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In the main body of the report entitled "Higher Degree Linear
Approximations of Nonlinear Systems,' we developa new method for
obtaining higher degree linear approximations of a certain class of
nonlinear -control systems. The standard approach in the analysis and
synthesis of nonlinear systems is a first order approximation by a linear
model.) This is usually performed by obtaining a series expansion of the
system at some nominal operating point and retaining only the first degree
terms in the series. Obviously, the accuracy of this approximation depends
on how far the system moves away from the nominal point, and on the
relative magnitudes of the higher degree terms in the series expansion. In
the reportw9 seeksAn approximation for a nonlinear system by a linear
model up to higher degrees than one. This is achieved by finding an
appropriate nonlinear coordinate transformation-nonlinear feedback pair to
perform the higher degree linearization. With the proposed method, one
can improve the accuracy of the approximation up to arbitrarily higher
degrees, provided certain solvability conditions are satisfied. The Hunt-Su
linearizability theorem makes these conditions precise. Our approach to the
solution of this linearization problem is similar to Poincare's Normal Form
Theorem in formulation, but different in its solution method. WAfter some
mathematical background we derive a set of equations (calle& the
Homological Equations)based on the goal of obtaining a model accurate to
a higher degree in the series expansion. A solution to this system of linear
equations is equivalent to the solution to the problem of linearization up to
higher degrees by coordinate change and feedback. However, it is
generally not possible to solve the system of equations exactly. We outline
a method for systematically finding approximate solutions to these
equations using singular value decomposition, while minimizing an error
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with respect to some defined norm. The solution thus found minimizes the
error between the approximate linearization of the given system and a
"nearby" one that is exactly linearizable (in the sense of Hunt-Su) up to the
specified degree of approximation. We present a computer program
written in the MATLAB language that automates the solution of the
considerably large system of equations. Finally, we demonstrate the
applications of the method and the efficiency of the results by several
examples and simulations.

In Appendix A we demonstrate the usage of the program with an
example session recorded during running MATLAB.

Appendix B contains the additional publications supported by the
grant.
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1. INTRODUCTION

1.1 Background

The state space approach to linear control systems matured into a. well-

defined and powerful discipline by the 70's. Contrary to linear systems,

nonlinear control systems have been studied with many different methods

of approach, usually depending on the type of nonlinearites involved. In

this framework, many tools of analysis involving qualitative, quantitative

and computer-aided methods were developed as diverse as perturbation

methods, limit cycle analysis, describing functions, and graphical phase-

portrait methods [5,6]. Most of these approaches were suited only to the

specific types of nonlinearities for which they were developed. Until the

mid-seventies, a coherent theory of nonlinear systems did not seem

possible for such diverse types of systems.

However, in recent years, a rich theory for nonlinear systems has

been developed using differential geometric methods. We can now say that

a theory for nonlinear control systems exists. In fact, the differential

geometric setting allows the generalization of many known classical results

in linear systems theory to nonlinear systems. With the introduction of

differential geometric tools, many interesting results have been obtained

for nonlinear controllability, observability, equivalence, decomposition,

optimality, control synthesis, linearization and many others. -In this
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broader sense, it can be stated that linear systems are a special case of the

more general class of nonlinear control systems.

The first major developments in the general theory for nonlinear

systems were through the introduction of differential geometry by

Hermann [15], the analysis of linear multivariable systems using a

geometric approach by Wonham [46], and one of the first important results

in the transformation of a nonlinear system into a linear system by Krener

[27,28]. We refer the reader to Sussmann [44] for an excellent survey and

bibliography.

1.2 Motivation

In the analysis of scientific and engineering systems, one often encounters

situations which do not lend themselves to exact solutions by conventional

methods. The assumption of linearity in most control system models, for

example, is an oversimplification at best. This assumption, of course,

reflects the difficulties one would rather avoid in dealing with an otherwise

nonlinear model. Indeed, one can seldom find a technique to solve a given

nonlinear problem exactly. Since the control system designer is equipped

with powerful methods and tools for attacking linear control systems, the

motivation for "linearizing" a given nonlinear problem is clearly very

strong.

Therefore, whenever possible, the control problem posed must be

suitably transformed to bring it into an appropriate form that enables the

implementation of linear control design techniques. However, the
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systematics underlying such modifications by transformation are by no

means self-evident. The simplest of these modifications is a first degree

linear approximation of the nonlinear model by calculating a series

expansion at a nominal operating point. The validity of this approximation

depends on the relative size of the higher degree terms. In systems where

nonlinearities are strong, these higher degree terms cannot be neglected,

and the approximation fails.

The question of whether a nonlinear system can be equivalent to a

linear system under some group of transformations such as change of

coordinates will be one of the main issues of this report. This question has

been addressed by many researchers. The earliest example in this area was

solved by Poincar6 [42], who gave a sufficient condition for the

linearizability of a vector field around a critical point by changing state

coordinates. With the introduction of differential geometric techniques,

the method of linearizing transformations under a nonlinear change of state

coordinates and nonlinear state feedback was developed by various

researchers.

Krener [27] discussed the question of when a nonlinear system can be

transformed into a linear system by a change of state coordinates.

Jakubczyk and Respondek [25], and Hunt and Su [171 independently

considered the full state feedback and coordinate change problem. This

problem, solved in a slightly more general setting by Hunt and Su, has been

since coined as the "Hunt-Su Linearization Method", and it is one of the

most important developments in the field. The Hunt-Su linearization

method gives necessary and sufficient conditions for there to exist locally a

coordinate transformation and feedback that carries a nonlinear system into
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a linear system. In [29], Krener considered the case in which one can find

an approximate linearization by considering the second and higher degree

terms in the truncated series expansion of the vector field, and proved a

weakened version of the Hunt-Su linearization condition. In [35] and more

recently in [34], further results in the solution of the resulting

transformations were presented.

Many fine applications of the above developments have since

appeared in literature. In [38,39] Meyer, Su, and Hunt have successfully

applied these techniques to automatic flight control. Krener in [30] has

suggested a new approach to compensator design in the same framework.

Freund [13] applied these methods in robot control even before the theory

was fully developed. Other applications in robotics appeared in [11,45]. In

[24], Isidori and Ruberti have solved the input-output linearization

problem for a system with output, where the goal is to find a state feedback

law such that the input-dependent part of the output of the closed-loop

system is linear in the new input.

Important theoretical results and applications were also developed on

the dual problem of nonlinear observers. In order to construct an observer

for a nonlinear system, a suitable coordinate change is first found which

transforms the system into an observer canonical form. Then an observer

with linearizable error dynamics is constructed in the new coordinates.

This approach to the nonlinear observer problem was first proposed

independently by Krener and Isidori [33] and Bestle and Zeitz [8]. Krener

and Respondek in [361 extended the problem to multi-input cases. An

application of this method appeared in 1121.
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In the next chapter of this report, the Normal Form Theorem of

Poincar6, the Hunt-Su linearization condition, Krener's results on

approximate linearization, and the results of [351 will be reviewed in detail.

These topics are the most relevant prior developments on which this report

is based.

The objectives of this report are to:

(1) Review the current developments and the mathematical

background necessary to establish a good understanding of the approximate

linearization of nonlinear control systems. Our approach here will be

from an engineering point of view, and explicit reference to advanced

mathematics will be kept to a minimum.

(2) Given a nonlinear control system in state-space form that consists

of n first-order differential equations, find a general solution to the

problem of approximate linearization by state feedback and coordinate

change. Here we derive the set of linear equations from the Homological

equations. Solution to this system of linear equations is equivalent to the

solution of the linearization problem.

(3) Present an efficient method of solution to the Generalized

Homological equations. In general, the solution will not be unique. A

solution is found that is optimal in some statistical sense.

(4) Incorporate the method of solution in a computer program. The

derivation and the solution of the homological equations is extremely

tedious. The structure of the equations is dependent on the order of the
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system being linearized. A computer program that automates the

procedure has been written in the MATLAB program language.

(5) Illustrate the method using examples. Using the computer

program that solves for the transformations as an aid, linearize an example

control system up to second degree terms in its series approximation, thus

demonstrating the program as a control system design tool. By

simulations, compare the response of a control system that has been

linearized up to higher degree against the response of the same system

linearized only up to first degree.

1.3 Outline of the Report

The report is organized as follows:

In Chapter 2 some mathematical preliminaries that are directly

relevant to this work are reviewed. Various mathematical tools such as Lie

derivatives, Lie brackets, and distributions are introduced. Controllable,

controller, observable and observer normal forms for linear and nonlinear

systems are presented. The importance of the nonlinear controller form in

our work is emphasized. The Hunt-Su linearization condition [17] and the

extension of this result to the approximate linearization of control systems

by state feedback and coordinate change [29] are explained. The results of

these two papers are central to the report.

In Chapter 3 Poincare's Normal Form Theory, and its relevance to

higher degree approximations of control systems is discussed. The

problem of higher degree approximations to nonlinear control systems is
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stated, and references [34,35], which consist of some preliminary work of

this report, are reviewed. The Homological equations of Poincar6 are the

starting point for the derivation of the Generalized Homological Equations.

A solution to the generalized homological equations yields the equivalent

solution to the linearization problem with coordinate change and feedback.

For the sake of analysis, an appropriate basis is introduced for the

expression of higher degree monomials in the series expansion of a vector

field. The generalized homological equations are evaluated with the aid of

this basis. An equivalent system of linear equations to be solved is

obtained. Properties of this linear mapping are discussed. An optimal

solution which provides the best approximation in some statistical sense is

presented for the case when there is no exact solution to the linearization

problem.

Chapter 4 presents the analysis of the kernel and the co-kernel of the

linear mapping that is equivalent to the generalized homological equations,

and derivation of the linear system of equations that is equivalent to the

homological equations. For the second-degree linearization problem of a

single-input control system it is shown that the kernel of the mapping is

always of dimension one. The analysis of the co-kernel of the mapping is

far more complicated. The co-kernel equations are derived using a

formula for repeated Lie derivatives. These equations represent the

relationships that have to be satisfied among the coefficients of the second

degree terms in the vector field in order the system to be exactly

linearizable (up to second degree for the case we have analyzed). Next, the

method of solution for the system of linear equations derived in Ch. 3 is

presented. All of the terms that appear in the homological equations are
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expressed in a suitable basis. These expressions enable us to numerically

calculate the coefficient matrix in the linear system of equations, which is

implemented in the computer program.

In Chapter 5, the computer program used for solving the equations is

explained in detail. This program takes the first and second degree parts of

a nonlinear control system as input, and solves the equivalent set of linear

equations that are obtained from the generalized homological equations. It

is written in the MATLAB application program and incorporates into the

solution of the problem all the results of Chapters 3 and 4 in an efficient

way. Next, various nonlinear control systems are considered as examples

to demonstrate the efficiency of the approximate linearization method. The

examples chosen are control systems that are either exactly linearizable up

to second degree, or systems that yield only an approximate linearization.

Comparisons are made in the time-domain responses against first-degree

approximations of the same systems. The response plots, the performance

and effectiveness of the method, and their significance are discussed.

Finally, in Conclusion, the results are summarized and the

significance and implications of this study in control system science are

discussed. Possible future research topics in this area are suggested.

The appendix presents a sample session of the MATLAB program

for Approximate Linearization of Control Systems that was recorded

during running the program.
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2. MATHEMATICAL BACKGROUND

This section will aim to clarify the connections between the classical

treatment of linear control systems and the more recent results in nonlinear

control systems. To this end, we will introduce some mathematical

definitions and results that are not traditionally used in control system

analysis. Our central focus in presenting the mathematical background will

be toward a precise statement of the linearization problem which this

report addresses. We will closely follow prior work by Isidori [21,22],

Banks [7], and Krener [27,29,30,32].

2.1 Preliminaries

We introduce some notations and definitions:

R": n-dimensional Euclidian space.

M: a paracompact, connected C' manifold of dimension n.

V(M): the real linear space of C' vector fields on M.

C°°(M): set of real-valued functions on M.

T,,(M): tangent space to M at x c M (a copy of Rn).
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TM: the tangent bundle over M; the union U Tx M of tangent

spaces.

V*(M)" the real linear space of C"' one-forms on M, du4l to V.

A: a distribution on M. A, iTx (M), V x E M.

The differential operator d: C"°(M)-->V* (M) is defined by

dh = (ah/ax)dx, + - + (ah/x)dx, for h c C"(M).

For any one form

W = Wldx I + '" + wdx,

and vector field

f=f,(J[,ax1) + + fn(/axn)

the dual product <w,f> is defined as the scalar function

w1f1 +'" + wj .

Usually, a vector fieldfE V(M) is denoted as a column vector

f= (fl , ... f,)T

and a one form w e V*(M) is denoted as a row vector

w = (wI, "", w).

A function h r C°(M) defines a one form

dh = (ah/,ax ,, . h/.., x,.
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Definition 2.1.1 Let f ( V(M). There are three kinds of Lie

derivatives related to f, which are expressed as follows:

(i) The Lie (or directional) differentiation of a scalar function h with

respect to f:

h E C'(M); L : C(M) -4 C0"(M),

n JhLf (h) = <dh,f >--Z- f,. Wx- "Xi

This is more precisely the derivative of the function h in the direction of

the vector f.

(ii) The Lie derivative of a vector field g with respect to f:

g E V(M); L1: V(M) --> V(M),

Lf (g)= [f, g]= aR f- ag

This is called the Lie bracket, and it is also denoted by adfg.

(iii) The Lie derivative of a one-form w with respect tof:

w e V*(M); Lf :V*(M) --> V*(M),

Lf W) = d<w, f > = w~ ( -")T + W ax

where the superscript T denotes the transpose operator.

Higher derivatives can also be defined by induction as follows:

(a) LOh =h, L}h =<dh,f>,... ,Li(h)=L}(L- h)
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(c) Low w, L 1w =d<w, f>,...,Lw = Lf(L'w)

These three types of Lie derivatives are related by the Leibnitz

formula:

<Lfw, g > = <w, adfg > + Lf <w, g > (2.1)

Definition 2.1.2 A set of C' vector fields {X1, ... , X") on M is

involutive if there exist C' functions 4iJ(x) such that

d

[X i, X I = Ick C(x)Xk (x), 1 < i, j!< d ; i #j. (2.2)

Definition 2.1.3 A distribution A on a manifold M is a mapping

assigning to each point p of M a subspace A(p) of the tangent space TP(M)

to M at p.

Definition 2.1.4 A distribution is nonsingular on U, an open subset

of M, if there exists an integer d such that dim A(p) = d for all p e U.

2.2 Normal Forms for Linear and Nonlinear Systems

A state space description of a controllable linear system can be transformed

to controllable or controller form by a linear change of state space.

Similarly, a state space description of an observable linear system can be

transformed to observable or observer form by a linear change of state

variables. In the context of this section, controllable, observable,

controller, and observer canonical forms are called "Normal Forms." The



13

definition of normal forms slightly differ in literature. We follow that of

[261.

In this section we will present normal forms for linear and nonlinear

systems. This will be done in a systematic way that is very suitable for the

extension of these concepts to nonlinear systems. The treatment closely

follows [32].

We introduce some notations and definitions. The indices l1 , ..,lq

are positive integers summing to n.

Definition 2.2.1 A prime triple (A, B, C) with indices 11, ...,lq is a

triple of block diagonal matrices of dimension n x n, n x q, and q x n of the

form

A1

.0
A 0 where Ai = (2.3a)

1

-00.. 0-
Aq_

-B1
B i 0 lix 1

B = 0 where Bi  (2.3b)

0

Bq_

and
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0 i xi

C= 0 ;where Ci  1 0 . .0] (2.3c)

Cq_

Consider a linear system described by

= F + Gu (2.4a)

y = H (2.4b)

where Fn x n, Gnxm, and HP x c= R' , U E R', and y e P. The system

is said to be controllable if

rank {Fr-iGj j= 1, ... , m; r= 1, ... , n} =n. (2.5)

The system (2.4) is observable if

rank {HiFrl: i = 1, ... ,p; r = 1, ... , n) = n. (2.6)

Note that in Eqns. (2.5) and (2.6) while Fr denotes the r'th power of F, Gj

and Hi denote the fth column of G and i'th row of H, respectively.

The controllable form of a linear system is

=Ax - oxCx + Bu (2.7a)

y =Yx (2.7b)

where (A, B, C) is a prime triple with indices 1, ... , m , and (x and are

arbitrary matrices of dimensions n x m and p x n. For example, when

m = 1, i.e. for a single-input system, (2.7a) takes the form
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-C I O 0

X + "U.

1 
0

The observable form of a linear system is

.i= Ax - Bcx + 3u .(2.8a)

y =Cx (2.8b)

where (A, B, C) is a prime triple with indices l1 , ... , IP, and c and P are

arbitrary matrices of dimensions p x n and n x m.

A system (2.4) can be transformed into controllable form (2.7) by a

linear change of state coordinates if and only if it is controllable.

Similarly, a system (2.4) can be transformed into observable form (2.8) by

a linear change of state coordinates iff it is observable.

The controller form of a linear system is

i=Ax - Bcx + Bu (2.9a)

y =/x (2.9b)

where (A, B, C) is a prime triple with indices lz, ... , lp, and (x, P3 and 'y are

arbitrary matrices of dimensions m x n, m x m, p x n except P3 must be

nonsingular. Define a pseudo-output W for the system (2.4)

K4 (2.10)
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where K is an m x n matrix such that

Ki Fr - IGJ(2.11)
' r=l

The observable form realization of (2.4a) and (2.10) is a controller form

realization of (2.4). In other words, the controller form (2.9) is actually

the observable form of the original system (2.4) with respect to the

pseudo-output (2.10).

The observer form of a linear system is

x=Ax -QCx + Pu (2.12a)

y =YCx (2.12b)

where (A, B, C) is a prime triple with indices '1 , ... , , and o, 3, y are

arbitrary matrices of dimensions n x p, n x m and p x p except y must be

nonsingular. One can define a pseudo-input It

F = F + Qg (2.13)

where Q is an n x p matrix defined as

{ 1 <r <l

HiFr- lj= Ii (2.14)Q r~

The controllable form realization (2.12) of (2.4) is an observer form

realization of (2.4) with respect to the pseudo-input gt.

Next we consider a nonlinear system described by
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=A) + g)U (2.15a)

y = h(4) (2.15b)

where 4 e R', u c R', y E RP, and f, g, h are smooth C' functions.

There are four normal forms for the nonlinear system (2.15), defined as

follows:

Observable Form:

x=Ax - B(x) + P(x)u (2.16a)

y =Cx (2.16b)
where (A, B, C) is a prime 'fipie with indices 1, ... , l,, and a and 13 are

smooth matrix valued fLnction. of x with dimensions m x 1 and n x m. To

illustrate how one obtains the observable form, we write (2.16a) in explicit

form:

Yi = Xi:1

Xi:1  Xi:2 + 1 i:I(X)u

i:li - (X) + Pi:ij(X)U

for i = 1, ... , p. We make note of the notation in which we are using the

co,-n ":" to separate the first index, which represents the component of the

output, from the succeeding subscript, which represents the number of

derivatives from the output. Thus Xi:j is the (" - 1)-st time derivative of the
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ith output yi" Since the output y1 is equal to hi(4) in 4 coordinates (Eqn

(2.15b)), the following coordinate transformation relates (2.15) and (2.16):

Xi.:1 = hi(4)

xi:2 : = Ly~h i (

xij Lf-'(hi )(4) forj = 1, ... , i  (2.17a)

and

Wir = Lgj(LfI-I(hi )j for r = 1, .. ,I i ;j =1, .. , i .

- i = L Ii(hi A() (2.17b)

Next we present the Controller Form:

i=Ax - B (x)+ Bfp(x)u (2.18a)

y = y(x) (2.18b)

where (A, B, C) is a prime triple with indices 11, .-., I and a, ( and y are

smooth matrix valued functions of x with dimensions m x 1, m x m and p

x 1. To obtain the nonlinear controller form, one chooses a pseudo-output

W = k( ), where V r R' and construct the observable form relative to W

such that in x coordinates V = Cx. The observability indices of v are

11, ... , Im and the coordinates are chosen as derivatives of this "output":

xij= L-d(xi)(4) forj=l,...,li; i=1,...,M. (2.19a)

and
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j= Lgj(L/ 1 ( i'i

= L/i(Vi )(W ) (2.19b)

We note the similarity of controller form to observable form.

Controllable Form:

x = Ax - ax(Cx)+ Bu (2.20a)

y =Y(x) (2.20b)

where (A, B, C) is a prime triple with indices 11,..., l and x, ,y are

smooth matrix valued functions of x with dimensions n x I and p x 1. We

emphasize an important property of the nonlinear controllable form: while

ax is a function of a pseudo-output Wt = Cx, the output 'y is a function of x.

If oc(N) is a linear function of W then the dynamics (2.20) of the nonlinear

controllable form agrees with the dynamics (2.7) of the linear controllable

form. Therefore the question of the existence of a nonlinear controllable

form is closely related to the question of linearizing the dynamics (2.20a)

by a coordinate transformation.

Observer Form :

x = Ax - (x(Cx) + P(Cx)u (2.21 a)

y =Y(Cx) (2.21b)

where (A, B, C) is a prime triple with indices 11, ... , lp and a, P andy yare

smooth matrix valued functions of x with dimensions n x 1, n x m and

p x 1. To obtain the observer form, one defines a pseudo-input q(4)g,
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and finds the controllable form with respect to this input. This explains the

similarity of controllable form to observer form.

2.3. The Hunt-Su Linearization Theorem

In this section we introduce the Hunt-Su linearization condition [17,25], and

also present the approximate version of this theorem by Krener [29]. This

question is equivalent to the existence of the nonlinear controller form.

We present the following theorem for m = 1.

Theorem. There exists a change of coordinates of the nonlinear system

(2.15) to the controller form (2.18) around the nominal point ° iff

(i) Controllability condition: {g( O), ... , ad"_j' g(4O) I span TkoR',

(ii) Integrability condition: {g(4°), ... , ad_2 g( °)} is involutive,

(iii) (i), (ii) =* {g(4°), ... , adnjlg(4°)} is involutive.

For a complete proof, we refer the reader to [17,18,25]. In the following,

we present a systematic method to find the change of coordinates to

transform a nonlinear system into controller form. The procedure has

been directly adopted from the proof of the theorem.

Assume a change of coordinates exist. Define a pseudo-output

W(4) = Cx( ) and note that

<dW( O), adrj1 g( O)> = Lad (2.22)4a 4fl( ) 0 r n
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In particular we have, for dW * 0:

dW IL{(O,.. ad'-2 g(4'))}

Then, since for any two vectors Xi, Xi

Lxi(I) = 0 = LxiLxj(q) - LxjLxi(xV) = L[xi xji(W) = 0

we get (noting that L (d) = dL ()):

dW, dL$(V) I fg( O), ... , ad7!3 g(4O)}

and, continuing in this fashion, we obtain

d, dL( ), clL2i) _ {g(4O), ... , adf4 g(40 )}

dWdr L(W, ..., ~nIW

Note that the n one-forms d dL/(I), dL(), ... , dLr-6I) in the above

are independent, and as in (2.19a)

Xi = L;- (Wy)

defines the coordinate change. Once the controller form

x = Ax - Bct(x )+ Bp(x)u (2.18a)

is obtained, the choice of a feedback

u=1- (x)+ v (2.23)

will linearize the dynamics as:
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x=Ax +Bv (2.24)

where v is a new open loop feedback. Obviously, 1(x) is assumed to be

nonzero.

Krener in [29] has extended this proof to the approximate

linearization of control systems using a series expansions of the nonlinear

terms. Following [29], we first introduce some definitions as follows:

A distribution A has an order p local basis around 40 if there exist

vector fields X1, ... , Xd which are linearly independent at 40 and such that

for every Y E A there exist functions ck such that

d

Y= -ck Xk +O(4- ) + (2.25)
k=l

The integer d is the order p dimension of A at 40. Such a distribution is

said to be order p involutive at ° if there exist functions cij such that:

d

x i, x I cj Xk + O(4 _ o)p. (2.26)
k= I

Such a distribution is said to be order p integrable at o if there exist n - d

independent functions hd +1,..., hn such that

<dhi , XJ > = O(). (2.27)

Theorem. (Frobenius with remainder) (Krener) Let A be a distribution

with order p basis [ X 1, ..., Xd } at o. A is order p integrable at ° iff A

is order p involutive at o.
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A proof of the above theorem can be found in [Krenerl984a]. Given the

nonlinear system (2.15) we define distributions

Ak = C' span {adf g :0 < l < k; j = 1, ... , m.

Now we state the central result of [29]:

Theorem. The nonlinear system (2.15) can be transformed with a

coordinate change

x=x() (2.28a)

and feedback

u = u(,v) = a(4) + 0(4)v (2.28b)

into the order p linear system

x = Ax + Bv +O(x,v)P + 1 (2.29)

where (A, B) is a controllable pair with controllability indices 11 > ... n In

iff

(i) Ak has an order p local basis at 4' consisting of

{adf gi: 0 <5 1 < min(kj, k); j = 1, ... , m }.

(ii) Akl is order p involutive at 4' for j = 1, ... , m.

The proof for the general case as stated in the theorem can be found in

[291. Here we will present a simplified proof for m = 1. First, we restate

the theorem for m = 1:
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Theorem. The nonlinear system (2.15) with a single input u can be

transformed into the order p linear system

i= Ax + Bv +O(x,v)P ' 1 (2.30)

where (A, B) is a controllable pair iff

(i) A' = C' span {g(4°), ... , ad7_' g(4 0)) has an order p local basis at 4'

consisting of

I{g(°), .. ad4V- g(4))},

(ii) An-= C-C span {g(40), ... , adnf- 2 g(4')} is order p involutive.

Note the similarity of the above statement to the Hunt-Su linearization

conditions.

Proof. Assume the change of coordinates and feedback (2.28) exist. Let

f (4) and W(4) denote the transforms of Ax and B into 4 coordinates. It is

straightforward to verify that the distribution

n = C' span { ... , ad_n- k(4) }

satisfies (i) and (ii) with phrase "order p" deleted. Moreover from the

form of (2.28) one can verify that A' and A' agree to order p at 4°, i.e.

any vector field of one agrees with a vector field of the other to order p.

Hence (i) and (ii) follow.

On the other hand suppose (i) and (ii) hold. By the controllability

assumption A' is of codimension zero. A' - 1 is of codimension one and by

(ii) is order p involutive. Therefore we can find a scalar function h(4)
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which will annihilate it to order p as in (2.27). This function and its Lie

derivatives define the desired linearizing coordinates (2.28a)

xi= L (h) ; i = 1, ... , n.

In these coordinates the nonlinear system (2.15) becomes

xi+I + O(4,v)P+l if i<n,

i (2.31)
L}(h) + LgL7-(h)v + O(4,v) +l if i = n.

The linearizing feedback (2.28b) is given by

u = L (h) + LL-'(h)v. (2.32)
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3. HIGHER DEGREE LINEAR APPROXIMATIONS OF

NONLINEAR CONTROL SYSTEMS

3.1. Introduction

In Chapter 2, we introduced normal forms, the Hunt-Su linearization

results, and Krener's extension of the Hunt-Su method by approximate

linearization (via the series expansion of the vector field around a nominal

point). In this chapter, the normal form theorem of Poincar6 will be

introduced first. This is an approximate linearization of an autonomous

vector field by a nonlinear (local) change of coordinates. Next, we will

present the approximate linearization problem that will be investigated in

this report, which is formulated in a very similar spirit.

The fundamental difference between the Poincar6 linearization and

Krener's approximate linearization method needs some emphasis. As will

be discussed in the next section, a sufficient condition for a linearizing

transformation to exist for an autonomous nonlinear system is the so called
"resonance condition" (see Sec. 3.2 of this chapter) for the eigenvalues of

the linear part, or the Jacobian, of the vector field at the nominal point. In

contrast, one of the necessary conditions for finding a coordinate transform

and feedback pair that linearizes a nonlinear control system exactly (the

Hunt-Su linearization) or approximately (Krener's linearization) is that the

system be locally controllable. Obviously, this requirement implies that

one is able to freely assign the eigenvalues of the linear part of the vector
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field. Thus, unlike the Poincar6 problem, a resonance condition for the

eigenvalues does not exist for this case. Basically, one has the capability to

change the flow of the vector field through the input (though only locally

within the framework we presented; global controllability of a nonlinear

system has much more stringent requirements). The fundamental

difference, is that, while in Poincar6's problem one only wants to be able to

understand and predict the behavior of the flow of a vector field by means

of a closer approximation through coordinate transformations, in the

problem of linearization by feedback and coordinate change the goal is a

much more ambitious one: We first seek to linearize the nonlinear system

and ultimately to c 'ntrol its behavior. Reminiscent of the connection

between the t o problems, however, we continue to use the term

"Homological Equations" (after Arnold [4]) for the set of equations that we

will develop in the solution to the linearization problem.

There are cases in which the two approaches might in fact be used

together. When a nonlinear system has both controllable and

uncontrollable modes, one can decouple the state space locally into

controllable and uncontrollable submanifolds by some suitable

transformation. In the controllable submanifold, the approximate

linearization problem may be solved based on the results presented here.

On the other hand, one can decompose the uncontrollable submanifold into

stable, critical, and unstable parts. An uncontrollable-unstable mode is, of

course, beyond help. One does not need to worry about the

uncontrollable-stable modes, and can only hope they will decay sufficiently

fast. The uncontrollable-critical modes (in which the eigenvalues, are on

the imaginary axis), however, can be analyzed using Poincar6's method. In
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fact, in the framework of the analysis of nonlinear oscillations and

bifurcations [14] the purpose of the "Center Manifold Theorem" is

precisely that. In control systems literature there are some fine examples

of work towards controlling the stability of uncontrollable-critical modes

of a control system by means of the Center Manifold Theorem and

bifurcation analysis (also called "Bifurcation Control") [1,2]. Although this

problem may be formulated as an extension of our work, this topic is

beyond the scope of this report.

3.2. Higher Degree Approximations of Autonomous Systems

Let us consider an autonomous system:

x=f(x) (3.1a)

x() = x. (3.1b)

where x c= R' and the system is assumed to be at rest at the origin, i.e.

f(O) = 0. Without loss of generality we will assume x° = 0. The

calculations can be easily repeated for x° * 0. First, consider the

linearization of (3.1) at x°:

i = Fx (3.2a)

F = ax (0) (3.2b)

We will seek a coordinate change for (3.1) of the form identity plus higher

degree terms, such that the resulting system will agree with (3.1) up to an

error of degree O(x)P"+ where p is the degree of approximation.
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Obviously, we obtain Eqn. (3.2) when p = 1. We will now derive the case

for p = 2 and the results will be generalized to any arbitrary degree p by

induction.

We assume a transformation of the form:

Z = x - 0:(2)(X) (3.3)

where z denotes a new set of coordinates. 0(2)(x) is a polynomial of degree

2, the monomial coefficients of which are to be found. The function f(x) is

expanded in a series:

f(x) =f(1 )(x) +f(2)(x) + O(x) 3

= Fx +f(2)(x) + O(x) 3  (3.4)

The goal of the transformation (3.3) is to choose 0(2)(x) such that in z

coordinates the dynamics of the system is represented by

i = Fz + O(x) 3  (3.5)

in other words, the second degree terms in the series expansion (3.4)

vanish under the coordinate change. We take the time derivative of (3.3):

= x- aJx X

Using (3.1a), (3.3), (3.4) and (3.5) evaluate each side in the above:

F(x _ 0 2 1(X)) = FX +f 2 1X) _ a(x) Fx + O(x) 3  (3.6)

After some cancellation, ignoring O(x) 3 and higher terms, and using the

Lie bracket notation we obtain
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f1 21(x) = [Fx,012)(x)] (3.7)

Equation (3.7) is called the Homological Equation [4]. A similar derivation

can also be found in [14]. In Eqn. (3.7), f(2)(x) and 02)(x) are n-

dimensional functions of homogeneous polynomials of degree 2. The Lie

bracket operation defines a mapping

[Fx,. 0 :,2)(X) ___> [Fx,0(2)(X)] (3.8)

Obviously, (3.8) represents a linear mapping from n2(n + 1)/2 dimensional

parameter space of the coefficients of 0(2)(x) to an n2(n + 1)/2 dimensional

parameter space that is the result of the Lie bracket operation. The

question is whether f (2)(X) in the range of this mapping. In other words,

is it always possible to find 0(2)(x) that will satisfy (3.7)? This problem

was first solved by Poincare. In the following, we present a slightly

modified proof [4,14]:

Suppose F has a full set of linearly independent eigenvectors. Then

we can take these eigenvectors as a basis, which are defined by

Fvk = ,k (3.9)

where vk E Cn X 1 and ?Xk E C. Similarly there exists a basis of eigenvectors

of FT defined by

wiF = Xiwi (3.10)

where wi E C1 X '
* We define a basis for n-dimensional functions of

homogeneous polynomials of degree 2 as follows:

q.(x) =vk(wix)(w 7x) 1 i<j n ; k n. (3.11)
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Then, using this basis to express the degree 2 polynomials in Eqn. (3.7), we

evaluate the Lie bracket

[Fx,(P'i (x)] - (Fx - Fp

= vk((wiX)Wj + (wjx)wi)Fx - Fvk(wix)(wix)

and introducing (3.9) and (3.10) we obtain
[Fz, ' (x)] = vk', j(wx)(wjx) + Xi(wx)(wjx)- Xk(w l(wix)

= (Xi + Xi - X)ij(X) (3.12)

So the mapping (3.8) is onto if (Ai + ?j - ?'k) 0 for all j, k = 1, ... , n;

i = 1, ... , j. In the literature, this is called the resonance condition. We

note that this is only a sufficient condition. A generalization of the proof

for the case when F does not have a full set of independent eigenvectors

may be found in [4].

The above proof can easily be extended to an arbitrary degree of

linearization as follows. Given an autonomous system that has degree p

and higher nonlinear terms

i = Fx + f(P)(x) (3.13)

one seeks a coordinate transformation of the form

z = x - O(P)(x) (3.14)

with the goal to obtain

z = Fz + O(z)P+1. (3.15)
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This leads to a new homological equation

[Fx,0(P)(x)] = f P)(x). (3.16)

With the assumption that the matrix F has n linearly independent

eigenvectors, and using Eqns. (3.9) and (3.10) we choose a basis for n-

dimensional functions of homogeneous polynomials of degree p as

(Z) = k(iIZ)...(Wi Z) for 1i 1 <...< ip < n ; 1 < k < n. (3.17)

Then a similar calculation yields

[Fx,kp .. (x)] = (Xil + + ?i - Xk)(Pk ,.... (X ) "  (3.18)

From the above we conclude that the condition of no resonance requires
that (X'i, + "'" + X ip- Xk) #;/ 0.

3.3. Higher Degree Approximations of Control Systems

Generally speaking, there are two different goals for linearizing a

nonlinear system. One may seek a linearization for the purpose of

designing a control, or alternatively the linearization may be tailored for

the purposes of estimation. In this section we will attempt to find a

solution for the problem of linearization for control. This, of course,

assumes full state observability. Let us consider a nonlinear system in

which the control u enters the dynamics in a linear fashion:

=f(x) + g(x)u (3.19a)

x(0) = x0 . (3.19b)
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where x E R" and u E R' . The system is assumed to be at rest at the

nominal operating point (x°; u° = 0). Again, we will assume x ° = 0.

First, consider the linearization of (3.19) at x*:

i = Fx + G u (j.20a)

F = L (0), G = g(0). (3.20b)

We will seek a coordinate change for (3.19) of the form identity plus

higher degree terms, such that the resulting linear plant will agree with

(3.19) up to an error of degree O(x, u)P+I (i.e. terms of O(x)P+land O(x,

u) P) where p is the degree of approximation. When p = 1, the first

degree approximation (3.20) is obtained. Similar to the previous section,

the case for p = 2 will be derived first, and the results will be generalized

to any arbitrary degree p by induction. Before proceeding further, the

nonlinear functions f and g are expanded in a series:

f(x) =f 11)(x) +f( 2)(x) + O(x)3

= Fx +f( 21(x) + O(x) (3 )  (3.21)

g(x) = g (°)(x) + g 1)(x) + O(x) 2

= G + g II)(x) + O(x)2  (3.22)

and the nonlinear system (3.19a) is rewritten as

.i = Fx +f(2)(x) + (G + g (')(x))u + O(x,u) 3  (3.23)

We assume the same transformation proposed in Sec. 3.1:

z = x - 0(2)(x) (3.3)
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where z denotes the new set of coordinates. (2)(x) is a polynomial of

degree 2. In addition, a new input, denoted as v, is chosen as

v = a(x) + P(x)u (3.24a)

where c(x) = a (2)(x), an n x 1 vector of second degree polynomials, and

P(x) = I + IP(3(x), an identity matrix plus first degree terms, both of

dimension m x m. So (3.24a) becomes:

v = a (2)(x) + (I + p( 1)(x))u. (3.24b)

We note the slightly different form of Eqn. (3.24); in the literature (as well

as in the treatment presented in Chapter 2 of this report), the feedback that

accompanies a coordinate change for linearization problems is usually

given as u = a(x) + P(x)v. One can always obtain one expression from the

other, since by definition P3(x) is nonsingular. The above choice simplifies

the algebra, as we will see in the following derivations. Now we want the

system to become, in z coordinates,

i= Fz + Gv + O(z,v) 3  (3.25)

The time derivative of (3.3) yields:

*= . - ax x, (3.26)

We introduce the transformation (3.3), and Eqns. (3.23), (3.24b) and

(3.27) into the above:

F(x - (2)(X)) + G (a( 2)(x) + (I + P('(x))u)

= (I- a.x )(Fx +f(2)(x) + Gu + g O)(x)u
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Then by expanding and cancelling terms on each side we obtain

-FO12)(x) + G a( 2)(x) + G P()(x)u

=f (2)(X) + g (1(x)u - )ax 2- ax Gu + O(x,u) 3

Rearranging and ignoring the O(x,u)3 terms we get

f(2)(x) + g (1)(x)u

Sa 4 2 (X) Fx - FO(2)(x) + a (x Gu + Ga(2)(x) + Gp(3'(x)u (3.27)

Define Lie brackets as follows:

a () Fx - F' 2)(x) = [Fx,0(2)(x)] (3.28a)

a)(x) Gu = [Gu,0(2)(x)] (3.28b)

Using (3.28), Eqn. (3.27) can be written as

f(2)(x) + g (1)(x)u = [Fx,0(E)(x)] + Gac(2)(x) + [Gu,0(2)(x)] + Gp(')(x)u

(3.29)

or, since terms of O(x) 2 are independent of terms of O(x,u) 2

f (2)(x) = [Fx,0(2)(x)] + Ga (2)(x) (3.30a)

g (1)(x)u = [Gu,0(E)(x)] + Gp(')(x)u V constant u. (3.30b)

Because of its similarity to the homological equations derived in the

previous section, we call (3.30) the Generalized Homological Equations.
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In order to find an approximation of the next higher degree, we

rewrite (3.25) by reverting to the variables x and u for convenience:

i = Fx + Gu + O(x,u) 3  (3.31)

At this point, we assume that the second degree terms in a given nonlinear

system, if any, have been already removed as outlined above. Then we

seek a new transformation of the form:

z = x - 0(3)(x) (3.32)

Note that except for the linear part, transformation (3.32) will not

introduce any terms of degree less than 3. Then the same procedure

outlined above is repeated, with the feedback:

V = a13)(X) + (I + p(2)(X))U (3.33)

which, after a series of similar calculations, results in a new set of

generalized homological equations:

f(3)(X) = [Fx,0(3)(x)] + GX(3)(x) (3.34a)

g (2)(x)u = [Gu,0(3)(x)] + GP(2)(x)u V constant u. (3.34b)

These results can be generalized as follows. Given a system which is

accurate to only degree p - 1, i. e.

i = Fx + Gu + O(x,u) P  (3.35)

a coordinate change is sought as:

z = x - O(P)(x) --(3.36)
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along with feedback:

v = a(P)(x) + (I + P(P-1)(x))u (3.37)

which yields the generalized homological equations to be solved:

f(P)(x) = [Fx,0(1)(x)] + Ga(P)(x) (3.38a)

g (P-l)(x)u = [Gu,O(P)(x)] + Gfp(3-'(x)u V constant u. (3.38b)

In (3.38), O(P),f(P), a(P), g (P-1) and 3(P- ') are, respectively, homogeneous

vector fields of degrees corresponding to their superscripts. The resulting

system is accurate up to degree p:

= Fz + Gv + O(z,v) P+l  (3.39)

Once a higher degree linear approximation is obtained for a

nonlinear system one of the important issues is the stability of the closed

loop system. Thus one may choose, for instance, a linear state feedback for

the approximate model

i = Fz + Gv (3.40)

by setting v = Kz. The gain matrix K is chosen such that in the closed loop

the system gives the desired performance. If we assume that the model has

been linearized up to second degree, the feedback v is, from Eqn. (3.24b)

v = oz(2)(x) + (I + P ()(x))u. (3.41)

Using Eqn. (3.41), the feedback v = Kz, and transformation (3.3) we

calculate the feedback law u:

Kx - KO(2)(x) = a(2)(x) + (I + p )(x))u (3.42)
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and

u = (I + I3(')(x))-(Kx - KO(2)(x) - (P)(x))

= (I - 0(')(x) + ... )(Kx - r0(2)(X) - ot(2)(x))

= Kx - { f(M(x)Kx + KO(2)(x) + a(2)(x)} + O(x,u) 3. (3.43)

From (3.43), the purpose of the feedback u becomes immediately clear. In

addition to a linear feedback, there are second degree correction terms

(placed inside curly brackets in (3.43) for emphasis). While one chooses a

closed loop feedback u = Kx to achieve stability, pole placement, etc. for

the first degree approximation (3.20a) (i.e. accurate up to first degree in

comparison with a linear model) to get

x = (F + GK)x (3.44)

the feedback (3.43) introduces certain second degree terms and achieves a

second degree approximation (i.e. accurate up to second degree in

comparison with a linear model in the z coordinates) toward the same

feedback design goals:

i = (F + GK)x +f (2)(x) + g (1'(x)Kx - G { P(l'(x)Kx + K0(2)(X)

+ c(2)(x) I + O(x,u)3 . (3.45)

One important feature of the feedback (3.43) and the resulting closed loop

system (3.45) is that one need not transform the state variables into the new

coordinates z that were introduced for the sake of calculations. Feedback

design can be performed in the natural coordinates in which the system is

originally presented. Obviously, the above scheme assumes a priori that all

states are available for feedback. If some of the states are not observable,
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one can estimate the unavailable state variables by means of an observer,

and apply the same procedure. This case will be treated in Section 3.5 of

this chapter.

3.4. Approximate Linearization for Systems with Small

Parameters

In this section, we consider a control system of the form:

i =f(x,,) + g(x,E)u (3.46a)

x(O) = x. (3.46b)

where , is a small parameter which characterizes the way parasitic effects

or disturbances enter into the system. We will develop a method of

linearizing transformation for this type of system, similar to that of Section

3.2. First, (3.46) is expanded as follows:

x = Fx + Gu + e(f(1)(x) + g (')(x)u) + O(6)2 (3.47)

In (3.47), the nonlinear function is expanded and grouped in powers of e.

Thus, the superscripts off and g now represent the powers of c multiplying

these functions. Note that this notation is different than that of Section 3.2.

A coordinate change is assumed of the following form:

Z = x - EOO)() (3.48)

where neither the coefficients, nor the polynomial degree of the function

0(1)(x) is yet determined (i.e. the superscript in this context denotes degrees
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in e). After the transformation and feedback, we want the system to

become

i= Fz + G v + O(C)2 (3.49)

where

V = U + e(CO)) + 13I)(x)u (3.50)

Note that the superscripts of (x and J3 in (3.49), as well as the superscript of

0 in (3.48) represent the power of e these terms are multiplied with. Thus,

the notation used is different than that of Sections 3.2 and 3.3. Repeating

the calculations similar to Section 3.3 yields the homological equations:

f(')(x) = [Fx,o()(x)] + Gox1 )(x) (3.51a)

g (1(x)U = [Gu,cO)'(x)] + GO(3)(x)u V constant u. (3.5 1b)

This result can be generalized for an arbitrary power of e in the same

fashion: A solution to

f(P)(x) = [Fx,O(P)(x)] + Gca(p)(x) (3.52a)

g (P)(x)u = [Gu,O(P)(x)] + GW(P)(x)u V constant u. (3.52b)

will yield a coordinate transform-feedback pair that will transform the

system into:

= Fz + Gv + O(e)P+1  (3.53)

Even though Eqns. (3.52) and (3.38) look very similar, there are some

fundamental differences. All the variables in Eqn. (3.52) have different

definitions than those of Eqn. (3.38), as mentioned earlier in this section.
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Moreover, the solvability conditions of (3.52) are not the same as the

conditions of Eqn. (3.38). Actually, (3.52) may represent an infinite

family of equations as opposed to the finite dimensional set of expressions

that arise from (3.38).

Any nonlinear system expressed in the form of in Eqn. (3.19) can

always be transformed into the form of (3.46) (and vice versa) as follows:

First, consider the expanded form of (3.19), i.e. Eqn. (3.23):

X = Fx +f (2)(x) + (G + g (1)(x))u + O(x,u) 3  (3.23)

Scale the coordinates and the input with:

E-1x

1ix = C- u

Introducing the above into (3.23) yields

= F( + Ggi + e(f (2)( ) + g (1)( )g) + O(6)2 (3.54)

This equation is of the form of Eqn. (3.47), except for the difference in the

fashion the expansions of f and g are defined. We use the overbar notation

to emphasize this point. The input

v = a (2) (x) + (I + P (1)(x)u (3.24)

is also transformed with an additional scaling Tl = -IV:

1 = p. + C((2)( ) + (3.55)
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With the above scaling of coordinates, a linearization problem given as in

Section 3.2 can be alternatively solved with the procedure outlined in this

section.

3.5. Analysis of the Linear Mapping for Linearization for

Control

For the case of linearization for control, we derived the generalized

homological equations (3.30) in Section 3.3. In these equations, the second

degree terms f(2)(x) and g ()(x)u can be cancelled by proper choice of

S(2)(x), a(2)(x), and 30()(x) under certain solvability conditions. When the

coefficients of the like terms in (3.30) are set equal, a linear mapping is

obtained as

0((2)X1

a (2)(X) (X) (3.56)I13 (')(x)J lg ')(x)J (.6

A simple dimension count yields the dimensions of the domain and the

range:

n2(n + 1) mn(n + 1) 2 n2(n + 1) 2
2 + 2 +mn - 2 +nm (3.57)

To analyze the mapping, we first make a table for the dimensions of the

domain and the range, where n is the dimension of-the state space and m is

the dimension of the input space:
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Form = 1: For m = 2:

Dimension Dimensions Dimension Dimensions
of of of of

State Space Domain Range State Space Domain Range

n =2 11 10 n = 2 20 14

n =3 27 27 n = 3 42 36

n =4 54 56 n = 4 76 72

n = 5 125 125

Dimensions of the domain and the range become equal whenever

n = 2m +1. However, this does not imply that the mapping is of full

rank. For example, when m = 1, n = 3 the rank is 26, not 27. In general,

when m = 1, the rank of the mapping is always one less than the dimension

of the domain for n > 3.

As described in Chapter 2, a necessary condition for finding a

coordinate change-feedback pair for a nonlinear control system is the local

controllability condition at the nominal point. Thus, for the system (3.23)

with a scalar input u , i.e. m = 1, local controllability implies

rank {G FG ... Fn-1G) = n. (3.58)

On the other hand, we define a 1 x n matrix K such that

0 1 _ i < nKFi -IGj (3.59)

Then,

rank [K KF. . . KF'- 1) = n. (3.60)
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(3.58) and (3.60) together imply that we can define a basis for n-

dimensional second and first degree monomials as follow. Fir,& define as

a basis

vk = Fk-lG (3.61a)

and a co-basis

Wi -- KFi  (3.61b)

Then we define a basis for second degree monomials as

4ij(x)=vk(wix)(wjx) forj, k = 1, ... ,n; i= 1, ...,j. (3.62)

and a basis for first degree monomials as

i(x) =vk(wix) fork= 1, ... ,n; i= 1, ... ,n. (3.63)

Using the basis definitions (3.62) and (3.63) is a great convenience for

calculating the Lie bracket expressions that appear in the generalized

homological equations (3.30). Calculation of (3.30a) gives

k +kjl _k il 1 i< j < n ; 1 k < n

[Fx,qp (x)= k+j- kj 1 _ i < j=n ; 1 _< k < n

L _k+- i =j =n ; 1 < k < n

(3.64)

In the evaluation of (3.64), when k = n, the expressions become slightly

more complicated. For multi-input problems, the above calculations

become even more involved. In the following chapters, we will present a

further simplified way to calculate the bracket in the most general case that
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is much more suitable for numerical implementation. Next, we calculate

(3.30b)
0 ij < n

[G,q k(x) = jpn i<j-= (3.65)

We can use these two formulas to compute the kernel and co-kernel of the

mapping

4X(2)(x) (x) (3.56)

such that, we now obtain a set of linear equations expressed in matrix

form:

[ (2)] (2)

L I(( 2)I g J (3.66)

In (3.66), L is a constant coefficient matrix of n2(n+l)/2 + n2 rows by

n 2(n+l)/2 + n(n+l)/2 + n columns that is found from the above evaluation

of the Lie brackets of the mapping. [(2) and ( are the constant

coefficients of their corresponding terms, stacked in a consistent

lexicographic ordering. For the single input linearization problem, the

column rank of L is (n2(n+l)/2 + n(n+l)/2 + n - 1).

A solution to the linearization problem is developed as follows.

First, we note that since the mapping (3.66) is deficient in rank for n > 2, a

given control system with nonlinear terms f(2)(x) and g (1)(x)u will not, in



46

general, have an exact solution to yield a second degree linearization. In

fact, the Hunt-Su linearization result [17] (or Krener's extension of the

same to the approximate linearization case in [29]) is a test for precisely

this condition. Consequently, Eqn. (3.66) will not usually have an exact

solution for n > 2. Then, it is reasonable to seek an approximate solution

which will minimize the error in the linearization with respect to some

norm. In order to give a precise meaning to this problem, first assume

that we have adequate knowledge about the operating regime of the control

system and the desired accuracy as determined by

p(x,u) : A probability density function; typically uniform over some

compact set, or Gaussian.

Q : A sensitivity matrix, positive definite.

Then define the "error"

_ (2) f(2) (2) ( 1)_ 1 2

(1M) fft 2L 2 + (g M'-g1 )U Q p(x,u)dx du

(3.67)2

In Eqn. (3.67) the norm Ix Ia is defined as xTQx. We want to choose the
Q

terms 1 (2) and W(1) such that the norm of the above error is minimized.

Note that j(I)J is in the range of the mapping, i.e. it satisfies the

homological equations

f 2)(x) = [Fx,o 2)(x)] + G 2(x) (3.68a)

g (x)u = [Gu,O (2)(x)] + Gf$o)(x)u. V constant u. (3.68b)
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Furthermore, we wish to choose the smallest a (2)I that will achieve the
e1))

above. Again, we choose positive definite matrices S, R and minimize

1I(2)1s + Ic (2) (x) + P (1)(x)u I1p(x,u)dxdu (3.69)

or one can take a weighted combination of the above. In Figs. (2.1) and

(2.2) we illustrate the above:

g) (2)
( g(1) )

Range of

f.2), the mapping

Fig. 2.1 The range space of the mapping.

Fig. 2.1 represents the n2(n + 1)/2 + n2 dimensional parameter space for

the range of the mapping. The second degree terms in the given control

system define a point in this space, denoted by |,)) The range of L is
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represented by a straight line going through the origin. Those points in the

range space of L that exactly satisfy (3.66) will lie on this line. Among

these infinitely many points we want to find the one (shown as 7(2)on the

figure) which will minimize,with respect to a norm defined earlier, the

error between the actual system that is being approximately linearized and

a model which is exactly linearizable (up to degree 2) by the coordinate

change and feedback.

0 0 )D 
o m a in o f

~~the mapping "

Fig. 2.2 Domain of the mapping

Fig. 2.2 illustrates the n2(n+1)/2 + n(n+l)/2 + n dimensional domain space

of the mapping , and the minimization done in the domain space.



49

The central issue in this problem is how to define the appropriate

metric to minimize the error. To this end, we assume that the states and

the input have been scaled by their characteristic values. Then, the

probability distribution function p(x,u) in the integrals may be assumed to

have zero mean and unit covariance. With this assumption, the matrices Q,

R, and S in the integrals of (3.67) and (3.69) can be approximated by

identity matrices. We assume a basis for vector valued monomials of

degree 2 and express the vector monomials as

0 (2)(X) OP (Pi (X) (3.70)
k kk

where (Pii= v x ix1 and is the unit column vector along the kth

coordinate direction (see eqn. 4.13). Now the error terms in the integrals

(3.67) and (3.69) may be easily computed. For instance, considering a

term in (3.69)

II (2)II2 = (i" ( I T i"" () S  ((tJ(ij) S(OkJ (Pij)

the integral (3.69) becomes:

ikk JxjxpVxp(x,u)dxdu

If we assume x = 0 and S = I, the identity matrix, the above integral is:

i' Jxjx-x-p(x,u)dxdu =P +p + piJpn_ (3.71)

The evaluation of the integral (3.71) reduces to the simple calculation of

the fourth central moments of a probability density function around zero

mean since p(x,u) is assumed to have zero mean and unit covariance in the
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scaled coordinates. Even though the matrix obtained from the above

fourth moments is not diagonal, it is assumed to be approximately equal to

the identity. This assumption greatly simplifies the numerical calculations,

and it does not introduce a large deviation from the actual value of the

integral being minimized.

To solve the linear set of equations

0L ) = rf 2)
L(1 [ (a)1 (3.66)

we use a singular value decomposition procedure as follows. First the

matrix L in (3.66) is decomposed as

L = UZVT (3.72)

U and V in the above are orthogonal matrices and

[ Er01

where the matrix Xr is

00

r 0

i.e. it contains the r singular values of L along its main diagonal and is zero

elsewhere. Obviously, the above development assumes that the rank of L is

equal to r, which is in general less than the number of columns in the
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matrix L. If we denote the equation (3.66) to be solved as as Lx = b for

brevity, we have:

IILr- b 112 = II UYV Tx-b 112

= II U(YV Tx-d) 112  (3.73)

where d is defined by Ud = b. Also define a new unknown

y = VTx. (3.74)

We note that multipIting a vector with an orthogonal matrix (U and V in

this problem) leaves the norm of the vector invariant. Then the above

becomes:

I1 x- b 112 = 11 U(1r -a d 112 = IIJ--d 112 (3.75)

The minimizing solution is found as:

Yi = di 10i for i < r

Yi = 0for i> r.

Once the values of y are calculated, the original unknowns x are obtained

by an additional matrix multiplication by V (see (3.74)). This yields the

least square solution for the nonlinear coordinate change and feedback.

3.6. Linearization for Tracking and Estimation

In this section we will consider a slightly different control problem. The

development included in this section is beyond the scope of this report, and
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is included here for the sake of completeness. This work is due to Arthur

J. Krener and Andrew Phelps. Suppose that the control problem is the

tracking of a reference signal, i.e. we have a p-dimensional output signal y

(or its series expansion at the nominal point) and a reference r(t):

y = h(x) = Hx + h2 (x) + O(x) (3)  (3.76)

and the goal is to achieve

y(t) - r(t) --> 0. (3.77)

In the following, the linearization problem for degree 2 terms is treated.

We assume that in the problem the estimation of the states is also required.

Along with Eqn. (3.23) we have (3.76):

c = Fx + 2)(x) + (G + g(')(x))u + O(xu) 3  (3.78a)

y = Hx + h (2)(x + OWx(3) (3.78b)

Then we consider a coordinate change on the states as well as on the

output:

z x - 0(2) (x) (3.79a)

w y - X(2)(y) (3.79b)

and a new input v is defined as

v = a (2) (y) + (G + 03('(y))u (3.80)

Note that in (3.80), only the available output is used for feedback. With

the above feedback-coordinate transform pair we want to obtain -
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= Fz + v + O(z,v) 3  (3.81a)

w = Hz. (3.81b)

in the new state coordinates z and the new outputs w. The following

development is similar to the derivations done in Sec. 3.2. We take the

time derivative of the coordinate transformation (3.79a) and introduce

(3.79a,b), (3.80), (3.81) on each side:

F(x - 0 2)(x)) + ( (2)(y) + (G + 1)(y))u

- ax )(Fx +^2(x) + (G + g(1)(x))u)

A calculation for the output gives, using (3.79ab) and (3.81)

H(x - 02)(x)) = Hx + h(2)(x) - N 2) (Hx) + O(x)3

By expanding and rearranging the terms in the above equations, and using

the Lie bracket notation we obtain the Generalized Homological equations:

/ 2)(x) = [Fx,o (2)(x)] + a(2)(Hx) (3.82a)

g(1) (x)u = [Gu,(2) (x)] + P()(Hx)u V constant u. (3.82b)

h (2) (X) = XV(2) (Hx) - H 0'2)(x) (3.82c)

These equations define a linear mapping as follows:

(2 x) 2)(x)

(2)(Hx) (x) 
(3.83)

a(2)(Hx) (2)

P O ) xh 
()(
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A dimension count gives the dimensions of the domain and the range:

n2(n+1) p2(p+ 1) np(p+1) n2(n+1) 2 pn(n+ 1)
2 + 2 + 2 + nmp- 2 +nm+ 2 (3.84)

The following table shows the dimensions of the domain and the range for

various cases:

Form = l,p = 1: Form =l,p =2:

State Space Domain Range State Space Domain Range

n = 2 11 13 n = 2 22 16

n = 3 25 33 n = 3 39 39

n = 4 49 66 n = 4 66 76

Form = l,p =3: Form =2,p =2:

State Space Domain Range State Space Domain Range

n = 2 - - n = 2 26 20

n = 3 63 45 n = 3 45 48

n = 4 94 86 n = 4 74 92

n = 5 138 145

As seen in the tables, for larger state space dimensions and fewer input-

output pairs the mapping is rank deficient. Again, one sets up a least

square problem for finding a solution, similar to Sect. 3.4.
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The linearization method can be extended to the problem of

estimation of the unavailable states as follows. Suppose we have

. = Fz + a (2) (w) + (G + P ()(w))u (3.85a)

w = Hz. (3.85b)

Then we set up an observer

F - L(w - H P) + a (2)(w) + (G + 3()(w))u (3.86)

so that the error is

Z = (F+ LH) F (3.87)

and the gain L is chosen to achieve a stable dynamics for the observer.

Considering the estimated states, we define a coordinate transformation

= P + 0(2)( ) (3.90)

Then, with the above, the error dynamics in x coordinates becomes

(I + )(FP - L(w - H ) + a (2)(w) + (G + P3l)(w)))u)

or

=F(2. + (2) L(y _ V(2)(y) -H(k + 0(2) (1))) + a(2)(y) + Gu

+ (y)u + a*(2)()( - L(Y _ V(2)(y) - H ) + Gu) (3.91)

Rewriting the above with the Lie bracket notation we finally get
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= F - L(y - H) + Gu + [Ff,4O(2) ] - [L(y - Hk),(2)( 1

+ [Gu,o(2)(0)] + a (2)(y) + PM (y)u + L (2)(y) (3.92)

Eqn. (3.92) is the observer for

i = Fx + Gu + i2)(x) + g(1 (x)u (3.93a)

y = Hx + h2 (x) (3.93b)

Notice that the linear part of the observer agrees with standard practice and

the second degree part is the correction. In the closed loop we have the

feedback

u = K 2 - { P(1)( .k)K 2 + KO(2)(.2) + c(2)() } (3.94)

as expected.
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4. ANALYSIS OF THE TRANSFORMATIONS

4.1. Introduction

In Chapter 3, we derived the generalized homological equations for the

second degree linearization problem and introduced an equivalent set of

linear equations. A solution to this set of linear equations, if it exists, will

yield the coefficients of the polynomials in the coordinate transformation-

feedback pair. In this section, we first show that the mapping is rank

deficient. We compute both the kernel and the co-kernel of the mapping.

We then describe a solution method in detail aided by the insight gained

through this analysis.

A computer program written in the MATLAB package that solves

for the transformations based on the analysis of this chapter is presented in

Ch. 5.

4.2. Kernel of the mapping

In Section 3.2, the generalized homological equations were derived as:

(2) = [Fx,o(2)(x)] + Ga(2) (4.1a)

f() (2)

g ()(x)u = [Gu, (2)(x)] + Gfo3)(x)u V constant u. (4.1b)
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It was shown that these equations describe a mapping for the monomial

coefficients of the terms in (4.1):

{(2)2}

a (2)(x )  ' - () (4.2)
l () (x)

Furthermore, we obtained a set of linear equations equivalent to this

mapping, expressed in matrix form:

L [ (4.3)

The derivation of the exact form of the constant coefficient matrix L in the

above equation will be discussed later. At this point we assume that we

have a nonlinear system in which the linear part of the vector field is in

Brunovsky canonical form:

= ax +J12)(x) + (B + g( 1)(x))u + O(x,u) 3  (4.4)

where A, B are matrices of the prime triple (A, B, C) (see Eqns. (2.3a,b)).

As a matter of fact, if the linear part of a given system is controllable, one

can always obtain (4.4) with some appropriate linear coordinate change and

feedback. Furthermore, we also assume that the system (4.4) is

linearizable up to second degree in accr -dance with Krener's Theorem for

approximate linearization [29] as presei,cd in Chapter 2. Then one can

linearize this control system with a coordinate transformation and feedback

pair
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z = x - (2}()-W (4.5)

((45

v = OCa2 (x) + (I + P3( 1 (x))u (4.6)

to obtain

= Az + B v + O(z,v) 3. (4.7)

We pose the following question at this point: Can one find some other

coordinate transformation-feedback pair:

S=Z - 0(2)(Z) (4.8)
(2)

X = (Z) + (I + P}(z))v (4.9)

similar in form to those of Eqns. (4.5) and (4.6) such that, after (4.7) is

transformed by the above one obtains, in C coordinates

AC + B gx + O(C,) 3  (4.10)

i.e. another linear system (up to degree 2)? If such a transformation and

feedback pair (4.8)-(4.9) exist, then the original linearizing pair (4.5)-(4.6)

is obviously not unique, since a combination of both will yield (ignoring

cubic terms)

3 =x-()(x (4.11)

X }() + 0 + P()(x))u (4.12)

To show such a transformation is indeed possible, we first choose the
"natural" basis for expressing the first and second degree monomials.

