define the trees

1 ;7= (1, p+2) and (p+1, p+2)

1 7= (1, !1+1) and (4, I+1)

x;:: 1 I=(np+l) 2<r<
1 j=(r,p+l) 1<r<yp
0 otherwise
and for i = p + 3, ..., [ define
1 7= (1, p+2), (1, 14+1) and (4, I+1)
1 j = (p+1, p+2) and (2, p+1)
x‘:'z =

1 J=() 3<r<yp

0 otherwise

These two families of trees satisfy the desired equality and have the forms



\\
i=2,..,p
and
|

2 p+l pr2 1 41 i P -{1,2)

/

Finally, define the two trees

1 J = (1, p+2) and (p+1, p+2)
x}": 1 I=(ni+l) 2< r< p+l
0 otherwise

and

1 3= (1, p+1), (p+1, p+2), and (p+2, I+1)

xb = 1 J=(",l+1)2S"SP
0 otherwise

These trees satisfy Xppip42 = by and have the forms

L~
L opt2 gt TP -1

-y

/

\

/
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To see that these trees are linearly independent, consider the matrix whose columns are the

characteristic vectors of these trees. This matrix has the form

y ! Xm,
- - = - - - - 4 - -
0 1 1 VT T 1,1
0 ! [ %3 St O 0 (1, 1+1)
|
0o, 1 1 0 ! 0 0 1 1 (2, I+1)
|
o ' 1 0 1, 0 0 1 1 (3, I+1)
L - - - - __ - m— - — - - - - - -
0 0 0 0 | L.s 0 €p.3 €p.3
0 0 0 0! o 0 1 0 (p+1, I1+1)
|
0 0 0 01 0 0 0 1 (p+2, 1+1)
!
0 0 0 0 0 Iguy O 0

Clearly the matrix has linearly independent columns by Proposition 1.5. Thus, by the principle
of induction, the upper-bound x; < 1 induces a facet of Tpn for p > 3and n > p + 2 and all

arcsa € (P,S). O

4.3 Cut-Set Inequalities

If (X, X) is a cut in K, which separates P, i.e. X (VP # @ and X | P # 0, then the

inequality

xa> 1 (4.1)

is clearly valid for Tp,n. In fact, if (X, X) does not separate P, the inequality is not valid, since
any spanning tree of P (which uses no Steiner nodes) will violate it. As in the case of spanning

trees, general cuts will not induce facets of T, ,. Only cuts which satisfy the conditions of the
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next two propositions induce facets.

Proposition 4.16: If p > 3 and n > p +1, and if (X,X) is a cut in K, satisfying

DIXI=1orlX| =1

2)XNP#0andXP#£0

then inequality (4.1) induces a facet of Ty.x.

Proof: Let p > 3 be given. Without loss of generality, let X = {1}. We will proceed by

induction on n. For n = p 4+ 1 we can view K4, as:

)
N

le
p+1

A

By Proposition 2.8, there exists a set of mp — 1 linearly independent spanning trees of K,

satisfying

Xa = 1.
a€(X,X-{p+1})

Each of these spanning trees is a P-tree of Kp+1 which satisfies (4.1) at equality. Let Y be the

matrix whose columns are the characteristic vectors of these trees. Now define p — 1 additional
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P-trees as follows. For i = 2, ..., p define

1 J= (1, p+1) and (i, p+1)
1 i=(n) 2<r<i
1 j=(r) i<r<yp

0 otherwise

These trees satisfy (4.1) at equality and have the form

A\

1 p+1 P—{1,i)

Define the two trees

1 Jj=(rnp+l) 1<r<yp
xJ’.’ = {
0 otherwise
and
1 ]= (1» 2)
=31 j=(np+l) 2< <
0 otherwise

Clearly, these two trees also satisfy (4.1) at equality and have the form

] 2 p+l P - {1,2)

P 15\> p+1 /

x? p+1




We now have
1

mP‘1+(P+1)=mp+l

P-trees satisfying (4.1) at equality. All that remains to be shown is that these trees are affinely

independent. Let M be the matrix whose columns are the characteristic vectors of these trees

and look at

=
fl

Xmyp 0 v
ey 1 0
Iy €p-1 €p-1
e;tl 1 1

row (1, p+1)

The columns of Y each contair p — 1 1’s, while the columns of Xm, each contain p — 2 1's.

The vector v contains e-actly one 1. If we subtract each of the rows of the matrix, except row

(1, p+1), from (p — 1) times the last row, we get the matrix

M =

Y o
- - - r
0
OI
L

0

me 0 v
-z T T T 7h

epl 1 | 0
|

| €p.) €p1

S S S T S

0 0 [ -1

Since p > 3, the middle diagonal block has linearly independent columns by Lemima 4.1. Thus,

M has linearly independent columns by Proposition 1.5 and, hence, the P-trees which we

constructed are affinely independent.
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We can view KH—x as:

le P — {1}

™

I+1
p+1le—

K, /
{

Assume that there exist m, affinely independent P-trees of K, satisfying

Xa = 1.
a€(X,X-{I+1})

Each of these trees is a P-tree of K, satisfying (4.1) at equality. Let Y be the matrix whose

columns are the characteristic vectors of these trees. Now, define [ additional P-trees as follows.

First, define

1 ;J=(ni+l) 1<r<p
o = {
! 0 otherwise
Then, for i = 2, ..., p define
1 7= (1, 1+1)and (3, I+1)
1 j=(ni)2<r<i
x! =

1 j=(r)1<r<yp

0 otherwise
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Finally, for i = p + 1, ..., l define

1 7= (1, 1+1) and (4, I+1)

xi=d1 j=(ni)2<r<p

0 otherwise

Each of these [ trees satisfies (4.1) at equality. The forms of these trees are shown below.

P 1\ /

>I+l 1 41 P — {1, i)

\

1 41 P — {1}
T~

x5, i=p+1,..1

We can see that these P-trees are affinely independent by looking at the matrix whose columns

are their characteristic vectors.

