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In the main body of the report, entitled “Higher Degree Linear
Approximations of Nonlinear Systems‘,’\"\ir'é;develop{va new method for
obtaining higher degree linear approximations of ‘a certain class of
nonlinear control systems. The standard approach in the analysis and
synthesis of nonlinear systems is a first order approximation by a linear
model. ) This is usually performed by obtaining a series expansion of the
system at some nominal operating point and retaining only the first degree
terms in the series. Obviously, the accuracy of this approximation depends
~on how far the system moves away from the nominal point, and on the
relative magnitudes of the higher degree terms in the series expansion. In
the report, we seekgén approximation for a nonlinear system by a linear
model up to higher degrees than one. This is achieved by finding an
appropriate nonlinear coordinate transformation-nonlinear feedback pair to
perform the higher degree linearization. With the proposed method, one
can improve the accuracy of the approximation up to arbitrarily higher
degrees, provided certain solvability conditions are satisfied. The Hunt-Su
linearizability theorem makes these conditions precise. Our approach to the
solution of this linearization problem is similar to Poincaré's Normal Form
Theorem in formulation, but different in its solution method. , After some
mathematical background we derive a set of equations (called” the
Homological Equationslf))based on the goal of obtaining a model accurate to
a higher degree in the series expansion. A solution to this system of linear
equations is equivalent to the solution to the problem of linearization up to
higher degrees by coordinate change and feedback. However, it is
generally not possible to solve the system of equations exactly. We outline
a method for systematically finding approximate solutions to_these
equations using singular value decomposition, while minimizing an error




with respect to some defined norm. The solution thus found minimizes the
error between the approximate linearization of the given system and a
“nearby” one that is exactly linearizable (in the sense of Hunt-Su) up to the
specified degree of approximation. We present a computer program
written in the MATLAB language that automates the solution of the
considerably large system of equations. Finally, we demonstrate the
applications of the method and the efficiency of the results by several
examples and simulations.

In Appendix A we demonstrate the usage of the program with an
example session recorded during running MATLAB. |

Appendix B contains the additional publications supported by the
grant.
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1. INTRODUCTION

1.1 Background

The state space approach to linear control systems matured into a well—-
defined and powerful discipline by the 70's. Contrary to linear systems,
nonlinear control systems have been studied with many different methods
of approach, usually depending on the type of nonlinearites involved. In
this framework, many tools of analysis involving qualitative, quantitative
and computer—aided methods were developed as diverse as perturbation
methods, limit cycle analysis, describing functions, and graphical phase—
portrait methods [5,6]. Most of these approaches were suited only to the
specific types of nonlinearities for which they were developed. Until the
mid—seventies, a coherent theory of nonlinear systems did not seem

possible for such diverse types of systems.

However, in recent years, a rich theory for nonlinear systems has
been developed using differential geometric methods. We can now say that
a theory for nonlinear control systems exists. In fact, the differential
geometric setting allows the generalization of many known classical results
in linear systems theory to nonlinear systems. With the introduction of
differential geometric tools, many interesting results have been obtained
for nonlinear controllability, observability, equivalence, decomposition,

optimality, control synthesis, linearization and many others. -In this




broader sense, it can be stated that linear systems are a special case of the

more general class of nonlinear control systems.

The first major developments in the general theory for nonlinear
systems were through the introduction of differential geometry by
Hermann [15], the analysis of linear multivariable systems using a
geometric approach by Wonham [46], and one of the first important results
in fhe transformation of a nonlinear system into a linear system by Krener
[27,28]. We refer the reader to Sussmann [44] for an excellent survey and

bibliography.

1.2 Motivation

In the analysis of scientific and engineering systems, one often encounters
situations which do not lend themselves to exact solutions by conventional
methods. The assumption of linearity in most control system models, for
example, is an oversimplification at best. This assumption, of course,
reflects the difficulties one would rather avoid in dealing with an otherwise
nonlinear model. Indeed, one can seldom find a technique to solve a given
nonlinear problem exactly. Since the control system designer is equipped
with powerful methods and tools for attacking linear control systems, the
motivation for “linearizing” a given nonlinear problem is clearly very

strong.

Therefore, whenever possible, the control problem poéed must be
suitably transformed to bring it into an appropriate form that enables the

implementation of linear control design techniques. However, the




systematics underlying such modifications by transformation are by no
means self-evident. The simplest of these modifications is a first degree
linear approximation of the nonlinear model by calculating a series
expansion at a nominal operating point. The validity of this approximation
depends on the relative size of the higher degree terms. In systems where
nonlinearities are strong, these higher degree terms cannot be neglected,

and the approximation fails.

The question of whether a nonlinear system can be equivalent to a
linear system under some group of transformations such as change of
coordinates will be one of the main issues of this report. This question has
been addressed by many researchers. The earliest example in this area was
solved by Poincaré [42], who gave a sufficient condition for the
linearizability of a vector field around a critical point by changing state
coordinates. With the introduction of differential geometric techniques,
the method of linearizing transformations under a nonlinear change of state
coordinates and nonlinear state feedback was developed by various

researchers.

Krener [27] discussed the question of when a nonlinear system can be
transformed into a linear system by a change of state coordinates.
Jakubczyk and Respondek [25], and Hunt and Su [17] independently
considered the full state feedback and coordinate change problem. This
problem, solved in a slightly more general setting by Hunt and Su, has been
since coined as the “Hunt-Su Linearization Method”, and it is one of the
most important developments in the field. The Hunt-Su linearization
method gives necessary and sufficient conditions for there to exist lacally a

coordinate transformation and feedback that carries a nonlinear system into




a linear system. In [29], Krener considered the case in which one can find
an approximate linearization by considering the second and higher degree
terms in the truncated series expansion of the vector field, and proved a
weakened version of the Hunt—Su linearization condition. In [35] and more
recently in [34), further results in the solution of the resulting

transformations were presented.

Many fine applications of the above developments have since
appeared in literature. In [38,39] Meyer, Su, and Hunt have successfully
applied these techniques to automatic flight control. Krener in [30] has
suggested a new approach to compensator design in the same framework.
Freund {13] applied these methods in robot control even before the theory
was fully developed. Other applications in robotics appeared in [11,45]. In
[24], Isidori and Ruberti have solved the input—output linearization
problem for a system with output, where the goal is to find a state feedback
law such that the input-dependent part of the output of the closed-loop

system is linear in the new input.

Important theoretical results and applications were also developed on
the dual problem of nonlinear observers. In order to construct an observer
for a nonlinear sysiem, a suitable coordinate change is first found which
transforms the system into an observer canonical form. Then an observer
with linearizable error dynamics is constructed in the new coordinates.
This approach to the nonlinear observer problem was first proposed
independently by Krener and Isidori [33] and Bestle and Zeitz [8]. Krener
and Respondek in [36] extended the problem to multi-input cases. An

application of this method appeared in [12].




In the next chapter of this report, the Normal Form Theorem of
Poincaré, the Hunt-Su linearization condition, Krener's results on
approximate linearization, and the results of [35] will be reviewed in detail.
These topics are the most relevant prior developments on which this report

is based.
The objectives of this report are to:

(1) Review the current developments and the mathematical
background necessary to establish a good understanding of the approximate
linearization of nonlinear control systems. Our approach here will be
from an engineering point of view, and explicit reference to advanced

mathematics will be kept to a minimum.

(2) Given a nonlinear control system in state-space form that consists
of n first-order differential equations, find a general solution to the
problem of approximate linearization by state feedback and coordinate
change. Here we derive the set of linear equations from the Homological
equations. Solution to this system of linear equations is equivalent to the

solution of the linearization problem.

(3) Present an efficient method of solution to the Generalized
Homological equations. In general, the solution will not be unique. A

solution is found that is optimal in some statistical sense.

(4) Incorporate the method of solution in a computer program. The
derivation and the solution of the homological equations is extremely

tedious. The structure of the equations is dependent on the order of the




system being linearized. A computer program that automates the

procedure has been written in the MATLAB program language .

(5) Illustrate the method using examples. Using the computer
program that solves for the transformations as an aid, linearize an example
control system up to second degree terms in its series approximation, thus
demonstrating the program as a control system design tool. By
simulations, compare the response of a control system that has been
linearized up to higher degree against the response of the same system

linearized only up to first degree.

1.3 Outline of the Report
The report is organized as follows:

In Chapter 2 some mathematical preliminaries that are directly
relevant to this work are reviewed. Various mathematical tools such as Lie
derivatives, Lie brackets, and distributions are introduced. Controllable,
controller, observable and observer normal forms for linear and nonlinear
systems are presented. The importance of the nonlinear controller form in
our work is emphasized. The Hunt—Su linearization condition [17] and the
extension of this result to the approximate linearization of control systems
by state feedback and coordinate change [29] are explained. The results of

these two papers are central to the report.

In Chapter 3 Poincaré's Normal Form Theory, and its relevance to
higher degree approximations of control systems is discussed.. The

problem of higher degree approximations to noniinear control systems is




stated, and references (34,35], which consist of some preliminary work of
this report, are reviewed. The Homological equations of Poincaré are the
starting point for the derivation of the Generalized Homological Equations.
A solution to the generalized homological equations yields the equivalent
solution to the linearization problem with coordinate change and feedback.
For the sake of analysis, an appropriate basis is introduced for the
expression of higher degree monomials in the series expansion of a vector
field. The generalized homological equations are evaluated with the aid of
this basis. An equivalent system of linear equations to be solved is
obtained. Properties of this linear mapping are discussed. An optimal
solution which provides the best approximation in some statistical sense is
presented for the case when there is no exact solution to the linearization

problem.

Chapter 4 presents the analysis of the kemel and the co-kemel of the
linear mapping that is equivalent to the generalized homological equations,
and derivation of the linear system of equations that is equivalent to the
homological equations. For the second-degree linearization problem of a
single-input control system it is shown that the kernel of the mapping is
always of dimension one. The analysis of the co-kemel of the mapping is
far more complicated. The co-kernel equations are derived using a
formula for repeated Lie derivatives. These equations represent the
relationships that have to be satisfied among the coefficients of the second
degree terms in the vector field in order the system to be exactly
linearizable (up to second degree for the case we have analyzed). Next, the
method of solution for the system of linear equations derived in Ch. 3 is

presented. All of the terms that appear in the homological equatidhs are




expressed in a suitable basis. These expressions enable us to numerically
calculate the coefficient matrix in the linear system of equations, which is

implemented in the computer program.

In Chapter 5, the computer program used for solving the equations is
explained in detail. This program takes the first and second degree parts of
a nonlinear control system as input, and solves the equivalent set of linear
equations that are obtained from the generalized homological equations. It
is written in the MATLAB application program and incorporates into the
solution of the problem all the results of Chapters 3 and 4 in an efficient
way. Next, various nonlinear control systems are considered as examples
to demonstrate the efficiency of the approximate linearization method. The
examples chosen are control systems that are either exactly linearizable up
to second degree, or systems that yield only an approximate linearization.
Comparisons are made in the time-domain responses against first-degree
approximations of the same systems. The response plots, the performance

and effectiveness of the method, and their significance are discussed.

Finally, in Conclusion, the results are summarized and the
significance and implications of this study in control system science are

discussed. Possible future research topics in this area are suggested.

The appendix presents a sample session of the MATLAB program
for Approximate Linearization of Control Systems that was recorded

during running the program.




2. MATHEMATICAL BACKGROUND

This section will aim to clarify the connections between the classical
treatment of linear control systems and the more recent results in nonlinear
control systems. To this end, we will introduce some matherﬁatical
definitions and results that are not traditionally used in control system
analysis. Our central focus in presenting the mathematical background will
be toward a precise statement of the linearization problem which this
report addresses. We will closely follow prior work by Isidori [21,22],
Banks [7], and Krener [27,29,30,32].

2.1 Preliminaries

We introduce some notations and definitions:

R": n—dimensional Euclidian space.

M: a paracompact, connected C*° manifold of dimension n.
V(M): the real linear space of C* vector fields on M.

C*°(M): set of real-valued functions on M.

T (M): tangent space to M atx €M (a copy of R").




| 10

™ the tangent bundle over M; the union X eLzlw T.,M of tangent
spaces.

V*(M ): the real linear space of C* one-forms on M, dual to V.

A: a distribution on M. A, fiT, (M), V xeM .

The differential operator d: C°(M)—V* (M) is defined by
dh = (dh/dx)dx, + - + (Qh/dx)dx, for h € C*°(M).
For any one form

w = wdx; + -+ w,dx,,

n n

and vector field
f=f1(a/8x1) + - + f,(d/dx,)
the dual product <w, f> is defined as the scalar function
wifi + o +w,f.
Usually, a vector field fe V(M) is denoted as a column vector
f=U, )
and a one form w € V*(M) is denoted as a row vector
w=(wy -, w,).

A function h € C*°(M) defines a one form

dh = (dh/dx,, -, dn/dx,).




Definition 2.1.1 LetfeV(M). There are three kinds of Lie

derivatives related to f, which are expressed as follows:

(i) The Lie (or directional) differentiation of a scalar function A with

respect to f:

heC™M); L;: C=(M) — C>(M),
Ly(h) = <dh,f>= 2 f, (x) a—axhlf.

This is more precisely the derivative of the function h in the direction of
the vector f.
(ii)) The Lie derivative of a vector field g with respect to f:
geVM);, Le: V(M) — V(M),
Ly (®)=1f¢l= %f'f— 'g‘,ég-
This is called the Lie bracket, and it is also denoted by ad;g.
(1ii)) The Lie derivative of a one-form w with respect to f:
weV (M), L,: V(M) - Vi),
L(w) = d<w,f>=( %“—;zf)T+ wg')é
where the superscript T denotes the transpose operator.

Higher derivatives can also be defined by induction as follows:

@) LYk =h,  Lph =<dh,f> ..., Lgh)=L{ (L h)

11




a a i i-
(b) ad)g = g, ad}g=58;f— gfg, ..,adfg=[fad;"'g]
(©) Liw = w, Lyw =d<w,f>, ..., Lw =Ly (L™ 'w)

These three types of Lie derivatives are related by the Leibnitz

formula:

<wa, g> =<w, adfg >+ Lf <w, g> (2.1)

Definition 2.1.2 A set of C* vector fields {X!, ..., X%} on M is

involutive if there exist C* functions c{/(x) such that
. . d
(X, X ]= Ec,‘;f OX* (),  1<ij<d; i#j. (2.2)

Definition 2.1.3 A distribution A on a manifold M is a mapping
assigning to each point p of M a subspace A(p) of the tangent space T (M)

to M at p.

Definition 2.1.4 A distribution is nonsingular on U, an open subset
of M, if there exists an integer d such that dim A(p) =d forallp € U.

2.2 Normal Forms for Linear and Nonlinear Systems

A state space description of a controllable linear system can be transformed
to controllable or controller form by a linear change of state space.
Similarly, a state space description of an observable linear system can be
transformed to observable or observer form by a linear change of state
variables. In the context of this section, controllable, observable,

controller, and observer canonical forms are called “Normal Forms.” The
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definition of normal forms slightly differ in literature. We follow that of
[26].

In this section we will present normal forms for linear and nonlinear
systems. This will be done in a systematic way that is very suitable for the
extension of these concepts to nonlinear systems. The treatment closely
follows [32].

We introduce some notations and definitions. The indices 1y, ...,
are positive integers summing to n.

Definition 2.2.1 A prime triple (A, B, C) with indices [,, oly 1S
triple of block diagonal matrices of dimension n x n, n x g, and g x n of the

form
r—141 -
_01. . 'OTIiXIi
A= O. | swhere A;= | (2.3a)
: 1
Lo o 0-
- A,
"B, )
0], x 1
.0 Z
B = 0 ; where B; = | | (2.3b)
: LO
- B,

and
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O 1 x I,

C= O ; where C;= [10 - - - 0] Y (2.3¢)

P
Consider a linear system described by

E=Ft+Gu (2.4a)
y = HE (2.4b)

where F*"*" G"*™ and H?*", £ € R", u € R™, and y € RP. The system

is said to be controllable if

rank {(F"7'G/:j=1,...,myr=1,..,n)=n. (2.5)
The system (2.4) is observable if

rank {HiF"]:i= 1, ...,p;r=1,...,n}=n. (2.6)

Note that in Eqns. (2.5) and (2.6) while F" denotes the r'th power of F, G’
and H; denote the j'th column of G and i'th row of H, respectively.

The controllable form of a linear system is

x=Ax -aCx + Bu (2.7a)
y=i (2.7b)
where (A, B, C) is a prime triple with indices /,, ..., [, and & and vy are

arbitrary matrices of dimensions n xm and p x n. For example, when

m =1, i.e. for a single—input system, (2.7a) takes the form
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(-, 1 0] 0]

X = X + u
1 0
___ano . . - O_J L—I_J

The observable form of a linear system is

x=Ax - Bax + Bu (2.8a)
y=Cx (2.8b)
where (A, B, C) is a prime triple with indices /;, ..., [, and o and P are

arbitrary matrices of dimensions p x n and n x m.

A system (2.4) can be transformed into controllable form (2.7) by a

linear change of state coordinates if and only if it is controllable. 7
Similarly, a system (2.4) can be transformed into observable form (2.8) by

a linear change of state coordinates iff it is observable.

The controller form of a linear system is

x=Ax - Box + BBu (2.9a)
y=7x (2.9b)
where (A, B, C) is a prime triple with indices [, ..., l,, and @, B and vy are

arbitrary matrices of dimensions m x n, m x m, p x n except B must be

nonsingular. Define a pseudo—output y for the system (2.4)

y =K§ ' (2.10)




where K is an m x n matrix such that

{0 1 <£r < lj
K, FF~G/ = 5 (2.11)

; r=lj

The observable form realization of (2.4a) and (2.10) is a controller form
realization of (2.4). In other words, the controller form (2.9) is actually
the observable form of the original system (2.4) with respect to the

pseudo—output (2.10).

The observer form of a linear system is
x=Ax —aCx + Bu (2.12a)
y=YCx (2.12b)

where (A, B, C) is a prime triple with indices [, ..., [, and «, f3, Y are

b
arbitrary matrices of dimensions n xp, n xm and p x p except Y must be

nonsingular. One can define a pseudo—input

E=FE+Qu (2.13)
where Q is an n x p matrix defined as
0 1 <r <

-1 '= . .
H,F~'Q/ {& . (2.14)

1 !

The controllable form realization (2.12) of (2.4) is an observer form

realization of (2.4) with respect to the pseudo—input p.

Next we consider a nonlinear system described by
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E = f(&) + g (2.15a)
y = h(&) (2.15b)

where £ € R", u e R™, ye R?, and f, g, h are smooth C* functions.
There are four normal forms for the nonlinear system (2.15), defined as

follows:

Observable Form :

x=Ax - Ba(x) + B(x)u (2.16a)
y=Cx (2.16b)
where (A, B, C) is a prime ‘ripie with indices /,, ..., l,, and o and B are

smooth matrix valued functions of x with dimensions m x1 and n xm. To

illustrate how one obtains the observable form, we write (2.16a) in explicit

form:
Yi =X

Xy = X + B (0u

X, = = 0y(x) + By (u

fori=1, ..., p. We make note of the notation in which we are using the

TR}

colon “:” to separate the first index, which represents the component of the

output, from the succeeding subscript, which represents the number of

derivatives from the output. Thus x;; is the (j — 1)-st time derivative of the
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ith output y,. Since the output y; is equal to 4,(§) in § coordinates (Eqn

(2.15b)), the following coordinate transformation relates (2.15) and (2.16):
xi:l = h;‘(g)

Xip = L(h; )E)

X =.L}“’(hi )&) forj=1,..,1 (2.17a)

and

Bl = Ll ih NE) forr=1,..,0;j=1,...,1.

- a; = LfiiCh; )) (2.17b)
Next we present the Controller Form:

x=Ax - Ba(x+ Bp(x)u (2.18a)

y = Y(x) (2.18b)

where (A, B, C) is a prime triple with indices [, ..., /,, and o, 8 and 7y are
smooth matrix valued functions of x with dimensions m x 1, m x m and p
x 1. To obtain the nonlinear controller form, one chooses a pseudo-output
y = k(&), where y € R™ and construct the observable form relative to

such that in x coordinates y = Cx. The observability indices of y are
l,, ..., I, and the coordinates are chosen as derivatives of this “output™

X =Ly )€ forj=1,..0; i=1,...,m (2.19a)

and
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Bi;j = ng(Lflrl(‘l’i NE&)
— o = Li(y; )(E) (2.19b)
We note the similarity of controller form to observable form.

Controllable Form :

x=Ax - o(Cx)+ Bu (2.20a)
y =Y(x) (2.20b)
where (A, B, C) is a prime triple with indices [,, ..., {,, and «, ¥ are

smooth matrix valued functions of x with dimensions n x1 and p x1. We
emphasize an important property of the nonlinear controllable form: while
a is a function of a pseudo-output y = Cx, the output vy is a function of x.
If o(y) is a linear function of y then the dynamics (2.20) of the nonlinear
controllable form agrees with the dynamics (2.7) of the linear controllable
form. Therefore the question of the existence of a nonlinear controllable
form is closely related to the question of linearizing the dynamics (2.20a)

by a coordinate transformation.

Observer Form :

x=Ax —o(Cx) + B(Cx)u (2.21a)
y = Y(Cx) (2.21b)
where (A, B, C) is a prime triple with indices /,, ..., Ip and o, B and vy are

smooth matrix valued functions of x with dimensions n x 1, n x m and

p x1. To obtain the observer form, one defines a pseudo-input q(&)u,
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and finds the controllable form with respect to this input. This explains the

similarity of controllable form to observer form.

2.3. The Hunt-Su Linearization Theorem

In this section we introduce the Hunt-Su linearization condition [17,25], and
also present the approximate version of this theorem by Krener [29]. This
question is equivalent to the existence of the nonlinear controller form.

We present the following theorem for m = 1.

Theorem. There exists a change of coordinates of the nonlinear system

(2.15) to the controller form (2.18) around the nominal point &° iff
(i) Controllability condition: {g(§°), ..., ad’i}l g(€°)} span T&R",
(ii) Integrability condition: {g(&°), ..., ad"_;r2 g(€°)} is involutive,
(iii) (i), (i1) = {g(&°), ..., ad’i}lg(§°)} is involutive.

For a complete proof, we refer the reader to [17,18,25]. In the following,
we present a systematic method to find the change of coordinates to
transform a nonlinear system into controller form. The procedure has

been directly adopted from the proof of the theorem.

Assume a change of coordinates exist. Define a pseudo-output
y(€) = Cx(€) and note that

0 r <n

<dy(E"), adl}" gE)> = Loyrar (W) = {B co s (2.22)
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In particular we have, for dy # 0:

dy L (g(°), ..., ad"? g(§°))

Then, since for any two vectors X*, X/

Lyi(y) = 0 = LyiLyi(y) — LyjLyi(y) = Liyi xij(y) = 0
we get (noting that L{dy) = dLAy)):

dy, dLAy) L (2(8), ..., ad"7> g(§))

and, continuing in this fashion, we obtain

dy, dLAY), dLA(Y) L {g(E°), ..., ad’* g(€))

dy, dLAY), ALHY), ..., LT ()

Note that the n one-forms dy, de(\p), dLj%(\y), dL}"(\p) in the above

are independent, and as in (2.19a)

x;= L7 (y)

defines the coordinate change. Once the controller form

x=Ax -~ Boa(x )+ BR(x)u (2.18a)
is obtained, the choice of a feedback

u=~a(x)+m1}-)'v (2.23)

will linearize the dynamics as:




x=Ax +Bv (2.24)

where v is a new open loop feedback. Obviously, B(x) is assumed to be

nonzero.

Krener in [29] has extended this proof to the approximate
linearization of control systems using a series expansions of the nonlinear

terms. Following [29], we first introduce some definitions as follows:

A distribution A has an order p local basis around E° if there exist

vector fields X', ..., X which are linearly independent at £° and such that

for every Y € A there exist functions ¢, such that
d
Y = E ¢, X* + O - EO)P +1 (2.25)

The integer d is the order p dimension of A at E°. Such a distribution is

said to be order p involutive at E° if there exist functions ¢}/ such that:
. n d
(X, X )= kZI cii X+ O — EOY. (2.26)

Such a distribution is said to be order p integrable at §° if there exist n —d

independent functions k; ;, ..., h, such that
<dh;, X' > = OE)P. (2.27)

Theorem. (Frobenius with remainder) (Krener) Let A be a distribution
with order p basis { X', ..., X%} at E_,O. A is order p integrable at §° iffA

is order p involutive at &°.
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A proof of the above theorem can be found in [Krener1984a). Given the

nonlinear system (2.15) we define distributions
A = C* span {adflgi 0<l<kj=1,..,m}.
Now we state the central result of [29]:

Theorem. The nonlinear system (2.15) can be transformed with a

coordinate change

x=x(&) (2.28a)
and feedback
u=u&,v)=al)+BE)v (2.28b)

into the order p linear system

x=Ax + Bv +O(x,v)? * ! (2.29)
where (A, B) is a controllable pair with controllability indices 1,2 ... 21
iff

(i) A* has an order p local basis at E° consisting of

(adf ¢: 0 <1< min(k;, k); j=1, ..., m}.
(ii) Ab is order p involutive at E° for j=1, ..., m.

The proof for the general case as stated in the theorem can be found in
(29]. Here we will present a simplified proof for m = 1. First, we restate

the theorem for m = 1:
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Theorem. The nonlinear system (2.15) with a single input u can be

transformed into the order p linear system
x=Ax + Bv +O(x,v)? * ! (2.30)
where (A, B) is a controllable pair iff

(i) A" = C* span {g(&°), ..., adff“l g(&°)} has an order p local basis at &°

consisting of
(8(E°), ..., ad’ ! g(E%)),

(i) A" 1= C* span {g(&°), ..., adff‘2 g(€°)} is order p involutive.

Note the similarity of the above statement to the Hunt-Su linearization

conditions.

Proof. Assume the change of coordinates and feedback (2.28) exist. Let
f(€) and g(€) denote the transforms of Ax and B into & coordinates. It is
straightforward to verify that the distribution

A"=C* span { g(&), ..., ad " g(§))

satisfies (i) and (ii) with phrase “order p” deleted. Moreover from the
form of (2.28) one can verify that A" and A" agree to order p at £°, i.e.
any vector field of one agrees with a vector field of the other to order p.

Hence (i) and (ii) follow.

On the other hand suppose (i) and (ii) hold. By the controllability
assumption A" is of codimension zero. A"~ ! is of codimension one and by

(i1) is order p involutive. Therefore we can find a scalar function h(§)
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which will annihilate it to order p as in (2.27). This function and its Lie

derivatives define the desired linearizing coordinates (2.28a)
xX= L}"l(h) yi=1, ..., n.

In these coordinates the nonlinear system (2.15) becomes

{x,.+  + O WP if i< n,

xX; =

. ' (2.31)
Lih) + L L (kv + O v)P*! if i = n. |

The linearizing feedback (2.28b) is given by

u=Lyk) + L LT (h)v. (2.32)
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3. HIGHER DEGREE LINEAR APPROXIMATIONS OF
NONLINEAR CONTROL SYSTEMS

3.1. Introduction

In Chapter 2, we introduced normal forms, the Hunt—Su linearization
results, and Krener's extension of the Hunt—Su method by approximate
linearization (via the series expansion of the vector field around a nominal
point). In this chapter, the normal form theorem of Poincaré will be
introduced first. This is an approximate linearization of an autonomous
vector field by a nonlinear (local) change of coordinates. Next, we will
present the approximate linearization problem that will be investigated in

this report, which is formulated in a very similar spirit.

The fundamental difference between the Poincaré linearization and
Krener's approximate linearization method needs some emphasis. As will
be discussed in the next section, a sufficient condition for a linearizing
transformation to exist for an autonomous nonlinear system is the so called
“resonance condition” (see Sec. 3.2 of this chapter) for the eigenvalues of
the linear part, or the Jacobian, of the vector field at the nominal point. In
contrast, one of the necessary conditions for finding a coordinate transform
and feedback pair that linearizes a nonlinear control system exactly (the
Hunt-Su linearization) or approximately (Krener's linearization) is that the
system be locally controllable. QObviously, this requirement implies that

one is able to freely assign the eigenvalues of the linear part of the vector




field. Thus, unlike the Poincaré problem, a resonance condition for the
eigenvalues does not exist for this case. Basically, one has the capability to
change the flow of the vector field through the input (though only locally
within the framework we presented; global controllability of a nonlinear
system has much more stringent requirements). The fundamental
difference, is that, while in Poincaré's problem one only wants to be able to
understand and predict the behavior of the flow of a vector field by means
of a closer approximation through coordinate transformations, in the
problem of linearization by feedback and coordinate change the goal is a
much more ambitious one: We first seek to linearize the nonlinear system
and ultimately t~ control its behavior. Reminiscent of the connection
between the ¢+ ,0 problems, however, we continue to use the term
“Homological Equations” (after Arnold [4]) for the set of equations that we

will develop in the solution to the linearization problem.

There are cases in which the two approaches might in fact be used
together. When a nonlinear system has both controllable and
uncontrollable modes, one can decouple the state space locally into
controllable and uncontrollable submanifolds by some suitable
transformation. In the controllable submanifold, the approximate
linearization problem may be solved based on the results presented here.
On the other hand, one can decompose the uncontrollable submanifold into
stable, critical, and unstable parts. An uncontrollable-unstable mode is, of
course, beyond help. One does not need to worry about the
uncontrollable—stable modes, and can only hope they will decay sufficiently
fast. The uncontrollable—critical modes (in which the eigenvalues are on

the imaginary axis), however, can be analyzed using Poincaré's method. In
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fact, in the framework of the analysis of nonlinear oscillations and
bifurcations [14] the purpose of the “Center Manifold Theorem” is
precisely that. In control systems literature there are some fine examples
of work towards controlling the stability of uncontrollable-critical modes
of a control system by means of the Center Manifold Theorem and
bifurcation analysis (also called “Bifurcation Control”) [1,2]. Although this
problem may be formulated as an extension of our work, this topic is

beyond the scope of this report.

3.2. Higher Degree Approximations of Autonomous Systems

Let us consider an autonomous system:

x = f(x) (3.1a)
x(0) = x°. (3.1b)

where x € R” and the system is assumed to be at rest at the origin, i.e.
f(0)=0. Without loss of generality we will assume x° =0. The
calculations can be easily repeated for x° # 0. First, consider the

linearization of (3.1) at x°:

x=Fx (3.2a)
F= gx 0) (3.2b)

We will seek a coordinate change for (3.1) of the form identity plus higher

degree terms, such that the resulting system will agree with (3.1) up to an

p+1

error of degree O(x) where p is the degree of approximation.
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Obviously, we obtain Eqn. (3.2) when p = 1. We will now derive the case
for p =2 and the results will be generalized to any arbitrary degree p by

induction.
We assume a transformation of the form:
z=x- 0B ) (3.3)

where z denotes a new set of coordinates. $®(x) is a polynomial of degree
2, the monomial coefficients of which are to be found. The function f(x) is

expanded in a series:
F) =f Ox) + £ P(x) + O(x)’
=Fx +f D) + O(x)® (3.4)

The goal of the transformation (3.3) is to choose ¢(2)(x) such that in z

coordinates the dynamics of the system is represented by
z=Fz + 0(x)* (3.5)

in other words, the second degree terms in the series expansion (3.4)

vanish under the coordinate change. We take the time derivative of (3.3):
2)
p= - 0

Using (3.1a), (3.3), (3.4) and (3.5) evaluate each side in the above:

(2)
F(x - 0P(x)) = Fx + fB(x) - %ﬁn + O(x)3 (3.6)

After some cancellation, ignoring O(x)* and higher terms, and using the

Lie bracket notation we obtain
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F ) = [Fx,0P(x)] (3.7)

Equation (3.7) is called the Homological Equation [4]. A similar derivation
can also be found in [14]. In Eqn. (3.7), f @ (x) and ¢ (x) are n-
dimensional functions of homogeneous polynomials of degree 2. The Lie

bracket operation defines a mapping
[Fx, - 1: 0®x) - [Fx,0P(0)] (3.8)

Obviously, (3.8) represents a linear mapping from n’(n + 1)/2 dimensional
parameter space of the coefficients of ¢(2)(x) to an n2(n + 1)/2 dimensional
parameter space that is the result of the Lie bracket operation. The
question is whether f @(x) in the range of this mapping. In other words,
is it always possible to find $‘?(x) that will satisfy (3.7)? This problem
was first solved by Poincaré. In the following, we present a slightly
modified proof [4,14]:

Suppose F has a full set of linearly independent eigenvectors. Then

we can take these eigenvectors as a basis, which are defined by
Fvk = A0k (3.9)

where *& C"*!and A, € C. Similarly there exists a basis of eigenvectors

of FT defined by
wF =Aw, (3.10)

where w; e C!*"  We define a basis for n-dimensional functions of

homogeneous polynomials of degree 2 as follows:

0k (1) = vE(wx)(w ) 1<i<j<n;l<k<n. T(3.11)
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Then, using this basis to express the degree 2 polynomials in Eqn. (3.7), we

evaluate the Lie bracket
9@y, (%)
[Fx9f0)] = —55=Fx ~Fox)

= Vi ((wx)w; + (Wx)w)Fx — Fv¥(wx)(wx)
and introducing (3.9) and (3.10) we obtain
[Fz,04(0)] = V"L (wx)(wpx) + A (wx)(wpx) - M(wx)(wpx))
= (A + A — X050 (3.12)

So the mapping (3.8) is onto if (A;+ A, —A) #O0forallj k=1, .., n;
i=1, ...,j. In the literature, this is called the resonance condition. We
note that this is only a sufficient condition. A generalization of the proof

for the case when F does not have a full set of independent eigenvectors
may be found in [4].

The above proof can easily be extended to an arbitrary degree of
linearization as follows. Given an autonomous system that has degree p

and higher nonlinear terms

x=Fx + f®(x) (3.13)
one seeks a coordinate transformation of the form

z=x-6P(x) (3.14)
with the goal to obtain

1=Fz + O@)P*. 7(3.15)
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This leads to a new homological equation
[Fx,0®P )] = f Pl0). (3.16)

With the assumption that the matrix F has n linearly independent
eigenvectors, and using Eqns. (3.9) and (3.10) we choose a basis for n—

dimensional functions of homogeheous polynomials of degree p as

(pi i,(2) = Vk(WilZ)---(W,-pZ) for1<i; <...<i

oSnil<k<n (3.17)

Then a similar calculation yields

(Fraf, ;01 = Ay +- -+ 0 ~AJof (%) (3.18)

ey

From the above we conclude that the condition of no resonance requires
that (A; + -~ + Kip — A #0.

3.3. Higher Degree Approximations of Control Systems

Generally speaking, there are two different goals for linearizing a
nonlinear systtem. One may seek a linearization for the purpose of
designing a control, or alternatively the linearization may be tailored for
the purposes of estimation. In this section we will attempt to find a
solution for the problem of linearization for control. This, of course,
assumes full state observability. Let us consider a nonlinear system in

which the control u enters the dynamics in a linear fashion:
x=f(x) + g(x)u (3.19a)

2(0) = x°. (3.19b)
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where x € R" and u € R™. The system is assumed to be at rest at the
nominal operating point (x°; #° = 0). Again, we will assume x° = 0.

First, consider the linearization of (3.19) at x°:

x=Fx+Gu (3.20a)
F= gf 0), G = g(0). (3.20b)

We will seek a coordinate change for (3.19) of the form identity plus
higher degree terms, such that the resulting linear plant will agree with
(3.19) up to an error of degree O(x, u)**! (i.e. terms of O(x)?*'and O(x,
u)?) where p is the degree of approximation. When p =1, the first
degree approximation (3.20) is obtained. Similar to the previous section,
the case for p =2 will be derived first, and the results will be generalized
to any arbitrary degree p by induction. Before proceeding further, the

nonlinear functions f and g are expanded in a series:
) = £ D) + £ D) + O®

= Fx +fP(x) + 0(x)® (3.21)
g() = g V) + g V(x) + O(x)?