Choose as a basis the unit column vectors vk, k = 1, ... ,n:
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z = x - 4(x) (4.5)

1 W CC() (1 + ((x))u (4.6)

to obtain

i= Az + B v + O(z,v) 3. (4.7)

We pose the following question at this point: Can one find some other

coordinate transformation-feedback pair:

= Z - 0() (Z) (4.8)
(2)

(4.9)

similar in form to those of Eqns. (4.5) and (4.6) such that, after (4.7) is

transformed by the above one obtains, in coordinates

= A + B I + O( ,) 3  (4.10)

i.e. another linear system (up to degree 2)? If such a transformation and

feedback pair (4.8)-(4.9) exist, then the original linearizing pair (4.5)-(4.6)

is obviously not unique, since a combination of both will yield (ignoring

cubic terms)

=x - 3)(x) (4.11)

X (2 x~(X) + (1 + f3~)(X))U (4.12)

To show such a transformation is indeed possible, we first choose the

"natural" basis for expressing the first and second degree monomials.

Choose as a basis the unit column vectors vk, k = 1, ... , n:
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0

vk 1 -- k th entry (4.13)

'-0

Similarly choose as a co-basis the unit row vectors wi , i = 1, ... ,n:

wi= [0 ••1 0] (4.14)

with unity in the i th entry and zero everywhere else. As in Chapter 3, we

define a basis for n-dimensional vector valued functions of homogeneous

polynomials of degree 2 and degree 1 as follows:

(Pk.(z) = vk(wiz)(Wjz) for j, k = 1, ... ,n ; i = 1, ... j. (4.15a)

p(z) = vJ(wiz) forj = 1, ... ,n ; i = 1, ... ,n. (4.15b)

Similarly, a basis for scalar-valued second degree polynomials is chosen as:

hij(z) = (wiz)(wjz) forj = 1, ... ,n; i = 1, ...g. (4.16)

also for the first degree terms:

hi(z) = wiz for i = 1, ... ,n. (4.17)

Now we recall the proof of Krener's theorem for approximate

linearization. We choose a scalar function h(z), and take this function and

its Lie derivatives as the desired new coordinates in (4.8):
n n1

h(z) = _aihi(z) + yjaihij(z) (4.18)

i= 1 1!<i<_j
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1 
= h(z)

t2 = Lh(z)

(4.19)

cn= L7-h(z)

Comparison of the above with (4.5) implies that, since the two coordinates

z and C have to agree in their first degree terms, in (4.18) al = 1 and ai

0 for i = 2, ... , n. The coefficients of the second degree terms are yet to

be determined. Obviously, if all of the terms a id in (4.18) are zero, then

the only transformation that takes (4.7) into (4.10) is the identity, with
(2) (z) = 0 in (4.8). We will show that one can find a scalar function h(z)

()

with nonzero second degree terms (and therefore nonzero 12 (z)) to

achieve the above transformation. According to the Hunt-Su linearization

theorem a transformation will exist if (see Chapter 2)

0 F <h(z)) 0  (4.20)

With the aid of the chosen basis, we proceed to calculate the first n - 1

equations in (4.20). First note that, since there are no second degree terms

in the given control system (4.7), f and g are equal to A z and B,

respectively. It is also clear that (4.20) will be satisfied if h and its first n -

1 Lie derivatives along f are not a function of zn, i.e.

Lg(II(z))= _ z g (L(z) . (z) [ =0 (4.21)
= \Z az I az 2 "'" 0z
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if W(z) = (z, z2, ... , z_,) because the n th entry in the above one-form

will then vanish. If we assume that

h(z) = z i + aliz 2  (4.22)

one can easily show by calculating the repeated Lie derivatives that the

term zn will not appear until the n - 1st derivative. In fact, any quadratic

term in h that is a function of zi will cause L-lh(z) to be a function of zn at

the n - i th derivative. Therefore we establish that there is a one-

parameter family of solutions dependent on the choice of a 1,1 in (4.22) that

will yield additional solutions. Note that this solution does not redefine the

input, and both a(2 )(z) and (z) in Eqn. (4.9) are zero. To make the

explanation more precise, we have found a nonzero vector [a(2) which,L(1)3

when added to the original solution in Eqn. (4.3), will not change the right-

hand side of (4.3). In other words the solution found belongs to the kernel

of the mapping. For a single input system, (4.22) is the only possible

function which results in a transformation that belongs to the kernel of the

mapping, and the dimension of the kernel is equal to one.

4.3. Co-kernel of the mapping

In Chapter 2, it was shown (via Krener's approximate linearization

theorem) that a controllable system

. =f(x) + g(x)u = Ax +/12)(x) + (B + g(l)(x))u + O(x,u) 3 (4.23)
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is linearizable up to degree 2 around x = x0 iff the distribution

An - 1 = C, span (g(x0 ), ... ,adn-2 g(x)} (4.24)

is involutive up to degree 2. In [Krenerl984a] it is also proven that this is

equivalent to the integrability condition. For a single input system there

exists a nonzero function h(x) (precisely of the form (4.18)) such that

<dh, ad r g(x)> = O(x) 2 . (4.25)

i.e. constant and first degree terms in (4.25) must vanish for a nonzero h.

When (4.25) is not satisfied, a system is not exactly linearizable up to

degree 2, and consequently an exact solution to

Loc( _ = (4.3)

does not exist. In this section, we will attempt to find which terms (or

linear combinations of terms) in the second degree part of the vector field

cause the system to be not linearizable (or equivalently, non-involutive). In

linear algebraic terms, we are looking for a specific vector or vectors ['l
(the entries of this vector are the coefficients of the second degree terms of

the control system in a particular basis) which will satisfy the adjoint

equation

LT[gJ)] = 0. (4.26)
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The precise definition of the co-kernel of the mapping is given by (4.26).

However, once the generalized homological equations are expressed in

their equivalent linear form (4.3), the insight given by the integrability (or

involutiveness) condition becomes lost. Therzfore we will try to derive the

co-kernel expressions using Lie derivatives and by finding the conditions

that satisfy (4.25).

Eqn. (4.25) implies (see the Hunt-Su theorem in Chapter 2)

dh I &g(x), adf g(x), ... , ad- 2 g(x)} up to O(x)2 . (4.27)

Our derivation of the co-kernel equations will be based on calculation of

the successive Lie derivatives of g(x) along fix), which appear inside the

bracket in (4.27). To simplify the expressions, we will first make a

coordinate transformation that will eliminate only the terms g l)(x)u in

(4.23). We choose a coordinate change

z = (2) (x) (4.28)

and no change in the feedback (which means a(2) (x) and P3 )(x) will be

zer ,) in order to satisfy only the second generalized homological equation

(4.2 b)

(1)". _ (2)
g x)= [B, W(x)] (4.29)

where the input u has been cancelled on both sides. We express the left-

hand side of (4.29) in the basis defined in Section 4.1 (4.15b):

g()(x)= gp (4.30)
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where gk are the constant coefficients of g )(x) in this basis. Similarly,

express (2) (x) in the same basis defined in (4.15a):

(2) W *PJ k (4.31)

where O J are the unknown coefficients of the second degree terms. The

bracket on the right hand side of (4.29) is calculated using (4.31), noting

that B = v' in the same basis is given by
k

[B,,(2)(X)] = [Vni (pkj] Vn vk((wix)wj + (WjX)i)vn

= E1 8+i5 ) q 1i (4.32)

where 5} is the Kronecker delta function, and a summation over the indices

i, k is implied. Setting equal the coefficients of the basis elements pki in

(4.32) and (4.30), we obtain:

in= g/(1 + 8i ) for i, k = 1, ... , n. (4.33a)

and

OJ= 0 forj < n. (4.33b)

Thus we have determined the form of (4.31), and the transformation

(4.28), which will transform the system into:

z = Az + Bu + /2)(z) + O(z,u) 3  (4.34)

Note that the coefficients of / 2 )(z) in (4.34) are not the same as the

coefficients of f2)(x) in (4.23), because the transformation (4.28)

contributes new quadratic terms to the vector field. These new terms may

be calculated via the generalized homological equation (4.1a). Since the
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derivation of the co-kernel equations is identical, we shall not calculate the

resulting change.

Using (4.34), Eqn. (4.27) may be rewritten as:

dh I{B, adf B, ... , adfn-2B } up to O(z) 2  (4.35)

where f= Az +/' 2)(z). Eqn. (4.35) is the same as

LadrIB(h) = O(z) 2  for r =1, ... , n -1. .(4.36)

We use the well-known iterative formula:

Lad~g(h) = Ladrilg Lyh) - LfLadri g(h) (4.37)

which can be written as:

az I z ad 7B } (Az + f(2)) _ 2-f t (Az +f(2)) I adr71B =0. (4.38)

First, the terms in (4.38) are expressed in the monomial basis:

(2) =pkjgki = f jvkt(wiz)(wj Z)  (4.39a)

B = v' (4.39b)

v- 1 for 2 i < n
Av i = (4.39c)0 for i = 1

oi+ for 1 <i< n -1
wiA={ (4.39d)

for i = n

h = hI + hid = wz + hij(wiz)(wjz) (4.39e)

Then we calculate the Lie brackets using (4.36) and (4.37):
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adf B = [B, (Az +/2))] = [v', (Az +f vk(wiz)(wjz))]

- (a +kjj vk((w,z)wj + (Wz)wi)) n

= v n +f'k"' vk(l + 8i )(wiz) (4.40)

ad24B =ad/ad B)

(A +pkj Vk((wiZ)wj + (wj)w,))(Vn-'+fp V':(1 + 8 , )(wZ))

-,n vk(1 + 8i )w4 z
-- n

= n-2 + fk.n Vk-I (1+8 i )(wiZ) + fkn-  *lI n_ )(wiz) -1 ,n vk(l+8i)Cw,+,Z)

= v - + vk(.n(1+8n ) + Pkn-l(l+8ni1 ) -fkl n (1+8/))(WIz) (4.41)

When the above calculations are repeated for more steps, a general formula

can be written for ad/B as follows:

ad B -vn - r + 1 1 vk+i-rf'n--1(1 + 8nj+)
j-I k=1 i=1

+ ( 1 )q+s vk-Sf -+sf-r+q+1 (1 + 85 jq- ) } (wz)(4.42)
(S) V f J-f n-r+q+ I (j)(.2

q=1 s=-O

Note that in the calculation of (4.40) through (4.42) O(z) 2 and higher terms

have been ignored. Since we are trying to calculate

<dh,adr1 B> = O(z) 2  (4.43)

we evaluate dh using the expression (4.39e):

Ah hij((wiz)wj + (wjz)wi) (4.44)a= - ++
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Now, (4.43) must be obtained by multiplying (i.e. taking the inner product

of) (4.44) and (4.42) and keeping only the constant and O(z)' terms. This

yields:

n r
<dh,adjB>= X {hi,n-r(1 + & )+ #r-+il (1 + 8n-i+l)

j=1 i=1

+ (_l)q+s (q'f j-q+s,n-r+q+l (I -+ : S ()(.5
+sq-(-1 )(1 + "q) } (W/z) (4.45)
q=lIs=0

Then, using the above equation, one sets the terms inside the curly brackets

{) equal to zero for j = 1, ... , n. Solutions to these equations yield the co-

kernel equations. Because of the complicated nature of Eqn. (4.45), the

calculation of the co-kernel equations become more difficult as the order of

the system increases. However, this fact does not make the numerical

calculation of the actual linearizing solution (or an approximate

linearization) any more difficult, since the exact form of the co-kernels is

not necessary for a numerical solution.

4.4 Derivation of the equivalent linear system of equations for

the solution with a computer program

In the computer program, we will solve the following linear system:

L [a(2) = (4.46)

In (4.46), the coefficients of the second degree terms in the vector field

f (2)(x) and g (1)(x)u are obtained using the natural basis introduced in
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Section 4.2, and stacked in the right hand side vector in a consistent

lexicographic ordering. Similarly, unknown coefficients of the terms

0 (2(x), a (x), and IP')(x) are stacked in the left hand side vector of

unknowns in the same manner. The coefficient matrix L in (4.46) is

constant, and it is obtained from the set of generalized homological

equations:

f (2)(x) = [Fx,o (2) (x)] + Ga (2)(x) (4.47a)

g (1)(X)u = [Gu,o (2)(x)] + Gp(1)(x)u V constant u. (4.47b)

When the terms in (4.47) are expressed in the natural basis and calculated,

we get the following:

[Fx,0(2)(x)] = [FxOki] = vk((wix)wj + (wjx)wi)Fx - Fvk(wiz)(wjz) (4.48)

We note that:

n

wj F =, Flw (4.49a)
l=1

n
Fvk 1 FlkV (4.49b)

where F/ is the i, j th entry in the matrix F. Then one can write, for each

element of the monomial basis k ,

n
[Fx,(pj] = X vk(FjI(wx)(wl x)+ F/i(wrx)(wI x)) - FkVIwiz)(wjz)

n
I~l

FjI q + F-1 (4.50)
/=1
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The calculation of the constant coefficient matrix L in Eqn. (4.46) is partly

based on the result obtained in (4.50) as follows: The dimension of the
Sn2(n + 1)

monomial basis (pij is equal to 2  We restrict the ordering of the11 2

indices as 1 < i j n; 1 < k _ n and note that in (4.50) under the

summation of index I we have to interchange the subscript indices i, I or j, I

for the first two terms in the summation in order to keep the ordering of

the basis elements consistent. This will yield the new expression:

n n n[Fx,(pk]= X Fl q4 + X F1l 9pki +X F ilqkl + X ! k k !+= Fi (Pjl -- k (pij

1=1 I =i+l 1=1 l=j+l =1

(4.51)

where a summation over indices 1 __ i _j _ n; 1 <_ k <_ n is implied.

Then, we collect the terms in the right hand side of Eqn. (4.51) under

dummy indices with overbars 1, j, k or, in other words, regroup the

terms under a monomial p , and sum over the indices i, j, k to get:

in ± - n

[Fx1 ] = _X F'8 + FT F8 + .. F8 + PX 8
= 1 j= i+1 /- 1 =/+l

- F k'8' }SJ.-.- (4.52)

k i j j

where &j is the Kronecker delta function. Precisely speaking, given the

reverse lexicographic ordering 1 < i < j < n, 1 < k < n for the entries in

the linear operator representation of the homological equation, Eqn. (4.52)

will yield the value of the (i,f.k)th row-(ij,k)th column entry in the

matrix L of Eqn. (4.46). To be able to write the rigbt-hand side of the

linear set of equations, we express the second degree termsf (2)(x) as:
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n

f(2)(x) - T (4.53)

1:5i

Note that Eqn. (4.52) will yield only some of the entries in L; for finding

the entire matrix, we need to consider all the terms present in the

generalized homological equations. To this end, we now define a unit

vector for m x1 dimensional vector valued second degree monomials to aid
(2)in expressing a (x):

0

Oij(x) 1 (wix)(wrx) 1 < i<j<n; 1 < X:<m. (4.54)

with the m x 1 column vector equal to unity in the Xth entry, and zero

elsewhere. The expression of a(2) (x) in this basis is:

a (2) (x)= I aj ()o (4.55)
l:5i~j:n ; L i
l<A!5m

Thus, a unit term corresponding to Gc(2) (x) in the homological equation

(4.47a) becomes, with the aid of a summation,

n

GO= X (G W& W)(p- (4.56)
I]k I J ~1<i <j

Next we define the following unit vectors for a similar calculation of the

second generalized homological equation (4.47b). Define the unit n xl

dimensional vector valued first degree monomials as before:
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(P'(x) = vk(w x ) (4.57)

and the m xl dimensional vector valued monomials in (x,u):

-0 -M xl

ti (x,u)= 1 (wix)u u  1 < i!< n ; 1 <Xji< m. (4.58)

'_0 -

with the m x 1 column vector equal to unity in the Xth entry, and zero

elsewhere. Equation (4.47b)

g )(x)u = [Gu,o (2)(x)] + G (1)(x)u V constant u. (4.47b)

can now be calculated by using the unit vectors as defined previously:

m

[Gu,p'jl X + G.uqk

= ~ .1 8 1 Gi y + GST ei. ) 9t U_ (4.59)

11 k<n k(

In addition, the left-hand side of Eqn.(4.47b) is expressed as:

g= g ( up (4.60)
l<i k<n /

We also rewrite the term P( )(x)u as follows:

P (x)u = pi (4.61)
1! X 'n
1 <i,<_m
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and GI3)(x)u is represented as:

= - G "8 -8'j gP u_ (4.62)1 <i,k <n

Combining all of the above, we can calculate the coefficient matrix L. We

summarize these results in tabular form:

___ II __A

Eqn. (4.43) Gk 8'i 0

n2(n + 1)
A dimension count will yield the size of the above matrix as 2 +
2~ osb n2 (n + 1) mn(n + 1) 2

n'm rows by + 2 + m 2n columns, as found before.

The above table yields the entries of the coefficient matrix in the linear

system of equations.
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5. COMPUTER PROGRAM AND SIMULATIONS

5.1. Introduction

A computer program consisting of a collection of routines, or M-files,

written in the MATLAB application language was prepared to implement

the results of this report. The package is intended for use along with the

MATLAB program, and with the Control System Toolbox for MATLAB.

It is used for calculating nonlinear coordinate transformation and feedback

pairs to linearize control systems up to a specified degree in the series

expansion of the nonlinear terms. The current version of the program

calculates transformations up to degree two in the series expansion. After

obtaining the transformation, one applies any of the standard control design

procedures for the resulting model. In the program we have provided

tools for feedback pole placement for the linear part of the closed loop

system. In addition, one also has the option to choose various forms of

inputs and different initial conditions for simulating the resulting system.

Comparisons of the performance of the nonlinear feedback with a linear

feedback design can be made.

In order to run the program, the folder (or directory) that contains

the Approximate Linearization Toolbox for Nonlinear Control Systems

should be present in the directory or folder of the MATLAB program and

toolboxes. Either the MATLABPATH has to be set appropriately (see

MATLAB User's Manual), or after starting MATLAB the subdirectory

that contains ihe M-files of the program has to be the opened or set to be
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the current working directory. The program is menu-driven, and

executing the M-file mainmenu by typing its name will present a menu

from which the system parameters can be entered, the linearization

problem can be solved, and the results can be simulated.

5.2. Using the Program

Prior to running the program, the nonlinear terms in the control system

have to be expanded in a series t) obtain

.i = Fx +f (2)(x) + (G + g ()(x))u + O(x,u)3  (5.1)

where Fx + Gu is the linear part of the plant, and f(2)(x) + g 1 )(x)u is the

second degree part. A characteristic scale for each state should be obtained

and entered into the program. For a complete listing of the program code

see Appendix 1. An example session recorded during use is also provided

in Appendix 2. After a coordinate change and feedback have been found,

the user can perform feedback design and simulate the resulting models.

The feedback gains are calculated in the program either by specifying the

closed loop eigenvalues, or according to a quadratic optimal regulator

design procedure to minimize a performance index C:

00

C = min J(xTQx + uTRu)dt (5.2)

Either procedure yields a set of feedback gains K. In the program, a total

of three different systems are simulated together:

1: A linear model with linear feedback (LMLF)
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x= (F +GK)x + Gr (5.3)

where F and G are identical to those of the original nonlinear system, and

the same gains K as found above are used to perform pole placement on the

model. The term r is a reference input signal. This system is intended to

serve as a benchmark to evaluate the performance of the nonlinear

feedback synthesis procedure. It is expected that the nonlinear control will

drive the system to behave approximately like (5.9).

2: The nonlinear system with a linear feedback law (NSLF):

x = (F +GK)x+f(2 )(x) + g (1'(x)Kx + (G + g (1)(x))r (5.4)

This is the original nonlinear system. After the standard first degree

approximation, the same feedback gains K as in the LMLF are used. In

the simulations, the response of this system is compared to that of the the

second degree approximation.

3: The nonlinear system with the linear feedback and the linearizing

quadratic feedback law (NSQF):

= x + f(2)(x) + (G + g(')(x))(I + P(D1 (x))-1 { Kx - KO (Z(x) -

+ r } (5.5)

This is the nonlinear system on which a quadratic feedback law is applied

in addition to the linear feedback with gain K. Note that in (5.5), the

reference input r appears in the bracket. In other words, the above is

equivalent to (in z coordinates)

=(F + GK)z + r (5.6)
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provided there is no residual (i.e. non-linearizable terms) after the

coordinate change and feedback. The nonlinear feedback applied to (5.5)

is:

u = (I + P(')(x))-1 {K(x - (2)(x))- x(2)(x) + r} (5.7)

In the program, one or more of the response curves of the three models

may be plotted and the performances can be compared. The program

allows the s;mulation of the above systems with:

a) Zero initial conditions,

b) Impulse input with zero or nonzero initial conditions,

c) Step input with zero or nonzero initial conditions,

d) A sinusoidal forcing funcion as the reference signal with zero or

nonzero initial conditions.

In the next section we will present simulations of four different

control systems, each chosen to illustrate a particular feature or aspect of

the approximate linearization method.

5.3. Example Simulations:

In this chapter, four example systems will be simulated. In the simulations

of Examples i, 2, and 3, we will present cookbook nonlinear systems.

The three examples are set up to possess specific properties. The first

example is exactly linearizable; the second example is not exactly

linearizable but in controller canonical form; and the third example is not
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exactly linearizable and it has open loop poles very close to the desired

closed loop poles. None of these three examples represent physical

systems, and each has some isolated property as mentioned above. They

are intended to test and prove the effectiveness of the nonlinear control

scheme within the framework of each of these special properties.

In contrast, Example 4 for the approximate linearization method is a

physical system. The example considered is a satellite in planar earth orbit

specified by its position and velocity in polar coordinates. The nonlinear

equations of motion are expanded in a Taylor series at a nominal earth

orbit, and truncated at the second degree term in the series.

Three response curves will be compared for every simulation: 1)

An ideal linear model, 2) The nonlinear system with a linear feedback

design, and 3) The nonlinear system with the quadratic feedback based on

the method that has been developed. The reason for including the linear

model in the comparison is to check the improvement achieved by

nonlinear feedback toward making the system respond more linearly. In

other words, our evaluation of the effectiveness of the approximate

linearization will be based on how close the time response curves of a

nonlinear system with quadratic feedback follows the responses of a purely

linear system, and how superior this improvement is in comparison with

the response of a system with a feedback design based on a first degree

approximation.

The following table presents a list of the example simulations, the

various initial conditions and disturbance inputs applied to each system, and

the figures associated with each simulation.
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Example System Initial Conditions or disturbances Figures

Example 1 x = [0.05 0.05 0.05]' 5.1 through 5.7

Impulse with unit magnitude 5.8 through 5.14

Step with magnitude = 0.2 5.15 through 5.14

Sinusoidal with r(t) = sin(6t) 5.19 through 5.25

Example 2 x = [0.35 0.35 0.35]' 5.36 through 5.29

Impulse with unit magnitude 5.30 through 5.33

Step with magnitude = 0.5 5.34 through 5.37

Sinusoidal: r(t) = sin(6t) 5.38 through 5.44

Example 3 x = [0.1 0 01' 5.45 through 5.48
x = [-0.1 0 0]' 5.49 through 5.52
x = [0 0 0.1]' 5.53 through 5.56
x = [0 0 -0.1]' 5.57 through 5.60

Sinusoidal: r(t) = sin(6t) 5.61 through 5.64

Nearly Circular Satellite (Example 4)
x = [2 0 0 0]' 5.65 through 5.69
x = [-2 0 0 0]' 5.70 through 5.74
x = [0 0 1 0]' 5.75 through 5.79
x = [0 0 -1 0]' 5.80 through 5.84

Sinusoidal: r(t) = 30,000sin(6t) 5.85 through 5.89

5.3.1. Example 1:

For the first example simulation, the following nonlinear system has been

used:
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0 1 0 - x -  0- x 2- x8x 3  
t'

- = 0 0 1 x2 + 0 U + -xIx 2 + X 2
2 + X 32 + 0 U

-X3- -3 2 -1 ..X3 - -1- X2X3  .x2

(5.8)

This system is exactly linearizable, i.e. it satisfies the conditions of

the Hunt-Su theorem. The first and second degree parts of the system

(5.14) were entered into the computer program, and the linearizing

coordinate change was found to be:

zi = x, - 0.19697x, 2 + xIx3 - 0.5x2
2  (5.9a)

z2 = x 2 + 4xl2 - 2.3939xlx 2  (5.9b)

z3 = x 3 + 7xlx 2 - 2.3939xlx 3 - 1.3939x22 + X32 (5.9c)

Second and first degree terms in the nonlinear feedback were:

c(2)(.x) = -1.4091x, 2 + 7xIx2 - 2xIx 3 + 7.1061x 22 - 0.18182x2C3 - x 3
2 (5.10)

IP(1)(x) = -2.3939x 1 + X2 + 2x3  (5.11)

The above coordinate change and feedback transform the system (5.14)

into:
S0 1 0 z 0

i 2  0 0 1 2 + 0 (5.12)

-z3- -3 2 -1 -Z1

with the input v defined as
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v = a (2)(x) + (I + J30)(x))u. (5.13)

A closed loop feedback was designed by the quadratic optimal regulator

procedure with Q = I and R = I. The feedback gains were found as:

K= [0.1623 6.9158 2.9789 ]

which resulted in the closed-loop eigenvalues:

X1, 2 = -0.7245 ± 0.8515i

X3 = -2.5299.

For the following graphs, the curves are:

LMLF ( ): Reference Linear Model with Linear Feedback.

NSLF ( . .. ): Nonlinear System with the Linear Feedback design.

NSQF (-------): Nonlinear System with Quadratic Feedback design.

Figures 5.1, 5.2, and 5.3 show the response curves of the above three

systems for states x1, x2 , and x 3 respectively. Initial conditions are

x 1 = 0.05; x2 = 0.05; x 3 = 0.05 and there is no forcing input. The solid

curve of the LMLF behaves as expected from a linear model. The curve of

the NSLF goes unstable, while the NSQF tracks LMLF quite successfully.

The NSQF rapidly approaches the LMLF at steady state. This is not

surprising, since in z coordinates the system is exactly linear. We note a

somewhat larger overshoot in the transient of the NSQF, especially

apparent in the curve of x3 in Fig. 5.3. This is a tendency of the NSQF to

become unstable in this neighborhood. When the magnitude of the initial
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conditions were further increased, the response of the NSQF went unstable

(not plotted).

In Fig. 5.4, the magnitude of the control effort used for driving each

system is shown. The quantity is equal to the linear feedback for LMLF

and NSLF, and for the NSQF it includes the quadratic terms as well. This

graph offers some good insight in both the transient and the steady state

response of the NSQF. An unstable behavior, if any, is more readily

apparent in the graph of the control effort. In this first simulation, we

notice that the magnitude of this input goes to zero at steady state. In other

words, when the disagreement between the linear model and the nonlinear

system is small, the magnitude of the input necessary to drive the system is

likewise small.

0.3 Time response of state xl

0.25 /

/

0.2 -

0.15 -. .

0.05

0-

-0.05
0 1 2 3 4 5 6

time

LMLF( ) NSLF( ... ) NSQF(- ------
Fig. 5.1. Free response of state x of Example I with nonzero initial conditions.
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0.1 Time response of state x2

0.05

0-

-0.05-_

-0.15

0 1 2 3 4 5 6

ILMLF( NSLF(---.) NSQF( ------- )
Fig. 5.2. Free response of state X2 of Example 1 with nonzero initial conditions.

0.05 Time response of state 03

0-

-0.1 '

-0.15
0 1 2 3 4 5 6

time

LMLF( NSLF(-.-.-. ) NSQF( ----

Fig. 5.3. Free response of state x3 of Example I with nonzero initial conditions.
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Magnitude of the control effort ul

0.8-

0.6 -

0.4-

0.2 -

-0.2-

-0.4

-0.6

0 1 2 3 4 5 6
time

LMLF( ) NSLF(-.-.-. ) NSQF (-------)
Fig. 5.4. Magnitudes of the inputs for Example 1 with nonzero initial conditions.

Figures 5.5, 5.6, and 5.7 show the phase poi,.-ait plots of the same

simulation. We note that the plots shown are projections of the true three-

dimensional phase portrait onto the respective planes shown. All models

start at the same initial condition. While LMLF and NSQF decay towards

the origin rapidly, the NSLF moves away from the origin, i.e. it clearly

shows the tendency of instability.
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0.1 Phase portrait plot of x I vs x2

0.05-

0 x

-0.15

-0.15
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

xI

[LMLF( NSLF(-.-.-. ) NSQF( -------)
Fig. 5.5. Phase portrait of x, versus x2 for Example 1 with nonzero initial conditions.

0.05 Phase portrait plot of x1 vs x3

0

cr' -0.05

-0. 151
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

xlI

LMLF( NSLF(-.-.-. ) NSQF( ---- )
Fig. 5.6. Phase portrait of x, versus X3 for Example 1 with nonzero initial conditions.



86

0.05 Phase portrait plot of x2 vs x3

0 /
cr-0.05 -

0 1/'/

' 0.05 N".

/ \ -.

/ N

-0.1

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

x2

LMLF( ) NSLF(-.-.-. ) NSQF( ------ )

Fig. 5.7. Phase portrait of x2 versus x3 for Example 1 with nonzero initial conditions.

Figures 5.8 through 5.14 show the response of the system to an

impulse input. All initial conditions have been set equal to zero. In this

case, the nonlinear control causes the system to reach instability very

rapidly. Note that the instability is more evident in the plot of control

feedbacks. Even though the NSQF would achieve good tracking in the

neighborhood of the nominal point, as seen in the earlier Figs. 5.1 through

5.7 for the simulation with nonzero initial conditions and no forcing, it has

a tendency to decrease stability bounds for some systems. Stability

properties of a nonlinear system are very difficult to analyze, and there is

no rigorous theory that explains the stability behavior.
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0.2 Time response of state x I

0.15--

~0.1

0.05-,-

0 0.2 0.4 0.6 0.81

time

ILMLF( )SF--- NSQF(-------)

Fig. 5.8. Response of the state x, of Example 1 to an impulse input.

0.4 Time response of state x2

0.35--

0.3-

~0.15

0.1 /

0 0.2 0.4 0.6 0.81

time

JLMLF( NSLF(-.-*-* ) NSQF( ---- )
Fig. 5.9. Response of the state x2 of Example I to an impulse input.
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Time response of state x3

0.5 ,, .

S 0-

-0.5

0 0.2 0.4 0.6 0.8 1
time

ILMLF( ) NSLF(-.-.-. ) NSQF (------ )
Fig. 5.10. Response of the state x3 of Example I to an impulse input.

Fig. 5.11 for the magnitude of the linearizing control clearly shows

the instability of the NSQF in this case. A possible cause of this behavior

might be a loss of rank of the term (I + 3(1)(x)) (a scalar in this example)

which is inverted during calculating the nonlinear feedback (see Eqn. 5.5).

Note that, as seen in Eqn. 5.13, this corresponds to a loss of controllability

for the nonlinear system. The phase portrait plots for the impulse response

are shown in Figs. 5.12 through 5.14.
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0 -- Magnitude of the control effort ul

-20

-40

-60

-80

-100

-120

-140
0 0.2 0.4 0.6 0.8

time

LMLF( ) NSLF(----.) NSQF (-------)
Fig. 5.11. Magnitude of the control inputs for Example 1 for an impulse input.

0.4 Phase portrait plot of xl vs x2

0.35 - / 

0.3-

0.25 /

0. 2 /

0.1

0.05

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

xl

LMLF( ) NSLF(-.-.-. ) NSQF ( -- -

Fig. 5.12. Phase portrait of x, versus x 2 for Example I for an impulse input.
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Phase portrait plot of xl vs x3

0.5 - . .

0' 0 .5- - - - - - - - - - - - - -

Nt

-0.5 /

-I.I

-1 ' 'bb..
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

xl

LMLF( ) NSLF ( -.-.-. ) NSQF (-------)
Fig. 5.13. Phase portrait of x1 versus x3 for Example 1 for an impulse input.

Phase portrait plot of x2 vs x3

0.55-
0.5 - .

. 0 . N

SN -

Fig

-0.5

-0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x2

LMLF ( ) NSLF(..-. ) NSQF( )

Fig. 5.14. Phase portrait of x2 versus x3 fnr Example 1 for an impulse input.
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Figures 5.15 through 5.18 show the response of the system to a step

input of magnitude 0.2. All initial conditions have been set to zero. In this

case, the system NSLF reaches instability very rapidly. The NSQF is not

unstable (even though for step inputs of higher amplitude, it would

eventually exhibit unstable behavior), but it displays a constant steady state

error in tracking the reference step input. Since the phase portrait plots

don't offer much insight in this case, they were not plotted.

0.2 Time response of state x I

/"

/
/

0.15 /
/

0.1 /

0.05

01
0 1 2 3 4 5 6 7

time

LMLF( ) NSLF(-.-.-.. ) NSQF (------)
Fig. 5.15. Response of the state x1 of Example I to a step input.
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0.05 Time response of state x2

0

9 -0.05-

-0.1-

-0.151
0 12 3 4 5 6 7

LMLF( NSLF(-.-.-. ) NSQF(-------)
Fig. 5.16. Response of the state x2 of Example 1 to a step input.

0.05 Time response of state x3

0 - . -- ' .

-0.05-

-0.1
0 1 2 3 4 5 6 7

time

LMLF( NSLF(--~--- NSQF(----)
Fig. 5.17. Response of the state x3 of Example 1 to a step input.
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2 Magnitude of the control effort ul
2!

1.5 /

/

/

o0.5 -

-0.5

-1
0 1 2 3 4 5 6 7

time

LMLF( ) NSLF(-.--. ) NSQF (-------

Fig. 5.18. Magnitudes of the control inputs for Example I for a step input.

The graphs shown in Figs. 5.19 through 5.25 present the response of

the system to a sinusoidal input u(t) = Asin(ot) with the parameters co = 6,

A = 1. This simulation is probably the most interesting case in displaying

the advantage of the nonlinear feedback. The NSLF has a constant offset

away from the equilibrium point. For NSQF, this average error rapidly

goes to zero since in z coordinates, the system is exactly linear. After the

initial tra\nsients die out, the LMLF and the NSQF oscillate around an

equilibrium at the origin, i.e. their average is zero.

We should emphasize that the steady-state equilibrium around which

each model oscillates is directly related to the average of the noidinear

terms in the vector fields over each period of the sinusoidal input. The

strongest case we can make in favor of the NSQF is that this average is
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extremely close to zero, i.e. it is like that of an exactly linear model. Figs.

5.19, 5.20, and 5.21 show the transient and steady state time responses of

all three models. The above argument is clearly obvious in these figures,

especially in Fig. 5.19 since the state x3 is farthest away from the input in

terms of integration (note the Controller form of the linear part of the

system in Eqn. 5.8).

One should also note that the very impressive improvement achieved

by the quadratic control toward causing the system to track the linear

model, as seen in Fig. 5.19, is due to the fact that this example is exactly

linearizable. A nonlinear feedback and coordinate change that achieves

exact linearization could as well be calculated using the Hunt-Su

linearization method. However, in our approach, we also minimized the

length of the vector formed by the coefficients of 0(2), a(2), and 3(1). In

contrast, the Hunt-Su theorem will not, in general, yield the minimum

solution (in the sense that we have defined in Ch. 3) for the coordinate

change and feedback.

For n = 3 the Hunt-Su method yields a one-parameter family of

solutions to the approximate linearization problem for systems that are

exactly linearizable up to degree 2, and the choice for the free parameter

remains to be determined. The correct choice for this parameter in order

to obtain the "smallest" coordinate change and feedback is precisely the

solution found by our method. Therefore, the specific nonlinear

coordinate change-nonlinear feedback pair calculated for this example is

expected to yield a better performance during the transient response. In

the steady state, the difference in performance between the coojrdinate

change and feedback we have found and other solutions may not be
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appreciable if the trajectories are too close to the origin. The nature of our

approach allows us to immediately extend the method to systems that are

not exactly linearizable (see examples 2, 3, and 4).

Fig. 5.22 shows the plot of the feedback terms, where the

feedback for NSQF has an offset from the equilibrium. This clearly

indicates that the nonlinear input drives the system to a zero average by

introducing a bias into the system. In Figs. 5.23, 5.24, and 5.25 we present

the phase portrait plots of the three models. The steady state equilibrium

points are again clearly seen, especially in the graph of x1 vs x 2 where both

the LMLF and the NSQF oscillate around the origin. The NSLF settles

around a non-zero equilibrium.

0.04 / Time response of state xl

0.03

0.01 '- /

0

-0.01
0 1 2 3 4 5 6 7 8

time

LMLF( NSLF(-.-.-.) NSQF (----)
Fig. 5.19. Response of the state x, of Example I to a sinusoidal input.
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0.06 Time response of state x2

0.04-

0.02 .

-0.02 -

II-0.04-

-0.06

0 1 2 3 4 5 6 7 8
time

LMLF( ) NSLF(--.- ) NSQF (-------)
Fig. 5.20. Response of the state x2 of Example 1 to a sinusoidal input.

Time response of state x30.2 I

0.1-

0

-0.1

-0.2 -/
'I

-0.3 --
0 1 2 3 4 5 6 7 8

time

LMLF( ) NSLF (-.-.-. ) NSQF (
Fig. 5.21. Response of the state x3 of Example 1 to a sinusoidal input.



97

1.5 Magnitude of the control effort u I

0.5 I ' ~ .

0.5 o .I

0

-0.5 - i

0 1 2 3 4 5 6 7 8

ILMLF( NSLF(--- ) NSQF(-------)
Fig. 5.22. Magnitude of the control efforts for Example 1 for a sinusoidal input.

0.06 Phase portrait plot ofxlI vs x2

0.04-

0.02-

/A/

0-I

-0.02-

-0.04-

-006
-0.01 0 0.01 0.02 0.03 0.04

x 1

LMLF( NSLF(--.- -. ) NQ ---- )
Fig. 5.23. Phase portrait of x, versus x2for Example I for a sinusoidal input.
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0.2 Phase portrait plot of x I vs 03

0-
/*

-0.2

-0.3
-0.01 0 0.01 0.02 0.03 0.04

X1

~LMLF( NSLF(---* ) NSQF( ------- )
Fig. 5.24. Phase portrait of x, versus x3 for Example 1 for a sinusoidal input.

0.2 Phase portrait plot of x2 vs x3

0.1-

-

-0.2-

-0.3
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

x2

LMLF( )NSLF(--- -) NSQF( ----
Fig. 5.25. Phase portrait of x2 versus X3for Example I for a sinusoidal input.
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5.3.2. Example 2:

As a second example we chose a nonlinear control system that is not exactly

linearizable:

1, 0 1 0 xi 0 X32

-2  0 0 1 X2  + 1 xU + XI + xIx2  (5.14)

--'- 0 0 0 1 _ _ 0

The following coordinate transformation and feedback pair were found:

z1 =X1 - 0.47665x1
2 + 0.11111xlx 2 + 0.28221x 2

2 - 0.16667xIx 3

- 0.61997x2x 3 + 0.30999x3
2  (5.15a)

z2 = x2 - 0.95331xlx2 + 0.055556x2
2 + 0.1111 1xIx3 + 0.34219x2x3

+ 0.32447x 3
2  (5.15b)

Z3 = X 3 + X 1
2 - X1X 2 + 0.15781x 2

2 + 0.046694xIx 3 - 0.028971x9 3

+ 0.48228x 3
2  (5.15c)

The terms in the nonlinear feedback were:

=( (2)(x) = X1X 3 + 0.30675x2X3 - 0.084526X3
2  (5.16)

0)(x) = -0.89775x 1 + 0.36997X2 + 0.96336x3  (5.17)

The above coordinate change and feedback found will exactly transform

the following linearizable system (rather than (5.14)) into z coordinates:
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0 1 0 x 0

2= 0 01 x2 + 1 U

0 0 0 1-X3 - 1_

0.05555x1 +0.05555x 2

" -O.05555xj-O.O8333x2-O.O2777x3 U

_.05555x+0.08333x2+O.O2777x3

-0.05555 2
2 0.05555X2X3+0.9444X3

2  -

+ X1
2 +Xlx 2+0.05555X22+0.05555x 2x 3+0.05555X32  (5.18)

-0.05555X2
2-0.05555X2x3-0.05555X3 2  -

i.e, (5.18) will transform with (5.15), (5.16) and (5.17) into z coordinates

as

= Fz + Gv (5.19)

with the input defined with

v = a 2)(X) + (I + P3l 1 (x))u. (5.20)

The next step in the computation process was designing a closed loop

feedback for the linear part of the plant. The feedgack gains were

calculated by the program with a quadratic optimal regulator design

procedure. The matrix Q was taken to be the identity, and R was set to

unity. The feedback gains were thus found to be:

K = (1 1.7321 1] --(5.21)
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and these gains placed the eigenvalues of the linear part of the closed loop

system at:

X1,2 = --0.866 ± 0.5j

A3 =-1.

Since we designed the closed loop feedback gains for the linearized system

in z coordinates, we obtained the equivalent feedback u in x cordinates by

using (5.1). This feedback was calculated as:

U = (I + P(1)(x))-'{K(x - (2)(x))- a 21(x) + r} (5.7)

For the following graphs, similar to the first simulation, the curves are:

LMLF ( ): Reference Linear Model with Linear Feedback.

NSLF ( . .. ): Nonlinear System with the Linear Feedback design.

NSQF (--------): Nonlinear System with Quadratic Feedback design.

The plots in Figs. 5.26 through 5.29 show the response of the models to an

initial condition of x1 = 0.35; x2 = 0.35; x3 = 0.35 and a zero reference

input. In Figs. 5.26, 5.27, and 5.28 the time responses of the states x, x2,

and x3 are plotted, respectively. The NSQF shows some tendency toward

instability until t = 1 (a simulation for slightly increased values for the

initial conditions, not plotted, displayed a singularity in this neighborhood).

After the NSQF recovers from this region, it tracks the LMLF extremely

closely. The NSLF curve, on the other hand, settles down to the same

value much later, and displays some amount of overshoot.
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The improvement achieved by the NSQF in responding like a linear

system, especially as seen in Fig. 5.26, makes a very strong case for our

method. Despite the fact that the example is not an exactly linearizable

system, there is almost an order of magnitude difference between the

NSQF and the NSLF in percent deviation from the ideal linear model. The

time that the NSQF settles at zero equilibrium is also very close to that of

the LMLF, whereas the NSLF displays transient behavior for a much

longer period of time.

The curves of the inputs of Fig. 5.29 shows the steep increase in the

value of the control effort between t = 0.5 and t = 1, the region in which

the NSQF has a tendency of instability. The inputs settle to zero

afterwards.

0.5 Time response of state xl

0.4 \

0.3 -

X0.2-\

0.1 " -

0

-0.1
0 1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.-. ) NSQF( ------- )
Fig. 5.26. Free response of state x, of Example 2 with nonzero initial conditions.
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0.4 Time response of state x2

0.3

0.2 -
0.1 \

-0.3

-0.4
0.1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.-. ) NSQF(-------
Fig. 5.27. Free response of state x2 of Example 2 with nonzero initial conditions.

0.4 Time response of state x3

0.2-

0 "

-0.2- - -

/
\ /

-0.4 /

-0.6
0 1 2 3 4 5 6

LMLF( ) NSLF(-.-.-. ) NSQF(-------
Fig. 5.28. Free response of state X3of Example 2 with nonzero initial conditions.
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0.5 Magnitude of the control effort u 1

-0.5

-1

-1.5

0 1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.- ) NSQF( -------
Fig. 5.29. Magnitudes of the inputs for Example 2 with nonzero initial conditions.

Figures 5.30 through 5.32 show the time response of the three

models to an impulse input of unit magnitude. The NSQF displays unstable

behavior, and its curve is not plotted through the entire time of the

simulation because, due to instability, the integration algorithm could not

carry out the computation any further. Since the stability properties of

nonlinear systems are not well known, the cause of this instability is not

entirely clear. Fig. 5.33 shows the magnitude of the inputs.
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1 Time response of state x I

0.8-

0.6---

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

tine

LMLF )NSLF----- NSF F-------
Fig. 5.30. Response of the state x, of Example 2 to an impulse input.

1Time spns of state x2
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0.6 - ~ .

c40.4
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time

LMLF( NSLF(-.-.-. )NSQF(--- -- -
Fig. 5.3 1. Response of the state x2 of Example 2 to an impulse input.
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1 N Tim response of state 03

0.8-

0.6-N

0.4- ~

~0.2

0-

-0.2-

-0.4 -

-0.61
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

LMLF( NSLF(---. NSQF(----
Fig. 5.32. Response of the state x3 of Example 2 to an impulse input.

Magnitude of the control effort u 1

0

-4-
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(LMLF( NSL(--.-. )NSQF(-----)
Fig. 5.33. Magnitude of the control inputs for Example 2 for an impulse input.
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In Figs. 5.34 through 5.36 are plotted the time responses of the same

models to a step input of amplitude 0.5. In these simulations, the NSQF

exhibits stable behavior, and settles toward the optimally damped response

curve of the LMLF within 5 time units. On the contrary, the NSLF

quickly goes unstable and can not track the reference signal at all. One can

choose a sufficiently small amplitude for the step input in order to obtain

stable behavior for the NSLF, but the characteristics of the response curve

in comparison with the NSQF would still display larger errors in tracking

the LMLF. Fig. 5.37 shows the magnitude of the inputs in this case. The

input values (except for NSLF, which goes unstable) settle at a steady state

nonzero constant after some transient. This is expected because the

reference signal is a step input.

Time response of state xl

0.7-

0.6-
/

0.5 .- -- -- - -------

0.4-

0.3-

0.2-

0.1

0
0 1 2 3 4 5

time

LMLF( ) NSLF(-.-.-. )NSQF
Fig. 5.34. Response of the state x, of Example 2 to a step input.
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0.6 Time response of state x2

0.5-

0.4-/

0.3-

"X0.2

0.1-

-0.1

-0.2
0 12 3 4 5

time

LMLF( NSLF(---.) NSQF(-------)

Fig. 5.35. Response of the state x2 of Example 2 to a step input.

Time response of state x3
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-0.6
0 1l 2 3 4 5

tirne

LMLF( NSLF(-.--. NSQF(-
Fig. 5.36. Response of the state x3 of Example 2 to a step input.
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Magnitude of the control effort ul
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-2-

-3

-4
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0 1 2 3 4 5

time

LMLF( NSLF(-.-.-.) NSQF ------- )
Fig. 5.37. Magnitudes of the control inputs for Example 2 for a step input.

Figs. 5.38, 5.39, and 5.40 show the transient and steady state time

domain response of all three models of Example 2 to a sinusoidal input.

The reference signal was r(t) = Asin(ot ) with (o = 6, A =1. Similar

comments as in Example 1 can be made for this set of responses. The

NSQF clearly has an advantage over the NSLF in tracking the sinusoidal

reference input. In this simulation, since the linearization is not exact, the

NSQF does not follow the LMLF exactly. However, in comparison with

the curve of NSLF this deviation is negligible. This simulation is again the

most interesting case in displaying the advantage of the nonlinear feedback.

The NSLF has a constant average offset from the equilibrium point. For

NSQF, this offset is much smaller since in z coordinates, the system is

closer to a linear model.
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The above example verifies our claim in the approximate

linearization procedure of minimizing the "distance" between the given

system and the "closest linearizable" system. Of course the improvement

achieved by the quadratic feedback is dependent on how far away the

original nonlinear system is from the "closest linearizable" system before

the linearization is done. After the initial transients die out, the LMLF

settles into an equilibrium at the origin, i.e. its average is zero as expected

from an exactly linear system. The NSQF displays oscillattions extremely

close to the LMLF. Again we emphasize that the steady-state equilibrium

around which each model settles is directly related to the average of the

nonlinear terms in the vector fields over each period of the sinusoidal

input. In the case of NSQF this average is very small, i.e. it is closer to an

exactly linear model. The argument is more obvious in Fig. 5.38 since the

state x1 is farthest away from the input in terms of the number of

integrations.

Fig. 5.41 shows the plot of the feedback inputs, each of which is

periodic as expected. It is very interesting to observe that while the

average values of the control inputs for LMLF and NSLF are zero (or

almost zero), the average of the input for NSQF deviates from zero. This

fact clearly has a connection to the above-mentioned argument for the

averages of the responses for the three systems. It appears that the

quadratic feedback introduces a bias into the nonlinear system which drives

it towards the origin (on the average).

In Figs. 5.42, 5.43, and 5.44 we present the phase port ait plots of

the three models. The steady state equilibrium points are again,.Clearly
seen, especially in the graphs of x, versus x2 and x, versus x3.
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0.12 Time response of state xl

0.120.1 -

0.08-

0.06 .

'~0.04-V

0.02-'.

0

-0.02

-0.04
0 1 2 3 4 5 6 7 8

time

LMLF( ) NSLF(-.--. ) NSQF (-------
Fig. 5.38. Response of the state x, of Example 2 to a sinusoidal input.

0.3 Time response of state x2

0.2

0.1

0

-0.1-

-0.2 -. J

-0.3
0 1 2 3 4 5 6 7 8

time

$LMLF( NSLF(-.-.- ) NSQF( " )I
Fig. 5.39. Response of the state X2 of Example 2 to a sinusoidal input.
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0.2 Time response of state x3

0.1

0-

-0.1

.1 I

-0.2-

-0.3
0 1 2 3 4 5 6 7 8

time

LMLF( ) NSLF(-.-.- ) NSQF (-------)
Fig. 5.40. Response of the state x3 of Example 2 to a sinusoidal input.

0.6 Magnitude of the control effort u 1

0.4-

0.2

0

-0.2

-0.4 -,

-0.6 ,

-0.8-
0 1 2 3 4 5 6 7 8

LMLF( ) NSLF(-.-.- ) NSQF( -.
Fig. 5.41. Magnitude of the control efforts for Example 2 for a sinusoidal input.
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0.3Phase portrait plot ofxlI vs x2

0.2-

-0.2 _ 7_-

-0

-0.2-Paeprri lto lvx

-0.2-
-0.02 0 0.02 0.04 0.06 0.08 0.1

X1

LMLF( NSLF(---.-. ) NSQF( -------
Fig. 5.43. Phase portrait of x, versus X2for Example 2 for a sinusoidal input. -
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0.2 Phase portrait plot of x2 vs x3

0.1

S 0

-0.1

-0.2
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x2

LMLF( ) NSLF (-.-.-.) NSQF (-------
Fig. 5.44. Phase portrait of x2 versus x3 for Example 2 for a sinusoidal input.

5.4.3. Example 3:

The following third order system has been simulated as another example.

This system is not exactly linearizable and it has open loop poles very close

to the desired closed loop pole locations.

" 1.259 0.0177 -5.1128 x1

= 0.5181 -2.9646 -12.2257 x2 + 2 u

_x3_ L 1.259 0.0177 -4.1128 J 1_
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X,2 + 2xX 2 + XX 3 + X2X 3 + X3 2  -x, + 2x 3 -

+ x 1
2 + 2xlX2 + 3xIx 3 + x 2 

2 x 3 + X3 2  + X 2 + X 3 u (5.22)

XlX 2 + XlX 3 + 2X2
2 + X 2X 3  L 2X3  -

The characteristic scales of each state and the input were assumed to be

equal to unity. The following coordinate transformation and feedback pair

were found:

z I = xI + 0.86986x 1
2 + 0.62932xlx2 - 2.8055xlX3 - 0.02927x2

2

+ 0.21302x2x 3 - 0.030389x3
2  (5.23a)

Z2 = X2 - 1.5358x1
2 + 2.2273xlx 2 + 1.0036xIx 3 + 0.36424x2

2 - 3.2297x2x3

+ 1.7879x3
2  (5.23b)

Z3 = X3 + 1.643x, 2 - 0.062292xjx 2 - 1.9677xjx 3 + 0.26052x2
2

- 0.25082x2x3 + 0.014877x 3
2  (5.23c)

The terms in the nonlinear feedback were:

cc(2)(x) = 7.3167x1
2 - 0.0043799xlx 2 - 14.095xlx 3 +1.5513x 2

2 - 4.5535x2x3

+13.072x 3
2  (5.24)

P(1)(x) = 1.1933x1 + 0.72725x2 - 0.43993x3  (5.25)

The closest linearizable system had the following nonlinear terms:

)2)(x) =

1.0001x 12+2.0002xlx 2+ 1.000 lxx 3+0.00044583x2
2+ 1.0002x3+ 1 .0001x 3

2-

x 1
2+2xlx 2+3x 1x 3+x 2

2+x 2x 33+x 3
2

0.9998 1xIx 2 +XlX 3+ 1.9996x2
2+0.9998 lx2X3
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1.0004x 1 +0.00198412x2 + 2.0003x 3

g (x) 0.99986x 2 + X3 U

--0.000391772x, - 0.0017123x 2 + 1.9997x 3.

The system has open loop poles at -0.5227; -2.6479 ± 0.3841j. A closed

loop feedback for the linear part of the plant was calculated using a

quadratic optimal regulator design procedure with the weighing on the

states and the input equal to unity. The feedback gains were found as:

K = [-0.4730 0.0177 1.4224]

and the above gains placed the eigenvalues of the linear part of the closed

loop system at:

X, = -0.5056

= -1.7647

X3 = -2.5633

Since the open loop system already has stable roots, the linear feedback

gains that are necessary to drive the system are small. In the simulation

plots the response curves are defined with the following legend as before:

LMLF ( ): Reference Linear Model with Linear Feedback.

NSLF ( ... ): Nonlinear System with the Linear Feedback design.

NSQF (-------): Nonlinear System with Quadratic Feedback design.

Figures 5.45 through 5.48 show the response of the system to an initial

condition of x = [0.1 0 01' (referred to as initial condition #1 in the figures)

and the feedback input. The reference signal is set to zero. The response
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curves of Figs. 5.45, 5.46, and 5.47 show the vastly superior behavior of

tne NSQF in terms of responding like a linear system, i.e. in tracking the

LMLF extremely closely immediately after the transient response dies out.

We should note that in this specific example, the behavior of the

NSQF in tracking the LMLF should be considered even more impressive

because the system is not in controller canonical form. When a system is in

controller form, the tracking errors appear to be much larger in those

states that are further away from the input in terms of integration. This is

because (considering a single input system) the signals are differentiated

n - 1 times until the first state is reached, and all the errors are therefore

amplified (Example 1 is a good demonstration of this fact). In this

example, we observe excellent tracking behavior for NSQF on all the

states, even without the benefit of the presence of controller form.

An inspection of the response characteristics of x1 ,x2 and x3 in Figs.

5.45, 5.46, and 5.47, respectively, shows that in terms of settling times at

the zero steady-state value, the NSLF is much superior to both the linear

ideal model LMLF, and the NSQF. However, this is a fortuitous behavior

of the system due to the specific nonlinearities in this example. The goal of

the nonlinear control design is to track the linear system as close as

possible, rather than to achieve the fastest response or the shortest settling

time. One should also remember that the transient and the steady state

responses of a linear system can be arbitrarily adjusted if the system is

controllable and if there is no restriction in the magnitude of the requierd

control effort. Therefore this should be seen as an isolated phenomenon

which results from the particular nonlinearities present, as well as from the

choice of eigenvalues of the linear part of the model.
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During the transient part of the response the NSQF is not close to

LMLF because the nonlinear terms are dominant. This is especially

apparent in the curves of x2 and x3 (Figs. 5.46 and 5.47). After the first

half of the simulation, this difference becomes virtually indistinguishable.

In the magnitude plot of the inputs (Fig. 5.48), the control effort for

LMLF and NSLF are extremely small (almost zero for this simulation) and

not visible on the scale of the plot. This is because the open loop system

poles are very close to the closed loop values, and the control effort needed

by a linear controller for driving the system to the origin is very small in

both cases. In contrast, the NSQF needs some additional control effort to

linearize the system. This magnitude approaches zero as the states

approach the origin.

0.14 Time response of state xl

0.12 /

0.1

0.08 -.

0.06 -

0.04-

0.02-

0-

-0.02
0 1 2 3 4 5 6

time

(LMLF( NSLF(-.-.. ) NSQF (------
Fig. 5.45. Free response of state x, of Example 3 with nonzero initial condition #1.
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0.02 Time response of state x2

-0.02 /

-0.04-

-0.06-

-0.086-

-0.18

-0.121-
0 1 2 3 4 5 6

time

LMLF( NSLF(-*-*-. ) NSQF( ------- )
Fig. 5.46. Free response of state x2 of Example 3 with nonzero initial condition #1.

0.04 1Time response of state 03

0.03-

0.02-

-0.01

0 1 2 3 4 5 6

LMLF( NSLF(---* )SF-,,-
Fig. 5.47. Free response of state x3 of Example 3 with nonzero initial condition #1.
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Magnitude of the control effort ul

-0.02- - "

-0.04-/
/

/

/

-0.06 /
/

/

-0.08 -

-0.1

0 1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.-. ) NSQF (-------

Fig. 5.48. Magnitudes of the inputs for Example 3 with nonzero initial condition #1.

In the following simulation, the initial condition of the previous case

has been reversed in sign as x = [-0.1 0 0]' (referred to as initial condition

#2 in the captions of the graphs). The reason for choosing this set of initial

conditions is to test the behavior of the nonlinear system for sensitivity to

initial conditions. More specifically, we would like to check whether the

NSQF will exhibit the same excellent performance for a variety of initial

conditions as was seen in the simulation for the initial condition #1. The

responses and the control efforts are shown in Figs. 5.49 through 5.52.

The NSLF is indeed initial condition sensitive (see the large

deviations in Figs. 5.49, 5.50, 5.51 from the LMLF that it is supposed to

track using the feedback law derived from the first order approximation).

This is expected since the NSLF does not have the benefit of our nonlinear
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control scheme. The same plots show that the NSQF benefits greatly from

the nonlinear control. Indeed, comparing the response curves of initial

condition #1, the NSQF control displays an even more impressive response

in tracking the LMLF, as seen from Figs. 5.49, 5.50, and 5.51 of the three

states. To emphasize once more, the point here is not that the NSQF

follows the LMLF better for this set of initial conditions over some others,

but that it is consistent in this behavior for a variety of initial conditions.

The input effort is again very small for the LMLF and the NSLF

compared to the NSQF. This is not regarded as a disadvantage for the

quadratic control. The reason the NSQF seems to require large amounts of

control effort to linearize the system is that the open loop eigenvalues of

the linear part of the system are already near the desired closed loop

locations and the linear feedback gains are therefore very small.

Time response of state x 1

-0.02

-0.04

-0.06 -

-0.08 --

-0.18

-0.14

0 1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.-. ) NSQF(-------)
Fig. 5.49. Free response of state x, of Example 3 with nonzero initial condition #2.
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0.14 Time response of state x2

0.12--

S0.06-

0.04-

0.02-

-0.02,
0 1 2 3 4 5 6

LMLF( NSLF(-*--* NSQF(-------)
Fig. 5.50. Free response of state x2 of Example 3 with nonzero initial condition #2.

Time response of state 03

-0.

-0.02

-0.05-~

-0.06
0 1 2 3 4 5 6

time

LMLF( NSLF(-*-.-* ) NSQF( - )
Fig. 5.5 1. Free response of state x3 of Example 3 with nonzero initial condition #2.
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0 Magnitude of the control effort ul-~ ~ ~ ?: -------------
-0.02 ._ . ' - .

-0.04
/

-0.06-

//

-0.1 /

-0.12

-0.14

0 1 2 3 4 5 6
time

LMLF ( ) NSLF(-.-.-.) NSQF(--

Fig. 5.52. Magnitudes of the inputs for Example 3 with nonzero initial condition #2.

We continue to further test the sensitivity of the system of Example 3

by applying nonzero initial conditions on other states. In the following, we

present another set of simulations for the same system with nonzero initial

conditions for x 3. The initial condition values are x = [0 0 0.1] (initial

condition #3) and x = [0 0 -0.1] (initial condition #4). Response curves

and the control efforts for initial condition #3 are shown in Figs. 5.53

through 5.56. Figs. 5.57 through 5.60 present the responses and the input

effort for initial condition #4.

Comparing the responses of state x, in Figs. 5.53 and 5.57 for initial

conditions #3 and #4, we can state the same conclusions that were presented

for initial conditions #1 and #2. The NSQF tracks the ideal linear model

LMLF very closely as seen in both of these figures. Comparison 6 these
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two figures show that the sensitivity to changes in initial conditions of the

NSQF is minimal. The tracking performance by the NSQF of the LMLF is

excellent in both cases. Similar conclusions are reached when the responses

for the set of initial conditions #3 and #4 of the state x 2 in Figs. 5.54 and

5.58, and of the state x3 in Figs. 5.55 and 5.59 are compared.

The control efforts seen in Figs. 5.55 and 5.60 show that the NSQF

requires larger input values compared to a linear design. As explained

earlier, the reason that the LMLF and NSLF require such small input

efforts is that the open loop and the closed loop eigenvalues (of the linear

part of the example) are very close to each other.

Time response of state xl

-0.05-

-0.15

0 1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.-.) NSQF( -------
Fig. 5.53. Free response of state x, of Example 3 with nonzero initial condition #3.
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0.15 Time response of state x2

0.05-

-0.1

-0.15
0 1 2 3 4 5 6

time

LMLF( NSLF(-*--* ) NSQF(-------)
Fig. 5.54. Free response of state x2 of Example 3 with nonzero initial condition #3.

0.1 1Time response of state 03

0.08

0.06-

0.04-

S0.02

0-1

-0.06
0 1 2 3 4 5 6

time

LMLF( NSLF(-.-.-. ) NSQF( ------- )
Fig. 5.55. Free response of state X3of Example 3 with nonzero initial condition #3-.
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0 - Magnitude of the control effort u 1

-0.05-'-

-0.15 ,

0.2-/

-0.25L

-0.3
0 1 2 3 4 5 6

time

[LMLF( NSLF(---*) NSQF( ------- )
Fig. 5.56. Magnitudes of the inputs for Example 3 with nonzero initial condition #3.