_ | -
Y ! Xm’
— - - - - - = = =4
0 1 e:-_l | e;rp
M= | |
0 €. ]p-l | 0
0 0 0 : l,_p |
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Since p > 3, this matrix has affinely independent columns by Lemma 4.1 and Proposition 1.6.
Thus, the m, +1 P-trees that we constructed are affinely independent, and by the principle of
induction, (4.1) induces a facet of Ty, for p > 3, n > p + 1, and all cuts (X, X) satisfying

properties 1 and 2 of the theorem. 0O

To prove the next proposition we will need the following lemma.

Lemma 4.17: For p > 4and n = p + 1 there exist moy 1 linearly independent P-trees

satisfying (4.1) at equality for any cut (X,X) satisfying 1 < |X N PI <p-1

Proof: Let p > 4 be given. Without loss of generality, let X = {1, ..., k} and X =

k+1, ..., p, p+1} for some k satisfying 2 < k < p — 2. We can view K as:
g pt+1

ep+1

By the proof of Proposition 2.10 we know that there exist mp — 2 linearly independent spanning

trees of K, satisfying

Xa = 1.

Each of these trees is a P-tree of K, 4, satisfying (4.1) at equality. If we rearrange the

components of the vectors so that the first m, components correspond to the arcs in A(X), the
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next Kp — k) to the arcs in (X,X), and the final m,_; to the arcs in A(X — {p+1}), then by
the proof of Proposition 2.10 we know that the matrix whose columns are the my — 2 spanning

trees of K, has the form:

Y Y! y!
T T

em, 0 e,,,’,.‘g_l
z! A YA

where the columns of Y are the characteristic vectors of a set of m; spanning trees of

G(X, A(X)) and the columns of Z are the characteristic vectors of a set of spanning trees of
G(X = {p+1}, AKX — {p+1)})). 2’ is Z with the first column deleted and Z' has all columns
equal to z'. By the proof of Proposition 2.1 there exists a set of m,; linearly independent
spanning trees of G(X — {p+1}, A(X — {p+1})) the matrix of whose characteristic vectors has

the form

[ =
0 Q Q'
— T
Z= 1 emp-k-l 0
ep-k-z 0 Ip-k-z J

Q is the matrix whose columns are the characteristic vectors of m ok linearly indepenent
spanning trees of G(X — {p, p+1}, A(X — {p, p+1)})) and Q' is the matrix that that has every
column equal to q*. The first vector z' represents the tree that has nodes k+1 thru p—1
connected to node p as leaves. Now define p + 1 additional P-trees of Kp_'_1 as follows. First,

define




y; i €AX)
1 j=(kp)
1 j=(rnp+l) k+1<r<p

0 otherwise

Tree x! satisfies (4.1) at equality and has the form

k P pt X - {p, p+1}
yl \
For t = 1, ..., k define
Yl i €AX)
1 j=(ip+1)and (p, p+1)
Xt =
J

z) i € AKX = {p+1})

0 otherwise

These k P-trees also satisfy (4.1) at equality, and have the forms:

Fori=k+1,..., p — 1 define

y; 7 €AX)

1 7= (1, p+1), (1, p+1) and (p, p+1)

x-:+1
1 j=(np) k+1<r<p—1,r#

0 otherwise
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These trees have the form

1 p T X - {ip p+1)
<

«
—
n..——"+

and satisfy (4.1) at equality. Note that in the components corresponding to the arcs in
A(X — {p+1}) the characteristic vectors of these trees are z' with the component representing
arc (i, p) set to zero. Let v’ be the vector composed of the components of the characteristic

vector of x' corresponding to these arcs. Finally, define the tree

v i €ARX)

1 7= (1, p+1) and (k+1, p+1)

x?-H —
) iea®- 1
0 otherwise
This tree has the form
Ll eyl | kg
y! .

and clearly satisfies (4.1) at equality. To show that our (mp — 2) + (p +1) = (m,,_H -1)
trees are linearly independent, consider the matrix whose columns are their characteristic

vectors.




(p, p+1). This gives us the matrix

B |
Y 1 1 1 1 1 Yl
Y y Y (Y y

-

em, 0 0 elp_kl: 0 0 0

0 Iyppn O 0 10 0 0

Z! VA z? z’ i 0 2! z!

— e e ey D

0 0 1 o 1 0 0
|

0 0 0 0 10 1 0
|

0 0 0 0 0 0 I,

0 0 0 0o 1 0 0
i

0 0 0 0 ey, O 0
!

0 0 0 0o 1 0 0

Yl

p-k-2

[ Y v? y1 v! ! y! y! v!
eIk 0 0 e}p_klf 0 0 0
i
0 lk(p k)-2 0 0 i 0 0 0
yA 7! 2! ' o 2! VA
0 0 1 | 0 0
|
0 0 0 0 , 0 1 0
i
0 0 0 o 0 0 I,
0 0 0 0 1 0 0
]
0 0 0 0 1e,,, 0
' T
0 0 0 o 1 1 e,

p-k-2
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(1, k+1)

(k, p)
(1, p+1)

(k+1, p+1)

(p, p+1)

Note that we have moved row (k, p) below the rows corresponding to the other arcs in

A(X — {p+1}). Subtract row (1, p+1) and the rows containing the submatrix I;., from row

(1, k+1)

(k, p)
(L, p+1)

(k+1, p+1)

(p, p+1)
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Add the last column to the column corresponding to P-tree x!, then subtract the columns

1

containing the submatrix Iok2 from column x°. The resulting matrix is

i Y v! ¥ v :ay ¥l v y! yv!
em, 0 eI,p_kI: 0 0 0 0 0
0 Iy O 0 i 0 0 0 0 0
z! YA 2! yA : u z! z! vi 4
_J——o——;-_o—i-l__-o—_8——0_—B-
0 0 0 0 :3+k—p 1 0 1 el
0 0 0 0 ; 0 0 1,, 0 0
0 0 0 o' 2 0 0 1 0
0 0 0 0 : 0 0 0 0 L,
0 0 0 0 : 0 0 0 0 0
- i