=G + g V(x) + O(x)? (3.22)
and the nonlinear system (3.19a) is rewritten as
x=Fx +fP@) + (G + g V(x)u + O(x,u)’ (3.23)
We assume the same transformation proposed in Sec. 3.1:

s = x — ¢(2)(x) (3.3)
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where z denotes the new set of coordinates. ¢(2)(x) is a polynomial of

degree 2. In addition, a new input, denoted as v, is chosen as
v=o(x) + Bx)u (3.24a)

where a(x) = a(2)(x), an n X 1 vector of second degree polynomials, and
B(x) =1+ BM(x), an identity matrix plus first degree terms, both of

dimension m X m. So (3.24a) becomes:
v=0D0%) + 1+ BVx))u. (3.24b)

We note the slightly different form of Eqn. (3.24); in the literature (as well
as in the treatment presented in Chapter 2 of this report), the feedback that
accompanies a coordinate change for linearization problems is usually
given as u = o(x) + B(x)v. One can always obtain one expression from the
other, since by definition f(x) is nonsingular. The above choice simplifies
the algebra, as we will see in the following derivations. Now we want the

system to become, in z coordinates,
z=Fz + Gv + O(z,v)? (3.25)

The time derivative of (3.3) yields:

z=x- a@D-,%))E(ﬁx' (3.26)
We introduce the transformation (3.3), and Eqns. (3.23), (3.24b) and
(3.27) into the above:

F(x = 69) + G @P(x) + 1+ BOx))u)

2
=(1- Ei"la—f—‘l)(px +fPx) + Gu+ g V()
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Then by expanding and cancelling terms on each side we obtain

—FoPx) + G aP(x) + G BP(x)u
@) @
=f(2)(x) +g (1)(X)u MF,X _ MGu + O(x, u)3

Rearranging and ignoring the O(x,u) terms we get
FP0) + g Vo

) 2
= Q%xglFx ~FoP(x) + aiaéilGu +Go®P(x) +GBPu  (3.27)

Define Lie brackets as follows:

2

Q%_x(QFx_F¢(2)(x) = [Fx,6®(0)] (3.282)
2

aibglGu = [Gu 6P )] (3.28b)

Using (3.28), Eqn. (3.27) can be written as

FP0) + g Vu = (Fx,0®P0)] + Goa®x) + [Gu,0P(x)] + GBV(x)u

(3.29)
or, since terms of O()c)2 are independent of terms of O(x,u)*
P = Fx6@ )] + GoaP(x) (3.30a)
g You = [Gu,09x)] + GBP(x)u V constant u. (3.30b)

Because of its similarity to the homological equations derived in the

previous section, we call (3.30) the Generalized Homological Equations.
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In order to find an approximation of the next higher degree, we

rewrite (3.25) by reverting to the variables x and u for convenience:
x=Fx + Gu + O(x,u)’ (3.31)

At this point, we assume that the second degree terms in a given nonlinear
system, if any, have been already removed as outlined above. Then we

seek a new transformation of the form:
z=x- 0P - (3.32)

Note that except for the linear part, transformation (3.32) will not
introduce any terms of degree less than 3. Then the same procedure

outlined above is repeated, with the feedback:
v=0%®) + A+ BP)u (3.33)

which, after a series of similar calculations, results in a new set of

generalized homological equations:
@) = [Fx,0P0)] + Ga(x) (3.34a)
g Pmu = [Gu,6®w)] + GBP(x)u V constant u. (3.34b)

These results can be generalized as follows. Given a system which is

accurate to only degree p — 1, i. e,
x=Fx + Gu + O(x,u)? (3.39)
a coordinate change is sought as:

z=x-0P(x) -(3.36)
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along with feedback:

v=aP(x)+ 1+ BPP(x)u (3.37)
which yields the generalized homological equations to be solved:

FPx) = [Fx,0Px)] + GolP(x) (3.38a)
g ®Vu = [Gu,o®P )] + GBPV(x)u V constant . (3.38b)

In (3.38), ¢, f® @), g *-Dgnd B(p‘l) are, respectively, homogeneous
vector fields of degrees corresponding to their superscripts. The resulting

system is accurate up to degree p:
z=Fz + Gv + O(z,v)P*! (3.39)

Once a higher degree linear approximation is obtained for a
nonlinear system one of the important issues is the stability of the closed
loop system. Thus one may choose, for instance, a linear state feedback for

the approximate model
z=Fz+Gv (3.40)

by setting v = Kz. The gain matrix K is chosen such that in the closed loop
the system gives the desired performance. If we assume that the model has

been linearized up to second degree, the feedback v is, from Eqn. (3.24b)
v=0®x) + 1+ V). (3.41)

Using Eqn. (3.41),' the feedback v = Kz, and transformation (3.3) we

calculate the feedback law u:

Kx — KoPx) = a®) + (1 + BV(x))u (3.42)
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and
u=(1+BPw) " (Kx - KoP(x) - a®(x))
= (1- V@) + =) (Kx - KP(x) - aP(x))
= Kx - {BP0Kx + KoP(x) + a®(x)} + Ox.u)’. (3.43)

From (3.43), the purpose of the feedback u becomes immediately clear. In
addition to a linear feedback, there are second degree correction terms
(placed inside curly brackets in (3.43) for emphasis). While one chooses a
closed loop feedback u = Kx to achieve stability, pole placement, etc. for
the first degree approximation (3.20a) (i.e. accurate up to first degree in

comparison with a linear model) to get
x=(F +GK)x (3.44)

the feedback (3.43) introduces certain second degree terms and achieves a
second degree approximation (i.e. accurate up to second degree in
comparison with a linear model in the z coordinates) toward the same

feedback design goals:

x=(F+GK)x +fPx) + g VKx - G{BP)Kx + KoP(x)
+ @)} + O(x,u)’. (3.45)

One important feature of the feedback (3.43) and the resulting closed loop
system (3.45) is that one need not transform the state variables into the new
coordinates z that were introduced for the sake of calculations. Feedback
design can be performed in the natural coordinates in which the system is
originally presented. Obviously, the above scheme assumes a priori-that all

states are available for feedback. If some of the states are not observable,
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one can estimate the unavailable state variables by means of an observer,
and apply the same procedure. This case will be treated in Section 3.5 of

this chapter.

3.4. Approximate Linearization for Systems with Small

Parameters

In this section, we consider a control system of the form:

x = f(x,g) + g(x,e)u (3.46a)
x(0) = x°. (3.46b)

where € is a small parameter which characterizes the way parasitic effects
or disturbances enter into the system. We will develop a method of
linearizing transformation for this type of system, similar to that of Section

3.2. First, (3.46) is expanded as follows:
x=Fx+Gu +ef Vx) + g PVu) + O)? (3.47)

In (3.47), the nonlinear function is expanded and grouped in powers of €.
Thus, the superscripts of f and g now represent the powers of € multiplying
these functions. Note that this notation is different than that of Section 3.2.

A coordinate change is assumed of the following form:
z=x-e0P(x) (3.48)

where neither the coefficients, nor the polynomial degree of the function

¢(1)(x) is yet determined (i.e. the superscript in this context denotes degrees
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in €). After the transformation and feedback, we want the system to

become

2=Fz + G v + O(g)? (3.49)
where

v=u+e{aDx) + BP(x)u) (3.50)

Note that the superscripts of o and B in (3.49), as well as the superscript of
¢ in (3.48) represent the power of € these terms are multiplied with. Thus,
the notation used is different than that of Sections 3.2 and 3.3. Repeating

the calculations similar to Section 3.3 yields the homological equations:
O = (Fx @) + GaDx) (3.51a)
g You = [Gu,o V)] + GBV(x)u V constant u. (3.51b)

This result can be generalized for an arbitrary power of € in the same

fashion: A solution to
f(p)(x) - [Fx,¢(p)(x)] + GoP(x) (3.52a)
g Pu = [GuoPx)] + GBP(x)u V constant u. (3.52b)

will yield a coordinate transform-feedback pair that will transform the

system into:
z=Fz+ Gv + O()°*! (3.53)

Even though Eqns. (3.52) and (3.38) look very similar, there are some
fundamental differences. All the variables in Eqn. (3.52) have different

definitions than those of Eqn. (3.38), as mentioned earlier in this section.
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Moreover, the solvability conditions of (3.52) are not the same as the
conditions of Eqn. (3.38). Actually, (3.52) may represent an infinite
family of equations as opposed to the finite dimensional set of expressions

that arise from (3.38).

Any nonlinear system expressed in the form of in Eqn. (3.19) can
always be transformed into the form of (3.46) (and vice versa) as follows:

First, consider the expanded form of (3.19), i.e. Eqn. (3.23):
x=Fx + f P + (G + g Vx)u + Ox,u)’ (3.23)

Scale the coordinates and the input with:

Introducing the above into (3.23) yields

{=FC+Gu+e(F D)+ g D@ + OE)* (3.54)

This equation is of the form of Eqn. (3.47), except for the difference in the
fashion the expansions of fand g are defined. We use the overbar notation

to emphasize this point. The input
v=oP0) + @+ BP@)u (3.24)

is also transformed with an additional scaling 1 = €7!v:

M = p+e@20) + PG (3.53)
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With the above scaling of coordinates, a linearization problem given as in
Section 3.2 can be alternatively solved with the procedure outlined in this

section.

3.5. Analysis of the Linear Mapping for Linearization for

Control

For the case of linearization for control, we derived the generalized
homological equations (3.30) in Section 3.3. In these equations, the second
degree terms f®(x) and g P(x)u can be cancelled by proper choice of
0P(x), a@(x), and B(x) under certain solvability conditions. When the

coefficients of the like terms in (3.30) are set equal, a linear mapping is

obtained as

2

* O o

oPx) r—> W (3.56)
) B

A simple dimension count yields the dimensions of the domain and the

range:
) 2 |
+ mn(n + 1 n\n /
n (n 1) ( J | m2n - 1 +n2m (3.5 )

To analyze the mapping, we first make a table for the dimensions of the
domain and the range, where n is the dimension of the state space and m is

the dimension of the input space:
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Form = 1: For m = 2:

Dimension Dimensions Dimension Dimensions
of of of of
State Space _Domain __ Range State Space  Domain _ Range
n=2 11 10 n=2 20 14
n=3 27 27 n=3 42 36
n=4 54 56 n=4 76 72
n=S5 125 125

Dimensions of the domain and the range become equal whenever
n=2m +1. However, this does not imply that the mapping is of full
rank. For example, when m = 1, n = 3 the rank is 26, not 27. In general,
when m = 1, the rank of the mapping is always one less than the dimension

of the domain for n > 3.

As described in Chapter 2, a necessary condition for finding a
coordinate change-feedback pair for a nonlinear control system is the local
controllability condition at the nominal point. Thus, for the system (3.23)

with a scalar input u , i.e. m = 1, local controllability implies
rank {G FG ...F"'G}=n. (3.58)

On the other hand, we define a 1 x n matrix K such that

. {0 1 <i<n
KF-G = | _ (3.59)

i=n
Then,

rank (K KF...KF*'} =n. (3.60)




(3.58) and (3.60) together imply that we can define a basis for n-
dimensional second and first degree monomials as follows Firsi define as

a basis

vk=FFIG (3.61a)
and a co-basis

w; = KFi-1 (3.61b)
Then we define a basis for second degree monomials as

@} (x) = Vi(wx)(wpx) forj,k=1,...,n;i=1,..,j. (3.62)
and a basis for first degree monomials as

P5(x) = vi(wpx) fork=1,..,n;i=1,..,n  (3.63)

Using the basis definitions (3.62) and (3.63) is a great convenience for
calculating the Lie bracket expressions that appear in the generalized

homological equations (3.30). Calculation of (3.30a) gives

O+ 05 —0f! 1<i<j<n;l<k<n

[Fxot() 1= 0%y, - 055" 1<i<j=n;l<k<n
Tk i=j=n;1<k<n
(3.64)

In the evaluation of (3.64), when k = n, the expressions become slightly
more complicated. For multi-input problems, the above calculations
become even more involved. In the following chapters, we will present a

further simplified way to calculate the bracket in the most general case that
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is much more suitable for numerical implementation. Next, we calculate
(3.30b)

0 i,j<n
[G.0%(x) 1 =1 9i i<j=n (3.65)
20, i=j=n

We can use these two formulas to compute the kernel and co-kernel of the

mapping
(2)(x)
CIL(65) e AT (3.56)
am g '(x)
B (x)
such that, we now obtain a set of linear equations expressed in matrix
form:
¢ £
L}oa® =[ 1] (3.66)
g | eV
In (3.66), L is a constant coefficient matrix of n2(n+1)/2 + n? rows by

nz(n+1)/2 + n(n+1)/2 + n columns that is found from the above evaluation

¢(2) 2)
of the Lie brackets of the mapping. [a‘z) and[ (1)] are the constant
B 8

coefficients of their corresponding terms, stacked in a consistent
lexicographic ordering. For the single input linearization problem, the

column rank of L is (n®(n+1)/2 + n(n+1)/2 + n — 1).

A solution to the linearization problem is developed as follows.
First, we note that since the mapping (3.66) is deficient in rank forn > 2, a

given control system with nonlinear terms f ®(x) and g (V(x)u will not, in




general, have an exact solution to yield a second degree linearization. In
fact, the Hunt-Su linearization result [17] (or Krener's extension of the
same to the approximate linearization case in [29]) is a test for precisely
this condition. Consequently, Eqn. (3.66) will not usually have an exact
solution for n > 2. Then, it is reasonable to seek an approximate solution
which will minimize the error in the linearization with respect to some
norm. In order to give a precise meaning to this problem, first assume
that we have adequate knowledge about the operating regime of the control

system and the desired accuracy as determined by

p(x,u) : A probability density function; typically uniform over some
compact set, or Gaussian.

0 : A sensitivity matrix, positive definite.

Then define the “error”
f (2)\ }T (2)
(g(l)J 7 §))

In Eqn. (3.67) the norm Ix |

2
ﬁf”[fa)yf @ 4 (g W_ gDy, |; 0 (x,u)dx du

(3.67)

2. .
is defined as x’Qx. We want to choose the

Q

terms [ @ and g(‘) such that the norm of the above error is minimized.
~(2)

Note that (~(1)) is in the range of the mapping, i.e. it satisfies the
8

homological equations
720 = (Fx.0®0) + Ga® ) (3.68a)

7P00u = GuoP )] + 6BV V constant u. (3.68b)
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¢
) 2
Furthermore, we wish to choose the smallest a( )

1)

that will achieve the

above. Again, we choose positive definite matrices S, R and minimize
2
”|¢‘2)|§ + 1@ + BP0 | 2 p(x,u)dxdu (3.69)

or one can take a weighted combination of the above. In Figs. (2.1) and

(2.2) we illustrate the above:

(Y 1)

({gm )

8

Range of
~2) the mappin
1)

g >
V3)
f

Fig. 2.1 The range space of the mapping.

Fig. 2.1 represents the n%(n + 1)/2 + n® dimensional parameter space for

the range of the mapping. The second degree terms in the given control
2)

system define a point in this space, denoted by( (1)} The range of L is
8
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represented by a straight line going through the origin. Those points in the

range space of L that exactly satisfy (3.66) will lie on this line. Among
=(2)

these infinitely many points we want to find the one (shown as (~(1,) on the

g

figure) which will minimize,with respect to a norm defined earlier, the
error between the actual system that is being approximately linearized and
a model which is exactly linearizable (up to degree 2) by the coordinate

change and feedback.

2)
()

Domain of
the mapping

Fig. 2.2 Domain of the mapping

Fig. 2.2 illustrates the nz(n+1 )2 + n(n+1)/2 + n dimensional domain space

of the mapping , and the minimization done in the domain space.
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The central issue in this problem is how to define the appropriate
metric to minimize the error. To this end, we assume that the states and
the input have been scaled by their characteristic values. Then, the
probability distribution function p(x,u) in the integrals may be assumed to
have zero mean and unit covariance. With this assumption, the matrices Q,
R, and S in the integrals of (3.67) and (3.69) can be approximated by
identity matrices. We assume a basis for vector valued monomials of

degree 2 and express the vector monomials as

0P = 0ff 0% (1) (3.70)

where (p'fj = vkxixj and v¥ is the unit column vector along the kth

coordinate direction (see eqn. 4.13). Now the error terms in the integrals
(3.67) and (3.69) may be easily computed. For instance, considering a
term in (3.69)

lo®2 = op ot)Ts0p o)

the integral (3.69) becomes:

JS kg ,‘;f(b% TxixfxTpr(x,u)dxdu

If we assume x = 0 and S = /, the identity matrix, the above integral is:

Jq),yq;,g Lxppoxsp(eu)ddu = PyPo + PioPi- + PioPo (3.71)

The evaluation of the integral (3.71) reduces to the simple calculation of
the fourth central moments of a probability density function around zero

mean since p(x,u) is assumed to have zero mean and unit covariance in the
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scaled coordinates. Even though the matrix obtained from the above
fourth moments is not diagonal, it is assumed to be approximately equal to
the identity. This assumption greatly simplifies the numerical calculations,
and it does not introduce a large deviation from the actual value of the

integral being minimized.
To solve the linear set of equations
¢(2) f@ .
L |a@|= [ ] (3.66)
g (1)

we use a singular value decomposition procedure as follows. First the

matrix L in (3.66) is decomposed as
L=UzvT (3.72)
U and V in the above are orthogonal matrices and
5ol
Y=
00

where the matrix X_ is

L.e. it contains the r singular values of L along its main diagonal and is zero

elsewhere. Obviously, the above development assumes that the rank of L is

equal to r, which is in general less than the number of columns in the
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matrix L. If we denote the equation (3.66) to be solved as as Lx = b for

brevity, we have:

lzx -1 = || vzvix-b]|?

= || vEvix-a)||? (3.73)

where d is defined by Ud = b. Also define a new unknown
y = VTx, (3.74)

We note that multiplting a vector with an orthogonal matrix (U and V in
this problem) leaves the norm of the vector invariant. Then the above

becomes:

llx-b112= || UGy - =|jzy-d|P (3.75)
The minimizing solution is found as:

y; =4, /o; fori<r

y;=0 fori>r.

Once the values of y are calculated, the original unknowns x are obtained
by an additional matrix multiplication by V (see (3.74)). This yields the

least square solution for the nonlinear coordinate change and feedback.

3.6. Linearization for Tracking and Estimation

In this section we will consider a slightly different control problem. The

development included in this section is beyond the scope of this mp'c;rt, and
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is included here for the sake of completeness. This work is due to Arthur
J. Krener and Andrew Phelps. Suppose that the control problem is the
tracking of a reference signal, i.e. we have a p-dimensional output signal y

(or its series expansion at the nominal noint) and a reference r(¢):

y = h(x) = Hx + K2x) + 0x)® (3.76)
and the goal is to achieve

y(#) —r(®) - 0. (3.77)

In the following, the linearization problem for degree 2 terms is treated.
We assume that in the problem the estimation of the states is also required.
Along with Eqn. (3.23) we have (3.76):

i=Fx+f2) + (G + gP0)u + O(xu)® (3.78a)
y = Hx + hx) + ox)® (3.78b)

Then we consider a coordinate change on the states as well as on the

output:
z=x-0Px) (3.79a)
w=y -y (3.79b)

and a new input v is defined as
v=09) + (G + BP)u (3.80)

Note that in (3.80), only the available output is used for feedback. With

the above feedback-coordinate transform pair we want to obtain
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5=Fz+v+0(v) (3.81a)
w = Haz. (3.81b)

in the new state coordinates z and the new outputs w. The following
development is similar to the derivations done in Sec. 3.2. We take the
time derivative of the coordinate transformation (3.79a) and introduce
(3.79a,b), (3.80), (3.81) on each side:

Fx-2) +o®0) + (G + BV »)u
2)
= (1~ 25y (x4 20+ (G + 4 P0)u)
A calculation for the output gives, using (3.79a,b) and (3.81)
H(x - 0P() = Hx + h®x) - yPHx) + Ox)°

By expanding and rearranging the terms in the above equations, and using

the Lie bracket notation we obtain the Generalized Homological equations:

200 = Fx,0 2] + 0P (Hx) (3.82a)
P = [Gud@)] + BV Hxu V constant u. (3.82b)
1P ) = wO(Hx) - H 6P(x) (3.82¢)

These equations define a linear mapping as follows:

[ @) ) ,
f (x)
20 |
1 o —9 %P (3.83)
o (Hx) @
(1) h(x)
\B"(Hx)/
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A dimension count gives the dimensions of the domain and the range:

2 2 2
nel) e ) mprl) ) o 0L g gy

2 2

The following table shows the dimensions of the domain and the range for

various cases:

Form=1,p=1:

State Space Domain Range

=2 11 13
n=3 25 33
n=4 49 66

Form=1,p=3:

State Space Domain Range
n=2 - -

n=3 63 45
n=4 94 86
n=35 138 145

Form=1,p=2:

State Space_Domain Range

n=2 22 16
n=3 39 39
n=4 66 76
Form=2,p=2:

State Space Domain __ Range

n=2 26 20
n=3 45 48
n=4 74 92

As seen in the tables, for larger state space dimensions and fewer input-

output pairs the mapping is rank deficient. Again, one sets up a least

square problem for finding a solution, similar to Sect. 3.4.
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The linearization method can be extended to the problem of

estimation of the unavailable states as follows. Suppose we have

2= Fz + a®w) + (G + BPw))u (3.852)
w=Hz. (3.85b)
Then we set up an observer

£=F8-Lw-H%+a®w) + (G +BPw)u (3.86)
so that the error is

7 =(F+LH)% (3.87)

and the gain L is chosen to achieve a stable dynamics for the observer.

Considering the estimated states, we define a coordinate transformation
£=24+0% (3.90)

Then, with the above, the error dynamics in x coordinates becomes
£=(+ i"éifl)(w ~L(w - H 8+ a®w) + (G + B(w)))u)
or

£=F(%+02(£) - Ly -y?0) - H(# + 0P () + aP() + Gu

)
+ BP0 + %ﬁ(ﬁfe Ly -yP3) -H2) + Gu) (3.91)

Rewriting the above with the Lie bracket notation we finally get
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F=F8-Loy-H®+Gu+[F2eP)]-Ly-H$HGP ()]

+ [Gu0P (D] + a®@) + PP)u + Ly@ ) (3.92)
Eqn. (3.92) is the observer for
x=Fx +Gu+f2x) + gPxu (3.93a)
y = Hx + h9(x) (3.93b)

Notice that the linear part of the observer agrees with standard practice and
the second degree part is the correction. In the closed loop we have the
feedback

u=K$-{BUHK 2 +KoP(2) + a®($))} (3.94)

as expected.
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57
4. ANALYSIS OF THE TRANSFORMATIONS

4.1. Introduction

In Chapter 3, we derived the generalized homological equations for the
second degree linearization problem and introduced an equivalent set of
linear equations. A solution to this set of linear equations, if it exists, will
yield the coefficients of the polynomials in the coordinate transformation-
feedback pair. In this section, we first show that the mapping is rank
deficient. We compute both the kernel and the co-kernel of the mapping.
We then describe a solution method in detail aided by the insight gained
through this analysis.

A computer program written in the MATLAB package that solves
for the transformations based on the analysis of this chapter is presented in
Ch. 5.

4.2. Kernel of the mapping
In Section 3.2, the generalized homological equations were derived as:
2 2 2
£ = Fx6P 01 + Ga® ) (4.12)

g m(x)u = [Gu,¢(2)(x)] + GB(I)(x)u V constant u. (4.1b)




It was shown that these equations describe a mapping for the monomial

coefficients of the terms in (4.1):

0@ x) 0
X

o®(x) —){ o } (4.2)

) &

Furthermore, we obtained a set of linear equations equivalent to this
mapping, expressed in matrix form:

)

o 2)
L|o® =[f‘ } (4.3)

30 e

The derivation of the exact form of the constant coefficient matrix L in the
above equation will be discussed later. At this point we assume that we
have a nonlinear system in which the linear part of the vector field is in

Brunovsky canonical form:
x=Ax + 20 + (B + 8V00))u + 0(x,u)3 (4.4)

where A, B are matrices of the prime triple (A, B, C) (see Eqns. (2.3a,b)).
As a matter of fact, if the linear part of a given system is controllable, one
can always obtain (4.4) with some appropriate linear coordinate change and
feedback. Furthermore, we also assume that the system (4.4) is
linearizable up to second degree in accc -dance with Krener's Theorem for
approximate linearization [29] as preseicd in Chapter 2. Then one can
linearize this control system with a coordinate transformation and feedback

pair
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z=x -0 (x) (4.5)
v=a2w + 1+ BPw)u (4.6)
to obtain

z=Az + B v+ 0(z,v)’. (4.7)

We pose the following question at this point: Can one find some other

coordinate transformation-feedback pair:
{=2-032) 4.8)

n=oP@ + 1+ @) (4.9)

similar in form to those of Eqns. (4.5) and (4.6) such that, after (4.7) is

transformed by the above one obtains, in { coordinates

{=AC +Bp+0@¢,p’ (4.10)

i.e. another linear system (up to degree 2)? If such a transformation and
feedback pair (4.8)-(4.9) exist, then the original linearizing pair (4.5)-(4.6)
is obviously not unique, since a combination of both will yield (ignoring

cubic terms)

§=x-0700) (4.11)
=0 + (1 +BL0)u (4.12)
To show such a transformation is indeed possible, we first choose the

"natural” basis for expressing the first and second degree monomials.

Choose as a basis the unit column vectors v", k=1, ..., n:
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z=x-0D(x) (4.5)
v=0P0) + 1+ @)u (4.6)
to obtain

z=Az + B v + O(z,v). 4.7)

We pose the following question at this point: Can one find some other

coordinate transformation-feedback pair:
2
{=2-090) (4.8)

p=0@) + (1+ B @) (4.9)

similar in form to those of Egns. (4.5) and (4.6) such that, after (4.7) is

transformed by the above one obtains, in { coordinates

{=AL+B p+ 0@’ (4.10)

i.e. another linear system (up to degree 2)? If such a transformation and
feedback pair (4.8)-(4.9) exist, then the original linearizing pair (4.5)-(4.6)
is obviously not unique, since a combination of both will yield (ignoring

cubic terms)

{=x-05(x) 4.11)
=00 + (1+BL00)u (4.12)
To show such a transformation is indeed possible, we first choose the

"natural” basis for expressing the first and second degree monomials.

Choose as a basis the unit column vectors v", k=1, ...,n:
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vf=|1 |«k thentry (4.13)

L (0
Similarly choose as a co-basis the unit row vectors w;,i =1, ...,n:

w,=1[0--1--0] (4.14)

1]

with unity in the i th entry and zero everywhere else. As in Chapter 3, we
define a basis for n-dimensional vector valued functions of homogeneous

polynomials of degree 2 and degree 1 as follows:

oki(2) = Vi(wz)(w2) forjik=1,..n;i=1,..4. (4.152)
@l(z) = V(w;2) forj=1,...n;i=1,...n. (4.15b)

Similarly, a basis for scalar-valued second degree polynomials is chosen as:
h,-j(z) = (w,-z)(wjz) forj =1,....n; i=1, ... (4.16)
also for the first degree terms:

hiz) = wgz fori=1,...n. (4.17)

Now we recall the proof of Krener's theorem for approximate
linearization. We choose a scalar function A(z), and take this function and

its Lie derivatives as the desired new coordinates in (4.8):

h(z) = Zn‘a"hi(z) + ia"fhij(z) (4.18)

i=1 1<i<j




g, = h(z)
= Lh(2)
(4.19)
C,= L} 'h(z)

Comparison of the above with (4.5) implies that, since the two coordinates
z and { have to agree in their first degree terms, in (4.18) @/ =1 and o' =
0 fori=2,...,n. The coefficients of the second degree terms are yet to

be determined. Obviously, if all of the terms aé/ in (4.18) are zero, then
the only transformation that takes (4.7) into (4.10) is the identity, with

(2)(2) =0 in (4.8). We will show that one can find a scalar function A(z)

with nonzero second degree terms (and therefore nonzero ¢(2 )(z)) to

achieve the above transformation. According to the Hunt-Su linearization

theorem a transformation will exist if (see Chapter 2)

1<r<n

0
L (L{'h(2) = { (4.20)
0 r=n

With the aid of the chosen basis, we proceed to calculate the first n — 1
equations in (4.20). First note that, since there are no second degree terms
in the given control system (4.7), f and g are equal to Az and B,

respectively. It is also clear that (4.20) will be satisfied if h and its first n —

1 Lie derivatives along f are not a function of z,, i.e

L (\V(Z)) — (_‘l&_l _ﬂ_l a_\avéa . 0 (4.21)

2
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if y(2) = y(z;, z,, ..., z,_;) because the n th entry in the above one-form

will then vanish. If we assume that
h(z) =z, + allz? (4.22)

one can easily show by calculating the repeated Lie derivatives that the
term z, will not appear until the n — 1st derivative. In fact, any quadratic

term in A that is a function of z; will cause L;™'h(z) to be a function of z, at
the n — i th derivative. Therefore we establish that there is a one-
parameter family of solutions dependent on the choice of al:! in (4.22) that

will yield additional solutions. Note that this solution does not redefine the

input, and both a(;')(z) and B(zl )(z) in Eqn. (4.9) are zero. To make the
)

¢
: . 2
explanation more precise, we have found a nonzero vector a®

B(l)
when added to the original solution in Eqn. (4.3), will not change the right-
hand side of (4.3). In other words the solution found belongs to the kernel

of the mapping. For a single input system, (4.22) is the only possible

which,

function which results in a transformation that belongs to the kernel of the

mapping, and the dimension of the kemnel is equal to one.

4.3. Co-kernel of the mapping

In Chapter 2, it was shown (via Krener's approximate linearization

theorem) that a controllable system

x=fx) + gu = Ax + f20x) + (B + gV () + O(x,u)? _(423)
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is linearizable up to degree 2 around x = x° iff the distribution

Ar-1=C* span {g(x°), ...,ad'jfz g(x°)} (4.24)

is involutive up to degree 2. In [Krener1984a] it is also proven that this is
equivalent to the integrability condition. For a single input system there

exists a nonzero function h(x) (precisely of the form (4.18)) such that

<dh, ad} g(x)> = O(x)2. (4.25)

i.e. constant and first degree terms in (4.25) must vanish for a nonzero h.
When (4.25) is not satisfied, a system is not exactly linearizable up to
degree 2, and consequently an exact solution to

(2)

¢ £ |
L|a® =[ (DJ (4.3)
B(l) g

does not exist. In this section, we will attempt to find which terms (or
linear combinations of terms) in the second degree part of the vector field

cause the system to be not linearizable (or equivalently, non-involutive). In

2)
linear algebraic terms, we are looking for a specific vector or vectors[ ( 1)]
1

(the entries of this vector are the coefficients of the second degree terms of
the control system in a particular basis) which will satisfy the adjoint
equation

2)
LTV }: 0. (4.26)

1
8
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The precise definition of the co-kernel of the mapping is given by (4.26).
However, once the generalized homological equations are expressed in
their equivalent linear form (4.3), the insight given by the integrability (or
involutiveness) condition becomes lost. Therzfore we will try to derive the
co-kemnel expressions using Lie derivatives and by finding the conditions
that satisfy (4.25).

Eqgn. (4.25) implies (see the Hunt-Su theorem in Chapter 2)

dh 1 {g(x), ad; g(x), ..., adf""2 g(x)} up to O(x)2. 4.27)

Our derivation of the co-kemel equations will be based on calculation of
the successive Lie derivatives of g(x) along f(x), which appear inside the
bracket in (4.27). To simplify the expressions, we will first make a
coordinate transformation that will eliminate only the terms g(l)(x)u in

(4.23). We choose a coordinate change
z= -0 () (4.28)

and no change in the feedback (which means o”(x) and p"(x) will be

zer ») in order to satisfy only the second generalized homological equation
(4.1b)

gV 0= (8,6%w)] (4.29)

where the input u has been cancelled on both sides. We express the left-
hand side of (4.29) in the basis defined in Section 4.1 (4.15b):

gV=2 g ot (4.30)




where g} are the constant coefficients of g(l)(x) in this basis. Similarly,

express ¢(2)(x) in the same basis defined in (4.15a):
000 = o 0%, (4.31)

where ¢}/ are the unknown coefficients of the second degree terms. The

bracket on the right hand side of (4.29) is calculated using (4.31), noting

that B = v" in the same basis is given by
y 20)) @ y
[B.0P )] = V.0 01 = —q'”‘a;"l“v" = o ((ww; + wxw )"
-3+ 5)0p ! 432

where 8} is the Kronecker delta function, and a summation over the indices
i, k is implied. Setting equal the coefficients of the basis elements (p’,E in

(4.32) and (4.30), we obtain:

ojn=gi /(1 +8i) fori,k=1, ..., n. (4.33a)
and
0j/=0 forj < n. (4.33b)

Thus we have determined the form of (4.31), and the transformation

(4.28), which will transform the system into:
z= Az + Bu +f(2)(z) + O(z,u)3 (4.34)

Note that the coefficients of fm(z) in (4.34) are not the same as the
coefficients of f‘z)(x) in (4.23), because the transformation (4.28)
contributes new quadratic terms to the vector field. These new terms may

be calculated via the generalized homological equation (4.1a). Since the
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derivation of the co-kernel equations is identical, we shall not calculate the

resulting change.
Using (4.34), Eqn. (4.27) may be rewritten as:
dh L {B,ad;B, ...,ad}"?B} up to O(z)° (4.35)

where f= Az +f?(z). Eqn. (4.35) is the same as
Laar gh) =0()?* forr=1,..,n-l. (4.36)

We use the well-known iterative formula:

Lad_’!g(h) = Lad_’j';lg Lf(h) - LfLad_';'lg(h) (437)

which can be written as:

d [k 3 (3
V4

{5 aaB} Az +5P) - {5 @Az +/P }adiB =0, (438)

First, the terms in (4.38) are expressed in the monomial basis:

P =fiigk. =fiiviwawz) (4.39a)
B=v" (4.39b)
. vi-1 for 2<i<n

Avi = (4.39¢)
0 for i =1
Wil for 1<i<n -1

WA = (4.39d)
0 for i =n

h=hy+hv=wz + h"sl'(w,-z)(wjz) (4.39¢)

Then we calculate the Lie brackets using (4.36) and (4.37):
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ad/B = (B, (Az +{™)] = V", (Az + £l (wi2)(w;)]

= (A +fid K(wizIw, + wRIw) JV"

=1+ fin k1 + 8 Y(wi2) (4.40)
ad3B = adfad,B )
= (A + fii Kz w; + waw)) (Ve fim KL + 8 )w2))

—fim vk (1 + 81 wAz

= V"2 4 fln 11480 Ywz) + fin-1 V(1481 Ywz) — fin V(1 +8i) (W, ,2)
=24 (R (48 ) + firi(148,5, ) - FE(1480)) W) (441)

When the above calculations are repeated for more steps, a general formula
can be written for ad/B as follows:

s =vre 33 { 3 i 8,0,
k=l =1
r-1 ¢-1
+ 2 EO(__I)‘HS (Z) yk=s f j—g+s,n—r+q+l 1+ 5,.17‘17,1 : ) } (w Jz) (4.42)
g=1 s=

Note that in the calculation of (4.40) through (4.42) O(z)2 and higher terms

have been ignored. Since we are trying to calculate
<dh,ad;7! B> = O(z)’ (4.43)

we evaluate dh using the expression (4.39¢):

g—f = w, + Bi((w2)w, + wzw,) (4.44)
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Now, (4.43) must be obtained by multiplying (i.e. taking the inner product
of) (4.44) and (4.42) and keeping only the constant and O(z)! terms. This
yields:

n r

<dh.adjB> = 3, {Wrrq+8y+ X frintas s, )

r-i+l
J=1 i=1

v 3 Scom (@ agn, o op @)
¢=1s=0 :
Then, using the above equation, one sets the terms inside the curly brackets
{} equal to zero for j =1, ..., n. Solutions to these equations yield the co-
kernel equations. Because of the complicated nature of Eqn. (4.45), the
calculation of the co-kemel equations become more difficult as the order of
the system increases. However, this fact does not make the numerical
calculation of the actual linearizing solution (or an approximate
linearization) any more difficult, since the exact form of the co-kemels is

not necessary for a numerical solution.

4.4 Derivation of the equivalent linear system of equations for

the solution with a computer program

In the computer program, we will solve the following linear system:

)

¢ £
L|o? =[ mJ (4.46)
B(l) g .