0.2 1Time response of state x I

0.15-

0 -

-0.05J

0 1 2 3 4 5 6

timne

LMLF( NSLF(-.-.-. ) NSQF(----

Fig. 5.57. Free response of state x, of Example 3 with nonzero initial condition #4.
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0.15 Time response of state x2

0.15,'

0.05

X< 0-

-0.05-

-0.15

0 1 2 3 4 5 6

time

ILMLF( NSLF(----) NSF F-------)
Fig. 5.58. Free response of state x2 of Example 3 with nonzero initial condition #4.

0.05 Tim response of state 03

-0.051

0 1 2 3 4 5 6

time

)LMLF( NSLF(----) NSQF(--------
Fig. 5.59. Free response of state X3of Example 3 with nonzero initial condition #4.
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0.15 Magnitude of the control effort ul
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0 1 2 3 4 5 6

time

LMLF( ) NSLF(-.-.- ) NSQF (-------)

Fig. 5.60. Magnitudes of the inputs for Example 3 with nonzero initial condition #4.

As the final simulation of Example 3, we present the response of the

system to a sinusoidal reference input of r = sin(6t). As in the Examples 1

and 2 presented earlier, the average value of the sinusoidal response gets

closer to zero for the NSQF. This improvement is more apparent in the

graphs of x1 and x3 in Figs. 5.61 and 5.63. For the response x1 of the

NSLF in Fig. 5.61, one can observe substantial nonzero average as well as

a distorted non-sinusoidal shape in the response curve. The NSLF also

displays a phase deviation away from the linear behavior, which is more

apparent in the response of x2 in Fig. 5.62. These three characteristics

(namely nonzero average, non-sinusoidal response, and a phase shift away

from the linear behavior) are typical characteristics of a nonlinear system,

and they have been improved by the quadratic feedback of the NSQFI.
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In Fig. 5.63, the input for the NSQF is periodic and strongly

nonlinear. The nonlinear shape of the input signal is not arbitrary; this

specific nonlinearity in the input effectively cancels out the nonlinearities in

the system (up to degree two). The magnitudes of the control inputs for

LMLF and NSLF are too small to be seen in the given scale. Again this is

because the linear feedback gains were small since the open loop poles were

close to the closed loop values.

0.8 Time response of state xl

0.6-

0.4 - \/ \,

-0.2

-0.4 - / I , /

-0.6
0 12 3 4 5

time

"LMLF. NSLF(-.-.-.) NSQF(-------
Fig. 5.61. Response of the state x, of Example 3 to a sinusoidal input.
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Time response of state x2
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0 "", .' I \ . * 'X
.//\ / 1
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LMLF( ) NSLF(-.--. ) NSQF (-------
Fig. 5.62. Response of the state x2 of Example 3 to a sinusoidal input.

0.6 Time response of state x3
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LMLF( ) NSLF(-.--. ) NSQF(
Fig. 5.63. Response of the state x3 of Example 3 to a sinusoidal input.
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Magnitude of the control effort u 1
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Fig. 5.64. Magnitude of the control efforts for Example 3 for a sinusoidal input.

5.3.4. Nearly Circular Satellite-Example 4:

As it was mentioned in the beginning of this section, in the simulations of

Examples 1, 2, and 3, we have presented cookbook nonlinear systems. The

first example was exactly linearizable; the second example was not exactly

linearizable but in controller canonical form; and the third example had

open loop poles very close to the desired closed loop poles.

The fourth example for the approximate linearization method that

we present now, is a physical system. The following problem has been

adopted from Kailath [26]. We consider a satellite of mass m in planar

earth orbit specified by its position and velocity in polar coordinates.as
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x A [r r 00' (5.26)

where r is the orbital radius and 0 is the angle of the radius vector with

respect to a stationary, inertial reference line. The input thrusts or forces

are written as

U = [Ur u0 ]' (5.27)

which are inputs along the radial and tangential directions. These are

applied by using small rocket engines. The equations of motion are:

r
r m12 k +u,rb f - - m

(5.28)

-2r0 +
r mr

where m is the satellite mass and k is the orbital constant. When the

equations of motion are linearized around a nominal orbit, the system is

locally controllable with the above inputs. If either one of the controls is

assumed to be lost, the linearized system is still controllable from only u0

but not from only ur.

In the following example we assume that ur - 0 and we control the

satellite with u0 only. The point of this assumption is that when both

controls are present, all the nonlinear terms in the system can be cancelled

exactly by appropriate feedback, and a nonlinear coordinate change

becomes unnecessary. Furthermore, when both of the inputs are present,
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the system is exactly linearizable up to any desired degree. Thus the

problem of feedback linearization using both of the inputs becomes an

uninteresting exercise in algebra. With tangential thrust alone, however,

the system becomes more challenging to control, and a nonlinear

coordinate transformation is needed in addition to nonlinear feedback.

With this assumption we present a stronger demonstration of the

effectiveness of the approximate linearization method.

In the following, the system equations will be rewritten around the

nominal states

Xnom = [r0 0 wot (oo]

and the state vector x is redefined as perturbations from this nominal orbit:

x= [ 8r 8r O-coot 8CO ]' (5.29)

Note that the notation in (5.29) has been changed from that of (5.28); the

state vector x now represents the vector of perturbations.

When perturbed around the nominal orbit, the Taylor series

expansion of the system equations including the second degree terms (i.e.

truncated at the third degree in the series expansion) becomes

X 0 1 0 0 0 0

30wo2  0 0 2roo 0 0
02 X2

X 2  0 0 0 1 + 0 Ue +  0 ue

X3  x3

0 r 0 0 1 -1
X4- - r- -X4- -mr O -mr -
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0

-3to2 2-r 0 x + 2ooxx 4 + rox4 2

+ 0 (5.30)

2coo 2
r0 2A1X2 - X 2X 4

with the numerical values assigned as:

(00 = 7t/2 rad/hr; ro = 12.74 Mm (Mm = 106 meters); m = 1000 kg.

These parameter values correspond to an earth satellite with a period of 4

hours and an orbit radius of 2 earth radii. The set of values represent an

intermediate orbit between a geosynchronous satellite and a low altitude

communications satellite.

Note that the satellite model in (5.30) is assumed to be controlled

only by the tangential thrust u0 . In order to apply the approximate

linearization procedure, the state equations must be normalized according

to the characteristic scales of each state. The following characteristic scales

have been assumed for the states and the input:

XlC = 12.74 Mm. = (2 earth radii)

X2c = 1.58 Mm/hr.

x3c = nt/2 radians

X4c = 7t/2 rad/hr.

u., = 10,000 kg.Mm/hr.
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The eigenvalues of the open-loop system are at X,,2 = 0 and

X3,4 = +1.58j, i.e. the system is critically stable. A linear quadratic

optimal feedback design with unit weight on all the states and the input

places the closed loop poles at:

X1,2 = -2.9882 ± 3.3655j

X3,4 = -0.2429 ± 0.1829j.

We note that the feedback is calculated in the scaled coordinates.

Therefore unit weighting of the states and the input in the cost function of

the quadratic optimal feedback design makes sense, unless dictated by other

design criteria. The feedback gains that place the poles of the scaled system

in the above locations were calculated as:

K = [-23.6995 -1.0502 1.0000 -13.00671

For quadratic linearization, the following coordinate change and

feedback was found (The computer program for approximate linearization

presents the coordinate change and feedback in the unscaled coordinates so

that an implementation of the feedback in the natural coordinates can be

readily done):

z I = x 1 - 0.098137x 2  (5.31a)

z2 = x2 - 0.19625xx 2  (5.3 1b)

Z3 = X3 - 0.0043866xlx 2 + 0.0078554x 2x4  (5.31c)

z4 = x 4 - 0.032852x1
2 - 0.11776xlx 4 - 0.004875x 2

2 + 0.31637x 4
2  (5.3 1 d)

OC(2)(x) = -1767.lxx 2 - 10499x2x 4 (5.32)
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3(')(x) = --0.19623x, + 0.63274x4  (5.33)

The second degree terms in the exactly linearizable system are:

0

(2) -0.5878x, 2 +3.1597xx 4+ 12.736x 4
2

0.0014598x2
2

L 0.01947xlx 2 - 0.15701x2x 4

0

0
g9O(x) -6.1665e-07x

2

-6.16e-06x1

The system was simulated first with various nonzero initial

conditions and no forcing input. Then a sinusoidal reference input was

applied. In all of the following simulations, the curves are represented as:

LMLF ( ): Reference Linear Model with Linear Feedback.

NSLF ( . .. ): Nonlinear System with the Linear Feedback design.

NSQF (------- Nonlinear System with Quadratic Feedback design.

In the first set of simulations, a displacement of +2 Mm along the radius

from the nominal orbit was used as an initial condition, i.e. x = [2 0 0 0]'

(initial condition #1). This value corresponds to a deviation of 2,000

kilometers from the nominal orbit. When a satellite is first out up into

orbit, it is likely to encounter deviations of up to 20% from its nominal

orbital radius. Therefore the initial condition chosen is a realistic value.
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The response in Fig. 5.65 is for the radial displacement of the

satellite from the nominal orbit. The NSQF follows the LMLF closely

along the trajectory. In the radial velocity response, the NSQF is very

close to the LMLF whereas the NSLF displays an overshoot first, and it

does not get close to the linear system for a longer period of time. In Fig.

5.67 of the reference angle, the NSLF exhibits a large deviation from the

linear ideal model LMLF. The NSQF tracks the linear ideal model

extremely closely in this case. It appears from the large deviation

exhibited by NSLF from the linear ideal model LMLF in Fig. 5.67 that the

nonlinearities that affect the dynamics of the satellite along the tangential

direction of the motion, i.e. those which influence the angular deviation,

have a stronger effect on the motion. The nonlinear control is very

effective in reducing these undesired nonlinear effects. This result is also

due to the fact that the satellite is being controlled by the tangential thrust

alone

The behavior of the NSQF in the plot of the angular velocity, Fig.

5.68, is very close to the LMLF. The large initial overshoot of the NSLF

in the angular velocity is obviously the cause of the deviation in the angular

displacement, since the displacement is the integral of the velocity.

The plot of the input efforts in Fig. 5.69 show that the control for

the NSQF is closer to the LMLF. In the input plots, the initial value of the

thrust was vey large for all three systems (about 40,000). Since there was

not an appreciable difference between these curves for the first 1/4 hrs. of

the simulation, part of the plot was removed to readjust the scale so that

the difference between the inputs could be distinguished.
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2.5 Time response of state x I
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Fig. 5.65. Free response of state x, of Near Circular Satellite with nonzero initial condition #1.

1.5 Time response of state x2
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Fig. 5.66. Free response of state x2 of Near Circular Satellite with nonzero initial condition #1.



139

0. Time response of state x3
-0.1

-0.2 -.- -

-0.3- -
-0.4-

-0.5 -

-0.6-

-0.7 - --- - -

-0.8
0 1 2 3 4 5 6 7 8

time

LMLF( ) NSLF(-.-.-. ) NSQF (-------)
Fig. 5.67. Free response of state x3 of Near Circular Satellite with nonzero initial condition #1.

0.2 Time response of state x4
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Fig. 5.68. Free response of state x4 of Near Circular Satellite with nonzero initial cdndition #1.
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Fig. 5.69. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #1.

In the Figures 5.70 to 5.74 the responses to an initial displacement of

-2 Mm from the nominal orbit along the radius are shown (initial

condition #2). This value is the negative of the initial condition #1, and it

is intended as a test to check whether the response will display sensitivity to

initial conditions, which was found to be absent in the NSQF of Example 3.

Comparing Fig. 5.65 for the initial condition #1 and Fig. 5.70 for

the response of the radial deviation from the nominal orbit, we observe

that the tracking by the NSQF of the LMLF is quite satisfactory. The

NSQF displays a response that is only slightly sensitive to initial conditions.

We note that when evaluating initial condition sensitivity for the nonlinear

system, we are actually looking for the type of behavior typical of linear

systems: Are the response curves symmetric with respect to the time axis
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when the sign of the initial conditions is changed? The two curves of

NSFQ in Figs. 5.65 and 5.70 are not exactly symmetric, with a small

overshoot displayed by the NSQF in Fig. 5.70 that is absent in the plot of

Fig. 5.65. However, the difference is minor, and it does not affect the

tracking of the LMLF.

Comparison of x 2 in Figs. 5.71 and 5.66, of x 3 in Figs. 5.72 and

5.67, and of x4 in Figs. 5.73 and 5.68 between the two sets of initial

condition responses #1 and #2 all show that the response of the NSQF is

slightly initial condition dependent, but not as strongly as the curves of the

NSLF. Immediately after the transient part of the response, the NSQF

approaches extremely close to LMLF.

The plot for the magnitude of the inputs in fig. 5.74 has been

rescaled to distinguish between the different inputs. Similar to the input

plot of initial condition #1, in the section of the plot that is not shown, all

the inputs were very close to each other. This rescaling helps us in

distinguishing the following feature: For all the improvement achieved in

the tracking of the linear ideal model by the NSQF, it is surprising that the

input effort needed for this is actually smaller than those needed by the

controls of LMLF and NSLF. This is a feature that was also present in the

input plots of Fig. 5.69 of the initial condition #1.
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1 Time response of state xl1
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Fig. 5.70. Free response of state x, of Near Circular Satellite with nonzero initial condition #2.

1.5 Time response of state x2
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Fig. 5.7 1. Free response of state x2 of Near Circular Satellite with nonzero initial condition #2.
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2 Timne response of state x3
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Fig. 5.72. Free response of state x4 of Near Circular Satellite with nonzero initial condition #2.
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Fig. 5.74. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #2.

An angular displacement of 1 radian from the nominal orbit has been

applied for the following simulations (x = [0 0 1 0]'). The NSQF tracks

the LMLF very closely in the radial displacement (Fig.5.75), radial

velocity (Fig. 5.76), angular displacement (Fig. 5.77), and angular velocity

(Fig. 5.78). These response curves show that the quadratic control is

surprisingly effective in tracking the ideal linear model, especially when

compared with the linear control of the nonlinear system, the NSLF.

Please note that in the simulations of both the NSLF and the NSQF, we

have integrated the truncated equations of motion presented in Eqn. (5.30).

The NSLF displays large transient errors and longer settling times in

all the states. A reason why the NSQF is so effective in improving the

system behavior in responding like the LMLF in the state of the angular
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position is because the system is being controlled by a tangential thrust,

which directly affects the angular acceleration.

Because of the initially large magnitude of the input thrusts in Fig.

5.79, the scale of the plot was too large to allow the different inputs to be

clearly distinguished, and we truncated a small portion of the plot by

rescaling the axes. This is why the input curves are missing for the first

1/3 hours of the simulation. In this truncated part, the input values for all

systems were as high as 3000, and they were very close to each other.

Since we are running fictitious simulations, we can afford such large input

forces. In reality, however, such thrust values may not be available for

being able to recover from the large initial deviations we have imposed on

the system, and longer settling times would be physically more realistic.

Time response of state xl0.8

0.7

0.6-

0.5-

S0.4-

0.3-

0.2-

0.1

0
0 2 4 6 8 10 12 14 16

tine

LMLF( ) NSLF(-.-.-. ) NSQF(------
Fig. 5.75. Free response of state x1 of Near Circular Satellite with nonzero initial condition #3.
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Time response of state x20.5
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Fig. 5.76. Free response of state x2 of Near Circular Satellite with nonzero initial condition #3.

1.2 Time response of state x3
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Fig. 5.77. Free response of state x3 of Near Circular Satellite with nonzero initial condition #3.
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Time response of state x40.05
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Fig. 5.78. Free response of state x4 of Near Circular Satellite with nonzero initial condition #3.
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Fig. 5.79. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #3.
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Figures 5.80 through 5.84 show simulation results for an angular

displacement of -1 radian from the nominal orbit, an initial condition with

a sign opposite of the previous case. In the captions of these plots, this case

is referred to as initial condition #4. The discussion for the responses in

this case is nearly identical to that of the initial condition #3. The NSQF is

extremely succesful in the tracking of the LMLF in all the states in the

Figs. 5.80, 5.81, 5.82 and 5.83. The sensitivity properties to a change in

initial conditions is excellent, and in this sense the NSQF behaves almost

exactly like a linear system.

As in the earlier simulation, the input effort is initially very large,

and the difference between various controls could be clearly seen only

when a small initial portion of the graph was truncated.

0 Time response of state x I

-0.2

-0.4-

-0.6-

-0.8

0 2 4 6 8 10
time

LMLF( NSLF(-.-.- . ) NSQF (------
Fig. 5.80. Free response of state x, of Near Circular Satellite with nonzero initial'condition #4.
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0.2 Tie response of state x2
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Fig. 5.8 1. Free response of state x2 of Near Circular Satellite with nonzero initial condition #4.

0.2 Time response of state x3
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Fig. 5.82. Free response of state x3 of Near Circular Satellite with nonzero initial condition #4.
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0.2 Time response of state x4
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Fig. 5.83. Free response of state x4 of Near Circular Satellite with nonzero initial condition #4.
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Fig. 5.84. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #4.
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Finally, for the last simulation, a sinusoidal forcing of 30,000sin(6t)

has been applied to the satellite. Note that this reference signal has the

same units as the input. The amplitude of the sinusoidal forcing magnitude

may seem very large, but we note that as seen in Eqn. (5.28), the thrust is

divided by the mass and the orbital radius to yield the angular acceleration.

This value has te-en chosen large so as to be able to effectively distinguish

between the behavior of the NSLF and the NSQF. Such a large reference

forcing is not physically realizable, and this portion of the example is

simulated only for the sake of demonstrating the effectiveness of our

method. The period of the disturbance was chosen to be close to the orbital

period of the satellite. This type of periodic disturbances are typical for a

satellite, and they might represent external effects such as solar pressure or

gravitational forces due to other celestial objects.

In the radial displacement response of Fig. 5.85 we observe the same

phenomenon seen in the simulations of Examples 1, 2, and 3, i.e. the

quadratic feedback causes the average value of the sinusoidal response to

approach zero. Similar behavior is displayed with a larger deviation in the

angular displacement response of Fig. 5.87. The average drift in all the

models away from the equilibrium in this fugure was very interesting, and

the simulation was extended until t = 20 to observe the steady state

behavior, which is shown in Fig. 5.88. The NSLF displays a large drift

from the reference angle. The LMLF shows a sinusoidal response with

zero average. The NSQF is much closer to the LMLF in average than the

NSLF. However it is obvious From Fig. 5.88 that the NSQF will also

exhibit a steady state average error. This is because the nonlinear system is

not linearizable, and the error is due to the residual second degree terms
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that could not be removed by coordinate change and feedback. Note that

the magnitudes of the nonlinearities are significant for these values of the

states.

Figs. 5.86 and 5.89 show the radial and angular velocities,

respectively. In these curves, the linear and nonlinear control responses

are not readily distinguishable. The difference becomes noticeable when

the velocities are integrated to obtain the displacements, as discussed above.

In the the angular velocity response x4 of the satellite, we observe a large

overshoot in the NSQF. In trying to correct the nonlinearities, the

quadratic controller introduces very large deviations.

Fig. 5.90 shows that the input thrust for the NSQF also assumes very

large values during the transient part of the response. This may be due to a

tendency of the quadratic control to drive the system unstable for large

deviations from the equilibrium. However, whether this large input force

is really necessary to effectively cancel the nonlinear terms in the system

(i.e. are the nonlinear terms really so large to need such a strong force to

cancel them), or the higher degree approximation of our approach starts

failing for these large values of the states is not clear.

Large values for the input force was also observed for Example 1

presented earlier in this chapter. In order to improve on the performance

of the nonlinear controller for some systems that display similar tendencies

of instability, certain modifications in the design procedure may have to be

made. It is not entirely clear at this moment what these modifications

should be, and this is certainly one of the open research questions that

extends from this work.
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Fig. 5.85. Response of the state x, of Near Circular Satellite to a sinusoidal input
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Fig. 5.86. Response of the state X2 of Near Circular Satellite to a sinusoidal input.
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Fig. 5.87. Response of the state X3 of Near Circular Satellite to a sinusoidal input.
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Fig. 5.88. Response of the state x 3 of Near Circular Satellite to a sinusoidal input for
extended time.



155

0.5 Time response of state x4
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Fig. 5.89. Response of the state x4 of Near Circular Satellite to a sinusoidal input.

x10 5  Magnitude of the control effort u 13.5

3-

2.5

2

* 1.5-
I

0.5- IN
I I' (

-0.5

0 1 2 3 4 5 6 7 8
time

LMLF( ) NSLF(-.-.- NSQF ( )

Fig. 5.90. Magnitude of the control efforts for Near Circular Satellite for a sinusoidal input.
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6. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

6.1. Summary

In this report, we have developed a method for approximate linearization

of nonlinear control systems using coordinate transformation and feedback

pairs. First, a series expansion of a given nonlinear system at some

nominal operating point was obtained. Based on the Hunt-Su theorem

[17,18] and the approximate linearization results in [29] we formulated the

problem of linearizing a nonlinear control system by nonlinear coordinate

transformation and nonlinear feedback. The form of the coordinate change

and feedback were chosen such that in the vicinity of the nominal operating

point the transformation approaches the identity map. The differential

equations of the system were then evaluated in the new set of coordinates

using the given coordinate change and feedback.

With the goal of eliminating the nonlinear terms of a given degree in

the series expansion, we obtained the Generalized Homological Equations.

These equations were evaluated after choosing a suitable basis in which the

pth degree vector valued monomials were expressed. When the

coefficients of the monomials of similar powers were set equal to each

other, we obtained a linear system of equations in the unknown coefficients

of the coordinate change and feedback, i.e. in the coefficients of 012 (x),

c( 2)(x) and IP(1)(x). Since these terms are coefficients of monomials of
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degree p, the resulting system of linear equations is approximately of order

n+ 1 where n is the dimension of the nonlinear vector field.

The calculation procedures to solve this set of equations were then

implemented in the MATLAB computer program. MATLAB is an

application language with a rich collection of matrix based computational

algorithms. There are toolbox packages available for control systems,

system identification, and signal processing. It is also a programming

environment with a convenient user interface. By using the built-in

subroutines available in the package and writing additional subroutines,

functions and procedures one can create programs that automate the

solutions of mathematical problems. This package proved to be a very

suitable tool for writing the computer program that implements the results

of this report.

The computer program prompts the user for the input parameters of

the system to be linearized such as order of the system and number of

inputs, characteristic scales for each state and input, linear part of the plant

and the input coefficient, and nonlinear terms of second degree in the states

and the inputs. After obtaining the parameters of the system, the program

first calculates the linear and nonlinear parts of the system in the scaled

coordinates. A linear set of equations in the unknown coefficients of the

coordinate change and feedback is then obtained. This large system of

equations is solved by a singular value decomposition subroutine. The

soliltion obtained is presented to the user as the result of the first part of

the program. At this point, having found the coordinate change and

feedback needed, one can terminate the program, or continue to design a

feedback law for the linear part of the system.
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In the program, the nonlinear feedback needed to achieve the second

degree linearization is calculated in the scaled natural coordinates. Prior to

running simulations, symbolic expressions for the differential equations are

generated to speed up the integrations. Three different models are

simulated using the above feedback: 1) An exactly linear model (which

agrees with the linear part of the system) to serve as a benchmark, 2) The

nonlinear system with a linear feedback design based on a first degree

approximation, 3) The nonlinear system that is linearized up to second

degree with a quadratic feedback and with the additional linear feedback as

in 1) and 2).

Various forms of initial conditions and reference input signals (such

as impulses, steps and sinusoidal inputs) can be applied to all three systems.

They are integrated for a specified length of time. At the end of the

simulations, the resulting state trajectories are converted back to natural

unscaled coordinates and plotted for comparison. The feedback inputs for

all three simulations may also be plotted. Phase portraits of the states can

also be made. Once the plots are completed, one can extend the simulations

for a longer period of time, apply different inputs for a different set of

simulations, design different forms of feedback for the linear part of the

system or terminate the program.

Using the computer program as a tool, we found nonlinear feedback

and coordinate transformation pairs for various example nonlinear

systems. We tested the resulting closed loop systems with different initial

conditions and impulse, step or sinusoidal forcing inputs. The

improvement of the second degree approximation over the first -degree

design was superior in almost all the cases that were tested. The systems
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that are exactly linearizable showed the best improvement, and when the

errors due to the second degree terms in the coordinate change became

small, the behavior of the linearized systems were almost exactly linear.

For the type of systems that are not exactly linearizable, there was a

noticable improvement, especiallly in the steady state responses to a

disturbance. The most impressive results were obtained when the systems

were forced by a sinusoidal forcing function. Unlike linear systems, the

response of nonlinear systems to a sinusoidal forcing do not usually have

zero mean. Depending on the nonlinear termsthat are present, there may

be a nonzero bias value which is approximately the average of the

nonlinearities over a period of the forcing function. In this case, it was

observed from the simulations that the quadratic feedback decreased this

bias term, and for exactly linearizable systems the bias was exactly zero in

the steady state. The type of disturbances a control system encounters in

the real world are not impulse or step inputs but noisy signals in general.

The linearized systems have not been tested with noisy inputs. However,

the response behavior for the sinusoidal inputs may be an indication that

the improvements will be satisfactory.

6.2. Conclusions and Future Research Directions

One of the main contributions of this report is obtaining a numerical

solution to the approximate linearization problem for nonlinear control

systems. The exact solvability of the homological equations and the

linearizability of a system according to the Hunt Su theorem (up-to the

specified degree) are equivalent conditions. Therefore whenever a control
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system is not exactly linearizable, it is impossible to find an exact solution

to this system of linear equations. When a solution exists, the coordinate

change and feedback that are found transform the nonlinear system into an

exactly linear system (up to the specified degree) in a new set of

coordinates.

When there is no exact solution, we have solved a least squares

problem by finding an approximate solution to the system of equations

using the singular value decomposition. Before finding an approximate

solution, the state variables were normalized according to their

characteristic scales. By defining the least squares problem in a consistent

way, we minimized the norm of the error between an approximate solution

and a "nearby" exact solution. As shown in Section 3, this is equivalent to

solving the associated singular value decomposition problem for the linear

system of equations in the scaled coordinates.

The Hunt-Su theorem is severe in its restriction that a transformation

and feedback that linearizes a nonlinear system has to achieve the

transformation exactly, i.e. up to an infinite degree in the series expansion

of the nonlinear terms. When it exists, one can calculate the coordinate

change-feedback pair using the Hunt-Su theorem. If the Hunt-Su test fails,

there is nothing more one can do to linearize the system within that

framework. One of the contributions of this report is to offer the above

described approximate solution to the linearization problem in the case

when the Hunt-Su theorem fails.

The improvement achieved by our method depends on whether or

not before the linearization a given nonlinear system was far away from
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the "minimum" solution yielded by the singular value decomposition

method. Obviously, another important factor in the performance of the

linearized system is the relative magnitude of the nonlinear terms in the

system compared to the linear part. If the nonlinearities are very small,

the linear part of the system will dominate the behavior, and the

improvements in such a case may not be significant.

The numerical calculations needed for the transformation and

feedback for a second degree linearization are computationally expensive.

Further improvements in the calculation speeds of the transformation and

feedback may be possible (perhaps with the goal of a real-time

implementation) by removing some of the redundancies in the linear

system of equations that are obtained from the homological equations.

A next step in this research may be the formulation of the third

degree linearization problem. It is expected that a third degree

linearization will improve on the linear behavior of a nonlinear system in a

larger neighborhood of the operating point. However, the numerical

calculations necessary in this case are even more burdensome. The

question that arises is whether a third degree linearization for a single

operating point contributes a justifiable improvement for a broader range

in the state space, or one should perform successive second degree

linearizations at more than one nominal point. The answer to this question

is not clear and may depend on the severity of the nonlinearities, or on the

individual application.

Since we have not solved the third degree linearization problem in

this report, a performance comparison with the second degree linearization
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is not possible at this time. Provided a given system is exactly linearizable,

a third degree linearization may be a worthwhile pursuit. However, if the

system is not exactly linearizable, since there are some second degree terms

that can not be removed, the benefits of a third degree linearization in the

presence of these second degree terms may not be crucial. This argument

also depends on the relative magnitudes of the third degree terms.

It should be pointed out that the formulation of the third and even

higher degree linearizations are similar to the second degree linearization,

as shown in Chapter 3. Aside from some additional technical difficulty of

dealing with a higher dimensional system of equations (the sizes of which

are directly related to the presence of third -or higher- degree monomials)

the numerical solution is also the same.

During the testing of the computer program with various examples,

it was observed that the stability characteristics of the example systems

were sometimes adversely affected. The nonlinear terms that are present

in a system may occasionally augment system stability in certain regions in

the state space, which may depend on their magnitudes and signs at any

given point in the trajectory. Attempting to remove these nonlinear terms

may sometimes cause a system to have a smaller basin of stability after

linearization.

Our central focus in this report has been the improvement on the

response of a nonlinear system in favor of a linear one, and the stability

issue has been considered only locally, i.e. for the linear part of the system.

Clearly, in a reasonably close neighborhood of the origin, the stability

properties will be dominated by the linear part of the vector field. Since
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linear systems can be made globally asymptotically stable, it was initially

expected that a system that has been approximately linearized would always

have a larger basin of stability compared to the same system before the

approximate linearization. This intuitive generalization is not correct in

many cases.

The issue of nonlinear stability is a difficult problem that has not

been completely solved. The stability of a system with nonlinear feedback

of the type we are proposing may depend on important properties of the

overall system such as nonlinear controllability, loss of convergence in the

series expansion of the vector field, a loss of rank in the inversion of the

coordinate change and feedback, etc. These issues are beyond the scope of

this report, but the investigation of stability properties of the method is a

natural extension of the work.

The results presented in this report and their implementation in a

computer program that yields the solution to approximate linearization

problems, help us to analyze various control systems and to gain further

insight into the nonlinear behavior of control systems. Valuable experience

was obtained from the various numerical experiments that have been

performed. Future research directions will certainly be influenced by

these observations as well.
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APPENDIX A:

AN EXAMPLE SESSION FOR THE COMPUTER PROGRAM

The following example session has been recorded during a sample run of

the Approximate Linearization program. The MATLAB command "diary

on" starts recording the screen output. The command "diary off' stops the

recording of the session. Note that the graphical output and anything typed

by the user can not be recorded. The user responses have been added later

and they are emphasized as boldface type.

mainmenu

* SECOND DEGREE APPROXIMATION
* TO NONLINEAR CONTROL SYSTEMS

* Controller Version

• by

S S i n a n Ka r a h a n
Welcome to the Second Degree Linearization Program

Press a key to start

-MAIN MENU-----

1) Help on program and functions
2) Enter new nonlinear system parameters
3) Solve the second degree linearization problem
4) Feedback design for the models
5) Simulate the system and compare performances
6) Exit

Select a menu number: 1

%This help routine presents a *very* brief introduction-to
%the second degree approximation program. For more detailed
%information about the program and the background theory
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%please consult to the accompanying "Second Degree
%Approximation to Nonlinear Control Systems using MATLAB:
%Users' Manual".
echo off
Press any key

% The program solves for second order approximations of
% nonlinear control systems. Your control system should be
% in the following format:

% dx (2) (1) 3
% -- = Fx + Gu + f (x) +g (x)u + O(x,u)
% dt

% where F is the n*n plant matrix, G is the n*l input vector,
% (2) (1)
% f is the second degree part of the vector field, g
% is the first degree part of the input coefficients. All of
% these terms have to be calculated ;, the user from the
% series expansionof the control system at the nominal
% operating point 0. For further details on the individual
% subroutines and function programs called by the routines,
% use the help utility in MATLAB.
echo off;
Press any key

-MAIN MENU-----

1) Help on program and functions
2) Enter new nonlinear system parameters
3) Solve the second degree linearization problem
4) Feedback design for the models
5) Simulate the system and compare performances
6) Exit

Select a menu number: 2
----- Input one of the following:-----

1) Enter data manually
2) Enter a filename to retrieve data

Select a menu number:
----- For entry of data, choose-----

1) Novice mode
2) Expert mode

Select a menu number:

enter order of the system, n: 3

enter dimension of the control, m: 1
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Enter a characteristic scale for each state (used for
normalizing)

scale of xl = 1
scale of x2 = I
scale of x3 = 1

Enter a characteristic scale for each input

scale of ul = 1
Enter 3x3 plant matrix, F: [0 1 0;0 0 1;-3 2 -1]

0 1 0
0 0 1

-3 2 -1

Enter 3xl control matrix, G: [0;0;1]
0
0
1

Enter the coefficients of the second degree terms f2 in the
series expansion of the control system in the following
order:
xlxl xlx2 xlx3 x2x2 x2x3 x3x3
Note the dimensions of f2:
3 rows [for each state equation from 1 to 3] by 6 columns
[for the
coefficients of above terms].

f2 = [1 0 -1 0 0 0;0 -1 0 1 0 1;0 0 0 0 1 0]
1 0 -1 0 0 0
0 -1 0 1 0 1
0 0 0 0 1 0

Enter coefficients of the first degree terms in gl in the
form of a 3 x 3 matrix, where

[I]
g (x)*u = gll*x*ul

each gli is a 3 by 3 matrix, and gl is formed of row blocks
of gli.

gl = [1 0 0;0 0 0;0 1 0]
1 0 0
0 0 0
0 1 0

Enter a file name to store this data: sessiondat
Note: The variables are being saved in the following order:
n m xscale uscale f g f2 gl

----- Enter one of the following-----
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1) Display the variables n m xscale uscale f g f2 gl
2) Return to main menu

Select a menu number: 1
Your system is as follows:

Dimension of the system:
n

3
Dimension of the control
m

1

Scale factors of the states, xl through xn

1 1 1
Scale factor(s) of the input(s,, ul through um

1

Press any key

Linear part of the plant:
F

0 1 0
0 0 1

-3 2 -1

Constant part of the input vector:
G

0
0
1

Press any key

Second degree part of the plant:
(2)

f (x)

f2(1) = +x(1)*x(l)-x(1)*x(3)
f2(2) = -x(1)*x(2)+x(2)*x(2)+x(3)*x(3)
f2(3) = +x(2)*x(3)

Press any key

First degree coefficient of the input(s):
(Each gli multiplies i'th input ui)
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gll

+x(1)
0
+x(2)

Corrections should be done by choosing #2 from the main menu.

Press any key

-MAIN MENU-----

1) Help on program and functions
2) Enter new nonlinear system parameters
3) Solve the second degree linearization problem
4) Feedback design for the models
5) Simulate the system and compare performances
6) Exit

Select a menu number: 3
• Calculating the scaled variables...

* We seek a quadratic change of coordinates
* (2)

z = x - phi (x)
* and feedback
• (2) (1)
* v = alpha (x) + (I + beta (x)).u
• which transforms our system into the form

* dz 2 3
---- = Fz + Gv + R(z,v) + O(z,v)

* dt

• where, if the system is exactly linearizable, R(z,v)
• (residual) is zero.

• We use the homological equations

• (2) (2) (2)
* [ F.x, phi (x) ] + alpha (x) = f (x)

* (2) (1) (1)
[ G.u, phi (x) I + G.beta (x) = g (x) .u

• Calculating the system of equations...

* We construct a large linear system LX = B in the O(x,u)
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* coefficients of the homological equations. This system has

• 2 2
* ROWS: n (n+l)/2 + mn

• 2 2
* COLUMNS: n (n-fl)/2 + mn(n+l)/2 + m n

* In general, the column rank is deficient and the solution
• is overdetermined.
* We use the SVD algorithm to get the "nearest" possible
* solution.

* Solving for the coordinate change and feedback...
* SVD may take a while, please wait.
* Calculations done.
Press any key

----- Please choose a menu item

1) Display coordinate change and feedback
2) Show the closest linearizable system
3) Exit to main menu

Select a menu number: 1
press any key
Phi2 in the second degree coordinate change z=x-phi2(x):

phi2(!) = +0.19697*x(l)*x(1)+x(1)*x(3)-0.5*x(2)*x(2)
phi2(2) = -4*x(l)*x(l)+2.3939*x(1)*x(2)
phi2(3) = -7*x(l)*x(2)+2.3939*x(l)*x(3)+l.3939*x(2)*x(2)-
x(3) *x(3)
Press any key
Second degree part of feedback: Alpha2

alpha2(l) = -l.4091*x(l)*x(l)+7*x(l)*x(2)-
2*x (1) *x (3) +7. 1061*x(2) *x (2) -0. 18182*x (2) *x (3) -x (3) *x (3)
Press any key
First degree part in the feedback: Betal

betal(l,l) = -2.3939*x(l)+x(2)+2*x(3)

press any key

----- Please choose a menu item-----

1) Display coordinate change and feedback
2) Show the closest linearizable system
3) Exit to main menu

Select a menu number: 2
The system is exactly linearizable up to degree 2.
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-----Please choose a menu item-----

1) Display coordinate change and feedback
2) Show the closest linearizable system
3) Exit to main menu

Select a menu number: 3
M A I N M E N U-----

1) Help on program and functions
2) Enter new nonlinear system parameters
3) Solve the second degree linearization problem
4) Feedback design for the models
5) Simulate the system and compare performances
6) Exit

Select a menu number: 4

Closed loop feedback design for the linear part of the plant:

----- Input one of the following:-----

1) Specify closed loop eigenvalues
2) Design Linear Quadratic Optimal feedback

Select a menu number: 2
Quadratic regulator will minimize: integral(x'Qx + u'Ru)dt
Enter 3 by 3 <positive semi-definite> matrix Q

Q = [1 0 0;0 1 0;0 0 1]
Enter 1 by 1 <positive definite> matrix r

R = 1
The gains found are:
kfeed =

0.1623 6.9158 2.9789
The resulting closed loop eigenvalues are:
cleig =
-0.7245 + 0.8515i
-0.7245 - 0.8515i
-2.5299

Press a key

M A I N M E N U-----

1) Help on program and functions
2) Enter new nonlinear system parameters
3) Solve the second degree linearization problem
4) Feedback design for the models
5) Simulate the system and compare performances
6) Exit
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Select a menu number: 5

*The following three systems will be simulated in scaled
coordinates:

[1] dx/dt = (F+G.K).x + r

* (2) (1) (1)
[2] dx/dt = (F+G.K)x + f (x) + g (x)Kx + (G + g (x))r

* (2) (1)
[3] dx/dt = Fx + f (x) + (G + g (x))u(x)

* where r is a reference input signal.
* The nonlinear feedback u(x) in [3] is
* -1

* u(x) = (I + betal(x)) {K(x - phi2(x)) - alpha2(x) + r}.

* [2] is the nonlinear system with a linear feedback design.
* [3] is the same system with linear + quadratic feedback.
* [1] is a linear reference model. It is expected that as
* x approaches zero, [3] will agree with [1] closer than [2].
Calculating symbolic expressions for [1], [2] and [3]...

Press any key

----- Simulation Menu-----

1) Free response-nonzero initial conditions
2) Impulse input-zero or nonzero initial conditions
3) Step input-zero or nonzero initial conditions
4) Sinusoid input-zero or nonzero initial conditions
5) Exit to main menu

Select a menu number: 1
Enter initial conditions (column vector) : xO =[0.1;0.1;0.1]
Simulation will start from initial time tO = 0.

Enter final time (*scaled* time): tf = 5
* Simulation of the linear model done
* Simulation of the nonlinear system with linear control done
* Simulation of the nonlinear system with quadratic control
done

----- Plot Menu-----

1) Plot time response
2) Plot phase portrait
3) Extend simulation for some more time
4) Return to simulation menu
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Select a menu number: 1

Legend for plots (colors seen in color monitors only):
#1: Linear reference model ( Solid; red)
#2: Nonlinear system with linear feedback (._. Dashdot;
green)
#3: Nonlinear system with quadratic feedback (---Dashed;
blue)

Enter simulations to see: "it, for #1, "12" for #1&#2, etc
Please enter the number(s) in increasing order

Enter curve number(s) : 123
Press a key to see each plot

(The plots are viewed on the graphics screen of MATLAB)

Do you want to see the control input magnitudes?(y/n): y
* Calculating the magnitudes of the control inputs...

(The plot is viewed on the graphics screen of MATLAB)

----- Plot Menu-----

1) Plot time response
2) Plot phase portrait
3) Extend simulation for some more time
4) Return to simulation menu

Select a menu number: 4
----- Simulation Menu-----

1) Free response-nonzero initial conditions
2) Impulse input-zero or nonzero initial conditions
3) Step input-zero or nonzero initial conditions
4) Sinusoid input-zero or nonzero initial conditions
5) Exit to main menu

Select a menu number: 5
-MAIN MENU-----

1) Help on program and functions
2) Enter new nonlinear system parameters
3) Solve the second degree linearization problem
4) Feedback design for the models
5) Simulate the system and compare performances
6) Exit

Select a menu number: 6

YY Have a good day ! YY
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Normal Forms for Linear and Nonlinear
Systems*

Arthur J. Krenert

1 Introduction

It is well-known that a state space description of a controllable linear system
can be transformed to controllable or controller form by a linear change of state
variables. A state space description of an observable linear system can be trans-
formed to observable or observer form by a linear change of state variables.
Moreover the former are closely related to right matrix fractional descriptions
(RMFD) of the transfer function and the latter are closely related to left ma-
trix fractional descriptions (LMFD). These facts can be found in many texts
such as Wolovich [Il or Kailath [21. (The reader should be warned that the
controllable/controller and observable/observer terminologies are not standard,
we follow that of [21). Unfortunately there is no one treatment of this material
which is suitable for our purposes so we devote Sections 2 and 3 to a review.
This is by way of preparation for our discussion of the existence and uniqueness
of normal forms for nonlinear systems in Sections 4 and 5. Our treatment gen-
eralizes Zeitz [221 who discussed similar forms for scalar input and scalar output
nonlinear systems.

2 Linear Normal Forms

Throughout this paper we shall use the following notation. The indices 4l,... ,
are positive integers summing to n. A prime triple (A,B,C) with indices 4j,..., 4
is a triple of block diagonal matrices of dimension n x n, n x rn and p x n of the

*This paper is in final form and no version of it is submitted elsewhere.
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form

A BlockDiag. ... 1 (1)
0 ... 0

B = BlockDiag. (2)

C=BlockDiag. [ 1 0 . 0 (3)

The "prime" terminology was introduced by Morse [3].
Consider the linear state space description

= F +Gu (4)

y = H (5)

where F " n", G nI m and HPx ' . The system is said to be controllable if

rank {F'-'Gi : = I,...,m; r = 1,...,n} = n (6)

(Note: Fr denotes the rth power of F, G i denotes the j"h column of G and H,
is the i

t
'h row of H.)

Every controllable linear system has controllability indices Li,.-,. , > 0
characterized by ti + ... + t = n and

rank{F- 1 G': j=l,. ,m; r= 1,,}=

rank{F- 1 1: j =1.,m; r f 1,.,A j} (7)

for t = 1,...,n. The minimum of L and 4j is denoted by f4 A e. The set of
controllability indices is uniquely determined by F and H and does not change
under linear state feedback. There can be some freedom, m in the ordering of the
controllability indices even when the ordering of the inputs remain, fixed. This
is because there may be several orderings which satisfy (7). Of course a change
of variables in the input space or a reordering of the inputs can change the order
of the controllability indices. We could reorder the inputs so that t1 < ... t,,
or the reverse but we shall not do so. To simplify notation we shall restrict our
attention to systems where the controllability indices are positive, Li, .. . , t,, > 1.
A general system can be made to satisfy this condition by deleting dependent
columns of G.
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An alternative characterization of property (7) of the controllability indices
is that

F" ei = 0 (8)

mod {F'-'G': i 1,...,m; r= I,...,(y+ 1) Ati}.

The controllabilities indices of (4), (5) are said to be strict if (8) holds
mod {F-IG: i = 1,..., m; r = 1,...,t At 4}. The controllability indices are
strict iff there is only one ordering of the controllability indices satisfying (7).

It is always possible to make a linear change of input coordinates i = flu
that makes the controllability indices strict for the new pair (F, 6) = (F, G,8-')
without changing their order. One way of accomplishing this to define 1 x n
vectors Ki,..., Km by

KiFrIGj 0. 1 < r < !
r= (9)

and let /3 be the rn x m non-singular matrix whose i - j entry is

R = KFt'-'Gi. (10)

In this case P3 satisfies

Moreover /3 is the only such matrix which makes the controllability indices strict
and leave the order invariant. A change of input coordinates U = )Xt preserve-
the strictness of the controllability indices while leaving the order invariant iff
A, = o for t, > ti.

The system (4), (5) is said to be observable if

rank {HiF'-' : i= 1,...,p; r=1,...,n}=n. (12)

Every observable linear system has observability indices 1,.. . . t 0 charac-
terized by f, + " + tv = n and

rank {HiF -  := 1,...,p; r 1,...,e} =

rank {HiF "-  1,.. .,p; r 1... tA4f} (13)

for t = 1,...,n. The set of indices is uniquely determined by H and F and
does the change under linear change of coordinates in the state and output
spaces and linear output injection. There can be freedom in the ordering of the
observability indices even when the order of the outputs remains fixed. This is
because there may be several orderings which satisfy (13). Of course a change
of output variables or a reordering of the outputs can change the order of the
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observability indices. We could reorder the outputs so that tx - ... < 4, or the
reverse but we shall not do so. We shall restrict our discussion to systems where
all the observability indices are positive.

Similarly an alternative characterization of property (13) of the observability
indices is that

HjF'= 0 (14)

mod {HYFr-: j=l,...,p; r= 1,...,(+1) At}.

The observability indices of (4), (5) are said to be strict if (14) holds mod (H -
jF'- : i = 1,...,p; r = 1,...,4 A t}. The observability indices are strict iff
there is only one ordering of them satisfying (13). It is always possible to make a
linear change of output coordinates y = -y that makes the observability indices
strict for the new pair (H, F) = (-'H, F) while not changing their order. One
way of accomplishing this is to define n x 1 vectors Q, .... , Q" by

= 0 1<r<4 (15)

bi r =

and let -1 be the p x p non-singular matrix whose i - jth entry is

? = HiF"-'Q'. (16)

In this case -y satisfies
-= 9 4 (17)

Moreover - is the only such matrix which makes the observability indices strict
and leaves the order invariant because a change of output coordinates 5 = UV
preserves the strictness and order of the observability indices iff /4j = 0 for

t<.
The controllable form of a linear system is

:i = Ax - aCi + Bu (18)

y = X(19)

where (A, B, C) is a prime triple with indices 4 t,..., 4,. and a and -y are arbitrary
matrices of dimensions n x m and p x n.

The following facts are well-known and/or can be easily proved. A system in
controllable form is controllable with controllability indices t..., t. A system
(4), (5) can be transformed into controllable form (18), (19) by a linear change
of state coordinates = Tx iff it is controllable. If (4), (5) is controllable with
controllability indices j,... , , then the z coordinates of (18), (19) are defined
by taking as a basis the columns of the matrix T

T = [F"-G',...,G' .. ,Fe"--'",. .. ,G] (20)
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Let z = T-' have components

x * = (X lXj ... .. 3s ti,... ,O zm i ... ,IX m e- ) , (2 1)

where * denotes transpose, then Fe,-'Gj in C coordinates becomes the unit
vector in the xj,. direction in x coordinates. The 3 h column of a and the matrix
,I are given by

(k = -T-IFGi (22)

y= HT. (23)

It can be shown that ace = 0 if 4 - r > 4. The controllability indices are strict
iff a' = 0 for 4 - r > 4. The controllable form (18), (19) of the linear system

(4), (5) and the associated x coordinates (20), (21), (22), (23) are unique up to
reordering of the controllability indices. The observable form of a linear system
is

= Ax- Baz + fu (24)

y = Cx (25)

where (A, B, C) is a prime triple with indices 1 p,..., 4 and a and f are arbitrary
matrices of dimensions p x n and n x rn.

A system in observable form is observable with observability indices .1,.•., 4.
A system (4), (5) can be transformed into observable form (24), (25) by a linear
change of state coordinates Tx itf it is observable. If (4), (5) is observable
with observability indices j, ... , 4, then the x coordinates of (18), (19) are of
the form

" = (X111 ... , I ,,I..., I X ,..., I ,) (26)

where T-' is defined by

xi,. = H 1F'-l . (27)

The i
jh row of a and the matrix # are given by

ai = -HiFt'T (28)

= T-'G. (29)

It can be shown that caj = 0 if r > 4 + 1. The observability indices are
strict if a'r = 0 for r > 4. The observable form (24), (25) of the linear system

(4), (5) and the associated x coordinates (26), (27), (28), (29) are unique up to
a reordering of observability indices.
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The controller form of linear system is

= Az- Bcz + Bflu (30)

Y = - (31)

where (A, B,C) is a prime triple with indices 4l,...,4- and a, fl, y are matrices
of dimensions rn x n, m x m, p x n. These matrices are arbitrary except P must
be non-singular.

A system in controller form is controllable with controllability indices ti,..
4 and the controllability indices are strict relative to the input i! = flu. A
system (4),(5) can be transformed into controller form (30), (31) by a linear
change of state coordinates , = Tx iff it is controllable. If (4), (5) is controllable
with controllability indices 4,...,4,, then let P be defined by (10). One can
define a pseudo-output for (4), (5).

=K (32)

where K is the m x n matrix defined by (9). The square system (4) and (32)
is observable with strict observability indices 4, ... , 4,. The observable form
realization of (4) and (32) is a controller form realization of (4), (5). The x
coordinates of (30), (31) are of the form (20) and

Xjr = KiFr-' . (33)

The matrix -y is given by (23) and the i" row of a is given by

ai =-KiFr T. (34)

Since the observability indices of (4) and (32) are strict, we have

a = 0 r > t,.

In general controller form realizations are not unique. However the controller
form realization which satisfies (11) and (35) is unique up to reordering of the
controllability indices.

The observer form of a linear system is

= Ax-aCz+ flu (36)
y = 'YCx (37)

where (A, B,C) is a prime triple with indices 4l,... ,4t and c, f,-yare indices of
dimensions n x p, n x m, p x p. These matrices are arbitrary except that -1 must
be non-singular.
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A system in observer form is observable with observability indices 4, ... ,
and the observability indices are strict relative to the output g = 'y-ly. A
system (4), (5) can be transformed into observer form (36), (37) by a linear
change of state coordinates = Tx iff it is observable. If (4), (5) is observable
with observability indices 4j,... ,4, let -y be given by (16). One can define a
pseudo-input p

=e+ Q(38)
where Q is the n x p matrix defined by (15). The square system (38) and (5) is
controllable with strict controllability indices 4j,...,t4. The controllable form
realization of (38) and (5) is an observer form realization of (4), (5). The x
coordinates of (36), (37) are of the form (26) and defined by - Tx where

T = IF" -Qi, ... ,Q,.. ...... .. .,QP]. (39)

The matrix fP is given by (29) and the j "h column of a is given by

,92 = -T-'Ft Q . (40)

Since the controllability indices of (38) and (5) are strict, we have

i =0 l<r<4-t4. (41)

In general observer form realizations are not unique. However, the observer
form realization which satisfies (17) and (41) is unique up to a reordering of the
observability indices.

Remark 2.1 The controller form (30), (31) of a system is very useful in de-
signing a linear state variable feedback to stabilize the system. The observer form
(36), (37) is very useful in designing asymptotic observers. Together they can be
used to stabilize a system by dynamic output feedback (also called observer based
compensation). See [11 or 12] for details.

Remark 2.2 Controllable and observable forms are easier to compute and are
useful for finding the observer and controller forms of related systems.

3 MFD's

The purpose of this section is to emphasize the very close relationship between
the normal forms of a linear system described above and the so-called polynomial
matrix fractional descriptions of its transfer function. For linear systems it is
only a matter of personal preference which representation we choose to work
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with. This is not the case for the nonlinear systems because they don't have nice
frequency domain descriptions. Our treatment is similar to that of I1 and 12).

Throughout we shall use the following notation. Given the indices 4,.
where n = 4j +'". + t. then A(s), 0(s) and %P(a) are block diagonal polynomial
matrices of dimensions q x q, q x n and n x q of the form

A(s) = BlockDiag .s 1×1 (42)

,(s) = BlockDiag [ " 1 , (43)

T (s) = BlockDiag [ (44)

The linear state space description

i = Ax+v (45)

z = X (46)

with input v, state x, output z, all of dimension n, has the following polynomial
matrix description in the transform domain

A(s) (s) = 4(s)u(s) (47)
z(s) = T(s)(s) (48)

where the so called "partial state' t(s) is defined by

.(s) = Cx(s) (49)

or equivalently

X(s) = T(s)M(s) (50)

(Here z(s) denotes the Laplace transform of z(t), etc.). The (A, B,C) of the
above are a prime triple with indices j,. . . , 4 so that

Cl(s) = 4(s)B = Iqx9 .  (51)

From this we quickly obtain MFD's corresponding to the 4 normal forms of
the last section. For a system in controllable form (18), (19) we use the relations

u(s) = -aCx(s) + Bu(s) (52)

y~s) = -y(s). (53)
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Let q = m, then from (47), (48) and (49), (50), (51) we obtain

u(S) = (A(s) + (s)a) (S) (54)

Y(s) = 'YT(S)MS) (55)

which is a RMFD of the form

y(s) = N(s)D-'(s)u(s) (56)

where

D(s) = (A(s) + 0 (s)a) (57)

N(s) = I(58)

Given a RMFD (56) we can always obtain a controllable form realization.
Recall that a polynomial matrix is unimodular if it has an inverse which is a
polynomial matrix. If we multiply N(s) and D(s) on the right by a unimodular
matrix we don't change the transfer function. In this way we can insure that the
matrix of highest column coefficients of D is invertible and even more equals the
identity.

Let t,.,4- be the column degrees of D, then D(s) and N(s) can be written
as (57), (58) thus defining a and -y. This yields a ccntrollable form realization
of (56).

For a system in controller form (30), (31) we use the relations

u(s) = -Bax(s) + Bflu(s) (59)

y(s) = 'Yz(s) (60)

and so we obtain the RMFD (56) where

D(s) = ,i-z(A(s) + aT(s)) (61)

N(s) = y(s). (62)

Of course we can go backwards. Given the RMFD (56) we multiply N(s) and
D(s) on the right by a unimodular matrix so that the matrix of highest column
coefficients of D(s) is nonsingular. The decomposition (61), (62) defines a, 6i
and -y of a controller realization of the transfer function.

For a system in observable form (24), (25) we use the relations

u(s) = -Bax(s) + au(s) (63)

y(s) = Cz(s) (64)
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We obtain the LMFD

y(s) D-'()N(s)u(s) (65)

where

D(s) = A(s) + a4'(s) (66)

N(s) = *(s)P. (67)

On the other hand given. a LMFD (65) we can multiply D(s) and N(s) on

the left by a unimodular matrix to obtain the decomposition (66), (67). This
defines a and fP of an observable form realization.

For a system in observer form (36), (37) we use the relations

v(s) = -acx(s) + ,u(s) (68)

y(s) = 'ycz(s) (69)

which lead to a LMFD (65) where

D(s) = (A(s) + (s)a)j-' (70)

N(s) = 0(s)fl. (71)

Given the LMFD (65) the decomposition (70), (71) defines a, fi and y of an

observer form realization.

4 Nonlinear Observable and Controller Forms

Henceforth we focus our attention on the nonlinear system

Xi = f) + g()u (72)

y = h( ) (73)

where E R', u E R"', y E R P and f, g, h are smooth (C') functions. We
are interested in (72), (73) in some open connected subset M of the state space
containing the nominal operating point ° .

We introduce some terminology and notation. The Lie derivatives of the
function hj( ) by the vector fields f(4) and g'(C) are functions defined by

L(h) (74)

Lgh(h)( (75)

I I !
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Of course these operations cani be iterated,

Lr (h.) = Lf (Lf' (h,)). (76)

The differential dhi of a function h, is a one form defined by

dh( ) = (77)

A one form w is a row vector field or more precisely a C' linear combination of
differentials.

W() = (W' (k),.. = A,()dh,( ) (78)

where k,(e) and h,( ) are smooth functions. A one form can be paired with a
vector field (all vector fields are columns unless otherwise stated) to obtain a
function

{w,~~ ~ f) ()()=E ' fi(. (79)

i=1

A vector field can also Lie differentiate a form to obtain another one form

Lf(w) = w-f + (a f) (80)aj aw

where * denotes transpose. In particular

L! (dh) = d(L! (hi)). (81)

A vector field can also Lie differentiate another vector field to yield a third
vector field.

ad(f)gj =f,g] = i(ff( ) - (82) I.(2

This can be iterated,
ad'(f)V = [f,ad-'(f)gjj. (83)

The operation (82) is also called the Lie bracket (82) of the vector fields and can
be thought of both as a multiplication and as a differentiation. This is evidenced
by the following Liebnitz-type formula called the Jacobi identity

If, fg, g'jj = flf, g'], g' + [g', If, g"'H. (84)

Moreover the pairing (79) satisfies a Liebnitz formula with respect to Lie differ-
entiation

L ((w, g')) = (Lf(w),g") + (w, [f,g ') (85)
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For the readers unfamiliar with these concepts we suggest the calculation of the
above definitions and formulas in the linear case (4), (5) where

f()= (86)

g GI (87)

= (88)

We define

Ce = Coo(-l(d ): i i,...,p; r=1,...,I} (89)

where CW{ -} means the linear span over C' coefficients. Such a collection .of

one forms which is closed under addition and multiplication by C' functions
is called a codistribution. We denote by e(E) the linear space of 1 x n vectors
obtained by evaluating the one forms of ¢e at the point .

Given indices 4, ... , tp we define

. = fC1.{L.(dh): = 1 ,...,p; r = 1,...,At,} (90)

and Ief,. ( ) the vector space obtained by evaluation of these forms at .
The system is (72), (73) has observability indices 4, ... , tp around V if t +

-+4,=n, and
dimension en(C) = n (91)

and

t) e) (92)

for t = 1,...,n and all e in some neighborhood of e. The reader who has done
the suggested calculations recognizes (91) as a generalization of (12) and (92) a .- :
generalization of (13). The observability indices are strict if

L"' (d/h,) E e (93)

for i = 1,. . . , p. This generalizes the linear definition.
The set of observability indices of (72), (73) is uniquely determined by h and

f and is invariant under changes of coordinates in the state and output spaces.
There can be some freedom in the ordering of the indices even when the ordering
of the outputs remains fixed. The observability indices are strict iff there is only
one ordering satisfying (92). To simplify notation we restrict our attention to
systems where all the observability indices are positive.

Condition (91) could be called zero input observability. It means that the
state (t) of (72), (73) can be distinguished from its neighbors by the output y(t)
and its first n- I time derivatives along the trajectories near 0 corresponding to
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u(t) = 0. Unlike the linear case, (91) does not imply the existence of observability
indices satisfying (92) around every V but only for a generic, (i.e. an open and
dense) set of e°'s. The latter condition implies that the functions

X,, = LT-'(hi)( ) (94)

for i = 1,...,p; r = 1,..., are valid local coordinates on the state space.
When (72),(73) has observability indices around a point e which is a critical

point of f, (f( 0) = 0) then they agree with the observability indices of the

linear approximating system to (72), (73) at o.
The observable form of a nonlinear system is

= Ax - Ba(x) + (x)u (95)

y = CX (96)

where (A, B, C) is a prime triple with indices 4,..., 4 and a, f8 are smooth
m x 1, n x m matrix valued functions of x.

Proposition 4.1 . A nonlinear system in observable form (95), (96) has ob-

servability indices 4, ... , tp. A nonlinear system (72), (73) can be transformed
into observable form (95), (96) by a change of local coordinates around CO if
the system has observability indices around CO. If (72), (73) has observability
indices 4j,..., 4 around e then the x coordinates of the form (26) given by (94)
transform it to observable form. The observable form of a nonlinear system, the
associated x coordinates and the nominal x-operating point x ° = T-1 (C0 ) are
unique up to a reordering of the observability indices. The functions cr and fi of
the observable form (95), (96) are given by

_ (hi) (97)

r= Lg L'1 (h,). (98)

The observability index assumption (92) implies that

da, = L5' (dh,) E +  (99)

which means that ai does not depend on X3 r if r > , + 1. The observability
indices are strict (93) iff ai does not depend on a x, if r > t, + 1, in other
words

da, = Lt(dhi) E '. (100)

The proof of this result is relatively straightforward, for example see [4], section
2.
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We now turn to controllability properties of (72), (73). We define

De = 0°*{ad-'-(-f)g: J= 1,..., n; r = 1,...,t}. (101)

This is a collection of vector fields closed under addition and multiplication by
C ' functions; such an object is called a distribution. Given indices 1,.-., ,
let let= {ad"-(-f)g3: = 1,...,m; r = 1,...,tA }. (102)

The system (72), (73) has controllability indices 4,,..., t around 4 if t +
+--+4 =nand

dimension D"( ) = n (103)

and
= 1 ..... ) (104)

for t = 1,...,n and all in some neighborhood of °. Of course (103) is a
generalization of (6) and (104) is a generalization of (7). The controllability
indices are strict if

ade'(-f) E D" (105)

for i = 1,..., n. This generalizes the linear definition.
The set of controllability indices of (72), (73) is uniquely determined by f and

g and is invariant under change of coordinates in the state space and nonlinear
state feedback, i.e. u = ct(z) + f(z)v where 8(x) is m x m invertible. There
can be some freedom in the ordering of the indices even when the output is
fixed. The controllability indices are strict iff there is only one ordering satisfying
(104). For notational convenience, we restrict our attention to systems where
the controllability indices are positive.

Condition (103) could be called local linear controllability for if ° is a critical
point of f, (f(e) = 0) then the linear approximation to (72), (73) at 4" is
controllable iff (103) holds. Once again (103) does not imply the existence of
controllability indices satisfying (104) around every V, only for an open, dense
set of V Is. When (72), (73) has controllability indices around a critical point ,
they agree with the controllability indices of the linear approximating system to
(72), (73) at °.