(1, k+1)

(k p)
(1, p+1)

(k+1, p+1)

(p, p+1)

wherea =4 + k— pand u =2' — V'ep_k_z. Subtract 2 times the column containing v'

from x!, then add (p — k — 1) times x? to x'. Finally, subtract column x' from the other

column which contains a 1 in row (&, p). The resulting matrix is
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[ Y y! 0 y! : ¥ V! yi ¥l y! vl ]

emy 0 0 en b0 0 0 0 0 0 |(1k+D)

0 I,p, O 0 : 0 0 0 0 0 0

z! ' 2r-w 7 : w 2! YA v! v/ z! i
-0___0_—_0-—0_T—1—‘0 0 0 0 0 (k, p)

0 0 0 0 : 0 1 0 1 e, 1 (1, p+1)

0 0 0 0 : 0 0 I, 0 0 0 (k+1, p+1)

0 0 0 0o ! 0 0 0 1 0 1

0 0 0 0 : 0 0 0 0 L,, 0

0 0 0 0 : 0 0 0 0 0 -1 | (p, p+1)

where w = (p — k)2! ~ V'ep_k_z — 2vl. This matrix will have linearly independent columns by

Proposition 1.5 if we can show that the submatrix

| -
I Y , Y! 0 Y!
T |
_ em, | 0 0 elp-kl
P
0o ! 0 0
k(p-k)-2
Lo
2! 2P g —w A
L | -

has full column rank. Use the submatrix Ii(p.1)- to clear the submatrices Y! and Z'. Then

subtract the first column from the columns containing the submatrix Y'. The resulting matrix




r t
J 0 0 0
i
T
em, | 0 0 0
- - - - -9
0 lppa | O 0
VA 0 P A A

has linearly independent columns by Corollary 1.5.1 if the submatrix l: 2 —-w 2/ -7! :I

has linearly independent columns. The first column of the submatrix is

1 — 1 ' 1
2 —w=(1-p+kz + Ve ,, +2v

Thus,
0
2 —w= -1 (k+1, p)
0
So,
0 Q Q'
[ d-w 72 -7 }: -1 0 -eL_z (k+1, p)
0 -E' I,,-E

where E! is the (p — k — 2) x m, 4, matrix of 'sand EZisthe (p — k — 2) x (p — k — 2)

matrix of 1’s. Subtract the first and second columns from each of the columns in the submatrix

Q’, and rearrange the columns to get the matrix



which has linearly independent columns by Corollary 1.5.1. Therefore, the My, — 1 P-trees

satisfying (4.1) at equality are linearly independent. O

Proposition 4.18: For p > 4 and n > p + 2, if (X, X) is a cut in K, satisfying

DIXNS|>1and|XNS|21

2)|[XNP[22and|[XNP|>2

then inequality (4.1) induces a facet of Tp,n.

Proof: Let p > 4 be given. Without loss of generality, let X (VP = {1,...,k}and XN P =
{k+1, ..., p} for some k satisfying 2 < k < p ~— 2. We will proceed by induction on n. For

n = p + 2, we can view K, 4, a8

K

1

XNP

°
p+1

XNP

o p+2
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By Lemma 4.17, there exists a set of Mmoo = 1 linearly independent P-trees of K’,_'_l satisfying
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Xa = 1
a€(X,X-{r+2})
Each of these trees is a P-tree of Kp+2 satisfying (4.1) at equality. Let Y be the matrix whose
columns are the characteristic vectors of these P-trees and define p + 2 additional P-trees as

follows. For i = 1, ..., k define

1 7= (p, p+2)and (4, p+2)
1 J=(,r) 2<r<k
1 Jj=(np) k+1 <r<p—1

0 otherwise

These trees have exactly one arc, namely (1, p+2), in (X, X) and thus satisfly (4.1) at equality.

They have the form

XAP-{LL i r+2 p | XNP- {5}

Fori =%k <+ 1,..., p — 1 define

1 J= (3 p+2), (1, p+1) and (p+1, p+2)

1 I=(,r) 2<r<k

oL,

1 1=(np) k+1 <r<p—1

0 otherwise

Again, only the arc (p+1, p+2) is in the cut (X, X), so these trees satisfy (4.1) at equality.

Their form is shown below.




xnp} 1 p+l MX/HP_{W}

/

/

Finally, define the three P-trees
1 7= (1, p+1) and (k+1, p+2)
1 7= (p, p+2) and (p+1, p+2)
=41 i=,r)2<r<k

1 j={(rp) k+2<r<p-1

0 otherwise

1 j=(1,p+2), (p, p+2) and (k+1, p+2)
1 =(l,r) 2<r<k

P = j=(n2<srg

’ 1 j=(np) k+2<r<p—1
0 otherwise

and

1 =(1,1r) 2<r<k

o+ i=(,r) 2<r<

1 j=(np) k+2<r<p -1

0 otherwise

Since each of these trees contains only one arc in the cut (X, X) it is clear that they also satisfy

(4.1) at equality. The forms of these trees is shown below.

XNP - {1} 1  p+1 p+2 p XNOAP - {p, k+1)
/

/

k+1




XN

P - {1}

/

\

XNP - {p, k+1}

/

XxXne

/

VA

- {1}

We now have a total of

k+1 p+2 £<

\

XNAP - {p k+1}

/

-1+ +2)=m,,
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P-trees that satisfy (4.1) at equality. Let M be the matrix whose columns are the characteristic

vectors of these trees. To see that these trees are affinely independent look at the matrix

B |
Y I
o '
|
0 i 0
|
0 | 0
M= |
0 | 0
0 L
1
0,0
T I
Cmotit !