In (4.46), the coefficients of the second degree terms in the vector field

f (2)(x) and g(l)(x)u are obtained using the natural basis introduced in
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Section 4.2, and stacked in the right hand side vector in a consistent
lexicographic ordering. Similarly, unknown coefficients of the terms
¢(2)(x), a(z)(x), and B(l)(x) are stacked in the left hand side vector of
unknowns in the same manner. The coefficient matrix L in (4.46) is

constant, and it is obtained from the set of generalized homological

equations:
P = 1Fx6®P1 + GaPx) (4.47a)
gPou = [Guo®w)] + GBP(xu V constant u. (4.47b)

When the terms in (4.47) are expressed in the natural basis and calculated,

we get the following:

[Fx,¢(2)(x)] = [Fx,¢’§j] = vk((wix)wj + (wf-x)w,-)Fx -F v"(w,-z)(wjz) (4.48)

We note that:
n

w;F =2 Flw, (4.49a)
I=1
n

Fvk= Y FR/ (4.49b)

=1
where Fjis the i, j th entry in the matrix F. Then one can write, for each
element of the monomial basis (p'fj,
n
[Fx,(p’f.j] = Z:i v"(F j’(wgc)(w, x)+ F i’(wft)(w, x)) —F ,"v'(w,-z)(wjz)

n

= Igl Flol+ Flof, —Flol; (4.50)
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The calculation of the constant coefficient matrix L in Eqn. (4.46) is partly
based on the result obtained in (4.50) as follows: The dimension of the

2
monomial basis (p',fj is equal to 'n—("-t;—ll . We restrict the ordering of the

indices as 1< i<j<n;1<k<nand note that in (4.50) under the
summation of index ! we have to interchange the subscript indices i, / or j, [
for the first two terms in the summation in order to keep the ordering of

the basis elements consistent. This will yield the new expression:

[Fx,‘P,]]_ ZF’(p“ + Z FI(P,I +iFl(P1, + Z F’(pﬂ ZFI (P,J

I=i+1 I=j+1
4.51)

where a summation over indices 1< i<j<n;1<k<n is implied.
Then, we collect the terms in the right hand side of Eqn. (4.51) under
dummy indices with overbars I, j, k% or, in other words, regroup the

terms under a monomial (p"i 7 and sum over the indices 7, j, k to get:

Fro= (X FI8] + 3 FI] + tmf + Y Flal)st

=1 J =i+l J=j+1

— F* 83— 8.—11— }(p!f_ - (4.52)

where 8{ is the Kronecker delta function. Precisely speaking, given the
reverse lexicographic ordering 1 <i<j<n,1 <k <n for the entries in
the linear operator representation of the homological equation, Eqn. (4.52)
will yield the value of the (7,7.k)th row-(ij,k)th column entry in the
matrix L of Eqn. (4.46). To be able to write the right-hand side of the

linear set of equations, we express the second degree terms f m(x) as:
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(4.53)

Note that Eqn. (4.52) will yield only some of the entries in L; for finding
the entire matrix, we need to consider all the terms present in the
generalized homological equations. To this end, we now define a unit
vector for m X1 dimensional vector valued second degree monomials to aid
in . @), .

expressing o (x):

0

6}(x) = 1 (wx)(wx) 1<i<j<n; 1<A<m. (4.54)

0
with the m X1 column vector equal to unity in the Ath entry, and zero

elsewhere. The expression of oz(z)(x) in this basis is:

Puw= Y ol el (4.55)
]<1<j<n
1€A<m

Thus, a unit term corresponding to Ga® (x) in the homological equation

(4.47a) becomes, with the aid of a summation,

n
- T o7 Yok
Go}, = Z 8 80 )k - (4.56)

— V\
== V\

|
<

Next we define the following unit vectors for a similar calculation of the
second generalized homological equation (4.47b). Define the unit n x1

dimensional vector valued first degree monomials as before:
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ok (x) = vi(wx) (4.57)

and the m X1 dimensional vector valued monomials in (x,u):

o Jm %1
n%#(x,u) =1 |wxu, 1<i<n; 1<A,u<<m. (4.58)
L0 -

with the m X1 column vector equal to unity in the Ath entry, and zero
elsewhere. Equation (4.47b)

P u = GuPw)] + GBP(xu V constant . (4.47b)

can now be calculated by using the unit vectors as defined previously:

m
[Gu,(p’fj] = El G‘!‘uu(pf + Gj#uu(p’f

- _EE (GF8I 8t +Gol 8k ) ot u, (4.59)
<ik<n
1<<m

In addition, the left-hand side of Eqn.(4.47b) is expressed as:

gVou = Y gbPeku (4.60)
1<7 k<n ‘M
1<us<m

We also rewrite the term B(l)(x)u as follows:

Blmu= X Bifnd, (4.61)
1<i<n
1<u,A<m

72




and GB(I)(x)u is represented as:

A AsTsl Wk
Gn}, = 1_7%5,. G818, ot u (4.62)
1<<m

Combining all of the above, we can calculate the coefficient matrix L. We

summarize these results in tabular form:

- — —
7Y *y Pa

— -

fLi Eqn. (4.43) G2378/ 0

T Hsisk I sisk A sisu

gt GFsisk+Golst 0 GLsish

2
. . L . . n(n+1)
A dimension count will yield the size of the above matrix as +

2
2
n’m rows by n@2+ 1) + mn(r12+ D + m®n columns, as found before.

The above table yields the entries of the coefficient matrix in the linear

system of equations.
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5. COMPUTER PROGRAM AND SIMULATIONS
5.1. Introduction

A computer program consisting of a collection of routines, or M-files,
written in the MATLAB application language was prepared to implement
the results of this report. The package is intended for use along with the
MATLAB program, and with the Control System Toolbox for MATLAB.

It is used for calculating nonlinear coordinate transformation and feedback

pairs to linearize control systems up to a specified degree in the series

expansion of the nonlinear terms. The current version of the program
calculates transformations up to degree two in the series expansion. After
obtaining the transformation, one applies any of the standard control design
procedures for the resulting model. In the program we have provided
tools for feedback pole placement for the linear part of the closed loop
system. In addition, one also has the option to choose various forms of
inputs and different initial conditions for simulating the resulting system.
Comparisons of the performance of the nonlinear feedback with a linear

feedback design can be made.

In order to run the program, the folder (or directory) that contains

the Approximate Linearization Toolbox for Nonlinear Control Systems

should be present in the directory or folder of the MATLAB program and
toolboxes. Either the MATLABPATH has to be set appropriately (see
MATLAB User's Manual), or after starting MATLAB the subdirectory

that contains the M-files of the program has to be the opened or set to be
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the current working directory. The program is menu-driven, and
executing the M-file mainmenu by typing its name will present a menu
from which the system parameters can be entered, the linearization

problem can be solved, and the results can be simulated.

5.2. Using the Program

Prior to running the program, the nonlinear terms in the control system

have to be expanded in a series t) obtain
x=Fx +f P + (G + g Vx)u + Ox,u)’ (5.1)

where Fx + Gu is the linear part of the plant, and f (2)(x) + g(l)(x)u is the
second degree part. A characteristic scale for each state should be obtained
and entered into the program. For a complete listing of the program code
see Appendix 1. An example session recorded during use is also provided
in Appendix 2. After a coordinate change and feedback have been found,
the user can perform feedback design and simulate the resulting models.
The feedback gains are calculated in the program either by specifying the
closed loop eigenvalues, or according to a quadratic optimal regulator
design procedure to minimize a performance index C:

(=2

C = min J(xTQx + u'Ru)de (5.2)

Either procedure yields a set of feedback gains K. In the program, a total

of three different systems are simulated together:

1: A linear model with linear feedback (LMLF)
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x=(F +GK)x + Gr (5.3)

where F and G are identical to those of the original nonlinear system, and
the same gains K as found above are used to perform pole placement on the
model. The term r is a reference input signal. This system is intended to
serve as a benchmark to evaluate the performance of the nonlinear
feedback synthesis procedure. It is expected that the nonlinear control will

drive the system to behave approximately like (5.9).
2: The nonlinear system with a linear feedback law (NSLF):
x = (F+GK)x+ f D(x) + g OKx + (G + g V))r (5.4)

This is the original nonlinear system. After the standard first degree
approximation, the same feedback gains K as in the LMLF are used. In
the simulations, the response of this system is compared to that of the the

second degree approximation.

3: The nonlinear system with the linear feedback and the linearizing

quadratic feedback law (NSQF):

x=Fx+f ) + (G + gD@)(1 + D) { Kx - K6P(x) - aP(x)
+r) (5.5)

This is the nonlinear system on which a quadratic feedback law is applied
in addition to the linear feedback with gain K. Note that in (5.5), the
reference input r appears in the bracket. In other words, the above is

equivalent to (in z coordinates)

z=(F+GK)z+r - (5.6)
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provided there is no residual (i.e. non-linearizable terms) after the
coordinate change and feedback. The nonlinear feedback applied to (5.5)

1s:
u=~I+BP))HKE - 6P a®P(x) + r} (5.7)

In the program, one or more of the response curves of the three models
may be plotted and the performances can be compared. The program

allows the s'mulation of the above systems with:

a) Zero initial conditions,

b) Impulse input with zero or nonzero initial conditions,
¢) Step input with zero or nonzero initial conditions,

d) A sinusoidal forcing funcion as the reference signal with zero or

nonzero initial conditions.

In the next section we will present simulations of four different
control systems, each chosen to illustrate a particular feature or aspect of

the approximate linearization method.

5.3. Example Simulations:

In this chapter, four example systems will be simulated. In the simulations
of Examples 1, 2, and 3, we will present cookbook nonlinear systems.
The three examples are set up to possess specific properties. The first
example is exactly linearizable; the second example is not exactly

linearizable but in controller canonical form; and the third example is not
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exactly linearizable and it has open loop poles very close to the desired
closed loop poles. None of these three examples represent physical
systems, and each has some isolated property as mentioned above. They
are intended to test and prove the effectiveness of the nonlinear control

scheme within the framework of each of these special properties.

In contrast, Example 4 for the approximate linearization method is a
physical system. The example considered is a satellite in planar earth orbit
specified by its position and velocity in polar coordinates. The nonlinear
equations of motion are expanded in a Taylor series at a nominal earth

orbit, and truncated at the second degree term in the series.

Three response curves will be compared for every simulation: 1)
An ideal linear model, 2) The nonlinear system with a linear feedback
design, and 3) The nonlinear system with the quadratic feedback based on
the method that has been developed. The reason for including the linear
model in the comparison is to check the improvement achieved by
nonlinear feedback toward making the system respond more linearly. In
other words, our evaluation of the effectiveness of the approximate
linearization will be based on how close the time response curves of a
nonlinear system with quadratic feedback follows the responses of a purely
linear system, and how superior this improvement is in comparison with
the response of a system with a feedback design based on a first degree

approximation.

The following table presents a list of the example simulations, the
various initial conditions and disturbance inputs applied to each system, and

the figures associated with each simulation.
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Examgle sttem Initial Conditions or disturbances Figures

Example 1 x =[0.05 0.05 0.05] 5.1 through 5.7
Impulse with unit magnitude 5.8 through 5.14
Step with magnitude = 0.2 5.15 through 5.14
Sinusoidal with r(¢) = sin(6¢) 5.19 through 5.25
Example 2 x =[0.35 0.35 0.35] 5.36 through 5.29
Impulse with unit magnitude 5.30 through 5.33
Step with magnitude = 0.5 5.34 through 5.37
Sinusoidal: r(¢) = sin(6¢) 5.38 through 5.44
Example 3 x=[0.1 0 O} 5.45 through 5.48
x=[-0.1 0 O] 5.49 through 5.52
x=[0 0 0.1 5.53 through 5.56
x=[0 0 -0.17 5.57 through 5.60
Sinusoidal: r(¢) = sin(6¢) 5.61 through 5.64
Nearly Circular Satellite (Example 4)
x=[{2 00 0} 5.65 through 5.69
x=[-2 00 O} 5.70 through 5.74
x=[001 0] 5.75 through 5.79
x=[0 0 -1 O] 5.80 through 5.84

Sinusoidal: () = 30,000sin(6¢) 5.85 through 5.89

5.3.1. Example 1:

For the first example simulation, the following nonlinear system has been

used:




}l- 0 1 0 I o] [ x2-xx | [x]
X |=1 0 0 1 Xy |+ Oru + —x1x2+x22+x32 +| 0 Ju
il L3 2 adbed Lid [ Xy 1 Lxd

(5.8)

This system is exactly linearizable, i.e. it satisfies the conditions of
the Hunt-Su theorem. The first and second degree parts of the system
(5.14) were entered into the computer program, and the linearizing

coordinate change was found to be:

zy= X1 — 0.19697x,% + x,x, — 0.5x,2 (5.9a)
zy =X, + 4x,2 - 2.3939x,x, (5.9b)
23 = X3+ Txyxy — 2.3939x,2; — 1.3939x,% + x,2 (5.9¢)

Second and first degree terms in the nonlinear feedback were:
0P(x) = -1.4091x,2 + Tx,xy — 2,23 + 7.1061x,2 — 0.18182x,x, — x,2 (5.10)

BO(x) = —2.3939x, + x, + 2x, (5.11)

The above coordinate change and feedback transform the system (5.14)

into:

l'z-]1 0 1 0 [z [o]

L= 0 0 1 zZ |+| 0 (5.12)
Lz L 3 2 -1 Jdbzd Lid

with the input v defined as
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v=0aP) + 1+ BP0)u. (5.13)

A closed loop feedback was designed by the quadratic optimal regulator

procedure with Q =17 and R =1. The feedback gains were found as:
K=[0.1623 69158 2.9789]

which resulted in the closed-loop eigenvalues:

Ayp= —0.7245 £ 0.8515i

Ay = -2.5299.

For the following graphs, the curves are:

LMLF (— ): Reference Linear Model with Linear Feedback.
NSLF(-:—-—- ): Nonlinear System with the Linear Feedback design.
NSQF (------- ): Nonlinear System with Quadratic Feedback design.

Figures 5.1, 5.2, and 5.3 show the response curves of the above three
systems for states x,, x,, and x; respectively. Initial conditions are

x, = 0.05; x, = 0.05; x3 =0.05 and there is no forcing input. The solid
curve of the LMLF behaves as expected from a linear model. The curve of
the NSLF goes unstable, while the NSQF tracks LMLF quite successfully.
The NSQF rapidly approaches the LMLF at steady state. This is not
surprising, since in z coordinates the system is exactly linear. We note a
somewhat larger overshoot in the transient of the NSQF, especially

apparent in the curve of x, in Fig. 5.3. This is a tendency of the NSQF to

become unstable in this neighborhood. When the magnitude of the initial
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conditions were further increased, the response of the NSQF went unstable

(not plotted).

In Fig. 5.4, the magnitude of the control effort used for driving each
system is shown. The quantity is equal to the linear feedback for LMLF
and NSLF, and for the NSQF it includes the quadratic terms as well. This
graph offers some good insight in both the transient and the steady state
response of the NSQF. An unstable behavior, if any, is more readily
apparent in the graph of the control effort. In this first simulation, we
notice that the magnitude of this input goes to zero at steady state. In other
words, when the disagreement between the linear model and the nonlinear
system is small, the magnitude of the input necessary to drive the system is

likewise small.

0.3 Time response of state x1

0.25} ]
0.2+ ]

0.15} i _

x1

0.1

0.05

-0.05 -
0

ILMLF (——) NSLF(-.—-—. ) NSQF (- - - - --

Fig. 5.1. Free response of state x; of Example 1 with nonzero initial conditions.
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0.1

0.05

Time response of state x2

LMLF (———)

NSLF (—-—-—- ) NSQF (-------

Fig. 5.2. Free response of state x, of Example 1 with nonzero initial conditions.

0.05

Time response of state x3

-0.15
0

LMLF (——)

2 3 4 5 6

time

NSLF (—-~-—- ) NSQF (-------

Fig. 5.3. Free response of state x5 of Example 1 with nonzero initial conditions.
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Magnitude of the control effort ul

ul

LMLE (———) NSLF (—-—--- ) NSQF (------- )

Fig. 5.4. Magnitudes of the inputs for Example 1 with nonzero initial conditions.

Figures 5.5, 5.6, and 5.7 show the phase poi.:ait plots of the same
simulation. We note that the plots shown are projections of the true three-
dimensional phase portrait onto the respective planes shown. All models
start at the same initial condition. While LMLF and NSQF decay towards
the origin rapidly, the NSL.LF moves away from the origin, i.e. it clearly

shows the tendency of instability.
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Phase portrait plot of x1 vs x2
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Fig. 5.5. Phase portrait of x; versus x, for Example 1 with nonzero initial conditions.
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Fig. 5.6. Phase portrait of x; versus x4 for Example 1 with nonzero initial conditions.
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Fig. 5.7. Phase portrait of x, versus x3 for Example 1 with nonzero initial conditions.

Figures 5.8 through 5.14 show the response of the system to an
impulse input. All initial conditions have been set equal to zero. In this
case, the nonlinear control causes the system to reach instability very
rapidly. Note that the instability is more evident in the plot of control
feedbacks. Even though the NSQF would achieve good tracking in the
neighborhood of the nominal point, as seen in the earlier Figs. 5.1 through
5.7 for the simulation with nonzero initial conditions and no forcing, it has
a tendency to decrease stability bounds for some systems. Stability
properties of a nonlinear system are very difficult to analyze, and there is

no rigorous theory that explains the stability behavior.
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0.2

Time response of state x1
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0.05

LMLF (

)

NSLF (—-—-—- )

Fig. 5.8. Response of the state x; of Example 1 to an impulse input.
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Fig. 5.9. Response of the state x, of Example 1 to an impulse input.




i Time response of state x3
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Fig. 5.10. Response of the state x5 of Example 1 to an impulse input.

Fig. 5.11 for the magnitude of the linearizing control clearly shows
the instability of the NSQF in this case. A possible cause of this behavior
might be a loss of rank of the term (I + BP(x)) (a scalar in this example)
which is inverted during calculating the nonlinear feedback (see Eqn. 5.5).
Note that, as seen in Eqn. 5.13, this corresponds to a loss of controllability
for the nonlinear system. The phase portrait plots for the impulse response

are shown in Figs. 5.12 through 5.14.
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Fig. 5.11. Magnitude of the control inputs for Example 1 for an impulse input.
0.4 Phase portrait plot of x1 vs x2
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Fig. 5.12. Phase portrait of x, versus x, for Example 1 for an impulse input.
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Phase portrait plot of x1 vs x3
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Fig. 5.13. Phase portrait of x, versus x3 for Example 1 for an impulse input.
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Fig. 5.14. Phase portrait of x, versus x4 for Example 1 for an impulse input.




Figures 5.15 through 5.18 show the response of the system to a step
input of magnitude 0.2. All initial conditions have been set to zero. In this
case, the system NSLF reaches instability very rapidly. The NSQF is not
unstable (even though for step inputs of higher amplitude, it would
eventually exhibit unstable behavior), but it displays a constant steady state
error in tracking the reference step input. Since the phase portrait plots

don't offer much insight in this case, they were not plotted.

0.2 Time response of state x1

0.15" /' -

x1

01[‘ ./' -

0.05
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LMLF (———) NSLF (—-~-—- ) NSQF (------- )

Fig. 5.15. Response of the state x; of Example 1 to a step input.
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Fig. 5.16. Response of the state x, of Example 1 to a step input.
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Fig. 5.17. Response of the state x; of Example 1 to a step input.
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Magnitude of the control effort ul
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time

LMLF (————) NSLF (- -—-—- ) NSQF (------- )

Fig. 5.18. Magnitudes of the control inputs for Example 1 for a step input.

The graphs shown in Figs. 5.19 through 5.25 present the response of
the system to a sinusoidal input u(¢) = Asin(®w¢) with the parameters ® = 6,
A =1. This simulation is probably the most interesting case in displaying
the advantage of the nonlinear feedback. The NSLF has a constant offset
away from the equilibrium point. For NSQF, this average error rapidly
goes to zero since in z coordinates, the system is exactly linear. After the
initial traasients die out, the LMLF and the NSQF oscillate around an

equilibrium at the origin, i.e. their average is zero.

We should emphasize that the steady-state equilibrium around which
each model oscillates is directly related to the average of the noulinear
terms in the vector fields over each period of the sinusoidal input. The

strongest case we can make in favor of the NSQF is that this average is
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extremely close to zero, i.e. it is like that of an exactly linear model. Figs.
5.19, 5.20, and 5.21 show the transient and steady state time responses of
all three models. The above argument is clearly obvious in these figures,
especially in Fig. 5.19 since the state x; is farthest away from the input in
terms of integration (note the Controller form of the linear part of the

system in Eqn. 5.8).

Orne should also note that the very impressive improvement achieved
by the quadratic control toward causing the system to track the linear
model, as seen in Fig. 5.19, is due to the fact that this example is exactly
linearizable. A nonlinear feedback and coordinate change that achieves
exact linearization could as well be calculated using the Hunt-Su
linearization method. However, in our approach, we also minimized the
length of the vector formed by the coefficients of ¢?, o?, and V). In
contrast, the Hunt-Su theorem will not, in general, yield the minimum
solution (in the sense that we have defined in Ch. 3) for the coordinate

change and feedback.

For n = 3 the Hunt-Su method yields a one-parameter family of
solutions to the approximate linearization problem for systems that are
exactly linearizable up to degree 2, and the choice for the free parameter
remains to be determined. The correct choice for this parameter in order
to obtain the “smallest” coordinate change and feedback is precisely the
solution found by our method. Therefore, the specific nonlinear
coordinate change-nonlinear feedback pair calculated for this example is
expected to yield a better performance during the transient response. In
the steady state, the difference in performance between the coordinate

change and feedback we have found and other solutions may not be
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appreciable if the trajectories are too close to the origin. The nature of our
approach allows us to immediately extend the method to systems that are

not exactly linearizable (see examples 2, 3, and 4).

Fig. 5.22 shows the plot of the feedback terms, where the
feedback for NSQF has an offset from the equilibrium. This clearly
indicates that the nonlinear input drives the system to a zero average by
introducing a bias into the system. In Figs. 5.23, 5.24, and 5.25 we present
the phase portrait plots of the three models. The steady state equilibrium
points are again clearly seen, especially in the graph of x; vs x, where both
the LMLF and the NSQF oscillate around the origin. The NSLF settles

around a non-zero equilibrium.

Time response of state x1

0.04

0.03

0.02

x1

0.01

ILMLF(—) NSLF (—-—.—- ) NSQF (-=----- )

Fig. 5.19. Response of the state x, of Example 1 to a sinusoidal input.
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Time response of state x2

0.06 — .
0.04

0.02

x2
o

-0.02
-0.04
-0.06 . . . . . .
0 1 2 3 4 5 6 7 8
time
IMLF(—) NSLF(--—-—- ) NSQF (- ----- )
Fig. 5.20. Response of the state x, of Example 1 to a sinusoidal input.
0.2 Time response of state x3
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Fig. 5.21. Response of the state x5 of Example 1 to a sinusoidal input.
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Fig. 5.22. Magnitude of the control efforts for Example 1 for a sinusoidal input.
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Fig. 5.23. Phase portrait of x; versus x, for Example 1 for a sinusoidal input.
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0.2 Phase portrait plot of x1 vs x3
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Fig. 5.24. Phase portrait of x; versus x4 for Example 1 for a sinusoidal input.
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Fig. 5.25. Phase portrait of x, versus x; for Example 1 for a sinusoidal input.
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5.3.2. Example 2:

As a second example we chose a nonlinear control system that is not exactly

linearizable:

] [0t o= [o] [ = 7

X 1=1 0 0 1 |}x ]+ 1 u+|x2+xx, (5.14)
51l Lo o0 o Jdixd Li I

The following coordinate transformation and feedback pair were found:

z; = x; — 0.47665x,% + 0.11111x,x, + 0.28221x,% ~ 0.16667x,x3
~ 0.61997x,x5 + 0.30999x,> (5.152)

zy = xy — 0.95331x,x, + 0.055556x,% + 0.11111x,x; + 0.34219x,x,
+ 0.32447x,” (5.15b)

23 = X3 + X2 — X1y + 0.15781x,% + 0.046694x x5 — 0.02897 1x,x,
+ 0.48228x,> (5.15¢)

The terms in the nonlinear feedback were:
o D(x) = x,x3 + 0.30675x,x; — 0.084526x,2 (5.16)

BV (x) = -0.89775x, + 0.36997x, + 0.96336x, (5.17)

The above coordinate change and feedback found will exactly transform

the following linearizable system (rather than (5.14)) into z coordinates:
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- _ I
xlT 01 0 0

i =1 00 1 [[x]+|th
[ 51 Lo o odlxd L1

T 0.05555x,40.05555x, ]

+| —0.05555x,-0.08333x,-0.02777x5 |u

| 0.05555x,+0.08333x,+0.02777x; -

p

~0.05555x,2-0.05555x,%,+0.9444x,”

+ | x,24x,2,+0.05555x,240.05555x,,+0.05555x, (5.18)

| -0.05555x,2-0.05555x,%5-0.05555x;>

i.e, (5.18) will transform with (5.15), (5.16) and (5.17) into z coordinates

as

z=Fz+Gv (5.19)
with the input defined with
v=aPx) + (I +BP0)u. (5.20)

The next step in the computation process was designing a closed loop
feedback for the linear part of the plant. The feedgack gains were
calculated by the program with a quadratic optimal regulator design
procedure. The matrix Q was taken to be the identity, and R was set to

unity. The feedback gains were thus found to be:

K=(1 17321 1] ~(5.21)
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and these gains placed the eigenvalues of the linear part of the closed loop

system at:

Ay = ~0.866%0.5]

Ay =1,

Since we designed the closed loop feedback gains for the linearized system
in z coordinates, we obtained the equivalent feedback u in x cordinates by

using (5.1). This feedback was calculated as:
u= 1+ BV K~ D) ~ aP) + 7] (5.7)

For the following graphs, similar to the first simulation, the curves are:

LMLF (—— ): Reference Linear Model with Linear Feedback.
NSLF(-:—-—- ): Nonlinear System with the Linear Feedback design.
NSQF (-~-~--- ): Nonlinear System with Quadratic Feedback design.

The plots in Figs. 5.26 through 5.29 show the response of the models to an
initial condition of x, = 0.35; x, = 0.35; x; = 0.35 and a zero reference

input. In Figs. 5.26, 5.27, and 5.28 the time responses of the states x,, x,,
and x4 are plotted, respectively. The NSQF shows some tendency toward
instability until ¢+ = 1 (a simulation for slightly increased values for the
initial conditions, not plotted, displayed a singularity in this neighborhood).
After the NSQF recovers from this region, it tracks the LMLF extremely
closely. The NSLF curve, on the other hand, settles down to the same

value much later, and displays some amount of overshoot.
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The improvement achieved by the NSQF in responding like a linear
system, especially as seen in Fig. 5.26, makes a very strong case for our
method. Despite the fact that the example is not an exactly linearizable
system, there is almost an order of magnitude difference between the
NSQF and the NSLF in percent deviation from the ideal linear model. The
time that the NSQF settles at zero equilibrium is also very close to that of
the LMLF, whereas the NSLF displays transient behavior for a much

longer period of time.

The curves of the inputs of Fig. 5.29 shows the steep increase in the
value of the control effort between ¢ = 0.5 and ¢ = 1, the region in which
the NSQF has a tendency of instability. The inputs settle to zero

afterwards.

x1

LMLF(——) NSLF(------ ) NSQF(------- )

Fig. 5.26. Free response of state x; of Example 2 with nonzero initial conditions.
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0.4 Time response of state x2

time

LMLF (———) NSLF (—-—-—- )

NSQF (- ------ )

Fig. 5.27. Free response of state x, of Example 2 with nonzero initial conditions.

0.4 Time response of state x3
_1
=:""=l—-_—._’_::
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time
[LMLF (———) NSLF(~-—:—- ) NSQF (-------

Fig. 5.28. Free response of state x5 of Example 2 with nonzero initial conditions. ~
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Fig. 5.29. Magnitudes of the inputs for Example 2 with nonzero initial conditions.

Figures 5.30 through 5.32 show the time response of the three
models to an impulse input of unit magnitude. The NSQF displays unstable
behavior, and its curve is not plotted through the entire time of the
simulation because, due to instability, the integration algorithm could not
carry out the computation any further. Since the stability properties of
nonlinear systems are not well known, the cause of this instability is not

entirely clear. Fig. 5.33 shows the magnitude of the inputs.
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Fig. 5.30. Response of the state x; of Example 2 to an impulse input.
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Fig. 5.31. Response of the state x, of Example 2 to an impulse input.




) Time response of state x3
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Fig. 5.32. Response of the state x3 of Example 2 to an impulse input.
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Fig. 5.33. Magnitude of the control inputs for Example 2 for an impulse input.
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In Figs. 5.34 through 5.36 are plotted the time responses of the same
models to a step input of amplitude 0.5. In these simulations, the NSQF
exhibits stable behavior, and settles toward the optimally damped response
curve of the LMLF within 5 time units. On the contrary, the NSLF
quickly goes unstable and can not track the reference signal at all. One can
choose a sufficiently small amplitude for the step input in order to obtain
stable behavior for the NSLF, but the characteristics of the response curve
in comparison with the NSQF would still display larger errors in tracking
the LMLF. Fig. 5.37 shows the magnitude of the inputs in this case. The
input values (except for NSLF, which goes unstable) settle at a steady state
nonzero constant after some transient. This is expected because the

reference signal is a step input.

0.8 Time response of state x1

o/
0.7+ Y .
0.6 d 1

x1

time

LMLEF ( ) NSLF(—-—.—- ) NSQF (- -%----)

Fig. 5.34. Response of the state x, of Example 2 to a step input.
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Fig. 5.35. Response of the state x, of Example 2 to a step input.
0.2 Time response of state x3
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time
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Fig. 5.36. Response of the state x; of Example 2 to a step input.
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Fig. 5.37. Magnitudes of the control inputs for Example 2 for a step input.

Figs. 5.38, 5.39, and 5.40 show the transient and steady state time
domain response of all three models of Example 2 to a sinusoidal input.
The reference signal was r(f) = Asin(wt ) with ® = 6, A =1. Similar
comments as in Example 1 can be made for this set of responses. The
NSQF clearly has an advantage over the NSLF in tracking the sinusoidal
reference input. In this simulation, since the linearization is not exact, the
NSQF does not follow the LMLF exactly. However, in comparison with
the curve of NSLF this deviation is negligible. This simulation is again the
most interesting case in displaying the advantage of the nonlinear feedback.
The NSLF has a constant average offset from the equilibrium point. For
NSQF, this offset is much smaller since in z coordinates, the system is

closer to a linear model.
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The above example verifies our claim in the approximate
linearization procedure of minimizing the “distance” between the given
system and the “closest linearizable” system. Of course the improvement
achieved by the quadratic feedback is dependent on how far away the
original nonlinear system is from the “closest linearizable” system before
the linearization is done. After the initial transients die out, the LMLF
settles into an equilibrium at the origin, i.e. its average is zero as expected
from an exactly linear system. The NSQF displays oscillattions extremely
close to the LMLF. Again we emphasize that the steady-state equilibrium
around which each model settles is directly related to the average of the
nonlinear terms in the vector fields over each period of the sinusoidal
input. In the case of NSQF this average is very small, i.e. it is closer to an
exactly linear model. The argument is more obvious in Fig. 5.38 since the

state x, is farthest away from the input in terms of the number of

integrations.

Fig. 5.41 shows the plot of the feedback inputs, each of which is
periodic as expected. It is very interesting to observe that while the
average values of the control inputs for LMLF and NSLF are zero (or
almost zero), the average of the input for NSQF deviates from zero. This
fact clearly has a connection to the above-mentioned argument for the
averages of the responses for the three systems. It appears that the
quadratic feedback introduces a bias into the nonlinear system which drives

it towards the origin (on the average).

In Figs. 5.42, 5.43, and 5.44 we present the phase port-ait plots of

the three models. The steady state equilibrium points are again.clearly
seen, especially in the graphs of x; versus x, and x; versus xs.
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Time response of state x1
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Fig. 5.38. Response of the state x; of Example 2 to a sinusoidal input.
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Fig. 5.39. Response of the state x, of Example 2 to a sinusoidal input.




0.2 Time response of state x3

time

LMLF (———) NSLF(—-—-—- ) NSQF (-------

Fig. 5.40. Response of the state x5 of Example 2 to a sinusoidal input.
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Fig. 5.41. Magnitude of the control efforts for Example 2 for a sinusoidal input.
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Phase portrait plot of x1 vs x2
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Fig. 5.42. Phase portrait of x, versus x, for Example 2 for a sinusoidal input.
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Fig. 5.43. Phase portrait of x, versus x5 for Example 2 for a sinusoidal input.
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0.2 —

Phase portrait plot of x2 vs x3
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NSLF (- -—-—- )

0.3

Fig. 5.44. Phase portrait of x, versus x5 for Example 2 for a sinusoidal input.

5.4.3. Example 3:

The following third order system has been simulated as another example.

This system is not exactly linearizable and it has open loop poles very close

to the desired closed loop pole locations.

x] 1.259
x, | = 0.5181
[ x;d L 1.259

0.0177

~2.9646

0.0177

-5.1128

-12.2257

—4.1128

1"1

2

1.
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2 2 - -
X174 2x x5+ X1X3+ XoXq+ X3 X+ 2x4

+ | 22+ 2x000 4 3,25+ X, 2 4 Xpxq + x32 + | X2+t x3 jJu (5.22)

u X Xg + X X3+ 2X5% 4 XpXg d L 2x J

The characteristic scales of each state and the input were assumed to be
equal to unity. The following coordinate transformation and feedback pair

were found:

2, = x; + 0.86986x,2 + 0.62932x,x, — 2.8055x,x, — 0.02927x,’
+ 0.21302x,x; ~ 0.030389x,> (5.23a)

2, = x, — 1.5358x,% + 2.2273x,x, + 1.0036x,x; + 0.36424x,” — 3.2297x,x,
+ 1.7879x,* (5.23b)

23 = X3 + 1.643%,% - 0.062292x,x, — 1.9677x,x; + 0.26052x,>
— 0.25082x,%5 + 0.014877x,> (5.23¢)

The terms in the nonlinear feedback were:

o®(x) = 7.3167x,% — 0.0043799x,x, — 14.095x,x3 +1.5513x,> — 4.5535x,x,
+13.072x,2 (5.24)

BM(x) = 1.1933x, + 0.72725x, — 0.43993x, (5.25)

The closest linearizable system had the following nonlinear terms:
fx) =
[ 1.0001x,242.0002x, x,+1.0001x,x,+0.00044583x,%4+1.0002x,x5+1.000 1, |

x12+2x X+ 3x1x3+x22+x2x3+x32

i 0.99981x,x, +x,x5+1.9996x,24+0.9998 L, ]
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" 1.0004x; +0.00198412x, + 2.0003x,

gV(x) = 0.99986x, + x; u

| -0.000391772x, - 0.0017123x, + 1.9997x;_|

The system has open loop poles at —0.5227; —2.6479 + 0.3841;. A closed
loop feedback for the linear part of the plant was calculated using a
quadratic optimal regulator design procedure with the weighing on the

states and the input equal to unity. The feedback gains were found as:
K=[-04730 0.0177 1.4224]

and the above gains placed the eigenvalues of the linear part of the closed

loop system at:

A, = —1.7647
A, = —2.5633

Since the open loop system already has stable roots, the linear feedback
gains that are necessary to drive the system are small. In the simulation

plots the response curves are defined with the following legend as before:

LMLF (———— ): Reference Linear Model with Linear Feedback.
NSLF(~.-.—-- ): Nonlinear System with the Linear Feedback design.
NSQF (------- ): Nonlinear System with Quadratic Feedback design.

Figures 5.45 through 5.48 show the response of the system to an initial
condition of x = [0.1 0 0]’ (referred to as initial condition #1 in the figures)

and the feedback input. The reference signal is set to zero. The response
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curves of Figs. 5.45, 5.46, and 5.47 show the vastly superior behavior of
tne NSQF in terms of responding like a linear system, i.e. in tracking the

LMLF extremely closely immediately after the transient response dies out.

We should note that in this specific example, the behavior of the
NSQF in tracking the LMLF should be considered even more impressive
because the system is not in controller canonical form. When a system is in
controller form, the tracking errors appear to be much larger in those
states that are further away from the input in terms of integration. This is
because (considering a single input system) the signals are differentiated
n —1 times until the first state is reached, and all the errors are therefore
amplified (Example 1 is a good demonstration of this fact). In this
example, we observe excellent tracking behavior for NSQF on all the

states, even without the benefit of the presence of controller form.

An inspection of the response characteristics of x; X, and x5 in Figs.
5.45, 5.46, and 5.47, respectively, shows that in terms of settling times at
the zero steady-state value, the NSLF is much superior to both the linear
ideal model LMLF, and the NSQF. However, this is a fortuitous behavior
of the system due to the specific nonlinearities in this example. The goal of
the nonlinear control design is to track the linear system as close as
possible, rather than to achieve the fastest response or the shortest settling
time. One should also remember that the transient and the steady state
responses of a linear system can be arbitrarily adjusted if the system 1is
controllable and if there is no restriction in the magnitude of the requierd
control effort. Therefore this should be seen as an isolated phenomenon
which results from the particular nonlinearities present, as well as from the

choice of eigenvalues of the linear part of the model.
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During the transient part of the response the NSQF is not close to
LMLF because the nonlinear terms are dominant. This is especially

apparent in the curves of x, and x; (Figs. 5.46 and 5.47). After the first

half of the simulation, this difference becomes virtually indistinguishable.

In the magnitude plot of the inputs (Fig. 5.48), the control effort for
LMLF and NSLF are extremely small (almost zero for this simulation) and
not visible on the scale of the plot. This is because the open loop system
poles are very close to the closed loop values, and the control effort needed
by a linear controller for driving the system to the origin is very small in
both cases. In contrast, the NSQF needs some additional control effort to
linearize the system. This magnitude approaches zero as the states

approach the origin.

0.14 Tunc response of state xl‘

0.12
0.1
0.08

= 0.06
0.04
0.02

-0.02 . ‘ N A .