The controller form of a nonlinear system is

= Ax - Ba(x) + BO(x)u (106)

Y = ,Y(X) (107)

where (A, B, C) is a prime triple with indices 4,t..., £ and a, 6, -y are smooth

m x 1, m x m, p x I matrix valued functions of x which are arbitrary except
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that fl(z) must be nonsingular. The question of when a nonlinear control sys-
tem can be transformed to controller form has been independently solved by
several authors 15,6,7,8,9,22]. Some only considered special cases like m = 1 or
6(x) =constant. Our treatment follows Hunt and Su [8.

Recall that a distribution D is involutive if it is closed with respect to Lie
bracket, i.e. [q',q 2 ] E D whenever q1 ,q 2 E P. Given a distribution we can
consider the under-determined systems of partial differential equations.

(dk, q) = 0 forall q E 0 (108)

for the unknown function k( ). The question of existence and uniqueness of local
solutions to (73) is addressed by the following.
Frobenius Theorem Suppose D is of constant codimension d. P is involutive
iff locally there exists d independent solutions kl,. .. , kd to (73). Any other
solution k( ) is a function of k 1(). ... ) kd( }.

Proposition 4.2 (/8], see also 15,6,7,8,9,22]). A nonlinear system in controller
form (106), (107) has controllability indices 4l,..., t which are strict relative
to the input ii = flu. A nonlinear system (72), (78) can be transformed into
controller form (106), (107) by a local change of coordinates around o iff it has
controllability indices tm..., I and Dtj-1 is involutive for j = 1,..., m.

Proof The proof of the first statement is a straightforward verification.
As for the second suppose (72), (73) can be transformed to controller form

by = T(z). Using the C matrix of the prime triple we define a pseudo-output.

=k() = CT'() (109)

then the function k satisfies

Le.(k.) = a, (110)

LgILr-'(ki) = { . r (11)

Using the Liebnitz formula (85) and induction we can show that (111) is equiv-
alent to

(L, (dki), adr_(_f)g) 0 0 1< r < , 0 <s <r (112)

''' Ai r =, 0 < s < r

From this it follows that for every q E D t

(Lf -1 (dk,), q) = 0 (113)
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for i = 1,...,n and r = 1,t..., - t. Moreover from the invertibility of 83 it
follows that the functions (L-1(k,) i = 1,...,m and r = 1,...,4 - are
independent. There are as many such functions as the codimension of D' so
by the Frobenius theorem D is involutive for all t and in particular for t =
£i1 ,---- 1, . .. ,m.

On the other hand if D", -' is involutive for" = 1,..., m then by repeated ap-
plication of the Frobenius theorem one can find independent functions kl, ... , km.
satisfying (112) where #3 is some invertible m x m matrix valued function. If we
define x coordinates by

zXr = L ( (114)

for j = 1,..., m; r = 1,..., then these coordinates transform the nonlinear
system to controller form (106), (107). The functions a and P3 are given by (110),
(111).

When it exists, the controller form of a nonlinear system is not unique. From
the proof of the above we see that the controller form is completely determined
by the choice of the pseudo-output k() satisfying (111) for some invertible fl(e).
If k( ) is another solution of (111) then (112) and t11 3 ) imply that k1 ( ) is a
function of Zjr L 1 (ky) for 4 - - and r 1,..., e, -I.

Notice that the nominal operating point z0 = T-'( o) of the controller form
is determined by the choice of k(C). In particular there exists k such that x0 = 0
iff there exists u° such that f(EO) + g(E0 )uo = 0.

Another point worth mentioning is that the system (72) with pseudo-output
= k(e) does not necessarily have observability indices 1,.... , t,,. This would

be the case iff in addition to (112), k(C) satisfies

(L5' (dk,), adr - l'(_f)g) =- 0

forr= 1,..., - 4-1.
We might try to obtain a unique controller form by requiring that ck and 6

also satisfy the nonlinear generalizations of (11) and (35), namely

fl/ (0)=6 4't. (115)

aai-= 0 r> t (116)

But this would reduce the number of nonlinear systems that admit a controller
form. The conditions (115), (116) imply that

( 0 1 < r < t(
(dIc'ad-'(-f)g') "j /3 •r= (17)
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This is a system of first order partial differential equations for the unknown func-
tions k, ... , ki,. The solvability of such a system is addressed by the following.

Integrability Theorem Let q'(i),..., q,,( ) be an n linearly independent n
dimensional vector fields. There exists a solution k = (kn,..., kin) to the system

0 j=m+l, .... r

iff

[q*,q']ED i,j=l,...,n

where D is the distribution spanned by {qm+,.... ,qn). The solution is unique

up to a choice of k( °).
From this theorem we see that there exists a solution to (117) iff

[adr-1(-f)gi, ad°- 1 (-f)g] e P (11)

fortj =1,...,n; r=1,...,4, s =1,. ..,j where P is the distribution given
by

D = C-{ad- 1 (-f)g = 1, .. ,n; r-- 1,...,- 1). (119)

Condition (118),(119) is considerably more stringent then D' - ' being invo-
lutive for j = 1,...,m. In particular suppose we consider a generic nonlinear
system (72), (73) with n = 2 and m = 1. Around a generic point C0, the vector
fields g1 and ad(-f)gl are linear independent hence such a system has a con-
trollability index t4 = 2. The distribution D = C(9g} is trivially involutive
so such a system has a controller form. However condition (118), (119) which in
this case is

[g', ad(-f)g ] E C(7g])

is not generically satisfied.
Suppose (72), (73) has controllability indices 4,..., 4, around fo. Regard-

less of whether or not it admits a controller form around CO, it is always pos-
sible to make the controllability indices strict by a change of input coordinates
fi -- f( )u when fj'( ) = b for 1, _< t as in the linear case. We define one forms

Wl(),.. Wp ) by

(W,, adr-l(-f)g ')  0 . 1" r < (120

From this and the controllability index assumptions (104) it follows that

(w=, ad 0 t4 < r < (121)
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Moreover by repeated use of the Liebnitz formula (85) we see that (120), (121)
is equivalent to

0 1_<r<tior4 <r<4 
,.=t,(122)f= i r = t;

We define 6 by
= = (L5 '(wj),g'). (123)

Immediately we see that fli" = 6' for t, :5 i so fP is invertible. It is not hard

to show that the system defined by (f, j) = (f, g-) has strict controllability
indices 4l,..., t,. Notice that if (117) is solvable then wi = dk,.

5 Nonlinear Controllable and Observer Forms

The controllable form of a nonlinear system is

i = Ax+ a(Cx) + Bu (124)

y = Y(x) (125)

where (A, B, C) is a prime triple with indices 41, , and a, -y are smooth matrix
valued functions of dimensions n x 1, p x 1. Notice that a is a function of the
pseudo-output 0 = Cx while -y is a function of z.

Notice that if a(O) is a linear function of tA then the dynamics (124) of the
nonlinear controllable form agree with the dynamics (18) of the linear control-
lable form. Hence the question of the existence of a nonlinear controllable form
is closely related to the question of linearizing the dynamics (124) by a change of
state coordinates. This latter question has a long history going back to Poincare
[16]. For more recent work see 117,18,19,20,211.

For the most part the controllable forms of nonlinear systems have not ap-
peared explicitly in the literature. But as one might expect they have arisen
implicitly in some of the work on observer form 14,10], and on linearization 1211.
The following is a reformulation of similar results from (10], [21] and [221.

Proposition 5.1 A nonlinear system in controllable form has controllability in-
dices 4l,..., tn. A nonlinear system (72), (73) can be transformed into con-
trollable form (124), (125) by a change of local coordinates around o if it has
controllability indices 4, ... , ,n and

[ad-l(-f)gi, ads-l(-f)g'l = 0 (126)

for i,j = ... ,m and r = l,...,4, s = 1,...,j around e. Controllable form
and the associated x coordinates are unique up to a choice of the nominal x-
operating point z ° T - 1 (Eo) and up to reordering of the controllability indices.
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The dynamics (72) of a nonlinear system can be linearized, or equivalently,
can be transformed to the dynamics of linear controllable form (18) by a change
of state coordinates around Co iff (72) has controllability indices 4,..., 4 and
(126) holds for i,j = 1,...,m and r = ,...,ti+ 1; a = 1,...,t4 + 1.

Proof Consider the nonlinear system in controllable form (124), (125). It is a
straightforward calculation to show that

{ A- 1 B3 l<r_4 (127)ad -(-Ax + a(O))j =(1_7)
~- r=t+1

Hence the controllable form (124), (125) has controllability indices t,..., tm.
Moreover if (72), (73) can be transformed to (124), (125) by a change of state
coordinates then clearly (72), (73) must have the same controllability indices
and (126) must hold.

On the other hand suppose (72), (73) has controllability indices 4,...
and (126) holds. By the integrability theorem of Section 4 with m = n, we can
choose coordinate functions j,.(), i = 1, ... , m; r = 1,...,4 such that

(dZir, ad4  (-f)g') =& .6' (128)

fori,y= 1,...,mandr= 1,...,t, s=l,...,11 .

In the z coordinates, adt'j-(-f)g" becomes the unit vector in the direction
xj. or in other words

5-ad i-s(-f)g' = Af - AB  (129)

for j = 1,...,m and s = 1,..., ti, where A, B are from the prime triple with

indices j,..., tn. Let f(x) be the transform of f(C) into x coordinates.

O~x!(X)= Y-(Vx)f(z))(130)

Then from (129), (130) we have if s > 1

a - t- f(x) = [Ae-BJ, f(x)]

a ax
oat ''-f9
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- At-+'1 B (131)

From this we conclude that

1(x) = Ax + a(Cx)

where Cix x ,, s = 1..., m.
We now prove the last part of the theorem. If the nonlinear dynamics (72)

can be transformed to the dynamics (18) of linear controllable form then by
the above it must have controllability indices .1..., and (126) must hold for
r = 1,...,4 and a = 1,..., 4. Moreover we see from (127) that adt (-f)gi
must transform to a constant vector field in x coordinates so (126) must hold for
r = 1,..., + 1 and s = 1,...,t + 1.

On the other hand if (126) holds for r = 1,...,4 + 1 and s - . + I
then adk (_f)gk must be a constant linear combination of the frame of vector
fields {ad'(-.f)g, i = 1,...,m; r = 1,.. .,t}. To see this, suppose for some
functions A ( )

adtk (_f)gk = Zjad'(_f)g sir,
j=1 r=1

Bracketing with ad' - 1 (- f) yields

m e,
r-I (A

0 = ad 1 (-f)gL-d.'(-f)g) (Ar)
i=1 r=1

The linear independence of the vector fields of the frame implies that for " =
1, ... ,m ; S -= 1, ... ,Itj

0 ---Lad.-I(_q)g,(A~r)

hence Air is a constant. By (127) this implies that

k=1

Notice that it is more difficult for a nonlinear system (72), (73) to have
a controllable form than to have a controller form. Clearly conditions (126)
implies that Dt,-i is involutive forj = 1,...,m. This extra difficulty is partially
explained by the extra freedom afforded by P(x) in the controller form which is
lacking in the controllable form. Zeitz defines controllable form with 6(x) present
1221. There is also more freedom in the a of the controller form than the a of the
controllable form. The former is an R"' valued function of Rn while the latter
is a Rn valued function of I". The linear terms of the Taylor series expansion
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have the same number of degrees of freedom, n rn, but there are more degrees
of freedom in the higher order terms of the controller form that the controllable
form. In particular for the terms of order 2, there are mn(n + 1)/2 degrees of
freedom in the former and nrn(m + 1)/2 in the latter.

The observer form of a nonlinear system is

: = Ax-a(Cx) +P(Cz)u (132)

y = "Y(Cx) (133)

where (A, B, C) is a prime triple with indices 4p,...,4 and ct, P and y are
smooth matrix valued functions of dimensions n x 1, rn x m and p x 1. They
are arbitrary except that -y must be a local diffeomorphism. We let = Cx.

Observer form is useful in the construction of asymptotic observers

X = A! + a(9) + P(q)u + M(9 - C) (134)

with linear error dynamics
X= (A - MC)I. (135)

The question of when a nonlinear system can be transformed to observer form
has been considered by several authors [41, [10,11,12,13,141, [221. Most treated
only special cases like p = 1 or I =identity. The general solution can be found
in [4]. The approach taken in [41 is similar to the approach described above for
the linear case.

Suppose the nonlinear system (72), (73) can be transformed into observer
form (132), (133) by a local change of coordinates around eo. Using the B
matrix of the prime triple we add a pseudo-input p to (132)

i = Ax - a(Cx) + R(Cx)u + Bu. (136)

When u is held constant at 0, (136) can be viewed as the controllable form
relative to the pseudo-input p.

We transform (136) back to i-coordinates

which defines the vector fields q = q1, ... , q'. These vector fields satisfy

(Lp (d0),q') . 1<r<1. (137)¥) q , r = 4

If q is known then wc can recover the observer form by choosing local coordinates
zX, to satisfy

(dzir, ade,(f)q') (138)
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for i,3" = 1,...,p, r =1,..., and s =1,...,4. Such coordinates exist iff

[ad 7'(-f)er , adj-°(-f)qij = 0 (139)

fori,j= 1,...,p; r= 1,...,4; s= 1,....,4 and

[ade'-r(-f)',g = 0 (140)

fori 1,...,p; j=1,...,n and r= 2,...,t.
Summarizing the discussion, an observer form (132,133) of (72), (73) exists

iff there exists a change of coordinates y = -y(y) on the output space and vector
fields q ,... ,4P determined by -1 via (137) such that (139),(140) holds. In effect
(139),(140) constitute an overdetermined system of partial differential equations
for the change of coordinates y = -y(q) on the output space. To analyze such
equations we must introduce the geometric concept of a Koszul connection on
the output space. Let 0'(y), i = 1, 2,... denote vector fields on the p dimensional
output space. A Koszul connection on y-space is a mapping A from pairs of such
vector fields to vector fields.

A:(, )  '6- 0 A (0) (141)

This mapping is linear over C' functions in the first argument and satisfies a
Liebnitz formula in the second argument. In other words if A,(y) and pj(y) are
smooth functions then

,&FAO= Z(Aipi A* (0i) + A LO. (my) 0). (142)

If 4'(y),..., 4(y) is a local frame of vector fields then A is completely deter-
mined by its Christoffel symbols I'k (y) relative to this frame. These are defined
by the expressions

A". (0)= Z i r'k. (143)
k

Consider a second frame ..... , P related to the first by

p
,= e"iL; (144)

p=1

and
P
P k A t

k (145)
k-I
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where A = (Aj) is apxp nonsingular matrix valued function of y and A-' (M).
It follows from (141,142) (143) and (144, 145) that

ri'= w r, +( (146)
pO~rp,v

A Koszul connection A has zero curvature if there exists a frame where the
Christoffel symbols are zero. From equation (146) we obtain the partial differ-
ential equation that such a change of frame must satisfy. It is more conveniently
written in matrix notation where rP denotes the p x p matrix (rl7') with row
index r and column index a,

o = rPA - I + Lv(A - ') (147)

or equivalently
Le (A) = Arp. (148)

The integrability condition for this is

L LO- (A) - LO- L, (A) - Lio-, , l (A) = 0 (149)

or equivalently

A(r Pra - r-r P + Lv (r) - L., (rP) - E c-1'T ) o (150)

where C," are the structural coefficients of the frame

, } - (151)
1-

The coefficient of A in (150) is the curvature of A.
It is convenient to work with frames of vector fields arising from coordinates

on the output space. Suppose y and 9 are two different coordinate systems and
€ and are the associated frames, i.e.

a a
LO, =j- L, - (152)

These frames are related by the chain rule

€ =€-(153)

so
A =aglay. (154)
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A Koszul connection A is fiat if there exists a coordinate frame for which tile
Christoffel symbols are zero. Such coordinates are said to be flat relative to the

connection. Suppose r' are the Christoffel symbols relative to coordinates y.
Clearly we can find new coordinates 9 where Christoffel symbols are zero iff we
can solve the pair of partial differential equations (147,148) and (154).

We rewrite these as

a _

-A = Ar' (155)
a1,ag

= A. (156)ay

The integrability condition for the first is the zero curvature condition (150)
which can be rewritten as

ar' ari(ri r i - r, r) + --- = o (157)
(9yj ayi

for i, J = 1, ... , p. The integrability condition for the second is

r" - r' = 0. (158)

The left side of (158) is called the torsion of the connection A. In summary
a Koszul connection is flat (i.e. has Christoffel symbols zero relative to some
coordinate frame) iff it has zero curvature (157) and zero torsion (158).

Suppose 9 are flat coordinates for a fiat connection A. It follows from
(155,156) that another set of coordinates y is flat iff y and 9 are affinely re-
lated, i.e. for some constant invertible matrix A

= Ay + 9'.

The relevance of the above for the problem of transforming a system to
observer form is explained by the following lemmas.

Lemma 5.1 Suppose the nonlinear system (72,78) has one distinct observability
index t = = ... tp of multiplicity p. Define vector fields ql, ... , qP by

0 1 r<e (159)fL-(y)¢ = l r =tj

Define p' functions rk'() by

= 1(160)
krj (/, (dyk), lad e- x(_ .f)q', ad -(_f ]. (160)
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Let 9 = 9(y) be a change of output coordinates and q = 4, ..., qP be vector fields
defined by (137). Define another p3 function r'k (f) by

ri = '(Lf(dyk), [adt -'(-f)#', ade-(-f)g]). (161)

Then ri" and r*2 are related by

a= ay p 8 a9k r +ZP ak_ Y (162)
i O a a ay, r PTa ay, ?YP a .og

09, 89 !d +  a v By, (lg,

The .proof of this lemma can be found in 115]. Notice that the lemma asserts
that ri2 transform like the Christoffel symbols of a connection on the output
space, not that they are Christoffel symbols. If I'( ) are actually only functions
of y then they define a connection on the output space and this connection is
independent of the choice of output coordinates.

Lemma 5.2 Suppose the nonlinear system (72,73) has one distinct observability
index £ = 4 = ... = p and can be transformed to observer form (132,133) then
Pri( ) defined by (160) are functions only of y and define a flat connection on
the output space.

Proof We compute the symbols ri" given by (161) where y = Cz are the trans-
formed output coordinates of the observer form. The vector fields q( ) defined
by (143) transform to B in x coordinates. By induction we obtain

adr-l(-Ax + oe(9))B i = Ar-Bi 1<r<L (163)1

From

[adt-(-Ax + c(9))B', ad- 2 (-Az + ct(q))B'j =

[At-' B', AC-B i] = 0. (164)

It follows that
kr, . = 0. (165)

If r' are defined by (160) then (162) and (165) shows that they are functions
of y alone and can be transformed to zero by a change of output coordinates.

Hence they define a flat connection on the output space. QED.
From these lemmas we immediately obtain the following theorem [15].

Theorem 1 Suppose the nonlinear system (72,73) has one distinct observability
index £ = tp ... =p around o. It can be transformed to observer form around

iff
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the ri'( ) defined by (160) are functions only of y, hence define a Koszul
connection on the output space

this connection is flat

for any flat coordinates 9 on the output space the vector fields defined by
(187) satisfy the commutative conditions (139,140).

Consider a system with one distinct observability index t = ti .....

which is in nonlinear observable form, i.e.

{f + lr<t (166)

for i = 1,...,p and r = 1,...,
The vector yields q .... qP defined by (159) are just the unit vectors in the

directions pt., . The r4 defined by (160) are given by

t aej2  ~iA

The change of output coordinates -= -1 (y) must satisfy the partial differential
equations (155,156) or

9L9 a2fk (168)- , (9y to (Yk;, ~l

The integrability conditions for this are the zero curvature condition (157) or

a2 f, a2 fp _ 2 f, a2f

t( a3 f. a3 f,a .a .2a ,t a& a T2a8, )  (169)

and the zero torsion condition (158) or

a2 fk 2: fk
824 _ 82 fk(170)19eiO ,t ae, afi"

If these are satisfied then we can solve (168). If (139,140) are satisfied then we
can solve (138) to find the z coordinates of observer form.

Needless to say this is a very tedious process. There is a necessary condition
that a system in nonlinear observable form (166) must satisfy to be transformable
to observer form. We define the degree of the variable i, to r - 1 and the degree
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of a product of such variables to be the sum of the degrees of its factors. If (166)
can be transformed into observer form then f, ( ) must be a polynomial of degree
at most t. We refer the reader to 141 for a proof of this. In particular if t = 2
then this degree condition, the zero curvature condition (169) and (139, 140) are
necessary and sufficient. The torsion free condition (170) is trivially satisfied. It
follows from (169) that (139) need only be checked for r = s = 1 and i j j.

If p = 1 then trivially the curvature and torsion are zero and (168) reduces
to a first order linear ordinary differential equation for the quantity dy/dy. It
is solvable if the degree condition on f, is satisfied. In particular when p = 1
and t = 2 the degree condition and (140) are necessary and sufficient for the
existence of observer form.

We now discuss the case where there are several distinct observability indices.
The general approach is as before. To find the observer form of (72,73) if it ekists
we seek an appropriate change of output coordinates 9 = 7-l(y) which allows
us to define vector fields q via (137). If (139,140) are satisfied then we can solve
(138) for the x coordinates of the observer form.

The presence of several distinct observability indices complicates the search
for g and forces us to proceed in stages. Notice that for a system in observer
form the observability indices are strict for the output 9 Cx. This is because

(A.-_,( ) (d) = CA mod er1

and the output indices are strict for the pair C, A. So any nonlinear system that
admits an observer form must admit a change of output coordinates which make
the.output indices strict. Moreover, the problem of transforming a nonlinear
system with strict observability indices into observer form is greatly simplified
by the following fact.

A change of output coordinates -= -(y) preserves the order and strictness
of the observability indices iff

C1g.

-1- -0 for t <4t. (171)

To find a change of output coordinates which make the observability indices
of (72,73) strict we start by defining vector fields q, ... , qP via (159).

It follows by the standard induction argument using the Liebnitz formula
(85) that (143) implies

0 1 r< 4
(dyi, adr-(f) q) 6,- 4 r = I4 (172)

0 t < r <.
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Moreover the vector fields adr-l(-f)q j = 1,...,p; r - 1,..., 4 form a frame
of n independent vector fields. These characterize &e as

e' = (ad - '(- / ) qj  :  J'= 1...p; r l ....l - )

ee = {oneforms w: (w, ad-'-(-f)qi) = 0 = 1,...,p; r = 1,...,4 - .}.
(173)

Suppose -y-'(y) is a change of output coordinates which preserves the
ordering of the observability indices. The observability indices are strict relative
to the 9 output iff

Lft (d9,) E t  (174)

or equivalently by (173)

(Lt5(dgi)ad '-,(_f)qi) = 0 (175)

for r = 1,..., t4 - 14. By induction and the Liebnitz formula this is equivalent
to

(dg, adr- I (-f)qi) = 0 (176)

for r =4+,..., 4. Since d9 = a9/ay dy, (172) implies that (176) must hold
for r = 1, ... , 4j - 1 also. We have shown that the observability indices are strict
relative to the output 9 iff (176) holds for r = 1,...I, -1 when Ii ! t' and for
r= 1,...,4 when 4j > 4.

We define p distributions

Y = C { -,(-f)q r = 1,... - 1 if 4 <  , and

r= 1,...,if tj > 4. (177)

As we have just seen a change of coordinates 9 = -y-'(y) preserves the ordering
of the observability indices and makes them strict iff

dgi Y' i = 1,...,p. (178)

This is an underdetermined system of first order PDE's for 9. By employing the
Frobenius Theorem, we obtain the following reformulation of Theorem 4.2 in 141.

Proposition 5.2 Suppose the nonlinear system (72,73) has observability indices
, .. . , around Co. There exists a local change of output coordinates 9 =

y 1- (y) which preserves the ordering of the observability indices and makes them
strict iff the distributions Y', .. ., YP are involutive.

Lemma 5.3 Suppose the nonlinear system has strict observability indices l,...,
4. and t = min{1t,... ,p}. Define vector fields q by (159) and symbols ri' by
(160) then

k= o if t >tor tk >L.
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Proof Equation (160) can be rewritten as

tri,; = Lsde-' (_f)g, Lsdt-2 (-f)gj LI (Yk)

- L.de-'(_f)q, L.d,-1 (_f)q, L! (yk). (179)

By (159)

Ladf-2(_f)qiLf(yk) = LqLtl'(yk) = { > t>1

so the first term on the right of (179) is always zero. If tk > t then

Ld,-,L(_f)gjLI(Yk) =LqiL4(yk) { f>

so r = o.
Suppose tk = I and 4 > . Then q E VtL so by the strictness assumption

(174,175) it follows

Lade-, (_f)q Lf(yk) = Lq, L' (y) = 0

so r i = o.

Lemma 5.4 Suppose the nonlinear system has strict observability indices j

4p and £ = min{t, ... ,4}. Define vector fields q by (159) and symbols q, by
(160). Let 9 = 9(y) be a change of coordinates among those outputs of lowest
observability index, i.e.

. . , 6 if 4 or t4 > t (180)

Define q by (137) and r'j by (161) then r" and r'i are related as Christoffel
symbols (168).

The proof of this is similar to that of Lemma 5.2, see 115].

Lemma 5.5 Suppose the nonlinear system (72,73) has strict observability in-
dices 4j,..., Ip and £ = min{ft,...,}). If (72,73) admits an observer form

(182,133) then the rij(C) defined by (160) are functions only of y and define a
fiat connection on the output space.

Proof By Lemma 5.6 we know that r"i = 0 if t, > t or tk > t So all we need
k

to show is the existence of an observer form for (72,73) implies the existence of
a change of coordinates among those outputs of lowest observability index (180)
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which to transform the r~i to zero for 4, = j = 4A = t. But it is clear from the

proof of Lemma 5.3 that if we were to compute the rl7' defined by (160) for a
system in observer form then they are zero.

By Lemma 5.7 the ri' for 4 = 4j = 4 = t transform like Christoffel symbols
under a change of coordinates among those outputs of lowest observability index.
By (180) the change of output coordinates to observer form 9 = - '(y) transform
the outputs of lowest observability index among themselves and can be used to
take F" to zero for 4 = tj- =t4 = t.

If r,( ) defined by (160) are the Christoffel symbols of a flat connection on
the output space then we can solve the partial differential equations (155,156)
to find fiat coordinates .. These coordinates are not necessarily the 9 of the
observer form if it exists. But at least those of lowest observability index are
because of (171). We change notation and denote the flat coordinates by y.

The next stage is to find the next smallest distinct observability index t' =

min{4 > I). We define new symbols

rii= (L(dyk), [ad'-l(-)qt, ad", -(-f)qit])) (181)

where t, = t' A '.

It is not hard to see by an ai 0 unezit bimilar to Lemma 5.7 that r,, = 0 if 4
or j > e'. Moreove. if 4 = tj = ti = £ then the r,- " of (181) are just It/ times
the ri' of (160). The latter are zero by our choice of flat output coordinates.

For reasons explair, , below, if the system admits an observer form then r I

defined by (181) define a flat connection on the output space. If this is so then we
solve (155,156) for new flat output coordinates 9. Because of the above remarks
the change of coordinates will satisfy

a- = S 4if 4 = t' or , > t'.ay.

We continue on in this fashion until we have exhausted the list of observability
indices or found symbols which do not define a flat connection. If the latter does
not happen then the last flat coordinates 9 are the desired output coordinates
of the observer form. The observer form will exist if (139) is satisfied for r =
1,...,; s =1,..., and (140) holds for r = 2,...,t; j 1,...,.

To see why this approach is valid consider a system (72), (73) which can be
transformed into observer form. Using Lemmas 5.7 and 5.8 we can assume that
Pi = yi for those outputs of lowest observability index 4 = L. Assuming that
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u = 0 we have
Y = ii Yi = Xii

{ = i2 :ii = Zi2 - lt (182)

A W f182e
By comparing these we arrive at

Z -,, d,_._ (183)cir, = Xi,.-2.,r1 oi

and
f, ) - ( - . (184)

We add dummy state variables C,-, xi, for r = e..., t' to (182) as follows

yi =il Yi = iii

-e = i t+ + fi() : = , ,+1 - (185)

t+i = t+2 :ii t+1 Zi t+2

6ie = 0 :iit, 0

It is not hard to see using (184) that these are transforms of each other under
(183) and

Ci = z, I<r<e. (186)

Hence if the original system (182) can be transformed to observer form and
yj = pi then so can the modified system (185). Moreover for the modified
system the smallest observability index is now L' rather that t so we can apply
Lemmas 5.7 and 5.8. It is a straightforward calculation to show that the symbols
of the modified system defined by (160) with t replaced by e' are the same as
those given by (181).
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Abstract: One traditional approach in the analysis and design of addressed by Brockett [8], Hunt and Su [3], Jakubczyk and
nonlinear control systems is a first order approximation by a linear
system. A new approach is to use nonlinear change of coordinates Respondek[4], Sommer [9], and Krener [1.5]. The concepts on
and feedback to construct linear approximations that are accurate to which the present paper is based, and the necessary and sufficient
second and higher orders. However, the algebraic calculations
required to obtain these aproximations are somewhat lengthy. In conditions for the existence of a solution, have been treated by
this paper, the theoretical framework for finding such change of Krener in [2].
coordinates for a nonlinear system are described. A software
package that symbolically solves these transformations is currently The method proposed is to find a nonlinear change of
being prepared.

coordinates for a nonlinear system to construct a linear

approximation of the plant dynamics accurate to second or higher

order. Based on these more accurate approximations one should be
1. Introduction able to design controllers that give improved performance over a

There is no general method for dealing with all nonlinear wider range of operating conditions. The computations required to

systems because nonlinear differential equations are virtually devoid calculate these transformations are somewhat complicated. As

of a general method of attack. A well-known and straightforward suggested in [21, this difficulty may be overcome with the aid of a

way to analyze nonlinear control systems is to obtain a linear symbolic algebraic computation package. The goal of this paper is

approximation of the plant dynamics around a nominal operating to describe the theoretical framework for finding the required

point and design a feedback law for the resulting linear system. If transformations.

the nonlinearities are strong, this approximation is valid for only a

limited range of the operating regime, and performance degradation

or loss of stability of the control system may occur as the system 2. Linearizing Transformations

moves away from the nominal point. Then it may be necessary to

repeat the linearization and design a new controller for the updated Let us consider a nonlinear system in which the control u

linear representation. This process is repeated as often as necessary,

as dictated by the nonlinearities in the plant. x -f(x) + g(x)u (Ia)

Another approach is to feed some nonlinear correction terms (b)x(0)=x'. (b

into the linearized plant model to compensate for the inaccuracies

involved in the approximations. However, it is usually not where x E 9,n and u 6 %m. The system is assumed to be at rest at

straightforward to find such correction terms. Poincard's theory of the nominal operating point (x'; u" = 0). For brevity of the

normal forms produces a fruitful technique for transforming a expressions we will assume x' = 0. The calculations can be easily

nonlinear vector field to a simpler form in the neighborhood of an extended to the case x" * 0. First, consider the linearization of (1)

equilibrium point. Another method employed in robotics is the at x':

cancellation of all the nonlinear terms by feedback. Alternatively,

with the method of linearizing transformations one seeks a change of x = Ax + Bu (2a)

coordinates and state feedback to transform the nonlinear system a.

into a linear one. Various forms of this question have been A= -(0), B = g(0). (2b)ax

Research supported by the Air Force Office of Scientific Research We will seek a coordinate change for (1) of the form identity plus
under Grant No. 85-0267.
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higher order termns, such that the resulting linear plant will agree So (9) can be written as:

with (1) up to an error of order 0(x,u) PA (i.e. terms of O(x) PA and .2)(2) (1) (2)

0(W)u) where p is the degree of approximation. Obviously, Eqn. + +~)-A, (z)Ju 3g (1u0)u~(
(2) results when p = 1. In the following, the case for p = 2 will be
derived and the results will be generalized to any arbitrary order p by Wihdefollowing choice for 40(2)altescnorrtrmof(0

inducion.will vanish and the approximation will be accurate to second order

We assume a transformation of the form: IF(2) ()=[zO(2)(z]I a
f =Z+0 M() g)(z)u = [z,0 (2 (z)) (I Ila)

where z denotes the new set of coordinates. * 2 is a polynomial of which must hold for all constant u. Eqn. (I1I a) is called the
degree 2, the monomial coefficients of which are to be found. Homnological Equation [6]. A solution to (11) has to be found by

The time derivative of (3) yields: using the freedom in the choice of u; we use a feedback of the

following form [2]:

z o z Z (4) u=c( 2 )(x (O1)x)v(2
az U = 0C W (2) ~v(2

We solve for the differential equation in the new coordinates z- where a C)(x) is an mxl vector of order 2 polynomials, I is an mxm

_____ -1.identity matrix, and ~3(x) is an mxm matrix of first order terms. A
x (5) new input in the linearized coordinates is designated as v. Note that

az v agrees with u to first order. With the introduction of this

To evaluate (5), the functions f(x) and g(x) are expanded in a Taylor feedback, IF and g of Eqn. (1) are redefined:

series, and (3) is introduced: f~)=fx s () ()(1a

f~~xI W =~~x +X +~(x +~~ W() (13a

f~)fi()+f()x ~) X) = g(x) + g(Xfl3()x) (13b)

p t(z + 0 ()W) + f(2) (z) + 0(z) Th'e Taylor expansion of (13) yields

=Az+Ao(2 (z) + f(2 (z) +O(z) 3(6) - (=x+a2 )+ p~kx 3 () 1
gfx)g ()+g (x)0(x (x) + () 2 X 1a

g~) g(0 X)+ ~ x)+ W X) = B +g ()+ BP3 () + 0(xW (14b)

=B+g(Z) () 2 () and

(2) ('2' (2) (2
The term (1+ - in (5) is expanded in a series around z = 0 f(x) = Ba (x) + IF W (15a)

az

as: i(')(x) = g~1)(x) + BP (1)(x) (15b)

+ -o() )- (--e+ (-) ). 2 ) (8) Reiterating the steps of Eqns. (3) through (11)we find:
azaz az

- (2) z)=Aql(2) () 1a

Then, combining (6). (7), and (8) in (5) and expanding we get:(2

(2) (2) ~ g (z) = [Bu, (z)] ( b

Z=Az+Bu+Ao (Z)+f (z) -- Az + g (z)u - -Bu
az az The distinction between Eqns. (11) and (16) is seen when (16) is

+ 0(z'u) 3  (9) rewritten as:

Now we introduce somec notation. The Lie bracket of two vector f(2 (z) = - Ba (z) + j~o 2 (z)] (17a)

fields is another vector field defined by:()()(2
g ()(z)v 1 300) (Z)v + [Bv,0 () (17b)

fgI= -f- -- In the generalized homological equation of (17), the second order
ax ax ~terms C(z) and g ((z)v can be cancelled out under certain



solvability conditions by proper choice of 0(2)(z), a (2)(z), and 3. UnearizingTransformations for Systems %ith Small

13) (z). For this second order linearization we have a system of 1a'amters

n 2(n + 1)/2 + n2m linear algebraic equations in n 2(n + 1)/2 + mn(n In this sectdon, we consider a control system of the form:
2

+ 1)/2 + m n unknowns. When a solution can be found, the

resulting system becomes: x = f(x,€) + g(x, )u (27a)

z = Az + By + O(z,v)3  (18) x(0) = x'. (27b)

where E is a small parameter that characterizes the way parasiticIn order to find an approximation of the next higher order, we

rewrite (18) by reverting to the variables x and u: effects or disturbances enter into the system. We will develop a
method of linearizing transformation for this type of system, similar

x = Ax + Bu + O(x,u)3  (18)' to that of Section 2. First, (27) is expanded as follows:

Now we are asuming that in the given nonlinear system the second x = Ax + Bu + e(f(l)(x) + g(I)(x)u) + 0() 2  (28)

order terms have been already been canceled as outlined above.

Then we seek a new transformation of the form: In (28), the nonlinear function is expanded and grouped in powers
of e. Thus, the superscripts of f and g now correspond to the

x= z + 0(3)(z) (19) powers of e these functions multiply, in contrast with the notation of

Section 2. A coordinate change is assumed of the following form:
Note that transformation (19) will not introduce any terms of degree

less than 3. Then the same procedure outlined above is repeated, x = z + E0 (1)(z) (29)
with the feedback: where the form and the polynomial order of the function g (1(z) is
u = a (3)(x) + (I + 13 (2)(x))v (20) not determined yet. Repeating the calculations similar to the steps of

Eqns. (4) through (9) of Section 2 yields:
which results in:

f(3)(z) (a3 ) ([3 ) = Az + Bu + f( )(z) - [Az,o()(z)] + g()(z)u - [Bu,I()(z)])Bo,(z =-B(3(z) + [Azo(3(z)] (21a) z

()()()+ O(e) 2  (30)
g (2) (z) v - BP Q) (z)v + [ B v,O(3) (z)] (21 b) + ( 230

An input for the control system of Eqn. (28) is chosen as:
These results can be generalized as follows. Given a system which

is accurate to only order p-1, i.e. u = v + C(a (x) + 13() (x)v) (31)

x= Ax + Bu + O(x,u)p  (22) After a sequence of calculations similar to Eqns. (13) through (17),
the homological equations are found:

a coordinate change is sought as:

(P)) (z) = - Ba (1)(z) + (Az, (1)(z)) (32a)x- z +~ (P(z) (23)

along with feedback: g (1)(z)v = - BP(1)(z)v + [Bvo() (z)] (32b)

u = (X(P)() + (I + P (P--1)(x))v (24) This result can be generalized for an arbitrary power of E in the same
fashion: A solution to

which yields the homological equation to be solved: f(P)(z) = - BtX(P)(z) + [Az, (P)(z)) (33a)

fLP)(z) = - Ba ()(z) + [Az,(P)(z)] (25a) g(P)(z)v = - B ()(z)v + [Bv,(P)(z)] (33b)

g(P-)(MV = - 131 (P-)(z)v + Bv, (P)(z)I (25b) will yield
n (5) (Pf() o(p) (p-I) (p)

In (25), 4( f, a, g and 13(P I) are, respectively, P 1  
(34)

homogeneous vector fields of orders corresponding to their z Az + By +(c)

superscripts. The resulting system is accurate up to order p: Even though Eqns. (33) and (25) look very similar, there are some

Aj vfundamental differences. All the variables in Eqn. (33) have
, = Az + Bv + O(zv) (26) different definitions than those of Eqn. (25), as mentioned at the



beginning of this section. Moreover, the solvability conditions of A closed-loop pole assignment can be made with stale feedback of

(33) are not the same as the conditions of Eqn. (25). Actually, both the form

(32) and (33) may represent an infinite family of equations as

opposed to the finite dimensional set of expressions that arise from v = Fz + r (38)

(25). where r is an open loop control. The approximation of (26) then

Any.nonlinear system expressed in the form of in Eqn. (1) becomes

can always be transformed into the form of (27) as follows: First,

consider the expansion of(l) as z = (A + BF)z + Br. (39)

x = Ax + f(2)(x) + Bu + g(i)(x)u + O(x'u)3 (35) Notice that (23) agrees with the identity transformation up to order

p-1, so it is easily inverted at least up to order p:

Scale the coordinates and the input with: (P)
z=x- ((x) (40)

-I

The input u of Eqn. (24) in the original coordinate becomes, with
-t the aid of (22), (38), and (40):

introducing the above into (35) yields u = a((x) + (I + 0 (P-l)(x))(F(x -0 ((x)) + r)

A- + B;. + E(-(2)(4)+ (1)(4)9 ) + 0 2 (36) =Fx+r+ (a (x)+o (x)(Fx - FO (x)+ r)

This equation is of the form of Eqn. (28), except for the difference - FO (x)). (41)

in the way expansiors of f and g are defined. We use the overbar

notation to emphasize this point. The input Thus the control function has the form of a pole assignment for the

linear part of (22) plus some correction terms of higher order

u = (2)(x) + (I + 13((x))v (12) (grouped in the bracket of Eqn. (41)). This result clearly shows the
-I purpose and nature of the nonlinear feedback.

is also transformed with an additional scaling l = 1 v:

-(2) -0 ) (37)

6. Conclusion

With this scaling of coordinates, a linearization problem given as in

Section 2 can be alternatively solved with the procedure outlined in th is ape e h av pe ntd an tesatte prochdtothissectonthe analysis and design of nonlinear control systems. The procedure
this section.

consists of finding a coordinate change by an appropriate feedback

to achieve higher order linear approximations to nonlinear systems.

Because of space limitations, we have not presented the details of
4. Form of the Nonlinear Compensation the solvability conditions. The method of solving for the linearizing

After a higher order linearization is obtained, the next step is transformations is based on the normal forms approach of Poincard,
which is a widely used technique in the analysis of bifurcations into choose a feedback law to achieve closed-loop pole assignment. noleavctrfld.Tisugtsheplcbityftes

Consdertheappoxiatio ofSecion2 werenonlinear vector fields. This suggests the applicability of these
Consider the approximation of Section 2 where

powerful bifurcation methods in nonlinear control systems analysis.

=Ax +Bu+O(x,u) P  (22) Aeyels [10] and Abed and Fu [11] have studied the local
stabilization problem for nonlinear systems with this approach. In

has been transformed by the coordinate change other words, the method is an appropriate tool for the analysis of
(P) nonlinear systems in which plant parameter variations cause

x=z+O (z) (23) fundamental changes in the structure of the system. Another

and feedback important issue is the following: When a solution exists, the

functions a(p(x), 13 (P-l(x), ¢(P)(x) are not necessarily unique. The
(P) (P-I1)

u (x) + (I + j3( (x))v (24) question of what is the best choice, or even what is a reasonable
choice among the possible solutions needs more investigation.

into
The equations that need to be solved for finding the

z = Az + liv + O(zv)I t (26) transformations are a set of linear algebraic equations. However,



the number of equations grow rapidly with increasing orders of

linearization and with higher dimensional systems.For example, for

a second order linearization and with n states and m inputs we have
- ,t$ -. 2

a system of'A n + 1)/2 + n m linear algebraic equations in
2n 2

n (n + 1)/2 + nm(n +41)12 + m n unknowns. With the use of

symbolic algebraic manipulation packages and with the availibility of

increasingly powerful computers, this is not considered as a serious

setback. A symbolic algebra program that automatically solves these

transformations on the computer is in preparation.
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Determining Torque and Velocity Limits on Joint Actuators for
Robot Manipulators with Coupled Joint Motion*
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Abstract: In robots with remotely driven inks, the motions and optimal control schemes, because the end
relationships between some of the actuator and joint effector of the robot will not be able to follow the

commanded trajectory If the actuator lmits are exceeded.motion ci oOled. In th paper robot dynamic equations Formulating the equations for remotely drivn manipulators
for these types of manipulators are analyzed. The

equations are expresed in actuaor hootnats by means in joint coodra es will result in complcated calculations for
of the coupling matrix between joint and actuator the upper bounds for some of the joints, thus making it

coordinates. The motivation is that, In the actuator difficult to check the torque/force lmits at the actuator level
coordinates, the actuator velly and torque imits can be with given motion commands at the joint level.
calculated. The procedure is denonstrated by an exaniple. The goal of this paper is to reformulate the

Keywords: Robot manipulator, torque limit, Lagranglan dynamic equations for robots in actuator
coupled motion, robot dynamics. cordinate, and to show that the problem of checking for

the torquellor upper bounds can be simnpifled.

2. Manipulator Dynandc Equations and their
1. Introduction transformations

In the formulation of manipulator dynamic equations, The equations of motion for an n-ink open chain
two wellknown methods, Newton-Euler 141 and Lagrangian manipulator arm ae given in vector-matix form as:
[1,51 have been the most popular. While the Newton-Euler
method is computationally more efficient, It Is the "SC10
Lagrangian method that allows better insight into the the
dynamics, as well as into the analysis and design of control
systems for manipulators. In the Lagranglan formulation, D(0)0 + + G(O)
the Denavit-Hartenberg convention 12) Is often used to
assign link parameters. Within this framework, the joint
coordinates are measured with respect to the next lower
link In the open kinematic chain, regardless of the
mechanical characteristics of the robot. While for the more where 6. 6, a are, respectively. (nxi) joint displacement,
recent direct drive robot designs there Is a one-to-one velocity, and acceleration vectors. D(O) represents the
relationship between joint and actuator coordinates except (nxn) configuration dependent Inertia matrix. C1. C2  ,.. .C
for the gear ratio conversions (thus the name "drect dive'), are the (nxn) Coriols- centrifugal force coefficient matrices,
conventional type manipulators generally have remotely G(e) Is the (nxi) vector of gravitational forces acting on
driven links due to limitations on cost, weight, and other each joint, and g is the vector of forces applied by the
design crited& In such robots, the relationships between actuators. We note here that, for a manipulator with joint
some of the actuator and joint motions are coupled, with an motion coupling, t Is composed of the forces appled to the
actuator rotation or displacement resulting in the motion of joints, not the actuator output forces. For the purposes of
more than one Ink. Avoidance of the upper bounds on the derivations to be performed later, it Is preferable to
actuator torques or forces is a concem for high speed rewrite (1) In the following form: -

"Research supported by the AJr Force Office of Scientific
Research under grant number 85-0267.
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-C (AEGBf) (this 1s possible whenever A, E and B. F areconformable pairs; ee 131). we rewrite the term invoMng
C2 the Kroneckr product as:

D(0)6 + [ In ® + G(,) (2)
Wl in / ][a.®]H (9)

le n] The term H's H) can also be written as (H')121 . the

In (2). the symbol ® represents the Kronecker product of superscript in brackets being the notation for Kroneckermatrices, and I. Is the (nxn) identity matrix. Obviously, the square of matrices [3. With this result, Eqn. (8) becomes:

matrix I In 0 B' has dimensions (nxn2) and the Coriolis- -Cal
centrifugal coefficient matrix of Cis Is (n2xn). We refer the Cat
reader to (31 as an excellent reference on Kronecker Da9 + I. { G + . (10)
algebra of matrices

Let the coupling between joint and the actuator L cJ
displacements be given by: where the parameters corresponding to the actuator

8 - Hp (3) coordinates have been assigned the subscript W.
Comparing with Eqns. (8) and (9), these are:

where ipis the (nxl) vector of actuator displacements, and HD.-H Ietamriis the (nxn) coupling matrix. H Is constant and non-singular. D - H'DH Inertia matrix
For a direct-drive robot arm. H would reduce to a diagonalal ..
matrix with the corresponding gear reduction ratios as the C2C
entries. By differentiating (3) with resoet, to time, we obtain: (l)M H Codolh-cntdfugal terms

.Hq (4) L J
and

G, I-eG Gravitational forces.H (5)
and the torque term Is given by Eqn. (6).

On the Aher hand, the relationship between the actuator
forces and the joint forces is: 3. ApplIcaUon to velocity and torque limit

calculations
- (6)

For a practical Implementation, consider the problem
wherev, is the force Input vector In actuator coordinates. of calculating torque commands to the actuators for a given

trajectory to be followed. Let the maximum force/torque heIntroducing the relations (4) and (5) Into the actuators can deliver be T.... Additionally, there is usualyequations of motion (2) yields: a maximum velocity at which the actuators can be driven,

-Cwhich we denote by For a typical DC motor, the
C2 maximum torque is limited by the maximum current rating of

DIp + (In G itH] H4 + G (7) the motor, while the maximum velocity is proportional to the
voltage applied. The actuator dynamic effects are ignored

n- in this context. We assume that the sensors placed at the
actuator or joint level measure the displacement and the

Multiplying each side of Eqn. (7) by HI we get: velocity and that the acceleration can be approximated by:

C2 At
H'DH + In H I H + H'G - Hc (8)

where superscripts represent the Ith and i-Ist
LC.. measurements, and At Is the sampling period. We need to

calculate the left-hand side of Eqn. (10) with these velocitiesIn the above, we first note that the right hand side Is the and acceleratlons. This will yield the total forces/torques
same as Eqn. (6), i.e. %. By using the identity (A6)(ESF) required at each joint to achieve the motion 6ommanded.
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Call this quantity A. Comparing the vector A obtained from mechanical connection. For this robot, Eqn. (3) becomes:

this calculation with the actuator limits am-. term by term,

which are the maximum forces/torques that are available, it 61 0 0 0

is possible to determine whether any of these limits are 1

exceeded. Whenever a torque or velocity limit is exceeded, 2 0 (11)

one needs to renormalize the actuator commands in the I
following manner: L 0 -

N1 . At I 1,...,n In the above. ki, k2. k3, are the gear transmission ratios

between the actuators and the joints. By taking the time

t- lderivative of (11) the counterparts of Eqns. (4) and (5) are

N2 - Max il,..,n also obtained. For the purposes of the foregoing

L iJ calculations the explicit forms of the inertia matrix elements

and the other terms In Eqn. (2) will not be necessary.

N .. Max{N 1. N2) Therefore, the Inertia matrix is expressed in its symbolic

and if N > 1, In which case either a torque or velocity limit is form:

exceeded, then set rD 1 D12 D13

06W = 91 Dj D12 1D2 D23
S6-,..,n D13 D23 D33

This will renormalize all the joint velocity commands with Calculation of the Inertia matrix in actuator coordinates

the same ratio, thus ensuring that the manipulator end yields:

effector stays on the commanded path, even though at a D11 D,.D13  D13

slower velocity. Using such an algorithm, If a limit Is r
reached, usually only one of the actuators will be at its ki kk 2

maximum. D11-D 13  D2-2D 23+D3 D2-D3

4. An Example D, -DH k1 k2 k k2k

In this section. the calculations of the joint-actuator W D 3 3-D D
coordinate transformations will be demonstrated with a klk k~k A ki -

simple example. Consider the 3 d-o-f revolute manipulator

of Fig. 1: Similarly, the Corolis-centrfugal terms are calculated as:

[ HtC 1H

I*-1 1.. ?(C2-C3)HLJ J ..2~ HIIC2I k2
"X1C9p L HI H k3

iz Note that In the above C, are (n x n) matrices of Corolis-

centrifugal force coefficients. The gravitational terms

become:

Figure . A 3 d-o-f revoiute manipulator.

The coordinate system on the robot and link parameters are L
assigned in accordance with the Denavit-Hartenberg

notation. it is assumed that joint 3 is driven remotely from A finaly, the torque tenms ae trnsormed as:

the base, and that the motion Is transmitted through a
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5. Conclusion

In this paper, manipulator dynamics equations
!ormuatsd In joint coordinates were transformed Into

* actuator coordinates by use of the actuator-joint coordinate
coupling matrix.* This resulted in the expressions for the
transformation of Inertia and Corlolls-centrlfuga terms, as

* presented in Section 2. Then, the final form of the equations
allows an easier implementation of an algorithm that checks

* the velocity and torque Emits, and renormaizes the actuator
commands so as to prevent tracking errors.
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Application of An Efficient Nonlinear Filter*

Ruggero FREZZA, Sinan KARAHAN, Arthur J. KRENER, Mont HUBBARD

Abstract- In this paper we present an application of a new filtering technique based on geometric linearization
and asymptotic analysis. The technique is compared to the conventional extended Kalman filter to demonstrate its
comtputatwnal efficiency.

Introduction

While the theory of linear filtering has been well developed and understood, practical

nonlinear filtering has typically relied on heuristic techniques. One of these is the extended Kalman

filter which is based on a linear approximation of the system equations around a trajectory. The

asymptotic geometric nonlinear filtering technique was developed by Krener in [5]. It is based on

the so-called observer normal form which linearizes the dynamics by a change of state coordinates

and output injection. The development of the observer normal form is due to Krener and Isidori

[I ], Krener and Respondek [2], Bestle and Zeitz [8], Zeitz [11,12], Fritz and Keller [9], Keller

[6,7], and Li and Tao [10].

The approach is geometric and consists of finding a change of coordinates, in general

nonlinear, such that the equations of the system transform to their most linear form. Once the

system is in "nearly linear" form it will be possible to apply asymptotically the theory of linear

filtering. This has many advantages. In fact it is possible to formally define optimality and

asymptotic stability. Moreover, the gains of the filter may be computed off-line because the Riccati

differential equation is independent of the states. This reduces the on-line computational burden of

the filter.

The only drawback of the technique is that the change of coordinates generally requires a

very heavy algebraic computational effort. One solution to this is to use already existing software

packages for symbolic computations. Naturally the technique is not applicable to all nonlinear

systems; otherwise we would have discovered that everything in nature is linear in some

appropriate coordinate set. The class of "nearly linearizable" systems is substantial, and.gives to

*Research supported by the Air Force Office of Scientific Research under 8.5-0267.
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generally requires a very heavy algebraic computational effort. One solution

to this is to use already existing software packages for symbolic

computations. Naturally the technique is not applicable to all nonlinear

systems; otherwise we would have discovered that everything in nature is

linear in some appropriate coordinate set. The class of "nearly linearizable"

systems is substantial, and gives to the method a certain flavor of generality.

In this paper we will illustrate the technique for a specific example. We

will estimate the height, the velocity and the ballistic coefficient of a falling

object in an atmosphere with variable density. We will also implement the

extended Kalman filter for the same problem and compare the two filtering

techniques in terms of performance and computation time. Throughout the

paper we will refer to the geometric asymptotic nonlinear filter, the new

technique, as the GANF and to the extended Kalman filter as the EKF.

1- Brief description of the EKF and the GANF techniques

We say that a given nonlinear system without input:

y h(Q). (1)

where F Rn and y e R ,is observable if it can be transformed into

observable normal form. This corresponds, in some sense, to the property

of observability for a linear system. Normal forms have the advantage of

making transparent the effect of an input on the dynamics of the system.

There are four such normal forms: Observer, observable, controller and

controllable. In the present application, and in the case of nonlinear

observers in general, we will have occasion to use only the first two:
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Observable form:

x = Ax - Boc(x)

y = Cx (2)

Observer form:

x = Ax - (X(Cx)

y = Y(Cx) (3)

In some particular cases (in the application treated in this paper, for

example) we will require a modified observer form.

Modified observer form:

n-1
x=Ax-ec(Cx,CAx...,CA x)

y = Y(Cx) (4)

where A, B, C are the standard matrices of the Brunovsky canonical form.

For the case of a three dimensional system with a single output:

A= 0 0 1 B= 0 C=[ 100 (5)
10 00il

The system (1) can be transformed into observable form if y and its first n-I time

derivatives are local coordinates on the state space.

A physical system will never satisfy exactly a set of differential equations
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like (1). In reality each of the states is affected by random process noise, the

parameters are not known exactly, and the measurement of the output will be

affected by observation noise due to the physical and technical limitations on

the measurement procedure. The system (1) can then be expressed in its

stochastic equivalent:

d( = f(t)dt + Bdw

dy = h( )dt + Ddv (6)

(O) = N( 0, P0)

Where w and v are standard Wiener processes. The covariances of the driving

and measurement noise are, respectively, Q = BB T and R = D2 . For our work

we will assume the measurement noise to be small, i.e. D = F where e is a small

parameter. Then the problem is to estimate the states of (6) at time t given the

measurement of y at time less than or equal to t. It is clear that in the absence of

noise and if (1) is observable the problem is easily solved because the states

could be computed exactly as nonlinear function of derivatives up to order n - 1

of the output.

We compute the estimates by introducing the filter:

d = f( )dt + g()(dy - h()dt)

dy = h( )dt (7)

The conventional extended Kalman filter technique computes the estimates from:

d = f(L)dt + P(t)H ( , t)R-'(dy - h( )dt)

dy = h(()dt (8)
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where

A FT(A T A 4 AiP = F(, tC +P , t) + Q(t) - PH (, t)R (C, t)p

P(t0) = Po (9)

and

H( , t)= 3 h t) (10)

F(C, t)= A =

and P, Q and R are, respectively, the covariance matrices of the estimate

error, the process noise and the observation noise.

The GANF computes the filter in observer form coordinates. In these

coordinates the system (6) can be written as:

dx = (Ax + c(y))dt + Gdw

dy = Cxdt + Ddv (12)

x(O) = N(xo, P o)

where, if J is the Jacobian of the change of coordinates, G = J B. If the

measurement noise is small, and a(y) is smooth enough, then ct(y) is

approximately equal to ct(Cx) and we can use the filter equations

A A A - A
dx = Axdt + a(Cx)dt + PCTR(dy - Cx dt) (13)

with P being obtained from the solution to the Riccati differential equation
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AP=A+ PAT + -P dR-CP

P(O) = P (14)

Where Q = GGT. The dynamics of the error are given by:

dx = (A + PCR-'C) xdt + (a(y) - ox(C;))dt + Gdw + pTR-1Czdv (15)

The Riccati equation (14) is state independent and hence can be integrated

off-line. The dynamics of the error are nearly linear up to output injection,

and the covariance of R asymptotically equals P(t). We can assume, without

loss of generality, that the output injection term can be expanded in a Taylor

series starting from the second order term:

2 A
A d a(Cx) - 2

a(y)- a(Cx) = d2 (Cx + edv) + 0(3) (16)dy2

In fact, we can combine any linear term of the above in the (A + PCTRIC)

term of (15). Then, if the second derivative of a is small, the output

injection term can be neglected. Practically, we are requiring ac to have a

small "curvature" in some sense.

One should note that these two filters are not being compared on exactly

the same grounds because the noise covariances of the EKF and the GANF

are state independent in both and x coordinates. However the comparison

is justified if the Jacobian of the change of coordinates J is nearly constant

along the trajectory since Q = JQJT and R is invariant under the change of

coordinates. The main advantage of the GANF over the EKF is that the
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Riccati equation (14) can be solved off-line. This allows the computation of

g(C) off-line, while when using the EKF it is necessary to integrate (9) and

compute (10) and (11) on-line. In particular if the problem can be

transformed into observer form with a(y) = 0 then the GANF is the optimal

filter while the extended Kalman filter is generally not.

2- An Application of GANF

We consider a falling object in an atmosphere of varying density. The

problem is to estimate the position, the velocity and the ballistic coefficient

of the object. This problem has been discussed previously by Gelb [3] and

Wishner et al [4].

The dynamic model consists of:

S 2

2 -g + 23 )2 (17)

C3= 0.

C (0) =O
I I

C (0)= C
2 2

3 3

where C is the vertical position, 2 the velocity, 3 the inverse of the

ballistic coefficient and
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p(1) exp(- ) (18)

1 0 k
P

represents the variation of the atmospheric density with the height C1. It can

be verified that this system is observable according to the observability

condition defined in section 1. In fact

dh=II1 0 0]
1 0]

dL~f~h=-p(C1)! 3 p(C,)223p(l (19)

span R 3 , except at the singular point C2 = 0 where, the object being

stationary, it is impossible to observe any of its dynamics. Hence it is

possible to write (17) in Observable form:

y=t1

1 2

2= 3
2 g - 42g +- 22o)

43= f3( ) = -g +"2 k+  (0
P 2 P 2

The Jacobian of the transformation between C and is

1 0 0

0 1 0
(= (21)

p
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Unfortunately (20) does not satisfy the conditions for the transformation to

observer form, but it can be transformed into the modified observer form.

If we let

(o)2 - o

")

2c 2 2 ( 2)2 (-o)2

A ) g() 2  
(22)

240 -

and

XI =

X2 2 22

2( ( 20 + 2 ( ) 2(23)

2 3

then the system can be written in modified observer form:

yl = " (2

X2 = 3_ ( 2)(24)

X3 3 -(22()2
P32

In some sense this change of coordinates linearizes the system "as much as

I IIII I I I I "anIId
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possible".

Assuming the model to be affected by random process and measurement

noises, the corresponding stochastic differential equations become:

dy = xidt + Ddv

dxI = ( x 2 - (XI( 2))dt + Bldw1

(25)

dx2 = ( x3 - a(22))dt + B2dw2

dx3 =- a 3 ()dt + B3 dw3

with

xI(0) = N( xi ,P(1,1))

x2(0) = N(xP(2,2))

x3(0) = N(40,P(3,3))

Q = BBT R = DD T

where R is the measurement noise covariance and Q(1,1), Q(2,2), Q(3,3)

are the process noise variances. P(l,1), P(2,2), P(3,3) are the variances of

the errors in the initial conditions.

The filter dynamic equations are:

dA A
= Xdt

dx = ( 2 -a(t 2 ))dt + K,(dy - dy)
A (X AA

dx2 ( 3 2 %( 2))dt + K2(dy -dy) (26)
AA

dx 3 = C,3( 2 )dt +K3(dy -dy)



11

Rewriting the system in the original coordinates, the filter equations

become:

A A A

d 1 = ,2dt + K1(dy - Id0
A

A A A A A

d 2-- ( -+ + P(l )2 )d t + -- 2K(dy - 4dt) (27)

2A A

A _ 1 Ad 3 (K - ^ +  dy )(dy - dt)

p kp( 1 )( )2 ^ ^

where K1, K2, K 3, are the gains computed from (13) and (14) with

K=PcTR- .

The Jacobian of the transformation from physical coordinates to observer

form is:

1 0 0

o (_.)2
0 0

2 p=p 0e (28)

3 -2 1
k~ k p(CO) 2 p(CO) 2

The Jacobian turns out to be close to a unitary operator. This is clear for

the 2x2 upper left minor. In fact, simulations were computed both

assuming the Jacobian constant evaluated at 40, and computing its actual
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value on line. The results were not affected in an appreciable manner.

3 - Simulations and Results

In this section we present the results of some simulations, run for

different noise regimes and with the following constants:

initial conditions:

initial height = 30,000 m

initial velocity = - 2,000 rn/sec

initial inverse ballistic coefficient = 1.025*10 -4 m2/kg.

physical parameters:

atmospheric decay constant k = 10,000 mP

atmospheric density at sea level p0 1.230 kg/m 3

gravity acceleration g = 9.81 m / sec2

Additionally, the results correspond to the following noise regime:

measurement noise

R = 100 m2sec

process noises

Q(1,1) = 100 m2

Q(2,2) = 100 m2/sec 2

Q(3,3) = 1.0*10 °10 m4 / kg2

uncertainties on the initial conditions

P(1,1) = 5000 m2

P(2,2) = 2000 m2/ sec2

P(3,3) = 1.0*10-8 m4 / kg 2
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The object falls from an initial height of 30,000 m with an initial

downward speed of 2,000 m/sec. It has an initial ballistic coefficient of

9,756 kg/m2 , which is equivalent to the object weighing approximately ten

metric tons per square meter of surface perpendicular to the direction of the

fall.