Now we note that every column of Y and of X'

L
1 0
0 0
1 1
0 0
1 1
0 0

(p, P+2)

(p+1, p+2)

represents a P-tree of KH_? with exactly
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one arc in the cut (X, X). If that arc is removed we are left with two trees, one of which spans
the p — k nodes of A(X — {p+2}). This means that each column of the submatrices Y and

X' contain exactly p — k — 1 1’s in the rows corresponding to the arcs in this set. The

last three columns of M each contain p — k — 2 1’s in these rows. Therefore, multiply the last

row by p — k — 1 and subtract each of the rows corresponding the arcs in A(X — {p+2}). The

resulting matrix is

F | ! ' P p+1 p+2 7
Y I X Mp+1 | Xmopr Xmogy Xmpyy
0o ' 1 0 0 o ! o 1 0
i |
0 1 0 I, 0 0 1 0 0 0
|
0 ;0 0 1 0 : 1 1 1
o ' 0 Ly, ' 0 0 0
| |
0 11 e 0 0 | 1 1 1 (p, p+2)
| T
o, 0 0 1 epry 1 0 0 (p+1, p+2)
| |
0 0 0 0 0 1 1 1
i | | |

Now subtract row (1, p+2) and the rows containing the submatrix I, | from row (p, p+2) and
subtract row (k+1, p+1) and the rows containing the submatrix I’,_,:_2 from row (p+1, p+2).

The resulting matrix




Yo _x_"‘v_+’
o ' 1 0 0
[}
0 1 0 I, 0
|
o, 0 0 1
o ' o 0 0
L oo oo
0 0 0 0
0 0 0 0
0 0 0 0

funry

RN O

1 0

0 0

1 1

0 0
oo
-1 -1

1 1

(p, P+2)

1 +1, p+2)

satisfies the conditions of Proposition 1.5. Therefore, the Mmoo P-trees which we constructed

satisfying (4.1) at equality are affinely independent.

Now, assume that there exist m, affinely independent P-trees of K, »atisfying (4.1) at

equality for some cut (X, X) satisfying the requirements of the proposition and some I > p + 2.

Without loss of generality assume that X (1S = {p+1, ..., ¢} for some ¢ satisfying

? + 1< ¢ <!—1and place node I4+1 in X. We now look at Kl+1 in the following manner

>l

XMP

XNP

XS

XNs

o [+1

By the assumption there exists a set of m, affinely independent P-trees of K, satisfying




X3 = 1
a€(X,X-{H1})
Clearly, these trees are P-trees of K| satisfying (4.1) at equality. Let Y be the matrix whose
columns are the characteristic vectors of these trees and construct [ additional trees as follows.

First, we associate trees with the nodes in X. For i =1, ..., k define

1 j=(p, 1+1)and (3, I+1)

1 i=(0,r) 2<r<k

xi =

’ 1 j=(np) k+1<r<p—1
0 otherwise

and for i = p + 1, ..., ¢ define

1 j=(14), (p, I+1) and (i, I1+1)
1 ;1= 2<rk

xi =

3

1 Jj=(np k+1<r<p—-1

0 ctherwise

Each of these trees has only arc (i, [+1) in (X, X) and hence satisfies (4.1) at equality. These

trees have the forms

XﬂP—{}i}>L1 I+1 g//XﬂP—{p}
— \N




XNP-{1}

/

Y
\

XNP - {p)

/

Xi=p+1,..,9¢

Next, we construct trees corresponding to the nodes in X. For i

and for i = ¢ + 1, ..., [ define

=k+1,..,,p— 1define

1 7= (1, 1+1)and (3, I+1)

r<k

1<r<p-1

1 j=(p i), (1, I+1)and (i I+1)

1 i=(,rn 2<
xi =

1 i=(np) k+

0 otherwise

1 i=(,rn 2<
xi =

1 j=(r,p)k+

0 otherwise

r<k

I1<r<p-1
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Again each of these trees only have one arc in the cut (X, X) and thus, satisfy (4.1) at equality.

These two groups of trees have the forms

XNP - {1)
—

|+
P
\.B\

an—{i‘p}

/




XAP-{1} N1 141
/‘

—

Finally, define

1 j=(1,1+1)

/

XNP - {p

1 j=@Q,n 2<r<k

-~

1 J=(ni+l) k+1<r<p

0 otherwise
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Arc (1, I+1) is the only arc in (X, X), so x” satisfies (4.1) at equality.. This tree has the form

XAP - {1} 1 I+1

/

We now have a total of m,,_, P-trees which satisfy (4.1) at equality

columns are the characteristic vectors of these trees.

Y Xm'
T
0 1 0 €k
0 0 I, 0
M= 0 0 lp-k-l e
T
0 1 €, 0
0 0 0 0
0 0 0 0

/XnP
\

. Look at the matrix whose

(1, 14+1)

(p, 141)




132
Subtract row (1, I+1) and the rows containing the submatrix I, , from row (p, I+1), then add

the rows containing the submatrix I, , to this same row. The result is the matrix

Y Xm,
T T
0 1 0 €p k1 1 0 € (1, I+1)
0 0 1, 0 0 0 0
!

M = 0 0 0 Lpy € b1 0 0
0 0 0 0 p—k—1 e, —el, (p, 1+1)
0 0 0 0 0 Iy-p 0
0 0 0 0 0 0 I,

Since2<k<p—-—2,p—k~—-1>0and M’ has affinely independent columns by Proposition
1.6. Thus, by the principle of induction, the inequality (4.1) will induce a facet of T, , for

p>4andn>p+ 2. D

Before moving on to general partitions of the node set, we prove that these cuts are

indeed the only cuts that generate facets.

Proposition 4.19: If (X, X) separates P and does not satisfy the conditions in either Proposition

4.16 or 4.18, then inequality (4.1) induces a face of T; » of dimension at most mn, — 2.

Proof: If (X, X) is a cut in K, which separates P, then it must satisfy one of the following
conditions
1) X or X is strictly contained in P, but not equal to P.

2) Both X and X contain elements of P and S.