LMLE (——) NSLF(--~-—- ) NSQF (-------

Fig. 5.45. Free response of state x, of Example 3 with nonzero initial condition #1,
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0.02 :I‘lme response of state 2

-0.02

-0.04

x2

-0.06

IMLF(—) NSLF(—-—-—- ) NSQF (------- )

Fig. 5.46. Free response of state x, of Example 3 with nonzero initial condition #1.

0.04 :I‘lnle response of state x3'

0.03

0.02

x3

0.01

LMLF(——) NSLF(—-—-—- ) NSQF (--z----)

Fig. 5.47. Free response of state x; of Example 3 with nonzero initial condition #1.
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LMLE (———) NSLF (—-—-—- ) NSQF (------- )

Fig. 5.48. Magnitudes of the inputs for Example 3 with nonzero initial condition #1.

In the following simulation, the initial condition of the previous case
has been reversed in sign as x = [-0.1 0 0]’ (referred to as initial condition
#2 in the captions of the graphs). The reason for choosing this set of initial
conditions is to test the behavior of the nonlinear system for sensitivity to
initial conditions. More specifically, we would like to check whether the
NSQF will exhibit the same excellent performance for a variety of initial
conditions as was seen in the simulation for the initial condition #1. The

responses and the control efforts are shown in Figs. 5.49 through 5.52.

The NSLF is indeed initial condition sensitive (see the large
deviations in Figs. 5.49, 5.50, 5.51 from the LMLF that it is supposed to
track using the feedback law derived from the first order approximation).

This is expected since the NSLF does not have the benefit of our nonlinear
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control scheme. The same plots show that the NSQF benefits greatly from
the nonlinear control. Indeed, comparing the response curves of initial
condition #1, the NSQF control displays an even more impressive response
in tracking the LMLF, as seen from Figs. 5.49, 5.50, and 5.51 of the three
states. To emphasize once more, the point here is not that the NSQF
follows the LMLF better for this set of initial conditions over some others,

but that it is consistent in this behavior for a variety of initial conditions.

The input effort is again very small for the LMLF and the NSLF
compared to the NSQF. This is not regarded as a disadvantage for the
quadratic control. The reason the NSQF seems to require large amounts of
control effort to linearize the system is that the open loop eigenvalues of
the linear part of the system are already near the desired closed loop

locations and the linear feedback gains are therefore very small.

Time response of state x1

-0.02

-0.04

-0.06

x1

LMLE(——) NSLF(—.—.—. ) NSQF (- -=---- )

Fig. 5.49. Free response of state x, of Example 3 with nonzero initial condition #2.
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Time response of state x2

LMLF (——) NSLF(--—-—. ) NSQF (-------

Fig. 5.50. Free response of state x, of Example 3 with nonzero initial condition #2.

Time response of state x3

-0.01
-0.02
% -0.03
-0.04

-0.05

-0.06 . - . _
0

LMLE (——) NSLF(—--—.—- ) NSQF(-------

Fig. 5.51. Free response of state x5 of Example 3 with nonzero initial condition #2.
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Fig. 5.5%. Magnitudes of the inputs for Example 3 with nonzero initial condition #2.

We continue to further test the sensitivity of the system of Example 3
by applying nonzero initial conditions on other states. In the following, we
present another set of simulations for the same system with nonzero initial
conditions for x;. The initial condition values are x =[000.1] (initial
condition #3) and x = [0 0 —0.1] (initial condition #4). Response curves
and the control efforts for initial condition #3 are shown in Figs. 5.53
through 5.56. Figs. 5.57 through 5.60 present the responses and the input

effort for initial condition #4.

Comparing the responses of state x, in Figs. 5.53 and 5.57 for initial

conditions #3 and #4, we can state the same conclusions that were presented
for initial conditions #1 and #2. The NSQF tracks the ideal linear model
LMLF very closely as seen in both of these figures. Comparison of these
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two figures show that the sensitivity to changes in initial conditions of the
NSQF is minimal. The tracking performance by the NSQF of the LMLF is

excellent in both cases. Similar conclusions are reached when the responses
for the set of initial conditions #3 and #4 of the state x, in Figs. 5.54 and

5.58, and of the state x5 in Figs. 5.55 and 5.59 are compared.

The control efforts seen in Figs. 5.55 and 5.60 show that the NSQF
requires larger input values compared to a linear design. As explained
earlier, the reason that the LMLF and NSLF require such small input
efforts is that the open loop and the closed loop eigenvalues (of the linear

part of the example) are very close to each other.

Time response of state x1

S

-0.05

x1

-0.15
0
time

LMLF (————) NSLF (—-—-—- ) NSQF (- ------ )

Fig. 5.53. Free response of state x, of Example 3 with nonzero initial condition #3.
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Time response of state x2

LMLF(——) NSLF(—-—.—- ) NSQF (------- )
Fig. 5.54. Free response of state x,, of Example 3 with nonzero initial condition #3.

0.1 Time response of state x3
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0.06
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T 0.02

-0.02
-0.04

-0.06
0

IMLF(—) NSLF(--—-—- ) NSQF (------- )l
Fig. 5.55. Free response of state x3 of Example 3 with nonzero initial condition #3:
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time
LMLF(—) NSLF(—:—-—. ) NSQF (-------

Fig. 5.56. Magnitudes of the inputs for Example 3 with nonzero initial condition #3.

0.2 Time response of state x1
0.15
0.1
%
0.05
0
-0054———— .
0 1 2 3 4 5 6
time
LMLF (———) NSLF (—-—-—- ) NSQF (- ------

Fig. 5.57. Free response of state x; of Example 3 with nonzero initial condition #4.
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0.15

0.1

LMLF (

Time response of state x2

0.05}

) NSLF (—-—-—- )

Fig. 5.58. Free response of state x, of Example 3 with nonzero initial condition #4.

0.05

x3

-0.05

|LMLE (

Time response of state x3

—

~ =

) NSLF(--—---- )

Fig. 5.59. Free response of state x5 of Example 3 with nonzero initial condition #4.
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time
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Fig. 5.60. Magnitudes of the inputs for Example 3 with nonzero initial condition #4.

As the final simulation of Example 3, we present the response of the
system to a sinusoidal reference input of r = sin(6¢). As in the Examples 1
and 2 presented earlier, the average value of the sinusoidal response gets
closer to zero for the NSQF. This improvement is more apparent in the
graphs of x, and x; in Figs. 5.61 and 5.63. For the response x, of the
NSLF in Fig. 5.61, one can observe substantial nonzero average as well as
a distorted non-sinusoidal shape in the response curve. The NSLF also
displays a phase deviation away from the linear behavior, which is more
apparent in the response of x, in Fig. 5.62. These three characteristics
(namely nonzero average, non-sinusoidal response, and a phase shift away
from the linear behavior) are typical characteristics of a nonlinear system,

and they have been improved by the quadratic feedback of the NSQF:.
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In Fig. 5.63, the input for the NSQF is periodic and strongly
nonlinear. The nonlinear shape of the input signal is not arbitrary; this
specific nonlinearity in the input effectively cancels out the nonlinearities in
the system (up to degree two). The magnitudes of the control inputs for
LMLF and NSLF are too small to be seen in the given scale. Again this is
because the linear feedback gains were small since the open loop poles were

close to the closed loop values.

Time response of state x1

0.8

LMLE ( —_— ) NSLF (—-—-—- ) NSQF (------- )

Fig. 5.61. Response of the state x; of Example 3 to a sinusoidal input.
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Time response of state x2

time

LMLF (—) NSLF(—-—-—- ) NSQF (------- )

Fig. 5.62. Response of the state x, of Example 3 to a sinusoidal input.

0.6 Time response of state x3

-0.4 . _
1 2 3 4 5
time
LMLF (—) NSLF (—-—-—. ) NSQF (------- )

Fig. 5.63. Response of the state x; of Example 3 to a sinusoidal input.
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Fig. 5.64. Magnitude of the control efforts for Example 3 for a sinusoidal input.

5.3.4. Nearly Circular Satellite—-Example 4:

As it was mentioned in the beginning of this section, in the simulations of
Examples 1, 2, and 3, we have presented cookbook nonlinear systems. The
first example was exactly linearizable; the second example was not exactly
linearizable but in controller canonical form; and the third example had

open loop poles very close to the desired closed loop poles.

The fourth example for the approximate linearization method that
we present now, is a physical system. The following problem has been
adopted from Kailath [26]. We consider a satellite of mass m in planar

earth orbit specified by its position and velocity in polar coordinates.-as
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x4&[r 7007 (5.26)

where r is the orbital radius and 0 is the angle of the radius vector with
respect to a stationary, inertial reference line. The input thrusts or forces

are written as
u=[u, ug (5.27)

which are inputs along the radial and tangential directions. These are
applied by using small rocket engines. The equations of motion are:
— . T =

. u
2 _ ‘r
9 +m

X = ) (5.28)

\N'» ~

<D

270 Ug
| +
r mr -

where m is the satellite mass and k is the orbital constant. When the
equations of motion are linearized around a nominal orbit, the system is

locally controllable with the above inputs. If either one of the controls is
assumed to be lost, the linearized system is still controllable from only u,

but not from only ,.

In the following example we assume that 4, = 0 and we control the
satellite with ug only. The point of this assumption is that when both
controls are present, all the nonlinear terms in the system can be cancelled
exactly by appropriate feedback, and a nonlinear coordinate change

becomes unnecessary. Furthermore, when both of the inputs are present,
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the system is exactly linearizable up to any desired degree. Thus the
problem of feedback linearization using both of the inputs becomes an
uninteresting exercise in algebra. With tangential thrust alone, however,
the system becomes more challenging to control, and a nonlinear
coordinate transformation is needed in addition to nonlinear feedback.
With this assumption we present a stronger demonstration of the

effectiveness of the approximate linearization method.

In the following, the system equations will be rewritten around the

norninal states

Xnom = [rO 0 (‘)ot 0)0]

and the state vector x is redefined as perturbations from this nominal orbit:
x=[8r 8r 6-wy OSw] (5.29)

Note that the notation in (5.29) has been changed from that of (5.28); the

state vector x now represents the vector of perturbations.

When perturbed around the nominal orbit, the Taylor series
expansion of the system equations including the second degree terms (i.e.

truncated at the third degree in the series expansion) becomes

PR 1 0 0 7 [0 0
1
. 3w 0 0 2rgmg ||, 0 0
x 2
_2 = 0 0 O 1 +| 0 gt 0 |4
*3 -2 3
0o —2 0 0 L =
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0

e )
rg 1 + 200px x4 + Xy

N ) (5.30)

20, 2
i r02 XXy — ,-_Oxzx4

with the numerical values assigned as :

@, = /2 rad/hr; ry = 12.74 Mm (Mm = 10® meters); m = 1000 kg.

These parameter values correspond to an earth satellite with a period of 4
hours and an orbit radius of 2 earth radii. The set of values represent an
intermediate orbit between a geosynchronous satellite and a low altitude

communications satellite.

Note that the satellite model in (5.30) is assumed to be controlled
only by the tangential thrust ug. In order to apply the approximate

linearization procedure, the state equations must be normalized according
to the characteristic scales of each state. The following characteristic scales

have been assumed for the states and the input:

X, = 12.74 Mm. = (2 earth radii)
Xy, = 1.58 Mm/hr.

X3, = T/2 radians

X4c = 1/2 rad/hr.

ug. = 10,000 kg. Mm/hr.




The eigenvalues of the open-loop system are at A,, = 0 and
Ay 4 = £1.58j, i.e. the system is critically stable. A linear quadratic
optimal feedback design with unit weight on all the states and the input

places the closed loop poles at:

Ao =—2.9882 £ 3.3655)

We note that the feedback is calculated in the scaled coordinates.
Therefore unit weighting of the states and the input in the cost function of
the quadratic optimal feedback design makes sense, unless dictated by other
design criteria. The feedback gains that place the poles of the scaled system

in the above locations were calculated as:
K =[-23.6995 -1.0502 1.0000 -13.0067])

For quadratic linearization, the following coordinate change and
feedback was found (The computer program for approximate linearization
presents the coordinate change and feedback in the unscaled coordinates so
that an implementation of the feedback in the natural coordinates can be

readily done):

z, = x, — 0.098137x,2 (5.31a)
23 = x3— 0.0043866x,x, + 0.0078554x,x, (5.31¢)

z4 = x4 — 0.032852x,2 - 0.11776x,x, — 0.004875x,2 + 0.31637x,2  (5.31d)

a@(x) = —1767.1x,x, — 10499x,x, (5.32)

135




136
BM(x) = —0.19623x, + 0.63274x, (5.33)

The second degree terms in the exactly linearizable system are:
[ 0 ]
-0.5878x,2 +3.1597x,x,+ 12.736x,2
0.0014598x,2
. 0.01947x;x, - 0.15701x,x,

[ 0 ]
0
—6.1665e-07x,
| —6.16e-06x, _

f(2) -

V) =

The system was simulated first with various nonzero initial
conditions and no forcing input. Then a sinusoidal reference input was

applied. In all of the following simulations, the curves are represented as:

LMLF (— ): Reference Linear Model with Linear Feedback.
NSLF(------ ): Nonlinear System with the Linear Feedback design.
NSQF(------- ): Nonlinear System with Quadratic Feedback design.

In the first set of simulations, a displacement of +2 Mm along the radius
from the nominal orbit was used as an initial condition, i.e. x={2 0 0 O]
(initial condition #1). This value corresponds to a deviation of 2,000
kilometers from the nominal orbit. When a satellite is first out up into
orbit, it is likely to encounter deviations of up to 20% from its nominal

orbital radius. Therefore the initial condition chosen is a realistic value.




The response in Fig. 5.65 is for the radial displacement of the
satellite from the nominal orbit. The NSQF follows the LMLF closely
along the trajectory. In the radial velocity response, the NSQF is very
close to the LMLF whereas the NSLF displays an overshoot first, and it
does not get close to the linear system for a longer period of time. In Fig.
5.67 of the reference angle, the NSLF exhibits a large deviation from the
linear ideal model LMLF. The NSQF tracks the linear ideal model
extremely closely in this case. It appears from the large deviation
exhibited by NSLF from the linear ideal model LMLF in Fig. 5.67 that the
nonlinearities that affect the dynamics of the satellite along the tangential
direction of the motion, i.e. those which influence the angular deviation,
have a stronger effect on the motion. The nonlinear control is very
effective in reducing these undesired nonlinear effects. This result is also
due to the fact that the satellite is being controlled by the tangential thrust

alone

The behavior of the NSQF in the plot of the angular velocity, Fig.
5.68, is very close to the LMLF. The large initial overshoot of the NSLF
in the angular velocity is obviously the cause of the deviation in the angular

displacement, since the displacement is the integral of the velocity.

The plot of the input efforts in Fig. 5.69 show that the control for
the NSQF is closer to the LMLF. In the input plots, the initial value of the
thrust was vey large for all three systems (about 40,000). Since there was
not an appreciable difference between these curves for the first 1/4 hrs. of
the simulation, part of the plot was removed to readjust the scale so that

the difference between the inputs could be distinguished.
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55 Time response of state x1

LMLE(———) NSLF (—-—-—- ) NSQF (------- )

Fig. 5.65. Free response of state x; of Near Circular Satellite with nonzero initial condition #1.

Time response of state x2
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time
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Fig. 5.66. Free response of state x, of Near Circular Satellite with nonzero initial condition #1.
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Time response of state x3
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Fig. 5.67. Free response of state x3 of Near Circular Satellite with nonzero initial condition #1.

Time response of state x4
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Fig. 5.68. Free response of state x, of Near Circular Satellite with nonzero initial condition #1.
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Fig. 5.69. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #1.

In the Figures 5.70 to 5.74 the responses to an initial displacement of
—2 Mm from the nominal orbit along the radius are shown (initial
condition #2). This value is the negative of the initial condition #1, and it
is intended as a test to check whether the response will display sensitivity to

initial conditions, which was found to be absent in the NSQF of Example 3.

Comparing Fig. 5.65 for the initial condition #1 and Fig. 5.70 for
the response of the radial deviation from the nominal orbit, we observe
that the tracking by the NSQF of the LMLF is quite satisfactory. The
NSQF displays a response that is only slightly sensitive to initial conditions.
We note that when evaluating initial condition sensitivity for the nonlinear
system, we are actually looking for the type of behavior typical of linear

systems: Are the response curves symmetric with respect to the time axis




when the sign of the initial conditions is changed? The two curves of
NSFQ in Figs. 5.65 and 5.70 are not exactly symmetric, with a small
overshoot displayed by the NSQF in Fig. 5.70 that is absent in the plot of
Fig. 5.65. However, the difference is minor, and it does not affect the
tracking of the LMLF.

Comparison of x, in Figs. 5.71 and 5.66, of x; in Figs. 5.72 and
5.67, and of x, in Figs. 5.73 and 5.68 between the two sets of initial
condition responses #1 and #2 all show that the response of the NSQF is
slightly initial condition dependent, but not as strongly as the curves of the
NSLF. Immediately after the transient part of the response, the NSQF
approaches extremely close to LMLF.

The plot for the magnitude of the inputs in fig. 5.74 has been
rescaled to distinguish between the different inputs. Similar to the input
plot of initial condition #1, in the section of the plot that is not shown, all
the inputs were very close to each other. This rescaling helps us in
distinguishing the following feature: For all the improvement achieved in
the tracking of the linear ideal model by the NSQF, it is surprising that the
input effort needed for this is actually smaller than those needed by the
controls of LMLF and NSLF. This is a feature that was also present in the
input plots of Fig. 5.69 of the initial condition #1.
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Time response of state x1
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Fig. 5.70. Free response of state x, of Near Circular Satellite with nonzero initial condition #2.
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Fig. 5.71. Free response of state x, of Near Circular Satellite with nonzero initial condition #2.
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Fig. 5.72. Free response of state x5 of Near Circular Satellite with nonzero initial condition #2.
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Fig. 5.73. Free response of state x4 of Near Circular Satellite with nonzero initial condition #2.
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Fig. 5.74. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #2.

An angular displacement of 1 radian from the nominal orbit has been
applied for the following simulations (x =[0 0 1 0]'). The NSQF tracks
the LMLF very closely in the radial displacement (Fig.5.75), radial
velocity (Fig. 5.76), angular displacement (Fig. 5.77), and angular velocity
(Fig. 5.78). These response curves show that the quadratic control is
surprisingly effective in tracking the ideal linear model, especially when
compared with the linear control of the nonlinear system, the NSLF.
Please note that in the simulations of both the NSLF and the NSQF, we

have integrated the truncated equations of motion presented in Eqn. (5.30).

The NSLF displays large transient errors and longer settling times in
all the states. A reason why the NSQF is so effective in improving the
system behavior in responding like the LMLF in the state of the a}xgular
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position is because the system is being controlled by a tangential thrust,

which directly affects the angular acceleration.

Because of the initially large magnitude of the input thrusts in Fig.
5.79, the scale of the plot was too large to allow the different inputs to be
clearly distinguished, and we truncated a small portion of the plot by
rescaling the axes. This is why the irnut curves are missing for the first
1/3 hours of the simulation. In this truncated part, the input values for all

systems were as high as 3000, and they were very close to each other.

Since we are running fictitious simulations, we can afford such large input
forces. In reality, however, such thrust values may not be available for
being able to recover from the large initial deviations we have imposed on

the system, and longer settling times would be physically more realistic.
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Fig. 5.75. Free response of state x; of Near Circular Satellite with nonzero initial condition #3.
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Fig. 5.76. Free response of state x, of Near Circular Satellite with nonzero initial condition #3.
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Fig. 5.77. Free response of state x5 of Near Circular Satellite with nonzero initial condition #3.
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Fig. 5.78. Free response of state x, of Near Circular Satellite with nonzero initial condition #3.
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Fig. 5.79. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #3.




Figures 5.80 through 5.84 show simulation results for an angular
displacement of —1 radian from the nominal orbit, an initial condition with
a sign opposite of the previous case. In the captions of these plots, this case
is referred to as initial condition #4. The discussion for the responses in
this case is nearly identical to that of the initial condition #3. The NSQF is
extremely succesful in the tracking of the LMLF in all the states in the
Figs. 5.80, 5.81, 5.82 and 5.83. The sensitivity properties to a change in
initial conditions is excellent, and in this sense the NSQF behaves almost

exactly like a linear system.

As in the earlier simulation, the input effort is initially very large,
and the difference between various controls could be clearly seen only

when a small initial portion of the graph was truncated.
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Fig. 5.80. Free response of state x, of Near Circular Satellite with nonzero initial condition #4.
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Fig. 5.81. Free response of state x, of Near Circular Satellite with nonzero initial condition #4.
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Fig. 5.82. Free response of state x5 of Near Circular Satellite with nonzero initial condition #4.
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Fig. 5.83. Free response of state x4 of Near Circular Satellite with nonzero initial condition #4.
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Fig. 5.84. Magnitudes of the inputs for Near Circular Satellite with nonzero initial condition #4.




Finally, for the last simulation, a sinusoidal forcing of 30,000sin(6¢)
has been applied to the satellite. Note that this reference signal has the
same units as the input. The amplitude of the sinusoidal forcing magnitude
may seem very large, but we note that as seen in Eqn. (5.28), the thrust is
divided by the mass and the orbital radius to yield the angular acceleration.
This value has tzen chosen large so as to be able to effectively distinguish
between the behavior of the NSLF and the NSQF. Such a large reference
forcing is not physically realizable, and this portion of the example is
simulated only for the sake of demonstrating the effectiveness of our
method. The period of the disturbance was chosen to be close to the orbital
period of the satellite. This type of periodic disturbances are typical for a
satellite, and they might represent external effects such as solar pressure or

gravitational forces due to other celestial objects.

In the radial displacement response of Fig. 5.85 we observe the same
phenomenon seen in the simulations of Examples 1, 2, and 3, i.e. the
quadratic feedback causes the average value of the sinusoidal response to
approach zero. Similar behavior is displayed with a larger deviation in the
angular displacement response of Fig. 5.87. The average drift in all the
models away from the equilibrium in this fugure was very interesting, and
the simulation was extended until ¢ = 20 to observe the steady state
behavior, which is shown in Fig. 5.88. The NSLF displays a large drift
from the reference angle. The LMLF shows a sinusoidal response with
zero average. The NSQF is much closer to the LMLF in average than the
NSLF. However it is obvious From Fig. 5.88 that the NSQF will also
exhibit a steady state average error. This is because the nonlinear system is

not linearizable, and the error is due to the residual second degree terms
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that could not be removed by coordinate change and feedback. Note that
the magnitudes of the nonlinearities are significant for these values of the

states.

Figs. 5.86 and 5.89 show the radial and angular velocities,
respectively. In these curves, the linear and nonlinear control responses
are not readily distinguishable. The difference becomes noticeable when
the velocities are integrated to obtain the displacements, as discussed above.
In the the angular velocity response x, of the satellite, we observe a large
overshoot in the NSQF. In trying to correct the nonlinearities, the

quadratic controller introduces very large deviations.

Fig. 5.90 shows that the input thrust for the NSQF also assumes very
large values during the transient part of the response. This may be due to a
tendency of the quadratic control to drive the system unstable for large
deviations from the equilibrium. However, whether this large input force
is really necessary to effectively cancel the nonlinear terms in the system
(i.e. are the nonlinear terms really so large to need such a strong force to
cancel them), or the higher degree approximation of our approach starts

failing for these large values of the states is not clear.

Large values for the input force was also gbserved for Example 1
presented earlier in this chapter. In order to improve on the performance
of the nonlinear controller for some systems that display similar tendencies
of instability, certain modifications in the design procedure may have to be
made. It is not entirely clear at this moment what these modifications
should be, and this is certainly one of the open research questions that

extends from this work.
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Fig. 5.85. Response of the state x; of Near Circular Satellite to a sinusoidal input.
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Fig. 5.86. Response of the state x, of Near Circular Satellite to a sinusoidal input.'.'
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Fig. 5.87. Response of the state x5 of Near Circular Satellite to a sinusoidal input.
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Fig. 5.88. Response of the state x5 of Near Circular Satellite to a sinusoidal irput for
extended time.
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6. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

6.1. Summary

In this report, we have developed a method for approximate linearization
of nonlinear control systems using coordinate transformation and feedback
pairs. First, a series expansion of a given nonlinear system at some
nominal operating point was obtained. Based on the Hunt-Su theorem
[17,18] and the approximate linearization results in {29] we formulated the
problem of linearizing a nonlinear control system by nonlinear coordinate
transformation and nonlinear feedback. The form of the coordinate change
and feedback were chosen such that in the vicinity of the nominal operating
point the transformation approaches the identity map. The differential
equations of the system were then evaluated in the new set of coordinates

using the given coordinate change and feedback.

With the goal of eliminating the nonlinear terms of a given degree in
the series expansion, we obtained the Generalized Homological Equations.
These equations were evaluated after choosing a suitable basis in which the
pth degree vector valued monomials were expressed. When the
coefficients of the monomials of similar powers were set equal to each
other, we obtained a linear system of equations in the unknown coefficients
of the coordinate change and feedback, i.e. in the coefficients of Q_(z)(x),

a(z)(x) and B(l)(x). Since these terms are coefficients of monomials of
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degree p, the resulting system of linear equations is approximately of order

n?*! where n is the dimension of the nonlinear vector field.

The calculation procedures to solve this set of equations were then
implemented in the MATLAB computer program. MATLAB is an
application language with a rich collection of matrix based computational
algorithms. There are toolbox packages available for control systems,
system identification, and signal processing. It is also a programming
environment with a convenient user interface. By using the built-in
subroutines available in the package and writing additional subroutines,
functions and procedures one can create programs that automate the
solutions of mathematical problems. This package proved to be a very
suitable tool for writing the computer program that implements the results

of this report.

The computer program prompts the user for the input parameters of
the system to be linearized such as order of the system and number of
inputs, characteristic scales for each state and input, linear part of the plant
and the input coefficient, and nonlinear terms of second degree in the states
and the inputs. After obtaining the parameters of the system, the program
first calculates the linear and nonlinear parts of the system in the scaled
coordinates. A linear set of equations in the unknown coefficients of the
coordinate change and feedback is then obtained. This large system of
equations is solved by a singular value decomposition subroutine. The
solntion obtained is presented to the user as the result of the first part of
the program. At this point, having found the coordinate change and
feedback needed, one can terminate the program, or continue to design a

feedback law for the linear part of the system.
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In the program, the nonlinear feedback needed to achieve the second
degree linearization is calculated in the scaled natural coordinates. Prior to
running simulations, symbolic expressions for the differential equations are
generated to speed up the integrations. Three different models are
simulated using the above feedback: 1) An exactly linear model (which
agrees with the linear part of the system) to serve as a benchmark, 2) The
nonlinear system with a linear feedback design based on a first degree
approximation, 3) The nonlinear system that is linearized up to second
degree with a quadratic feedback and with the additional linear feedback as
in 1) and 2).

Various forms of initial conditions and reference input signals (such
as impulses, steps and sinusoidal inputs) can be applied to all three systems.
They are integrated for a specified length of time. At the end of the
simulations, the resulting state trajectories are converted back to natural
unscaled coordinates and plotted for comparison. The feedback inputs for
all three simulations may also be plotted. Phase portraits of the states can
also be made. Once the plots are completed, one can extend the simulations
for a longer period of time, apply different inputs for a different set of
simulations, design different forms of feedback for the linear part of the

system or terminate the program.

Using the computer program as a tool, we found nonlinear feedback
and coordinate transformation pairs for various example nonlinear
systems. We tested the resulting closed loop systems with different initial
conditions and impulse, step or sinusoidal forcing inputs. The
improvement of the second degree approximation over the first -degree

design was superior in almost all the cases that were tested. The systems
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that are exactly linearizable showed the best improvement, and when the
errors due to the second degree terms in the coordinate change became

small, the behavior of the linearized systems were almost exactly linear.

For the type of systems that are not exactly linearizable, there was a
noticable improvement, especiallly in the steady state responses to a
disturbance. The most impressive results were obtained when the systems
were forced by a sinusoidal forcing function. Unlike linear systems, the
response of nonlinear systems to a sinusoidal forcing do not usually have
zero mean. Depending on the nonlinear termsthat are present, there may
be a nonzero bias value which is approximately the average of the
nonlinearities over a period of the forcing function. In this case, it was
observed from the simulations that the quadratic feedback decreased this
bias term, and for exactly linearizable systems the bias was exactly zero in
the steady state. The type of disturbances a control system encounters in
the real world are not impulse or step inputs but noisy signals in general.
The linearized systems have not been tested with noisy inputs. However,
the response behavior for the sinusoidal inputs may be an indication that

the improvements will be satisfactory.

6.2. Conclusions and Future Research Directions

One of the main contributions of this report is obtaining a numerical
solution to the approximate linearization problem for nonlinear control
systems. The exact solvability of the homological equations and the
linearizability of a system according to the Hunt Su theorem (up-to the

specified degree) are equivalent conditions. Therefore whenever a control
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system is not exactly linearizable, it is impossible to find an exact solution
to this system of linear equations. When a solution exists, the coordinate
change and feedback that are found transform the nonlinear system into an
exactly linear system (up to the specified degree) in a new set of

coordinates.

When there is no exact solution, we have solved a least squares
problem by finding an approximate solution to the system of equations
using the singular value decomposition. Before finding an approximate
solution, the state variables were normalized according to their
characteristic scales. By defining the least squares problem in a consistent
way, we minimized the norm of the error between an approximate solution
and a “nearby” exact solution. As shown in Section 3, this is equivalent to
solving the associated singular value decomposition problem for the linear

system of equations in the scaled coordinates.

The Hunt-Su theorem is severe in its restriction that a transformation
and feedback that linearizes a nonlinear system has to achieve the
transformation exactly, i.e. up to an infinite degree in the series expansion
of the nonlinear terms. When it exists, one can calculate the coordinate
change-feedback pair using the Hunt-Su theorem. If the Hunt-Su test fails,
there is nothing more one can do to linearize the system within that
framework. One of the contributions of this report is to offer the above
described approximate solution to the linearization problem in the case

when the Hunt-Su theorem fails.

The improvement achieved by our method depends on whether or

not before the linearization a given nonlinear system was far away from
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the “minimum” solution yielded by the singular value decomposition
method. Obviously, another important factor in the performance of the
linearized system is the relative magnitude of the nonlinear terms in the
system compared to the linear part. If the nonlinearities are very small,
the linear part of the system will dominate the behavior, and the

improvements in such a case may not be significant.

The numerical calculations needed for the transformation and
feedback for a second degree linearization are computationally expensive.
Further improvements in the calculation speeds of the transformation and
feedback may be possible (perhaps with the goal of a real-time
implementation) by removing some of the redundancies in the linear

system of equations that are obtained from the homological equations.

A next step in this research may be the formulation of the third
degree linearization problem. It is expected that a third degree
linearization will improve on the linear behavior of a nonlinear system in a
larger neighborhood of the operating point. However, the numerical
calculations necessary in this case are even more burdensome. The
question that arises is whether a third degree linearization for a single
operating point contributes a justifiable improvement for a broader range
in the state space, or one should perform successive second degree
linearizations at more than one nominal point. The answer to this question
is not clear and may depend on the severity of the nonlinearities, or on the

individual application.

Since we have not solved the third degree linearization problem in

this report, a performance comparison with the second degree linearization
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is not possible at this time. Provided a given system is exactly linearizable,
a third degree linearization may be a worthwhile pursuit. However, if the
system is not exactly linearizable, since there are some second degree terms
that can not be removed, the benefits of a third degree linearization in the
presence of these second degree terms may not be crucial. This argument

also depends on the relative magnitudes of the third degree terms.

It should be pointed out that the formulation of the third and even
higher degree linearizations are similar to the second degree linearization,
as shown in Chapter 3. Aside from some additional technical difficulty of
dealing with a higher dimensional system of equations (the sizes of which
are directly related to the presence of third —or higher— degree monomials)

the numerical solution is also the same.

During the testing of the computer program with various examples,
it was observed that the stability characteristics of the example systems
were sometimes adversely affected. The nonlinear terms that are present
in a system may occasionally augment system stability in certain regions in
the state space, which may depend on their magnitudes and signs at any
given point in the trajectory. Attempting to remove these nonlinear terms
may sometimes cause a system to have a smaller basin of stability after

linearization.

Our central focus in this report has been the improvement on the
response of a nonlinear system in favor of a linear one, and the stability
issue has been considered only locally, i.e. for the linear part of the system.
Clearly, in a reasonably close neighborhood of the origin, the stability

properties will be dominated by the linear part of the vector field. Since
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linear systems can be made globally asymptotically stable, it was initially
expected that a system that has been approximately linearized would always
have a larger basin of stability compared to the same system before the
approximate linearization. This intuitive generalization is not correct in

many cases.

The issue of nonlinear stability is a difficult problem that has not
been completely solved. The stability of a system with nonlinear feedback
of the type we are proposing may depend on important properties of the
overall system such as nonlinear controllability, loss of convergence in the
series expansion of the vector field, a loss of rank in the inversion of the
coordinate change and feedback, etc. These issues are beyond the scope of
this report, but the investigation of stability properties of the method is a

natural extension of the work.

The results presented in this report and their implementation in a
computer program that yields the solution to approximate linearization
problems, help us to analyze various control systems and to gain further
insight into the nonlinear behavior of control systems. Valuable experience
was obtained from the various numerical experiments that have been
performed. Future research directions will certainly be influenced by

these observations as well.
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APPENDIX A:
AN EXAMPLE SESSION FOR THE COMPUTER PROGRAM

The following example session has been recorded during a sample run of
the Approximate Linearization program. The MATLAB command “diary
on” starts recording the screen output. The command “diary off” stops the
recording of the session. Note that the graphical output and anything typed
by the user can not be recorded. The user responses have been added later

and they are emphasized as boldface type.

mainmenu
. SEééND.DEGééE.APPROiiéAT;ON .
. TO NONLINEAR CONTROL SYSTEMS
. Controller Version .
. by .
. Sinan Karahan .

Welcome to the Second Degree Linearization Program
Press a key to start

1) Help on program and functions

2) Enter new nonlinear system parameters

3) Solve the second degree linearization problem
4) Feedback design for the models

5) Simulate the system and compare performances
6) Exit

Select a menu number: 1
9

$This help routine presents a *very* brief introduction-to
%the second degree approximation program. For more detailed
$information about the program and the background theory
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$please consult to the accompanying "Second Degree
$Approximation to Nonlinear Control Systems using MATLAB:
$Users' Manual".

echo off

Press any key

The program solves for second order approximations of
nonlinear control systems. Your control system should be
in the following format:

dx (2) (1) 3

——=PFPx + Gu + f (x) +g (x)u+ O(x,u)

dt
where F is the n*n plant matrix, G is the n*1l input vector,
(2) (1)
f is the second degree part of the vector field, g

is the first degree part of the input coefficients. All of
these terms have to be calculated ;, the user from the
series expansionof the control system at the nominal
operating point 0. For further details on the individual
subroutines and function programs called by the routines,
use the help utility in MATLAB.

echo off;

Press any key

P O° O o° O OO OO P oP I O° AP o o P P of o

1) Help on program and functions

2) Enter new nonlinear system parameters

3) Solve the second degree linearization problem
4) Feedback design for the models

5) Simulate the system and compare performances
6) Exit

Select a menu number: 2
————— Input one of the following: —-——--
1) Enter data manually
2) Enter a filename to retrieve data
Select a menu number:
————— For entry of data, choose -----
1) Novice mode
2) Expert mode
Select a menu number:

enter order of the system, n: 3

enter dimension of the control, m: 1
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Enter a characteristic scale for each state (used for
normalizing)

scale of x1
scale of x2
scale of x3

I |

1
1
1
Enter a characteristic scale for each input

scale of ul =1
Enter 3x3 plant matrix, F: [0 1 0;0 0 1;-3 2 -1]

0 1 0
0 0 1
-3 2 -1
Enter 3x1 control matrix, G: [0;0;1]
0
0
1

Enter the coefficients of the second degree terms f2 in the
series expansion of the control system in the following
order:

x1x1l x1x2 x1x3 x2x2 x2x3 x3x3

Note the dimensions of f£2:

3 rows [for each state equation from 1 to 3] by 6 columns
[for the

coefficients of above terms].

f2 =010 -1000;0-10101;000 01 0]

1 0 1 0 0 0
0 -1 0 1 0 1
0 0 0 0 1 0

Enter coefficients of the first degree terms in gl in the
form of a 3 x 3 matrix, where

(1)
g (x)*u = gll*x*ul

each gli is a 3 by 3 matrix, and gl is formed of row blocks
of gli.

gl = [1 0 0;0 0 0;0 1 0]

1 0 0
0 0 0
0 1 0

Enter a file name to store this data: sessiondat
Note: The variables are being saved in the following order:
n m xscale wuscale f g f2 gl

————— Enter one of the following --~--
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1) Display the variables n m xscale uscale f g £f2 gl
2) Return to main menu

Select a menu number: 1
Your system is as follows:

O e L e L T O VP VR Uy P I VL T VY VRV U VP Y W VT VP

Dimension of the system:

n

3
Dimension of the control
m

1

Scale factors of the states, x1 through xn

P s P o Pt Bt P Pt Tt Pt Pt P ot P Pt Pt Pt Pt Pt P Pt Pl Pt Pt It Pt Pt IS Pt Pt g P Pt P s s Pt s Pt s P Pt P s Pt s

1 1 1
Scale factor(s) of the input(s;, ul through um

B Py s Pt Pt Pt P Pt Pt Pt s Pt Pt s P g Pt Pt s Pt Pt Pt Pt Pt Pt Pt P P Pt Pt P P P Pt O Pt s b Pt s Pt s Pt Pt s P s s

Press any key

Linear part of the plant:

F
0 1 0
0 0 1
=3 2 -1

Constant part of the input vector:
G

0
0
1
Press any key

Second degree part of the plant:
(2)

P

= +x(1) *x (1) -x (1) *x(3)
£2(2) = —x(1)*x(2)+x(2) *x(2) +x(3) *x(3)
£2(3) = +x(2)*x(3)

Press any key

First degree coefficient of the input(s):
(Each gli multiplies i’th input ui)
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e ot

Corrections should be done by choosing #2 from the main menu.
Press any key

1) Help on program and functions

2) Enter new nonlinear system parameters

3) Solve the second degree linearization problem
4) Feedback design for the models

5) Simulate the system and compare performances
6) Exit

Select a menu number: 3
* Calculating the scaled variables...