The errors in the initial conditions are, probably, not unrealistic for a

radar tracking problem. The process noise covariances are aiso ciose to

reality if we consider the possible random effects of changes in the

conditions of the atmosphere and wind encountered on the way to the

ground along the trajectory. Finally, the process noise on the ballistic

coefficient could be interpreted as variations of the shape or orientation of

the object during the fall.

The behavior of the real system is presented in Fig. 1, which portrays

the trajectories of the three states affected by the noises. We remind the

reader that the first state is the height of the object, the second the velocity

and the third the inverse ballistic coefficient.

In Fig. 2(a) are shown the errors between the estimates of the height of

the two filters and the height of the real system (Fig. 1 (a)). The EKF and

the GANF, compared in terms of performance in the estimate of the height,

are nearly equivalent. The EKF performed slightly better, but the time

history of the error is nearly identical. Similarly, in Figs. 2(b) and 2(c) are

shown the estimates of the velocity and the inverse ballistic coefficient,

respectively. Although the two filters showed a very similar behavior, the

EKF performed slightly better, the difference probably being mainly due to

the approximation introduced in assuming that the noise covariances were

constant in observer coordinates for the GANF. In Fig. 2(d) is shown the
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behavior of the real inverse ballistic coefficient and of its estimates to give

the reader an idea of the initial error in the estimates and of the effect of the

process noise. Without process noise the real coefficient would be

constant.

Shown in Fig. 3(a) is the logarithm of the average covariance of the

error in the estimates of the height for 25 Monte Carlo runs. As can be seen

from the Figs. 3(a) and 2(a) the recovery from errors in the initial guess is

very fast after which the covariance settles down to values close to process

noise covariance for the height. There is no appreciable difference in the

behavior of the two filters. In Figs. 3(b) and 3(c) are shown the logarithms

of the average covariance, for 25 Monte Carlo runs, of the error in the

estimates of the velocity and the inverse ballistic coefficient, respectively.

Again the two filters performed very similarly. In Fig. 3(c) the two filters

behaved so similarly that the two curves are almost indistinguishable. All

these results were checked by insuring that the covariances of the errors

were near the values of the covariances theoretically predicted by the

solution of the Riccati differential equation.

Conclusion:

The simulation results demonstrate that the GANF filter performed

practically as well as the extended Kalman filter from the point of view the

accuracy of the estimates.

In terms of the algebraic efforts in developing the filter equations, the

EKF is obviously more straightforward, since one need only evaluate a

first order approximation to the nonlinear equations along the trajectory.

The GANF, on the other hand, relies on differential geometric concepts,
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and require considerably more difficult algebraic computations off-line.

However, the development of the algebra may eventually beuiiic a simple

exercise in computer programming if currently popular symbolic

manipulation programs like MACSYMA or SMP are useM

The real advantage of the GANF filter over the extended Kalman filter is

in its computational efficiency. In fact, as mentioned previously, we can

compute the gains of the GANF filter off-line, whereas the gains of the

extended Kalman filter must be calculated on-line. For the particular

simulation presented in this paper, written in FORTRAN language and

executed on a VAX 785 computer running under the VMS operating

system, the integration of the GANF filter along the entire trajectory

required 1.06 seconds of CPU time, while the integration of the extended

Kalman filter took 3.2 seconds. Thus the GANF filter has performed three

times faster. With higher order systems the computational advantage will

be further emphasized since the on-line computational burden of the

extended Kalman filter grows as (n2 + 3n)/2 while that of the asymptotic

nonlinear filter grows only as n. In fact, solving the Riccati differential

equation on-line requires the integration of (n2 + n)/2 scalar differential

equations.

List of figures:

Fig. 1 Nominal trajectory of the states of the falling object in the presence

of random noise. (a): height, (b): velocity, (c): inverse ballistic coefficient.

Fig. 2 Errors of the extended Kalman filter and of the geometric asymptotic

nonlinear filter in the estimates of the states of the falling object. (a): height,

(b): velocity, (c): inverse ballistic coefficient, (d): estimates of the inverse



16

ballistic coefficient together with the actual inverse ballistic coefficient.

Fig. 3 Variances of the errors of the extended Kalman filter and of the

geometric asymptotic nonlinear filter in the estimates of the states of the

falling object after 25 Monte Carlo runs. Plotted using logarithmic scale. (a):

height, (b): velocity, (c): inverse ballistic coefficient.
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Computation of Observer Normal Form
Using Macsyma*

by Andrew R. Phelps t and Arthur J. Krenert

1. Introduction

The computation of linear observers has become relatively routine, and computer
packagqs exist which make these computations straightforward and accessible. When it
comes to nonlinear observers, however, the picture has not been so bright. Algorithms for
this sort of calculation have been published [1], [2], [4], [5], [6]. In general, these are limited
by one or more steps involving difficult computations.

The Ph.D. thesis of Phelps [8] provides a breakthrough in the nonlinear observer al-
gorithm. In particular, Lie bracket calculations are no longer required to perform changes
of state coordinates, and the computation becomes straightforward. Macsyma was in-
strumental in developing the new approach. A prototype of this new algorithm has been
implemented in Macsyma.

We consider an uncontrolled dynamical system with partial state observation:

y h( ). (1)

The state space is in R' and the output space is in R. Generally, this may be put in
observable normal form:

4= A - B a( ),

Y= CC. (2)

The problem is to see if, in fact, it supports observer normal form:

i = Ax - a(Cx),

p= Cx. (3)

Here the A, B and C are matrices given in Brunovsk canonical form.

* Research supported in part under AFOSR 85-0267

t University of California, Berkeley. Current address:

Dept. of Math. and Computer Sci.

San Jose State University

San Jose, CA 95192.

Address:

Dept. of Mathematics

University of California

Davis, CA 95616.



The algorithm in question is determined by the conditions required for conversion of
a system (1) to observer form (3). This paper is based on the approach in [4] and [51], as
modified in [8]. These conditions are:

Observable form Must be able to convert system to observable form (2);
Output coordinate change Must satisfy d.e. for y = y(p);
Polynomial degree Observable form polynomials fj( ), for 1 < j < p, (the entries of
Ba( ) in (2)) must have degree < tj;
Coefficient compatibility Observable form polynomials must evaluate to certain in-
tegrals of differential expressions in injection terms (the entries of a(C z) in (3)).

Note. An earlier version of these conditions replaces the coefficient compatibility
condition with the condition that the certain brackets vanish. Let qi be the unit
vector in the j:t, direction. All brackets of elements in {ad.-'q : 1 < i < tj } must
vanish.

The approach in [1], [2] and [6], which is not used here, has been developed only
for the case when p = 1 and there is no change of output coordinates required. It
calls for the existence of observable form (2) (but not its computation) and replaces
the last two conditions with a requirement that d(adt fq ) E span {dh}, plus a slight
technical adjustment.

We will elaborate the theorems and computations associated with the coefficient com-
patibility condition, which will obviate the need for extensive bracket computations.

2. Coefficient Compatibility in Standard Coordinates

For simpucity's sake, we first describe the results in the case that we have the "right"
output 9. In fact, we will see that this could be considered sufficient for an improved
algorithm, since the relevant change of state coordinates will be entirely determined by
the tranformation y = y(p) of the corresponding outputs.

In section 3, however, we will indicate a result expressed directly in observable form
coordinates (C, Y)-

We may compute observable form , .) coordinates), relative to the output 9 which
is the solution to the output d.e. 's:

- A - Ba(),

C(4)

We call the coordinates (4) standard coordinates.
This computation does not constitute a major burden on our algorithm (given Mac-

syma), since we only require an iterated set of Lie differentiations of functions and beck-
substitutions to get the transformation = (C).

To annotate our coordinate systems, we adopt certain conventions. We describe the
state variables by t:i, indicating that it is the (j - 1)-th time derivative of the output
variable yi, the same going for (x, Y) and ( , 9) coordinates. The injection functions ai:
are written similarly. If p = 1, we omit the "1 :" to simplify the notation.
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Furthermore, the coefficient

m:..(Y) : m:--I .-ij:l,+l-..-ij..J+l------.

ei :k times

UI)

of the monomial
p r

:-" "~,.j:k:+ 
..

j=l k=1

is characterized by having degree ij:k and exponent ei:k with respect to its factor e':
ij ,k I+lI

for 1 < k < rj and 1 < j < p. The vertical bars '-' separate the subscript into parts
according to the the output j involved. We also have cumulative indices

i p p ri

ej:L e:k, e:=ZLe, and W := E1ijk ej:k.
k=1 j=1 j=1 k=1

To simplify the notation, we also occasionally represent functions as their own "0-th"
derivatives and we write " m:i," for i < 0, as a null symbol indicating a contribution which
vanishes.

The natural way to describe the change from observable form coordinates to ob-
server form coordinates x is to compute the d.e. 's which determine it. These get quite

complicated, since they involve the change of coordinates matrix J = L" and its iterated

derivatives. The choice of standard coordinates, however, causes all these terms to vanish
and makes these d.e. 's accessible.

Using, for convenience, the simplifying assumption that each observability index 4.
is equal to some e, we compute the equations x z( ) governing the change of state
coordinates:

=I = Xj:I ,

cj: 2 "Xj: 2 - Cj Y

Cj:3 Xj:3 - LI o,:,() - oj:2(9 ) ,

tj -1 4j -i--i

L(j :- (6)
i=l1

fi(~f tj

for 1 < j < p, where f is f in the coordinates.
From the expansion (6) we can, in effect, read off the a polynomial coefficients in

terms of the a injection functions.
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Example 2.1. Coefficient solutions, for the case p = 1 and t = 3.

The expansion (6) gives us:

fi() a23 (Y) 6 6 + a3 (Y)3

+ a222(y) 2 + a2 2 (y) 2 + a2 (y)

+ a, (y).

This leads to the coefficient solutions:

d1 -a3,
da2

a2 d--dp

a 2 2 d 2 a,

a222 0,

a 2 3  0,
da1

d 3  
da-dp

The a's may be computed from the d 's by a simple integration. A

The pattern described in the above example is easily extended to the case where we
have p equal indices.

Theorem 2.2. Suppose that all the indices are equal, i.e., j = £ for 1 < j p. Then the
polynomial coefficient d,:...(.) is given by

- ( (7) ) ... _p((7

fJ 171 ej: k 1ij: k!I)jk 49yj

j=1 k=1

The existence of an injection vector a(?j) compatible with all the coefficients of f,( ), as
given in (7), together with the observable form, output coordinate change and polyno-
mial degree conditions, constitute necessary and sufficient conditions for the existence of
observer normal form (supposing all indices equal).

Proof
Outline

We use induction on L. We make a counting argumeit with combinatorics to trace
the typical coefficient of a monomial term.
Body of Proof

Let m, 1 < m < p, be fixed.
First of all, if t = 1, then (4) simply becomes (m:A = fm( ) = f,,(9). Thus a.:, -

,m(-) = -a,:(Y), where we take a,,:, - 1,. But this matches formula (7).
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Note that the derivation in example 2.1 gives a result in accordance with formula (7).
That illustrates the pattern we use for our induction.

As induction hypothesis, we assume that formula (7) holds for I = ti. We target the
coefficients in the expansion for m:, - xm:, in the case t = y + 1 which are the source via
Lie differentiation of the coefficients of fm we seek to evaluate.

But, when we examine the p.d.e. expansion (6), we find the same expression,

- Z L -trn:i ,
i=1

for M:,, - X,:,, in the expansion with I = i + 1, as we find for fm in the expansion with

f = p. This means that the induction assumption will enable us to know those "target"
coefficients, which, when Lie differentiated, give contributions to the expansion for fm
in the case when the multi-index I is p + 1. These coefficients evaluate to nothing but
the coefficients of the terms of fm in the case (given by induction assumption) that the
multi-index f is p.

Let 49, given as in (5), be a monomial in f,(). We wish to determine its coefficient
am....

An expression which under Lie differentiation by f can give a term like tl may have
two forms.

Case 1. It may have no increment in the exponent ei:1 of 6j:2, for 1 < j < p.
In this instance, it will come from Lie differentiation of a term of the form

,k - 1(8)

By induction assumption, term (8) has a numerical coefficient which calculates back
from our projected coefficient for 49 as

t :k! e : k (W__ 
_ _ __ _ _ _ _

(t, 7:k - 1)!el P r"111 ej:k! i j : k! Cj :k

j=1 k=1

Here we take eg= eq:k-1 + , If tv:k-I = li:k -1
e := 1,otherwise.

The differentiation process contributes an extra factor of e. Thus, the partial numerical

contribution from this term is

In this case, the "a" part of the coefficient is carried through unchanged. Moreover, it
was already of the required form, since e, has not been altered by adding and subtracting
1 in (8).
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Case 2. It may have an increment in the coefficient of j:2 for j =7.

The source of the terms of this type is partial differentiation of the "a" coefficient by
. This will give an additional factor of 4,,:2, while not affecting the numerical coefficient.

The prior exponent of C,:2 will have been eq:1 - 1.
Therefore, the monomial term prior to Lie differentiation was By induction

assumption, its numerical contribution was

- L :i !e :( rj •1 
) e )

H fIej:k! ij:k!
j=1 k=1

Its partial numerical contribution is therefore

Lip:i e,7 :l , (10)

since tj:1! = 1 = tj:1 when j = 77.
Note that in this case the eV increments by 1, so that the "a" term adjusts as prescribed

by formula (7).

These two cases exhaust the possibilities. The "a" coefficients are as required. And,
combining (9) and (10), we get a total contribution to the numerical coefficient of a factor
of

E Etj: k ej: k  W

j=1 k=1

which is also as required. A

In the general case, where the observability indices are given arbitrarily, we adopt a
recursive method for calculating the a coefficients in terms of the a injection functions.

We may take a system with arbitrary indices 4p,..., 4,, and prolong it to a system of
dimension p- 4p, to which theorem 2.2 applies. Retracing the prolongation step-by-step,
we can track the (increasingly complex) form of the formulas for the d coefficients. We
rely on the following prolongation lemma (for a proof, see (81):

Lemma 2.3 (Krener-Respondek-Phelps). Suppose an uncontrolled system, given in
observable form, has 2 distinct multi-indices 4i, t 2 of multiplicities P1 , P2 and, further, that
it may be transformed by change of output coordinates y = y(y) to observer form. Then
it may be prolonged to a system in observable form, having multi-indices A, := t, + 1 and
A2 := t 2 , of the above multiplicities. Furthermore, the transformation y = y(j)) and the
injection function a(.) both prolong trivially to functions which will take the prolonged
system over into observer form.

We formulate our recursive coefficient calculation as follows:
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Algorithm 2.4 (Coefficient Prolongation Algorithm). Suppose we have solved for
the coefficients belonging to the indices 1,. .. , G and moreover ek < 4k + 1 = . .. = 4s,
where s < p. We may construct a "quasi-solution" using the method of theorem 1 applied
to the prolonged system with s indices all equal to t,. By back-substitution we may then
express the prolonged version of fj(-) with a's as coefficients, for k + 1 < j < s. We may
then substitute L'- h:eh (expressed in terms of the a's, and using the solutions previously

derived for 1 i _ k) for the "quasi-variables" I:eh+i where 1 <_ i _ - h. Finally, we
may "read off" the coefficients of the monomials thus derived.

We may now combine theorem 2.2 and algorithm 2.4 to get the coefficient compatibility

theorem for coordinates:

Theorem 2.5. Suppose we have arbitrary indices 4 ,..., 4- Then we may derive the
coefficients dir:... (9) in terms of the a(p) injection functions by application of the Coefficient
Prolongation Algorithm. The existence of an injection vector a(p) compatible with all
the coefficients of f (i), together with the observable form, output coordinate change
and polynomial degree conditions, constitute necessary and sufficient conditions for the
existence of observer normal form.

Proof
This has already been done in theorem 2.2 for the case where all indices are the same.

Algorithm 2.4 enables us to extend this result inductively whenever 4h < eh+4. A

It can also be shown that we can back-solve for the a injection functions in terms of
the a coefficients by iterated integrations (see [81).

For the generic case, where there are two distinct indices, differing by 1, we state the
formula:

Corollary 2.6. For the generic case of two different multi-indices of size A1 and A2 := A1 +1
and multiplicities p, and P2, the coefficient dr:...(P) is given by

[ i ja (e ... a ep Oamage, ...______

j=l k=l

In particular, a,,:...() is given by theorem 1 for 1 < m < Pi and for degrce > A1 when

Proof

This is directly calculated using theorem 2.2 and one application of algorithm 2.4. A

To conclude this section, we give an example of coefficients for the (simplest) non-

generic case. Note that it is trivial to back-solve for the derivatives of the a 's and integrate.

Example 2.7. Coefficient solutions, for p = 2, t, = 1, t2 = 3.



il:1  ----- __ 1:1

2a 2 a2:1 _al: 1 e2:1 4002:2
a2:12 21:1 + +9 a1: 1Y2

a2 :I(2 2 2V

'9 2 :11 - :

a:994921

A

3. Coefficient Compatibility--General Case

We have seen the expansion (6) in the simplified situation of standard coordinates.
This can be converted to general observable form coordinates (2) by a not-too-inconvenientcalculation. However, if we have Macsyma or some other facility that enables us to do

suggestive examples expeditiously, we can find patterns in the results that suggest direct
solutions for the general version of (6). For instance, consider:
Example 3.1. Coefficient solutions, in general observable form coordinates, for p = 1,

We have the following pattern, which mimics the result in theorem 2.2:

dy

dy dra3a2 - df dy

dy d2 0,1a 2 3 = --
dy dy 2

dy d 2a 2a 22 =- d dy2 '

dy da 2a3 = -d dy

dy dyady d3 0G1
a 2 22 - do dy 3 ,

dy da,
a4 dq dy

We have another pattern, which relates to the degrcc f ternis that vanish in standard
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coordinates:
1 d 2 a2 4  3 da2 4  1 3

a 2 2 2 2 = 4 dy2 16a24 + -a24,

3 da 24  3 2
a 2 2 3 "2 dy a 2 4

3
a 3 3 "- a24.

4
A

To describe the intricacies of the degree I terms in example 3.1, we introduce the
following notational scheme. Let P(m) be the partitions of m. Write a partition ir of e - 1

by
S

e -1 = ci nj.
j=1

Define c := cj as the number of pieces of the partition.
j=l

With these annotations, we formulate the pattern of example 3.1 for the following
theorem on coefficient compatibility:

Theorem 3.2. A single-output system has an observer normal form iff the observable

form, output coordinate change and polynomial degree conditions hold, and moreover in

observable form ( ) coordinates the coefficient a...(y) equals

_ w!_ deat-,,,(y) dy

(I ek!ik! ) dy d

k=1

for terms of degree less than t, and

,E[(-1) I ( r ()

H7 Ck! k! cjJ nJdrla-d ))

k=I j=l

for terms of degree equal to t.

A proof of this theorem will appear in a forthcoming paper of Phelps [7].

Using Lemma 2.3 and the above theorem (adjusted to the case of p equal indices), we

may in principle compute the general transformation x = x( ), relating observer form (3)
to observable form (2).

4. Conclusion

Two points need to be made here.

9



First, the "coefficient compatibility" approach to nonlinear observer calculations sim-
plifies in principle the theory and makes unwieldy bracket calculations unnecessary.

Second, the use of Macsyma made it possible to do the rather extended calculations
of examples that made the patterns in the data stand out. Every aspect of the algorithms
for nonlinear observer calculation is readily accessible to Macsyma programming, and
converting the algorithm from its abstract form of "algorithm-in-principle" to a concrete
"algorithm-in-fact" is naturally done in this milieu.
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THE ,STRUCTURE OF SMALL-TIME REACHABLE SETS IN
LOW DIMENSIONS*

ARTHUR J. KRENERt AND HEINZ SCHATTLER+;

Abstract. This paper outlines a general method to determine the geometric structure of small-time
reachable sets for a single-input control system with a bounded linear control. The authors* analysis relies
on free nilpotent systems as a guide, and hence their techniques only apply to nondegenerate situations.
The paper illustrates the effectiveness of the method in low dimensions. Among other results is given a
precise description of the small-time reachable set for a system x =f(x)+ g(x)u, Jul _ I in dimension four,
under the generic assumption that the constant controls u - +1 and u -l are not singular. As a corollary,

a local synthesis is obtained in dimension three for the time-optimal control problem under the analogous
generic condition.

Key words, nonlinear systems, nilpotent approximation, reachable sets, bang-bang trajectories, singular
a rcs

AMS(MOS) subject classifications. 49B10, 93B10

1. Introduction. In this paper we study the qualitative structure of small-time
reachable sets in low dimensions for a single-input system with a bounded linear
control. More precisely, we consider a system of the form

(1) X:x=f(x)+g(x)u, lul-, xER

where f and g are smooth (C') or analytic vector fields and admissible controls are
measurable functions with values in [-1, 1] almost everywhere. A trajectory of the
system corresponding to a control u(.) is an absolutely continuous curve x( -) such
that .i(t) =f(x(t))+g(x(t))u(t) almost everywhere. We say a point q is reachable from
a point p within time T if and only if there exists a trajectory x(-) defined on an
interval [0, t], t < T, such that x(0)=p and x(t)=q. The set of all such points q is
denoted by Reach (p, := T); Reach (p, T) denotes the set of points that are reachable
exactly at time T The reachable set from p, Reach (p), is the set of all points that are
reachable from p within some time T.

Reachable sets play an important role in control theory. If a system can be stabilized
to a given point by a feedback control law, then that point must be in the reachable
set of every other point. In optimal control problems, if the cost is added as another

* -coordinate, then the optimal trajectories must lie in the boundary of the set of reachable
points. For this reason the Pontryagin Maximum Principle plays an important role in
studying the boundaries of reachable sets.

The problem of describing a reachable set and the extremal trajectories that
generate its boundary is closely related to the problem of regular synthesis in the sense
of Boltyansky [I] and others [5], [18]. While the problem has been studied extensively
for many years, only a few examples of regular syntheses have been described, for
instance, [24]. Even in low dimensions, the reachable set of a general control system
can be extremely complicated.
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t University of California at Davis, Department of Mathematics, Davis, California 95616.
t Washington University, Department of Systems Science and Mathematics, St. Louis, Missouri 63130.

120



SMALL-TIME REACHABLE SETS IN LOW DIMENSIONS 121

We shall attempt to avoid this difficulty by considering only "nondegenerate"
systems. By a nondegenerate system we mean one where (i) f, g, and the low-order
Lie brackets of f and g span as many dimensions as is possible given the dimensions
of the state space; and where (ii) no nontrivial equality relations hold between those
vector fields (for instance, if n is the space dimension, then any relation saying that
n vector fields are dependent at a point is considered a nontrivial equality relation,
whereas a relation that simply expresses the fact that a vector field can be written in
terms of a basis is considered trivial).

This is in the spirit of Lobry [14], who described the small-time reachable set of
(1) in dimension three under the assumption that f, g, and If, g] are linearly indepen-
dent. The method described below is an attempt to extend Lobry's result to higher
dimensions. As will be seen, it is successful in the four-dimensional case, but in
higher-dimensional cases obstacles still have to be overcome. These obstacles, however,
are not due to our general approach, but they lie in the fact that, at the moment, too
little is known about the structure of extremal trajectories. We shall return to this
question at the end of the paper. In the paper we shall give a precise description of
the small-time reachable set in dimension four assuming that the constant controls
u = +1 and u = -1 are not singular on the boundary of the reachable set. It can easily
be seen (cf. § 4) that this is equivalent to an independence assumption on the vector
fields f, g, If, g], and If+g, If, g]], respectively, If-g, If, g]]. As a corollary we are
able to improve on recent results of Bressan [4], Schittler [17], and Sussmann [21]
on time-optimal control in dimension three.

Throughout this paper we will use nilpotent systems as a guide to the general
situation. A system is nilpotent of order k if all brackets of orders greater than k vanish
and if k is the smallest integer with this property. In a certain sense these systems play
the same role as the polynomials do within the class of smooth functions. Nilpotent
systems are the low-order part of the coordinate free Taylor series expansion of a
general system.

To be more precise, we must define the Lie jet of system (1). At a point p the Lie
jet consists of a list of the values at p of the Lie brackets of f and g written down in
some prescribed order.-.Of course, because of the skew-symmetry and Jacobi relation

[f,g]+[g,f]=O, [f,[g,h]]+[g,[h,f]]+[h,[f,g]]=O,

we need only consider a list of distinct brackets. These brackets can be partially ordered
by the total number of vector fields involved; for example, f is a bracket of order one
and If, g] is of order two. The Lie jet of order k is a list of values at p of the distinct
brackets of f and g of order less than or equal to k. The Lie jets of orders one through
four are given below:

Order one: {f(p), g(p)},
Order two: {f(p), g(p), If, g](p)},
Order three: {f(p), g(p), [f, g](p), [f [f, g]](p), [g, [f, g]](p)},
Order four: {f(p),g(p),[f,g](p),[f,[f,g]](p),[g,[f,g]](p),

_ ~If, If, If, g]]](p), If, [g, If, p]]](p), 1g, [g, If, g]]](p)l.

If N(k) is the number of distinct brackets of f and g of order k or less, then the
kth-order Lie jet of (1) at p is a point in the vector bundle consisting of the Whitney
sum of N(k) copies of the tangent bundle.

A basic result of Krener [12], later proved in other contexts by Rothschild and
Stein [15], Hermes [10], Crouch [8], Bressan [3], and Sussmann [20], [21] is that for
analytic systems of the form (1), the kth-order Lie jet at p determines the trajectories
emanating from p up to order 0 (tk"l) and up to diffeomorphisms of the state space.
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Sussmann [22], [23], Bressan [4), and Schittler [16], [17] have shown that the
local structure of time-optimal controls in dimension two or three is determined in
nondegenerate situations by the second, respectively, third-order Lie jet at a reference
point. In degenerate situations higher-order jets need to be considered [16], [17], [23].

On the basis of these results we might conjecture that in nondegenerate situations
the kth-order Lie jet at p determines the structure of the set of small-time reachable
points whete the H6rmander or controllability condition is satisfied, i.e., the rank of
the kth-order Lie jet at, p equals the dimension of the state space. And maybe the
qualitative structure of the reachable set can be obtained by looking at a kth-order
nilpotent approximation. Unfortunately, as we mention in the last section, these
conjectures are not completely true, but they do motivate much of. our work.

The paper is organized as follows. The next section reviews the Pontryagin
Maximum Principle as applied to the system (1). This also gives us a chance to introduce
some notation and terminology. In § 3, we will describe the main ideas and outline
the general structure of our techniques by looking at the trivial two-dimensional case.
We will also give a brief proof of Lobry's three-dimensional result. The main part of
the paper is § 4, where we determine the geometric structure of the small-time reachable
set for the nondegenerate four-dimensional system (assuming that both quadruples
(f, g, [f, g], [f+ g, [f, g]]) and (f, g, [f, g], [f- g, [f, g]]) consist of independent vectors
at p). We also draw the obvious corollaries about time-optimal control in dimension
three. Section 5 concludes with a brief discussion of the free nilpotent five-dimensional
system and explains why the general nondegenerate five-dimensional case is different
from this one.

2. The maximum principle. The Maximum Principle [13) gives necessary condi- {
tions for a point to lie on the boundary of the reachable set. Let u(-) be an admissible
control defined on an interval [0, T] and let x(-) be the corresponding trajectory
starting at p. If x(T) Ea Reach (p), then x(t) E a Reach (p) for all i E [0, T] and there
exists an absolutely continuous curve A :[0, T] - R , which does not vanish anywhere
such that

(2) (t)T = -A(1) T (Df(x(t))+ Dg(x(t)). u(t)),

(3) (A (t), g(x(f)))u(t) = Min (A (t), g(x(t)))v,

(4) H = (A(t),f(x(t)) + g(x(t))u(t)) = 0

almost everywhere on [0, T]. (We write vectors as columns, (., -) denotes the standard
Euclidean inner product on R", and Df and Dg denote the Jacobian matrices of f and
g, respectively.) Any trajectory for which an adjoint variable A(-) exists such that
(2)-(4) are satisfied is called an extremal trajectory. The optimality condition (3)
determines the control u(t) whenever 0(t):= (A(t), g(x(t))) # 0; tk is called the switch-
ing function and u-=- -I (u-=-+1) on intervals where qS is positive (negative). Trajec-
tories corresponding to these constant controls are called bang arcs and are denoted
by X (=f-g) and Y (=f+g), respectively. A concatenation of bang arcs is a
bang-bang trajectory. Observe that (A(t),f(x(t)))=0 at switching times t, i.e., where
(A(t), g(x(t)))=0. At these times (3) gives no information about the optimal control.
If, however, 45 vanishes on an open interval I, then all the derivatives of 4 also vanish
on I and this may determine the control u. We have

4(t) =(A(/), [f+ gu, [f g ]](xt))),

=00), U+ g~ U gl](XO
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and if(A(1), [g, [f, g]](x(t))) does not vanish on I, we can solve for u in 4 = 0 as follows:

UM (), [f [f, g]](x(t)))

(1 (), [g, [f, g]](x(t)))"

A control of this type is called singular and the corresponding trajectory is a
singular arc.

This suggests that concatenations of bang and singular arcs are the natural
candidates for trajectories in the boundary of the reachable set (but of course no such
regularity statement can be drawn from the Maximum Principle alone). We denote
concatenations of bang and singular arcs by the corresponding letter sequence; for
instance, we simply write XSY for a concatenation of an X-arc, followed by a singular
arc and a Y-trajectory, etc.

3. The main ideas of the technique: the nondegenerate two- and three-dimensional
cases. In this section we analyze the (well-known) structure of small-time reachable
sets in a nondegenerate situation in dimensions two and three. These cases are easy
and give us an opportunity to outline the general ideas of our technique without getting
preoccupied with technical details.

Suppose I is a system of the form (1) in dimension two and assume that f and
g are independent at a reference point p (see Fig. 1). It is clear how the small-time
reachable set from p will look. If we let F' (respectively, r-) be the integral curves
of the vector fields f+g (respectively, f-g) for positive times, then for sufficiently
small T, Reach (p, _ T) is the union of FI, r-, and the open sector R between r' and
r- into which f(p) points. It is easy to see that any point in R is reachable from p;
for instance, if q E R, just run a trajectory of Y corresponding to the control u = +1
backward in time until it hits I. The important point is that this is all of the small-time
reachable set. This follows immediately from the Maximum Principle since only
trajectories corresponding to the constant controls u - +1 or u -1 can lie in the
boundary of the reachable set. (There cannot be a junction, since then both
(A(t),f(x(t))) and (A(t), g(x(t))) vanish, contradicting the nontriviality of A.)

r+

+-g C-

• . FIG. 1

Generalized to higher dimensions, the quintessence of this argument is to have
two hypersurfaces F* and 17. which are generated by extremal trajectories, have a
common relative boundary and "enclose" a region R. Then, to prove that R is actually
the reachable set Reach (p, <- T), we must show (i) trajectories cannot leave R through
r* or r, and (ii) all points in the sector are reachable. The latter is immediate if we
have a drift vector field f with f(p) 0. This is exactly the same argument as in the
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two-dimensional case. Take any point q inside R and run a trajectory of Y corresponding
to the control u --0 (or for that matter corresponding to any control) backward in
time. Since f(p) 0, this trajectory will hit r* or F. So basically (i) must be checked;
this is mostly a matter of computing tangent spaces, as will be shown below. This is
the general strategy of our technique.

All technical issues left aside for a moment, the key question is how to come up
with the surfaces F* and F.. We propose an inductive procedure. Let us explain it at
the next step, which is the case of a three-dimensional system -, where we assume
that f, g, and [f g] are independent at a reference point p. (This is the example
considered by Lobry [14].)

Choose coordinates x = (xI, x2 , x3) such that (dx, (f(p), g(p), [f, g](p)) = Id, the
identity matrix. The projection of Y_ into the (x,, x2)-plane is then the two-dimensional
system considered above and we know the structure of its small-time reachable set.
Our aim is to find two hypersurfaces F* and r, consisting of extremal trajectories that
project onto the reachable set A of the two-dimensional system in dimension three. If
r* and r, have a common relative boundary that projects onto afR and if r* and r,
do not intersect in their relative interior, then it is clear that these surfaces "enclose"
a region R. Then we must check whether trajectories can leave R. If this is impossible,
R is the small-time reachable set.

The Maximum Principle gives preliminary information about r* and rF because
it describes necessary conditions for trajectories to lie in the boundary of the reachable
set. In this three-dimensional case it actually determines F* and r. precisely, but in
higher dimensions this is no longer true. It is then that we will use nilpotent systems
as our guide to find candidates for r* and IF. More on that appears in § 4.

Now that we have outlined the general approach, let us also illustrate the basic
technical arguments by reproving Lobry's result. It follows from the Maximum Principle
that all trajectories that lie on the boundary of the reachable set are bang-bang. For,
if the switching function vanishes at some t, i.e., if (A (t), g(x(t)))=0, then also
(A (t),f(x(t))) =0, and hence 4r(t) = (A (t), [f, g](x(t)) cannot vanish by the indepen-
dence of f g, and [f, g] and the nontriviality of A. For dimensionality reasons it is
therefore reasonable to consider the following two surfaces as candidates for r* and r,:

r , r* = {p exp (s,(f- g)) exp (s2(f+ g)): s- 0, s, + s2 small},

- = {p exp (t t(f + g)) exp (t 2(f - g)): t, -_ 0, t, + t2 small}.

We write flows of vector fields as exponentials and we let the diffeomorphisms act on
the right, i.e., p exp (tf) denotes the point obtained by following the integral curve of
f that passes through p at time zero for t units of time.

It is clear that r* and r. are two-dimensional surfaces with boundary. In both
cases the boundary consists of the two curves corresponding to the trajectories of f+ g
and f-g and the point p. Furthermore, by the Campbell-Hausdorff formula [ I 1]

p exp (s,(f-g)) exp (s2(f+g))

=p exp ((St+s 2)f+(s 2 -s)g+s 1s2[f, g]+s 1 S2 • O(T)),

p exp ((t(f+g)) exp (t 2(f-g)) =p exp (t, + t2)f+(t1 - t2.)g- 1 t2[f, g]+ tit2" O(T))

where O(T) stands for terms that are linear in the total time T This shows that r*
and r* do not intersect in their relative interior. So r* and r* enclose a region R.

To prove that the enclosed sector R is the small-time reachable set we must show
that there cannot be any other points in the reachable set. As in the two-dimensional
case we have two options: either we show that we have exhausted all trajectories that
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FIG. 2

possibly can lie on the boundary of the reachable set, or we show that trajectories
starting at points on r*, r, F', or F_ cannot leave R U F* U r U F U r-. As it turns
out, this is the same argument, only viewed differently.

Let us first show that we have exhausted all possible trajectories that can lie in
the boundary of the small-time reachable set, i.e., that such a trajectory is bang-bang
with at most one switching. Let -/ be a bang-bang trajectory with two switches, say of
the form XYX, with junctions Po and p, at times to< t. If X= A(ti), then we have
(A, g(pl))= 0 and (i,f(p 1 ))= O. Also (A (to), g(po))=O or, equivalently, if we move g
ahead along the flow of the vector field Y we get (i, exp (-(t, - to) ad Y)X(po)) = 0.
But A # 0 and so these three vectors are dependent: Po and p, are conjugate points
(Sussmann [22]). Therefore

X(p 1 ) A Y(pI) A exp (-At ad Y)X(po) =0

i.e., X(p1 ) A Y(P) A [X, Y](p,)+ O(At) = 0, where At = t1- to. But such a relation
cannot hold in small time by the independence of X, Y, and [X, Y]. Similarly it follows
that YXY-concatenations cannot satisfy the Maximum Principle.

This computation can also be viewed in the following way. Define a map
F: (11, t 2 , 13) -p exp (tX) exp (t 2Y) exp (t3X) for t small. Then this map has full
rank if t > 0. For, if we compute the tangent space to the image, but pull back to
p exp (tIX) exp (12 Y), we get exactly the vectors exp (-t2 ad Y) X, Y, and X. Therefore
F(t,, t2 , t3 ) is an interior point of the reachable set. Finally, if we pull back the tangent
space one step further to p exp (tX) we have the vectors X, Y, and exp (t2 ad Y)X =
X - t2[X, Y] + O(t). The minus sign at [X, Y] implies that X-trajectories point inside
R at points on F*. Similarly, it follows that Y-trajectories steer the system into R from
r*. And this proves that trajectories of the system cannot leave R through F*, IF, 17,
or r-. (Because of the Maximum Principle we can restrict ourselves to just looking
at these regular controls instead of having to consider arbitrary measurable functions.
For, if any trajectory would leave R, then there will also have to be additional trajectories
lying on the boundary of the reachable set and these must be bang-bang.)

The structure of the small-time reachable set as a stratified set can easily be
described using the following notation. For n e N let

S, := {p exp (s(X) exp(SY)exp (s3X)

.... • • exp (sB): s >0, B = X ifn is odd, B= Y ifn is even},

S,,:= {p exp (t, Y) exp (t 2X) exp (t3 Y)
• •exp (tB): t >0, B= X ofn is even B= Yifn is odd}.

In a nondegenerate situation each of the S,.± is a n-dimensional smooth manifold.
(Certainly this will be true in all the cases we consider here.) In the three-dimensional
case the boundary of the small-time reachable set consists of the two two-dimensional
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strata S,. which have in their boundary the two one-dimensional strata S 1, and the
zero-dimensional stratum So = {p}. So also lies in the boundary of S1.,. If we restrict
the total time to be :_ T we must make the obvious adjustments. In particular, we must
add the strata S,,.± :S. fReach (p, T) for n = 1, 2.

4. The nondegenerate four-dimensional systems. In this section we determine the
geometric structure of the small-time reachable sets from a point p for a system I of
the form (1) in dimension four, where we assume that the constant controls u= +I
and u -- 1 are not singular. These conditions-can easily be expressed in terms of
independence assumptions on f, g, and lower-order brackets off and g. For, a constant
control u - u° is singular on an interval I if and only if there exists an adjoint multiplier
A such that (A,f), (A, g), (A, [f, g]), and (A[f+gu °, [f, g]]) vanish identically on I. By
the nontriviality of A this is impossible if f g, [f g], and [f+gu", [f, g]] are indepen-
dent. Therefore in terms of the vector fields X and Y our conditions are equivalent to

(A) X, Y, [X, Y] and [X, [X, Y]] are independent near p;

(B) X, Y, [X, Y] and [ Y, [X, Y]] are independent near p.

If we write [X, [X, Y]] as a linear combination of X, Y, [X, Y] and [ Y, [X, Y]] as

[X,[X, Y]]r=X+.Y+y[X, Y]+8[Y,[X, Y]],

then (A) is equivalent to 8 0.
The cases 8 > 0 and 8 <0 are significantly different: if 8 > 0 only bang-bang

trajectories can lie in the boundary of the reachable set, if 8 <0 singular arcs are
possible. Intuitively this is clear. If u is singular on an interval I, then (omitting the
argumints t and x(t))

=(A, [f+ gu, [f, g1])

A, (1 - u)[X, [X, Y]] + (1 + u)[ Y, [X, Y]]l
=' ((I - u)S + (I.+ u)) - (A, [ Y[X, Y]]);4 0

and so u =(8+1)/(8-1). This is an admissible control only if 8_0. Note that the
singular vector field is given in feedback form as

.- 8+1 1 X -8 , <0
Sf+-1g=-I-X+ -- Y, 3<0.

-'1" 1-8 1-8

4.1. The totally bang-bang case: 8>0. This is the generalization of Lobry's
example to dimension four. We treat only the general case here, but we remark that
the structure of the small-time reachable set is the same as for a nilpotent system where
f, g, [f, g], and [f, [f, g]] form a basis and all other brackets vanish. In appropriate
coordinates the latter system is linear.

The key observation again is that the Maximum Principle precisely determines
the possible trajectories that can lie in the boundary of the small-time reachable set.

LEMMA 1. If y is a trajectory that lies in the boundary of the small-time reachable
set, then y is bang-bang with at most two switches.

Proof We first exclude bang-bang trajectories with more switches. Let y be a
YXYX-trajectory with switching points p1, p2, and p, and let s,, si, sl, s 4 be the length
of the times along the respective X-arcs or Y-arcs. At every junction we have
(A, X(p,)) =0 and (A, Y(p,)) =0. This gives rise to, four conditions on A.
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If X is the value of the adjoint vector at the switching time at p2, we have
(1 x(P:)) ( Y(p,)) = 0,

(.,exp (-s, ad Y)X(p,)) =0,

and

(A, exp (s., ad X) Y(p)) = 0.

Again, the nontriviality of . implies that these four vectors are dependent ("conjugate
points"). So we get (dividing out s, and s3)

0=XAYA (exp (s3ad X) -l) y (exp(-s, ad Y)-I)X
S3 ( - 52

(5) =x^ YA[,Y] X [X ] (2) [,Y]+2Is,[ Y, [X, Y]] +O(T)
2 3 2

=-.(s2, s3)(X A Y A [X, Y] A [ Y, [X, Y]])I22

where T is the total time along y and O(T 2) stands for terms that are quadratic in T;
o- is a smooth function of s2 and s3. If we express [X, [X, Y]] in terms of X, Y', [X, Y],
and ( Y, [X, Y]I, we see that

(6) (7(s 2, s3) = s2 +s 38 + O(T2)

where 8 is evaluated at P2. In a sufficiently small neighborhood of p, 8 is bounded
away from zero and so the linear terms dominate quadratic remainders in small time.
Hence r(s2, s3) is positive for si small; in particular, it cannot vanish, a contradiction.

Analogously, if 5 is a XYXY-concatenation with switching points q,, q2, and q3
and if t1, t2, 13, t4 are the times along the respective trajectories, then we get

O=XA YA ((t p3)X
• (7)

=--(t2 , t 3)(X A Y A[X, Y]^[Y,[X, Y]]),,2

where

(8) r(t 2 , 3) -t 3 - t24 + 0( T2 )

is a smooth function of t2 and 3 near the origin. Again, since 8 is bounded away from
zero near p this function is negative for small times, a contradiction.

P3

P1  Y,S4

X, Y, s X, s3

P2
FIG. 3
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It now follows that, in fact, any trajectory that lies in the boundary of the small-time
reachable set is bang-bang. This is an easy but slightly technical argument. We will
do it here rigorously since we will need the computations later on anyway. The point
is that we do not have a priori knowledge about regularity properties of the controls,
e.g., that they are piecewise constant. This is the case if and only if the zero set Z(O)
of the switching function 4) is finite. If it were infinite, then the set N,, of limit points
of Z(0)) would be nonempty. In fact, it is a closed, nowhere dense, perfect set. (If
t, < t, are points in N(0) then, since 4 cannot vanish identically, 0 is different from
zero somewhere in (ti, t2) and by continuity it is different from zero on a whole interval.
It is perfect, i.e., every point t E N(4) is a limit point of points t. E N(0k), t,, t, since
N(0)) cannot have isolated points. We can see that this is so, since we know already
that bang-bang trajectories with more than three switchings do not lie in the boundary
of the small-time reachable set!) Suppose t, < t2 are times in N(4). There exists
a TE (t,, t2) such that k(t7) #0. Let F,:= sup ([t, ] n N(4)) and let t,:=
inf ([ Fi , 2] N N(0)). Then T, < t2, T E N(4), and Z(4) fN [t, F,] is finite. This implies
that y contains subarcs of the form *B- and .B*, where B denotes a bang arc (X or
Y), - stands for any switching, and * stands for a junction in N(46). Observe that
4)(t) =0 if tE N(0k). We will now show that none of these concatenations can lie in
the boundary of the reachable set and this will prove the lemma.

Without loss of generality we consider a concatenation of the form *X. with
switching points Po and p, and let t be the time along X. Then, if X is the value of the
adj.oint vector at the switching time corresponding to Po, we have

(X, X(po)) = 01, Y(po)) = (1, [X, Y](po) = 0.

Also (1, exp (-tad X)Y(p))=0 and so by nontriviality of X we again get

0=XA YA[X, Y]A Y-t[X, Y]+ t2 [X,[X, Y]]+O(t 3 )
=t2(+O0(t))(X A Y A[X, Y] A [ Y, [X, Y]])1,, o .

This cannot hold in small time. Analogously it follows that no *B- or -B* concatenation
can lie in the boundary of the small-time reachable set if 3 # 0. This proves the lemma
(and note that the argument is valid in general under assumptions (A) and (B)). 0

It is now clear that the surfaces F* and F. must be as follows:

F* = {p exp (sX) exp (s2 Y) exp (s 3X): si => 0, small},

F, = {p exp (11 Y) exp (t 2X) exp (t3 Y): t, > 0, small}.

F* and r are three-dimensional surfaces with common boundary C that has precisely

the structure of the boundary of the small-time reachable set in dimension three. It is

the union of two two-dimensional surfaces made out of XY- and YX-trajectories
respectively, glued together along the X- and Y-trajectories.

We will now show that r* and r do not intersect away from C, in particular that

they enclose an open region that will be the interior of the small-time reachable set.
DEFINITION. We say a point q is an entry point (respectively, an exit point) of

a (closed) set S for a vector field Z if for some e > 0, Sfn {q exp (tZ): -e -_ t: _ 0} = {q}
(respectively, if sn{q exp (tZ): 0_ t5 e} = {q}).

LEMMA 2. For sufficiently small Tthe points in F* are entry points for the small-time
reachable set from p for [ Y, [X, Y]]. The points in r. are exit points.

Proof If q is an exit (entry) point for Reach (p, _ T) that does not lie in

Reach (p, T), i.e., exit or entry is not due to the time restriction, then the corresponding
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trajectory is extremal and the adjoint multiplier satisfies the transversality condition
(A, [Y, [X, Y]](q)) -0 ((A, [Y, [X, Y]](q))->0). We claim that necessarily

q EF. (q E F*).

Recall that the second derivative of the switching function is given by

4(t) =(A (t), [f+ gu, [f, g]](x(t)))

(10) 1,(1 - u(t))(A, [X, [X, Y]](x(t)))

+-(1 + u(t))(A, [Y, [X, Y]](x(t))).

Expressing [X, [X, Y]] in terms of X, Y, [X, Y], and [ Y, [X, Y]], we get a linear
combination of terms (A, X), (A, Y), (A, [X, Y]), and (A, [Y, [X, Y]]), where the
coefficient at (A, [ Y, [X, Y]]) is

'(1 - u),8 +-!(I + u) - Min (1, 5) > 0.

Suppose y is a bang-bang trajectory with two junctions. Then the two junctions
determine a multiplier A up to a positive constant multiple. Normalize such that
IIA(0)112 = 1. Because y has two junctions (A, X), (A, Y), and (A, [X, Y]) vanish some-
where on [0, T], T = t, + t2 + t 3 . For sufficiently small T these functions will be bounded
in absolute value on [0, T] by any e > 0. Because of (B) I(A(t), [Y, [X, Y]](x(t))I[ can
be bounded away from zero on [0, T]. By choosing e, i.e., T small enough,
(A, [ Y, (X, Y]]) dominates all other terms in (10), that is, we have in small time: ,b
has constant sign equal to sign ((A, [ Y, [X, Y]])). But (A, [ Y, [X, Y]]) > 0 allows only
for XYX-trajectories and (A, [ Y, [X, Y]])<0 permits only YXY-concatenations. This
proves our claim.

We still need to show that points in r* and F, in fact have these optimization
properties. Suppose y is a XYX trajectory. Then the tangent space at the endpoint is
spanned by X, exp(-t 3 adX)Y and exp(-t 3 adX)exp(-t 2 ad Y)X. Note that
[Y, [X, Y]] always points to one side of the tangent space since

X A exp (-s 6ad X) Y A exp (-t 3 ad X) exp (-t 2 ad Y)X A [ Y, [X, Y]]

t2 ( X A exp (t 3 ad X) Y A exp (H ad X)(exp(t2ad Y)- x

(11) ^[Y,[X, Y]])

= t2(X A Y- t3[X, Y] + O(t3) A [X, Y] + O(T) [ Y, [X, Y]])

= 12(1 + O(T))(X A Y A [X, Y] A[ Y, [X, I]]).

If we write the defining equations for F* and F' in terms of canonical coordinates
of the second kind, that is, as products of the flows of the vector fields X, Y, [X, Y],
[ Y, [X, Y]] in the form

(12) p exp (xX) exp (x, Y' cxp (x3[X, Y]) exp (x4[ Y, [X, Y]]),

then this implies that we can think of I* as the graph of a function x4 = $(xI, x2, x3).
It also follows from (12) that the integral curve of [Y, [X, Y]] through p and the
compat set Reach (p, T) are disjoint for small positive T. Therefore, given T, there
exists a t -i T with the following property. Any integral curve of [ Y, [X, Y1] that
passes through a point on F*(T), the set of all trajectories in F* of total time =9 T, does
not meet Reach (p, T). This implies that the points on r*(T) are entry points for the
small-time reachable set. For, if q E F*(T) is not an entry point, then by compactness
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there exists an entry point of Reach (p, = T) of the form q exp r[ Y, [X, Y]]. Since this
flow does not meet Reach (p, T) this point must lie on F* and this contradicts the
graph property. Analogously the result follows for F,. 0

An easy computation shows that, if F* and F, would intersect away from C, then
it would have to happen transversally. This would contradict Lemma 2.

The geometric structure of the small-time reachable set is now clear. It ;s the exact
analogue of Fgs. I and 2 in four dimensions. Its boundary consists of the surfaces F,
and F that match up along C, the set of points reachable by a bang-bang trajectory
with at most one switch. The open region enclosed by r* and F, is the interior of the
reachable set. A stratification of its boundary is given by S,, and S, for n = 1, 2, 3
(see § 3).

Remark. This qualitative structure of the small-time reachable set for a totally
bang-bang system generalizes to arbitrary dimensions under the conditions of Krener's
and Sussmann's nonlinear bang-bang theorem [19]. Suppose that the vector fields J
and ad'f(g), i = 0, • .- , n - I are independent at p and that for i = 0,- - - , n - I there
exist smooth functions aq and 03, with I/3 (p)l< I such that

[g, ad'f(g)] = a i ad'f(g) + /3, ad' f(g).
j-O

Then it follows that for sufficiently small-time T all trajectories that lie in the boundary
•-- ... -of the reachable set from p are bang-bang with at most n switchings. A stratification

of the boundary is given by the strata So= {p} and S&.., k=- 1,--., n. In particular,
points in S,.+ are exit points of the reachable set for (-1) ' ad"-,f(g), points in S,._

. ... ... ... .are entry points. Given the results on the structure of trajectories in the boundary, this
is a straightforward generalization of the argument above. All the difficult work has
been carried out by Sussmann in [19), specifically in the proof of Lemma 3 there.

4.2. The bang-bang singular case: 6<0. This case is a nontrivial extension of
Lobry's result. Here not all the extremal trajectories actually lie in the boundary of
the small-time reachable set. It is therefore not clear how we should choose r* and

*,. We now use the structure of the small-time reachable set for the corresponding
free nilpotent system as a guide. The only reasonable nilpotent approximation to
choose is one where all brackets of orders greater than or equal to 4 vanish. Note that
f, g, [f, g], and [g, [f, g]] are always independent in this case. Since we want to work
with a system as simple as possible, we also assume [f, [f, g]] - 0. This is an equality
relation in the third-order Lie jet, but in a slightly more general setup (weighted Lie
algebra) this would be a free nilpotent system. Therefore we refer to this system as

..- .... the "free" nilpotent case. We will first analyze a model of this "free" nilpotent case,
and then we will show that the general case has the same qualitative behavior.

4.2.1. The reachable set in the "free" nilpotent case. To simplify some computations
we restrict ourselves to the following model i:

(13) 4 1 =, - =u, -\,.=X, i,=IX2.

Note that [g,f](x) = (O/x_) + x1(O/x1 ), [g, [g,f]] 8 /Ox3 and all other brackets vanish
identically. It is clear that the qualitative structure of the reachable set from the origin
at any time is the same as for the small-time reachable set: one is a rescaling of the
other. (If u is a control defined on [0, T] and x is the corresponding trajectory, then
the time I reachable set can be obtained from the time T reachable set by letting
C0(t):= u(t/T) and R,(t):= T'x,(t/T) for i= 1,2, 3.) To determine the reachable set it
therefore suffices to look at time slices T = constant, and without loss of generality we
can assume T= I.
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If A (A,, A,, A,, A,)r is an adjoint vector for an extremal trajectory x( • ), then
A I is the switching function and

A, =-AA x1 , A =0, A1=0,

and in particular A,' = Au, i.e., u 0 is the only singular control. Note that, if A1 =0,

then A, is a linear functin and the extremal trajectory is uniquely determined. By a
theorem of Bressan [21 this implies that the reachable set is convex in direction of
(0,0,0, I) or equivalently in the direction of [g.[g,,f]]= [X,[X, Y]]; that is, if
(p,,,p p,, a) and (p, p,,p,, b) lie in the reachable set, then the whole segment
{(p, p,,. p2, c): a - c b) lies in the reachable set. It is therefore clear what the surfaces
I* and I', have to be: I* consists of trajectories which are exit points for [X, [X. Y]]
and I', of those which are entry points. Equivalently, we can speak of trajectories that
maximize/minimize the coordinate x,.

For extremal trajectories that give rise to entry/exit points for [X, [X, Y]], an
additional transversality condition was to hold. One of the directions :t[X, [X, Y]]
can be separated from an approximating cone to the reachable set at this point. In
our case these conditions simply say that A.,- 0 for trajectories that minimize x, and
A,!-- 0 for those that maximize x3 . In particular A3 = 0 for those that do both and these
trajectories are bang-bang with at most one switching. So again the common boundary
of r* and 1', will be a set C that has the structure of the boundary of the small-time
reachable set in dimension three.

We now determine [',. We can assume A3>O and without loss of generality
normalize A, to 1. Thus, A, = -u and so A,-is strictly convex and positive along X,

strictly concave and negative along Y. Singular controls satisfy the generalized
Legendre-Clebsch condition [13]: (A, [g,'f, g]]) = -A3 <0. It follows that the only
extremal trajectories are concatenations of a bang arc, followed by a singular arc and
another bang arc. We now restrict to the time slice T = I. Define

Fo_:= {0exp (sX) exp (sJ) exp(s 3X): s1, s_0,+s2 +s 3 = 1),

(0 exp (s, X) exp (s2 f) exp (s3 Y): s, 1_> 0, st + s2 + S3 =

F.,= {0 exp (t, Y) exp (t2f) exp (13 X): t, 0, It + t + t3= =I,

F 0.+:= { 0 exp ( t, Y)exp ( t f)exp(#3 Y): t,_-O, t 2++t3 =l}.

We will show that these are two-dimensional surfaces with boundary which match up
and together form F. with

aF. = [0 exp (sX) exp (s2 Y): s, i20, s, = }

U f0 exp (t, Y) exp (tX): t, -0, t, + t, = I}.

LEMMA 3. Each ot the sets *,,,. is a two-dimensional surface with boundary. For
any two of them the images of the open simplices are disjoint. Furthermore,

I" nw ,, " r =,. m= exp{(seX )exp(s.j):s, -0o, s,+s,=l ,

I" .. , I'_ = {exp(s,f) exp(sX): s, 20, s,+s , 8=
r" ,, rlI.,.= ,, = (0 exp (sf): 0t s 1} = r'_.. n11 ,_

I,, fi Iv,,. -= I,. = JO exp (s,f) exp (s, Y): s, 1 0, s,+s.= I .

Iraphil, v,.,,= r 0lexpi(s, Y ) exp (s f ):t s,e as 0,s sw + s, .
Graphically, these relations can be illustrated as shown in Fig. 4.
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The proof of the lemma consists of straightforward computations that we shall
only illustrate in one case. It is easy to see that all the maps are regular with rank 2

in the interior, and it is clear how the maps behave on the boundary. So the 170 , are

......... two-dimensional surfaces with boundary. To prove that the images of the open simplex
under different maps are disjoint, we choose a way that does not use the specific form
of the equations, but works with a basis provided by the vector fields f, g, [f, g], and
[g, If, g]1. This also gives ais idea how the analogous argument in the general case
runs. We rewrite the defining equations in terms of canonical coordinates of the second
kind as products of the flows of the vector fields f, g, [f, g], and [g, If, g]]. Since in
this case

(14) exp (f + g) = exp ([g, [f, g]]/3) exp ([f, g]/2) exp (g) exp (f),

we get, for instance, for ro,:

0 exp (t,(f+g)) exp (t2 f) exp (t 3(f+g))

= 0 exp ((ftf4[g, (f, g1]) exp (24[f, g]) exp (tg) exp ((I, + 12)f))

x exp (t'[g, [f, g]J) exp (It'[f, g]) exp ( 3g) exp (t3f)

= 0 exp (((t, + t3)
3 + 1213.( +2113 ))[g, If, g]]) exp (01(t. + 13)2+ 11)[f, gJ)

. ---------------- x exp ((, + t3)g) exp (f).

Analogously we have for r-o,:

0 exp (sl(f-g)) exp (si) exp (s 3(f+ g))

0 exp ((Is, S S+ 2 -s2s2 s3)0g, [f g]])
x exp ((- 'sl + s + (s, + s)s,)[f g])exp ((s - s,)g) exp (f).

A simple computation shows that the equations we obtain by equating the coordin-

ates have no positive solution. Similarly this is shown for all pairs of surfaces. The
statements about the intersections are then clear. 0

This shows that r, is a two-dimensional stratified set with its one-dimensional

relative boundary ar, made out of bang-bang trajectories with at most one switching.

Figure 4 gives a precise description of the stratification. We now show that the points
on F. are, in fact, the points that have the smallest x3 coordinate among all points of
Reach (0, 1) with a fixed (x,, x., x2 ).
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Let us first compute the tangent spaces to the surfaces r.... Note that in each
case the' pullback of the tangent space to the endpoint of the singular arc simply
consists of the space spanned by the vectors g and [f g] evaluated there (remember
that we are working in the time slice T = 1). This implies that [X, [X, Y]] = 2[g, [gf]]
always points to one side of the tangent space. In fact,

exp (-t ad (f±g))g A exp (-t ad (f±g))[f, g] A[g, [f, g]]- l(g A Ef g] A [g,[f, g]]).

In the limit this also holds for the one-dimensional strata. Therefore [g, [g,f]] always
points to one side of the stratified surface 7.. It is easy to see that, in fact, we can
think of F. as the graph of a piecewise defined function x3 = qi(x, x.,). (The projections
of the images onto (x,, x,) intersect only along the projections of the intersections of
the surfaces ro,) Since we have exhausted all possible extremal trajectories that can
minimize the coordinate x3 with r, it is now clear that given M, k, 3 ) E r. any
other point (x,, x 2 , x 3 )E Reach (0, 1) with x, = fi1 and x, = i, must satisfy x3 > R3 . This
concludes the analysis of F,.

Next we will determine V*. Here we can assume A3= -1 and so A1=u, i.e., the
switching function (0 is convex when 4 is negative and concave when b is positive.
This clearly suggests bang-bang extremals. However, now the situation is significantly
different from all previous cases: it will turn out that the times along bang arcs are no

--.-... ..-... .. longer free, which in turn will mean that we cannot a priori exclude bang-bang
trajectories with a large number of switchings. In general, it is a very difficult problem
to eliminate extremal trajectories with a large number of switchings (cf. [4] or [16]).
It turns out that in our approach we do not even have to address this issue.

Let us start by showing that the times along bang arcs can no longer vary freely.
Suppose we have a concatenation of a Y-trajectory followed by an X-arc with switchings
at the beginning and the end (.XY.). Call the switching points Po, Pi, and P2 and let
s and I be the times along X and Y, respectively. Then Po, P,, and P2 are conjugate

points and therefore

0=exp(-sad X)YAX A YAexp(t ad Y)X

=(exp (-sad X)- ) YAX Y(exp(t ad Y)- I)X

(15)=XA YA[X, Y1+s[g,[f,g]]A[Y,X]-t[g,[fg]]

=(s- t)(XA YA[X, Y]A A[g, [f, g]]).

Hence s-= t and the same is true for a - YX-concatenatiou. Therefore, so as not to
violate the Maximum Principle, and since we do not expect any degeneracies in the

structure of the reachable set, we restrict ourselves to the following two surfaces:

= (0 exp (sX) exp (s2 Y) exp (s 3 X): Si 2 0, s1 + s 2 + s 3 = 1, sl -s 2 , s5 -s 2 },

F ={0 exp (1, Y) exp ( t,X) exp (t.3 Y): t, - 0, t, + t, + t, = t', I I':_5l<< I'..

Our aim is to build F* out of trajectories from F and F-. However, as they are at the
moment, we still have too many extremal trajectories. The surfaces V- and F have a
nontrivial intersection j. To see this let us rewrite the defining maps in terms of
canonical coordinates as follows:

0 exp (sX) exp (s 2 Y) exp (s3X)= 0 exp (ss,(s2 - s1)[g, [f, g]]) exp (ss2[X, Y])

x exp (s2 Y) exp ((s, + s)X),
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0 exp (1, Y) exp (rX) exp (i. Y) =0 exp (t.t,(2t, - r, + 1,)[g, [J g]]) exp (t2t[X, Y])

xexp ((t, + t3) Y) exp (tX).

If we equate the coordinates, it follows easily that s, = 1,, s, = 1,, and s. = t,. It follows

that I"* and V- also intersect along the one-dimensional curve

-={0 exp (sX) exp ( Y/2) exp ((-s)X): 0 s: 5

We need to analyze the intersection more closely. Let

q =0exp (sX) exp (s,Y) exp (sX)E 9.
Then the tangent space to [' at q is spanned by (recall that s,= I - s,-s)

exp (-s, ad X) exp (-s, ad Y)X - X = s,([X, Y] + (2s - s.)[g, [f g]]),

exp (-s. ad X) Y - X = 2g - s[X, YJ - s2[g, [f g]].

The point q also lies on f' and a tangent vector to P* at q is

t = exp (-t3 ad Y)X - Y = -2g + t.[X, Y] - rt[g, [f, g]].

In the intersection S= s,= s, ,= and s3= -s. Thus

Tq I = A(2g A [X, Y] A rg, [fg]])

where

I S_1 _(S 1)21
A= .0 1 2-2s =2s(s- 1 )50

-1 S _S2

Hence -and t+ intersect transversally except at the endpoints of j (s=0, s=2).
Observe that.the endpoints are characterized by the condition that the conjugate point
relation s = I (= 2) holds. We need to know which surface has a larger x3-coordinate.