Case 1: Without loss of generality assume X C P. Since (X, X) does not satisfy the

requirements of Proposition 4.16, |X| > 2. Thus, any P-tree satisfying (4.1) at equality must
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also satisfy the independent equation

Z Xa=lx|—l

a€A(Xx)

since the removal of the arc in (X, X) must leave two connected components. Hence, the arcs
within A(X) must span X. Thus, the maximum dimension of a face induced by (4.1) is

mu—2-

Case 2: Since (X, X) does not satisfy the requirements of Proposition 4.18 then without
loss of generality assume |X N Pl = 1. Any P-tree satisfying (4.1) at equality must have the
node in X () P as a leaf. Thus, if we assume that node 1 € X, any P-tree must satisfy the

independent equation

Thus, the face induced by (4.1) has dimension at most m, — 2. O

4.4 Inequalities Generated By Partitions of the Node Set of Ka

The partitions of N, discussed in Chapter 11, that yield facets of Ty, » can be generalized

in the following manner.

Proposition 4.20: Let {Vi}le be a partition of the node set N of K, for some & such that
2 < k < p satisfying

Divil=1, i=1,.., k=1

2) VINP#0, i=1..,k

Then the inequality
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> f:LZ J > k-1 (2)

i=1 1=41 G(Vi.Vj)

induces a facet of Tp,x.

Proof: Let k satisfying 2 < k < p be given. Without loss of generality, let Vi = {i} for

i=1.,k—1land VE =N — tle". Consider any P-tree T of Ky. By contracting all arcs
i=

in the set A(V") we obtain a spanning tree of K, which must have t — 1 arcs. Therefore, T

must have at least k — 1 arcs in the sets (Vi, Vj). Thus, we see that (4.2) is valid for Tp, n, and

all that remains to be shown is that we can construct m, affinely independent P-trees satisfying

(4.2) at equality. To that end we proceed by induction on n. For n = p + 1 we can view

Kp_’_las

yve Vi — {p+1}) e p+1

Ky

From this picture we see that we can apply Proposition 2.8 to get that there exist mp — 1
lineary independent spanning trees of K, satisfying (4.2) at equality if we replace V¥ with
vE — {p+1}. Each of these trees is clearly a P-tree of Kp_,,1 satisfying (4.2) at equality. Let Y
be the matrix whose columns are the characteristic vectors of these trees and define p + 1

additional P-trees as follows. Fori = 1, ..., £ — 1 define

1 J= (3 p+1)and (p, p+1)
1 1=, r) 2<r<k-1
1 j=(np) k<r<p-1

0 otherwise
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k-1 .
These trees have k — 2 arcs spanning the ¥ — 1 nodes in {J V* and a single arc connecting these
1=1

“gpanning subtrees” to V". so they satisfy (4.2) at equality. These trees have the form

AN
Uv Ui p+l g<V"/—{p,p+l}
/

=2

j#f/ \

Similarly, for i = k, ..., p — 1 define the trees

1 J= (i p+1)and (1, p+1)
1 J=(1,r) 2<r<k-1
1 Jj=(np) k<r<p—1

0 otherwise

By looking at the form of these trees we can see that they also satisfy (4.2) at equality by

having the structure mentioned above.

UV‘7 & p-i-l i p/\’lc - {4, p, p+1}
/ \

Finally, define the two trees

1 i= (%)
1 j=(1,r) 2<r<k-1
I j=(rnp+l) kST <p

0 otherwise
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and

Pt =

{1 j=(rnp+l) 1<r<p
J

0 otherwise

By their construction these two trees satisfy (4.2) at equality and have the forms

1 ko p+l VE — (K p+1)

/

and

Mo {{IFH}

\'d p+1

\
/

+1
x?

To see that these m, 4., trees are affinely independent let M be the matrix whose columns are

the characteristic vectors of these trees and consider the matrix

Y X'm, Xh, 0
T
0 1 0 ek 0 1
B 0 0 I, 0 0 €pn
M=
0 0 0 .4 €.k e,k
0 1 er, 0 1 1 row (p, p+1)
T T
€my-1 1 € 0 e;r_k 1 1
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Each column of Y is a spanning tree of K, and thus contains p — 1 1’s. Each column of X'mp
contains p — 2 1’s, and the vector x,’}., contains k — 1 1’s. So we will multiply the last row of
M by —(p — 1) and add each of the first m, rows, the rows containing the submatrix I, and

row (p, p+1) to it. The resulting matrix is

Y X'mp Xhns 0o |

0 1 0 elk 0 1 row (1, p+1)
o 0 0 I, 0 0 €,

0 0 L €k €,

0 1 eIz 0 1 1 row (p, p+1)

0 0 0 0 1 2 —k

Now subtract row (1, p+1) and the rows containing the submatrix I, ; from row (p, p+1) and

then add the rows containing the submatrix I_i torow (p, p+1). The resuiting matrix is

[y X! x? o |
L mp Mp
- — _ L - - ___ - - - -
o 1 1 0 e, 0 1 row (1, p+1)
| P |
— 11 0 | 0 Ik-z 0 l 0 €r.2
M = | i
0 . 0 0 Ly v ey €,
_________ - -
0 0 0 0 | p—k+1 p—2k+2 |row (p, p+1)
0 0 0 0 i 1 2 —k

The determinant of the 2 x 2 submatrix in the lower-right corner of M'' is (p — k)(1 — k),
which is nonzero for 2 < k < p. Hence M/ satisfies the requirements of Proposition 1.5 for

having linearly independent columns. Thus, we have constructed Mmoot P-trees satisfying (4.2)
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at equality which are affinely independent.