We seek a quadratic change of coordinates
(2)
z = X — phi (x)
and feedback
(2) (1)
v = alpha (x) + (I + beta (x)).u
which transforms our system into the form

dz 2 3
-——— = Fz + Gv + R(z,V) + 0(z,Vv)
dt

2
where, if the system is exactly linearizable, R(z,V)
(residual) is zero.

L g L] * L J *

We use the homological equations

(2) (2) (2)
[ F.x, phi (x) ] + alpha (x) = f (x)

(2) (1) (1)
( G.u, phi (x) ] + G.beta (x) =g (x).u

 Calculating the system of equations...
. 2
e We construct a large linear system LX = B in the O(x,u)




coefficients of the homological equations. This system has
2 2

ROWS : n (n+1)/2 + mn
2 2

COLUMNS : n (nt1)/2 + mn(n+l1)/2 + m n

In general, the column rank is deficient and the solution
is overdetermined.

We use the SVD algorithm to get the "nearest" possible
solution.

* Solving for the coordinate change and feedback...
* SVD may take a while, please wait.

* Calculations done.

Press any key

————— Please choose a menu item ——--—-

1) Display coordinate change and feedback
2) Show the closest linearizable system
3) Exit to main menu

Select a menu number: 1
press any key
Phi2 in the second degree coordinate change z=x-phi2(x):

P P PN ot s s P P Pt P Pt Pt Bt Pt g Pt Pt Pt Pt Pt ot 0 Nt s Pt T Pt Pt T It Pt ot Pt Pt 0 Bt Pt Pt b P NS It b 8 Pt Pt Pt Pt g Pt s Pow Pt s Pt

phi2 (1) = +0.19697*x (1) *x(1)+x(1) *x(3)-0.5*x(2) *x(2)

phi2 (2) =4*x (1) *x(1)+2.3939*x (1) *x(2)
phi2(3) = -7*x(1)*x(2)+2.3939*x(1)*x(3)+1.3939*x(2)*x(2)~
x(3) *x(3)

Press any key

Second degree part of feedback: Alpha?

alpha2 (1) = =1.4091*x(1)*x(1)+7*x(1)*x(2)-

2*x (1) *x(3)+7.1061*x(2)*x(2)-0.18182*x(2) *x(3)-x(3) *x(3)
Press any key

First degree part in the feedback: Betal

At s P P o P P P Pt s Pt Pt s B Pt g i P Ny P P s P N it Pt Pt ot Pt Pt Pt Pt S s s b g Pt Pos e

betal(l,1) = -2.3939*x(1)+x(2)+2*x(3)
press any key
————— Please choose a menu item ----—-
1) Display coordinate change and feedback

2) Show the closest linearizable system
3) Exit to main menu

Select a menu number: 2
The system is exactly linearizable up to degree 2.
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————— Please choose a menu item —-—-—-

1) Display coordinate change and feedback
2) Show the closest linearizable system
3) Exit to main menu

Select a menu number: 3
————— MAIN MENGU ~———-

1) Help on program and functions

2) Enter new nonlinear system parameters

3) Solve the second degree linearization problem
4) Feedback design for the models

5) Simulate the system and compare performances
6) Exit

Select a menu number: 4
Closed loop feedback design for the linear part of the plant:

————— Input one of the following: —---—-

1) Specify closed loop eigenvalues
2) Design Linear Quadratic Optimal feedback

Select a menu number: 2
Quadratic regulator will minimize: integral(x'Qx + u'Ru)dt
Enter 3 by 3 <positive semi~definite> matrix Q

Q=101 0 0;0 1 0;0 0 1]
Enter 1 by 1 <positive definite> matrix r

R=1
The gains found are:
kfeed =

0.1623 6.9158 2.9789

The resulting closed loop eigenvalues are:
cleig =

-0.7245 + 0.8515i

-0.7245 - 0.8515i

-2.5299
Press a key

1) Help on program and functions

2) Enter new nonlinear system parameters

3) Solve the second degree linearization problem
4) Feedback design for the models .~
5) Simulate the system and compare performances

6) Exit




Select a menu number: 5

*The following three systems will be simulated in scaled
coordinates:

{1] dx/dt = (F+G.K).x + r

. (2) (1) (1)

[2] dx/dt = (F+G.K)x + £ (x) + g (X)Kx + (G + g (x))r
. (2) (1)

[3) dx/dt = Fx + £ (x) + (G + g (x))u(x)

* where r is a reference input signal.

* The nonlinear feedback u(x) in [3]) is

o -1

* u(x) = (I + betal(x)) ({K(x - phi2(x)) - alpha2(x) + r}.
* [2] is the nonlinear system with a linear feedback design.
e [3] is the same system with linear + quadratic feedback.
* [1] is a linear reference model. It is expected that as

x approaches zero, [3] will agree with [1] closer than [2].
Calculating symbolic expressions for (1], [2] and [3]...

Press any key
————— Simulation Menu -----

1) Free response-nonzero initial conditions

2) Impulse input-zero or nonzero initial conditions
3) Step input-zero or nonzero initial conditions

4) Sinusoid input-zero or nonzero initial conditions
5) Exit to main menu

Select a menu number: 1
Enter initial conditions (column vector): x0 =[{0.1;0.1;0.1]
Simulation will start from initial time t0 = O.

Enter final time (*scaled* time): tf = 5

* Simulation of the linear model done

* Simulation of the nonlinear system with linear control done
* Simulation of the nonlinear system with quadratic control
done

————— Plot Menu -----

1) Plot time response

2) Plot phase portrait

3) Extend simulation for some more time
4) Return to simulation menu
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Select a menu number: 1
Legend for plots (colors seen in color monitors only):

#1: Linear reference model ( Solid; red)
#2: Nonlinear system with linear feedback (._. Dashdot;
green)

#3: Nonlinear system with quadratic feedback (—-——-Dashed;
blue)

Enter simulations to see: "1" for #1, "12" for #1&#2, etc
Please enter the number(s) in increasing order

Enter curve number(s) : 123
Press a key to see each plot

(The plots are viewed on the graphics screen of MATLAB)

Do you want to see the control input magnitudes?(y/n): y
* Calculating the magnitudes of the control inputs...

(The plot is viewed on the graphics screen of MATLAB)

————— Plot Menu --—---

1) Plot time response

2) Plot phase portrait

3) Extend simulation for some more time
4) Return to simulation menu

Select a menu number: 4
————— Simulation Menu —---—-—-

1) Free response-nonzero initial conditions

2) Impulse input-zero or nonzero initial conditions
3) Step input-zero or nonzero initial conditions

4) Sinusoid input-zero or nonzero initial conditions
5) Exit to main menu

Select a menu number: 5
————— MAIN MENU -——-—-

1} Help on program and functions

2) Enter new nonlinear system parameters

3) Solve the second degree linearization problem
4) Feedback design for the models

5) Simulate the system and compare performances
6) Exit

Select a menu number: 6
Y?YYYYYYYYYYYYYYYYYYYYY
¥Y Have a good day ! ¥¥
YV Yy IV Yy Yy yvyvyvevyy
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Normal Forms for Linear and Nonlinear
Systems*

Arthur J. Krener!

1 Introduction

It is well-known that a state space description of a controllable linear system
can be transformed to controllable or controller form by a linear change of state
variables. A state space description of an observable linear system can be trans-
formed to observable or observer form by a linear change of state variables.
Moreover the former are closely related to right matrix fractional descriptions
(RMFD) of the transfer function and the latter are closely related to left ma-
trix fractional descriptions (LMFD). These facts can be found in many texts
such as Wolovich [1] or Kailath [2]. (The reader should be warned that the
controllable/controller and observable/observer terminologies are not standard,
we follow that of {2]). Unfortunately there is no one treatment of this material
which is suitable for our purposes so we devote Sections 2 and 3 to a review.
This is by way of preparation for our discussion of the existence and uniqueness
of normal forms for nonlinear systems in Sections 4 and 5. Our treatment gen-
eralizes Zeitz [22] who discussed similar forms for scalar input and scalar output
nonlinear systems.

2 Linear Normal Forms

Throughout this paper we shall use the following notation. The tndices £y,...,4;
are positive integers summing to n. A prime triple (A,B,C) with indices £;,...,4,
is a triple of block diagonal matrices of dimension n X n, n x m and p X n of the

“This paper is in final form and no version of it is submitted elsewhere.
tResearch supported in part by the Air Force Office of Scientific Research under 85NM215.

© 1987 American Mathematical Society
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form r ot
0 1 ol1™™"
A = BlockDiag. 1 (1)
0 0
0 1%%}
B = BlockDiag. : (2)
0
1
C = BlockDiag. [1 0 --- 0" (3)

The “prime” terminology was introduced by Morse (3].
Consider the linear state space description

€ = F¢+Gu (4)
y = H¢ (5)

where F?X*n G"»X™ and HP*". The system is said to be controllable if
rank {F77!1G7: j=1,...,m; r=1,...,n}=n (6)

(Note: F™ denotes the r** power of F, G’ denotes the j** column of G and H;
is the 1** row of H.)

Every controllable linear system has controllability indices €,...,¢,, > O
characterized by £; + ...+ £, = n and

rank{F™"!'G’: j=1,....m; r=1,...,8} =

rank{F"™"!G7: j=1,...,m; r=1,...,0A L} (7

for £ = 1,...,n. The minimum of £ and ¢; is denoted by & A ¢;. The set of
controllability indices is uniquely determined by F and H and does not change
under linear state feedback. There can be some freedom, m in the ordering of the
controllability indices even when the ordering of the inputs remain. fixed. This
is because there may be several orderings which satisfy (7). Of course a change
of variables in the input space or a reordering of the inputs can change the order
of the controllability indices. We could reorder the inputs so that £, < ...¢,
or the reverse but we shall not do so. To simplify notation we shall restrict our
attention to systems where the controllability indices are positive, £;,...,£,, > 1.
A general system can be made to satisfy this condition by deleting dependent
columns of G.
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An alternative characterization of property (7) of the controllability indices
is that .

F4“G' =0 (8)
mod {F"7'G*: i=1,...,m; r=1,..., (& + 1) A&}

The controllabilities indices of (4), (5) are said to be strict if (8) holds
mod {FT~!G': i=1,...,m; r =1,...,¢; AL}. The controllability indices are
strict iff there is only one ordering of the controllability indices satisfying (7).

It is always possible to make a linear change of input coordinates 4 = fu
that makes the controllability indices strict for the new pair (F,G) = (F,Gp™1)

without changing their order. One way of accomplishing this to define 1 x n
vectors K,,..., K,, by

0 1<r<i;

Tl = .
K. F~'G '{53 f=¢ (9)

and let A be the m X m non-singular matrix whose t — 7 entry is
Bl = K;F4—1GY. {10)

In this case B satisfies ) ]
Bl=6 ti<t, (11)

Moreover  is the only such matrix which makes the controllability indices strict
and leave the order invariant. A change of input coordinates & = At preserve:
the strictness of the controllability indices while leaving the order invariant iff
Al =0 for & > ¢;.

The system (4), (5) is said to be observable if

rank {H;F™™': i=1,...,p;r=1,...,n} =n. (12)

Every observable linear system has observability indices £y,...,4, > 0 charac-
terized by £, +---+ 4, = n and

rank {HiF™™ . i=1,...,p r=1,...,8} =

rank {H;F""'ii=1,...,p;r=1,...,LA 4} (13)

for £ = 1,...,n. The set of indices is uniquely determined by H and F and
does the change under linear change of coordinates in the state and output
spaces and linear output injection. There can be freedom in the ordering of the
observability indices even when the order of the outputs remains fixed. This is
because there may be several orderings which satisfy (13). Of course a change
of output variables or a reordering of the outputs can change the order of the
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observability indices. We could reorder the outputs so that £, < ... < £, or the
reverse but we shall not do so. We shall restrict our discussion to systems where
all the observability indices are positive.

Similarly an alternative characterization of property (13) of the observability
indices is that

H;F% = {14)

mod {H;FF~': j=1,...,p; r=1,... (& +1) A ¢}.
The observability indices of (4), (5) are said to be strict if (14) holds mod {H —
gFT=Y: y=1,...,p; r =1,...,& A L;}. The observability indices are strict iff
there is only one ordering of them satisfying (13). It is always possible to make a

linear change of output coordinates y = vy that makes the observability indices
strict for the new pair (H, F) = (y~'H, F) while not changing their order. One .

way of accomplishing this is to define n x 1 vectors Q!,...,Q" by
and let v be the p X p non-singular matrix whose 1 — 7** entry is

N = HF5'Ql. (186)
In this case « satisfies _ _

=6 L=t (17)

Moreover « is the only such matrix which makes the observability indices strict
and leaves the order invariant because a change of output coordinates § = uy

preserves the strictness and order of the observability indices iff u] = 0 for
4 < tj.
The controllable form of a linear system is
i = Az—aCz+ Bu (18)
= Az (19)

where (A, B, C) is a prime triple with indices ¢,, ..., {,, and « and v are arbitrary
matrices of dimensions n X m and p x n.

The following facts are well-known and/or can be easily proved. A system in
controllable form is controllable with controllability indices ¢,, ..., &,. A system
(4), (5) can be transformed into controllable form (18), (19) by a linear change
of state coordinates £ = Tz iff it is controllable. If (4}, (5) is controllable with
controllability indices ¢;,..., 4, then the z coordinates of (18), (19) are defined
by taking as a basis the columns of the matrix T

T=[F""'G',...,G' ..., F*~1¢g™,...,G™] (20)




Normal Forms 161

Let z = T~ !¢ have components

.‘B‘=(3:11,...,313‘,...,.‘5".1,...,2",(,“), (21)

where * denotes transpose, then F&%~ "G’ in £ coordinates becomes the unit
vector in the z;, direction in z coordinates. The j‘" column of a and the matrix
~ are given by

o = ~T'F4G? (22)
4+ = HT. (23)

It can be shown that a{r =0 if & — r > £;. The controllability indices are strict -

iff &, = 0 for & — r > ¢;. The controllable form (18), (19) of the linear system
(4), (5) and the associated z coordinates (20), (21), (22), (23) are unique up to
reordering of the controllability indices. The observable form of a linear system
1s

= Az - Baz+ fu (24)
Cz (25)

where (4, B, C) is a prime triple with indices ¢;,...,4, and a and § are arbitrary
matrices of dimensions p X n and n X m.

A system in observable form is observable with observability indices &;,...,4,.
A system (4), (5) can be transformed into observable form (24}, (25) by a linear
change of state coordinates § = Tz iff it is observable. If (4), (5) is observable
with observability indices £y,..., £, then the z coordinates of (18), (19) are of
the form

2* = (Z11,.-+y 1841+ -2 Tply - -+ Tpe,) (26)
where T~ ! is defined by
zi = HiF"1E (27)

The i** row of a and the matrix B are given by

a; = —H;F&T (28)
g = T 'G. (29)

It can be shown that o]" = 0 if r > £ + 1. The observability indices are
strict iff a]” = 0 for r > ¢;,. The observable form (24), (25) of the linear system
(4), (5) and the associated z coordinates (26), (27), (28), (29) are unique up to
a reordering of observability indices.
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The controller form of linear system is

z = Az - Baz+ Bfu (30)
y = 9z (31)
where (A, B, C) is a prime triple with indices ¢,,...,£,, and a, 8, v are matrices

of dimensions m x n,m X m,p X n. These matrices are arbitrary except f must
be non-singular.

A system in controller form is controllable with controllability indices £, ...,
£, and the controllability indices are strict relative to the input 4 = Bu. A
system (4),(5) can be transformed into controller form (30), (31) by a linear
change of state coordinates £ = Tz iff it is controllable. If (4), (5) is controllable
with controllability indices £;,...,&m, then let 8 be defined by (10). One can
define a pseudo—output for (4), (5).

v=K¢ (32)
where K is the m X n matrix defined by (9). The square system (4) and (32}
is observable with strict observability indices £;,...,4,. The observable form

realization of (4) and (32) is a controller form realization of (4), (5). The z
coordinates of (30), (31) are of the form (20) and

zjr = K;F' 1€ (33)
The matrix + is given by (23) and the i** row of « is given by

a; = —K;F&T. (34)
Since the observability indices of (4) and (32) are strict, we have

o"=0 r>4. (35)

In general controller form realizations are not unique. However the controller
form realization which satisfies (11) and (35) is unique up to reordering of the
controllability indices.

The observer form of a linear system is

t = Az-aCz+ fu (36)
y = 1Cz (37)
where (A, B, C) is a prime triple with indices £,,...,¢, and a, B, are indices of

dimensions n x p,n x m,p x p. These matrices are arbitrary except that 4 must
be non-singular,
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A system in observer form is observable with observability indices £;,...,4,
and the observability indices are strict relative to the output § = v~ 'y. A
system (4), (5) can be transformed into observer form (36), (37) by a linear
change of state coordinates £ = T'z iff it is observable. If (4), (5) is observable
with observability indices £;,...,4,, let 4 be given by (16). One can define a
pseudo-input u .

§=F¢+Qu (38)

where Q is the n X p matrix defined by (15). The square system (38) and (5) is
controllable with strict controllability indices £;,...,&,. The controllable form
realization of (38) and (5) is an observer form realization of (4), (5). The z
coordinates of (36), (37) are of the form (26) and defined by ¢ = Tz where

T=[Fa-1Q'...,Q ..., Fo-147, . Q"] (39)

The matrix g is given by (29) and the j** column of «a is given by
o = -T'F5Q7 (40)

Since the controllability indices of (38) and (5) are strict, we have
ol =0 1<r<t—¢. (41)

In general observer form realizations are not unique. However, the observer
form realization which satisfies (17) and (41) is unique up to a reordering of the
observability indices.

Remark 2.1 The controller form (30), (31) of a system is very useful in de-
signing a linear state variable feedback to stabilize the system. The observer form
(86), (87) is very useful in designing asymptotic observers. Together they can be
used to stabilize a system by dynamic output feedback (also called observer based
compensation). See [1] or [2] for details.

Remark 2.2 Controllable and observable forms are easier to compute and are
useful for finding the observer and controller forms of related systems.

3 MFD’s

The purpose of this section is to emphasize the very close relationship between
the normal forms of a linear system described above and the so-called polynomial
matrix fractional descriptions of its transfer function. For linear systems it is
only a matter of personal preference which representation we choose to work
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with. This is not the case for the nonlinear systems because they don’t have nice
frequency domain descriptions. Our treatment is similar to that of [1] and [2].

Throughout we shall use the following notation. Given the indices ¢,,...,£,
where n = £, +- - + £, then A(s), ®(s) and ¥(s) are block diagonal polynomial
matrices of dimensions ¢ X ¢, ¢ X n and n X ¢ of the form

A(s) = BlockDiag [sl-‘ ]1"1 (42)
®(s) = BlockDiag [ PO S | llxc, (43)
1 4 +1
¥(s) = BlockDiag : (1)

st :

The linear state space description

T = Az+v (45)
z (46)

with input v, state z, output z, all of dimension n, has the following polynomial
matrix description in the transform domain

A(s)é(s) = @(s)u(s) (47)

z(s) = W(s)&(s) (48)
where the so called “partial state” £(s) is defined by
£(s) = Czls) (49)
or equivalently
z(s) = ¥(s)¢(s) (50)

(Here z(s) denotes the Laplace transform of z(t), etc.). The (A, B,C) of the
above are a prime triple with indices £;,...,¢, so that

C¥(s) = ®(s)B = 17%9. (51)

From this we quickly obtain MFD’s corresponding to the 4 normal forms of
the last section. For a system in controllable form (18), (19) we use the relations

v(s) = -—aCz(s)+ Bu(s) (52)
y(s) vz(s)- (53)
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Let ¢ = m, then from (47), (48) and (49), (50), (51) we obtain

u(s) = (A(s) + ®(s)a)é(s) (54)
y(s) = ¥(s)é(s) (55)
which is a RMFD of the form
y(s) = N(s) D™ (s)u(s) (56)
where
D(s) = (A(s)+ ¥(s)) (57)
N(s) = ~¥(s). '(58)

Given a RMFD (56) we can always obtain a controllable form realization.
Recall that a polynomial matrix is unimodular if it has an inverse which is a
polynomial matrix. If we multiply N(s) and D(s) on the right by a unimodular
matrix we don’t change the transfer function. In this way we can insure that the
matrix of highest column coeflicients of D is invertible and even more equals the
identity.

Let £y, ..., 4, be the column degrees of D, then D(s) and N(s) can be written
as (57), (58) thus defining a and 4. This yields a ccentrollable form realization
of (56).

For a system in controller form (30), (31) we use the relations

v(s) = -—Baz(s)+ BBu(s) (59)
v(s) = z(s) (60)

and so we obtain the RMFD (56) where

D(s)
N(s)

BH(A(s) + a¥(s)) (61)
7¥(s). (62)

Of course we can go backwards. Given the RMFD (56) we multiply N(s) and
D(s) on the right by a unimodular matrix so that the matrix of highest column
coefficients of D(s) is nonsingular. The decomposition (61), (62) defines o, B
and « of a controller realization of the transfer function.

For a system in observable form (24), (25) we use the relations

I

v(s) = —Baz(s)+ fu(s) (63)
v(s) Cz(s) (64)
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We obtain the LMFD

y(s) = D™ (s) N (s)u(s) (65)
where

D(s) = A(s)+a¥(s) (66)

N(s) = &(s)8. (67)

On the other hand given a LMFD (65) we can multiply D(s) and N(s) on
the left by a unimodular matrix to obtain the decomposition (66), (67). This
defines o and £ of an observable form realization.

For a system in observer form (36), (37) we use the relations

v(s) = -—aCz(s)+ Bu(s) (68)
v(s) = 7Cz(s) (69)

which lead to a LMFD (65) where

D(s)
N(s)

(A(s) + @(s)a)y™ (70)
&(s)B. (71)

Given the LMFD (65) the decomposition (70), (71) defines a, § and ~ of an
observer form realization.

]

]

4 Nonlinear Observable and Controller Forms

Henceforth we focus our attention on the nonlinear system

o= f(€)+9(£)u (12)
y = h(¢) (73)

where £ € R*, u € R™, y € R¥ and f, g, h are smooth (C*) functions. We
are interested in (72), (73) in some open connected subset M of the state space
containing the nominal operating point £°.

We introduce some terminology and notation. The Lie derivatives of the
function h;(£) by the vector fields f(£) and g7(€) are functions defined by

Ly (h)(€) f‘;—’g(eum (14)

Lys (he)(€) %%(e)gf(s). (75)
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Of course these operations cau be iterated,
Ly (k) = Ly(L7 (hi)). (76)

The differential dh; of a function h; is a one form defined by

dh;
A one form w is a row vector field or more precisely a C™ linear combination of
differentials.
0(§) = (@' (&), w"(8)) = D ki(&)dh(8) (78)

where k;(£) and h;(£) are smooth functions. A one form can be paired with a
vector field (all vector fields are columns unless otherwise stated) to obtain a
function

(w, (&) = w(§)F(€) = Y_ W (€)£i(£). (79)
=1
A vector field can also Lie differentiate a form to obtain another one form
_af  ow* .,
where * denotes transpose. In particular
L;(dh;) = d(Ly (k). (81)

A vector field can also Lie differentiate another vector field to yield a third
vector field.

dlf)e’ = U1, = Z011(6) - T o). (82)

This can be iterated, _ )
ad'(f)g' = |f,ad "} (f)¢). (83)

The operation (82) is also called the Lie bracket (82) of the vector fields and can
be thought of both as a multiplication and as a differentiation. This is evidenced
by the following Liebnitz-type formula called the Jacobi identity

(5,16 2N =[l1,61 a1+ 11, 2)) (84)

Moreover the pairing (79) satisfies a Liebnitz formula with respect to Lie differ-

entiation
Ly({w, @) = (Ly(w),¢") + {w, [f, ¢°)) (85)
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For the readers unfamiliar with these concepts we suggest the calculation of the
above definitions and formulas in the linear case (4), (5) where

fl§) = F¢ (86)
g = & (87)
hi(€) = Hi&. (88)
We define
Ef=co{LyHd)i=1,...,p5 r=1,...,4 (89)

where C{-} means the linear span over C* coefficients. Such a collection of
one forms which is closed under addition and multiplication by C*° functions
is called a codistribution. We denote by £¢(¢) the linear space of 1 X n vectors
obtained by evaluating the one forms of £¢ at the point ¢.

Given indices ¢, ..., £, we define
Ef 0, =CP{Ly M (dh): i=1,...,p; r=1,...,LAL} (90)
and £/, (£) the vector space obtained by evaluation of these forms at ¢.

The sysptem is (72), (73) has observability indices ¢;, ..., ¢, around £ if £, +
-+ &, =n, and
dimension £"(§) = n (91)

and
ENE) = &0, (€) (92)

for £=1,...,n and all £ in some neighborhood of ¢°. The reader who has done
the suggested calculations recognizes (91) as a generalization of (12) and (92) a
generalization of (13). The observability sndices are strict if

L} (dhi) € €% (93)

for: = 1,...,p. This generalizes the linear definition.

The set of observability indices of (72}, {73) is uniquely determined by h and
f and is invariant under changes of coordinates in the state and output spaces.
There can be some freedom in the ordering of the indices even when the ordering
of the outputs remains fixed. The observability indices are strict iff there is only
one ordering satisfying (92). To simplify notation we restrict our attention to
systems where all the observability indices are positive.

Condition (91) could be called zero snput observability. It means that the
state £(t) of (72), (73) can be distinguished from its neighbors by the output y(t)
and its first n— 1 time derivatives along the trajectories near £° corresponding to
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u(t) = 0. Unlike the linear case, (91) does not imply the existence of observability
indices satisfying (92) around every £° but only for a generic, (i.e. an open and
dense) set of £%’s. The latter condition implies that the functions

zir = L (he)(€) (94)

fort = 1,...,p; r = 1,...,& are valid local coordinates on the state space.
When (72),(73) has observability indices around a point £° which is a critical
point of f, (f(£°) = 0) then they agree with the observability indices of the
linear approximating system to (72), (73) at ¢£°.

The observable form of a nonlinear system is

t = Az - Ba(z)+ B(z)u (95)
y = Cz (96)

where (A, B,C) is a prime triple with indices £,,...,4, and «,f are smooth
m x 1, n X m matrix valued functions of z.

Proposition 4.1 . A nonlinear system in observable form (95), (96) has ob-
servability indices £y,...,¢,. A nonlinear system (72), (78) can be transformed
into observable form (95), (96) by a change of local coordinates around £° iff
the system has observability indices around €°. If (72), (78) has observability
indices £y, ...,¢, around £° then the x coordinates of the form (26) given by (94)
transform it to observable form. The observable form of a nonlinear system, the
associated z coordinates and the nominal z-operating point z° = T~1(£%) are
unique up to a reordering of the observability indices. The functions a and B of
the observable form (95), (96) are given by

a; = L% (k) (o7
By = Lo L7 (k). (98)

The observability indez assumption (92) implies that
da; = LY (dh;) € €51 (99)

which means that a; duves not depend on z;, if r > £ + 1. The observability
tndices are strict (93) iff o; does not depend on a z;, if r > £ + 1, tn other
words

dog = L% (dh;) € €. (100}

The proof of this result is relatively straightforward, for example see 4], section
2.
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We now turn to controllability properties of (72), (73). We define

De=C®{ad" "N (~-f)g:7=1,....m; r=1,...,¢}. (101)

This is a collection of vector fields closed under addition and multiplication by

C* functions; such an object is called a distribution. Given indices ¢,,...,4,,
let

Dfotn = (2ad" N =f)F: 7=1,...,m; r=1,... AL} (102)

The system (72), (73) has controllability indices £y,. .., 4, around £° if ¢; +
-+ £y =nand
dimension P™(§) = n (103)

and

D(€) = Df,...en(€) (104)

for £ = 1,...,n and all ¢ in some neighborhood of ¢°. Of course (103) is a
generalization of (6) and (104) is a generalization of (7). The controllability
indices are strict if

()¢ €D, ..

o (105)
for ¢ = 1,...,n. This generalizes the linear definition.

The set of controllability indices of (72), (73) is uniquely determined by f and
g and is invariant under change of coordinates in the state space and nonlinear
state feedback, i.e. u = a(z) + B(z)v where B(z) is m x m invertible. There
can be some freedom in the ordering of the indices even when the output is
fixed. The controllability indices are strict iff there is only one ordering satisfying
(104). For notational convenience, we restrict our attention to systems where
the controllability indices are positive,

Condition (103) could be called local linear controllability for if €° is a critical
point of f, (f(£°) = 0) then the linear approximation to (72}, (73) at €° is
controllable iff (103) holds. Once again (103) does not imply the existence of
controllability indices satisfying (104) around every £°, only for an open, dense
set of £2’s. When (72), (73) has controllability indices around a critical point ¢°,
they agree with the controllability indices of the linear approximating system to
(72), (73) at £°.

The controller form of a nonlinear system is

= Az — Ba(z) + BB(z)u (108)
1(2) (107)

where (A, B, C) is a prime triple with indices ¢;, ..., ¢4, and a, B, v are smooth
m x 1, m x m, px 1 matrix valued functions of z which are arbitrary except

o mme A —evves cian-
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that B(z) must be nonsingular. The question of when a nonlinear control sys-
tem can be transformed to controller form has been independently solved by
several authors [5,6,7,8,9,22]. Some only considered special cases like m = 1 or
B(z) =constant. Our treatment follows Hunt and Su [8].

Recall that a distribution D is involutive if it is closed with respect to Lie
bracket, i.e. [¢',¢%] € D whenever ¢',¢*> € D. Given a distribution we can
consider the under-determined systems of partial differential equations.

(dk,q) =0 forallqe D (108)

for the unknown function k(£). The question of existence and uniqueness of local
solutions to (73) is addressed by the following.
Frobenius Theorem Suppose 0 is of constant codimension d. D is mvolutxve
iff locally there exists d independent solutions k;,..., ks to (73). Any other
solution k(£) is a function of ky(€),...,ka(€).

Proposition 4.2 (/8], see also [5,6,7,8,9,22]). A nonlinear system in controller
form (106), (107) has controllability indices £,,. .., ¢, which are strict relative
to the input & = Pu. A nonlinear system (72), (78) can be transformed into
controller form (106), (107) by a local change of coordinates around £° iff it has
controllability indices £;,..., 4y and D&~ {s involutive for y =1,...,m.

Proof The proof of the first statement is a straightforward verification.
As for the second suppose (72), (73) can be transformed to controller form
by £ = T(z). Using the C matrix of the prime triple we define a pseudo-output.

¥ = k() = CT(¢) (109)
then the function k satisfies
LY(k) = a (110)
- 0 1<r<¥

Using the Liebnitz formula (85} and induction we can show that (111) is equiv-
alent to

0 1<r<¥4, 0<s<r
B! r=1{, 0<s<r

(L3 (dks), ad"=*~1 (= )7} = { (112)

From this it follows that for every g € D¢

(L} (dk:),q) = O (113)
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fori=1,...,nand r = 1,...,4 — £. Moreover from the invertibility of § it
follows that the functions {L}™!(k;) ¢ = 1,...,m and r = 1,...,& — £} are
independent. There are as many such functions as the codimension of D¢ so
by the Frobenius theorem D¢ is involutive for all £ and in particular for ¢ =
-1,7=1....m

On the other hand if D% ~! is involutive for y = 1,...,m then by repeated ap-
plication of the Frobenius theorem one can find independent functions k;, ..., k,,,
satisfying (112) where g is some invertible m x m matrix valued function. If we
define z coordinates by

zje = L7 (k;)(8) (114)

for y =1,...,m; r = 1,...,¢ then these coordinates transform the nonlinear
system to controller form (106), (107). The functions & and f are given by (110),
(111).

When it exists, the controller form of a nonlinear system is not unique. From
the proof of the above we see that the controller form is completely determined
by the choice of the pseudo-output k(¢) satisfying (111) for some invertible B(E)
If k(£) is another solution of (111) then (112) and (113) imply that & (§isa
funchonof::,,—L, Y(kj)for ; > & and r=1,..., ¢ — 4.

Notice that the nominal operating point z° = T“(Eo) of the controller form
is determined by the choice of k(£). In particular there exists k such that z° = 0
iff there exists u® such that f(£°) + g(£°)u® = 0.

Another point worth mentioning is that the system (72) with pseudo-output
% = k(£) does not necessarily have observability indices ¢,,...,%,. This would
be the case iff in addition to (112), k(£) satisfies

(L% (dk:),ad" " (—f)g”) = 0

forr=1,...,¢ - - 1.
We might try to obtain a unique controller form by requiring that a and g
also satisfy the nonlinear generalizations of (11) and (35), namely

Bl(e)=6] &<t (115)
Ja; _ '
2z, =0 r>¢ (116)

But this would reduce the number of nonlinear systems that admit a controller
form. The conditions (115}, (116) imply that

(dki,ad" " (- f)g") = { ,? 1 f; Z."' (117)
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This is a system of first order partial differential equations for the unknown func-
tions ky, ..., km. The solvability of such a system is addressed by the following.
Integrability Theorem Let ¢!(¢),...,q" (&) be an n linearly independent n
dimensional vector fields. There exists a solution k = (ky, ..., km) to the system

iy 7 j=1...,m
(dk"qj)—{ 0 j=m+1,...,n
iff o
[q',q’]ED i;j=1)"')"’
where D is the distribution spanned by {g™*,...,¢"}. The solution is unique

up to a choice of k(£°).
From this theorem we see that there exists a solution to (117) iff

[ad""*(=f)g", ad*"}(-f)g’] € D (118)

fori,5=1,...,n; r=1,...,4, s =1,...,L; where D is the distribution given
by
p=C®{ad" Y -f)g : =1, ..,mr=1,...,4 —1}. (119)

Condition (118),(119) is considerably more stringent then D%~! being invo-
lutive for 5 = 1,...,m. In particular suppose we consider a generic nonlinear
system (72), (73) with n = 2 and m = 1. Around a generic point £°, the vector
fields g' and ad(—f)g* are linear independent hence such a system has a con-
trollability index £; = 2. The distribution D! = C*{g'} is trivially involutive
so such a system has a controller form. However condition (118), (119) which in
this case is

[¢", ad(-f)g'] € C={g"}
is not generically satisfied.

Suppose (72), (73) has controllability indices £i,...,4, around ¢°. Regard-
less of whether or not it admits a controller form around £9, it is always pos-
sible to make the controllability indices strict by a change of input coordinates
it = B(&)u when B7(€) = 6] for & < ¢; as in the linear case. We define one forms

wi(€),...,wp(€) by

i a0 1Sr<&

(wna'd ( f)gj) - { 5;1 r= " (120)

From this and the controllability index assumptions (104) it follows that
(wiyad™" Y (=f)g) =0 ¢ <r< & (121)
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Moreover by repeated use of the Liebnitz formula (85) we see that (120), (121)
is equivalent to

gy = { g TETEG Tt (122)
s J
We define § by ) )

B = (L7 (wi), ). (123)

Immediately we see that ﬂ{ = 6’:" for & < ¢; so B is invertible. It is not hard
to show that the system defined by (f,§) = (f,98™ ') has strict controllability
indices ¢;,..., ¢, . Notice that if (117) is solvable then w; = dk;.