It follows from

TqF- A [g, [gf] -2g A [X, Y] A [g, [f, g]]

that I and [g, [g,f]] point to the same side of F- at q. Observe that x, = 0 for points
on 9. Since the coefficient of I at g is negative, the points of f' for which x, < 0 have
a larger x 3-coordinate than those points on r. Conversely for x, > 0 the x 3-coordinate
of points on r- is larger. Therefore we define

F:= {Oexp(sX)exp(s 2 Y)exp(s 3X): si-0, st+s 2 +s 3 = Is2> 2,

F:= {Oexp(t, Y)exp(t 2X) exp (t 3 Y): ti '0, t1 +t 2 +t = t2>t}.

Observe that F- has the Y-trajectory in its boundary and that the X-trajectory lies in
the boundary of r" .Define r*:= r- ur. It follows from above that (X, (X, Y]] =

2[g, [g,f]] always points to one side of F-, and similarly this holds for 1"*. Since x, _- 0
for points in r-, x, < 0 for points in F and x, = 0 exactly on the intersection, it follows
that F* is a piecewise defined function x1 = 4(x,, x 2).

It is obvious that 3F* consists of all tra,.ctories that are bang-bang with at most
one switching, i.e., ar* =ar, Graphically, the structure is illustrated in Fig. 5.

By directional convexity it is clear that the whole set R between F, and r* lies
in Reach (0, 1). We need to show that it lies nowhere else. The points of f and F
that we deleted lie in the interior of R. (We delcted those points on ' , respectively,
"- that lie below P-, respectively, ' in the direction of [X, [X, Y]].) But this implies
that the endpoints of bang-bang trajectories with more than two switchings lie in the
ioterior of the reachable set. Suppose we have an extremal XYXY-trajectory with
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YX

xY
-- +

Fic. 5

times sl, s,, s3, and s4 along the trajectories. Then s'=s3 by the conjugate point
relation, and thus s2 < st + s3. By the invariance of the structure of the reachable set
it follows that 0 exp (sX) exp (s, Y) exp (s3X) r int Reach (0, s1 + s1 + s 3). (This is a
point of the type we deleted!) Hence the trajectories that define r" and r- are the
only extremal trajectories that can lie on the boundary of the reachable set. This proves
R = Reach (0, 1).

... . ........ .. Summary. For every time r the time -t- reachable set is a stratified set that is
topologically a sphere. Its boundary consists of two hemispheres r*(t) and 1,(t) whose
common relative boundary aF*() consists of all points reachable in time t by a
bang-bang trajectory with at most one switch. F*(t) consists of all bang-bang trajectories
with at most two switchings for which the time along the intermediate arc is greater
than or equal to the sum of the times of the adjacent arcs. r.(t) consists of all trajectories
that are concatenations of a bang arc, followed by a singular arc and another bang
arc, where the times along these trajectories are free subject to 0 - time I. The
stratification of its boundary is given in Figs. 4 and 5.

4.2.2. The general case. We now show that the qualitative structure of the small-
time reachable set does not change in the general case. Clearly, some of the arguments
will have to be adjusted; for instance, the correct generalization of the arguments using
directional convexity now use the integral curves of [X, [X, Y]]. However, finding a
general version for the explicit computations in the analysis of the bang-bang extremal
trajectories is crucial.

We first define r,. Recall that the singular control is given in feedback form as
u = (8 +1)/(8- 1) and since 8 <0 we have no problems with u hitting the control

.- constraint lul = I in small time. Let p =/(1 - 8), pc (0, 1), and let S:=
f+(8+ 1)/(8- 1)g =pX +(I-p) Y, be the singular vector field. Define

r-,-:= (p exp (sX) exp (s,S) exp (sIX): s, 0, small},
r -,.:= {p exp (s, X) exp (s.S) exp (s, Y): s, 0, small},

F_, =(p exp (r Y) exp(t,S) exp (tX): ,=0, small},

F,:= [ p exp (t, Y) exp (tS) exp (t Y): 1, 0, small),
r, := r-, -u r_,.- uF.,- u r,,...

If we replace f by S in Lemma 3, then the statement stays true verbatim for I,,,
instead of r,,,,. (The computations are a straightforward though somewhat messy
extension of the computation in the "free" nilpotent case and we omit them.) So again
r, is a stratified two-dimensional surface; its one-dimensional relative boundary aF,
is made out of the bang-bang trajectories with at most one switching.
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LEM MA 4. For sufficiently small T the points on F, are entry points of Reach (p, :_ T)
for LX, [X, Y]I.

Proof The strategy is the same as in the proof of Lemma 2. We first show that
the extremals on r, satisfy the necessary transversality condition for entry points
(which are not due to the time constraint). Then we show that r, actually is a graph
with the coefficient of the flow of [X, [X, Y]] as dependent variable. As in Lemma 2
this suffices to prove our result.

If y is any trajectory containing a singular arc then, for sufficiently small time,
(A, [X, [X, Y]]) will dominate (A, X), (A, Y), and (A, [X, Y]), in particular, it has
constant sign. Along the singular arc (A, iX, IX, Y]])= 28/(1 -8) (A, [g, [X, Yfl) and
the generalized Legendre-Clebsch condition implies that (A, [X, [X, Y]]) is positive.
This shows that points in F, satisfy the necessary transversality condition. An argument
analogous to the one made in the proof of Lemma I shows that, in fact, any extremal
trajectory for which (A, [X, [X, Y]]) is positive has to be of the form BSB, that is, we
have exhausted all possible candidates. To prove that indeed each point on r, has
the entry property, we show again that we can think of F, as the graph of a piecewise
defined function x3 = (x, x 1 , x2), where (xo, X1 , x 2 , x 3) are canonical coordinates of
the second kind, and x3 is the coefficient at the flow of (X, [X, Y]]. Let us consider,
for instance, r+,-. It is easier to compute the pullback of the ta. -.ent space to the
endpoint of the singular arc. It is spanned by X, S, and exp (-t 2 ad S)X. Note that
S = pX + (1 + p) Y and it follows by induction that ad" S(X) = a,,X + , Y + yv[X, Y]
with smooth functions a., , y.:

[S, ad"-' S(X)]=[pX+(l-p)Y, a,_X+3,_Y+3",_,[X, Y]]

= y._,(p[X, [X, Y]]+(I -p)[ Y[X, Y]])+f, g or (f. g] terms

=p(aX+3Y+3[X, Y]).

Also [S, X] =[pX+(1-p)Y, X] =2L,(p)g+(p-)[X, Y]. Therefore

X ASA exp (-t 2 ad S)X = (I-p) 2 t2(1+O(t 2)) -(faga[X, Y]).

Now if we take the wedge-product with [X, [X, Y]] pulled back along X, t3 this yields

X A S A exp (- 2 ad S)X A exp (t3 ad X)([X, [X, Y]])

=(I-p) 2 t2(0 +O(T)) • (f A g A[f,g]A[X,[X, Y]])

and there are no problems'with dominance since t2 factors. Hence [X, [X, Y]] always

points to one side of 17, in the interior. Analogously it follows for the other surfaces.
. .By continuity this also follows for the one-dimensional strata. Straightforward but

slightly more tedious computations show also that the projections of the relative
interiors of the sets r.,. onto (X0 , x,, x 2)-space are pairwise disjoint. Therefore r, is
a graph in canonical coordinates. This proves the lemma. 0

The analysis of the bang-bang extremals is more difficult. We start by computing
the conjugate point relations. Suppose y is a -XYX. -concatenation starting at p with
junctions at p, pl, p 2, p, and times s,, s,, s3 along the respective trajectories. Then we
have (the vector fields are evaluated at p,):

S-s exp(s,ad Y)- I

I
(16) =XA YA[X, Y]-s[X, [X, Y]+ O(s)A -[X, Y]-2s[Y,[X, Y]]+O(s)

= .(s,, s,)(X A YA [X, Y] A Y, [X, Y]])I,

where o'(sl, s2 ) -s 18 -s 2+ 0(2).
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The equation &(s,,s 2)=0 has a unique solution i7(s2) and in general XYX-
trajectories only satisfy the necessary conditions of the Maximum Principle ifs, 5 T,(s,).
Note that o-(0, s,)< 0 and so this is equivalent to .q(s,, s,)-g 0. (Using an argument
analogous to (9) it can be shown that extremal trajectories do indeed have switchings
at s, =T, but we will not need this.) Furthermore,

(exp (-s,-ad Y)- xp)
0= X(p, A Y(p2) A (^ Pl)

A (exp (s, ad X) -1) Y(P 3)

=X A YA-X, Y]+ Y, [X, Y]] +..A[X, Y] +-SAX, [X, Y]+ .
2 ' '2

= (s,, s)(X A Y A [X, Y] A [ Y, [X, Y]])I,

where (s2, s) = - S38 + O(T 2
).

Again the equation 6(s2, s3) = 0 can be solved by 3(s2), and YXY-concatenations
only satisfy the Maximum Principle if s3 -1(s 2). Since &(s2,0)< 0 this is equivalent
to j(s., s0-0.

Therefore we define

= {p exp (sX) exp (s2 Y) exp (s3X): s -_0, small, S2 is free,
9'(S', IS_)- -_ 0, (s_,, SO) !< 01.

Analogously we must compute the conjugate point relations along a -YXY--concatena-
tion which yields

p exp (it Y) exp (1 2X) exp (13 Y): t, - 0, small t2 is free,

1(t 2) O"* t S_ i(t2)iU(2, t3)"*3 O T1001':~t)

where

1.(, 12) = tl - 128 + O(T2), '(12, 3) = -t28 - 3+ 0(T 2
)

and T' and i3 are the solutions of r = 0 and = 0, respectively. f+ and -are three-

dimensional surfaces with relative boundary made up entirely of bang-bang trajectories
with at most one switch.

LEMMA 5. The surfaces f- and F+ intersect along a two-dimensional surface r.
The intersection of t with the relative boundaries aF- and al' are the following

one-dimensional curves:

" = { p exp (sX) exp (s, Y): s2 i 0, small, s, §,(s2)},

y = { p exp (t, Y) exp (12X): 1, _- 0, small, t, -- (t)}

(i.e., the trajectories corresponding to the conjugate points). Away from y and j the surface
entirely lies in the relative interior of t-, respectively, l' and there-the intersection is
transversal.

Proof. We want to solve the equation

(17) p exp (s , X) exp (s02 Y) exp(s 3 X) =p exp (t1 Y) exp (t2X) exp (tY).
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Suppose a point q in the relative interior of F" or P_ lies on F. We claim that (16)
can be solved in terms of 1, and 1, near q. This follows from the Implicit Function
Theorem if the Jacobian with respect to (s1 , s,, s3, 13) is nonsingular at q. If we compute
these derivatives and pull the vectors back along X we get

exp(-s.ad Y)X A YAX Aexp(s.adX)Y

exp (s, a Y) - I) X(exp (sad X) )

=-Ss S 5(s,, s )(X A Y[X, Y] A [ Y, [X, Y]])Ip..por,\ .
2 -

But in int (-) s2 and s3 are positive and also j(s,, s)< 0 since the conjugate point
relation does not hold. So we can solve in terms of t, and t,. This computation shows
also that V' and t- intersect transversally in int (t') or int (t-).

Next we show that points q of this type exist. For that we rewrite both sides of
(17) in terms of canonical coordinates of the second kind. A short computation (cf.,
for instance, [161) shows that

p exp (sIX) exp (s,Y) exp (s 3X).pexp (s 1 s2(s3+s,+O(S2 ))[ Y, [X, Y])

- exp (sts 2(l + O(S))[X, Y])

* exp ((s 2 + 0(S 3)) Y) exp ((s, + s 3 + O(S3 ))X),

pexp (t, Y) exp (tX) exp (t 3Y)=p exp( t2 t3 (2tt+r 3+t 2 8+O(T))[Y, [X, YI])

Sexp (t 2 3 ( + 0(T))[X, YJ)

.exp((tI+1 3 +O(T 3))Y)exp((t,+O(T))X)

where O(S) or O(Tk) stand for terms of order greater than or equal to k in the total
time, S = st + s' + s3, T = t, + t, + t3, and 3 is evaluated at p. Equating coefficients we get

(i) s 1+s3+0(S)=t2 +0(T 3),

(ii) s,+O(S3) = t, + t
3 + O (T),(18)

(iii) sIs.(l + O(S)) = 1213(1+0(T)),

(iv) sts,(s1 8+ s2+ 0(S2)) = t2t3(2+ (3+t28+ O(T 2 )).

If we assume that all switching times are comparable, i.e., of order T, then (18(i), (ii)),
and

(iv') s,8+s,+O(S2 )=2tI+t 3 +t26+O(T - )

can easily be solved for s in terms of t modulo higher-order terms:
1

S1 = t2 + t, + O(T),

(19) s, t, + t, + O(T3),(191

S3 = - t, + O(T).

With these times the conjugate point relations cannot hold since

(20) j(s 2 , sO = -s-s 3 8+(T 2 )= - + O(T')
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is negative. So the corresponding point q lies in fact in the relative interior and therefore
it is possible to solve for t3 in terms of t, and 12:

(21) t3 = -t -8t,+ O(T2 ).

This gives a solution to (18). Note that

(22) t, = T+ O(T-) = TO(
- T).

As long as (t,, t2, 13) are bounded away from the boundary of the simplex
t' + t, + I3 -T, the times are comparable, these computations are justified, and we get
a two-dimensional intersection that we can parametrize by t, and t,. The problem is
whether it extends all the way to the boundary. But the equations (19) and (21) are
well defined for t,-+,0 (in a time-slice t,+1+1= T it follows that t3---,+ Ot),
i.e., to a limit of order T By (20) this implies that the two-dimensional surface defined
by these functions of (t, t2) stays away from the conjugate point condition &(s2 , s3) = 0.
Hence the implicit function theorem is still applicable.) Therefore t extends all the
way out to 11 =0, i.e., to the XY boundary surface.

A precise characterization of F+ f-n {p exp (sX) exp (s2 Y): si a: 0, smalll is
possible. Clearly these are points such that t=0, t2 =s, t 3 =s 2, and 0=sS3 . Since
(st,s 2,0)Edomf- we have o-(s,,s 2):_0, and since (0,s 1,s 2)rdomF we have
"(s,, s,)-0. But in this case .(s, s2)= (sI, s2) (cf. (16) and the analogous formula
for -). Therefore ou(s1,, s,) = 0, i.e., s, = _(s 2), the conjugate point relation.

This proves that I-n fl f extends all the way out to the XY-boundary surface and
that the intersection with the XY-surface is the one-dimensional curve - consisting of
the conjugate points.

Analogously we can show that (17) can also be solved in terms of s, and s2 in
int (f-). Using these formulas we can show that t- n ' extends all the way up to the
YX-boundary surface and that the intersection ofF f- n +with the YX-surface consists
of the curve y. 0

Note that in a time-slice tI + 12 + (3 = T the qualitative geometric structure of[f- U F
is exactly as in the free nilpotent case. Only the condition t2= T/2 is replaced by
it-(1/(1- 8))T (modulo higher terms) which shifts t away from the center. This is
illustrated in Fig. 6.

The surface t bisects fr and - and only one of the two components has the Y-,
respectively, X-trajectory in its boundary. We define r and F to be these components

(6 < -1)
XY

xYXY , XYX
+_+ r ++

FiG. 6
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and let r* = F U r-. It is then clear that F* is a three-dimensional stratified surface
whose relative boundary consists of all bang-bang trajectories with at most one
switching, i.e., f-* =aFr.

LEMMA 6. The points in F* are exit points of the small-time reachable set for
[x, [x, Y]].

Proof It is easy to see (cf. (10)) that, for sufficiently small time, all extremals on
or P' satisfy the necessary transversality condition (A, [X, iX, Y]])< -0.

We show first that the points that we deleted from P- and I' are not exit points
(see Fig. 7). Let

q = p exp (sX) exp (s2 Y) exp (s 3X) = p exp (t Y) exp (I 2X) exp (t1 Y)

be a point in the relative interior of '. - and F' intersect transversally. It follows as
in the proof of Lemma 2 (cf. (11)) that the XYX- and YXY-surfaces are graphs
X4 = 0(xI, x1, x 3) in canonical coordinates of the second kind with x 4 the coefficient
at the flow of CX, [X, Yfl. This inherits on F- and f'. To prove that the parts of f -
(respectively, F ) that we delete are not exit points, it suffices to show that these parts
lie below U' (respectively, -) in direction of iX, [X, Yfl.

X

y 

[x, 
[X 

,Y]

FiG. 7

The tangent space to '- at q is spanned by X, exp(-s 3 adX)Y and
exp (-s 3 ad X)(exp ((-s 2 ad Y) - 1)/-s 2)X. To show that the part of t' that we deleted
lies below r- near q it suffices to show that iX, [X, Y]] and a tangent vector I to I'
that is oriented toward the sector of t" that we deleted point to opposite sides of TF-.
We get such a vector I if we lengthe:, the time along the last Y leg. (We delete the
piece that contains in its boundary the trajectories corresponding to the conjugate
point relation t3 = t3( t).)

Instead of computing at q we pull back all vectors along X, s3 and get

exp (+s3 ad X)(Tqt-) A eXp (+s3 ad X)(X, iX, Y]]

= (X, AYA(exp (-s2 ad Y)-1 X A exp (s, ad X)[X, [ X, Y])

(8+ OT))(X ^ Y ^ [X, Y A[ Y, [X, Y]])IP,-p (,,*.,,
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exp (s 3 ad X)(TF-) A exp (s3 ad X) Y

=s3 (X^ Y^ (exp (-s 2 ad Y)-l)x (exp(s 3 adX)-l)y)

2- s,((S,, s3)(x A Y A [X, YJ A [ Y, [X, Yfl)l,,.

But q is a point in ', and r lies entirely in the relative interior of - except for the
obvious boundary curves " and y. In particular (cf. also the proof of Lemma 5) the
conjugate point relation s3 = 93(s 2) does not hold, or equivalently, &(s2, s3) <0. So
these wedge-products have opposite signs, which proves our claim. This also implies
that the portion of F- that we delete lies below [', and since there is no other intersection
this holds for all the points we deleted.

The stratified sets F* and r, enclose a region R that lies in the small-time reachable
set. In particular, the portions of f- and f' that we deleted therefore lie in the interior
of the reachable set. Since these pieces contain the trajectories corresponding to the
conjugate points t3 = [3(t 2) and s3 = 7(S2), it follows that no bang-bang trajectory with
more than two switchings lies in the boundary of the small-time reachable set. Hence
the points in F* are the only possible exit points of the small-time reachable set for

..- ...... ...... .. [X, [X, Yfl. It follows from the construction of r and r, that r* is also a graph.
Again, the projections onto (xI, x 2, x3)-space are disjoint. Therefore it follows as in
Lemma 2 that the points on r* have the exit property for sufficiently small time. 0l

Finally, F* and r, do not intersect in their. relative interiors. It is now clear how
the small-time reachable set looks: It is the set of points enclosed by the two three-
dimensional stratified surfaces I'* and F,. r* consists of bang-bang trajectories with
at most two switchings such that modulo higher-order terms

(23) t,+ 8t2+ t3 -50

if t1, t2, and t3 are the consecutive times along a YXY arc and

(24) sI8 +s7.+ s35 0

if s, s2, s3 are consecutive times along XYX. r. consists of all concatenations of a
bang arc, followed by a singular arc and another bang arc where the time along the
trajectories is free. r* and r, have a common relative boundary C consisting of all
trajectories that are bang-bang with at most one switching. For sufficiently small-time
T a time-slice of the reachable set has exactly the same qualitative geometric structure

- - . .. . -as for the free nilpotent system (13). Furthermore, if 8(.) is an integral curve of

[X, [X, Y]] such that 3(t) and 8(t2), ti < t2, lie in the small-time reachable set, then
so does the whole curve 8(t), t1;9t9t2. The points on r are entry points for
[X, [X, YJ1; the points on r* are exit points.

Remark We emphasize that the result is not what might be expected intuitively.
From dimensionality we could conjecture the occurrence of bang-bang trajectories
with two switchings, respectively, BSB trajectories in the boundary of the small-time
reachable set. Also, this is essentially what was partially known from earlier results.
However, we see no simple reasoning that could explain why, in fact, some of these
bang-bang trajectories with two switchings are not a part of the boundary. This is only
revealed by our analysis.

4.3. Time-optimal control in dimension three. Our results have immediate implica-
tions on time-optimal control in dimension three. Suppose the triples (g, [f, g], [f+ g,
[f, g]]) and (g, [f, g], [f-g, [f, gi]) consist of independent vectors at a point p in W'.
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Equivalently, suppose that the constant controls u - +I and u m -I are not singular.
if we augment the three-dimensional system Y to a four-dimensional system 5 by
introducing time as a coordinate, i,, = 1, xo(O)= O, i.e.,

f=G). =(g)
then if a Y-trajectory x(-):[0, T]- R 1 steering p to q is time-optimal, the augmented
trajectory i lies in the boundary of the reachable set from p. The augmented system
" satisfies , ar assumptions (A) and (B), and therefore time-optimal trajectories are

bang-bang with at most two switchings or concatenations of a bang-arc, followed by
a singular arc and one more bang arc. Under additional assumptions this result was

obtained earlier by Bressan [4], who studied only trajectories emanating from an
equilibrium point off and by Sussmann [22] and Schdttler [17] who both assumed
in addition also that f, g and [f, g] were independent. Our analysis shows that the

vector field f is irrelevant and we do not have to make any assumptions about it. Our
results are also more precise in the sense that we can exclude the optimality of those
bang-bang trajectories with two switchings that violate (23) (respectively, (24)) in the
bang-bang singular case. We summarize in the following corollary.

COROLLARY. Suppose the vector fields g, [f, g] and [f+ g, [f, g]] are independent
near a reference point p E R 3. Write

[f- g, [f, g]] = ag + b[f, g] + c[f+ g, [f, g]]

and assume that c does not vanish. Then we have in small time:
(i) If c>O, then time-optimal trajectories are bang-bang with at most 2 switches.

(ii) If c < 0, then time-optimal trajectories are bang-bang with at most two switching.
or are concatenations of a bang arc, a singular arc, and another bang arc. Time-optimal
XYX (respectively, YXY) concatenations satisfy modulo higher-order terms

c(s1+s 3)+sZ_ 0 (resp., t+t 3 +ct 2 -O)

where st, s2, s3 (respectively, ti, t2, t 3 ) are the consecutive times along the bang arcs.

5. A brief outlook to higher dimensions. We have outlined a general method to
determine the structure of the small-time reachable sets and proved its effectiveness

in nondegenerate cases in small dimensions. One of the difficulties that will become
more and more prominent in higher dimensions is that the necessary conditions of the
Maximum Principle will not restrict the class of extremal trajectories sufficiently enough
to give the candidates for F* and F,.

Under assumptions (A) and (B) in dimension four, we could overcome this problem
by taking a corresponding "free" nilpotent system of the same dimension as a guide.
We do not expect this to happen in general. In fact, for the five-dimensional system

1, where we assume that f, g, [f, g], [f, [f, g]], and [g, [f, g]] are independent, the

small-time reachable set has extremal trajectories in its boundary that do not appear
in the analogous five-dimensional free nilpotent system. The reason for this lies in a
qualitatively different behavior of the singular controls, specifically, in the fact that

singular controls can now hit the control constraint Jul = I and may have to be
terminated. Nevertheless, the free nilpotent system contains most of the information
about the small-time reachable set, though it does not characterize it completely. To
be more specific, we will briefly describe (without proofs) the structure of the reachable
set for the free nilpotent system in dimension five and how the general case differs
from it.
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We take as our model:

'0 =
1
, x,=u, x2=xl, .e3 =X-, x4=1x2.

It is no problem whatsoever to carry out the analysis within our technique as in the
construction in § 4.2.1. Now the reachable set is convex in direction of (00, 0,0, I )T =

[g, [g,f]] and r*, respectively, F, will consist of those trajectories that are exit,
respectively, entry points.

It follows from the generalized Legendre-Clebsch condition that F. contains
concatenations with singular arcs, whereas F* will consist of bang-bang trajectories
only. Singular controls are constant, but now they can take on any value in [-I, 1].

Let F. = r_ u r, U 17, u r., where

F-.-_:= {0 exp (s,X) exp (s,(f+ ug)) exp (sIX): s, 2> 0, s, + s 2 + s3 = 1, u E [-1, 1]},

etc. (By the invariance property of the reachable set we can restrict to the time-slice
T = 1.) The points on 17 are precisely the ones that minimize the coordinate x,.

For a fixed value uo of the singular control, - 1 < uo < + 1, the qualitative structure
of F.,. = r. restricted to values u = uo is precisely as in 4.2.2, Fig. 4 (see Fig. 8).

For uo = + 1, F_._ r u = I reduces to F_,- and all other strata become trivial whereas
for uo = -I, r... r u = -1 = r+ and the remaining strata are trivial. For each of these
two-dimensional surfaces (uo fixed) the relative boundary consists of all bang-bang
trajectories with at most one switching. The surfaces F .... themselves interpolate
between F_+ for uo= -I and F+, for uo= 1. Topologically F is a stratified sphere

-un+ Yx

FIG. 8

I".x

YXYXY

FIG. 9

XY
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with a[, = r-._U r,-,, i.e., all bang-bang trajectories with at most two switchings

(see Fig. 9).
The surface r* consists of bang-bang trajectories analogous to the bang-bang

singular case in dimension four. Now

'=fO exp (sX) exp(sY)exp(sX)exp (sY): s,-O0, s,+s,+s3 +s,,= ,

s1 : s,, s, s.-conjugate point relations),

= (0 exp(t, Y) exp(t,X) exp 3 Y) exp (14X): O 1, +t,'+t3+t4=1,
t1 !-- 13, 14 :5 t-conjugate point relations).

I and V intersect in a two-dimensional surface 1, which consists of those trajectories

for which

(sI + s3) - (SI + S3) + 2ss 3 = 0,

respectively,

(rt, + 1 3)2 -_ ( t J + t3) + 2t t3 = 0 -

The intersection is transversal except at those points that lie on the relative
boundary of f- or P'. These points are again characterized by the conjugate point

relation

[ - = {0 exp (, Y) exp (t 2X) exp (13 Y) exp (X): tl = 0, t4= t,},

rnr , _ = {0 exp (1, Y) exp (t,X) exp (t3 Y) exp (tX): tl = t3, t' = 01.

We define r- (respectively, F ) as the component of - (1T+) containing the

YX-curve = (0 exp (s 2 Y) exp (s 3X): s, :- 0, s2 + s 3 = 1} (respectively, the XY-curve) in
its boundary. Then r*:= F- U F' consists precisely of those points that maximize x,

on the reachable set. Note that topologically F* also is a stratified sphere with
aF* = r+_u F.,., the set of all bang-bang trajectories with at most two switchings
(see Fig. 10).

The key fact here is that it is still obvious that OF* and aF, match up. They are

identical. It is therefore clear that Reach (0, 1) is the set of all points that lie between
I'* and F.

It is precisely this simple reasoning that breaks down in the general case. The

cause for this lies in the structure of the singular controls. The analysis of the bang-bang

- trajectories carries over to the general case with only one minor change in the structure.
Whereas in the free nilpotent system the two curves n" r.. and Ff r_. both have

points corresponding to the X- and Y-trajectories as endpoints, this need no longer

be true: FI- _ is a curve starting at O exp (I • Y) but which in general no longer
ends in 0exp (I - X) but rather on a point in the XY-curve (respectively, YX-curve).

This distortion is due to the presence of fourth-order brackets. One possible case is

depicted in Fig. 11.
Still the relative boundary of [* consists of all bang-bang trajectories with at most

two switchings. The structure breaks down in the analysis of the singular surface r
for u near ± 1. The reason is that in the presence of fourth-order brackets the singular

controls are no longet constant, and thus the analogue o f r,,,, for uo= -I does not
reduce to F... i.e., to bang-bang trajectories with two switchings. For instance, it

may not be at all possible to st rt a singular control with u0 = -1. This is the case if

i< 0 at uo= -1, which happens under generic assumptions on fourth-order brackets.
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YXY

rY

XY-curve YX-curve

x

to the left of r: YXYX r

to the right of r: XYXY

FIG. 10

{
yiYXY

Y

XY-curve 4 YX.curve

X to the right of : XYXY

to the left of : YXYX

xYx

FIG. 1I

For the same reason, singular controls with uo close to ±1 may have to be terminated
when they become one in absolute value. If the singular control becomes saturated
(i.e., hits the constraint and cannot be continued) then this determines the subsequent
structure of the trajectory and it is easy to see that concatenations such as BSBB or
BBSB, which are not present in the free nilpotent system, come into play. Therefore
r has trajectories in its relative boundary that contain singular arcs. The main challenge
in applying our technique to higher dimensions seems to be finding a way to decide
whether structurally different trajectories, such as a bang-bang trajectory, and a concate-
nation that contains a singular arc steer a system to the same point. Once ar* and ar,
can be identified, it is clear that the set they enclose is the small-time reachable set.

Note, however, that this structural instability only happens near r,.-, and r,.+,.
The structure of most of the trajectories in the boundary is still the same as in the free
nilpotent systems. And it is intuitively clear that the structure of the exceptional
trajectories will come up in a higher-dimensional nilpotent system. Therefore, in our
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view, the study of the structure of the reachable sets for nilpotent systems will be the
key to the general problem.

6. Summary. We have described an approach to determining the qualitative struc-
ture of the small-time reachable set in a nondegenerate situation. It is a novi trial

extension of a construction done by Lobry in dimension three. In dimension foig we
succeed completely in determining the small-time reachable set. For higher dimensions
obstacles still have to be overcome. However, they do not lie in the general structure
of our approach, but in the fact that too little is known about the structure of extremal
trajectories in higher dimensions. For instance, in the five-dimensional case, what is
the precise structure of extremal trajectories that contain a saturated singular arc? For
dimensions six and beyond, the crucial new ingredient appears to be the incorporation
of chattering arcs, another structure of extremal trajectories about which little is still
known.
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1. INTRODUCTION

The close connection between Markov processes, diffusions and parabolic partial

differential equations is of course well-known. In this paper we shall describe the

beginning of a new theory which links reciprocal processes, second order diffusions and

the partial differential equations of fluid mechanics, i.e., the continuity, Euler and

energy balance equations.

2. RECIPROCAL PROCESSES

In the early thirties E. Schr~dinger [2,3] introduced a new class of stochastic processes

in attempt to formalize the stochastic aspects of Quantum Mechanics. This concept was

formalized by S. Bernstein [11 in an address to the International Congress of

Mathematicians in Zurich in 1932. Bernstein defined a reciprocal process x(t) as one
where conditioned on the values x(t 0 ) and x(tl) of the process at two times t o S t1 , the

process exterior to [t0 ,tl] is independent of the process interior to [t0 ,tl]. This is readily

seen to be a generalization of the Markov property, i.e., conditioned on single time t o

the process before t0 is independent of the process after to. Hence every Markov process

is reciprocal but the converse is not true.

The reciprocal property is the specialization to one dimension of P. Levy's definition

of a Markov random field [201. There are two other ways of viewing the reciprocal

property. Suppose x(t) is a random process taking values in Rn and defined for t E [0,T].

We define another process X(t 0 ,tl) = (x(t 0 ),x(tl)) taking values in lR2 n. We view this

process as parametrized by pairs (t 0 ,t 1 ) where t o _ t1 or equivalently by

subintervals (t0 ,tI). Subintervals are partially ordered by inclusion. It is easy to see

*Research supported in part by NSF under DMS-8601635 and AFOSR under NN185-0267.
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that the original process x(t) is reciprocal iff the two time process X(t 0 ,tl) is Markov

relative to this partial ordering.

Alternatively we can view a reciprocal process as being conditionally Markov in the ' £

following sense. Given any t0 E [0,T] and x0 E n, we define a conditioned process

R(t I t 0 ,x0 ) consisting of all sample paths of x(t) satisfying x(t 0 ) = x0 with the

conditional probabilty measure. The process x(t) is said to be conditionally Markov if

every R(tIt 0 ,x 0) is Markov for t E [0,t 0 ] and is also Markov for t E [t0,T]. (It need not

be Markov on [0,T].) It is straightforward to note that a process x(t) is reciprocal iff it

is conditionally Markov.

To essentially specify a stochastic process one must describe all finite dimensional

distributions of the pr6cess, e.g., give the probability distribution of

x(t 0 ),x(t,), ... ,x(tn) where 0 <t1 _... _ tn < T. One reason that Markov processes

are so well-studied is that they are completely determined by only two functions. The

first is p0 (x0 ), the probability density of x(0). (Throughout we assume that probability

densities exist although the discussion can be easily extended using probability

distributions.) The second p(s,x;t,y) is the Markov transition density of x(t) = y given

that x(s) = x. By Bayes' formula the probability density of x(tn) = x1, ... , x(tn)

where 0 < t1 _ t 2 <_... < tn _< T is given by

P(tl,xl, ... , tn,xn) = P0 (x0 ) p(0,x 0;tl,x) ... P(tn,x n-1;tn,x n ) dx0.

A function p(s,x;t,y) is a Markov transition density iff it satisfies the well-known

Chapman-Kolmogorov relations, i.e.,

f p(s,x;t,y) dy =

and

p(s,x;u,z) = fn p(s,x;t,y) p(t,y;u,z) dy

where 0 < s < t < u < T.

There is a similar development for reciprocal process dii.. to Schr6dinger [2] and

Jarnison ['T. A reciprocal process x(t) is completely det,rinined by the joint density

PO,T(X ,x ) of the end points x(O) and x(T) and a rociprocal transition density

q(S.x:t,y;1,z). The latter is the probability density of x(t) = y given that x(s) = x and
x(Ii) = z whler 0 <s < t < u < T. The finite dimensional densities of x(t) are then given

by
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P(tl'xl,... ' t nxn) = f PO,T(x0 ,xT ) q(t 0,x0 ;tl,x1;T,xT )

q(t 1 ,x 1 ;t 2 ,x 2 ;T,x T). . q(tn 1 ,x n - 1 ;tn,xn ;T,x T ) dx 0dx T

To be a reciprocal transition density, q(s,x;t,y;u,z) must satisfy the

Schr6dinger-Jamison relations

f q(s,x;t,y;u,z) dy = 1

and

q(r,w;s,x;u,z) q(s,x;ty;uz) = q(r,w;t,y;u,z) q(r,w;s,x;t,y)

where 0 < r < s < t < u < T and w,x,y,z E Rn.

Suppose x(t) is a reciprocal process and X(t 0 ,tl) is the associated two time process

which is Markov relative to the inclusion partial ordering. One can show that the

Chapman-Kolmogorov relations for the Markov transition density of X(t 0 ,tl) are

equivalent to the Schr6dinger-Jamison relations for the reciprocal transition density of

x(t).

SchrSdinger realized that there is Bayesian way of constructing a reciprocal transition

density q from a Markov transition density p,

q(s,x;t,y;u,z) = p(slx;tly) p(ty;ulz)p(s,x;t,y)

Of course the conditionally Markov property allows one to reverse the process and define

a Markov transition density p from a reciprocal transition density q,

p(s,x;t,y) = q(s,x;t,y;T,x T).

If we start with a reciprocal transition density q, which we use to define a Markov

transition density p which we use to define another reciprocal density Q then by the

second Schr6dinger-Jamison relation, j = q. If we start with a Markov transition

density p which we use to define a reciprocal transition density q which we use to define

another Markov transition density p, it does not follow that P = p.

Schr6dinger used a Markov transition density p to construct reciprocal transition

density q. With this and an end point density P0,T he was able to construct reciprocal

processes. Jamison [6] showed that the resulting reciprocal process is actually Markov

iff the end point density satisfies
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P0 ,T(X ,x) T0 (x ) TT(X T) p(0,x 0;T,x )

for some nonnegative functions Tr0 (x 0) and rT(x T).

Jamison (6] also studied one dimensional stationary Gaussian reciprocal processes.

He showed that covariance r(t) of such a process must satisfy a second order linear

differential equation

d 
2

-- 2 r = a r

where a is a constant. He then used this in an attempt to classify all such processes and

this program was successfully completed by Chay [8] and Carmichael-Masse-
Theodorescu [11].

The author became interested in reciprocal process through his study of acausal linear

systems [14] driven by white noise and satisfying independent random boundary

conditions of the form

dx = A(t) x dt + B(t) dw

v = V0 x(0) + V1 x(t).

Here x(t) is an n dimensional Gaussian process, w(t) is a standard n dimensional Wiener
process and v is an n dimensional random vector independent of w(t). We assume that
the above boundary value problem is well-posed so that the Green's matrix r(t,s)
exists. We can express the solution of the stochastic differential equation as

x(t) = (tO) v + fT r(t,s) B(s) dw(s)

where the integral is a Wiener integral and §(t,s) is the fundamental matrix solution of

* = Ax. We have normalized so that V0 + V1 4'(T,0) = I.

We have proved [14] that the solution of such a stochastic boundary value problem is
a reciprocal process and we speculated that every Gaussian reciprocal process is the
solution of such a stochastic boundary value problem. This conjecture was motivated by
the fact that every Gaussian Markov process is the solution of a stochastic initial value
problem, i.e., V0 = I and V1 = 0. This conjecture is not true and this led us to discover
a theory of reciprocal diffusions and stochastic differential equations of second order.

3. Diffusions

We recall the Feller postulates for a Markov diffusion x(t). First some notation, let
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x" denote the transpose of a n dimensional column vector x and x. the outer product of,2+
x with itself x = xx*, this is n x n matrix. The forward difference operator d+ is

defined by

d x(t;dt) = x(t+dt) - x(t)

where dt > 0 is a small positive quantity. Typically we suppress arguments as in d +x.
Conditional expectation given that x(t) = x is denoted by

Ex(t) (-)= E(-.I x(t) =x)

The symbol O(dt)k denotes a function of x,t and dt for which there exist c,b>O such
that if dt < b then I O(dt) I < c dtk for all x . gn and t c (0,T). The symbol o(dt)k

denotes function of x,t and dt which for every c > 0 there exists a 6 > 0 such that if
dt < bthen I o(dt)k < c dt k.

A Markov process x(t) is a Markov diffusion if there exists n x 1 and n x m valued

functions f(x,t) and g(x,t) such that

(MD1) Prob { x(t+dt) -xI > c I x(t) = x} = O(dt)

(MD2) Ex(t) (d+x) = f(x,t) dt + o(dt)

(MD3) Ex(t) (d+x)*2 = (g(x,t)) . 2 dt + o(dt)

(MD4) Third and higher centered conditional moments of dx vanish like o(dt).

The interpertation of these postulates is that conditioned on x(t) = x, the forward
increment d+x of the process has a mean value approximately equal to f dt and variance

approximately equal to g* 2 dt. In other words x(t) is mean differential but the
individual sample paths are not for they have an extremely large standard deviation

O(dt)l/ 2 .

Frtm these postulates one can deduce that the density p(x,t) of x(t) satisfies the

Fokker-Plank equation

+ (pfi) N-- (P gikgjk ) = 0-

Moreover using the Ito stochastic integral we can realize x(t) as the solution of the
stochastic differential equation

d + x = f(x,t) dt + g(x,t) d + w

x(O) = x
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We now sketch out the foundations of a parallel theory of reciprocal diffusions that

we have recently developed. More details can be found in [21]. We need some more

notation. We define the centered average, centered first difference and centered second

difference as

x(t;dt) = X(t+dt) + x(t-dt)

dx(t;dt) = x(t+dt) 2 x(t-dt)

d2 x(t;dt) = x(t+dt) -2 x(t) + x(t-dt)

Frequently we suppress argument as in R(t) or dx. We also introduce another

conditional expectation operation

E (t) ()=E ( R (tdt) =x)

A reciprocal process x(t) is a reciprocal diffusion if there exists n x 1 valued functions

f(x,t) and u(x,t), n x n valued functions g(x,t) and r(x,t) and n x m valued function

h(x,t) such that

(RD1) Prob { Ix(t) -xI > c I R(t;dt) = x } = O(dt)

(RD2) Ex(t) (dx) = u(x,t) dt + o(dt)

(RD3) ER(t) (d2 x) = (f(x,t) + g(x,t) u(x,t)) dt 2 + o(dt)2

(RD4) ER(t) (dx)* 2 = (h(xt))*2 dt + r(xt) dt 2 + o(dt) 2

.... (RD5) E (t) (d 2x)* 2 
- 2 (h(x,t))* 2 dt + o(dt) 2

(RD6) E (t) (d 2x dx*) = 1 g(x,t)(h(x,t)) . 2 dt2 + o(dt) 2

(RD7) Third and higher joint centered conditional moments of dx and d2 x vanish like

o(dt)
2

Basically these postulates assert that the first and second joint conditional moments

of dx and d2 x exist and have the indicated expansions in power series in dt. They define

the coefficients f,g,h,u and r of the power series and they imply certain relation between

these coefficients. These definitions and relations are as follows:

(i) The dt part of RD2 defines u.
(ii) The dt 2 part of RD3 defines f + g u.

(iii) The dt and dt2 parts of RD4 defines h* 2 and r.

(iv) The dt2 part of RD6 defines g h.2 .
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(v) The dt part of RD3 vanishes.

(vi) The dt 2 part of RD5 vanishes and the dt part is four times the dt part of RD4.

Any process satisfying (RD1-6) is called a second order diffusion.

We refer to u as the mean velocity, p u as the mean momentum, f + g u as the mean

acceleration, h as the noise coefficient and p r as the mean momentum flux of the

process x(t). A related quantity p a = p(u u* - r) is called the stress tensor. The

reason for the terminology will become apparent in a moment.

A reciprocal diffusion satisfying RD1-7 is said to be a solution of the second order

stochastic differential equation.

d 2x = f(x,t) dt 2 + g(x,t) dx dt + h(x,t) d2 w

where w(t) is a standard m dimensional Wiener process. This is a (partial) mnemonic

for the above portulates. In particular applying ER(t) (.) we obtain RD3 from RD2

under the assumption that d 2w is independent of R(t). Applying E () to (d 2x) 2

yields RD5. Finally RD6 follows from applying ER(t) (.) to d2 x dx* using RD4.

To get a feeling for these axioms it is convenient to introduce another conditional

expectation

nx(t+dt) (.) = E ( I x(tidt) = xv dt )

Suppose x(t) is a reciprocal diffusion which also satisfies the stronger conditions.

(RD3*) Ex(t :dt) (d2 x) = (f(x,t) + g(x,t) v) dt 2 + o(dt) 2

(RD4*) Ex(t~dt) (d2 x)*2 = 2(h(x,t))*2 dt + o(dt)2

(RD6) ER(t) (d2x dx*) =I g(x,t)(h(x,t))*2 dt2

+ f(x,t) u(x,t)* + g(x,t) (x,t) dt 3 + o(dt)3

Then x(t) is called a strongly reciprocal diffusion.

Conditioned on x(t~dt) = x~v dt the mean sample path of the process over the time

interval [t-dt, t+dt] traces out a parabola in (t,x) space passing through (t~dt, x * v dt)

and with second derivative equal to f(x,t) + g(x,t) v. Ience the mean path deviates
2from the straight line between (tmdt, x±v dt) by O(dt) . Compared to this, the

standard deviation of sample paths from the mean path is very large, O(dt) 1 / 2

Conditioning on R(t;dt) = x rather than x(t) = x is crucial to the above development.

Even for very nice processes, such as an Ornstein Uhlenbeck process, the quantity
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Ex(t) (d2 x) is O(dt) rather than O(dt) 2 . In the stochastic mechanics of Nelson [18] the

dt part of this quantity is twice the osmotic velocity. Nelson's current velocity, the dt

part of Ex(t) (dx) is generally equal to our mean velocity u(x,t) from (RD2).

The first question that comes to mind is "Are there any reciprocal diffusions?". In

[21] we showed that answer is decidely yes. In particular we showed that any reciprocal

Gaussian process with smooth covariance R(t,s) satisfying certain technical conditions is

a strongly reciprocal diffusion. This includes such Markov processes. For a Gaussian

reciprocal process the second order stochastic differential is linear of the form

d2 x = F(t) x dt 2 + G(t) dx dt + H(t) d2 w

where

f~x~t) F02R (t,t) - G(t) W -t (t,t) x
f(x,t) = F(t) x r R=e

g~~t Gt)(~t -a- (t,t) aR(t,t) 81 (t,t)

(h(x,t))* 2  .(H(t))* 2  OR- (t,t) 0R (t,t)J

*2
The principle technical conditions are that R(t,t) = I and H(t) is invertible. The other

quantities u(x,t) and r(x,t) are given by

u'x,t) I atlx (t,t) + aR (t,t) x

r(x,t) = u(x,t) u*(x,t) - a(x,t)

a(x,t) = - 1 (t,t) + d (tt) + U(t) U*(t).

All of the above evaluations are at s = t-

Suppose x(t) is Gaussian process and a solution of the first order stochastic boundary

value problem

dx = A(t) x dt + B(t) dw

v = VO x(O) + VI x(t)
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in the sense defined above using the Green's matrix. Assume R(t,t) = I and B(t) is

invertible. Then x(t) is a reciprocal diffusion satisfying the second order linear

stochastic differential equation above with

H(t) = B(t)

G(t) =- (A2 (t) - A* 2 (t) + A(t) - A*(t)) (B(t) B*(t)) 1

F(t) = A2 (t) + A(t) - G(t) A(t).

Because of the complexity of these relations, it is possible for a process to satisfy a

relatively simple first order equation and a relatively complicated second order equation

or vice versa. The latter is the case for the Brownian Bridge or pinned Wiener process
x(t) which satisfies the first order equation

d+x = -1xdt + d+w

x(O) = 0

and the second order equation

d2x = d2 w

x(0) = x(1) = 0.

The density p of a Markov diffusion satisfies the Fokker-Plank equation. For a

strongly reciprocal diffusion the density p, mean momentum p u and mean momentum

flux p r satisfy at least in a weak sense a system of hyperbolic conservation laws similar

to the continuity, Euler and kinetic energy balance equations of fluid mechanics. They

are

0 a
k

(P ui ) = + g u) i  rik)

and

S(P rij) = P(f u + uf* + gr + rg*)ij

- (+ (u i lj )u - ij Uk - ik uj - jk i))
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with summation on repeated indices understood. A second order or reciprocal diffusion
need only satisfy the first two of these equations.

Suppose we consider a volume with boundary in x-space. If we integrate p over this
volume we obtain the probability measure of the volume. The first equation states that

the time rate of change of the probability of the volume is equal to the flux of particles
through the boundary due to the mean velocity.

If we integrate p u over the volume, we obtain the total momentum in the volume.
The second equation states that the time rate of change of momentum in the volume is
equal to the forces acting on the particles in the volume plus the net flux of momentum
through the boundary.

If we integrate p r over the volume we obtain the total momentum flux in the
volume. Physically this is somewhat hard to comprehend but for smooth processes the

contraction 2 p ri is the kinetic energy. Hence we view I p rij as a tensor form of

kinetic energy. More precisely, if Ai is a constant n vector then the scalar valued

process z(t) = Aixi(t) has kinetic energy equal to 2 p 7r. AiA. With this interpertation
prii i

the third equation states that time rate of change of tensor kinetic energy in the volume

is equal to the mean work done on the particles in the volume by the force d 2x/dt 2

acting through the distance dx plus the flux of tensor kinetic energy through the surface
of the volume. This flux is due to mean tensor kinetic energy p ui uj (called internal

energy) transported by mean velocity uk, random tensor kinetic energy - p'2P aij

transported by mean velocity uk and mixed random/mean kinetic energy transported by

random velocity. The latter represented by the last two terms of the flux are usually
described as viscosity or stress terms in fluid dynamics. They represent the transport of
energy due to random jumps of particles between regions of differing mean velocity.

The third equation expresses kinetic energy balance at the standard time scale, i.e.,
the dt 2 part of E,(t) (dx)* 2 . There is also a form of energy at a fast time scale, i.e., the

dt part E,(t) (dx)* 2. We call this hyperkinetic energy and its balance is described by

another conservation law

(phh*)ij- (g h h*+hh* g)ij

-9 (p (h h)ij~k
k

which is also satisfied by se, -i order diffusions.

Notice that the first three equations can be viewed independently of this last. We
chose the name "hyperkinetic" to suggest a hyperkinetic child sitting at his school desk
whose endless fidgeting is to no net effect (except possibly on his teacher).



Reciprocal Processes, SDE's and PDE's 589

In [21] we formally derived the four conservation laws from the postulates of a

strongly reciprocal diffusion. Although they can be thought of in physical terms, they

are not cons2quences of physical principles or assumptions. We verified that these

conservation laws are satisfied by the reciprocal Gaussian processes discussed above.
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We develop a theory of second order diffusion processes and associated stochastic
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1. RECIPROCAL DIFFUSIONS

One of the most beautiful parts of modern mathematics is the rich
and wonderful interplay between Markov diffusion processes, linear
parabolic partial differential equations and stochastic differential
equations of first order. We shall describe the foundations of a
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parallel theory involving reciprocal diffusion processes, nonlinear
conservation laws and stochastic differential equations of second
order.

Let (i, Y, Pr) be a probability triple consisting of a sample space
fl, a-algebra of events F and probability measure Pr. Let E denote
expectation with respect to Pr. Throughout we let x(t) denote a
stochastic process over this triple defined for t E [0, T] and taking
values in R"" '. We assume that

T

ES Ix(t)12 dt< oo.

Given 05to t<T, let 9-(to,tl), 9(to,t) and .V(to,tl) be the a*
subalgebras of Y generated by x(t) interior to, exterior to and on
the boundary of the interval defined by to and tj. In other words

.- (to, t1 ) = a{x(t): t e [to, t1]}

61(to,t I) = a {x(t): t E [0, to] u [t I, T])

(to, t1) = a {X(to), x(t 1 )}.

We denote by .5-(to, t,), I(to, t1 ) and 4(to, t1 ) the space of square
integrable random variables which are measurable with respect to
9'(to,tl), 9(t o, tj) and R(to,t) respectively.

The concept of a reciprocal process was introduced by Bernstein
[1] following ideas of Schr6dinger [2, 3]. A process x(t) is reciprocal
if on every subinterval of [0, T], the interior and exterior are
conditional independent given the boundary. More precisely, if
d#e (to, 1 ) and tOkE(to,t,) then

We refer the reader to [4-17] for more detailed discussions of
reciprocal processes. The have also been called quasi Markov or
Bernstein processes. They are closely related to conditionally Markov
processes. Following Schr6dinger's original motivation and Nelson's
stochastic mechanics, Zambrini [20-22] has related reciprocal
processes to quantum mechanics.
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It follows immediately from the definition that Markov processes
are reciprocal but not vice versa [5].

To define reciprocal diffusions we must introduce some notation.
Given a process x(t) and a small time increment dt>O, define the
centered average evaluation Tc, centered first difference dx and
centered second difference d2 x as

9(t; di) x(t + dt) + x(t -dt)
2

x(t+dt)-x(t-dt)
2

d2x(t; dr) = x(t + dt) - 2x(t) + x(t - dr).

Frequently when the context is clear we suppress the argument dt as
in i(t), or both t and dt as in dx. We also have the forward d'x and
backward d-x first differences

d + x(t; dt) = x(t + dt) - x(t)

d x(t; dt) = x(t) - x(t - di).

In contrast to the standard conditional expectation of Markov
theory,

Ex(') = Ex(r)() = E(. x(t) = x)

we shall utilize

Ex.) = Ej(1d1)(') = I (t; dt) = x)

and occasionally the stronger conditioning

Ee. d,(') = E,(, dt)(.) = E(- I x(t + dt) = x ± v dt)

= E( " I(t; dt) = x, dx(t; dr) = v dt).
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We now give the second order analogs of the Feller postulates for
a first order diffusion. A stochastic process x(t) is a second order
diffusion if there exist functions fl(x, t), g1ix, t), ha(x, t), uAx, t) for
i, = l,..., m such that

E,4dxi) = u, x, t) dt + o(dt)(.la

Eedxi dxj) 1 hik(x, t)hjk(x, t) dt + x%{x, t) dt2 + o(dt)2  (1.1 b)

E4 d2x,) = (f£x, t) +gijx, t)ujx, t)) dt2 + o(dt)2  (1. 1c)

Exd 2x1 d x1 ) = 2hk(x, t)hji(x, t) dt + o(dt)2  (1.1d)

Ee(d 2 xi dx1 ) = Igik(x, t)hil(x, t)hjz(x, t) dt2 + o(dt)2  (1. le)

The higher conditional moments of dx and d2 x agree
to the lowest nonzero powers of dt with those of
Gaussians with the above first and second moments. (1.1f)

In the above we have utilized the summation convention. Con-
ditioned on 5(t;dt)=x for fixed x,t, the expression o(dt)k is a
deterministic quantity y(dt;x,t) which vanishes faster than dtk as
dt-+O uniformly in x and t. In other words for every e>0 there exist
6> 0 such that Iy(dt; x, t)I < e dt' for all dt < 6, x e R and t e (0, 7). We
denote by 0(dt)k a quantity y(dt;x,t) for which there exist e,6>0
such that Iy(dt;x,t)l<sdtk if dt < 6.

If x(t) is both a reciprocal process and a second order diffusion
then we say it is a reciprocal diffusion.

A stochastic process x(t) satisfies the second order stochastic
differential equation

d2x= f(x, t) dt 2 + g(x, t) dx dt + h(x, t) d w (1.2)

where w(t) is a standard m dimensional Wiener process if x(t) is a
reciprocal diffusion satisfying (l.la-0. Actually (1.2) is a mnemonic
description of (1.1) in the same way that the first order stochastic
differential equation

d+x=f(x,t)dt+h(x,t)d+w (1.3)

is a mnemonic for the axioms of a first order diffusion.
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Ex(d + x) = f,4x, t) dt + o(dt) (1.4a)

Ex(d + x d + x j) = h=k(x, t)hjk(x, t) dt + o(dt) (1.4b)

all higher centered conditional moments of dx vanish
like o(dt). (1.4c)

In particular (1.lc) asserts that conditional mean acceleration
equals f +gu where u is the conditional mean velocity given by
(1.1a). Note the difference between the conditional expectations in
(1.2) and (1.4). Conditioning on f(t; dt)=x is an essential part of the
second order stochastic calculus. If we were to condition on x(t)=x,
we would find that generally Ex(d2x) is order dt rather than dt2 . In
fact it is precisely this conditioning which distinguishes our work
from that of Nelson [18] and Zambrini [20-22]. In Nelson's
stochastic mechanics the order dt part of E(dx) is a vector field
v(x, t) called the current velocity while the order dt part of 1/2Ex(d2 x)
is another vector field u(x, t) called the osmotic velocity. In our work
the order dt part of E.(dx) is a vector field u(x, t) called the
conditional mean velocity. For a Gaussian process with a smooth
covariance, Nelson's current velocity equals our conditional mean
velocity and we suspect that this is true whenever both exist. On the
other hand in our theory E.(d 2x) is postulated to be of order dt 2.
Hence the coefficient of dt 2 can be viewed as an acceleration. For
this reason it differs from Nelson's osmotic velocity. Zambrini's work
also uses the Nelson framework.

We call the n x 1 vector field u(x, t) the mean velocity. The density
of x(t) is denoted by p(x, t). The n x n tensor field p(x, t) 7r(x, t) is
called the momentum flux tensor. A related n x n tensor field, p(x, t)
ar1 x, t) = p(x, t)(u,4x, t) ulx, t) - nij~x, t)), is called the stress tensor. The
reason for these names will become apparent in Section Four.

Formulas (1.1,2) suggest that the random parts of dx and d2x
conditioned on :(t;dt)=x are given by

dx = dx - Ex-dx) = dx - u(x, t) dt

d2 x = d2x - E-(d 2x) =g(x, t)dx + h(x, t) d2w.

We use x* denote the transpose of x and x* 2 to denote the
symmetric square or outer product, x*2 =xx*.

STO(H F,



1

398 A. J. KRENER

Note that u(x,t) and n(x,t) from (1.1) do not appear explicitly in
(1.2). As we shall see in Section 4, this is because these quantities and
the density p(x,t) satisfy a system of nonlinear conservation laws
determined by f, g and h. This system of four first order partial
differential equations is very similar to the equations of fluid and
continuum mechanics. They express conservation of probability,
balance of momentum and balance of a tensor form of work in two
time scales. They replace the familiar Fokker-Planck equation for a
first order diffusion (1.3,4).

Equations (1.la--e) assert that the conditional moments of dx and
d2x can be expanded in powers of dt as shown. These formulas give
names to the coefficients. The only constraints on the coefficients are
found by comparing (1.1b, d and e). Equation (1.1a) asserts that the
conditional mean velocity exists and gives it a name u(x, t). Equation
(1.1b) describes the variance of dx. The order dt part arises from the
fluctuation of the second difference d2w (t; dt) of the Wiener process
that appears in (1.2). The factors of 1/2 and 2 in the dt part of
(1.1 b, d) are explained by

E,-(dw) . 2 = I dt

Exd 2w) 2 = 21 dt.

The second order part r dt 2 of (1.1 b) has a deterministic contribution
u *2 dt 2 from (1.1a) and a stochastic contribution -o adt2 =

(It -u* 2) dt2 from the noise throughout [0, T].
The immediate question that arises is "Are there any second order

or reciprocal diffusions?". We answer this in the affirmative in the
next section by showing that under mild technical assumptions
Gaussian processes with smooth covariances are second order dif-
fusions, and Gaussian reciprocal processes with smooth covariances
are reciprocal diffusions. Of course the latter includes Gauss-Markov
processes. We derive explicit formulas for the quantities appearing
in (1.1) in terms of the covariance matrix of the process.

In Section Three we explore how second order diffusions trans-
form under change of variables and in Section Four we derive the
conservation and balance laws which are described above. In Section
5 we verify that Gaussian reciprocal processes of Section 2 satisfy

these laws.
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2. RECIPROCAL AND GAUSSIAN PROCESSES

Let x(t) be a Gaussian process defined on [0, T] and taking values
in R" X" For convenience we assume x(t) is zero mean and we
denote by R(t,s) its covariance matrix,

E(x(t)) =0

E(x(t)x*(s)) = R(t, s).

We shall assume that R(t,s) is a smooth (CI) function of t,s in the
triangle 0 <s! t< T and the limits of R and its partial derivatives
exist and are continuous on the closed triangle. Because
R(t,s)=R*(s,t) we need only consider R in this triangle.

We shall also assume that

R(t, t) = I (2.1a)

I R*(t + z, t-)] is nonsingular for small T >0 (2.1b)LR(t + T, t - ) I I

aR aR*'OR~t +-O-R*t t) <0. (2. 1 c)
at as

All evaluations of R and its partials at t = s are limits of values in the
interior of the triangle 0_5s<_t<_T Notice that (2.1a) is merely a
normalization assuming R(t,t) is invertible. Moreover (2.1c) essen-
tially implies (2.1a,b) holds for almost all t.

In [15] we showed that any stationary reciprocal Gaussian
process satisfying (2.1) has a C' covariance in the above sense and
moreover the covariance R(t-s)=R(t,s) satisfies a pair of second
order matrix differential equations

,K=G +FR (2.2a)

K* = - GA * + FR*. (2.2b)

We now extend this to the nonstationary case. We refer the reader
to [14, 15] for full details.
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Let 0_< s <t < T then by the Gaussian and reciprocal properties
the covariance R(t, s) satisfies for r >0 sufficiently small

R(t,s)=[R(t,t-T)R(t,t+T)] IR(t ,t-r) It-)

x R(t -+r, s) ] .  (2.3)

We define K,(t, T) in the obvious fashion so that this becomes

R(t,s)=[Kj(t, T)K 2(t,)] ER(t - T,s)

We differentiate this twice with respect to T to obtain

0 [K (t,r)K2(t, T] 2R(t+T,s )

+2 -K, (tT) t ( t ) 1t
[IK .9K(t T I R)t+TS

-at _J

F9 2Kt 82K2  1FR(t-+T,s)

By (2.1) and arguments similar to those of [15] we verify that the
limits of K(t,z), a/OTK(t,r) and (l/a) 2 K(t,T) exist as T-*O. In particu-
lar Kt,0)= I and so we obtain for all 0< s<t<T

a2 R(t, s) = G(t) OR (t, s) + F(t)R(t, s) (2.4)

where
GK (t, )- K 2 (t, O)

G(t) -21 (,0- (,) (2.5a)
aT aT
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/a2KI a2 K

But notice in our derivation of (2.4) we did not use the fact that
t>s, we only used the fact that tc-(t-T,t+r) and s4(t-r,t+r).
Hence (2.4) must also hold for 0 <t < s !T Since R(t, s) =R*(s, t) we
conclude that for 0 < t< s<!T

a2  R

at2 s t) = G(t) a- (s, t) + F(t)R*(s,t)

By interchanfing the symbols tand s, we see that for 0 < s < t: T

02 *ts)= G(s O * ts) +F(s) R *(t, s) (2.6)

By continuity (2.4) and (2.6) must hold for 0 s t: T We also
obtain alternative formulas for G(t) and F(t), namely

G~t a R(t t -a 2R* (t taR (,t R t ) (.a

a2 R aR 02 R* aR*
F(t) = at2 (t, t) - G(t) -(t, t) = s2 (t, t) - G(t) -- (t, t) (2.7b)

We define H(t)H*(t) by

H(t) H*(t) OR- (t, 0) - as- (t, t)) (2.7c)

We have proved

THEOREM 2.1 Let x(t) be a zero mean Gaussian reciprocal process
with smooth covariance R(t,s) satisfying (2.1). Then R(t,s) satisfies the
matrix differential equations (2.4) and (2.6) on 0 ! s:!r T where F(t)
and G(t) are given by (2.7a, b).

Every Gauss-Markov process x(t) with a smooth covariance is an
Ornstein-Uhlenbeck process, i.e., a solution of a first order linear
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stochastic differential equation of the form

d+x=F(t)xdt+H(t)d w.

The next theorem shows that every Gaussian reciprocal process x(t)
with smooth covariance satisfying (2.1) is a solution of a second
order linear stochastic differential equation

d2x = F(t)x dt 2 + G(t) dx dt + H(t) d2w.