Now assume that there exist m, affinely independent P-trees of K, satisflying (4.2) at

equality for some [ > p + 1. We can view K, as:

Uvs VE — {141} o I+1

K,

P-trees of K, are also P-trees of Kl+1’ so let Y be the matrix whose columns aré the charac-
teristic vectors of a set of affinely independent P-trees of K, satisfying (4.2) at equality. For

1=1,..., k — 1define

1 7= (i, {4+1) and (p, I+1)

1 i=({1,r) 2<r<k-1

o,

1 ]=(raP)kSTSP—1

0 otherwise
These trees have the form

UV N1 i 11 p A VNP -
1=2 " RN
;#/ \

Clearly, these trees satisfy (4.2) at equality since their construction is identical that of the trees

in the first part of this proof. Now, in a manner which is also similar to the first part of this
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proof, we construct trees for i = &, ..., p — 1.

1 7= (1, 141), (p, 1+1) and (4, I+1)

1 iji=(1,n 2<r<k-1

xt =
’ 1 j=(rnp) k<r<p-i
0 otherwise
and fori = p
1 7=1(1,%)
1 j=(,r) 2<r<k-1
x? =

1 j=(ni+1) k<r<p

0 otherwise

These trees have the required structure to satisfy (4.2) at equality and they have the forms

\'% 1 I+1 p VEAP - {i, p}

\
/

I+1 VENP — {k)

Finally, for i = p + 1, ..., | define the trees
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1 i= (1,19, (p, 14+1)and (i I+1)
1 j=QQ,r 2<r<k—1
1 j=(np) k<r<p—1

0 otherwise

which have the form

UV NG i 41 p ~TVENP - (p)
N

\
/

i=p+1,..,1

and satisfy (4.2) at equality. We now have M P-trees that satisfy (4.2) at equality. To sce
that they are affinely independent look at the matrix whose columns are the characteristic

vectors of these trees.

- ) xml -
0 I, A 0 0

M= 0 0 Lt €,k 0
0 € e:_k 1 e_,T_-p row (p. I+1)
0 0 0 0 Il-p

where A is the (k — 1) x (p — k) matrix whose first row is e:_k and all other entries are 0's. 1f

we subtract the rows containing the submatrix 1, | from row (p, [+1) we get the matrix
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~ . . -
0 I, A 0 0

M = 0 0 L. €. 0
0 0 0 1 e, row (p, I+1)
0 0 0 0 I,

which satisfies the conditions of Proposition 1.6. Thus, the M P-trees we constructed are
affinely independent, and by the principle of induction, the inequality (4.2) induces a facet of

Tp,n for p > 3 and n > p + 1 and partitions of the type specified. O

4.5 Other Facet-Inducing Inequalities

In Proposition 3.13 we proved that an inequality derived from considering the degrees of

the nodes in any P-tree induced a facet of T, ,. We can generalize this result.
Proposition 4.21: For p > 3 and n > p + 1, the inequality
2) xa+ ) xa<2—1) (43)
a€A(P) ag(P.s)

induces a facet of Ty .

Proof: Let p > 3 be given. If d(i) is the degree of node i in a P-tree, then we see that

Ed(i):?Z Xa + 3 Xa

€erP a€A(P) ac(P.,s)

Now, let T be any P-tree, and let ¢ be the number of nodes in the tree. Then for T we know

that
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2g—1) =Y d() + Y d(3)
1€EP 1€S
and

3 d(i) 2 29 - p)
1€ES

since the ¢ — p nodes in S cannot be terminal nodes. Therefore,

2" xa+ ) Xa=3 d)=2¢-1) - di)<2g-1) —2¢—p)=2p—1)
acA(P) a€(P,S) 1€EP 1€S

Thus, any P-tree T must satisfy (4.3), hence it is valid for Tp,n. All that we need to prove now
is that we can find m;, affinely independent P-trees satisfying (4.3) at equality for any

n > p + 1. We proceed by induction on n. For n = p + 1 we recall that every spanning tree
of P is a P-tree of Ko+ Further, a spanning tree of P is easily seen to satisfy (4.3) at equality.
By Proposition 2.1, there are mj linearly independent spanning trees of K;. Let Y be the
matrix whose columns are the characteristic vectors of these trees and define p additional P-trees

as follows. First define

1 7=(1,2), (2, p+1)and (3, p+1)
x! = 1 i=@r)4<ry
0 otherwise

which has the form

/
L2 el 3/?-{1,2,3}

\\

Then, for i = 2, ..., p define




143

1 7= (1, p+1) and (i, p+1)
1 j=(rni) 2<r<i
1 Jj=(@#r)1<r<p

0 otherwise

This family of trees has the form

\

1 p+l P - {1, i)

In each of these p P-trees there are two arcs in (P, S), namely those incident to node p+1, and
p — 2 arcs in A(P). Thus these trees satisfy (4.3) at equality. Now consider the matrix whose

columns are the characteristic vectors of these Moty trees. This matrix has the form

~ ' -
Y Xom,
ey “1 .
0: 0 1 1 e,
M= o, 1 1 o ' o
|
0;_ 1 0 1 00
e e — o L Lo
0 0 0 0 |, I,

This matrix clearly has linearly independent columns by Propositon 1.5. Therefore, the P-trees

we constructed are linearly independent.

Now, assume that there exist m; linearly independent P-trees satisfying (4.3) at cquality

forsome ! > p + 1. We can view Kl+1 as
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BN

>I+1

By the assumption there exists a set of m; linearly independent P-trees of K, satisfying

K, 17

22 Xa+ z: Xa=2(p—l)

a€A(P) a€(P,S-{H+1})
These trees are P-trees of K, and satisfy (4.3) at equality. Let Y be the matrix whose
columns are the characteristic vectors of these trees and define ! additional P-trees in the

following manner. First, let

1 71=1(1,2), (2, 1+1) and (3, I+1)
xi=81 j=@r4<r<y
0 otherwise

Then for i = 2. ..., p define

1 Jj= (1, {+1)and (3, I+1)
1 j=(ni)2<r<i
1 i=(,r)i<r<yp

0 otherwise

These trees are the same as the first two sets of trees defined in the first part of the proof, with
node p+1 replaced by node {4+ 1. Thus, they satisfy (4.3) at equality. Finally, for+ = p + 1.