5 Nonlinear Controllable and Observer Forms

The controllable form of a nonlinear system is
i = Az+aCz)+ Bu (124)
y = 1(2) (125)

where (A, B, C) is a prime triple with indices £, 4, and a, 7 are smooth matrix
valued functions of dimensions n x 1, p x 1. Notice that a is a function of the
pseudo-output ¢ = Cz while v is a function of z.

Notice that if () is a linear function of ¢ then the dynamics (124) of the
nonlinear controllable form agree with the dynamics (18} of the linear control-
lable form. Hence the question of the existence of a nonlinear controllable form
is closely related to the question of linearizing the dynamics (124) by a change of
state coordinates. This latter question has a long history going back to Poincare
[16]. For more recent work see [17,18,19,20,21].

For the most part the controllable forms of nonlinear systems have not ap-
peared explicitly in the literature. But as one might expect they have arisen
implicitly in some of the work on observer form [4,10], and on linearisation [21].
The following is a reformulation of similar results from [10], [21] and [22].

Proposition 5.1 A nonlinear system sn controllable form has controllability in-
dices £),...,L,. A nonlinear system (72), (73) can be transformed sinto con-
trollable form (124), (125) by a change of local coordinates around £° iff it has
controllability indices (..., 4L, and

(ad™ ! (~f)g", ad*"}(~f)¢’] =0 (126)

fori,j=1,....mandr=1,...,4, s=1,...,4 around (. Controllable form
and the associated z coordinates are unique up to a choice of the nominal z-
operating point 20 = T~1(¢°) and up to reordering of the controllability indices.
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The dynamics (72) of a nonlinear system can be linearized, or equivalently,
can be transformed to the dynamics of linear controllable form (18) by a change
of state coordinates around £° sff (72) has controllability indices ¢y, ..., Ly and
(126) holds for 4,5 =1,....mandr=1,...,4+1; s=1,...,4 +1.

Proof Consider the nonlinear system in controllable form (124), (125). It is a
straightforward calculation to show that

— . A1 B 1<r<
atcasvap = { 7 1TSS o)

Hence the controllable form (124), (125) has controllability indices ¢y,..., &m.
Moreover if (72), (73) can be transformed to (124), (125) by a change of state
coordinates then clearly (72), (73) must have the same controllability indices
and (126) must hold.

On the other hand suppose (72), (73) has controllability indices ¢,,...,4m
and (126) holds. By the integrability theorem of Section 4 with m = n, we can
choose coordinate functions z;,.(£), 1 =1,...,m; r=1,..., & such that

(dzi,, ad%™*(—f)g") = 676! (128)

fori,7=1,...,mandr=1,...,4, s=1,...,4. _
In the z coordinates, ad% ~*(— f)g’ becomes the unit vector in the direction
z;, or in other words

Gead" (1) =AY B (129)

forj=1,...,mand s = 1,...,¢, where 4, B are from the prime triple with
indices £,,...,4,. Let f(z) be the transform of f(£) into z coordinates.

f(e) = ggmz»m(z» (130)

Then from (129), (130) we have if s > 1
Jd - o R
o fe) = A5, ()
— 9z ti-o(_ g7 9%

= g_zadt,--wl(_f)gi
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= AbT*tip) (131)
From this we conclude that
7(z) = Az + a(Ca)

where Ciz = 241, 1 =1,...,m.

We now prove the last part of the theorem. If the nonlinear dynamics (72)
can be transformed to the dynamics (18) of linear controllable form then by
the above it must have controllability indices ¢y, ..., &n and (126) must hold for
r=1,...,4 and s = 1,...,¢;. Moreover we see from (127} that a.dt"(—f)g"
must transform to a constant vector field in z coordinates so (126) must hold for
r=1,...,4+1ands=1,..., 6+ 1.

On the other hand if (126) holds for r = 1,..., 4 +1and s =1,...,¢4 + 1
then ad®(—f)g* must be a constant linear combination of the frame of vector
fields {ad" " !(~f)¢*, i =1,...,m; r=1,...,4}. To see this, suppose for some
functions A% (&)

m &

ad(~f)g* =D ad""!(~f)g' Ak

i=1r=1
Bracketing with ad*~!(—f)¢’ yields

m &

0= 33 s N5 s O

=1r=1

The linear independence of the vector fields of the frame implies that for 7 =
,...,m; s=1,...,¢
0= Lad"‘(—f)yf(A?r)

hence AL is a constant. By (127) this implies that
m
air(¥) = ) A ¥x  QED.
k=1

Notice that it is more difficult for a nonlinear system (72), (73) to have
a controllable form than to have a controller form. Clearly conditions (126)
implies that D% ~! is involutive for y = 1,...,m. This extra difficulty is partially
explained by the extra freedom afforded by A(z) in the controller form which is
lacking in the controllable form. Zeitz defines controllable form with §(z) present
[22]. There is also more freedom in the a of the controller form than the a of the
controllable form. The former is an R™ valued function of R™ while the latter
is a R™ valued function of R™. The linear terms of the Taylor series expansion
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have the same number of degrees of freedom, n m, but there are more degrees
of freedom in the higher order terms of the controller form that the controllable
form. In particular for the terms of order 2, there are mn(n + 1)/2 degrees of
freedom in the former and nm(m + 1)/2 in the latter.

The observer form of a nonlinear system is

= Az - a(Cz)+ B(Cz)u (132)
= 4(Cz) (133)

where (A, B,C) is a prime triple with indices ¢,,...,4, and a, § and v are

smooth matrix valued functions of dimensions n X 1, m X m and p x 1. They

are arbitrary except that ¥ must be a local diffeomorphism. We let § = Cz.
Observer form is useful in the construction of asymptotic observers

3= A%+ a(g)+AF)u+ M(y - Ci) (134)

with linear error dynamics .
i=(A-MC)z. (135)

The question of when a nonlinear system can be transformed to observer form
has been considered by several authors [4], {10,11,12,13,14], [22]. Most treated
only special cases like p = 1 or v =identity. The general solution can be found
in [4]. The approach taken in [4] is similar to the approach described above for
the linear case.

Suppose the nonlinear system (72), (73) can be transformed into observer
form (132), (133) by a local change of coordinates around ¢°. Using the B
matrix of the prime triple we add a pseudo-input u to (132)

z = Az — a(Cz) + B(Cz)u + Bu. (136)

When u is held constant at 0, (136) can be viewed as the controllable form
relative to the pseudo-input .
We transform (136) back to £-coordinates

€= 1(8) +g(&)u+a(&)n
which defines the vector fields § = §',...,§?. These vector fields satisfy

(LY (dw), ¢) = { ; 1 f;zl‘

If G is known then we can recover the observer form by choosing local coordinates
z;, to satisfy

(137)

(dzir, ad% (=)&) = 676! (138)
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fori,7=1,...,p, r=1,...,4 and s = 1,...,¢;. Such coordinates exist iff

[ad“~" ()¢, ad57*(-f)¢] =0 (139)
fori,y=1,...,p;r=1,...,4; s=1,...,4 and
[ad%~"(-f)¢', ¢’ =0 (140)

fori=1,...,p;7=1,...,nand r=2,..., 4.

Summarizing the discussion, an observer form (132,133) of (72), (73) exists
iff there exists a change of coordinates y = 4(g) on the output space and vector
fields ¢',...,4" determined by « via (137) such that (139),(140) holds. In effect
(139),(140) constitute an overdetermined system of partial differential equations
for the change of coordinates y = (g) on the output space. To analyze such
equations we must introduce the geometric concept of a Koszul connection on
the output space. Let ¢*(y),t = 1,2,... denote vector fields on the p dimensional
output space. A Koszul connection on y-space is a mapping A from pairs of such
vector fields to vector fields.

Az (4',¢°) — Dgild) (141)

This mapping is linear over C* functions in the first argument and satisfies a
Liebnitz formula in the second argument. In other words if A;(y) and u;(y) are
smooth functions then

Azi it (E l‘i¢j) = Z(’\il‘J'Aé‘ (¢j) + AiLgs (I‘J')Wv)- (142)

If $1(y),...,#7P(y) is a local frame of vector fields then A is completely deter-
mined by its Christoffel symbols I')) (y) relative to this frame. These are defined
by the expressions

By (#) =Y Ti" (143)
k
Consider a second frame ¢!,. .., #" related to the first by
- Ld .
=3 ¢ (144)
r=1
and
p -
$ =3 &\ (145)
k—1
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where A = (A}) is a pxp nonsingular matrix valued function of y and A=! = (u}).
It follows from (141,142} (143) and (144, 145) that

07 = 3wl AT + ) i Lee (13). (146)

(20434 /T

A Koszul connection A has zero curvature if there exists a frame where the
Christoffel symbols are zero. From equation (146) we obtain the partial differ-
ential equation that such a change of frame must satisfy. It is more conveniently
written in matrix notation where ' denotes the p x p matrix (I'??) with row
index r and column index o,

0=T?A"1+ Le (A7) (147)
or equivalently .
Ly (A) = AT”. (148)
The integrability condition for this is
de L¢a (A) - L¢a Lw(A) - L[¢°'¢’1(A) =0 (149)
or equivalently
A(T?T? = T°T* + Lys (T%) = Lgo (T?) = D _ c2°T7) =0 (150)

where C?? are the structural coefficients of the frame
47,87} = _Crog. (151)
T

The coefficient of A in (150) is the curvature of A.

It is convenient to work with frames of vector fields arising from coordinates
on the output space. Suppose y and § are two different coordinate systems and
¢ and @ are the associated frames, i.e.

a 3
Ly =— Lz =—. 152
* 7 By ¢ % (152)
These frames are related by the chain rule
-0§
¢ = ¢-a; (153)

k1o

A = 3g/3y. (154)
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A Koszul connection A is flat if there exists a coordinate frame for which the
Christoffel symbols are zero. Such coordinates are said to be flat relative to the
connection. Suppose I'*” are the Christoffel symbols relative to coordinates y.
Clearly we can find new coordinates § where Christoffel symbols are zero iff we
can solve the pair of partial differential equations (147,148) and (154).

We rewrite these as

3 )
ZA = i 55
E™ A AT (155)
3y
3y A. (156)

The integrability condition for the first is the zero curvature condition (150)
which can be rewritten as :

- .. 3re  ar’
rr-rr+ — - =0 157
dy; Ju (157)
for¢,7 =1,...,p. The integrability condition for the second is
Iy - =o0. (158)

The left side of (158) is called the torsion of the connection A. In summary
a Koszul connection is flat (i.e. has Christoffel symbols zero relative to some
coordinate frame) iff it has zero curvature (157) and zero torsion (158).

Suppose § are flat coordinates for a flat connection A. It follows from
(155,156) that another set of coordinates y is flat iff y and § are affinely re-
lated, i.e. for some constant invertible matrix A

§=Ay+9¢’.

The relevance of the above for the problem of transforming a system to
observer form is explained by the following lemmas.

Lemma 5.1 Suppose the nonlinear system (72,78) has one distinct observability
indez £ =€, = ... = £, of multiplicity p. Define vector fields q,...,q" by

0 1<r<4

(w7 e ) = { g (159)

r=1{;

Define p® functions I’;"'(f) by

ry = %(Ll(dyk).[ad"l(“f)q",adl—z(—f)qj])- (160)
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Let § = g(y) be a change of output coondmatea and §=,...,4° be vector fields
defined by (187). Define another p> function T, ’(f) by

iy _ 1 - Y ]
Y= Z(Lj(dgk):[adt (-1, ad" 2 (- £)7)). (161)
Then T ;"' and F;;’. arc related by
8Yp 8Yo 39k 1 po 3y, 9k 9 ay,.
= . 162
2 35,35, 83, * 2= 3y, 3y, 3y, 3y, (162)

The proof of this lemma can be found in [15]. Notice that the lemma asserts
that T} transform like the Christoffel symbols of a connection on the output
space, not that they are Christoffel symbols. If I') (£) are actually only functions
of y then they define a connection on the output space and this connection is
independent of the choice of output coordinates.

Lemma 5.2 Suppose the nonlinear system (78,73) has one distinct observabslity
indez L=£; =...={, and can be transformed to observer form (132,133) then
T} (€) defined by (160) are functions only of y and define a flat connection on
the output space.

Proof We compute the symbols I‘f given by (161) where § = Cz are the trans-
formed output coordinates of the observer form. The vector fields §(¢) defined
by (143) transform to B in z coordinates. By induction we obtain

. ATlBY 1<r<t
r—1¢ - 3 — =7 =
ad" Y~-Az + a(§))B’ = { .;_g’g r—tr1 (163)
From _ _
[adl'l(—Az + a(g)) B, ad"'z(-Az + a(g))B’} =
[AC 1B, A 2B = 0. (164)
It follows that B
F;’ =0. (165)

If T} are defined by (160) then (162) and (165) shows that they are functions
of y alone and can be transformed to zero by a change of output coordinates.
Hence they define a flat connection on the output space. QED.

From these lemmas we immediately obtain the following theorem [15].

Theorem 1 Suppose the nonlinear system (72,73) has one distinct observability
indezl={; =...={, around £°. It can be transformed to observer form around

&€ if
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the I‘i’.(f) defined by (160) are functions only of y, hence define a Koszul
connection on the output space

this connection s flat

for any flat coordinates § on the output space the vector fields defined by
(187) satisfy the commutative conditions (139,140).

Consider a system with one distinct observability index £ = £, = ... = £,
which is in nonlinear observable form, i.e.
. irq1 1<8r<t
o= 166
w={ 5 1T tiee)

fort=1,...,pandr=1,...,¢
The vector yields ¢*,...,q” defined by (159) are just the unit vectors in thé
directions £j¢,...,£pe. The T} defined by (160) are given by

i 10 d
kJ - I 6632 af.z fk(€) (167)

The change of output coordinates § = v~ (y) must satisfy the partial differential
equations (155,156) or

3 a!/p “1 39, & fk
168
E Zayk ETRET (168)

The integrability conditions for this are the zero curvature condition (157) or

4, 32fs 3%,

Z ae,,zae.t 3€,206;c  9€,20850 0612060

3 fo 8*fs

¢ - 169
(afjxafrzafu 9&i10€,206;¢ (169)

and the gero torsion condition (158) or
P 3 (170)

8€;206i  9€i20€;e

If these are satisfied then we can solve (168). If (139,140) are satisfied then we
can solve (138) to find the z coordinates of observer form.

Needless to say this is a very tedious process. There is a necessary condition
that a system in nonlinear observable form (166) must satisfy to be transformable
to observer form. We define the degree of the variable £;, to r — 1 and the degree




Normal Forms 183

of a product of such variables to be the sum of the degrees of its factors. If (166)
can be transformed into observer form then f;(£) must be a polynomial of degree
at most £. We refer the reader to [4] for a proof of this. In particular if £ = 2
then this degree condition, the zero curvature condition (169) and (139, 140) are
necessary and sufficient. The torsion free condition (170) is trivially satisfied. It
follows from (169) that (139) need only be checked for r =s =1 and ¢ # ;.

If p = 1 then trivially the curvature and torsion are zero and (168) reduces
to a first order linear ordinary differential equation for the quantity di/dy. It
is solvable if the degree condition on f; is satisfied. In particular when p = 1
and £ = 2 the degree condition and (140) are necessary and sufficient for the
existence of observer form.

We now discuss the case where there are several distinct observability indices.
The general approach is as before. To find the observer form of (72,73) if it exists
we seek an appropriate change of output coordinates § = vy~ !(y) which allows
us to define vector fields § via (137). If (139,140) are satisfied then we can solve
(138) for the z coordinates of the observer form.

The presence of several distinct observability indices complicates the search
for § and forces us to proceed in stages. Notice that for a system in observer
form the observability indices are strict for the output § = Cz. This is because

Lig) oy (d9) =CA" ' mod €71

and the output indices are strict for the pair C, A. So any nonlinear system that
admits an observer form must admit a change of output coordinates which make
the output indices strict. Moreover, the problem of transforming a nonlinear
system with strict observability indices into observer form is greatly simplified
by the following fact.
A change of output coordinates § = 4~ *(y) preserves the order and strictness
of the observability indices iff
3%

=0for & < ;. 171
ayj t‘ ¢ ( )

To find a change of output coordinates which make the observability indices
of (72,73) strict we start by defining vector fields ¢*, ..., ¢? via (159).

It follows by the standard induction argument using the Liebnitz formula
(85) that (143) implies

‘ 0 1<r<§
(dyi,ad"  (=f)g) ={ Bl r=¢ (172)
0 L<r<
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Moreover the vector fields ad" "' (—f)¢’ = 1,...,p; r =1,..., ¢ form a frame
of n independent vector fields. These characterize £¢ as

E=@d M-fig: 7=1,...,p; r=1,..,4; -} L

¢ = {oneforms w: (w,ad" " —f)¢)=05=1,...,p; r=1,...,4 — &}.
(173)
Suppose § = 7™ !(y) is a change of output coordinates which preserves the
ordering of the observability indices. The observability indices are strict relative
to the ¢ output iff

L} (dg) € €5 (174)
or equivalently by (173)

(L (dg:)ad"" (- f)g’) = 0 (175)
for r = 1,...,¢; — 4. By induction and the Liebnitz formula this is equivalent
to

(dgi,ad" "} (= f)¢’) =0 (176)

for r = &41,...,¢;. Since d§ = 3¢/3y dy, (172) implies that (176) must hold
forr =1,...,£; — 1 also. We have shown that the observability indices are strict
relative to the output § iff (176) holds for r = 1,...,£4;, — 1 when £; < 4 and for
r=1,...,¢ when £ > &.

We define p distributions

Y =C®{ad" }~f)g’: r=1,...,4; —1if £; < ¢ and
r=1,.... 4 if ¢ > 4. (177)

As we have just seen a change of coordinates § = v~ (y) preserves the ordering
of the observability indices and makes them strict iff

S dg LY i=1,...,p. (178)

This is an underdetermined system of first order PDE's for §. By employing the
Frobenius Theorem, we obtain the following reformulation of Theorem 4.2 in [4].

Proposition 5.2 Suppose the nonlinear system (72,78) has observability indices
&,..., 4, around £°. There ezists a local change of output coordinates § =
¥~ y) which preserves the ordering of the observability indices and makes them
strict off the distributions Y3, ... YP are involutive.

Lemma 5.3 Suppose the nonlinear system has strict observability indices ¢y, . ..,
& and £ =min{¢y,...,4}. Define vector fields q by (159) and symbols T}’ by
(160) then

T =0if & >Lort, > ¢
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Proof Equation (160) can be rewritten as
LI‘;’ = L.d(—l(_l)gi Lad“’(—[)g"Lf (yk)

= Lygt-a(—g)qi Laat-1(-5)¢' Lt (yx)- (179)

By (159) 0 &>t
_ >
Lyat-3(—p)gi Ly (i) = Lo LT (we) = { 8 L=t

so the first term on the right of (179) is always zero. If £, > { then

0 4>t+1
Lﬁdl'l("f)ﬂij(Yk) = LG’L;(yk) = { 5’: tk =t+1

80 sz =0.
Suppose ¢ = £ and &4 > L. Then ¢* € €% so0 by the strictness assumption
(174,175) it follows

Lyge-1 (g Ly (k) = Lo L () = 0
so I‘ij =0.

Lemma 5.4 Suppose the nonlinear system has strict observability indices ...,
L, and L = min{ly,...,4}. Define vector fields g by (159) and symbols T} by
(160). Let § = g(y) be a change of coordinates among those outputs of lowest
observabilsty indez, i.c.

a9 T

aTHA—Q. if 4 or ;> L (180)
Define § by (187) and T by (161) then T and T¥ are related as Christoffel
symbols (162).

The proof of this is similar to that of Lemma 5.2, see [15].

Lemma 6.5 Suppose the nonlinear system (72,78) has strict observability in-
dices ¢,...,4 and £ = min{{y,...,4}. If (72,73) admits an observer form

(132,188) then the I‘?(f) defined by (160) are functions only of y and define a
flat connection on the output space.

Proof By Lemma 5.6 we know that I‘i’ =0if & > Lor {, > L So all we need
to show is the existence of an observer form for (72,73) implies the existence of
a change of coordinates among those outputs of lowest observability index (180)
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which to transform the I‘f to zero for & = £; = £, = £. But it is clear from the
proof of Lemma 5.3 that if we were to compute the '}’ defined by (160) for a
system in observer form then they are zero.

By Lemma 5.7 the I‘i’. for & = £; = £, = € transform like Christoffel symbols
under a change of coordinates among those outputs of lowest observability index.
By (180) the change of output coordinates to observer form § = v~ !(y) transform
the outputs of lowest observability index among themselves and can be used to
take I’/ to zero for & =£; = 4 = L.

If [‘:".(6) defined by (160) are the Christoffel symbols of a flat connection on
the output space then we can solve the partial differential equations (155,156)
to find flat coordinates §j. These coordinates are not necessarily the § of the }
observer form if it exists. But at least those of lowest observability index are
because of (171). We change notation and denote the flat coordinates by y. -

The next stage is to find the next smallest distinct observability index &' =
min{4 > £}. We define new symbols

I = (Lldw), (37 (=1)d', 245 =1’ ]) (181)

where £ = £ A L.

It is not hard to see by an a: jument similar to Lemma 5.7 that l‘f =0if ¢
or {; > £'. Moreove: if ; = £; = i = £ then the I‘i" of (181) are just £/¢' times
the I} of (160). The latter are zero by our choice of flat output coordinates.

For reasons explain. below, if the system admits an observer form then P'E
defined by (181) define a flat connection on the output space. If this is so then we

solve (155,156) for new flat output coordinates §. Because of the above remarks
cren e e - the change of coordinates will satisfy

%=6fift,~=l'orl,~>l'.
dy;

We continue on in this fashion until we have exhausted the list of observability
indices or found symbols which do not define a flat connection. If the latter does
not happen then the last flat coordinates § are the desired output coordinates
of the observer form. The observer form will exist if (139) is satisfied for r =
1,...,4; s=1,...,¢; and (140) holds forr = 2,...,&; 7=1,...,m.

To see why this approach is valid consider a system (72), (73) which can be
transformed into observer form. Using Lemmas 5.7 and 5.8 we can assume that
¥ = y: for those outputs of lowest observability index & = £. Assuming that
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u = 0 we have

i =& Y%= Ta
i1 = 2 zn= 2'.'2 ~ g (182)
bie=fi(§)  Zie=—au
By comparing these we arrive at
r—1 d
&' = Zip — Z(_d_t)r—.—la“ (183)
s=]
and
‘. d
£:(8) == 3 (5)" e (184)
=1
We add dummy state variables &, z; for r = £+1,...,# to (182) as follows
% = ¥i =z
& = &io Til = Tiz — e
éic_= & e+ fil€) Zie=Zi 41 — e : (185)
€i t41 = &i e42 Ti 41 = Ti 42
biv =0 Zip =0

It is not hard to see using (184) that these are transforms of each other under
(183) and '
&ir = i t<r<t. (186)

Hence if the original system (182) can be transformed to observer form and
y; = § then so can the modified system (185). Moreover for the modified
system the smallest observability index is now # rather that £ so we can apply
Lemmas 5.7 and 5.8. It is a straightforward calculation to show that the symbols
of the modified system defined by (160) with £ replaced by £ are the same as
those given by (181).
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Abstract: One traditional approach in the analysis and design of
nonlinear control systems is a first order approximation by a linear
system. A new approach is to use nonlinear change of coordinates
and feedback to construct linear approximations that are accurate to
second and higher orders. However, the algebraic calculations
required to obtain these aproximations are somewhat lengthy. In
this paper, the theoretical framework for finding such change of
coordinates for a nonlinear system are described. A software
package that symbolically solves these transformations is currently
being prepared.

1. Introduction

There is no general method for dealing with all nonlinear
systems because nonlinear differential equations are virtually devoid
of a general method of attack. A weli-known and straightforward
way to analyze nonlinear control systems is to obtain a linear
approximation of the plant dynamics around a nominal operating
point and design a feedback law for the resulting linear system. If
the nonlinearities are strong, this approximation is valid for only a
limited range of the operating regime, and performance degradation
or loss of stability of the control system may occur as the system
moves away from the nominal point. Then it may be necessary to
repeat the linearization and design a new controller for the updated
lincar representation. This process is repeated as often as necessary,
as dictated by the nonlinearities in the plant.

Another approach is to feed some nonlinear correction terms
into the linearized plant model to compensate for the inaccuracies
involved in the approximations. However, it is usually not
straightforward to find such correction terms. Poincar€'s theory of
normal forms produces a fruitful technique for transforming a
nonlinear vector field to a simpler form in the neighborhood of an
equilibrium point. Another method employed in robotics is the
cancellation of all the nonlinear terms by feedback. Alternatively,
with the method of linearizing ransformations one seeks a change of
coordinates and state feedback to transform the nonlinear system

into a linear one. Various forms of this question have been

* Research supporied by the Air Force Office of Scientific Research
under Grant No. 85-0267.

addressed by Brockett [8), Hunt and Su (3], Jakubczyk and
Respondek[4], Sommer [9], and Krener [1,5]. The concepts on
which the present paper is based, and the necessary and sufficient
conditions for the existence of a solution, have been treated by
Krener in [2].

The method proposed is to find a nonlinear change of
coordinates for a nonlinear system to construct a lincar
approximation of the plant dynamics accurate to second or higher
order. Based on these more accurate approximations one should be
able to design controllers that give improved performance over a
wider range of operating conditions. The computations required to
calculate these transformations are somewhat complicated. As
suggested in [2}, this difficulty may be overcome with the aid of a
symbolic algebraic computation package. The goal of this paper is
to describe the theoretical framework for finding the required
transformations.

2. Linearizing Transformations

Let us consider a nonlinear system in which the control u
enters the dynamics in a linear fashion:

x = f(x) + g(x)u (1a)
x(0) = x". (1b)

where x € R andue R". The system is assumed to be at rest at
the nominal operating point (x"; u” = 0). For brevity of the
expressions we will assume x° = 0. The calculations can be easily
extended to the case x* # 0. First, consider the lincarization of (1)
atx":

x = Ax + Bu (2a)

% 0. B=go. - (2b)
Ix

We will seek a coordinate change for (1) of the form identity plus




higher order tenns, such that the resulting linear plant will agree

. 1
with (1) up to an error of order O(x.u)p+ (i.c. terms of O(x)w

O(x)pu) where p is the degree of approximation. QObviously, Egn.
(2) results when p = L. In the following, the case for p = 2 will be
derived and the results will be generalized to any arbitrary order p by
induction.

We assume a transformation of the form:
2)
x=z+ Q( (2) 1€))

where z denotes the new set of coordinates. ¢(2) is a polynomial of

degree 2, the monomial coefficients of which are to be found.

The time derivative of (3) yields:

.. a¢ (z)
x=z2+

™ @
We solve for the differential equation in the new coordinates z:

. a¢ ) -1
z=(1I R ®

To evaluate (5), the functions f(x) and g(x) are expanded in a Taylor
series, and (3) is introduced:

£ = £ + £2(x) + Ox)°
=2+ 6P + P + 0
=Az+ A¢ (z) +i (z) + O(z) 6)

2
g0 = g2t + g + 000)

=B + gm(z) + O(z)2 Q)
2)
Theterm (I + Y " in (5) is expanded in a series around z = 0
as:
(2) (2) (2)
d¢ -1 00 20
I+ ——) =(l-— A 8
(T+ 5 ) ( % +(— 3 ) ) @

Then, combining (6), (7), and (8) in (5) and expanding we get:

3 0(2) )

z=Az+Bu+ Aq>(2)(z) + f(z)(z) - Az + g(l)(z)u ~ Bu
dz dz

+O(zu) ©)

Now we introduce some notation. The Lie bracket of two vector

fields is another vector field defined by:

So (9) can be written as:

z=Az+Bu+ t‘z)(z) - [Az,¢(z)(z)] + gm(Z)u - IBU.‘P(Z)(Z)]
+O(z.u) (10)

With the following choice for ¢(2) all the second order terms of (10)

wilf vanish and the approximation will be accurate to second order:
2
P = 1Az (i1a)

P = Bue®@)i (11b)

which must hold for all constant u. Eqn. (11a) is called the
Homological Equation [6). A solution to (11) has to be found by
using the freedom in the choice of u; we use a feedback of the

following form (2]:

(O

=P+ @+ 8V (12)

where a(z)(x) is an mx] vector of order 2 polynomials, I is an mxm

identity matrix, and B(l)(x) is an mxm matrix of first order terms. A
new input in the linearized coordinates is designated as v. Note that
v agrees with u to first order. With the introduction of this
feedback, f and g of Eqn. (1) are redefined:

0 = ) + g0 (13)
0 = gtx) + 80080 (13b)

The Taylor expansion of (13) yields

0 = Ax + BP0 + P00 + 0°0) (143)
500 =B+ g0 + BB 0 + 070 (14b)
and

P00 = BaP 0 + 20 (15a)
00 = V0 + B8V (15b)

Reiterating the steps of Eqns. (3) through (11) we find:

@ =azP @) (16a)

Y@ = Busa) (16b)

The distinction between Eqns. (11) and (16) is seen when (16) is
rewritten as:

P(2) = - BaP @) + 1426 () (17a)

e =-Bp @ + Bvo P2 (17b)

In the generalized homological equation of (17), the second order

2 1
terms li )(z) and g( )(z)v can be cancelled out under certain




. . 2 2
solvability conditions by proper choice of ¢( )(z), a( )(z). and
1 .
[3( )(z). For this second order linearization we have a system of
2 . .2
nz(n + 1)/2 + n m linear algebraic equations in n (n + 1)/2 + mn(n

2 .
+ )2 + m' n unknowns. When a solution can be found, the

resulting system becomes:
. 3
z=Az + Bv +O(z,v) 18)

In order to find an approximation of the next higher order, we
rewrite (18) by reverting to the variables x and u:
. 3 )
x = Ax + Bu + O(x,u) (18)

Now we are asuming that in the given nonlinear system the second
order terms have been already been canceled as outlined above.
Then we seck a new transformation of the form:

x=z+06°%z) (19)

Note that transformation (19) will not introduce any terms of degree
less than 3. Then the same procedure outlined above is repeated,
with the feedback:

u= 0.(3)()() +(0+ B(z)(x))v (20)
which results in:

P2 =-Ba(2) + 126V @) (212)
P =- B8P + (Bv.0V @] @1b)

These results can be generalized as follows. Given a system which

is accurate to only order p-1, i. e.

x = Ax + Bu + O(x.u)’ 22

a coordinate change is sought as;

X=Z+ o(p)(z) 3)
along with feedback:
u= a(p)(x) +(+ B(p-n(x))v (24)

which yields the homological equation to be solved:

P2 = - Ba(2) + [A26P ()] (252)

(;H)(Z B BB(D—‘)

g v = (z)v + [Bv,Q(p)(z)l (25b)

In (25). O(D)‘ f(P)'a(P)' g(l)-l) and B(p-l)

homogeneous vector fields of orders corresponding to their

are, respectively,

superscripts. The resulting system is accurate up to order p:

. p+l
z2=Az+Bv +0(z,v) (26)

3. Linearizing Transformations for Systems with Small
Paramcters

In this section, we consider a control system of the form:

x = f(x,£) + g(x.€)u (27a)

x(0) = x°. (27b)

where £ is a small parameter that characterizes the way parasitic
effects or disturbances enter into the system. We will develop a
method of linearizing transformation for this type of system, similar
1o that of Section 2. First, (27) is expanded as follows:

x = Ax + Bu + ¢t () + g xu) + 0(e) (28)

In (28), the nonlinear function is expanded and grouped in powers
of €. Thus, the superscripts of f and g now correspond to the
powers of € these functions multiply, in contrast with the notation of
Section 2. A coordinate change is assumed of the following form:

x=z+e6 ) 29)

where the form and the polynomial order of the function ¢(])(z) is
not determined yet. Repeating the calculations similar to the steps of
Egns. (4) through (9) of Section 2 yields:

7= Az + Bu + () - [Az4 @) + £ V@ - Bus @)

+ O(e)2 (30)
An input for the control system of Eqn. (28) is chosen as:
u=v + @D + P0v) G1)

After a sequence of calculations similar to Eqns. (13) through (17),
the homological equations are found:

{2 = -Ba(2) + [Az6"@)] (32a)

P =-BpP @ + Brs @) (32b)

This result can be generalized for an arbitrary power of € in the same
fashion: A solution to

f(p )(z) =- Ba(p)(z) + [Az,q)(p)(z)] (33a)
v =- 8P + (Bv.oP )] (33b)
will yield '

2= Az +Bv+ 0@ (34)

Even though Eqns. (33) and (25) look very similar, there are some
All the varables in Eqn. (33) have
different definitions than those of Eqn. (25), as mentioned at the

fundamental differences.




beginning of this section. Moreover, the solvability conditions of
(33) are not the same as the conditions of Eqn. (25). Actually, both
(32) and (33) may represent an infinite family of equations as
opposed (o the finite dimensional set of expressions that arise from
(25).

Any .nonlinear system expressed in the form of in Eqn. (1)
can always be transformed into the form of (27) as follows: First,

consider the expansion of (1) as
x = Ax + f(z)(x) +Bu+ g(l)(x)u + O(x,u)3 @35)
Scale the coordinates and the input with:

§=£-lx

-1
H=E u

inroducing the above into (35) yields

£ = AL + By + e T2 + 2 XEM ) + O©) 36)

This equation is of the form of Eqn. (28), except for the difference
in the way expansions of f and g are defined. We use the overbar
notation to emphasize this point. The input

u=a200) + @ + P (12)

-1
is also transformed with an additional scalingm =¢ v:

w=n+e@2® + 3®n) @7

With this scaling of coordinates, a linearization problem given as in
Section 2 can be alternatively solved with the procedure outlined in

this section.

4. Form of the Nonlinear Compensation

After a higher order linearization is obtained, the next step is
1o choose a feedback law to achieve closed-loop pole assignment.
Consider the approximation of Section 2 where

X = Ax + Bu + O(x,u)’ 1093}

has been transformed by the coordinate change

x=z+ o(p)(z) 3)
and fecdback

u =P+ 1+ 8P Vo 4)
into

2= Az + By + 0z 6)

A closed-loop pole assignment can be made with stale feedback of
the form

v=Fz+r (38)

where r is an open loop control. The approximation of (26) then
becomes

z=(A + BF)z + Br. 39)

Notice that (23) agrees with the identity transformation up to order
p-1, so it is easily inverted at least up to order p:

z=x-6"(x) (40)

The input u of Eqn. (24) in the original coordinate becomes, with
the aid of (22), (38), and (40):

u =P+ @+ B o Ex -0P00) + 1)
=Fx+1+ [a®0) + B 0Ex - FoP )+ 1)
—F®P)). @1)

Thus the control function has the form of a pole assignment for the
linear part of (22) plus some comrection terms of higher order
(grouped in the bracket of Eqn. (41)). This result clearly shows the
purpose and nature of the nonlinear feedback.

6. Conclusion

In this paper we have presented an alternative approach to
the analysis and design of nonlinear control systems. The procedure
consists of finding a coordinate change by an appropriate feedback
to achieve higher order linear approximations to nonlinear systems.
Because of space limitations, we have not presented the details of
the solvability conditions. The method of solving for the linearizing
transformations is based on the normal forms approach of Poincaré,
which is a widely used technique in the analysis of bifurcations in
nonlinear vector fields. This suggests the applicability of these
powerful bifurcation methods in nonlinear control systems analysis.
Acyels [10] and Abed and Fu [11] have studied the local
stabilization problem for nonlinear systems with this approach. In
other words, the method is an appropriate tool for the analysis of
nonlinear systems in which plant parameter variations cause
fundamental changes in the structure of the system. Another
important issue is the following: When a solution exists, the
functions a(p)(x). B(p_l)(x). Q(p)(x) are not ncccssan'ly' unique. The
question of what is the best choice, or even what is ;rcawnablc
choice among the possible solutions needs more investigation.

The equations that need 10 be solved for finding the
transformations are a sct of lincar algebraic equations. However,




the number of cquations grow rapidly with increasing orders of
linearization and with higher dimensional systems.For example, for
a second order lmumuuon and with n states and m inputs we have
a valun of ﬂ.(n + 1)/2+ n2m linear algebraic equations in
n (n + )2 + nn(n +<«)f2 + mzn unknowns. With the use of
symbolic algebraic manipulation packages and with the availibility of
increasingly powerful computers, this is not considered as a serious
setback. A symbolic algebra program that automatically solves these
transformations on the computer is in preparation.

LR
¢
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Determining Torque and Velocity Limits on Joint Actuators for
Robot Manipulators with Coupled Joint Motion®*

Sinan Karahan
Department of Mechanical Engineering
. University of California, Davis, CA 95616

Abstract: in robots with remotely driven links, the
relationships between some of the actuator and joint
motions are coupled. In this paper robot dynamic equations
for these types of manipulators are analyzed. The
équations are expressed in actustor coordinates by means
of the coupling matrix between joint and actustor
coordinates. The motivation is that, in the actuator
coordinates, the actuator velocity and torque kmits can be
calculated. The procedure is demonstrated by an example.