THEOREM 2.2 Let x(t) be a Gaussian process with smooth covariance
R(t, s) satisfying (2.1). Then x(t) is a second order diffusion. If x(t) is
also reciprocal then it is a reciprocal diffusion. In either case
f(x, t) = F(t)x, g(x, t) = G(t) and h(x, t) = H(t) of (2.7) and u(x, t), nr(x, t)
are given by

u(x, t) = U(t)x (2.8a)

1 (OR ( R* (

(t,) t))a a (2.8b)

r(x, t) = u(x, t)u*(x, t) - a(x, t) (2.8c)

1 0 02R 02R* \O~x, t) = (t) =- -- s(t, t) + (t, t)) +U(t) U*(t). (2.8d)

Proof The proof of this theorem is a straightforward exercise in
computing conditional expectations of Gaussian random variables.
We shall sketch the details.

By assumption (2.1)

E(x(t))*2 = R(t, t) = I (2.9a)

so

0OR aR
0 - (t, t) + - (t, t) (2.9b)

at a
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and

02R a 2 R a 2 R
0= (t, t) + 2 - (t,i) (t, t). (2.9c)

at at as as2 t ).(.c

In particular (2.9b) insures that HH* (2.7a) is symmetric and U(t)
(2.8b) is skew symmetric.

Next

E(dx(t))* 2 = 1(R(t + dt, t + dt) - R(t + dt, t - dt)

- R*(t + dt, t - dt) + R(t - dt, t - dt))

By Taylor series expansion and (2.9) we obtain

E~dx t))2 1I OR (t t)_OR* (t ))\

1+ 2R a2R *  t)\dt +o(dt)2 . (2.10a)

2 atas at as

In a similar fashion we obtain

E((t))*2 =I+ (OR (t, t) + OR(t,t) dt +o(dt) (2.lOb)

E(d = -2 ( (t, t) - O*-(t,t) dt+o(dt) 2  (2.1Oc)

t as"

E(dx(t) (t)*) I ( (t, t) + aRs (t,t) dt +o(dt) (2.1Od)

1 f' 2R 2R

(d(t, t)2 2(t't)) dt2 +o(dt) 2  (2. 1e)

1/(a2R _____ (\ ,
E(d 2X( t) dx(t)* )  ( 2 R (t, t)- as*(t, t) dt 2

2 k tT - as-2
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1 i-R __ *_ dt3 +o(d, ) 3 . (2.1Of)
+2 as at2( t)+j a?)s

Therefore we obtain

E, 4dx) = E(dxk(t)*)(E( T(t))* 2) - I X

1/SRt R \
= -(tt)+ (tt) xdt + o(dt)

2 \at as J

= U(t)x dt + o(dt) (2.11 a)

and in a similar fashion

E d 2x) = I 2 (t, t) + - (t')dt 2 +o(dt) 2

= (F(t) + G(t) U(t))x dt 2 + o(dt)2. (2.11 b)

One can also show that

Efd.(d2x) =(F(t)x + G(t)v) dt2 + o(dt)2 . (2.1 Ic)

To obtain the conditional second moments of dx and d2x, we
utilize the particular property of Gaussian random variables that the
conditional variance is independent of the conditioning and so

E,-(dx - Ex(dx)) . 2 = E(dx - Ex4dx)) . 2.

Hence

E.4dx) 2 = E(dx)* 2 +(Exdx))* 2 - E(E,.dx))*2

1 a (t't) - a -s (t't) ( +a2 R_(t?_t) + a2-Rs (t, t))

+ U(t)(xx* - I) U*(t)) dt 2 + o(dt)2
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= H(t)H*(t) dt + n(x, t) dt2 + o(dt)2. (2.12a)

In a similar fashion we conclude that

E.,4d2x)* 2 = E(d2x)* 2 + (E.,( d2x))* 2 -E(E,_d 2x))*2

= 2H(t)*2 dt + o(dt)2  (2.12b)

E,.,dX(d 2 x)* 2 = 2H(t)*2 dt + o(dt)2  (2.12c)

and

Ed 2x dX*) = E(d 2x dx*) + E.(d 2x)(E,4dx))*

- E(E,(d2x)(E.(dx))*)

1/0 2R a 2R * t"= - t) -s2  (t, t)) dt
2  as2

I / OR t 3R *

+ 2 -at 2  t s (t, t)

+ (F(t) + G(t) U(t))(xx* - I) U*(t)) dt3 + o(dt)3

= G(t)H(t)H(t)* dt2 +o(dt) 2. (2.12d)

If x(t) reciprocal then by utilizing the sum of partials of (2.4) and
(2.6) with respect to s and t respectively we obtain

Ex-(d2x dx*)= G(t)H(t)H*(t) dt 2

+ ((F(t) + G(t) U(t))xx* U*(t)

- G(t)a(t)) dt 3 +o(dt) 3. (2.12e)

Of course (1.1f) follows from the Gaussian assumption. Q.E.D.

It is enlightening to apply the above formulas to particular classes
of reciprocal processes. For example suppose x(t) is a stationary
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Gauss-Markov process satisfying (2.1) with covariance
R(t,s)=R(t-s). It is well-known that R(t)=exp(At) where the
spectrum of A lies in the open left half of the complex plane and that
x(t) satisfies on [0. oo] the first order stochastic differential equation

d+x=Axdt+Bd+w (2.13a)

x(0) - N(0, I) (2.13b)

where w(t) is an n dimensional standard Wiener process independent
of x(0) and the fluctuation-dissipation relation is satisfied,

A + A* + BB* =0. (2.13c)

By the above discussion this process also satisfies the second order
stochastic differential equation

d2x=Fxdt2 +Gdxdt+Hd2w (2.14a)

where

F=A 2 - GA (2.14b)

G= -(A 2 - A* 2)(HH*) f- (2.14c)

HH* = BB*. (2.14d)

Moreover

U= (A - A*) (2.15a)

=(A 2 + A* 2) + UU*. (2.15b)

The stationary Gaussian reciprocal one dimensional processes
have been completely classified [7,8, 11]. See also [15]. The covar-
iance R(t) must satisfy (2.2) which in the case of scalars reduces to

k=FR.

There are three cases F > 0, F =0 and F < 0. If F >0 there are after
various normalizations only 3 possibilities.
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L.a) Ornstein-Uhlenbeck Process: R(t)=e-', t>0, which satisfies
the second order equation.

d2x=xdt2+i/2d2w x(O)'- N(O, 1)

and U = 0, a = 1. Of course this is also Markov and satisfies the first
order equation

d+x= -xdt+f/2d+w.

.b) Cosh Process: R(t) =cosh (I- t)/cosh for 0 < t < 1 which
satisfies

d2x=xdt2 + /2tanh-d 2w x(O)=x(1)- N(O, 1)

and U = 0, a= 1. This process is not Markov but it does have a
realization by a stochastic differential equation with an independent
boundary condition [ 15].

1.c) Sinh Process: R(t) = sinh (-t)/sinh for 0 < t < 1 which
satisfies

d2x=xdt2 + ,2 coth I d w x(O)= -x(1) - N(0, 1)

and U = 0, a= 1. Again this is not Markov but can be realized by a
stochastic differential equation with an independent boundary con-
dition [15].

2) Slepian Process [4]: R(t) = 1 - 2t for 0 < t _< 1 which satisfies

d2x = 2 d2w

x(O)= -x(1)-N(O, 1)

and U=O, a=0. This is not Markov and again has a stochastic
boundary realization [15].

3.a) Cosine Process: R(t) = cos t for - oo <t < oo which satisfies

d 2X= -xdt' x(0)= -x~t),-N(O, 1)
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and U=0, a= -1. This is not Markov but the sample paths are
completely determined by x(t 1 ), x(0 2) where tl-t2 is not a multiple
of 7T.

3.b) Shifted Cosine Process: R(t) = cos (t + r)/cos r for 0 < t 7r- 2T.
To be a covariance, T must satisfy 0 __< r/2. The process x(t)
satisfies

d 2x= -xdt 2 + 2tanTd 2w x(0)- -x(7r-2)-- N(0, 1)

and U = 0, a= 1. This process is not Markov and cannot be realized
by a scalar first order stochastic differential equation with initial or
boundary condition.

We close this section with another interesting example. The
Brownian bridge or pinned Wiener process x(t) is obtained from a
standard Wiener process by conditioning that x(0)=x(l)=0.
Another representation is x(t)=w(t)-tw(1) where w(t) is a standard
Wiener process. This is a zero mean Gauss-Markov process with
covariance R(t, s) = s(1 - t) for 0 < s < t_< 1. It satisfies the first order
differential equation

d+x=-x dt+d~w x(0)=0
(1 t)

and also satisfies the second order differential equation

d 2x=d2w x(0)=x(1) =0.

Note that this is essentially the same differential equation as that of
the Slepian Process.

3. CHANGE OF VARIABLES

In this section we develop some formulas that we shall need in the
next. Suppose x(t) is a second order diffusion satisfying (1.1) and
(1.2). Let O(x,t),O/(x,t) be C' scalar valued functions and define

= 4x(t), t) iq(t)= O/(x(t),t). We compute the centered mean, first
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difference and second difference of 0(t) using the identities

d 2 X(t) = 2(x(t) - x(t)). (3. 1 b)
Now

2

1 a24
() ((t), t) + - !-(.i(t), t) dxi dxj + O(dx) 4 + O(dt )2. (.a

2 axiaJxj (.a

The symbols O(dx)4 and O(dt)2 denote quantities that go to zero as
fast as Idx 14 and dt2 respectively. Next

do- (t + dt) - 0(t - dt) + o(i(t), t) - 4o(i), t)
d.62 +2

By a similar Taylor expansion we obtain

do = ao(i(t), t) dxi + -o (k(t), t) dt

a 3x g) t

03(_qt, )dx dxj dXk
6 ex x x

4 CxiOx a -dx dxj dt

41 a3 od(qt) dx t
2~ a~ia2d d

* -- _a5 004t), t) -dxdxj dXkdxl dx .
120e~ 0X, x aXk ax, aXm,

*+O(dx)6+O(dx)40(dt) +O(dx) 2 0(dt)2I±O(d& ) (3.2b)
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and

- (. (t), t) d~x + 040t,0 dx dx--d xid2)

+2 2 (g(t), t) dxi dt + 2(R(t), t) dt2

at axi

+I a34.(t), t) 1Xd2 X
24 a X ax,, dOxk d ~

I 4 (( t), t) /1d d d d '

1 - 4 ~~tt dxi dxjdx, dt
3 axi axj ax,, at

+1920 axi Ox axk axl aX x ~~~, ~,d

+ O(d 2X)6 + O(dx)6 + O(dx)4 O(dt) + O(dx)2 O(dt)2 + O(dt)3 (3.2c)

Hence it follows from (1.1) that

E~( t) =O Ia2phik h 1 ,dt +o(dt) (3.3a)
4 a~x xj

E(d)=-u~dt+ aodt +o(dt) (3.3b)
Ox1 ' at

Ex4d~k --4fi + g,juj) dt
ax,

_2_ t2 020 t2+_2_ )

+ ax, ax d Th +2  uid 2a~dt2 +o(dt) (3.3c)
a~ia~kat axj

E.4dqS dof) = ao Do 'Ah,,h, dt + in. .dt 2 ) + a' *dt 2 + o(dt)2 (3.3d)
ax, ax, at at
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E.-(d 2 0 d20/) = 2 -xo a -h i hj " dt + o(dt)2  (3.3e)
ax. ax.

1 t~q O~ ~th~j t
E.4 d 2 0p d) = - gikhkrh, dt2 + - Ukhirhjr dt'

2 ax, Dxj ax

a245 00 t )2+ -hh ,dt 2 +o(dt) 2 . (3.3f)
at aXi axj

The right sides of the above are evaluated at (.c(t),t)=(x, t). Note
that these are not in the form of (1.1) in that the mean differences of
0(t) are conditioned by i(t) rather than t(t).

4. CONSERVATION LAWS

Suppose x(t) is a Markov diffusion satisfying the first order stochas-
tic differential equation.

d+x=f dt+hd+w. (4.1)

The probability density p(x,t) of x(t) satisfies the Fokker-Planck
equation,

a 1 a
p (phikhjk) = 0. (4.2)at ax, 2 axi axj

This is a second order parabolic partial differential equation.
Suppose x(t) is a strongly reciprocal diffusion satisfying the second

order stochastic differential equation.

d2x = f dt 2 +g dx dt + h d2w (4.3)

then we shall demonstrate that the density p(x, t), mean velocity
u(x, t) and momentum flux tensor pir(x, t) satisfy, at least in the weak
sense, a system of conservation laws, very similar to those of
continuum mechanics,

at a =a
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(pu) = P(f + gikUk) - (rik) (4.4b)
PXk

(ph.,hjr) = (gikhklhjl +gJkhklhi) - (PUkhiahj )" (4.4c)

In addition we shall show in Section 5 that at least for the

reciprocal Gaussian processes of Section 2 an additional conser-
vation condition must hold

a
i- (P7iJ) = P(fiuJ + ujfi + gikiTkJ + nikgjk)

- _- (p(uiujUk - JijUk - ri- k_ u1)). (4.4d)
aXk

Since ais=ujuj-7tr1, (4.4a, b,d) appear to be a complete set of

equations for the unknowns p, u, n in terms of f and g in the

Gaussian case. But, we doubt that (4.4d) holds for all reciprocal
diffusions.

Before we derive these equations, let's take a look at their
meaning. Equation (4.4a) express the conservation of probability
under the mean flow described by u. This corresponds to conser-
vation of mass in continuum mechanics. A similar equation relates

the density and current velocity of Nelson [18].
Equation [4.4b) expresses the balance of momentum pu. If we

integrate the left side over a volume in x-space we obtain the time
rate of change of momentum within the volume. The integral of the
right side of (4.4b) has contributions from two sources. The first

integral involving p(fi--g ,iku) is the change of momentum due to the
mean acceleration of the particles inside the volume, the random
acceleration produces no net change of momentum. The integral of
the second term over the volume can be converted to a surface
integral over its boundary by Stokes' Theorem. The integral over the
surface bounding the volume of PHik contracted with outward unit
normal is the total flux through the boundary. Recall the definition
(1.1b) of irij as the dt2 part of E,4dxidxj). This tensor has a
deterministic and a random component, pntij=pujuj--pajj and each
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contributes to the momentum flux. Notice that the order dt part of
E,4dxidxj) in (1.lb) does not contribute anything to the momentum
flux. Intuitively this is because these changes are so fast and so
random, they cannot transport momentum.

In continuum mechanics the contraction 'p ni describes the
density of kinetic energy. This has two parts, the first 1puju due to
deterministic part of the velocity and the other -(p/2)tT due to the
random part. The latter is frequently called the internal energy
density.

The tensor 2ptir describes the density of kinetic energy in every
component of the x process. If , is a constant n vector then the
scalar valued process z(t) = ix(x) has kinetic energy density given by
prij .)j. For this reason we call Pnj the tensor kinetic energy.

There is an alternative definition of ntij as E,(d'xjd-xj+
d+xjd-xi)=rijd2 +o(dt) 2 which reduces to the standard one for
smooth process. Based on this and Eq. (4.4c) which we discuss in a
moment, we define the kinetic energy density to be (p/2)nj,. This
definition of kinetic energy is similar in spirit but different from that
of Guerra-Morato [19]. It is interesting to note that some of the
examples of Section 2 have negative or zero kinetic energy. For the
Ornstein-Uhlenbeck, Cosh and Sinh process, n =- 1, and for the
Slepian process n=0. The Brownian bridge has both negative and
positive kinetic energy depending on x and t.

Equation (4.4d), which may hold only for Gaussian processes, is a
tensor form of the balance of kinetic energy and work. In other
words Eq. (4.4d) expresses the balance of kinetic energy and work
for every scalar process z(t) =,Ajxj(t). The momentum flux
or tensor kinetic energy is (p/2 )ni, the dt2 part of (p/2)E.,(dxjdxi).
The tensor part of the rate of work done or power is the dt2 part of
(p/2)E.(d2xjdxj+d2 xjdxj) which explains the first term on the right
side of (4.4c). The second, flux term represents the flow of tensor
kinetic energy across the boundary of the volume under consider-
ation. This flux has contributions both from the deterministic and
random parts of the motion. The first term UjUjUk represents the flux
due to strictly deterftiinistic motion, the others due to a mix of
deterministic and stochastic motion. In continuum mechanics,
(p/ 2)au is the flux of internal energy and PaikUi is the flux of energy
due to viscosity or stress. In our stochastic model, (p/2)OrUk is the
flux of random kinetic energy transported by the mean velocity and
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ParkUi is the flux of energy due to the random motion of particles
between regions of differing mean velocity.

But (4.4d) only expresses a balance between tensor kinetic energy
and tensor work terms of size dt 2 . The quantities involved also have
terms of size dt and the balance of these is expressed by (4.4d). We
view phihj,/4 as the tensor form of the hyperkinetic energy due to
hypervelocity part of dx, namely, x=O(dt)2. The tensor
(p/ 2 )(gikhkhj,+gkhkhi,) is the hyperpower and (p/ 2 )hi,hUk is the flux
tensor of hyperkinetic energy. Of course this extra equation leads to
an overdetermined system of equations for p, u, and 7r but if we
consider hh, as an unknown also, this problem disappears. An
interesting question which we don't address is that of boundary
and/or initial conditions for (4.4).

In particular, (4.4c) implies that we cannot find processes satisfying
the second order stochastic differential equation (1.2) for arbitrary
choices of f, g and h. Notice that if h is constant in x and t, (4.4c)
and (4.4a) imply that the tensor field g(x, t) is skew-symmetric
relative to the symmetric tensor field h*2(x,t), i.e.,

ghh* + hh*g* = 0. (4.5)

We shall derive Eqs. (4.4a, b,c) using no a priori assumptions of
conserved quantities. Rather they shall follow from basic mathemati-
cal facts. We warn the reader that our derivation is somewhat
formal, we shall interchange limiting operations, neglect small quan-
tities, etc. In the next section we shall verify that the reciprocal
Gaussian diffusions treated in Section 2 satisfy (4.4a, b,c) and also
(4.4d).

Before we start we list some basic formlulas about centered
differences that will be useful. Let x(t), y(t) be n-dimensional
processes defined on [0, T]. Suppose 0 < zo < T 1 < T and t, = To +
(r- )dt, 1t+ d. Then

N
Edx(t,; dt) = (zT;dt/2) - (To; dt/2) (4.6a)

Sd2x(t,; dt) = 2(dx(t l; dt/2) -dx( o;dt/2)) (4.6b)
r=1
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d(xy*)(t; dt) = .,(t; dt) dy*(t; dt) + dx(t; dt)9*(t; dt) (4.6c)

d~c(t; dt) =T(t; dt) = -L dx(t; 2 dt) (4.6d)

d(dx)(t, dt) = 1 d 2 x(t; 2 dt) (4.6e)

d(dx dy*)(t; dt) = I(dx(t; 2 dt) d 2 y*(t; 2 dt)

+ d 2 X(t; 2 dt) dy*(t; 2 dt)). (4.6f)

Let x(t) be a second order diffusion satisfying (l.la-f) with density
p(x, t), mean velocity u(x, t), momentum flux p(x, t) .7r(x, t) and stress
p(x, t) o(x, t). We assume that as l -+ xo, p goes to zero faster than
every rational function of l uniformly for all t e [0, TF]. We also
assume that Jul, 17H and Jul are bounded above by some polynomial
in lxi for all t c- [0, TF]. Let 4(x, t) be a smooth scalar valued function
also bounded in norm by a polynomial in l and suppose 0~(t, x)
vanishes off some closed subinterval of (r0, ,rj. Finally we assume
that density fi(x, t, dt) of 5c(t; dt) converges to the density p(x, t) of x(t)
as dt-eO.

Using (4.6a) we have

N N

0=E E dob(t7; dt) = EE Ex~d4o(tr; dt))
r=1 I

We employ (3.3b) and let dt-*0O to obtain

0= f ff( Uk" p dtdx
JJ\Xk at)

Integration by parts yields a weak form of (4.4b),

t axi
JJ\fo(9 t ak/

In similar fashion (4.6b) yields

1 N 0 0

0= Ey d-, t EZ E,-(dtr; dt))dt =, rbt, t dt 4
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We employ (3.3c) and let dt-+0 to obtain

0=19 'U ) -- ir1i+2 8 8ui± 8 2 J ptdx.

Integrating by parts yields

011 i giu) a (P1)- -(P PU.-- +pu '+- dt dx.

By (4.4a) this reduces to a weak form of (4.4b),

Finally we start with (4.6f) applied to 4), which we sum and divide
by dt to obtain

1 N2
0=8d EZ d24)(r; 2 dt) do(r,; 2 di)

8d ~ ZE4d2 )(r7; 2 dt) d4(Ty2 d)).

So by (3.3f)

O=EL ax1, ax. ghkfhjldt + a20 8xi, jh uh h dt

+ - -hihjr dt+ o(dt). (4.7)

As dt-.0O we obtain

CC/a20 00 824) 84) 824)84)0 h~ pdtdx
f j I gjh~rhjr+ )xx hhjr+ t-x xjr)~~~p
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We symmetrize this with respect to i and j,

o0=- lff - -x x (gikhkrhj + gjkhkrhi,)
= ffQ (1 10"

+ af (o a4) )Ukhirhjr + a hihr p dt dxaxk ai axiat (ax. ax)

and integrate by parts

0=- Ii - I -- (gikhkrhjr +gjkhkrhr)2 ax axjff1 ax"I (

a a
(PUkhirhr)~ ( phih ,)) dt dx

OXk at

which we recognize as a weak form of (4.4c).

5. RECIPROCAL AND GAUSSIAN PROCESSES
REVISITED

In this section we verify that the Gaussian (reciprocal Gaussian)
processes discussed in Section 2 satisfy the three (four) conservation
laws of Section 4. Let x(t) be a Gaussian process with smooth
covariance R(t,s) satisfying (2.1), (2.4) and (2.6) where F(t), G(t) and
H(t) are defined by (2.7) and u(x,t), ir(x, t) and a(x, t) by (2.8). Since
R(t,t)=1 (2.1a),

p(x, t) =(27r)- 2 exp - -lxi 2

which satisfies

ap=0  (5.1a)

at

apa -pxk (5. 1 b)a~xk

consider the conservation of probability (4.4a)

l II (,
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- + (pU Jxj) = 0. (5.2)
at a.k

By (5.1) and (2.8) this reduces to

P(Xk Ujxj + Ukk) = 0

which holds since U is skew symmetric.

Next we return to the balance of momentum

a pUijxj =p(Fi +Gi, U,)xj - a~ (p rik)" 53a a(53)

The left hand side is

d + Rij + + Rdt aa 2 at2  aOSata OS 8S

All evaluations of R and its partials are always at t =s. It is
straightforward to verify that

d
- Uij= [F+ GU]ij-aij+ [UU*]ij (5.4)

where [-]ij denotes the i-j entry of the enclosed matrix. Hence the
left side of (5.3) equals

p[F+GU-u+ UU*]ijx j .

The right side equals

C
p [F + GU]jjxj + pXk([UXX*U - a]ik) - p -- [Uxx*U*]ik

= p[F + GU]ijxj- pGikXk

+ p[Ux],4(x*U*x) - p[Ux],Ukk- p[UU]ixj



RECIPROCAL DIFFUSIONS 419

which equals the left side by the skew symmetry of U.
Next we verify (4.4d) for reciprocal Gaussian processes. In this

case (4.4d) becomes

aa pit 1=p[Fxx*U*+Uxx*F* +G7r+7rG*]ij
at

a
p (UiUj mUkXXmXI - GijUkrXraXk

-ikUjrX,- UjkUirXr). (5.5)

It is convenient to break up each side of this equation inmu terms
that are time varying multiples of p and terms that are time varying
multiples of pxx*, there are no others. We refer to these as constant
and quadratic terms.

On the left side, the constant terms are

p- [ a sR a3 R a 3R *  a3R * ] [dUU*

By (2.4) (2.6) this equals

P _/2R + a2(R* + a2R *)G*
+F\ Or _)+(a -R + -sJ2 a a atas a~ a Rs a t a

+ F(a*+aR +- a*F*I
( at as! at as_PLd UU*1j

By (2.8b,d) and (5.4) this equals

p[G[UU* -a) +(UU* - a)G* + FU* + UF*]

-p[(F+GU+UU*-a)U*+ U(F+GU+ UU*-a)*]ij

=p [(U - G)a + a(U - G)*],j
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which equals the constant terms on the right side of (5.5).
The quadratic terms on the left side of (5.5) are

d
p d (Uxx*U*)i = p[(F+GU-a+ UU*)xx*U*

dt

+ Uxx*(F+GU -+ UU*)]11

On the right side (5.5) the quadratic terms are

p[(F+GU)xx*U*+ Uxx*(F+GU)*]ij

+ PXk UkkgX[UXX* U*]ij - PXk( Uik U jrXr + Ujk UirXr)

-p[UUxx*U* + Uxx*U*U*]i1

- pUkk[UXX* U*]ij

=p[(F+GU-a+ UU*)xx*U*

+ Uxx*(F+GU-a+UU*)*Ii

as desired to prove (5.5).
Finally we verify (4.4c) for Gaussian processes which reduces to

(pHH*) = (GHH* + HH*G*) - (pUk,x,)HH*. (5.6)
at

By (5.2) this becomes

d
HH* = (GHH* + HH*G*).

dt

By (2.7c) the left side equals

(a2 R a2 R a2R* 02R*at as at as a

Since R(t, t) = I, d2/dt 2R = 0 and so
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1 a2R a2R 1 02 R
2 2w + -  = Ot - 2 -~ 2

t as as'at

I (a2R a2 R a2 R* 02R*

which equals the right by (2.7,a,c).

6. CONCLUSION

We have described a theory of stochastic differential equations of
second order and have demonstrated that the theory is not vacuous,
it includes the reciprocal Gaussian processes which satisfy some mild
assumptions. We have also demonstrated that the density, mean
velocity and momentum flux obey a system of nonlinear conser-
vation laws similar to those of continuum mechanics.

Obviously considerable work remains to be done including the
following.

1) A theory of stochastic integration for second order stochastic
differential equations.

2) Further study of nonlinear second order stochastic differential
equations and non-Gaussian reciprocal processes.

3) Possible applications in statistical mechanics, continuum and
fluid mechanics and quantum stochastic mechanics.
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APPROXIMATE NORMAL FORMS OF NONLINEAR SYSTEMS*

Arthur J. Krener, Sinan Karahan, Mont Hubbard
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Abstract A first degree approximation by a linear system is the (161, Krener investigated an approximate linearization considering
standard approach for treating most nonlinear systems. Exact
transformation of certain nonlinear systems into linear systems is the second and higher degree terms in the truncated series
possible under nonlinear state feedback and coordinate change, as expansion of a the vector field, and proved a weakened version of
shown by Jakubzcyk and Respondek 113] and Hunt and Su [10].
The approximation of nonlinear systems to higher degrees by the Hunt-Su linearization condition. In [171, further results in an
linear systems has been treated in (16] and recently in (171. In this attempt to solve for the resulting transformations were presented.
paper, we develop a method of solution to find such higher degree
approximations by reducing the linearization problem into the An application for nonlinear observers also appeared in [4].
solution of a set of linear equations. We suggest a solution that, in The objectives of this paper are to: 1).Present a solution to
some sense, minimizes the error in the approximation, the approximate linearization problem, 2) Suggest a method to

solve the Homological equations to minimize the error in the
1. Introduction

In the analysis of scientific and engineering systems, one often approximation in some sense. For further work see [141.

encounters situations which do not lend themselves to exact 2. Higher Degree Approximations to Autonomous
solutions by conventional methods. The assumption of linearity in Systems: Normal Form Theorem
most control system models, for example, is an oversimplification In this section, the normal form theorem of Poincare will be
at best, and it reflects the difficulties one would rather avoid in
dealing with an otherwise nonlinear model. Seldom a technique

system will be formulated later in a similar spirit. As a reminder
can be found to solve a given nonlinear problem exactly. Since ofste c in be ten te in t se te ter

the control system designer is equipped with powerful methods omonc tion ate r Aetol w inu

and tools for attacking linear control systems, the motivation for " mot ustons a A nou sysem

"linearizing" a nonlinear problem is clearly very strong. . L us (ca)

Therefore, whenever possible, a nonlinear control problem x(0) x. (lb)

must be suitably transformed to bring it into an appropriate form wher - % ast t
where x r- P n and the system is assumed to be at rest at the

that enables the implementation of linear control designtehtnabesHoweer the mplematin of linr m caon dsiorigin, i.e. (0) = 0. Without loss of generality we will assume
techniques. However, the systematics of such modifications by= 0. First, consider the linearization of (1) at x':
transformation are usualily not self-evident. The simplest of
these modifications is a first degree linear approximation by x(

calculating a series expansion at a nominal operating point. The F = -(0) (2b)
ax

validity of this approximation depends on the relative size of the We will seek a coordinate change for (1) of the form identity plus
second degree terms. In systems where nonlinearities are strong, higher degree terms, such that the resulting system will agree with
the higher degree terms cannot be neglected, and theapproimaton fils.(!) up to an error of degree 0(x) p~1 where p3 is the degree of

approximation fails.
The earliest example on the question of whether a approximation. The following treatment is for p - 2. The results

nonlinear system can be equivalent to a linear system under some can be easily generalized to any arbitrary degree p by induction.

group of transformations such as change of coordinates was We assume a transformation of the form:

solved by Poincar [19]. Various researchers in (6,8,9.15,20.211 z =x- (2)x (3)
discussed the question of when a nonlinear control system can be where z denotes a new set of coordinates. # (2)X) is a polynomial

transformed into a linear system by a change of state coordinates, of degree 2. The functionftx) in (Ia) is expanded in a series:

Jakubczyk and Respondek (131, and Hunt and Su [10,11,121 f(x) =f ()(x)+f (x)+ O(x) 3

independently considered the full state feedback and coordinate (2) 3(4)

change problem. Related work also appeared in (2,22,23,241. In =Fx +1 f xW + OW(2x)4
hngeprobe.Reated woksapereThe goal of the transformation (3) is to choose # (x) such that in

Supported in part by grant AFOSR-85-0267 z coordinates the dynamics of the system is represented by



,=Fz + O(z)3 (5) assumed. Consider a nonlinear system aff'me in control:

namely the second degree terms in the series expansion (4) vanish . =AX) + g(x)u (14a)
under the coordinate change, We take the time derivative of (3) X(0) = x*. (14b)

and using (1a). (4) and (5) evaluate each side by ignoring O(x) 3  where x e P' and u e (Rm. The system is assumed to be at rest

and higher terms: at the nominal operating point (x'; u" = 0). Again, we will assume

+/()()(2) x(2) ) (x) Fx X = 0. First. consider the linearization of (14) at x':
F(x-a (x))= Fx - ---- Gu (15a)

Now we introduce some notation. The Lie bracket of two vector F = 1 (0), G = g(0). (15b)
fieldsf, g is another vector field defined by: ax

ag_ f. We want a coordinate change for (14) of the form identity plus
If,ag = & a-x (7) higher degree terms, such that the resulting linear plant will agree
Rearranging and cancelling terms in (6), and using (7) we obtain with (14) up to an error of degree O(x,u)P+1 (i.e. terms of

f (2)(x) = [Fx,(2)(x)] (8) O(x)P+l and O(x,u)P ) where p is the degree of approximation.
Equation (8) is called the Homological Equation [I]. In [5], a When p = 1, the first degree approximation (15) is obtained.
similar derivation is also presented. The Lie bracket operation in Similar to the previous section, the case for p - 2 will be derived
the above defines a mapping first, and the results will be generalized to an arbitrary degree p by
[Fx, I : (2)(x) - [Fx,,O(2)(x)] (9) induction. First, the functionsf and g are expanded in a series:

Obviously, (9) represents a linear mapping from n2(n + 1)/2 Ax) =1 (x) +f (x) + O(x)

dimensional parameter space of the coefficients of o(2) (x) to an = Fx +f(2)(x) + O(x) 3  (16)

n2(n + 1)/2 dimensional parameter space. The question is whether g(x) = g (0)X) + g((x) + OW(x)2

/2)(x) in the range of this mapping, i.e. can we always find a = G + g (x) + O(x) 2  (17)
0(2)(W that will satisfy (8)? This problem was first solved by and the nonlinear system (14a) is rewritten as

Poincard [191. In the following, we present a slightly modified x= Fx +f(2)(W + (G + g(1)(x))u + O(t,u) 3  (18)
proof that closely follows [ 1,51: We assume a transformation similar to the one proposed in Sec. 2:

Suppose F has a full set of linearly independent z=x- (2) (x) (19)

eigenvectors. Then we can take the right eigenvectors ofF as a set In addition a new input v is chosen as

of basis vectors, and the left eigenvectors as a set of coordinates, v = t(x2)(X) + (I + )(x))u (20)

which are defined by where G (x2) is an n x 1 vector of second degree polynomials,
Fvk =.Lv k  

(10a) and I + 3(i)(x) is an m x m identity matrix plus first degree
wiF = Liw i  (10b) terms with nonsingular P(x). Now we want the system to

where vkc c R I, wi 6 C I X M and X , Xke C. We define a basis become, in z coordinates,
for n-dimensional vector valued polynomials of degree 2 as i = Fz + Gv + O(z,v) 3  (21)
follows: We take the time derivative of (19), and introducing (18), (19),

k (x) = vk(wix)(wx) for j, k = 1 ... ,n ; i = i ... j. (11) (20) and (21) we obtain:
ii (2) (2) (2)Using this basis for the polynomials in Eqn. (8), we evaluate the f (x) = [Fx,( (x)] + Gt W(x) (22a)

Lie bracket: g (x)u = [Gu, (2) )] + G3 (x)u V constant u. (22b)
[Fx,*ti(x)] (Xi + I- Xk)tj(x) (12) Because of its similarity to the homological equations derived in
The mapping (9) is onto if (Xi + X - Xk) * 0 for all the previous section, we call (22) the Generalized Homological
j, k = 1. n; i = 1, ... j. In the literature, this is called the Equations. For a detailed derivation of (22), see [17). In the
resonance condition. We note that this is only a sufficient
condition. A general proof for the case when F does not have a sae rere e a b

full set of independent eigenvectors may be found in [1]. tr) (e ) as
The above can easily be extended to an arbitrary degree of f )(x) = [Fx,4)(x)) + Ga ("x) (23a)

linearization p. We present the final form: g(P-t)(x)u - [GMj(P)(x)] + Go (p-1)(x)u V constant u. (23b)
[Fx, ... k. = W.. + i -) . ,(x) (13) The resulting system is accurate up to degree p:

with (j, + " " " + Xi -k) * 0 the condition of no resonance. a Fz + Gv + O(zv) p+ i  (24)

Once a higher depee linear approximation is obtained, one
3. Higher Degree Approximations to Control Systems of the important issues is the stability of the closed loop system.
In this section we will seek a solution to the problem of Thus one may choose, for instance, a linear state feedback for the
linearization for control. Full state observability is implicitly approximate model



i = Fz + Gv (25) Dimensions of the domain and the range become equal whenever n

by setting v = Kz. The gain matrix K is chosen such that in the - 2 + 1. However, this does not imply that the mapping is of

closed loop the system gives the desired performance full rank. For example, when -. -3 the rank is 26, not

assume that the model has been linearized up to second degree, 27. In general, for a single input system, the rank of the mapping

using the feedback v = Kz and Eqn. (19) we evaluate (20): is always one less than the dimension of the domain for n a 3.
Kx - gK (2)(x -- =(2)(-X) + (I + 00) (X))u (26)

and calculate the feedback u as:

u =(I + R()(x))-'(Kx - K0( 2)(x) -Ot(2)() We will restrict our analysis to the second degree

=Kx - (P ( 1)(x)Kx + K# (2)(x) + a (2)(x)j + O(x,u)3. (27) linearization problem with a single input a, i.e. m = 1. We will
In the above, purpose of the feedback u becomes immediately start with the analysis of the linear mapping.
clear. In addition to the linear feedback, there are second degree A necessary condition for finding a coordinate change-
correction, terms (inside curly brackets in (27)). While the feedback pair for a nonlinear control system is the local
purpose of the feedback u = Kx is to achieve stability, pole controllability condition at the nominal point. For the system (18)
placement, etc. for the first deme approximation (I5a) to get with a scalar input, this implies
= (F + GK)x, (28) rank (G FG ... F-tG) = n. (32)

the feedback (27) cancels certain second degree terms to achieve a On the other hand, we define a I x n matrix K such that
second de = an m'oximation (accurate to second degree compared KF {-G i=0  1 i<n

with a linear model) toward the same feedback design goals: i i n =3

x = (F + GK)x +f( 2 )(x) + g(t)(x)Kx - G ( [3(')(x)Kx Then, the following collection of one forms is of full rank:

+ K (2)(x) + a (2)(x)j) + O(x,u)3 . (29) rank (K KF... KF71-t ) = n. (34)

An important feature of the feedback (27) and the resulting closed (32) and (34) together imply that we can define a basis for the

loop system (29) is that one need not transform the state variables second and first degree monomials as follows. Define as a basis
into the new coordinates z that was introduced for the sake of k = FA-tG (35a)

calculations. Feedback design can be performed in the natural and a co-basis

coordinates in which the system is originally presented. If some wi - KFi -1 (35b)

of the states are not observable, one can estimate the unavailable Now we define a basis for second degree monomials as
k k

state variables by means of an observer, and apply the same fj,(x) = v (wix)(wir) forj, k = 1 ....n ; i = 1, ... j. (36)
procedure. For further work on this problem, see [ 18). and a basis for first degree monomials as

proedue. or urter orkonk A
f(x) = v (wjx) fork = 1 ....n ; i = I .... n. (37)

4. Analysis of the Linear Mapping Using the definitions (36) and (37) is a great convenience for
In the homological equations (22) of Sec. 3. the second degree calculating the Lie brackets that appear in the generalized

terms f (2)(x) and g ()(x)u can be cancelled out under certain homological equations (22). Calculation of (22a) gives
solvability conditions by proper choice of .(2)(x), a (2)(x), and [Fx.0,' ,x) I =

k1 k ak+i1
(i(x). When the coefficients of the like terms in (22) are set Oi++ j j+ i -j+l- 0 1 ! i ! j n; I k n

k Jequal, alinearmappingisobtainedas I+j- *ij I i < j = n; 1 : k < n (38){ (2) I0(x) J (2)~- Wi4jjn ; 1 5k< n
(2) "- L(30) In the evaluation of (38), when k = n, the expressions become

() g (X) ) slightly more complicated. However, transforming the control
system into a Brunovsky canonical form 131 prior to the

A simple count yields the dimensions of the domain and the range: linearization helps simplify the expressions [141.
n (n2+ ) + an(n2 + 1) + m2n - j n(n + 1+ n2m (31) Next, we calculate (22b)

2 2r 0 i,j n
To analyze the mapping, we make a table for the dimensions: kFor m= I; Fo in$.ix -2 =#n7 i < j=n (39)

State State 2e i = n
Space Dormin Range Space Domain Range These two formulas are used to compute the kernel and co-kernel
n =2 11 10 n = 2 20 14 of the mapping

42 36(2)( )
n3 27 27 n =3 42 36 x (2)(xn =4 54 56 n = 4 76 72 f (2) W(x (30)

n = 5 125 125 ((x))

W J g



and we now obtain a set of linear equations expressed in matrix "(2) x, 2(x) + Gt(2)(V) (43a)

form: -01) (2) (1)
f (2) (2 (x)u 1 [Gu,q( (x)] + Go( (x)u V constant u. (43b)

LA; ;j=[Jg(I)1 ) Furthermore, we wish to choose the smallest (2) 1that will

In (40). L is a constant coefficient matrix of n2(n+1)/2 + n2 rows Lot:1))
by n 2(n+l)/2 + n(n+l)/2 + n columns that is found from the above achieve the above. Again, we choose positive definite matrices S.

evaluation of the Lie brackets of the mapping. In R and minimize

F (2)1 F( 2) J )12 + IoC(2'(x) + p(i'(x)u I2pxu~dxdu (4)F O (J and Lf " j the constant coefficients of their

or one can take a weighted combination of the above. In fact. Scorresponding second degree terms are stacked in a consistent can be taken to be equal to Q of (42), but the choice is not limited
lexicographic ordering. For the single input linearization problem,
the column rank of L is ((nl)2+n(nl)12+n to this case. We illustrate the minimization in Figs. (1) and (2).

A solution to the linearization problem is developed as Fig. I represents the 2 ' + nW dimensional parameter space

follows. First, we note that since the mapping (40) is deficient in for the range of the mapping. The coefficients of the second

rank for n > 2. a control system with nonlinear termsf (2)(x) and degree terms in the control system define a point in this space.
g()(x)u will not, in general, have an exact solution to yield a df(2) T

second degree linearization. In fact, the Hunt-Su result [91 (or by (1) ) T

Krener's extension of the same to the approximate case in 1161) is line going through the origin. Those points in the range space of
a test for precisely this condition. Consequently, Eqn. (40) will L that exactly satisfy (40) will lie on this line. Among these

not usually have an exact solution. For a system with nt =3, m =1: innteymypotswwatofndhene(onas( 1 "
2f 3 -9 + g3 = 0 (41) in" m

is the condition for exact linearizability up to second degree. In on the figure) which will minimize, with respect to a norm as
(41). fi represents the coefficient of an element of f(2) in the defined earlier, the error between the actual system that is being
basis 4W~x for second degree monornials obtained when the dfnderir h ro ewe h culsse hti en

a Is o e dapproximately linearized and a model which is e-actly linearizable
system is in Brunovsky canonical form. Similarly, gi is the (up to degree 2) by the coordinate change and feedback. Fig. 2
coefficient of the corresponding element of g (1) in the basis for showsthen 2(n+l)/2+n(n+l)12+n dimensional domain space of

first degree monomials. Eqn. (41) is called the co-kernel the mapping , and the minimization done in the domain space.

equation.
When an exact solution does not exist, it is reasonable to The numerical solution to (40) is found by linear algebraic

seek an approximate solution which will minimize the error in the methods. For illustration purposes consider a mapping
linearization with respect to some norm. In order to give a precise A : PN .__>M (45)
meaning to this problem, first assume that we have adequate

knowledge about the operating regime of the control system and An solve

the desired accuracy as determined by Ax = b.
p(x,u): A probability density function; typically uniform If the mapping is not of full rank, it can be expanded as follows

over some compact set, or Gaussian. (/):x -- Ux) eIN+M (47)

Q: A sensitivity matrix, positive definite. w

And define the "error" where is the identity matrix of appropriate dimension. foe

(2) 2 mapping (47) is always of full column rank. Now we solve for

( " \ Then one can choose a metric G on N .M
G [Gil 0 (49

def ffL (2)_ i(2) +() 2 G 0  (49)
QP(x,u)dxdu (42) 2

and find a solution to
7(2) min I 1 (50)

We want to choose -(0)) such that the above error is x e N "Ax-b G G

minimized. Note that this term is in the range of the mapping, i.e. The well-known solution of (50) is

it satisfies the generalized homological equations x= (1 A TIG [' ])-'[I A TIG [0 (51)



Finally, we note the following correspondence between the

dimensions and variables in (51) and in the linearization problem:Conclusion
M n n + ) +p2 obem: In this paper, we presented a method to solve the approximate

M 2 N:nn(n + n(n+l)/2 + n linearization problem of nonlinear control systems. The problem

(2)(2 is reduced to the solution of a set of linear equations as follows:

x"[ci(2j "  b:[' First, the generalized homological equations are derived. By

" 0] /introducing an appropriate basis for expressing higher degree

[S001 monomials in the vector field, a set of equations linear in the

A:L G : R 0 coefficients of the monomials are found. An exact solution to

0 0 Q these set of equations is not always possible. A least square

solution is proposed that minimizes, in a statistical sense as

defined above, the error in the approximation.

S. An Example We note that in the equivalent linear map, the case when

In this section we linearize the following nonlinear plant using the the nonlinear terms to be cancelled are not in the range of the

method outlined in Sec. 3.: mapping exactly correspond to the violation of the integrability

i 
= x + 0.5x2 + xlu (52a) conditions in the Hunt-Su linearization theorem. In other words,

'2= .X3 - XIX3 + X2U (52b) the given nonlinear system in this case is not exactly linearizable.

05X2+ In the method developed here, we still find a "partially" linearizing
x2  solution to this problem. The least square solution minimizes

Calculation of the coordinate transformation and feedback gives: precisely the error in such an approximation.
z1 = x1 - x~x3  (53a) prcsltheroinshanarxmton

Especially for systems with higher dimensions and higher
Z2 = X2 + 0.5x 2 - x x 5 b

I + 23 2. x (53b) degrees of approximation, the dimension of the system of linear

Z3 3 + xx 2 - XX 3 - Xequations may become extremely large and difficult to solve. A

V --- xx 3 + 1.5x -xx 3 + (I -x 1 +x 2 - 2x 3)u. (54) computer program that automates the solutions is under

With the above, we obtain the exact linearization (implying that the development by the authors.

system (52) satisfies the Hunt--Su condition): The multi-input case for the generalized homological

2t 2 (54a) equations is slightly more complicated to derive. Research is

Z2 = Z3 (54b) continuing for the description and solution of these equations in

i3 
= V. (54c) the most general input-output setting, and for an arbitrary degree

A simple feedback design v = Kz that places the closed loop poles of linearization.

at locations -1, -0.707 ± 0.707j yields the gains as kI = -1, k2 =
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1. Introduction. Over the past several years a group of faculty and graduate students at

UC Davis have been developing a set of tools for the design of controllers and observers for

nonlinear systems. Our approach has been based on normal forms and approximate normal

forms for nonlinear systems. When a nonlinear system admits a normal form the design of

a controller or observer is greatly simplified and standard linear design tools can be

employed. The people that have been involN d in this program are Mont Hubbard, Sinan

Karahan, Andrew Phelps, Yi Zhu, Ruggero Frezza and myself. This work has been

supported in part by AFOSR. In this paper I'll give an overview of our program.

2. Normal Forms. Following Kailath's terminology, [10], there are four normal forms for

linear systems, i.e., controllable, observable, controller and observer form. The first two

are relatively straightforward to obtain, provided the system is controllable or observzble.

However, the latter two are more useful in the design of stabilizing state feedback control

laws and asymptotic state observers. If a linear system is both controllable and observable

then it admits all four normal forms.

In [14] we discussed the nonlinear generalizations of the four linear normal forms.

Unfortunately, even controllable and observable nonlinear systems do not admit all four

nonlinear normal forms. A nonlinear system which admits controller normal form is

sometimes said to be state feedback linearizable in the sense of Hunt-Su [8 and

Jakubczyk-Respondek [9]. For a system in controller normal form, the design of a

stabilizing state feedback control law is a straightforward task. However, most systems do

not admit a controller normal form and even when one does, the transformation of a

system into controller normal form involves solving a system of first order linear partial

differential equations which can be quite difficult.

2



Similar remarks are even more appropriate for observer normal form. For a system

in observer form, the design of an observer is a straightforward task. But very few systems

admit such forms and the computation of observer normal form is, in general, extremely

difficult.

For these reasons, we have introduced approximate versions of nonlinear controller

and observer form [15, 16]. These may be thought of as finding systems nearby to the

original which admit controller or observer form. The computation of such a system is

relatively straightforward, and reduces to solving a set of linear equations. Unfortunately,

these linear equations are not always solvable and they increase in size quite rapidly with

the dimension of the system.

We start by introducing modified versions of controller and observer normal forms

of the nonlinear system.

(2.1a) = f() + g()u

(2. 1b) y = hi(s €)

(2.1c) (O) - C = 0

around the nominal operating point c, which for convenience we assume to be 0. We

assume f(O) = 0 and h(0) = 0. If this is nuL the case, then in many important cases it

can be made so by a possibly time varying change of state and output coordinates. As is

usual, the state is n dimensional, the control u is m dimensional and the output y

is p dimensional. It is relatively straightforward generalization to consider systems where

y depends directly on u, as in

(2.1d) y = h( ) + k(4) u,



however to simplify the exposition we shall not do so.

We are interested in studying (2.1) under the pseudogroup of state coordinate

transformations around (o = 0. In [141 we studied arbitrary change of coordinates and

attempted to bring the systemv into normal form based on prime systems. Such normal

forms are closely related to Brunovsky form and its dual. In this article we shall restrict

our attention to changes of state coordinates x = x( ) whose Jacobian at =o = 0 is the

identity

ax~i
~(0) L.

Such transformations have two virtues. The first is that they leave invariant the

first order linear approximation to (2.1),

(2.2a) i = Az + Bu + O(z,u) 2

(2.2b) y = Cz + 0(z) 2

(2.2c) z(t) = (t)

where

(2.3a) A =O (0)

(2.3b) 3 = g(O)

(2.3c) C = h (0)

The second is that the nonlinear coordinates and the normal form coordinates x

agree to first order,
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(2.4a) = x + O(x)

where

(2.4b) 0(0) = 0, (0) = 0.

Typically, the original coordinates in which the system is described have some natural

meaning and the coordinates have different dimensions, e.g., distance, velocities, mass, etc.

Property (2.4) means that at least to first order the normal form coordinates have the same

dimensions and intuitive meanings as the natural coordinates.

The system (2.1) admits a modified controller form if there exists a change of state

coordinates (2.4) which transforms (2.1) into

(2.5a) x = Ax + Bu + B(a(x) + f(x)u)

(2.5b) y = Cx+ (x)

It follows from (2.4) that the nonlinear terms are quadratic or higher in (x,u), i.e.

(2.6a) a(0) = 0, (0) = 0

(2.6b) /3(0) = 0,
(2.6c) 7t(0) = 0, .(0) = 0.

We require that the m x m matrix 1 + /3(x) be invertible for x of interest.

These conditions (2.4) and (2.6) insure that A, B, C are given by (2.3). Hence the linear

part of modified controller form of (2.1) is the same as the first order approximation (2.2)

to (2.1).
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The system (2.1) admits a modified observer form if there exists a change of state

coordinates (2.4) which transforms (2.1) into

(2.7a) x = Ax + Eu + ay) + O(y-)u,

(2.7b) y = Y + f(Y-),

(2.7c) = Cx.

It follows from (2.1) that the nonlinear terms are quadratic or higher in y, i.e.

(2.8a) a(0) = 0, (0) =0

(2.8b) /3(0) = 0,

(2.8c) -(0) = 0, (0) 0.

We require that the mapping (2.7b) be invertible between the y and y of interest.

Once again the A, B, C of (2.7) are the same as those of (2.2, 3, 5).

Henceforth we shall drop the "modified" and refer to (2.5) and (2.7) as controller

and observer forms. Of course generally it is not the same change of coordinates taking

(2.1) to (2.5) and (2.7) and the a, P3, 7 are different. In particular, the dimensions and

arguments of a, /, y differ between (2.5) and (2.7). When necessary we shall use

subscripts c and o to distinguish controller coordinates xc = - 0 c(Xc) and functions

ac(xc), /c(xc), yc(Xc) from observer coordinates xo = - o(x) and functions

a%(Cxo), 1o(Cxo), yo(Cxo).

3. Poincar6 Linearization. Henri Poincar6 considered the problem of transforming a

nonlinear vector field into a linear vector field by a change of coordinates around a critical

point. We briefly describe his theory, a fuller description can be found in Guckenheimer
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and Holmes [6] and Arnold [1].

We are given a single vector field

(3.1c) =

(3.1b) f(O) = 0

with a critical point at o = 0. We are interested in finding a change of coordinates (2.4)

which transforms (3.1) into a linear vector field,

(3.2) x = Ax

where A is given by (2.3a).

Poincar6 noted that one could develop the change of coordinates term by term in

homogeneous powers of x. At degree two we seek an n dimensional vector field 0(2)(x)

whose entries are homogeneous polynomials of degree 2 in x such that under the change

of coordinates

(3.3) x + 0(2)(x)

the differential equation (3.1) is transformed to

(3.4) x = Ax + O(x) 3

whose O(x) 3 denotes cubic and higher terms in x. Superscripts in parentheses will be

used to indicate that the function is homogeneous of the degree of the superscript in its

arguments. If we expand f( ) in homogeneous powers of ,
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(3.5) f( ) = A + 2)( ) + f(3)( ) +

then (3.1) is transformed into (3.4) iff (2) ( ) satisfies the so called homological equation

(3.6a) [Ax, 0(2)(x)] = f(2 )(x)

where [ is the Lie-Jacobi bracket

(3.6b) [Ax, ((2)(x = A 0)(2)(x)

It is straightforward to verify that [Ax, -I is a linear map from homogeneous

vector fields of degree 2 into homogeneous vector fields of degree 2. Moreover the

homogeneous n dimensional vector fields of degree 2 form a linear space of dimension
n2 (n+l)/2. Hence (3.6a) is solvable for arbitrary f(2 ) iff zero is not an eigenvalue of the

linear mapping defined by [Ax, .]. PoincarA noted that the eigenvalues of this mapping

are related to the eigenvalues of A in a simple fashion. To see why, suppose A is

semisimple, i.e., there exists a basis v1 ,...,vn of eigenvectors of A

(3.7a) Avi = Ai vi

possibly over the complex numbers.

Let w1,...,w n be a cobasis of left eigenvectors of A,

(3.7b) wiA = Ai wi
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Then the space of n vector fields homogeneous of degree 2 has as a basis

(3.8) kx) = vk(wix) (wjx)

when 1 < i < j < n and 1 < k < n. A straightforward calculation yields

[Ax, 0kj(x)] = (A. + A- A

Hence the eigenvalues of [Ax, .1 on vector fields homogeneous of degree 2 are

(3.9) Ai + A - Ak

when 1<i<n and 1<k<n.

Hence the homological equation (3.6a) is solvable if no expression of the form (3.9)

is zero. Of course this is a sufficient buL not necessary condition because a particular f(2)

might well be the range of [Ax, -1, e.g., f(2) = 0.

If (3.6a) is solvable one can proceed to look for a transformation canceling the third

degree terms in f,

(3.10) x + 0(3)(x)

and [Ax, • is linear mapping of these vector fields homogeneous of degree 3 into

themselves. The eigenvalues of this mapping are

(3.12) Ai + A. + Ak -Af

9



where 1 <i<j<k<n,I<I<n.

Hence (3.11) is solvable for arbitrary f(3 ) iff none of (3.12) is zero. This generalizes to

higher degree. If one of (3.9) or (3.12) or their generalization if zero then there is

"resonance" and linearization is not always possible. We refer the reader to [11 and [61 for

more details.

4. Approximate Controller Form. S. Kaxahan in his Ph.D. thesis [12] studied the

application of Poincar6's method to finding controller forms and approximate controller

forms. We give a brief description of his work.

One starts by expanding (2.1) into homogeneous powers of ( , u),

(4.1a) t = A + Bu + f(2 )( ) + g(1)(t) u +

(4.1b) y = C + h(2 )(C) +

One seeks a change of coordinates

(4.2) = x + ¢(2)(x)

transforming (4.1) into approximate controller form

(4.3a) x = Ax + Bu + B(a(2 )(x) + /1)(x)u) + O(x,u) 3

(4.3b) y = Cx + 7(2)(x) + O(x) 3

Following Poincar6, we see that this will happen iff
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(4.4a) [Ax, 0(2)(x)] + B a(2)(x) f(2 )(x)

(4.4b) [Bu, 0(2)(x)] + B3(1)(x)u = g(l)(x)u

where (4.4b) must hold for each constant u. We refer to these as the generalized

homological equations. Like the homological equations, they are linear equations but they

are generally not square. The space of unknown 0(2)(x), a(2)(x) and 3(1)(x) is

n2(n+l)/2 + mn(n+1)/2 + m2 n dimensional. The constraint space of f( 2 ) and g(1) is

n2(n+l)/2 + n2 m space. These dimensions agree iff n = 2m+1. Generally the map

¢(2), a(2), 1) f(2), g(1) is not of full rank so it is not always solvable even when

n = 2m+l.

Karahan has analyzed this mapping using a basis and cobasis related to the

controllability matrix (B, AB, ... , An-lB). We refer the reader to [12] for details.

Since the system (4.4a) is generally not solvable one is forced to seek approximate

solutions. One way of doing so is to find f( 2 ) and g(1) in the range of the mapping (4.2)

which is closest in some least squares sense to the given f(2) and g(1). Moreover one

would like to choose the smallest 0(2), a(2) and i1) which maps into f(2) and g(1)

Again we refer the reader to [12] for more details.

Before closing this section it should be mentioned how an approximate controller

form (4.3) can be used to stabilize a nonlinear system (2.1) (or equivalently (4.1)) by state

feedback. The standard approach is to approximate the nonlinear system to first order by

(2.2), choose a stabilizing feedback law for (2.2), u = Fz, transform this back into original

coordinates,

(4.5) u = F .

Expressed in homogeneous terms the closed loop dynamics is
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(4.6) (A + BF) + f(2 )( ) + g(1)( ) F + O(')

and hence the system is locally stable around o = 0. Of course, if it is too far from

(o = 0, the quadratic and higher terms may drive it unstable.

In the normal form approach, we typically will use the same stabilizing state

feedback gain F but to apply it to the second order linearization (4.3) rather than the first

order linearization (2.2). The resulting feedback is

(4.7) u + a(2)(x) + (1)(x)u = Fx

which results in x coordinates the closed loop system

(4.8) x = (A + BF)x + O(x)3

Generally speaking, it is better to implement the feedback in the original { coordinates

taking advantage of the fact that the inverse to (4.2) is

(4.9) x= _ 0(2)(o + O(o)

Neglecting higher than quadratic terms we obtain from (4.7) the feedback

(4.10) u- F - (F 0(2 )( ) + a(2)( ) + ) ) +) - O() 3 .

Note that to first degree the standard feedback (4.5) and the feedback (4.9) agree.

However, the second degree terms of (4.10) cancel the second degree terms of (4.6) to
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obtain in x coordinates (4.8). One expects that (4.10) is asymptotically stabilizing over a

larger neighborhood of ° then (4.5).

Of course one can also seek a higher degree approximate controller form. The

dimensions of the homological and generalized homological equations grow exponentially in

the degree of the approximation. Hence this approach may not be recommended. It might

be more efficient and effective to find approximate controller forms of degree two around

several operating points rather than an approximate controller form of degree three around

a single point.

5. Approximate Observer Form. The work I'm about to describe is joint with Andrew

Phelps. We seek a change of coordinates of the form (4.2) which transforms (4.1) into

approximate observer form

(5.1a) x = Ax + Bu + a(2)(y- ) + ±)()u + O(x,u) 3

(5.1b) y = Cx + (2)(y) + O(x) 3

(5.1c) y = Cx.

As before this is possible iff we can solve another set of generalized homological

equations

(5.2a) [Ax, ¢(2)(x)I + a(2)(Cx) = f(2)(x)

(5.2b) [Bu, 0(2)(x)1 + 1 )(Cx)u = g(1)(x)u

(.5.2c) i( 2 )(Cx) - CO(2)(x) = h( 2)(x)

As before (5.2b) must hold for each constant it.
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These equations are a linear mapping from the space of functions 0(2)(x),

a( 2 )(Cx), / 1 )(Cx), Y(2 )(Cx) to the space of functions f(2 )(x), g(1)(x), h( 2 )(x). The

dimension of the domain is n2(n+l)/2 + np(p+l)/2 + m 2p + p2 (p+l)/2 and that of the

range is n 2(n+l)/2 + mn(n+l)/2 + pn(n+l)/2. In general, these equations (5.2) are r3t

solvable so as before one must seek a least squares solution. We shall report on that in

more detail at another time.

If (2.1) (equivalently (4.1)) can be transformed to approximate observer form then

it is easy to construct an observer. We choose H so that A + HC is sufficiently stable.

An approximation x(t) to x(t) is defined to evolve according to

(5.3) x = (A + HC) x + Bu - H(y -7(2)(y))

+ a(2)(y-7(2)(y)) + 2)(y- (

then the error x(t) = x(t) - x(t)

satisfies

L3

(5.4) x = (A + IIC) x + O(x, x, u) 3.

Hence if the initial error is not too large and u is also not too large, we can expect

x(t) , 0 as t-,w.

Of course, it is preferable to implement the observer in natural coordinates so we

transform (5.3) using = + 0(2)(x) to obtain
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(5.5a) - A^ + Bu + H(y-y) + f(2 )( ) + g(1)( ) u

+ C(2)(y) _ a(2)(y) + ( 2)(y) -2)(y)) u

+I,(_f 2 )(y) _ _(2)(,)) + ()H(y-y)

3+ o, ,u)3

(5.5b) y = Cc + h( 2 )( )

(5.5c) (O) =o = 0.

Notice that the linear part of (5.5) is the observer for (2.1) one would obtain from the

linear approximation (2.2), namely

(5.6a) z = Az + Bu + H(y- y)

(5.6b) y = Cz

(5.6c) z(0) = = o.

The error z = - z between (2.1) and (5.6) satisfies

- 2(5.7a) z = (A + HC) z + o(, ,u)

while the error of the observer (5.5) expressed in x coordinates satisfies (5.4). Hence one

expects (5.5) to perform better as an observer for (2.1) over a larger operating range.

As with the state feedback (4.10), the second degree terms of the observer (5.5) are

a correction to the standard linear observer for the quadratic nonlinearations of the
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original system. In implementations one would replace the state C in the state feedback

control law (4.9) with the estimate from (5.5).

One can continue this process and look for a third degree change of coordinates

which transforms the system into approximate observer form where the error terms are

O(C, u) 3 . One obtains in this further third order correction to the state feedback (4.10)

and observer (5.5). Viewed in this light, we see that the approximate normal form

approach allows us to start with a standard linear design based on the linear approximation

(2.2) and build in a succession of higher degree corrections to overcome the nonlineararities

of (4.1). Throughout we can keep the same feedback gain K and observer gain H, and

these can be chosen by standard linear design techniques applied to the linear

approximation (2.2).

6. Coprime Factorizations. This work is joint with Yi Zhu [19]. Suppose we have a

system in controller normal form

(6.1a) Xc = Axc + Bu + B(ac(xc) + 13c(xc)u)

(6.1b) y = Cx c + yc(xc)

(6.1c) xc(0) = 0

where the c-subscripts indicate coordinates and functions associated to controller normal

form. We view (6.1) as defining an input/output map

(6.2a) G: u( A y H

from functions u(t) to y(t) for t > 0.
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We seek a right factorization of G

G=NoM
- 1

where N and M are input/output maps

(6.2b) M: v(.) u(.)