..., I define




1 3= (2,4, (1, I+1)and (5, I+1)
={1 j=@n3<rsy
0 otherwise
which have the form
1 I+1 g 2 {— {1, 2}
T~
i=p+1,...,1

These trees contain two arcs in (P, S) and p — 2 arcs in A(P) and thus satisfy (4.3) at equality.

The matrix whose columns are the characteristic vectors of these trees has the form

Y

o ' 0
|

M = o , 1

|

0 1
Lo~ -

0 0

L

Xom,
-'- -
1 1
i 0
|
0 1
0 0,

Hence by Proposition 1.5 the My P-trees satisfying (4.3) at equality are linearly independent,

and by the principle of induction, (4.3) induces a facet of Ty, for p 2 3.0




Chapter V
Conclusions and Areas for Further Research

9.1 Conclusions

In this dissertation we defined a class of polytopes related to the Steiner Tree Problem
on undirected graphs. We then explored inequalities that bounded the components of the char-
acteristic vectors of P-trees and that placed conditions on the number of arcs that pass between
sets of nodes of the graph. In general we found that if n and p are sufficiently large, the upper-
and lower-bound inequalities and inequalities derived from partitions of the node set which
separate P and have only one set containing more that one member induce facets of Tp n. We
also found an inequality that was derived from the degrees of the nodes in any P-tree that

induced a facet of our polytope.

5.2 Areas for Further Research

5.2.1 The Set Covering Problem

One of the ways of attacking a combinatorial problem such as the STG is to develop a
hierarchy of polytopes that properly contain the polytope of interest. Aneja's formulation [1], as
was shown in Chapter I, is that of a set covering problem, and it is easy to see that the polytope
Tp.n is a proper subset of the set covering polytope. It may be possible to lift or otherwisc
strengthen the known facets of the set covering polytope in order to generate new facets of the
Steiner tree polytope. This method would parallel the method Balas uses in deriving facets of

the prize-collecting traveling salesman problem [2].




147

5.2.2 Development of a Solution Algorithm

Now that we have a general class of facets we may be able to develop an algorithm to

solve the STG that exploits this knowledge.

5.2.3 Generalization to Matroids

Edmonds’ complete characterization of Ty, 5 [14] and Grotschel’s complete, non-redun-
dant characterization [17) were both derived from results on more general matroids. It would be
worthwhile to attempt to generalize our current results to general matroids and then build on

this foundation using the tools of matroid theory.




Appendix
Some Counting Results
One method we used to identify possible strong valid inequalities and facets was to
generate the convex hull of the set of feasible solutions to some small cases of STG. This
required that we generate sets of spanning and P-trees for these problem instances. We
developed the following formulas for counting P-trees in K, as a check on the number of P-trees

we were generating.

First we define some new notation and prove a few elementary lemmas. Let

(p, k) = the number of P-trees containing at most k Steiner nodes

|p, k] = the number of P-trees containing exactly k Steiner nodes.

The first important observation is that if ¥ = 0, then we are counting spanning trees of Kp.
To do this we use Cayley’s Theorem [21].
Lemma A.L: (p,0) = [p, 0] = p*°.

The next relation follows from our notation and gives us a method of counting the
P-trees. Clearly, to count all the possible P-trees which may have as many as k Steiner nodes,
we need to count all possible trees that have exactly ¢ Steiner nodes for each value of § < k.
Since there are (’:) ways to chose the i Steiner nodes from the k possibilities, the total number

of P-trees containing exactly 1 of k possible Steiner nodes is (’:)[p, i]. The total number of

P-trees is given by the next result.

Lemma A.2: (p, k) = Zk: ('f)[m i)

1=0
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Most of our counting will be done inductively. We will determine a number for [p, k] by
determining a number for {p, k¥ — 1] and then adding another Steiner node to the tree. We look
at the types of trees that can result, and then find some convenient way to break the tree into a

series of chains of nodes. To that end, the following observation is quite helpful.

Lemma A.3: The number of ways to divide k Steiner nodes into d chains, some of which may

be empty, is

Proof: Consider the following combinatorial problem: find the number of distinct ways to put

numbered white balls and d — 1 identical black balls into a row of k + d — 1 slots. This
problem is identical to the problem at hand. The k numbered white balls correspond to the
Steiner nodes, and the black balls serve to form the d partitions. There are (k '; 1 T 1) ways

to choose the slots for the black balls, and then k! ways to place the numbered white balls into

the remaining k slots. Hence, the number of ways to divide k Steiner nodes into d chains is

We next consider some counting results for p = 2, 3 and 4.

B
E
5
&
o
I
o

When [P| = 2, every P-tree in K, is a path from node 1 to node 2. (Recall, if |P| = 2, then by
assumption P = {1, 2}) There is a single P-tree if k = 0,s0 (2,0) =[2,0] = 1. Fork > 1,
all the Steiner nodes are in a single chain between the two leaves. There are k! ways to do this,

which leads to our first result.
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Lemma A.4: [2, k] = &.
We now use Lemma A.2 to develop a relation between (2, k) and (2, k—1).
Proposition A.5: (2, k) = k (2, k—1) + 1.

Proof: By Lemma A.2

@2, § = zk: (’f)[z. i),

1=0

Applying Lemma A.4 gives us the relation

OREPOEETb s REP R CEED Y IR

1=0 =0 1=0 )=0

Similarly, we can get

Lead

-1
@ k-1 =(k=-1)] l,
J

]
o
-

Thus, by substitution

@ BH=k2k-1)+1 0O

As it turns out, there is a closed form expression for (2, k).

Proposition A.6: For k > 1, (2, k) = [ ¢].
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Proof: Consider

Hence

0<He—(2,)=) %!<2(}%).-=%.

i=k+1 =1

Since k > 1, we have that

O<He—(2,k <1,

which means
He—-1<(2,k) < HMe
(2, k) =|Ke)] O

A.2 Results for p = 3

When we move to p = 3, the situation is a little more complex. When p = 2, there is
only one type of P-tree, a path between the leaves. In this case, however, there are two types of
trees, paths between two of the terminal nodes, and trees that have all three terminal nodes as
leaves. If k = 0, then we have (3, 0) = [3, 0] = 3, and there are no trees having three leaves.