Keywords: Robot manipuiator, torque limit,
coupled motion, robot dynamics.

1. (Introduction

In the formulation of manipulator dynamic equations,
two well-known mathods, Newton-Euler [4] and Lagrangian
{1,5] have been the most popular. While the Newton-Euler
method is computationally more efficient, it is the
Lagrangian method that aliows better insight into the the
dynamics, as weli as into the analysis and design of control
systams for manipulators. in the Lagrangian formulation,
the Denavit-Hartenberg convention [2] is often used to
assign link parameters. Within this framework, the joint
coordinates are measured with respect to the next lower
link in the apen kinematic chain, regardless of the
mechanical characteristics of the robot. While for the more
recent direct drive robot designs there is a one-to-one
relationship between joint and actuator coordinates except
for the gear ratio conversions (thus the name “direct drive”),
conventional type manipulators generally have remotely
driven links due to limitations on cost, weight, and other
design criteria. In such robots, the relationships between
some of the actuator and Joint motions are coupled, with an
actuator rotation or displacement resulting in the motion ot
more than one link. Avoidance of the upper bounds on

actuator torques or forces is a concem for high speed

* Research supported by the Air Force Office of Scientific
Research under grant number 85-0267.

128-033

motions and optimal control schemes, because the end
offactor of the robot will not be able to foliow the
commanded trajectory if the actuator limits are exceeded.
Formulating the equations for remotely driven manipulators
in joint coordinates wili result in complicated calculations for
the upper bounds for some of the joints, thus making it
difficult to check the torque/force imits at the actuator level
with given motion commands at the joint level.

The goal of this paper is to reformulate the
Lagrangian dynamic equations for robots in actuator
coordinates, and to show that the problem of checking for
the torque/force upper bounds can be simplfied.

2. Manipulator Dynamic Equations and their
transformations

The equations of motion for an n-link open chain
-manipulator arm are given in vector-matrix form as:

6,6 |

=
DE® +|  |+GEO) =< m

i

where 0,0, 6 are, respectively, (nx1) joint displacement,
velocity, and acceleration vectors. D(0) represents the
(nxn) configuration dependent inertia matrix. C,,C,,...C,
are the {nxn) Coriolis- centrifugal force coefficient matrices,
G(0) is the (nx1) vector of gravitational forces acting on
each joint, and ¢ is the vector of forces applied by the
actyators. We note here that, for a manipulator with joint
motion coupling, t is composed of the forces applied to the
joins, not the actuator output forces. For the purposes of
the derivations to be parformed iater, it is preterable to
rewrite (1) in the following form:
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c!
C2
8 4+G@O) =1

D)8 + (1,06 @

cn
in (2), the symbol ® represents the Kronecker product of
matrices, and |, is the (nxn) identity matrix. Obviously, the

matrix [ |, ® 6] has dimensions (nxn?) and the Coriolis-
centrifugal coefficient matrix of C/'s Is (n°xn). We refer the

reader to [3] as an excellent reference on Kronecker
aigebra of matrices.

Let the coupling between joint and the actuator
displacements be given by:

8=Hop (3)

where ¢ is the (nx1) vector of actuator displacements, and H
is the (nxn) coupling matrix. H is constant and non-singular.
For a direct-drive robot arm, H would reduce to a diagonal
matrix with the corresponding gear reduction ratios as the
entrles. By differentiating (3) with resnect to time, we obtain: .

0=Hop @

and
8 =He 5)

On the cther hand, the relationship between the actuator
forces and the joint forces is:

t.-H’t

(6)

where 1, is the force input vector in actuator coordinates.

Introducing the relations (4) and (5) into the
equations of motion (2) yields:
C,
C;
Hp + G mt

DHe + (1, ®¢'H )

c,
Muttiplying each side of Eqn. (7) by H' we get:

Cy
02
Ho + H'G = H'

H'DHg + H'[1, ® ¢H] 8)

Ca
in the above, we first note that the right hand side is the
same as Eqn. (6), i.e. t,. By using the identity (ASB)E®F) =

97

(AE®BF) (this is possible whenever A E and B, F are

conformable pairs; see [3]), we rewrite the term involving
the Kronecker product as:

H I, @ g ]a1, 0 ¢)(H @ H) ©)

The term [H'® HY can also be written as HY2), the
superscript in brackets being the notation for Kronecker
square of matrices [3]. With this resuk, Eqn. (8) becomes:

Do+ [,@¢) (10)

where the parameters corresponding to thq actuator
coordinates have been assigned the subscript "a".
Comparing with Egns. (8) and (9), these are:

D, = HDH Inertia matrix

H  Corlolis-centrifugal terms

Gravitational forces
and the torque term is given by Eqn. (6).

3. Application to velocity and torque (imit
calculations

For a practical implementation, consider the problem
ot calculating torque commands to the actuators for a given
trajectory to be followed. Let the maximum forceftorque he
actuators can deliver be t,,,,. Additionally, there is usualy
a maximum velocity at which the actuators can be driven,

which we denote by ¢, For a typical DC motor, the
maximum torque is kmited by the maximum current rating of
the motor, while the maximum velocity is proportional to the
voltage applied. The actuator dynamic effects are ignored
in this context. We assume that the sensors placed at the
actuator or joint level measure the displacement and the
velocity and that the acceleration can be approximated by:

o - @il

i”'&

where superscripts represent the ith and i-1st
Measurements, and At is the sampling period. We need to
caiculate the left-hand side of Eqn. (10) with these velocities
and accelerations. This will yleld the total forcesitorques
required at each joint to achiave the motion Sommanded.




Call this quantity A. Comparing the vector A obtained from
this calculation with the actuator limits t,,,,, term by term,

which are the maximum forcesforques that are available, it
is possible to determine whether any of these limits are
exceeded. Whenever a torque or velocity limit is exceeded,
one neaeds to renormalize the actuator commands in the
following manner:

ol
Tamaxi

Now= MBI{'L} iwl,...n
Pmaxi

N = Max{N,, N2}

i= ) O |

and if N > 1, in which case either a torque or velocity limit is
exceeded, then set

. 9 .

q"now =N i=1,..,0n
This will renormalize all the joint velocity commands with
the same ratio, thus ensuring that the manipulator end
effector stays on the commanded path, even though at a
slower velocity. Using such an algorithm, if a kimit is

reached, usually only one of the actuators will be at its
maximum.

4. An Example

In this section, the calculations of the joint-actuator
coordinate transformations will be demonstrated with a
simple example. Consider the 3 d-o-f revolute manipulator
of Fig.1:

Figure 1. A 3 d-o-f revoiute manipulator.

The coordinate system on the robot and link parameters are
assigned in accordance with the Denavit-Hartenberg
notation. It is assumed that joint 3 is driven remotely from
the base, and that the motion is transmitted through a
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mechanical connection. For this robot, Eqn. (3) becomes:

8 1 o ||*

1 k-,. (: 1

o,|= © K 9 || (1)
11

6, 0 'K K

In the above, k,, k,. kg, @re the gear transmission ratios
between the actuators and the joints. By taking the time
derivative of (11) the counterparts of Eqns. (4) and (5) are
also obtained. For the purposes of the foregoing
calculations the explicit forms of the inertia matrix elements
and the other terms in Eqn. (2) will not be necessary.
Therefore, the inertia matrix is expressed in ite symbolic
form: ’

Dyy D2 Dys
D=| Dy2 Dz Dy
Dy Dy Dy

Calculation of the inertia matrix in actuator coordinates
yields:

_ 9_;1_ D4Dy5 D -
Ky Kok, kiky
D;;-Dy3 Dpp2D534033  Doy-Dyy
D,=HDH« T+ T 2 ek
a k,kz k2 KoKy
B 2 J
K,k K,y ka

Similarly, the Coriolis-centrifugal terms are caiculated as:

HCH |
iE\

Cat C, H'(C CaH

Col=iHeH) C H= ___2.;__

c C,

H'CH

Lk

Note that in the above C, are (n x n) matrices of Corlolis-
centrifugal force coetficients. The gravitational terms
become:

G‘

o
GI\ G‘ G"G
G‘ -H‘ Gz - _%3_
G G

a,

13

And, finally, the torque terms are transformed as:

- ——— —

Cl— ——— e — a- -

-




—11-
K

Tat T

"ﬂ -H' ‘2 - %

! %
[k,

5. Conclusion

In this paper, manipulator dynamics equations
.[9_rmulated in joint coordinates were transformed into
actuator coordinates by use of the actuator-joint coordinate
coupling matrix. This resulted in the expressions for the
transformation of Inertia and Coriolis-centrifugal terms, as
presented in Section 2. Then, the final form of the equations
allows an easier implementation of an algorithm that checks
the velocity and torque imits, and renormalizes the actuator
commands so as 1o prevent tracking errors.
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Application of An Efficient Nonlinear Filter”
Ruggero FREZZA , Sinan KARAHAN, Arthur J. KRENER, Mont HUBBARD

Abstract- In this paper we present an application of a new ﬁlterinf technique based on feomelric linearization
and asymptotic analysis. The technique is compared to the conventional extended Kalman filter to demonstrate its
computational efficiency.

Introduction

While the theory of linear filtering has been well developed and understood, practical
nonlinear filtering has typically relied on heuristic techniques. One of these is the extended Ka]man
filter which is based on a linear approximation of the system equations around a trajectory. The
asymptotic geometric nonlinear filtering technique was developed by Krener in [5]. It is based on
the so-called observer normal form which linearizes the dynamics by a change of state coordinates
and output injection. The development of the observer normal form is due to Krener and Isidori
[1], Krener and Respondek [2], Bestle and Zeitz [8], Zeitz [11,12], Fritz and Keller [9], Keller
[6,7], and Li and Tao [10].

The approach is geometric and consists of finding a change of coordinates, in general
nonlinear, such that the equations of the system transform to their most linear form. Once the
system is in "nearly linear” form it will be possible to apply asymptotically the theory of linear
filtering. This has many advantages. In fact it is possible to formally define optimality and
asymptotic stability. Moreover, the gains of the filter may be computed off-line because the Riccati
diff_ercmial equation is independent of the states. This reduces the on-line computational burden of
the filter.

The only drawback of the technique is that the change of coordinates generally requires a
very heavy algebraic computational effort. One solution to this is to use already existing software
packages for symbolic computations. Naturally the technique is not applicable to all nonlinear
systems; otherwise we would have discovered that everything in nature is linear in some

appropriate coordinate set. The class of "nearly linearizable" systems is substantial, and.gives to

‘Research supported by the Air Force Office of Scientific Research under 85-0267.




generally requires a very heavy algebraic computational effort. One solution
to this is to use already existing software packages for symbolic
computations. Naturally the technique is not applicable to all nonlinear
systems; otherwise we would have discovered that everything in nature is
linear in some appropriate coordinate set. The class of "nearly linearizable"
systems is substantial, and gives to the method a certain flavor of generality.

In this paper we will illustrate the technique for a specific example. We
will estimate the height, the velocity and the ballistic coefficient of a falling
object in an atmosphere with variable density. We will also implement the
extended Kalman filter for the same problem and compare the two filtering
techniques in terms of performance and computation time. Throughout the
paper we will refer to the geometric asymptotic nonlinear filter, the new

technique, as the GANF and to the extended Kalman filter as the EKF.

1- Brief description of the EKF and the GANF techniques

We say that a given nonlinear system without input:

L=,
y =h(0) .

where { € R" and y€E Rl, is observable if it can be transformed into
observable normal form. This corresponds, in some sense, to the property
of observability for a linear system. Normal forms have the advantage of
making transparent the effect of an input on the dynamics of the system.
There are four such normal forms: Observer, observable, controller and
controllable. In the present application, and in the case of nonlinear

observers in general, we will have occasion to use only the first two:

o))




Observable form:

x = Ax - Bau(x)

y=Cx (2)
Observer form:

X = Ax - 0(Cx)

y =¥(Cx) (3)

In some particular cases (in the application treated in this paper, for
example) we will require a modified observer form.
Modified observer form:
x = Ax - 0{Cx, CAx,...,CA™x)
y =1Cx) 4)

where A, B, C are the standard matrices of the Brunovsky canonical form.

For the case of a three dimensional system with a single output:

010 0
A=|0 0 1} pB=]0] C=[100] (5)
000 1

The system (1) can be transformed into observable form if y and its first n-1 time
derivatives are local coordinates on the state space.

A physical system will never satisfy exactly a set of differential equations




like (1). In reality each of the states is affected by random process noise, the
parameters are not known exactly, and the measurement of the output will be
affected by observation noise due to the physical and technical limitations on
the measurement procedure. The system (1) can then be expressed in its

stochastic equivalent:

dt = £()dt + Bdw
dy = h({)dt + Ddv | 6)
£0) = N(&,;, Py

Where w and v are standard Wiener processes. The covariances of the driving
and measurement noise are, respectively, Q = BBT and R = D2. For our work
we will assume the measurement noise to be small, i.e. D =€ where € is a small
parameter. Then the problem is to estimate the states of (6) at time t given the
measurement of y at time less than or equal to t. It is clear that in the absence of
noise and if (1) is observable the problem is easily solved because the states
could be computed exactly as nonlinear function of derivatives up to order n - 1
of the output.

We compute the estimates by introducing the filter:

dg = £(€)dt + g(€)(dy — h({)do)

dy = h({)dt @)

The conventional extended Kalman filter technique computes the estimates from:

dg = £(C)de + PHT(E, YR (dy — h({)dr)

dy = h(Q)dt . (8)




where
P=FC, P+ PE'C, 1+ QW - PH'C, oR'H(E, P
P(ty) = P, (9)
and
A ahl(C, t)
HE, 0 = Ea e} o
of(C, 1)
A _ 1 A (11)
FC. 0= { L. lc=c}

]

and P, Q and R are, respectively, the covariance matrices of the estimate
error, the process noise and the observation noise.
The GANF computes the filter in observer form coordinates. In these

coordinates the system (6) can be written as:

dx = (Ax + ay))dt + Gdw
dy = Cxdt + Ddv (12)
x(0) = N(xq, Pg)

where, if J is the Jacobian of the change of coordinates, G = J B. If the
measurement noise is small, and a(y) is smooth enough, then o(y) is

approximately equal to a(()'b and we can use the filter equations

A A A T 1. — _A
dx = Axdt + o(Cx)dt + PC' R (dy - Cx dt) (13)

with P being obtained from the solution to the Riccati differential equation




P=AP+PAT+Q-PCR!CP

P(0) =P, (14)
Where Q = GGT. The dynamics of the error are given by:

dx = (A + PCTR™IC) xdt + (afy) ~ a(Cx ))dt + Gdw + PCTR " Cedv (15)

The Riccati equation (14) is state independent and hence can be integrated
off-line. The dynamics of the error are nearly linear up to output injection,
and the covariance of X asymptotically equals P(t). We can assume, without
loss of generality, that the output injection term can be expanded in a Taylor

series starting from the second order term:

2 A
d"o(Cx)
dy2

a(y) - (Cx) = (CX + edv)? + 0@3) (16)

In fact, we can combine any linear term of the above in the (A + PCTR-1C)X
term of (15). Then, if the second derivative of & is small, the output
injection term can be neglected. Practically, we are requiring & to have a
small "curvature" in some sense.

One should note that these two filters are not being compared on exactly
the same grounds because the noise covariances of the EKF and the GANF
are state independent in both { and x coordinates. However the comparison
is justified if the Jacobian of the change of coordinates J is nearly constant
along the trajectory since (_) = JQJT and R is invariant under the change of

coordinates. The main advantage of the GANF over the EKF is that the




Riccati cquatidiT(M) can be solved off-line. This allows the computation of
g(0) off-line, while when using the EKF it is necessary to integrate (9) and
compute (10) and (11) on-line. In particular if the problem can be

transformed into observer form with a(y) = 0 then the GANF is the optimal

filter while the extended Kalman filter is generally not.

2- An Application of GANF
We consider a falling object in an atmosphere of varying density. The
problem is to estimate the position, the velocity and the ballistic coefficient

of the object. This problem has been discussed previously by Gelb [3] and

Wishner et al [4].
The dynamic model consists of:

y=§,

£=¢,
L,=—g+pC L,
t3= 0.

{O=C
£,O=¢
o=t

where Cl is the vertical position, 2;2 the velocity, C3 the inverse of the

ballistic coefficient and

a7




¢
= b
p(C,)=pexp(- 1) (18)
P
represents the variation of the atmospheric density with the height {1. It can

be verified that this system is observable according to the observability
condition defined in section 1. In fact

dh=[1 0 0]

dLh=[0 1 0] |

= o5, o, p<cl>c;] (19
p

span R3, except at the singular point Cz = 0 where, the object being

stationary, it is impossible to observe any of its dynamics. Hence it is

possible to write (17) in Observable form:

y=§,
g =t
£ =t
. g g &
E =00 = g2 + 0 - 2%, + =8 (20)
P &2 P &2
The Jacobian of the transformation between £ and £ is
[ 1 o 0]
0 1 0
Lo=| | @1)
I8 &L,
P 28,8, pL2 J
s P




Unfortunately (20) does not satisfy the conditions for the transformation to

observer form, but it can be transformed into the modified observer form.

If we let
(&9)? - 9
a®)=-—t= §=£(2-7H
1 2&(2) _ gz 2 2 E"Z
5. .8 &
az(iz) = (ﬁg)z( kin(=5)+ =_-=)
P E)E)
(&
o, &)= :2
o
and
X, = §1
X, = §2
&
=226 +a )
g2

then the system can be written in modified observer form:

y =X

5(1 =X, - a (§2)
X, =%y - 0 ()
Xy =- o, (&)

In some sense this change of coordinates linearizes the system "as much as

(22)

(23)

(24)
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possible".
Assuming the model to be affected by random process and measurement

noises, the corresponding stochastic differential equations become:

dy =x,dt +Ddv
dx, =(x, - al(ﬁz))dt +B,dw,

(25)
dx, = (x4~ az@z»dt +B,dw,
dx, =- o, (E,z)dt +B,dw,
with
x,(0) = N(x}.P(1,1))
0
x,(0) = N(x,P(2,2))
0
x,(0) = N(x,,P(3,3))
Q=BB" R=DD'
where R is the measurement noise covariance and Q(1,1), Q(2,2), Q(3,3)
are the process noise variances. P(1,1), P(2,2), P(3,3) are the variances of
the errors in the initial conditions.
The filter dynamic equations are:
A A
dy =x,dt
a, = &, o € )t + K (dy - &)
A
dR, = (X, - @ (& ))dt + Ky(dy -d%) (26)

diy=- (gz)dt +Ky(dy - )
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Rewriting the system in the original coordinates, the filter equations

become:

A A A
df, ={,dt + K (dy - {,dv)

A
A g
aC, = (g + p(€ 2L yat + 2K (ay - € ay @
CO

2
A A
A

d§3 = (T(QiK1 - Ez —K, +
o kpG)R?

A
—K,)dy - Cdo
pC Y ‘

where Kl'Kz'K3’ are the gains computed from (13) and (14) with
K=PC'R,
The Jacobian of the transformation from physical coordinates to observer

form is:

0 (Ef;)2 0 .
I= & p=pye '’ (28)
C3 _{2 1

— e ——————

5o K pO? PP

The Jacobian turns out to be close to a unitary operator. This is clear for
the 2x2 upper left minor. In fact, simulations were computed both

assuming the Jacobian constant evaluated at {0, and computing its actual
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value on line. The results were not affected in an appreciable manner.

3 - Simulations and Results
In this section we present the results of some simulations, run for
different noise regimes and with the following constants:
initial conditions:
- initial height = 30,000 m
- initial velocity = - 2,000 m/sec
) initial inverse ballistic coefficient = 1.025*10™ m%/kg.

physical parameters:

- atmospheric decay constant kp= 10,000 m

- atmospheric density at sea level p e 1.230 kg/m3

- gravity acceleration g =9.81 m/ sec?
Additionally, the results correspond to the following noise regime:

measurement noise
2
- R =100 m sec

- Q(1,1) = 100 m®

- Q(2.2) = 100 m¥/sec?

- Q(3,3) = 1.0%10" " m* / kg?
uncertainties on the initial conditions

- P(1,1) = 5000 m*

; P(2,2) = 2000 m?/ sec’

- P(3,3) = 1.0*10°® m*/ kg’




The object falls from an initial height of 30,000 m with an initial
downward speed of 2,000 m/sec. It has an initial ballistic coefficient of
9,756 kg/m2, which is equivalent to the object weighing approximately ten
metric tons per square meter of surface perpendicular to the direction of the
fall.

The errors in the initial conditions are, probably, not unrealistic for a
radar tracking problem. The process noise covariances are aiso ciose to
reality if we consider the possible random effects of changes in the
conditions of the atmosphere and wind encountered on the way to the
ground along the trajectory. Finally, the process noise on the ballistic
coefficient could be interpreted as variations of the shape or orientation of
the object during the fall.

The behavior of the real system is presented in Fig. 1, which portrays
the trajectories of the three states affected by the noises. We remind the
reader that the first state is the height of the object, the second the velocity
and the third the inverse ballistic coefficient.

In Fig. 2(a) are shown the errors between the estimates of the height of
the two filters and the height of the real system (Fig. 1(a)). The EKF and
the GANF, compared in terms of performance in the estimate of the height,
are nearly equivalent. The EKF performed slightly better, but the time
history of the error is nearly identical. Similarly, in Figs. 2(b) and 2(c) are
shown the estimates of the velocity and the inverse ballistic coefficient,
respectively. Although the two filters showed a very similar behavior, the

EKF performed slightly better, the difference probably being mainly due to

the approximation introduced in assuming that the noise covariances were -

constant in observer coordinates for the GANF. In Fig. 2(d) is shown the

13




behavior of the real inverse ballistic coefficient and of its estimates to give
the reader an idea of the initial error in the estimates and of the effect of the
process noise. Without process noise the real coefficient would be
constant.

Shown in Fig. 3(a) is the logarithm of the average covariance of the
error in the estimates of the height for 25 Monte Carlo runs. As can be seen
from the Figs. 3(a) and 2(a) the recovery from errors in the initial guess is
very fast after which the covariance settles down to values close to process
noise covariance for the height. There is no appreciable difference in the
behavior of the two filters. In Figs. 3(b) and 3(c) are shown the logarithms
of the average covariance, for 25 Monte Carlo runs, of the error in the
estimates of the velocity and the inverse ballistic coefficient, respectively.
Again the two filters performed very similarly. In Fig. 3(c) the two filters
behaved so similarly that the two curves are almost indistinguishable. All
these results were checked by insuring that the covariances of the errors
were near the values of the covariances theoretically predicted by the

solution of the Riccati differential equation.

Conclusion:

The simulation results demonstrate that the GANF filter performed
practically as well as the extended Kalman filter from the point of view the
accuracy of the estimates.

In terms of the algebraic efforts in developing the filter equations, the

EKEF is obviously more straightforward, since one need only evaluate a

first order approximation to the nonlinear equations along the trajectory. -

The GANF, on the other hand, relies on differential geometric concepts,

14




and require considerably more difficult algebraic computations off-line.
However, the development of the algebra may eventually becoiic a simple
exercise in co.mputcr programming if currently popular symbolic
manipulation programs like MACSYMA or SMP are used.

The real advantage of the GANF filter over the extended Kalman filter is
in its computational efficiency. In fact, as mentioned previously, we can
compute the gains of the GANF filter off-line, whereas the gains of the
extended Kalman filter must be calculated on-line. For the particular
simulation presented in this paper, written in FORTRAN language and
executed on a VAX 785 computer running under the VMS operating
system, the integration of the GANF filter along the entire trajectory
required 1.06 seconds of CPU time, while the integration of the extended
Kalman filter took 3.2 seconds. Thus the GANF filter has performed three
times faster. With higher order systems the computational advantage will
be further emphasized since the on-line computational burden of the
extended Kalman filter grows as (n2+ 3n)/2 while that of the asymptotic
nonlinear filter grows only as n. In fact, solving the Riccati differential
equation on-line requires the integration of (n2 + n)/2 scalar differential

equations.

List of figures:

Fig. 1 Nominal trajectory of the states of the falling object in the presence
of random noise. (a): height, (b): velocity, (c): inverse ballistic coefficient.
Fig. 2 Errors of the extended Kalman filter and of the geometric asymptotic
nonlinear filter in the estimates of the states of the falling object. (a): height,

(b): velocity, (c): inverse ballistic coefficient, (d): estimates of the inverse

15




ballistic coefficient tog;tECr with the actual inverse ballistic coefficient.

Fig. 3 Variances of the errors of the extended Kalman filter and of the
geometric asymptotic nonlinear filter in the estimates of the states of the
falling object after 25 Monte Carlo runs. Plotted using logarithmic scale. (a):

height, (b): velocity, (c): inverse ballistic coefficient.
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Computation of Observer Normal Form
Using Macsyma*

by Andrew R. Phelps} and Arthur J. Krener}

1. Introduction

’

The computation of linear observers has become relatively routine, and computer
packages exist which make these computations straightforward and accessible. When it
comes to nonlinear observers, however, the picture has not been so bright. Algorithms for
this sort of calculation have been published [1], [2], [4], [5], [6]. In general, these are limited
by one or more steps involving difficult computations.

The Ph.D. thesis of Phelps [8] provides a breakthrough in the nonlinear observer al-
gorithm. In particular, Lie bracket calculations are no longer required to perform changes
of state coordinates, and the computation becomes straightforward. Macsyma was in-
strumental in developing the new approach. A prototype of this new algorithm has been
implemented in Macsyma.

We consider an uncontrolled dynamical system with partial state observation:

€= £(¢),
y = h(§). (1)

The state space is in R™ and the output space is in R?. Generally, this may be put in
observable normal form:

£ = A& - Ba(f),
y=C¢. (2)

The problem is to see if, in fact, it supports observer normal form:

t=Azr-0oCz),
g=Cz. (3)

Here the A, B and C are matrices given in Brunovsky canonical form.

* Research supported in part under AFOSR 85-0267

1 University of California, Berkeley. Current address:
Dept. of Math. and Computer Sci.
San Jose State University
San Jose, CA 95192.
1 Address:
Dept. of Mathematics
University of California
Davis, CA 95616.




The algorithm in question is determined by the conditions required for conversion of
a system (1) to observer form (3). This paper is based on the approach in [4] and [5]
modified in [8]. These conditions are:

Observable form  Must be able to convert system to observable form (2);

Output coordinate change Must satisfy d.e. for y = y(¥);

Polynomial degree  Observable form polynomials f;(¢), for 1 < j < p, (the entries of
B a(€) in (2)) must have degree < ¢;

Coeflicient compatibility = Observable form polynomials must evaluate to certain in-
tegrals of differential expressions in injection terms (the entries of a(C z) in (3)).

Note. An earlier version of these conditions replaces the coefficient compatibility
condition with the condition that the certain brackets vamsh Let g; be the unit
vector in the §;.,; direction. All brackets of elements in {ad}> 5 qJ :1<i<¢;} must
vanish.

The approach in [1], [2] and [6], which is not used here, has been developed only
for the case when p = 1 and there is no change of output coordinates required. It
calls for the existence of observable form (2) (but not its computation) and replaces
the last two conditions with a requirement that d(ad? r4) € span {dh}, plus a slight
technical adjustment.

We will elaborate the theorems and computations associated with the coefficient com-
patibility condition, which will obviate the need for extensive bracket computations.

2. Coefficient Compatibility in Standard Coordinates

For simpucity’s sake, we first describe the results in the case that we have the “right”
output §. In fact, we will see that this could be considered sufficient for an improved
algorithm, since the relevant change of state coordinates will be entirely determined by
the tranformation y = y(¥) of the corresponding outputs.

In section 3, however, we will indicate a result expressed directly in observable form
coordinates (¢, y).

We may compute observable form ((£, §) coordinates), relative to the output § which
is the solution to the output d.e.’s:

A — Ba(f),
=C¢. (4)

We call the coordinates (4) standard coordinates.

This computation does not constitute a major burden on our algorithm (given Mac-
syma), since we only require an iterated set of Lie differentiations of functions and back-
substitutions to get the transformation £ = £(£).

QL Ty
il

To annotate our coordinate systems, we adopt certain conventions. We describe the
state variables by ;.;, indicating that it is the (j — 1)-th time derivative of the output
variable y;, the same going for (z,§) and (£, §) coordinates. The injection functions a;.;
are written similarly. If p = 1, we omit the “1:” to simplify the notation.
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Furthermore, the coefficient

1]
3
—~
@
A g

il

)

m:- I ‘) e+l l; k1 l"'(g)
A Y

€5k times

"

G)
of the monomial

f“ = H Heﬁ,z“ L (5)

1=1 k=1

is characterized by having degree i.x and exponent e;.x with respect to its factor :’,,"k +10
for 1 < k < rj and 1 < j <p. The vertical bars ‘—’ separate the subscript into parts
according to the the output j involved. We also have cumulative indices

T P P T
ej:= E €k , E and w:= E _S_ 1.k €k -
k=1 =1

=1 k=1

To simplify the notation, we also occasionally represent functions as their own “0-th”

derivatives and we write “am.;,” for i < 0, as a null symbol indicating a contribution which
vanishes.

The natural way to describe the change from observable form coordinates £ to ob-
server form coordinates z is to compute the d.e.’s which determine it. These get quite

complicated, since they involve the change of coordinates matrix J = 6—? and its iterated

Yy
derivatives. The choice of standard coordinates, however, causes all these terms to vanish
and makes these d.e.’s accessible.

Using, for convenience, the simplifying assumption that each observability index £;

is equal to some ¢, we compute the equations r = z(£) governing the change of state
coordinates:

f_jzl =Zj1,
fj:2 = ZTj;2 — aj:l(g)a

E—j:3 = Tj3 — Lf' ajil(g) - aj:Z(g) 3

¢ -1

Ej:(j = xj:(j - z L;', — aj:i(?)’ (6)
1=1

¢; ]
HGEESY L;—’ TR (R
i=1

for 1 < j < p, where f is f in the £ coordinates. -
From the expansion (6) we can, in effect, read off the @ polynomial coefficients in
terms of the a injection functions.




£

Example 2.1. Coefficient solutions, for the case p =1 and £ = 3.

The expansion (6) gives us:

[1(€) = a23(y) €263 + as(y) &
+ a222(y) &5 + a22(y) €2 + a2(y) &
+ ai(y)-

This leads to the coeflicient solutions:

a) = —ag,
_ day
az = — dﬂ ’
— d 2011
a2 = — dy2 ’
dz22 =0
a3 = 0
- da;
az = dg
The a’s may be computed from the @’s by a simple integration. A

The pattern described in the above example is easily extended to the case where we
have p equal indices.

Theorem 2.2. Suppose that all the indices are equal, i.e., £; = £ for 1 < j < p. Then the
polynomial coeflicient @p,....(§) is given by

P T g --- 8"
H H ej:k!ij:lc!.ej:‘t
j=1 k=1

The existence of an injection vector oy) compatible with all the coeflicients of f,(£), as
given in (7), together with the observable form, output coordinate change and polyno-
mial degree conditions, constitute necessary and sufficient conditions for the existence of
observer normal form (supposing all indices equal).

Proof
Outline

We use induction on . We make a counting argumeut with combinatorics to trace
the typical coefficient of a monomial term.
Body of Proof

Let m, 1 < m < p, be fixed.

First of all, if £ = 1, then (4) simply becomes fm, = fm(€) = fm(®). Thus Am:1 =
fm(9) = —apm.1(§), where we take a,,;; := — f,,. But this matches formula (7).
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Note that the derivation in example 2.1 gives a result in accordance with formula (7).
That illustrates the pattern we use for our induction.

As induction hypothesis, we assume that formula (7) holds for £ = p. We target the
coefficients in the expansion for &,,. u — Tm:y 10 the case £ = p + 1 which are the source via
Lie differentiation of the coefficients of f,, we seek to evaluate.

But, when we examine the p.d.e. expansion (6), we find the same expression,

“ .
- Z LI;—: Xnciy
i=1

for &m:y — Tm:y, in the expansion with £ = u + 1, as we find for f,, in the expansion with
£ = p. This means that the induction assumption will enable us to know those “target”
coefficients, which, when Lie differentiated, give contributions to the expansion for fn,
in the case when the multi-index € is g + 1. These coefficients evaluate to nothing but
the coefficients of the terms of f,, in the case (given by induction assumption) that the
multi-index £ is p.

Let £!, given as in (5), be a monomial in f,,(£). We wish to determine its coefficient
;...

An expression which under Lie differentiation by f can give a term like £* may have
two forms.

Case 1. It may have no increment in the exponent e;.; of §j.2, for 1 < j < p.
In this instance, it will come from Lie differentiation of a term of the form

€ f'l Uk fn g+l (8)

By induction assumption, term (8) has a numerical coefficient which calculates back
from our projected coefficient for ¢* as

(¢ —1)let \w ] '
[T I eintisetes

=1 k=1

)

Here we take _
eﬂ — €n:k—1 +1 ) if lyk—1 = ly:k — 1,
) 1, otherwise .

The differentiation process contributes an extra factor of e!. Thus, the partial numerical
contribution from this term is -
tpkegk |l — ) - 9
mkqﬁ(w> (9)

In this case, the “a” part of the coefficient is carried through unchanged. Moreover, it

was already of the required form, since e, has not been altered by adding and subtracting
1 in (8).
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Case 2. It may have an increment in the coefficient of §;.; for j = 7.

The source of the terms of this type is partial differentiation of the “a” coefficient by
§,- This will give an additional factor of ,.2, while not affecting the numerical coefficient.
The prior exponent of E,,:g will have been ¢,.; — 1.

Therefore, the monomial term prior to Lie differentiation was ¢! 5‘”—21 By induction
assumption, its numerical contribution was

1 w!
- L,,:l! €n:1 ;)‘ s .
Jj:k

p T
. e
IT IT eintisint
=1 k=1

Its partial numerical contribution is therefore

1
Ly:1 €En:d (;;) 1 (10)
since ¢j.1! =1 =¢j,; when j = 7.

Note that in this case the e, increments by 1, so that the “a” term adjusts as prescribed
by formula (7).

These two cases exhaust the possibilities. The “a” coefficients are as required. And,
combining (9) and (10), we get a total contribution to the numerical coefficient of a factor

(,X:‘: i‘izk ej:k) (%) =1,

which is also as required. A

In the general case, where the observability indices are given arbitrarily, we adopt a
recursive method for calculating the a coefficients in terms of the a injection functions.

We may take a system with arbitrary indices ¢;,...,¢,, and prolong it to a system of
dimension p - £,, to which theorem 2.2 applies. Retracing the prolongation step-by-step,
we can track the (increasingly complex) form of the formulas for the a coefficients. We
rely on the following prolongation lemma (for a proof, see [8]):

Lemma 2.3 (Krener-Respondek-Phelps). Suppose an uncontrolled system, given in
observable form, has 2 distinct multi-indices €,, £, of multiplicities p,, p; and, further, that
it may be transformed by change of output coordinates y = y(¥) to observer form. Then
it may be prolonged to a system in observable form, having multi-indices A} := ¢, + 1 and
A2 := {3, of the above multiplicities. Furthermore, the transformation y = y(i) and the
injection function af-) both prolong trivially to functions which will take the prolonged
system over into observer form. -

We formulate our recursive coefficient calculation as follows:




Algorithm 2.4 (Coefficient Prolongation Algorithm). Suppose we have solved for
the coefficients belonging to the indices ¢,,...,¢; and moreover ¢y < €y +1 = ... = {,,
where s < p. We may construct a “quasi-solution” using the method of theorem 1 applied
to the prolonged system with s indices all equal to ¢,. By back-substitution we may then
express the prolonged version of f;(£) with a’s as coefficients, for k + 1 < j < s. We may
then substitute L}- n.e, (expressed in terms of the a’s, and using the solutions previously
derived for 1 < j < k) for the “quasi-variables” €.¢, +i where 1 < i < £, — €. Finally, we
may “read off” the coeflicients of the monomials thus derived.

We may now combine theorem 2.2 and algorithm 2.4 to get the coefficient compatibility
theorem for ¢ coordinates:

Theorem 2.5. Suppose we have arbitrary indices ¢1,...,¢,. Then we may derive the
coefficients @pm....(§) in terms of the a(§) injection functions by application of the Coefficient
Prolongation Algorithm. The existence of an injection vector a(y) compatible with all
the coeflicients of f;(£), together with the observable form, output coordinate change
and polynomial degree conditions, constitute necessary and sufficient conditions for the
existence of observer normal form.

Proof
This has already been done in theorem 2.2 for the case where all indices are the same.
Algorithm 2.4 enables us to extend this result inductively whenever £, < £,4;. A

It can also be shown that we can back-solve for the « injection functions in terms of
the a coefficients by iterated integrations (see [8]).