(6.2c) N: v(.)

M is invertible and o denotes composition. There is a large and growing literature on

coprime factorization of both linear and nonlinear systems. A sampling is [2-5, 7, 10, 11,

13, 17, 18, 20-26]. In particular our approach follows [3, 4].

To describe the input/output maps M and N we shall use a state space

realization. In particular we define M to be the input/output map of

(6.3a) = (A + BF) c + Bv
(6.3b) ac( c) + ( ++3c()U= F c + v

(6.3c) c(0) = 0

where (6.3b) defines u as a function of c and v.

We consider the composition N = G o M, this is realized by the 2n dimensional

system (6.1, 3) described in c, xc coordinates. Let e = xc -c then

17
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(6.4) e=Ae+ B(-F c - v + ac(Xc)
+ (1 + 8c(xc) ) (I + Oc(Q))-1 (F~c + v -ac(Qc)) )

If e(t) = 0 then e(t) =0. Since e(0) = 0 we conclude that e(t) = 0 for all t > 0. 1h.

other words, the realization (6.1, 3) of N is not controllable because e(t) is unaffected by

the input v(t).

A controllable realization of N is

(6.5a) (c = (A + BF) C + Bv

(6.5b) y = C(c + 7c((c)

(6.5c) (c( 0 ) = 0

Hence we conclude that G = N o M- 1 where N and M axe realized by (6.5) and (6.3).

Notice that M is invertible since (1 + 'C) is invertible by assumption.

Notice also that if (A, B) is a controllable pair then we can choose F so that (6.3)

and (6.5) are stable systems. Hence we have factored G over the ring of stable nonlinear

systems. We are being deliberately vague about the precise definition of a stable nonlinear

system. It is clear that (6.3, 5) are "stable" under any reasonable definition.

Of course, we are interested in coprime factorizations over the ring of stable

nonlinear systems. Again we should not try to make this concept precise but following

Hammer [7) and others we shall say that G = N o M- 1 is a coprime factorization if there

exists P, the input/output map of a stable system,

(6.6a) P: ( ) w

18



such that the composition

(6.6b) PO(I \~ N): v l (u)

is the identity, w = v.

The input/output map of M can be realized by an n dimensional system

(6.7a) c = (A + BF) c + Bv

(6.7b) ac(Cc) + (1 + OC(Cc))u = F~c + v

(6.7c) y = C~c+ 7c(cc)

(6.7d) c() = 0

A left inverse of (6.7) is

(6.8a) zc = Azc + Bu + B (ac(zc) + 0 c(zc) u)

(68b) w = ac(Zc) + (1 +/(zc))u-Fz c

(6.8c) zc(O) = 0

If e= c-z then

e = Ae + B(ac(Cc) - ac(zc) + (c(Cc) - /3c(zc))u)

If e(t) = 0 the (t) = 0 and since e(0) = 0 it follows that e(t) =0 for all t > 0. If

e(t) = Qct) - Zc(t) = 0 then w(t) = v(t) so (6.8) inverts (6.7).
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However we do not know that (6.8) is stable. To insure the stability of (6.8), we

must add to (6.8a) an extra term. This term must stabilize (6.8) and also must be zero

when c = zc so that (6.8) remains a left inverse of (6.7). How do we find such a term?

Notice that the dynamics (6.8a) is the same as the dynamics of the original -ystem

(6.1a) and notice that the other output y of (6.7) does not appear in (6.8). Perhaps we

can inject y into (6.8a) to stabilize it? This is more or less equivalent to asking whether

output injection can be used to stabilize the original system (6.1). This is always possible

for systems in observer form, hence we assume that there exists a change of coordinates

(6.9) xc = x0 + ¢ (x0 )

satisfying (2.4b) transforming (6.1) into observer form

(6.1Oa) xo = AxoBU Bu + ao(Cxo) + 9 (Cxo)U

(6.1Ob) y = Cx 0 + 70 (Cxo)

(6.10c) x0 (0) = 0

Suppose we consider a similar change of coordinates for (6.8)

(6.11) z= z 0 + ON)

to obtain

(6.12a) zo =Az 0 + Bu + ao(Czo) + 1o(Czo)u

(6.12b) w = ao(z0 + O(Zo)) + (1 + 1c(zo + O(Zo)))u

- F(z ° + O(Z ))
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(6.12c) z0 (0) = 0.

We add to (6.12a) the term

(6.13a) ao(y ) - ao(Czo) + (flo(y) -lo3(Czo)) u + H(Czo - y-)

to obtain

(6.12aa) Zo = (A + HC) zo + Bu + ao(y-) + flo (y- ) u- Hy

where y is a function of y of (6.7c) defined by

(6.13b) y---y + 7 o(- ) = Co + 7o(C)

and o is the state of (6.7) in observer coordinates

(6.13c) = o +

Notice that (6.13a) is zero whenever o = zo' hence the input/output map P of

the (6.12aa, b, c) is also an inverse of (6.7). Also, if (C,A) is an observable pair then we

can choose 1i so that (6.12aa, b, c) is stable.

In summary, we have shown that if a nonlinear system admits both controller and

observer form than its input/output map G can be factored into the composition

N o M- 1 of input/output maps of stable sy-tems N and M. Moreover this composition is

M
coprime in the sense that the input/output map (M) has a left inverse P -which is

realized by a stable system.
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We have not presented this as a theorem because we are reluctant at this point in

time to give formal definitions of coprimeness and stability for nonlinear systems. However

the above development is very analogous to the linear theory [3, 4]. See also Hammer [7]

Unfortunately the analogy is not so straightforward for left copilme factorizations.

The theory of left coprime factorizations for nonlinear systems has some substantial

differences with the linear theory.

We start with a system in observer form (6.10) realizing an input/output map G.

We define another input output map

(6.14) M: (U) w,
y

by

(6.15a) o= (A + HC) 0 -HY + a(y ) +o(y ) u

where y is an invertible function of the input y defined by

(6.15b) y = Y; + -o(Y)

and the output is

(6.15c) w = -C + y

(6.15d) 0(0) = 0
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Consider the serial connection of (6.10) and (6.15), this is not a realization of the

M o G but it is a realization of N = M o ( (This is the first important difference with

the linear theory). If we define o= Xo - o then N is realized by

(6.16a) o= (A + HC)( o + Bu

(6.16b) w =C(

(6.16c) (0(0) = 0

because in o' X0 coordinates for (6.10, 15) only the o coordinates are observable from

the output w. We consider N, M as a left factorization of G, although it is really a left

Ifactorization of (C in the sense that

(6.17) M 0 ( )= N

Notice that we cannot compose this on the left with M since M is not

invertible as a mapping from (U) to w.
y

Perhaps the best way of viewing the situation is

I0 I

or

(618b) ]

The matrix notation is somewhat misleading because M depends on both u and y.
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In any case, if (C, A) is an observable pair then both (6.15) and (6.16) can be

made stable by proper choice of H. In particular, the nonlinearities in (6.15a) are

memoryless functions of the inputs u and y hence (6.15) is BIBO stable.

Next we address the coprimeness of the above factorizatioL.

We consider the input/output map

(6.19a) F- N, M]: (U) i w
y

where again the matrix notation is somewhat misleading since both u and y are inputs

to M, i.e.,

(6.19b) w =-N(u) + M(U).

This input/output map can be realized by an n dimensional system

(6.20a) Zo = (A + HC) O + Bu + a(y) + flo(-)u- Hy

where y is an invertible function of the input y defined by

(6.20b) y = Y + 7o(- )

and the output w is given by

(6.20c) w = - C + y
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We wish to find a input/output map P realized by a stable system so that P is a

right inverse of [- N, M],

(6.21a) P: v 1- (U)

(6.21 b) [- NM] oP: v l w =v.

We start by constructing an inverse for (6.20),

(6.22a) io = Az - Hv + Bu + lofy) + 00 (-)u

(6.22b) = Czo + v

(6.22c) y = y + -o(-)

(6.22d) u = ?

(6.22e) zo(0) = 0

We leave unspecified for the moment the output u which also appears in the dynamics

(6.22a). Notice that if e 0- Z0 is the error between the states of (6.20) and (6.22)

then e = 0 whenever e 0. Since e(0) = 0 we conclude that e(t) = 0 for all

t > 0 and so by (6.20c) and (6.22b) we have w(t) = v(t). In other words (6.22) is a right

inverse of (6.20).

What about the stability of (6.22)? We would like to choose the output u in such

a way that (6.22a) is stable in some sense. If we ignore the -Hv term of (6.22a) this looks

like the original system is observer form. This is not exactly true because y is defined by

(6.22b) with v present. Suppose the original system can be transformed into controller

form (6.1) by a change of coordinates (6.9). If we apply a similar change of coordinates

(6.11) to (6.22) we obtain
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. 4 0 *

(6.23a) Zc Azc + Bu + B(ac(zc) + /#(zc)u) - Hv

- - (fly) + (1 + -) (a (Cz o + v) - ao(Czo)
0 0

+ (#o(Czo + v)- 0 (Czo))u)

Suppose we choose an F such that (A + BF) is stable and define u by

(6.22dd) ac(zc) + #c(Zc) u = Fzc.

When the input v = 0, (6.23a) becomes

(6.23b) Zc = (A + BF) zc.

Unfortunately we cannot conclude that (6.23a) is BIBO stable since the input v is

multiplied by a function of the state.

We conclude by noting that a "nonlinear Bezout identity" holds for the above. In

Mother words beside P being a left inverse (6.6b) for (N) and P a right inverse (6.21b)

for [- N, M], it is also true that

(6.24a) [-N,M]o( ):vi \y

and

(6.241)) PoP: v (y) w 0

In abuse of notation we summarize these equations by
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P

(6.25)N

The verification of (6.24) is straightforward.

From the work of Doyle [3] Francis [4] and others the, the existence of a nonlinear

Bezout identity suggests that it might be possible to develop a nonlinear version of Youla's

Q parameterization of all stable and stabilizing controller of a linear system. This

generalization would apply to those nonlinear systems which admit both controller and

observer form. This class is very thin, but perhaps such a result could be extended

approximately to those systems that approximately admit controller and observer form.

Work in these areas is continuing.

7. Concluding Remarks. We have briefly described an approach to nonlinear compensator

design based on nonlinear normal forms and approximately normal forms. This approach is

being pursued by a group of researchers at U.C. Davis with support from AFOSR. The

principle advantage of the normal forms approach is that to a large extent it reduces

problems in nonlinear design to problems in linear design. We are developing software

tools which utilize this approach as a compliment to existing linear design software so that

these linear design packages can be used for nonlinear systems that admit at least

approximate normal forms.
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A LOCAL CHARACTERIZATION OF RECIPROCAL DIFFUSIONS
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A reciprocal diffusion is a 'thi' ned' diffusion in the following

intuitive sense: view the paths of a Markov diffusion on [0,1I as the shoots

i L dense thicket of highly contorted shoots, all cut to a unit height (height
is the independent parameter). A reciprocal diffusion is a diffusion thicket

that has been thinned out just sufficiently so that the tops and bases of the

shoots conform to an artificially imposed joint distribution. In particular a
pinned diffusion is a reciprocal diffusion thinned so that the shoots start
and end at single points (a pointed 'bush'). Much of the structure of the

original distribution of the diffusion will be present in all its thinnings. The
aim of this paper is to give a local characterization of this common
'reciprocal' structure.

Krener (1988a) has made a fundamental study of the infinitesimal

properties of reciprocal diffusions. The problem of local characterization is

one of a number of intriguing questions that were only partially answered in

hib paper. It turns out that the reciprocal structure of a Gaussian

reciprocal diffusion has a beautifully simple characterization in terms of a
linear self-adjoint second order differential operator (Frezza, Krener, Levy,

1989). Our concern is with the nonGaussian case, which has to be treated

by different methods.

To proceed it is necessary to introduce some notation. Let Q be
1o spa;ce of IP1n-valued contin uols functions on 10,1), xt(w) tle coordinate

leimp C&(t1) and ./the 13orti U-field generated by tileC tOj)OlOgy of 11111iforl

oiive ence.. uIlppose X - {xt: (0 < t < I), Q?, 5, l1') is a Nilavlwv diffilsiu11

,l) 'S(,l-le I"-1.,ol i i- Ill 'l
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with continuous strictly positive initial and transition probability densities
po(x) and ps×(t,y), 0 < s < t < 1. It is a straightforward matter to show

that the probability law IP of x has a unique factorization into the initial
distribution po(x) dx the final conditional distribution POx(1,y) dy and a

probability kernel (x,y) -, PY on 5', narrowly continuous as a function

of (x,y), that is the law of X conditional on x0 = x, x1 = y.

Now suppose k(x,y) is a strictly positive continuous probability

density on 1Rn x Pn and let Q be the modified law on 51: Q(A):J OY(A) k(x,y) dxdy. Then we shall call the process Y = ({xt}, q

with law 4Q on (Q, 5), a reciprocal diffusion governed by a Markov
diffitsion X. If the marginal density k is replaced by a distribution
7r(dx, dy) we could create other reciprocal diffusions f .n X with laws
singular to IP; for instance, the pinnings of X at t = 0 and 1, but to
keep the development simple we restrict our attention to governed
reciprocal diffusions. Markov diffusions are trivially reciprocal and two
diffusions governing the same reciprocal diffusion govern each other; in fact
it follows from Theorem 3.1 of (Jamison, 1974) that the ratio of their
end-point densities must take the form h0 (x) hi(y) for some continuous

positive functions h0 and h1. Reciprocal diffusions, on the other hand,

are not generally Markov. For instance, if Y has the law of {Z + Bt:

0 < t < 1, where {Bt} is a Brownian bridge with B0 7- B1  0, and Z

is an independent nondegenerate random variable, then Y is a reciprocal
diffusion (governed by a Brownian motion) that is ziot Markov. However,
reciprocal diffusions inherit many of the propertieos of Markov diffusions.
For 0 < r < t. < 1, let Jt denote the interior a-field a {x: r < s <t}r

and S t the exterior a-field a x0 < S < r or t < < Ii Y. Then a

reciprocal diffusion Y is a Markov field oin the line in the sense that for
amy 0 < r < t < 1, conditionl,0 oil xr atnl xt ,..I,.its of .J Mre

il'len(ldcnt of elenels of X Also for any 0 < s < I the pillned pro(css

>'" ( },Q( x x)) i:;, N1; lI:v diffi ,,,ii . lw fil. l ir) ,,s1 Yr v isl,,h
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definition of the reciprocal process introduced by Bernstein (1932) to give a

probabilistic interpretation of Schr~dinger's equation; the second the

definition of a reciprocal diffusion in the sense of Krener (1988b). A

detailed study of these and other properties can be found in Jamison (1974,

75). A reciprocal process possesses a 'governing' Markov process provided

some technical 'end-point' conditions are satisfied. The writing of a

governing diffusion into the definition adopted here simply allows us to

avoid these technicalities.

The kernel (x,y) -4 (PYx can be thought of as the reciprocal structure

that is common to the Markov diffusion X and all its subservient

reciprocal diffusions. Similarly for s < t the unique narrowly continuous

probability kernel on .7t given by tY(A) = IP(AIx s = x.,t; y)

represents the common reciprocal structure on the interval [s,t].

We can now define the notion of a set of local reciprocal

characteristics. Let 9 denote the set of all probability laws of reciprocal

diffusions. We shall say that an assignment of a continuous function

PQ(.,.) on [0,1] x R1n to every law Q in Af is a reciprocal invariant on

ts,t,] if the restriction of p (u,-) to the interval s < u < t is the same for
all Q with a common reciprocal structure on [s,t] and that p" is a local
reciprocal invariant if it is a reciprocal invariant on [s,t] for all

0 <s < t < 1. Finally we shall say that a family {p 1, p2,'" p n} of local

reciprocal invariants is a set of local reciprocal characteristics if it uniquely

do'ermines the reciprocal structure on [0,1]; that is, given a set of

functions {rl, r2 , , rn} within the joint range of {pi, pI} those

laws in the inverse image (Q: p9 = ri, i, , n} possess a common

reciprocal structure P

The next section presents a theorem showing how a set of local
reciprocal characteristics for a reciprocal diffusion can be constructed by a

differential transformation of its scmimartingale local characteristics.

The final section )re.scts tw'- formulae that gi ve a p)robabiilistil'

interpretation of local reciplrocal (:1aracteristics. h'lle fi si is a cuI riously

fA-ctor-m form of (i rsa nov's forillilla i, ;s applicalble lo p ili(d diffuisios.

'I'lle so(:onl reo ili ,rs solnlio plellillillar v ,xpllajal H Hi k {eli ),(I 1 )-
h '! 1 1 1 l o d wod}( , , ", 1 1 1 1 l ) "i, ' 0 i l l , , l 1 , , l l o, , I " , ' l M XI p yi/ ' , : l l , , ' I~ l ,
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satisfied by reciprocal diffusions and that display the infinitesimal form of

particular conditional amounts of their first and second differences. The

diffusion matrix a(t,x) (that is, the rate of change of the matrix quadratic
variation process) plays a central role. One important postulate states that

for constant x, v c IR', the limit*

limh0 -I E[xt+h - 2x t + Xth X 1 = x + vh, xth x-vh]
h

- f(t,x) + g(t,x)v (1)

for some vector and matrix functions f and g (when expressed in
Riemann normal coordinates with respect to the Riemann tensor a 1 ).

Another is the corresponding expression (1') for the (matrix) second

moment of the second difference; here the right member is 2 a(t,x).

Our second formula (Theorem 3) can be regarded as an integrated
non-asymptotic variation of (1) for constant diffusion matrices a.

Together with the matrix a its coefficients form a set of local reciprocal

characteristics. So, at least in this integrated form, Krener's postulate (1),
together with the matrix a, characterize the reciprocal structure. The
general case with non-constant a will be treated elsewhere.

My thanks are due to A.J. Krener who besides offering me

hospitality and support at U.C. Davis, largely provided the inspiration for

this work, and to B.C. Levy and R. Frezza for educating me in the ways of

Gaussian reciprocal processes.

* In (1988a) Krener uses a slightly different conditioning in his postulates:

E[ • I xtl + xt+h = 2x]. This introduces quantities such as Nelson's

current velocity that are not generally reciprocal invariants.



A LOCAL RECIPROCAL CHARACTERIZATION.

From now on we use the summation convention. Using the notation

of the previous section, suppose x = ({xt}: 0 < t _< 1I fl, 51, 1l) (or ({xt},

F) ) for short) is a Markov diffusion in Rn with diffusion matrix a(t,x) and

drift vector b(t,x). For simplicity we assume that the components of a

and b are C', (that is, they are bounded and have bounded derivatives ofb'

all order) and that a is uniformly elliptic. Then x possesses a strictly

positive transition density psx(t,y). It is also a continuous semimartingale

on { .7 } and has the decomposition

dx t = b(t, xt) dt + dN t

where {Nt} is a continuous martingale on { ,7} diffusing at the rate

a(t,xt); that is, its (matrix) quadratic variation is of the form

t a(s, xs)ds.

Now suppose Y = ({xt}, Q) is a reciprocal diffusion governed by X.

Suppose k is its positive continuous end-point density, and k0 its initial

density. Let hx(1,z) be the conditional end-point density relative to

pox(1,z) given by

h1x(1,z ) = k-(x,z)/(k0(X ) Pox(,z))

then hx(l,.) is positive and continuous and possesses a 'space-time

harmonic extension' with respect to x given by:

h (t,y) = h x(Iz) PtY(lz) dz, for 0 < t < 1.

Il, 1) 0 denote d/6t arid 1). denote d/dy i. Bv to's foriniula hx

:;1114 10:; {fo I tIN('dl X. Wvi1 h III(' "IIIIIIII;I.1oll ( v( '1 on l(t l I ,)t, )I
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D0hx + bi Dihx + 0ij DiDjhx = 0

on [0,11 x pn . Then Mt: = hx 0(t, xt) is the martingale E[dQ/d P I )]

and has the representation
dMt = Mx. Ei Di(log hx(,xt)) dNt -

A 'Girsanov' argument then leads to the representation: On (Q, Y, Q),

dx t =cx 0 (t, xt) dt + dlt

where ci(t,y) = bi(t,y) + aij D. log hx(t,y) and where P is a continuous
J x t

martingale on {t4}, again diffusing at rate a(t, xt). The full details of

the argument can be found in Theorem 2 (and its proof) in Jamison (1975).
Notice that ci(.,- ) is continuous and uniquely defined. The pair a and

c can be thought of as the local semimartingale characteristics of Y with

respect to the filtration { t)j}. We can obtain a different characterization

by conditioning at t = 1; that is, with respect to the augmented filtration

1}, then

dxt =ex (t, xt)dt + d(martingale)

where the martingale (on {X t}) still diffuses at rate a(t, xt) and e7

takcs the form: for 0 < t < I

e,(t,y) = b(t,y) + a'J(t,y) D log pt.(1,z)

l'he argu1ieit is aln-ost tile same, thlough l11 ' o Ie.. ) I ,PUo),es .ikiSP2,uI al,
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Similar but more complicated characterizations can be obtained for

conditionings at intermediate times. Now let a.. be the inverse of the

matrix a. Introduce the differential operator

Re(a,b)i = D0 (& b j ) + 2 Di(bJ aik bk + ak Dj(ake b)), i = 1,- n,

mapping a C'° matrix-vector pair into a C' vector field. We can now

make the following statement.

Theorem 1 Let X be a Markov diffusion with a continuous positive initial

density, a diffusion matrix a(t,y) and drift vector b(t,y). Let Y be a

governed reciprocal diffusion with semimartingale characteristics a(t,y)

and Cx(t,y ) . We assume that the components of a, b, a and c are Cb

and that a and a are uniformly elliptic. Let 0 < s <u < 1. Then X

and Y possess the same reciprocal structure on [s,u] if and only if the

following functions of (t,y) axe equal on [s,u] x pn

i) a=a

ii) For all x dn, i, j = 1, 2, n.

D~ b k D- k -D - ck D -(j k
i(jk ) Dj(ik b) Di(ajk cx) Dj( ik cx)

iii) For all x n i= 1, 2, .-.
Re(a,b)i = Re(a, Cx) i

tRemark 1) This result is close to being a corollary of a remarkable

short-time asymptotic expansion of Krener (1988b) for the reciprocal

transition density 0P(xt ( dylxt-h = x, xt+h = z) of a Markov diffusion

that parallels the corresponding expansions of Azencott (19S1) and

Molchanov (1975) for Markov transition densities. However. the expansion

is quite complicated and I have not used it in the proof as the following

a;l-g l(,l t is Iwlore direct.

2) The theorem also holds if ttI ce is repla(e(d I)v ilho amuoiiwilted

:<'Qlliti trtiult.,_ e (harav li StirS: (',Y) p nvid'd all thw fi11i l, 1 , , '
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restricted to 0 < t < 1.

3) For simplicity let fli be the function aij b for i = 1, -- , n

and let f0 be the function - 1/2(b] ajk bk + a jk D.(ake be)). Then the

left member of ii) is Dip j - Djf i and that of iii) is Dof i - Dif#0 . Then the

theorem states that the n(n + 1)/2 functions Dif j - Dji , i, j = 0, 1,

n, i < j, and the n(n + 1)/2 components of the matrix a (or more

pedantically, their assignments to the probability law of X) form a set of

local reciprocal characteristics. Clearly these characteristics are not

independent; in fact, in differential-geometric terms, the Diflj - Dj3.i are

the components of the exterior derivative of the 1-form (00, 01' "" " fon ) -

Proof of the 'only if' part. Without loss of generality we may take s = 0,
u = 1. Assume that X and Y possess the same kernel j1 Y on 5. Then

Ox

Y is governed by X and by the previous argument it follows that, for

some positive continuous X-space time harmonic function hx(ty),

(t,y)= a(t,y) and

cix(t,y) = b'(t,y) + aiJ(t,y) D. log hx(t,y)

Let 0i,, i = 0, 1, . , n be the terms introduced in Remark 3 and let 73 be

the corresponding terms (note a = a).

ijx nx k x +f cx))

(From now on we generally omit the subscript x). Then - iD

logh x for i 1, n. If we can show that in addition -

log then - is a gradient vector and, 1\ Remark 3, ii) and iii) will

follow immediately. Froin (1) e = Io.- i satisfiesN
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D t= _biDi aiJ(DiD t + DiDjt)

1 aiJ[ ifl_- /if)j + Di( j -3.))

= -/0)

So f. -/3 is a gradient on 10,11 x Rn and the proof is complete.

The 'if' part. Assume the identities hold for the pairs (a,b) and (-, C.).

To show that X and Y have the same reciprocal structure it suffices to

show that (1) holds for some X-space-time harmonic function hx(t,y)

with hx(O,x) = 1. Now for each x the vector function

(7x,i(t,y) - /i(t,y)) is by ii) and iii) the gradient of some smooth function

0 on [0,1] x Rn. Then it follows from a reversal of the derivation above

and the definition of ),0 and #0 that

D 0ox +  i Di x+ aiJ(DDOx + DixDj 0.

Set hx(t,y) = exp[tox(t,y) - bx(O,x)]. Then hx is a positive smooth

X-space--time harmonic function with the properties required.

PROBABILISTIC INTERPRETATIONS

The previous theorem is purely analytical in nature and sheds no
light on the probabilistic aaning of local reciprocal characteristics. In this

section we give two probabilistic formulae in which they occur naturally.
They are formulated for Markov diffusions. Theorem 1 makes it clear how
they can be extended to non-Markovian reciprocal diffusions.

Suppse X = ({xt}, II') with diffusion a and drift b is the Markov

diffusion satisfying the conditions of 'I'hcorem i. Let X = ({xt). Fl) be the

Markov diffusion with diffusion a and zero drift. 1o)(L,\). I)o(t,%y) are

I col( rre ( r pondin'g tIaIllsiliol1 (io'ii. it i,'. k 1p . "' I Z . T' Ild %11 (1 .1
ON, 0xOx 1
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respectively denote narrowly continuous versions of P(- I x0 = x),

IP(" I x0 = x, x, = z), etc. fo, #1, - -3 n are defined as before. The first

formula is a factored version of Girsanov's formula for )l z
0x*

Theorem 2 There is a random variable S, defined a.s. F lZ-uniquely forrOx

all x, z c Rn, and a function k continuous on P2n such that

S = ex'p (D1 I jct, Cxt) - Dv fi(ct, Ext)) cdc(xA ax" - x",&A

and such that for almost all z (Lebesgue).

lP z

d Ox () k(x,z) S(w), a.s.

d~'z OX
Ox

where J 0xt denotes a Stratonovich integral (convention of

Rogers-Williams (1987)), the summation indices M, v range over
0 00,1,2, --- , n, and x = t.

Remark 1 The integrand of the double integral in S is precisely the "exact

2-form" made up of the reciprocal characteristics given by Theorem 1.

Notice that S does not depend on x and z.

2) There are many similar expressions; this is just one of the simplest. The

double integral is given by a Stokes formula on the fan-shaped surface
obtained by subtending the path {t, xt: 0 < t < 1} at the origin. Any

surface stretched between the path and a piecewise smooth curve beginning

at x and endinat x, and depending only on x and x could also be

used.

3) it is 'ighly likely that uiw phrase "for almost al! Z" (;i I (be loppo,1

bllt I have lot lrov(d l.hi,.
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Prof Let G be the Girsanov formula for d Fox/d Fox; in terms of the

fli, i = 1,., n, this is

I I
ex= [xp fli dx t fl j a3 dtG 1eJp

(f3i = fli(t, xt), etc.,). G and the other stochastic integrals that we

introduce can be so chosen that they are defined a.s. IlZ-uniquely for all

x, z c Rn. Now transform G into Stratonovich form and than expand the
resulting line integral by a stochastic form of Stoke's theorem. These are
familiar steps in stochastic differential geometry; see for instance Meyer
(1982, p. 202) for the former and Bismut (1981, p. 208) for the latter. So

I1 i I ..

G = exp[[ flixt Ia' j Dj #i + fli a' J fl.)dt]

=exp Jo /3 t

Now

(A (ct, ext) €=l = IA 1 ( (ct, cx)+ c DvB((t, cxt)x)dc b

Making use of a stochastic Fubini's theorem (Ikeda and \Vatanabe
1981) we have

13I id c x' =~ (c, cx 1'1 -/3,j cXO)Xt
d 0 n0

and on combining these we find
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+ t D 0rt, (Ext) (4I X x axt/ (to 0  b ILt

=I(x0 ,x l )+J (=logG)

On rearranging the double integral we find S = e . For all A c J,
B c 2(R(I n), we have the identities

'B x(A) pox(1,z)dz = 91ox(A n x- 1 B)

=G Gd 0= G d FlZ xlz)

JA x-1B d 'B 'A ox O (lz) dz

1z= [B t G dF ox k0(x,z)]Pox ( 1 ,z ) dz.

where k = i0x(1,z)/p 0 x(1,z). Hence for almost all z, and all A ,

O1z (A) G d 1 z k (xz)ox JA oxkxz)

and so

dl z

Ox G k ,z) = S e I(X0, x,)k0(xz)

ox

Note that x0  x and x1 = z a.s. P Ox.Setting- k(xz) el(x.z) k(Z)

then gives us the result.
Krener's postulate (1) is quite subtly defined in that the

conditioning variables slide, as the limit is taken, along geodesics of the
Plemannian metric aij. Ihe following formirula can be thought 01 as a n

integral variation of (1) condiliolled mnore convol)tionaly oY l I e l1llho ),s of
a par tialv nested faini ly of a-Iild. It, is ,tal, Witd \%.I I I proof f t h Iw CaSO
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with constant diffusion matrix a. A full treatment of the general case,

which requires the introduction of the stochastic differential geometric

concepts of stochastic development and parallel translation, will be

presented elsewhere.

It is convenient to introduce the following definition. Given the

set-up (fQ, .5, { 7}, { X t}, IP) we shall say that a continuous process Zt

is a free motion if for all 0 <_ s < t < u < 1

E[Zt u - Zs - t s ZuISu=tu - s u-s u s] =

If we set r = t - h, u = t + h then we see that this definition essentially
t+hsays that the mean 'acceleration' of Zt (conditioned on g t_h) is zero.

(cf. martingales; for these the predicted 'velocity' is zero) For example. if

X is a Brownian motion, then Zt = xt + k(x 0 , xj)t is a free motion. If a

free motion Z is adapted to { X t} then it is a continuous senimartingale;

I have not explored its other properties. However, in the following

particular case the martingale part of the free motion is a Brownian motion.

If X is Gaussian Z can be given a more precise description (see Frezza,

Krener, Levy 1989).

Theorem 3 With the definition of Theorem 1, if [aij] is a constant maLrix,

then the process

t s kZt = xt - aJ J [(Dk  D +3 k0r + (D o0 3 - D. /0) dr] ds (2)

is a free motion, wvhere Dk/j Dk/j(r, xr,), etc., and j, k are summed

over 1, 2, n. Alternatively, for any 0 < s < t < u < 1

E[r , t X t - I
+ •,r) 0. o

a'j.k .,()Ill# ~ k)a ) . 1' oJ -- S~io<']I
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where Yt() (u - t)(r - s) for r t

(u - r) -_ for rt

Remarks 1) Following Krencr's point of view, we can formally but usefully

rewrite the integral equation (2) as a second order stochastic differential

equation.

-' t= a'J(D kflj - D jIk) &-x't dt + a'J(D0 /3j - D 1 30) dt- + O-Z t (3)

where d- x tetc. is to be thought of as an infinitesimal central second

difference, with the usual proviso that (3) is no more than a mnemonic for

(2).

2) A comparison with IKrener's postulate (1) suggests that the coefficient of

a'xdt in (3) should be g in (1) and that of dt 2should be f. This is

certainly so for Gaussian X, but for nonGaussian processes the agreement

has still to be verified.
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The Fractional Representations of a Class of Nonlinear Systems

Arthur Krener, Yi Zhu
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Abstract Right and left coprime fractional representations are shown to exist for

a special class of nonlinear systems which have both controller and observer forms.
Furthermore, a generalized Bezout identity is given for this class of nonlinear

., , ~jystems.

1.Introduction The purpose of this paper is to obtain the right and the left coprime factorizations

of a class of nonlinear systems which have both controller and observer forms and to prove that a

generalized Bezout identity holds for this class of nonlinear systems.

The fractional representation method of linear systems can be traced back to the early 1970's

when Rosenbrock[16] used transfer matrix to study multi-input/multi-output systems. Since then,

this method has been studied intensively by many researchers[4], [7], [11]. Desoer[3] generalized

the general concept of coprimeness to a ring. Recently, Hammer [9] used the coprime factorization

approach to tackle the discrete nonlinear systems, and there is a growing interest in applying the

coprime factorizations approach to study nonlinear systems.

In this paper, we use the state space descriptions as realizations of a nonlinear mapping so that

we can work on both state space and input-output mapping just as one does in the linear situation.

Our approach is based on the nonlinear normal form theory of Krener[ 13]. Using the controller

form of a nonlinear system, it is possible to design a nonlinear feedback controller. The given

system can be right factorized into a composition of a stable postprocessor and an inverse of a

stable preprocessor. The right coprimeness concept is based on this right factorization. If we

combine the postprocessor and the preprocessor, they form a higher dimensional system. The

existence of a stable left inverse of this higher order system is our definition of right coprimeness.
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This follows Hammer[9]. In a similar way, we start from the observer form of a nonlinear system

used to design a nonlinear asymptotic observer. A modification of this gives a way to left factorize

the given system into a composition of an inverse of a stable postprocessor and a stable

preprocessor. If we put them together to form a higher dimensional system, the existence of a

stable right inverse of this higher order system is our definition of the left coprimeness. We shall

give the rigorous definitions later on. It turns out that for those nonlinear systems which have both

controller and observer forms the development of right coprime factorizations is a rather

straightforward generalization of the linear theory but the development of left coprime

factorizations differs with substantially from the linear situation. The nonlinear right and left

coprime factorizations satisfy a generalized Bezout identity.

This paper is organized as following. We first talk about two normal forms of nonlinear sys-

tems briefly, and then discuss right and left factorizations. Finally, the generalized Bezout identity

is given.

2.Normal forms This work is based on nonlinear normal form theory. A complete discussion

of nonlinear normal form theory is beyond of the scope of this paper. We only describe those

aspects of controller form and observer form which we are going to use in this paper. A more de-

tailed discussion can be found in Krener's paper[131.

Consider the following nonlinear system

(2.1a) f( ) + g)u

(2. 1 b) y =h( )

(2.1 c) (0) = k°.

nn mxn nwhere f: R -> Rn, g: R-> R , h: R -> are all smooth(C ' ) functions. Assume that

f(O) = 0 and h(O) = 0. We seek a local change of coordinates x = x( ) under which (2.1) has a

simpler form in some neighborhood of the norminal k= 0. In this paper we shall restrict our

attention to the changes of coordinates whose Jacobian at the V= 0 is the identity
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-I (0) 1. t

Such changes of coordinates can be written

(2.2) x + (x,

where

(O)=, (0) =0.
ax

They leave invariant the first order linear approximation to (2.1)

(2.3a) z = Az + Bu + O(z,u)2

(2.3b) y Cz + O(z) 2

(2.3c) z(O) = (O)

where

(2.4) A= - (0), B=g(0), C -( 0)

Controller form

We say system (2.1) admits a controller form if there is a change of coordinates (2.2) and a

controllable pair (AB) such that (1) can be transformed into the following form

(2.5a) x = Ax + Bu + Bac(x) + Bp,(x)u

(2.5b) y = Cx + YT(x)

where

a,(x) = O(x)2 , pc(x) = O(x), yc(x) = O(x) 2,

and A and B are constant matrices defined in (2.4). otc(x), 0,¢(x), and yc(x) are all arbitrary smooth

matrix-valued functions of dimension mxl, mxm, and pxl respectively. Furthermore the matrix I

+ 0,(x) must be invertible at each of interest.

Controller form is useful in designing nonlinear feedback controllers. If we let

u = u + a,(x) + PC~x)u,

then (2.5a) becomes a linear system

x = Ax + Bu.
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Since (A,B) is a controllable pair so that we can find a matrix F such that A+BF is stable. If we

apply the feedback u = Fx + v or equivalently

(2.6) u = [ I + PC(x)]- ( Fx - qjx ) + v),

then the closed-loop system is a stable system

(2.7) x = (A + BF)x.

The nonlinear feedback control law (2.6) is used to cancel the nonlinearity of the given system.

We see from it that the invertibility of I + P¢(x) is necessary to guarantee the existence of the non-

linear feedback (6).

Observer form

The system (2.1) is said to admit an observer form if there is a change of coordinates (2.2) and

an observable pair (CA) such that (1) can be transformed into the following form

(2.8a) x = Ax + Bu + a(y) + P.(Y)U

(2.8b) y = y + yo(y)

(2.8c) y = Cx.

where

ao(X) = O(x)2, po(X) = O(x), TO(x) = O(x) 2,

and A and C are constant matrices defined in (2.4). 0(x(X), P3o(x), and yT(x) are smooth matrix-val-

ued functions with dimensions nxl, nxm, and pxl. They are arbitrary except x + yO(x) must be lo-

cally invertible function. Notice that the change of coordinates is typically different from the one in

controller form.

Observer form is useful in designing asymptotic observers. Now introduce an observer

(2.9) x = Ax + 0o(y) + 13o(Y)u - H(y - Ci).

A
If we denote x = x - x, then the error satisfies

(2.10) =(A + HC)i.

Since the pair (A,C) is observable, we can choose a matrix H such that A+HC is a stable matrix,

and then (9) is an asymptotic observer of (8).
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If a nonlinear system can be transformed into controller form and observer form (typically in

two different coordinate systems), then we can design an observer-based controller just like we do

for linear systems.

The question here to ask is that under what conditions the nonlinear system (2.1) can be trans-

formed into controller form (5) and observer form (8), and for what conditions the pairs (A,B) and

(CA) of the linearization are controllable and observable pairs respectively. The answer is the

nonlinear system (1) must be controllable and observable in the nonlinear sense and satisfy certain

additional conditions. Again readers who are interested in the details should refer to[13].

3.Right fractional description Suppose we have a nonlinear system in controller normal

form

(3.1a) xc = AxC + Bu + B(ac(x c) + Pc(xc)u)

(3.1 b) y = Cxc + Y'(Xc)

(3. lc) Xc(0) = x
0

where the c-subscripts indicate coordinates and functions associated to controller normal form. We

view (3.1) as defining an input/output map

(3.2a) G: u(.)I--) y(-)

from functions u(t) to y(t) for t > 0. We seek a right factorization of G

G = NoM 1

where N and M are input/output maps

(3.2b) M: v(.) 1--, u(" )

(3.2c) N: v(-) i-- y(-),

M is invertible and o denotes composition. Among others, Khargonekar and Sontag[ 12], Doyle[5]

Francis[6,7], Sontag[ 12] have treated such factorization of linear systems and Hammer[9] has dis-

cussed similar ideas for nonlinear discrete systems. We shall follow these authors, particularly

[5,7].
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To describe the input/output maps M and N we shall use a state space realization. In particular

we define M to be the input/output map of

(3.3a) =(A + BF) + Bv

(3.3b) ac(k) + ( I + 3,(k) )u = Fc + v

(3.3c) k(O) = 0

where (3.3b) defines u as a function of c and v.

We consider the decomposition N = GoM, which is realized by the 2n dimensional system

(3.1,3.3) described in k, xc coordinates. Let e =x- then

(3.4) = Ae + B(-F~c -v + ac(xc) + ( I + Pc(xc))( I + Ic(k))-( Fk-ac()+v))

If e(t) = 0 then i(t) = 0. Since e(0) = 0 we conclude that e(t) = 0 for t > 0. In other words, the re-

alization ()of N is not controllable because e(t) is unaffected by the input v(t).

A controllable realization of N is

(3.5a) , = (A + BF & + Bv

(3.5b) y = CQ + f(d-

(3.5c) ((0) = 0

Hence we conclude that G = NoMW1 where N and M are realized by (3.5) and (3.3). Notice that

M is invertible since ( I + Pc) is invertible by assumption.

Notice also that if (A,B) is a controllable pair then we can choose F so that (3.3) and (3.5) are

stable systems. Hence we have factored G over the ring of stable nonlinear systems. We are being

deliberately vague about the precise definition of a stable nonlinear system. It is clear that (3.3,3.5)

are "stable" under any reasonable definition.

Of course, we are interested in gprine factorizations over the ring of stable nonlinear systems.

Again we shall not try to make this concept precise but following Hammer[9] and others we shall

say that G = NoM -I is a coprime factorization if there exists P, the input/output map of a stable

system,
(3.6a) [P ] I- w"
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such that the composition

is the identity, w = v.

The input/output map of [NM ] can be realized by an n dimensional system

(3.7a) c = (A + BF) t + Bv

(3.7b) oac(k) + (I + I3(k) )u = Fk + v

(3.7c) y = Ck + Y()

(3.7d) k(0) = 0.

One left inverse of (3.7) is realized by

(3.8a) zc Az c + Bu + B(ac(zc) + Pc(Zc)U)

(3.8b) w =,(Zc) + + Pc(z c) )u - Fzc

(3.8c) z(0) = 0.

If e = k - zC then

= Ae + B(a ¢() - a (xc) + ( P(Q() - Pc(xc)) u

If e(t) = 0 then i(t) = 0 and since e(O) =0 it follows that e(t) =0 for all t 0 0. If e(t) = k(t) - zc(t) =

0 then w(t) = v(t) for all t > 0 so (3.8) is inverts (3.7).

However we do not know that (3.8) is stable. To insure the stability of (3.8), we must add to

(3.8a) an extra term. This term must stabilize (3.8) and must be zero when e = z. so that (3.8)

remains a left inverse of (3.7). How do we find such a term?

Notice that the dynamics (3.8a) is the same as the dynamics of the original system (3. la) and

notice that the other y of (3.7) does not appear in (3.8). Perhaps we can inject y into (3.8a) to

stabilize it? This is more or less equivalent to asking whether output injection can be used to

stabilize the original system (3.1). This is always possible for systems in observer form, hence we

assume that there exists a change of coordinates

(3.9) xC = x0 + ,x(Xo)

satisfying (2.2) transforming (3.1) into the observer form
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(3.10a) x. = Ax. + Bu + a(Cxo) + iP(Cxdu

(3.10b) y = Cxo + Yo(Cxo)

0(3.lOc) xo(O) = X0

Suppose we consider a similar change of coordinates for (3.8)

(3.11) zc = Z. + 0.(Z. )

to obtain

(3.12a) zo =Azo + Bu + a0 o(Cz) + JPo(Czo)u

(3.12b) w = ac(zo+ 0,o(zo)) + (I + Oc(zo+ co(zo)) )u - F(zo+ Oco(zo))

(3.12c) Zo(0) = 0

We add to (3.12a) the term

(3.13a) aot(y) - aoo(Cz o) + (3,(y) -po(Czo))u + H(Czo - y)

on the right hand side of (3.14a) to obtain

(3.12aa) z. = (A + HC)z o + Bu + aO(,) + P3o(i)u -

where y is a function of y of (3.7c) defined by

(3.13b) y = y + TYo)= C0 + o(C)

and &. is the state of (3.7) in observer coordinates

(3.13c) 4C = 4o + O(o

Notice that (3.13a) is zero whenever = zo, hence the input/output map P of the (3.12aa, b,

c) is also an inverse of (3.7). Also, if (C,A) is an observable pair then we can choose H so that

(3.12aa, b, c) is stable.

Now we summarize the analysis into the following right factorization theorem.

Theorem If the nonlinear system (2.1) admits controller form (3.1) and observer form

(3.10), then there exist stable mappings M: v-> u and N: w-->y, where M is invertible, such

that the input/output mapping G defined by the system can be factorized as G=NoM -1 . And fur-

thermore, M and N are right coprime, that is, the mapping [Nl] : ->- [U] has a stable left in-

verse P: [y] -->v such that the composition P1 [M ] is identity mapping.y N
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4.Left fractional description In linear system theory, observability is dual to controllabil-

ity. Unfortunately the analogy is not so straightforward for coprime factorizations. The theory of

right coprime factorization of nonlinear systems is very similar to the theory for linear systems but

theory of left coprime factorizations for nonlinear systems has some substantial differences with

the linear theory.

We start with a system in observer form (3.10) realizing an input/output map G. We define an-

other input output map

(4.1) M: [1-.->w

by

(4.2a) = (A + HC)ko- Hy + ao(/5) + Po(Y)U

where y is an invertible function of the input y defined by

(4.2b) Y = Y + Yo-)

and the output is

(4.2c) w = -C.o +

(4.2d) (0) = 0

Consider the serial connection of (3.10) and (4.2), this is not a realization of the MoG but it is a

rez;'Tation of N = Mo [s]. (This is the first important difference with the linear theory). If we

define o = xO - k., then N is realized by

(4.3a) (A + HC) + Bu

(4.3b) w C o

(4.3c) o(0) = 0

because in o, xo coordinates for (3.10, 4.2) only the o are observable from the output w. We

consider N, M as a left factorization of G, although it is really a left factorization of [ ] in the

sense that

(4.4) M[ II
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Notice that we cannot compose this on the left with M 1 since A is not invertible as a map-

ping from [y] to w.

Perhaps the best way of viewing the situation is
(4.5a) - l=[I0 MrG

or G , 0 M oi
The matrix notation is somewhat misleading because A depends on both u and y.

In any case, if (CA) is an observable pair then (4.2) and (4.3) can be made stable by proper

choice of H. In particular, the nonlinearities in (4.2) are momeryless functions of the inputs u and

y hence (4.2) is BIBO stable.

Next we address the input/output map(4.6a) [] >
where again the matrix notation is somewhat misleading since both u and y are inputs to M i.e.,

(4.6b) w = -N(u) + M i [y].

This input/output map can be realized by an n dimensional system

(4.7a) o = (A + HC)40+ ox0(y) + Bu + 3o(5Y)u -

where y is an invertible function of the input y defined by

(4.7b) y = y + Yo(Y)

and the output w is given by

(4.7c) w = -C o + Y.

We wish to find an input"jutput map P realized by a stable system so that P is a right invertible of

(4.8a) P :vw [y

(4.8b) - i ]oP" vl-" w = V.

We start by constnicting an inverse for (4.7),
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(4.9a) z. = Az. - Hv + Bu + 0 o(y + 30 ®)u

(4.9b) y =Cz o +v

(4.9c) y = Y + YoG)

(4.9d) u =?

(4.9e) z0(O) = 0

We leave the u, which also appears in the dynamics (4.9a),unspecified for the moment. Notice that

if e = - z. is the error between the states of (4.7) and (4.22) then e = 0 whenever e = 0. Since

e(O) = 0 we conclude that e(t) = 0 for all t > 0 and so by (4.7c) and (4.9b) we have w(t) = v(t). In

other words (4.9) is a right inverse of (4.7).

What about stability of (4.9)? We would like to choose the output u in such a way that (4.9a) is

stable in some sense. If we ignore the -Hv term of (4.9a) this looks like the original system is in

observer form. This is not exactly true because y is defined by (4.9b) by a change of coordinates

(3.9). If we apply a similar change of coordinates (3.11) to (4.9) we obtain

(4.1Oa) zc = Azc + Bu + B(ac(zc) + Pc(zc)u) - (I + -'(Z))(Hv )+az o

(I + -- (zo))([a(Czo+ v ) - co(Czo)] + [Po(Czo+ v ) - P3o(Czo)]U)
a

Suppose we choose an F such that (A + BF) is stable and define u by

(4.9dd) (cx(zc) + ( I + P3c(z,) )u = Fzc .

The u in (4.9d) is chosen in (4.9dd).

When the input v = 0, (4.1Oa) becomes

(4.1Ob) zc = (A + BF)zc .

We view (4.10a),(4.10b),(4.9b) and (4.9c) as a realization of P: vt-->[u], then P is a right in-

verse of [-&, 1N ].

We summarize the above analysis as the following theorem.

Theorem If nonlinear system (2.1) admits observer and controller forms, then there exist

stable mappings t: [u]->v and N: u -->v such that M1o[-]= N . Furthermore Mi and IN are
Ly
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left coprime under the sense that the left combined mapping [iiq, a i]: [u] t.->v has a right stable

inverse P: w->[]such that the composition [R1p~ o is identity.

5.Bezout identity We conclude by noting that a "nonlinear Bezout identity" holds for the

above. In other words beside P being a left inverse (3.6b) for [M] and P a right inverse (4.9b)

for [ ],it is also true that

and

(5.2) PoP:v -+ w=O.

We summarize these equations by (5.3) in the following theorem.

Theorem (nonlinear Bezout identity) The systems defined in last two theorems

[M], P, [-1i, M ], and P satisfy the following Bezout identity:

(5 .3 ) - P , P  =

where [M], P have realizations as discussed.

6.Conclusion We have briefly described an approach to nonlinear factorizations based on non-

linear normal forms. The research is just the beginning. Many concepts are not rigorously defined.

We hope that this attempt will give the nonlinear system study a push in this direction.
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OBSERVATION OF A RIGID BODY FROM MEASUREMENT

OF A PRINCIPLE AXIS*

Wei Kang and Arthur L Krener

Department of Mathematics
University of California

Davis, CA95616

ABSTRACT is the angular velocity. The inertia tensor is

The spacecraft attitude control has been studied before. see =1I 0 0][3]. In this note, we give a method of observing the attitude of a 01freely rotating spacecraft by measuring one of its principal axis.

This problem is solved in §2 and §3. In §4, a method of 0 13
determining the angular velocity by the trajectory of one of its
coordinates is given.

|rarlia Ellipsoid
1. INTRODUCTION

In the following, we consider a freely rotating rigid body
with no externel torques acting on it. Let {el,e2 ,e3 } be a set ofr
orthonormal axis fixed in the spacecraft, with the origin at the
center of sa*t ! each axis parallel to one of the principal axis. A
second frame 4rl,r2 ,r3 ) is an inertially fixed basis. In page 445 ./variamplan
of [2], Symon describes the motion of a freely rotating body as
follows. Fix an ellipsoid on the spacecraft, which can be
represented as L

3 3 Figure 1. The inertia ellipsoid rolls on the invariant plane
(Xxiei I Ii x i-2 = 1)

i=l i=1 2. SER AB UMIiI
Suppose the output of system (1) is the position of the

It is called the inertia eUipsoid. There is a fixed plane, P, which is third principal axis, e3 (t), in inertial coordinates. We consider the
called the invariant plane. As the spacecraft is rotating freely, one observability of the model, Le, whether the complete motion can
can imagine that the inertia ellipsoid is fixed on the spacecraft and be determined from the time history of e3 (t) in inertial coordinates
it is rolling on the invariant plane without slipping and its centeris and the equations of motion (1). Rewrite the system as follows:
fixed at the ori&, see figure 1.

Suppose r is the vector from the origin to the point of
contact between the ellipsoid and the invariant plane. Then, the (01

angular velocity o satisfies
(2-1)

co = br

where b is a constant.The following equations describe the
evolution of the spacecrafs attitude sinW cosw 0 0

11(1 + (I3 - 12)(02(0 3 = 0 sine sin0

12(02 + ( 1 -13)o0)103 = 0 -sinvlctgO -cos,ctg 1 (2-2)

U J L cosVi -sinW v1 03 + (12 - I 10 2 = 0

sin The inertial coordinates of e3(t) are the observation and are givenW,= .- +" 1 .- (02 bysin sine
= I" in /COO CO~/COS0 /1"cOs2Osin l / - 1h I(0*

+V) == j -L.cs co 2 Oin _ cs(G, w +(0sin " sine Y cos 2Ocos| =|h 2(GO) (2-3)
0 = coswc0oI - sinwwo2  cose h3(e,)

Here

where (, , 0) are Euler angles (see [3)),and 12 - 13 13 - 11  11 - 12
3 12 13

_ oJiei Theorem 1.The system (2) is observable iff a+P * 0 and
(0+1)(012 + (a-l)o2

2 00.

Research supported in part by AFOSR 85-0267



Proof: To prove this system is observable, using the where C = cosW and SW sinv.
method of (1], we need to find the dimension of the distribution
C(r) generated by (dy ,LFdy. .... LFrldy). Because The determinant of this matrix is

h3 = +1 1  2+h 2 2 [( 3 + 1)€o 1
2 + (a- 1)c-c2

2 ](a +)

Therefore, this is not zero iff C(3) has full dimension.
the dimension of (r) can be determined by:

..... Remark 1: (0 + 1)o012 + (a - 1)o22 * 0 implies that
dhI, LFdhI ........ LFrldhl oand o2 can not be zero at the same time. Ifco 1 = o2 = 0, then

dh2, LFdh2........ Lr-ldh2  the spacecraft turns around e 3 , the output is a constant vector and
it is impossible to determine el, e2 from the trajectory of e3(0.

But LFkdhi, i=1,2, are complicated. To determine the dimension,
we make a change of coordinates in the output space. Let Remark 2: The condition cc + 130 implies I1 * 12, If 11

12, then the spacecraft is symmetric with respect to e3 , We can not

F h1  ahl tell the difference between el and t 2. Moreover, e1 and e2are not
- 71 uniquely defined. So it is impossible to determine the position of

A- el, e2.
ZM h 2 h .. 3. A f1E DETERMKNATION

In this section, we assume that 1 > 12 > 13 and )3 * 0. If

k (03 = 0, then (o1 0 (see [3]). So, from the similar method in this
Then, det(A) = cos~sin0;and A is nonsingular whenever T section, we can determine the attitude by measuring e1 .

.The angle 0 depends on the choice of the inertially fixed basis.
ke From [3]and the introduction, we know that the motion of

We can chose suitable basis to avoid the case 0 = in a lo(al the spacecraft is totally determined by the following three

neighborhood.Therefore, by change of coordinates in the output constants.

space we can take 0 and 0 the outpuL.The observability of (2) is (1) The direction of L, which is the normal vector of the
equivalent to the observability with respect to the output invariant plane P.

=[0] (2) The distance, d, from the origin to the tangent plane P.

(3) The energy T.

By calculation, we know that As the inertia ellipsoid rolls on P, the vector e 3 turns
LFO = colcoSq - w2sin4 around the axis L. Suppose that the coordinate of e 3 (t) in the

inertially fixed basis is (x(t), y(t), z(t)), it is expressed by Euler

angles in (2). Imagine that the curve described by e 3 (t) has mass
S= (Wlsinv + 0)2co )- with the density a constant 1. Then L is a vector passing through

sine the center of this mass. So the coordinates of L in the inertially
fixed basis are

LF2 0 = sin0cos0(L14)2 - 0)3 sin0(LF4)
so so so

+ ao 2 ~cosv - Owl Jx(s)ds Jy(s)ds Jz(s)ds

cos XL= YL= --- ZL= s(3)
ctg(LF)(LB)+ -- sine )Where s is the length of the curve described by e 3(t) at time t. The

number so is the length of the smallest closed curve described by

+ L F + Sin os e3 (t) if e 3 (t) moves in periodic, If it is not periodic, we must take
sin0 sine02-0 smIn the limit of these integrals as the length so goes to 0.

To find d, we consider L-e 3 . Let's take the inertia
In dLF20 and dLF2 0, all the terms containing de, do, dLF4 or ellipsoid as
dLF can be cancelled, the dimension of C(3) is the same as the
rank of the following matrix: Ilr 1

2 + I2r2
2 + I3r32 = 1 (4)

1 0 000So, the vector L is parallel to

I0 1 0 0 0 0 lrlel + 12r 2e 2 + 13r 3e 30 0 WsV CV -s0 J
I 0 0 .ot2(03S'#-OQ w3CV -06a3SY u03CvY (a-1)w2CC-(+1) 1SW where r= Xriei is the vector from the origin to the point of contact
LOO o U 2 03 CV-O1 Cl, 3 S (o03CV ow3SV (a-I)o),2SW+(O+I)w 1Ci-i i=l

between the ellipsoid and the invariant plane. Therefore
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1-A A
iriei d= +-3 )

L = (5) 1

Now, we try to determine the energy T by the frequency Of e3"
i=1 Suppose

and X = (xl(t), x2 (t) x3(t))

= L l r 2 + 12r2
2 + 13r 3 2 is the solution of

j2I2 i2ri2 x -[XX
iX = i=1

x3 = 1XlX 2
So such that the initial condition is on the inertia ellipsoid and

Ir i
eiL =ri lid (6) d- 1

i=1 xi2 1i2

i=1

The function Ie3 .LI has its maximum value iff 1r31 has its maximum
value.From the first three equations of system (2), we can easily
prove

)22 o(32 A = Xxi(Xt)
- - constant

f - It can be proved that CO 1, C02 and ()3 satisfy the first three

equations in (2).The energy
So (co2 (t),o3(t)) describes an ellipse. In (2], it was proved that r = )2 _2
bc , therefore (r2 ,r3 ) is also on an ellipse. The function 1r3(t)! T=2 WIoe = -2-- (I1x1

2 + 12 x2
2 + 13 x3

2 ) - 2
has the maximum value implies r2 =0. The equation (6) implies
that lr3 (t)l has its maximum value iff IL-e 31 has its maximum
value. Denote this maximum value of IL-e31 by A. So IL-e 3I=A The period if co is X0. Suppose the period of (03 is a. then

implies r2=0. From (4) and (5), we obtain

Ilr 2 + 13 r3
2 =1 (7) 2a = X - 2-T

L = lrjel + 3r3e38) So
11l

2 rl 2 + I3
2 r3

2

T a02  (2
so, L is in the e1 , e3 plane. T=a (12)

L-e I = ± - (Le 3 )2 =±f (9) Here, a is the period of (03, which is unknown. But we proved
that

The equation (6) and (9) imply e3 .L = r313d

rlIld = ±4i72 r3 = xO)

r313d = A where b is some constant. So, a is also the period of e3 .L.
Therefore

4jA2 A Therefore, we can use (3) to determine L, (11) to
rl= ± lid r2 =-1 (10) determine d and (12) to determine T. From the proof, we could

see that the center of the curve described by e3 (t) is L, the

Substitute (10) to (7), we have amplitude of e3 LI determines d and the fzyquency of Ie3 LI
determines the energy T.

I -A 2  A2

I + 2= 4. ANGULAR VELOCITY OBSERVATION AND THE
11d7 12P OBSERVER NORMAL FORM

In this section, we study the observability of the following
From this, we obtain system:



(01 = ao203 2 012
2= 13(3)3 (13) 

-+ C2C332 yC1(02

Y = CO I Because I1 > 12 > 13 or I1 < 12 < 13, the constants a and 13 have
different signs, the constants ot and y have the signs.

This is a subsystem in the spacecraft attitude problem which is
related to the angular velocity and the energy. In this section, we 2 2
assume I1 > 12 > 13 or I, < 12 < 13.

P3 a
Theorem 2. If 13 * 12 (a * 0), 01 * 0, (02 + (03*0, then

system (13) is observable, is an ellipse. So (max(0)i1,0) is on the ellipse. So

Proof: The following relations can be easily proved. cl =I c max(o 1
2 )

LFd0)l = ao)3do)2 + aw 2 d03 Since

LF~dco1 = a3 2 dol + 2a 13co3do).3  0)32 (012

+ a.P22dco I + 2. 1 0l02do)2 y a 2

Therefore, the dimension of the distribution generated by de01 , is a hyperbola, co 0 means that w12 takes its minimum value if

LFd)l, LF2 dowl is the same as the rank of the matrix (03 = 0. So[1 0 0 c2  c-rninJ0o1
2)

0 3  a(>2  Therefore, the formulas in theorem 3 are proved.

In the following, we are going to find a kind of change of

Its determinant is coordinates so that (13) can be transformed to observer normal
form, i.e, we want to change (13) and make it look like

2a20)lI o)3 2 "" .r2) x = Ax + f(y,u)

Because 11 > 12 > 13 or 11 < 12 <13 , we know that 13 and y have y = Cx

different signs. So, the distribution has dimension 3 whenever a where (CA) is an observable pair.
0, 0)1 0, 0>22 +0>32 *0. The theorem follows.

In [1], this method is discussed in detail. In example 7.3
Remark: In the remarks after theorem 1, we explained why of [1], the author proved a necessary and sufficient condition for a

2he 2ondo Ti c as bd osystem like (13) to be transformed to observer form. Unfortuately,
the condition (1 212 and €2 + 2 0 arise. This can also be it can be proved that system (13) does not satisfy this condition.
used to explain the condition on 12, 13, W2 and (03 in theorem 2. Therefore, we have to think about this problem from another point

of view.
The condition w I  0 is necessary. From the following

discussion, we can see that if c = 0, then (02, c03 can not be In theorem 4, we will find a family of changes of

estimated by y = wl. coordinates x = x(co,c) such that for each output trajectory, there
is a constant co so that x = x(o),c 0 ) transforms (13) to an

Theorem 3. Under the same hypotheses as theorem 2, observer normal form. x(o),c) and the observer normal forms are
then continuous with respect to c.

2 = 12 -Theorem 4. Under the same hypotheses as theorem 2,
(02 = L 13.-a{l (14) we definea

(03 2 = 1-- (12 - TCL-max~o)12} (15)

a x2 = oa(20)3

Proof: From (13), we have x = 0 + aW 1 o 2  (16)

1 deal 2  I do 2
2  I d0)3

2  2
a dt - Pdt -Y - (13'+132 +y2 )y 3 -13.py

Therefore, c =- at(max(y2 ) + min(y 2 ))

= a +Cl Then x(ca(t),c) satisfiesct



XI = X2

2
x2 = x3 + y+ 2 + y2)y3 + cotIy (17)

x3 =0

y=x Il
S- I I.e

'

Proof .st*ttnf; (16) into (17), and use (14), (15).

In this note, we assume the spacecraft moves freely. An
obvious question is, how to observe the attitude when the system
has nonzero input ? This is an important open question.

Another interesting problem is, for what range of the
output, system 13) can be estimated by theorem 4 without
changing the )ter c.

The results in this note are applicable to the rigid body
problem, but most recent spacecraft research is directed towards
large flexible space structures and the models are much more
complicated. However, the rigid dynamics are still interesting and
important.
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