For k > 1, however, we have the following results

Proposition A.7: [3, k) = (k+ 1) [3, k — 1] + § (k + 1)!
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Proof: Consider an arbitrary Steiner node, say the kth Steiner node, in a P-tree containing
exactly k Steiner nodes. From Proposition 1.7, d(k) = 2 or d(k) = 3. In the first case, node k
must have been inserted in the middle of an arc of some P-tree containing exactly k — 1 Steiner
nodes. There are {3, k-1) trees of this type, each having3 + (k — 1) — 1 = k + 1 arcs. So
there are (k + 1)[3, k — 1] P-trees containing k Steiner nodes with d(k) = 2. If d(k) = 3, then
delete node k and consider the three components that remain. Each consists of a chain, possibly
empty, of Steiner nodes and a terminal node. There are £ — 1 Steiner nodes in these three

chains, so by Lemma A.3, there are
34+ (k-1)~-1 E+ 1
(k—l)!( (3_1) ):(k_l)!(;)=%(k+1)!

possible P-trees in which d(k) = 3. The total number of P-trees containing exactly k Steiner

nodes is

(k+ 1B k—1]+L@+1) 0
Our next result gives a closed form for {3, ).
Proposition A.8: (3, k| = (’Lz“) (k + 1)

Proof: We prove the result using induction on k. For k = 1, Proposition A.7 tells us

3, 1] =2[3,0 + }(2) =7,

while the formula gives
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Thus, the formula holds for ¥ = 1. Now assume that
3, k—1] = (’%5) K
and look at [3, k]. By Proposition A.7
[3, K = (k+ 1) [3, k — 1] + J(k + 1)
Substituting, we get
3, K = (k + 1)[("%5) k!] + 3k + 1) = (k+ 1)! (’%‘)

Thus, the formula holds for all ¥ > 1 by induction. O

By using the formulas from Propositions A.8 and A.2 we calculate (3, k) for any value

of k.

A.3 Results for p = 4

As when we moved from two terminals to three, we again increase the number of types
of trees that can occur by moving to four terminals. For p = 4, there are five types of P-trees

which are shown below.

(=2

(®) o
(b) ©
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NN S

k (c) h k(d)

Terminals are designated by a (e), while Steiner nodes are shown as an (o). The lines connect-
ing the nodes indicate chains of Steiner nodes. For k = 0, we have (4, 0) = [4, 0] = 16, while

for k > 1 we have the following result.

>

Proposition A.9:

4, k) = (k + 2) [4, k — 1] + Sk - 13!('“ wll) 2(k +2)! + (k ;, 2):
=G+ 2) (4 k—1]+ 52D 6k 4 gp).

4!

Proof: As in the proof of Proposition A.7, each of the terms in the expression comes from
considering the degree of the “kth” Steiner node in a P-tree. These nodes are shown in the

figure above.

If d(k) = 2 (tree types a and b), then the node was inserted in the middle of an arc of a
P-tree containing exactly k — 1 Steiner nodes. There are [4, k — 1] such trees with

(k — 1) + 4 — 1 = k + 2 arcs each. Thus, the total number of trees for which d(k) = 2 is

(k+ 2) [4, k ~ 1].

If d(k) = 3, then there are two type of P-trees that could contain k. If the tree is of type
(c), then deleting k will leave us with k¥ — 1 Steiner nodes divided into three chains, one of
which contains two terminal nodes. The number of these trees is determined both by possible

arrangements of Steiner nodes and by arrangements of terminal nodes. The terminal node
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arrangements are determined by which two of the four terminals are in the chain containing two
terminals, and their order. There are (g) = 6 ways to choose the two terminals, and then 2

ways to arrange them. For each of these 12 situations there are £ — 1 Steiner nodes divided

among four chains, so the total number of trees of type (c) is

12 (k — 1)! (" + 2) = 2k + 2)\.

If d(k) = 3 and the tree is of type (d), then deleting node k leaves three components,
one of which is a “Y” containing a “splitting” Steiner node h and two terminal nodes. There are
(k¥ — 1) ways to choose h and (g) = 6 ways to choose the two terminal nodes in the “Y”. The
remaining k — 2 Steiner nodes are divided among five chains. (Three in the “Y™, and one in

each of the other two components) Thus, there are

k= 1)(k + 2)!
6(1:-1)(1:-2)!("7;2):6( D+ 2)

of this type of P-tree.

Finally, if d(k) = 4 (tree type e), then deleting k from the tree leaves us with & — 1

Steiner nodes divided among 4 chains. The number of trees of this type is

E+2) (k+2)
(k—l)(j): T

Adding these four expressions together gives us the desired total of P-trees containing exactly k

Steiner nodes. O

As in the case of p = 3 we can obtain a closed form expression for [4, k).

)
Proposition A.10: [4, k] = (k j:, 2) (192 + 49k + 3k%).
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Proof: As in the proof of Proposition A.8, we will proceed by induction on k. For k = 1, we

can use Proposition A.9 to get
[4, 1] = 34, 0) + 31(52) = 61.
By the above formula we get
[4,1] = %(192 + 49 + 3) = 61,

showing that the result holds for k¥ = 1. Now assume that the formula holds for k¥ — 1, and

look at [4, k]. By proposition A.9

(k+2)

[4, K = (k+ 2)[4, k- 1] + (6k + 46)

Substituting the formula for [4, k — 1] we get

(k+1)

[4, k] = (k + 2)[ (k + 2)

(192 +49(k — 1) + 3(k = 1) )] (6k + 46)

= &4 D00 4 a9k + 38%) — (6k + 46) + (6k + 46)]

(k+2)

(192 + 49k + 3%%) O
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