For the generic case, where there are two distinct indices, differing by 1, we state the
formula:

Corollary 2.6. For the generic case of two different multi-indices of size A, and Ay := A, +1
and multiplicities p; and p,, the coefficient ap,....(§) is given by

w! PZ 8°0in ~w(¥) 9mit,—2,(F) ) 3°0mr,—uw(7)
p T . po 337131 e ag;P 337' 637161 . 6]7;? .
H H e]':k! 15! 50k
=1k

L—1

In particular, a,,...(y) is given by theorem 1 for 1 < m < p; and for degrce > A; when
ptl<sm<p

Proof
This is directly calculated using theorem 2.2 and one application of algorithm 2.4. A

To conclude this section, we give an example of coefficients for the (simplest) non-
generic case. Note that it is trivial to back-solve for the derivatives of the o ’s and mategrate.

Example 2.7. Coefficient solutions, forp =2, €, =1, ¢, = 3.
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ay;] = —Qaq.q,
az; = 012-1 éig —aq: ?aflﬂ' ?@ + ai: ?fz_;z -~ ay:3
1oyl dy 9y 3 7
6,2:|2 :201:1 8_202;—1 Bam 6&2;1 _ 302;2 ’
ayl 97y, 9y, Om 07,

~ 32012;1
az:j22 = — ayzz )

_ Jay:)

s = 0%z

3. Coeflicient Compatibility—General Case

We have seen the expansion (6) in the simplified situation of standard coordinates.
This can be converted to general observable form coordinates (2) by a not-too-inconvenient
calculation. However, if we have Macsyma or some other facility that enables us to do
suggestive examples expeditiously, we can find patterns in the results that suggest direct
solutions for the general version of (6). For instance, consider:

Example 3.1. Coeflicient solutions, in general observable form coordinates, for p = 1,
£=4.

We have the following pattern, which mimics the result in theorem 2.2:

a) =_'i1£_a41
d
4y = 1y dos
dy dy
dy d201
023=~3@ e
_dy d’ay
<122—“d—37 dy?
vy =y don
dy dy
dy d3a;
222 = —;i—g dy?
(iy da,
a d—g'd—y—

We have another pattern, which relates to the degree € terms that vanish in standard
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coordinates:

A

To describe the intricacies of the degree ¢ terms in example 3.1, we introduce the
following notational scheme. Let P(m) be the partitions of m. Write a partition w of e —1
by

s

e—1=ZcJ-n_,-.

i=1

8
Define ¢:= Z ¢; as the number of pieces of the partition.
j=1
With these annotations, we formulate the pattern of example 3.1 for the following
theorem on coefficient compatibility:

Theorem 3.2. A single-output system has an observer normal form iff the observable
form, output coordinate change and polynomial degree conditions hold, and moreover in
observable form () coordinates the coefficient a...(y) equals

B w! day_u(y) dy
dy® dy’

r
H exlip!
k=1

for terms of degree less than ¢, and

w! (e —1)! —1\¢ Yr/d™ lage(y)\ o
I O [CONI (G
mePle=0 LA [T extint s T estn,!

k=1 J=1

for terms of degree equal to L.

A proof of this theorem will appear in a forthcoming paper of Phelps {7].

Using Lemma 2.3 and the above theorem (adjusted to the case of p equal indices). we
may in principle compute the general transformation r = z(¢), relating observer form (3)
to observable formn (2).

4. Conclusion

Two points need to be made here.




First, the “coefficient compatibility” approach to nonlinear observer calculations sim-
plifies in principle the theory and makes unwieldy bracket calculations unnecessary.

Second, the use of Macsyma made it possible to do the rather extended calculations
of examples that made the patterns in the data stand out. Every aspect of the algorithms
for nonlinear observer calculation is readily accessible to Macsyma programming, and
converting the algorithm from its abstract form of “algorithm-in-principle” to a concrete
“algorithm-in-fact” is naturally done in this milieu.

10
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THE STRUCTURE OF SMALL-TIME REACHABLE SETS IN
LOW DIMENSIONS*

ARTHUR J. KRENER? aAND HEINZ SCHATTLER:

Abstract. This paper outlines a general method to determine the geometric structure of small-time
reachable sets for a single-input control system with a bounded linear control. The authors™ analysis relies
on free nilpotent systems as a guide, and hence their techniques only apply to nondegenerate situations.
The paper illustrates the effectiveness of the method in low dimensions. Among other results is given a
precise description of the small-time reachable set for a system % = f(x)+ g(x)u. [u|= | in dimension lour,
under the genenc assumption that the constant controls ¥ = +1 and v = —1 are not singular. As a coroilary,
a local synthesis is obtained in dimension three for the time-optimal control problem under the analogous
generic condition.

Key words. nonlinear systems, nilpotent approximation, reachable sets, bang-bang trajectories, singular
arcs

AMS(MOS) subject classifications. 49B10, 93B10

1. Introduction. In this paper we study the qualitative structure of small-time
reachable sets in low dimensions for a single-input system with a bounded linear
control. More precisely, we consider a system of the form

(1) - S:x=f(x)+g(x)u, |ul=1, xeR"

where f and g are smooth (C™) or analytic vector fields and admissible controls are
measurable functions with values in [—1, 1] almost everywhere. A trajectory of the
system corresponding to a control u(-) is an absolutely continuous curve x(-) such
that x(2) = f(x(1))+ g(x(1))u(t) almost everywhere. We say a point g is reachable from
a point p within time T if and only if there exists a trajectory x(-) defined on an
interval {0, t], t=T, such that x(0)=p and x(¢) =q. The set of all such points g is
denoted by Reach (p, = T); Reach (p, T) denotes the set of points that are reachable
exactly at time T. The reachable set from p, Reach ( p), is the set of all points that are
reachable from p within some time T.

Reachable sets play an important role in control theory. If a system can be stabilized
to a given point by a feedback control law, then that point must be in the reachable
set of every other point. In optimal control problems, if the cost is added as another
coordinate, then the optimal trajectories must lie in the boundary of the set of reachable
points. For this reason the Pontryagin Maximum Principle plays an important role in
studying the boundaries of reachable sets.

The problem of describing a reachable set and the extremal trajectories that
generate its boundary is closely related to the problem of regular synthesis in the sense
of Boltyansky [1] and others (5], [18]. While the problem has been studied extensively
for many years, only a few examples of regular syntheses have been described, for
instance, [24]. Even in low dimensions, the reachable set of a general control system
can be extremely complicated.
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We shall attempt to avoid this difficulty by considering only “nondegenerate”
systems. By a nondegenerate system we mean one where (i) f, g, and the low-order
Lie brackets of f and g span as many dimensions as is possible given the dimensions
of the state space; and where (ii) no nontrivial equality relations hold between those
vector fields (for instance, if n is the space dimension, then any relation saying that
n vector fields are dependent at a point is considered a nontrivial equality relation,
whereas a relation that simply expresses the fact that a vector field can be written in
terms of a basis is considered trivial).

This is in the spirit of Lobry [14], who described the small-time reachable set of
(1) in dimension three under the assumption that f, g, and [ f, g] are linearly indepen-
dent. The method described below is an attempt to extend Lobry’s result to higher
dimensions. As will be seen, it is successful in the four-dimensional case, but in
higher-dimensional cases obstacles still have to be overcome. These obstacles, however,
are not due to our general approach, but they lie in the fact that, at the moment, too
little is known about the structure of extremal trajectories. We shall return to this
question at the end of the paper. In the paper we shall give a precise description of
the small-time reachable set in dimension four assuming that the constant controls
u=+1 and u = —1 are not singular on the boundary of the reachable set. It can easily
be seen (cf. § 4) that this is equivalent to an independence assumption on the vector
fields f, g, [ f. 2], and [f+g, [/, g]], respectively, [ f—g,[f, g]1]. As a corollary we are
able to improve on recent results of Bressan [4], Schittler {17], and Sussmann [21]
on time-optimal control in dimension three.

Throughout this paper we will use nilpotent systems as a guide to the general
situation. A system is nilpotent of order k if all brackets of orders greater than k vanish
and if k is the smallest integer with this property. In a certain sense these systems play
the same role as the polynomials do within the class of smooth functions. Nilpotent
systems are the low-order part of the coordinate free Taylor series expansion of a
general system.

To be more precise, we must define the Lie jet of system (1). At a point p the Lie
jet consists of a list of the values at p of the Lie brackets of f and g written down in
some prescribed order.- Of course, because of the skew-symmetry and Jacobi relation

(£gl+[g.f1=0, [fle h11+[g [hS11+[h(f gl]=0,

we need only consider a list of distinct brackets. These brackets can be partially ordered
by the total number of vector fields involved; for example, f is a bracket of order one
and [f, g] is of order two. The Lie jet of order k is a list of values at p of the distinct
brackets of f and g of order less than or equal to k. The Lie jets of orders one through
four are given below:

Order one:  {f(p), g(p)},
Order two:  {f(p), g(p), [/ g1(p)},
Order three:  {f(p), g(p), [/, g1(p), [ £ [ £ g11(p), (& [ £ g])( )},
Order four:  {f(p), g(p).[£ gl(p).[£ [/ g11(p), (& [/ gll(p),
(ALALL e1)(p), [ [e LS p1N)(p). [ (& [ £ g111(P)}-

If N(k) is the number of distinct brackets of f and g of order k or less, then the
kth-order Lie jet of (1) at p is a point in the vector bundle consisting of the Whitney
sum of N (k) copies of the tangent bundle.

A basic result of Krener [12], later proved in other contexts by Rothschild and
Stein [15], Hermes [10], Crouch [8], Bressan [3], and Sussmann [20], [21] is that for
analytic systems of the form (1), the kth-order Lie jet at p determines the trajectories
emanating from p up to order O(l"‘”) and up to diffeomorphisms of the state space.
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Sussmann [22], [23], Bressan [4], and Schattler {16], {17] have shown that the
local structure of time-optimal controls in dimension two or three is determined in
nondegenerate situations by the second, respectively, third-order Lie jet at a reference
point. In degenerate situations higher-order jets need to be considered [16], [17], [23].

On the basis of these results we might conjecture that in nondegenerate situations
the kth-order Lie jet at p determines the structure of the set of small-time reachable
points whete the Hormander or controilability condition is satisfied, i.e., the rank of
the kth-order Lie jet at p equals the dimension of the state space. And maybe the
qualitative structure of the reachable set can be obtained by looking at a kth-order
nilpotent approximation. Unfortunately, as we mention in the last section, these
conjectures are not completely true, but they do motivate much of. our work.

The paper is organized as follows. The next section reviews the Pontryagin
Maximum Principle as applied to the system (1). This also gives us a chance to introduce
some notation and terminology. In § 3, we will describe the main ideas and outline
the general structure of our techniques by looking at the trivial two-dimensional case.
We will also give a brief proof of Lobry’s three-dimensional resuit. The main part of
the paperis § 4, where we determine the geometric structure of the small-time reachable
set for the nondegenerate four-dimensional system (assuming that both quadruples
(felfgllf+elfgl)and(f g[S g).(f-8 [ gl consistof independent vectors
at p). We also draw the obvious corollanies about time-optimal control in dimension
three. Section 5 concludes with a brief discussion of the free nilpotent five-dimensional
system and explains why the general nondegenerate five-dimensional case is different
from this one. :

2. The maximum principle. The Maximum Principle [13] gives necessary condi-
tions for a point to lie on the boundary of the reachable set. Let u(-) be an admissible
control defined on an interval [0, T} and let x(-) be the corresponding trajectory
starting at p. If x(7T) e d Reach (p), then x(z)€ 3 Reach (p) for all t€[0, T] and there
exists an absolutely continuous curve A :{0, T]- R", which does not vanish anywhere
such that

(2) AT = =0T (Df(x(1))+ Dg(x(1)) - u(1)),
(3) (A (1), g(x(n))u(r) = M;rl\ (A1), g(x()Pv,
(4) H =(A(0), f(x(1)) +g{x(1))u(1))=0

almost everywhere on [0, T]. (We write vectors as columns, (-, -) denotes the standard
Euclidean inner product on R”, and Df and Dg denote the Jacobian matrices of f and
g, respectively.) Any trajectory for which an adjoint variable A(-) exists such that
(2)-(4) are satisfied is called an extremal trajectory. The optimality condition (3)
determines the control u(t) whenever ¢(t):= (A (1), g(x(1})) # 0; ¢ is called the switch-
ing function and u = —1 (u=+1) on intervals where @ is positive (negative). Trajec-
tories corresponding to these constant controls are called bang arcs and are denoted
by X (=f~g) and Y (=f+g), respectively. A concatenation of bang arcs is a
bang-bang trajectory. Observe that (A (1), f(x(1))) =0 at switching times ¢, i.e., where
(A(1), g(x(1)))=0. At these times (3) gives no information about the optimal control.
If, however, ¢ vanishes on an open interval /, then all the derivatives of ¢ also vanish
on I and this may determine the control u. We have

Sy =), [ £, gx(0)),
() =(A (), [f+gu (£, g]Nx(ON),

1

.
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and if (A(1), [g [f, g11(x(1))) does not vanish on I, we can solve for u in $ =0 as follows:

A, LA LS gl)(x (D)
(A1), [ [f g1)(x(0)))

A control of this type is called singular and the corresponding trajectory is a
singular arc.

This suggests that concatenations of bang and singular arcs are the natural
candidates for trajectories in the boundary of the reachable set (but of course no such
regularity statement can be drawn from the Maximum Principle alone). We denote
concatenations of bang and singular arcs by the corresponding letter sequence; for
instance, we simply write XSY for a concatenation of an X-arc, followed by a singular
arc and a Y-trajectory, etc.

u(t)=

3. The main ideas of the technique: the nondegenerate two- and three-dimensional
cases. In this section we analyze the (well-known) structure of small-time reachable
sets in a nondegenerate situation in dimensions two and three. These cases are easy
and give us an opportunity to outline the general ideas of our technique without getting
preoccupied with technical details,

Suppose X is a system of the form (1) in dimension two and assume that f and
g are independent at a reference point p (see Fig. 1). It is clear how the small-time
reachable set from p will look. If we let '™ (respectively, I'") be the integral curves
of the vector fields f+ g (respectively, f—g) for positive times, then for sufficiently
small T, Reach (p, =T) is the union of I'", I'", and the open sector R between I'" and
I'" into which f(p) points. It is easy to see that any point in R is reachable from p;
for instance, if g€ R, just run 2 trajectory of X corresponding to the control u=-+1
backward in time until it hits I'". The important point is that this is all of the small-time
reachable set. This follows immediately from the Maximum Principle since only
trajectories corresponding to the constant controls u=+1 or u=~—1 can lie in the
boundary of the reachable set. (There cannot be a junction, since then both
(A(1), f(x(1))) and (A(1), g(x(1))) vanish, contradicting the nontriviality of A.)

r+
f+g
p f q
f—g -
FiG. 1

Generalized to higher dimensions, the quintessence of this argument is to have
two hypersurfaces I'* and I'y which are generated by extremal trajectories, have a
common relative boundary and “‘enclose” a region R. Then, to prove that R is actually
the reachable set Reach ( p, =T), we must show (i) trajectories cannot leave R through
I'™* or I, and (ii) all points in the sector are reachable. The latter is immediate if we
have a drift vector field f with f(p) 0. This is exactly the same argument as in the

i
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two-dimensional case. Take any point g inside R and run a trajectory of X corresponding
to the control u=0 (or for that matter corresponding to any control) backward in
time. Since f( p) # 0, this trajectory will hit I'* or I',,.. So basically (i) must be checked;
this is mostly a matter of computing tangent spaces, as will be shown below. This is
the general strategy of our technique.

All technical issues left aside for a moment, the key question is how to come up
with the surfaces I'* and I'y,. We propose an inductive procedure. Let us explain it at
the next step, which is the case of a three-dimensional system X, where we assume
that f, g, and [f, g] are independent at a reference point p. (This is the example
considered by Lobry [14].)

Choose coordinates x = (x,, x,, x3) such that {(dx, (f(p), g(p), [/, g)(p))=1d, the
identity matrix. The projection of X into the (x,, x;)-plane is then the two-dimensional
system considered above and we know the structure of its smali-time reachable set.
Our aim is to find two hypersurfaces I'* and I, consisting of extremal trajectories that
project onto the reachable set R of the two-dimensional system in dimension three. If
[* and ', have a common relative boundary that projects onto 3R and if T™* and I,
do not intersect in their relative interior, then it is clear that these surfaces “enclose”
a region R. Then we must check whether trajectories can leave R. If this is impossible,
R is the small-time reachable set.

The Maximum Principle gives preliminary information about I'* and I', because
it describes necessary conditions for trajectories to lie in the boundary of the reachable
set. In this three-dimensional case it actually determines I'* and T, precisely, but in
higher dimensions this is no longer true. It is then that we will use nilpotent systems
as our guide to find candidates for I'* and I'y,. More on that appears in § 4.

Now that we have outlined the general approach, let us also illustrate the basic
technical arguments by reproving Lobry’s result. It follows from the Maximum Principle
that all trajectories that lie on the boundary of the reachable set are bang-bang. For,
if the switching function vanishes at some ¢, i.e., if (A (), g(x(2)))=0, then also
(A (1), f(x(2)))=0, and hence ¢(t) = (A(2), [ £, g](x(1))) cannot vanish by the indepen-
dence of f, g, and [f, g] and the nontriviality of A. For dimensionality reasons it is
therefore reasonable to consider the following two surfaces as candidates for [* and [

I ={pexp (s:(f—g)) exp (s:{f+g)): 5i=0, 5, + 5, small},
F,={pexp(t;(f+g)) exp (t2(f—g)): , =0, t,+ t, small}.

We write flows of vector fields as exponentials and we let the diffeomorphisms act on
the right, i.e., p exp (t¢f) denotes the point obtained by following the integral curve of
f that passes through p at time zero for t units of time.

It is clear that I'* and I', are two-dimensional surfaces with boundary. In both
cases the boundary consists of the two curves corresponding to the trajectories of f+ g
and f— g and the point p. Furthermore, by the Campbell-Hausdorff formula [11]

pexp(s(f—g))exp (s:(f+g))
=pexp ((s;+s)f +(s;—51)g+s.5:[f, gl+s,5:- O(T)),
pexp((t(f+g))exp(t(f—g))=pexp(t,+6)f +(1,—t)g—tt,[f, g1+ 1,t:- O(T))

where O(T) stands for terms that are linear in the total time T. This shows that I'*
and I',, do not intersect in their relative interior. So I'* and I', enclose a region R.
To prove that the enclosed sector R is the small-time reachable set we must show
that there cannot be any other points in the reachable set. As in the two-dimensional
case we have two options: either we show that we have exhausted all trajectories that
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r+
-~
=<
-~ = - —~—
P > §‘~ - 4T
~ - -l
hadt
-
]
r -
r
FiG. 2

possibly can lie on the boundary of the reachable set, or we show that trajectories
starting at points on I[™*, T',,, I'*, or I'_ cannot leave RUT*UT ,UTr"UT_. As it turns
out, this is the same argument, only viewed differently.

Let us first show that we have exhausted all possible trajectories that can lie in
the boundary of the small-time reachable set, i.e., that such a trajectory is bang-bang
with at most one switching. Let v be a bang-bang trajectory with two switches, say of
the form XYX, with junctions p, and p, at times t,<t,. If A= A(¢,), then we have
(X, g(p)y=0and (X, f(p.))=0. Also {A(to), g( po)) =0 or, equivalently, if we move g
ahead along the flow of the vector field Y we get (A, exp (—(t; — 1) ad Y) X (po)) =0.
But A #0 and so these three vectors are dependent: p, and p, are conjugate points
(Sussmann [22]). Therefore

X(p)aY(p)aexp(-Atad Y)X(po)=0

i.e., X(p)AaY(p)a[X, YI(p:)+O(At)=0, where At=1t,—1,. But such a relation
cannot hold in small time by the independence of X, Y, and { X, Y]. Similarly it follows
that YXY-concatenations cannot satisfy the Maximum Principle.

This computation can also be viewed in the following way. Define a map
F:(t, 1, t5)—»pexp(n,X)exp(1,Y) exp (1 X) for ; small. Then this map has full
rank if t;> 0. For, if we compute the tangent space to the image, but pull back to
pexp (1, X) exp (1,Y), we get exactly the vectors exp (—t,ad Y) X, Y, and X Therefore
F(t,, t,, 13} is an interior point of the reachable set. Finally, if we pull back the tangent
space one step further to p exp (#,X) we have the vectors X, Y, and exp(t,ad V)X =
X = t,[ X, Y]+ O(13). The minus sign at [ X, Y] implies that X-trajectories point inside
R at points on I'*. Similarly, it follows that Y-trajectories steer the system into R from
['*. And this proves that trajectories of the system cannot leave R through I'*, T, '™,
or I'_. (Because of the Maximum Principle we can restrict ourselves to just looking
at these regular controls instead of having to consider arbitrary measurable functions.
For, if any trajectory would leave R, then there will also have to be additional trajectories
lying on the boundary of the reachable set and these must be bang-bang.)

The structure of the small-time reachable set as a stratified set can easily be
described using the following notation. For neN let

Sn-={pexp(s,X)exp (s;Y) exp (5:X)
---exp(s,B):5,>0,B=Xifnisodd, B=Y if nis even},
So+={pexp (t,Y)exp (,X)exp(t;Y)
---exp (t,B): >0, B=X of niseven B=Y if nis odd}.

In a nondegenerate situation each of the S, . is a n-dimensional smooth manifold.
(Certainly this will be true in all the cases we consider here.) In the three-dimensional
case the boundary of the small-time reachable set consists of the two two-dimensional

.
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strata S, ., which have in their boundary the two one-dimensional strata S, , and the
zero-dimensional stratum S, ={p}. S, also lies in the boundary of S, ,. If we restrict
the total time to be =T we must make the obvious adjustments. In particular, we must
add the strata S, .=S,.MNReach(p, T) for n=1, 2.

4. The nondegenerate four-dimensional systems. In this section we determine the
geometric structure of the small-time reachable sets from a poiat p for a system £ of
the form (1) in dimension four, where we assume that the constant controls u=+1
and u= -1 are not singular. These conditions ¢an easily be expressed in terms of
independence assumptions on f, g, and lower-order brackets of f and g. For, a constant
control u = u° is singular on an interval I if and only if there exists an adjoint multiplier
A such that (A, ), (A, g), (A, [f; g]), and (A[f+gu®, [ f; g]]) vanish identically on I. By
the nontriviality of A this is impossible if f, g, [f, g], and [ f+ gu’, [/, g]] are indepen-
dent. Therefore in terms of the vector fields X and Y our conditions are equivalent to

(A) X, Y, [X, Y] and [ X, (X, Y]] are independent near p;
(B) X, Y,[X, Y] and [Y,[X, Y]] are independent near p.

If we write [ X, [X, Y]] as a linear combination of X, Y, [X, Y] and [Y,[X, Y]] as
(X, [X, Y]I=aX +BY +y[X, Y]+8[Y,[X, Y]],

then (A) is equivalent to 8 # 0. -

The cases 6>0 and & <0 are significantly different: if §>0 only bang-bang
trajectories can lie in the boundary of the reachable set, if 8 <0 singular arcs are
possible. Intuitively this is clear. If u is singular on an interval I, then (omitting the
arguments t and x(t))

é=\[f+gu[fglD
=A (1-w[X,[X, Y]]+ + W)Y, [X, Y]]
=3(1-u)s+(1+u)) - (A [Y[X, YI#0

and so u=(8+1)/(8—1). This is an admissible control only if § =0. Note that the
singular vector field is given in feedback form as

s+1 ] -5
S=f+ = X + 5<0.
AN v S e €

4.1. The totally bang-bang case: &>0. This is the generalization of Lobry's
example to dimension four. We treat only the general case here, but we remark that
the structure of the small-time reachable set is the same as for a nilpotent system where
£, 8 [/, g], and [ £, [ f, g]] form a basis and all other brackets vanish. In appropriate
coordinates the latter system is linear.

The key observation again is that the Maximum Principle precisely determines
the possible trajectories that can lie in the boundary of the small-time reachable set.

LeMMa 1. If vy is a trajectory that lies in the boundary of the small-time reachable
set, then vy is bang-bang with at most two switches.

Proof. We first exclude bang-bang trajectories with more switches. Let y be a
YXYX-trajectory with switching points p,, p., and p; and let s,, s., 53, 54 be the length

of the times along the respective X-arcs or Y-arcs. At every junction we have

(A, X(p;))=0 and (A, Y(p:))=0. This gives rise to, four conditions on A.
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If A is the value of the adjoint vector at the switching time at p,, we have
(X, X(p))=(X, Y(p))=0,
(X, exp (—s:ad Y)X(p,))=0,
and
(X, exp (s;ad X)Y(p:))=0.

Again, the nontriviality of A implies that these four vectors are dependent (*‘conjugate
points™). So we get (dividing out s, and s3)

exp (sy z;d X)—l) Y/\(exp(—s:ad Y)—1>X
3

0=X~a Y/\(

Qsz

(5) =XAYA[X, Y]+-;-s_\[X, [X, Y]+ O(s}) A -[X, Y]+-;-sz[Y, [X, Y]I+O(T?)

=‘;'0'(S2, 53)(X A Ya [X, Y] A [ Y’ [Xv Y]])|Pz

where T is the total time along y and O(T?) stands for terms that are quadratic in T;
o is a smooth function of s, and s;. If we express [ X, [X, Y]]interms of X, Y, [X, Y],
and [ Y, [ X, Y]], we see that

(6) a(s;, 53) =5+ 58+ O(T?)

where & is evaluated at p,. In a sufficiently small neighborhood of p, 8 is bounded
away from zero and so the linear terms dominate quadratic remainders in small time.
Hence o (s,, s,) is positive for s; small; in particular, it cannot vanish, a contradiction.

Analogously, if ¥ is a XYXY-concatenation with switching points gq,, ¢,, and g;
and if t, t,, t;, t, are the times along the respective trajectories, then we get

0=X A Y/\(exp(-&adX)—l) YA(exp(t,ad Y)—l)x
—t, ty
(7) .
=51—(t2, BIXAYALX YIALY, (X, YID),,
where
(8) 7(ty, ) === 1,6 + O(T?)

is a smooth function of f;, and r; near the origin. Again, since 8 is bounded away from
zero near p this function is negative for small times, a contradiction.
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It now follows that, in fact, any trajectory that lies in the boundary of the small-time
reachable set is bang-bang. This is an easy but slightly technical argument. We will
do it here rigorously since we will need the computations later on anyway. The point
is that we do not have a priori knowledge about regularity properties of the controls,
e.g., that they are piecewise constant. This is the case if and only if the zero set Z(¢)
of ihe switching function ¢ is finite. If it were infinite, then the set N, of limit points
of Z(¢) would be nonempty. In fact, it is a closed, nowhere dense, perfect set. (If
t,<t, are points in N(¢) then, since ¢ cannot vanish identically, ¢ is different from
zero somewhere in (¢,, 1,) and by continuity it is different from zero on a whole interval.
It is perfect, i.e., every point 1€ N(¢) is a limit point of points t,€ N(&), t, # 1, since
N (@) cannot have isolated points. We can see that this is so, since we know already
that bang-bang trajectories with more than three switchings do not lie in the boundary
of the small-time reachable set!) Suppose 1, <t, are times in N(¢). There exists
a fe(t,t;) such that @(f)#0. Let fi==sup([t,,[JNN(¢)) and let fi,:=
inf ([7,, L]N N(¢)). Then §,< 1,, ;€ N(¢), and Z()N[T,, 7,] is finite. This implies
that y contains subarcs of the form *B- and -B*, where B denotes a bang arc (X or
Y), - stands for any switching, and # stands for a junction in N(¢). Observe that
é(t) =0 if 1€ N(¢). We will now show that none of these concatenations can lie in
the boundary of the reachable set and this will prove the lemma.

Without loss of generality we consider a concatenation of the form *X: with
switching points p, and p, and let ¢ be the time along X. Then, if A is the value of the
adjoint vector at the switching time corresponding to p,, we have

(X, X(po)) = (A, Y( Po)) =X, [X, YI(po))=0.
Also (X, exp (=t ad X) Y(p,))=0 and so by nontriviality of A we again get
0=XAYA[X YIaY—([X, Y]+i[ X, [X, Y]]+O(F)

9
) =31+ O(ONX A Y A[X, YIALY,[X, YID), .

This cannot hold in small time. Analogously it follows that no *B- or - B* concatenation

can lie'in the boundary of the small-time reachable set if & # 0. This proves the lemma

(and note that the argument is valid in general under assumptions (A) and (B)). O
It is now clear that the surfaces I'* and I'. must be as follows:

I ={pexp(s,X)exp(s,Y)exp(5;X): 5; =0, small},
Fe={pexp(t,Y)exp(,X)exp (1;Y): ,=0, small}.

I'* and I',, are three-dimensional surfaces with common boundary C that has precisely
the structure of the boundary of the small-time reachable set in dimension three. It is
the union of two two-dimensional surfaces made out of XY- and YX-trajectories
respectively, glued together along the X- and Y-trajectories.

We will now show that I'* and I', do not intersect away from C, in particular that
they enclose an open region that will be the interior of the small-time reachable set.

DEeriNITION. We say a point g is an entry point (respectively, an exit point) of
a (closed) set S for a vector field Z if for some £ >0, SN{g exp (tZ): —e =1 =0} ={q}
(respectively, if SN{qexp (tZ):0=t=¢}={q}).

LeMMA 2. For sufficiently small T the points in ['* are entry points for the small-time
reachable set from p for [ Y,[X, Y]]. The points in T, are exit points.

Proof. If q is an exit (entry) point for Reach(p, =T) that does not lie in
Reach (p, T), i.e., exit or entry is not due to the time restriction, then the corresponding
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trajectory is extremal and the adjoint multiplier satisfies the transversality condition
ALY X, YIHGD =0 (A, LY, [X, Y](g))=0). We claim that necessarily

qel, (gel™).
Recall that the second derivative of the switching function is given by
S () =(A(1), [/ +au,[ £ g])(x(1))
(10) =31 - u()XA, [X, [X, Y]I(x(1)))
+3(1+u()A, LY, [X, YIIx(D)).
Expressing [X,[X, Y]]interms of X, Y, [X, Y], and [ Y, [X, Y]], we get a linear

combination of terms (A, X), (A, V), (A,[X, Y]), and (A,[Y,[X, Y]]), where the
coefficient at (A, [Y,[X, Y]] is

J(1—-u)6+3(1+u)=Min (1, 5)>0.

Suppose vy is a bang-bang trajectory with two junctions. Then the two junctions
determine a multiplier A up to a positive constant multiple. Normalize such that
[[A(0)|],= 1. Because vy has two junctions (A, X), (A, Y), and (A, [X, Y]) vanish some-
whereon [0, T], T = t,+ t,+ t5. For sufficiently small T these functions will be bounded
in absolute value on [0, T] by any &> 0. Because of (B) [(A(),[Y, [X, Y]}(x(1))) can
be bounded away from zero on [0, T]. By choosing ¢, ie., T small enough,
(A, [Y,[X, Y]]) dominates all other terms in (10), that is, we have in small time: ¢
has constant sign equal to sign ((A, [ Y, [X, YI]). But (A,[ Y, [X, ¥]])> 0 allows only
for XYX-trajectories and (A, [ Y, [ X, Y]]) <O permits only YXY-concatenations. This
proves our claim.

We still need to show that points in I and I',, in fact have these optimization
properties. Suppose y is a XYX trajectory. Then the tangent space at the endpoint is
spanned by X, exp(—t;ad X)Y and exp(—t;ad X)exp(—t;ad Y)X. Note that
[ Y, [X, Y]] always points to one side of the tangent space since

Xnaexp(—tz3ad X)Yaexp(—t;ad X)exp(—t,ad V)X A[Y,[X, Y]]
exp (—t,ad Y)—I)X

_tz

=—12<XAe'xp (—tad X)Y aexp(—t;ad X)(

(11) ALY [X, Y]])
=0(X A Y =X, Y]+ O() A [X, Y]+ O(T) ALY, [X, Y]])
= L1+ O(T)HX A YALX, YIALY, [X, Y]D.

If we write the defining equations for I'* and I',, in terms of canonical coordinates
of the second kind, that is, as products of the flows of the vector fields X, Y, [X, Y],
[Y,[X, Y]] in the form

(12) p exp (x,X) exp (x: Y} exp (x;[ X, Y]) exp (x[ Y, [X, Y])),

then this implies that we can think of ['* as the graph of a function x, = ¢(x,, x;, X3).
It also follows from (12) that the integral curve of [Y,[X, Y]] through p and the
compact set Reach (p, T) are disjoint for small positive T. Therefore, given T, there

exists a T= T with the following property. Any integral curve of [Y,[X, Y]] that
passes through a point on I'*( T), the set of all trajectories in I'* of total time =7, does
not meet Reach ( p, T). This implies that the points on I*(T) are entry points for the
small-time reachable set. For, if g€ I'™*(7) is not an entry point, then by compactness

'
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there exists an entry point of Reach (p, =T) of the form q exp r{ Y, [ X, Y]]. Since this
flow does not meet Reach (p, T) this point must lie on [* and this contradicts the
graph property. Analogously the result follows for I',,. 0

An easy computation shows that, if '™ and I', would intersect away from C, then
it would have to happen transversally. This would contradict Lemma 2.

The geometric structure of the small-time reachable set is now clear. It is the exact
analogue of Figs. | and 2 in four dimensions. Its boundary consists of the surfaces ',
and I'* that match up along C, the set of points reachable by a bang-bang trajectory
with at most one switch. The open region enclosed by I'* and [, is the interior of the
reachable set. A stratification of its boundary is given by S, and S, , for n=1,2,3
(see § 3).

Remark. This qualitative structure of the small-time reachable set for a totally
bang-bang system generalizes to arbitrary dimensions under the conditions of Krener's
and Sussmann’s nonlinear bang-bang theorem [19]. Suppose that the vector fields S
and ad'f(g), i=0,---,n—1 are independent at p and that for i=0,---, n—1 there
exist smooth functions «; and 8; with |8,(p)| <1 such that ’

[8.20'/(g)]~ L a,ad'f(g)+ B, 3™ fig).

Then it follows that for sufficiently small-time T all trajectories that lie in the boundary
of the reachable set from p are bang-bang with at most n switchings. A stratification
of the boundary is given by the strata So={p} and S, ., k=1,-- -, n, In particular,
points in S, . are exit points of the reachable set for (—1)""'ad"™' f(g), points in S, _
are entry points. Given the results on the structure of trajectories in the boundary, this
is a straightforward generalization of the argument above. All the difficult work has
been carried out by Sussmann in [19], specifically in the proof of Lemma 3 there.

4.2, The bang-bang singular case: 6 <0. This case is a nontrivial extension of
Lobry’s result. Here not all the extremal trajectories actually lie in the boundary of
the small-time reachable set. It is therefore not clear how we should choose I'* and
I',. We now use the structure of the small-time reachable set for the corresponding
free nilpotent system as a guide. The only reasonable nilpotent approximation to
choose is one where all brackets of orders greater than or equal to 4 vanish. Note that
f, 8 [/, g, and (g, [ f, g]] are always independent in this case. Since we want to work
with a system as simple as possible, we also assume [ f, [ f, 2]]=0. This is an equality
relation in the third-order Lie jet, but in a slightly more general setup (weighted Lie
algebra) this would be a free nilpotent system. Therefore we refer to this system as
the “free™ nilpotent case. We will first analyze a model of this “free” nilpotent case,
and then we will show that the general case has the same qualitative behavior.

4.2.1. Thereachablesetin the “free’ nilpotent case. To simplify some computations
we restrict ourselves to the following mode] X:

N
S

(13) %=1, X =u xX,=x,, ~'é}=.‘12~Y

Note that[g, f1(x) =(8/dx5) + x,(3/3x:),[g [g f]] = 3/3x; and all other brackets vanish
identically. [t is clear that the qualitative structure of the reachable set from the origin
at any time is the same as for the small-time reachable set: one is a rescaling of the
other. (If u is a control defined on [0, T] and x is the corresponding trajectory, then
the time [ reachable set can be obtained from the time T reachable set by letting
a(1)=u(t/T) and X,(t):= T'x,(4/T) for i=1,2,3.) To determine the reachable set it
therefore suffices to look at time slices T = constant, and without loss of generality we
can assume T = 1.
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If A =(Aq, Ay, A2, A3)7 is an adjoint vector for an extremal trajectory x(-), then
A, is the switching function and

;\I =-A— Ay, Az=0‘ ).\_1=0.

and in particular A, = Ay, i.e., u=0 is the only singular control. Note that, if A.=0,
then A, is a linear functinon and the extremal trajectory is uniquely determined. By a
theorem of Bressan {2] this implies that the reachable set is convex in direction of
(0,0,0,1)" or equivalently in the direction of [g. (g, f]]=4X,[X. Y]] that is, if
(po,pi.p~.a) and (py, py, p.,b) lie in the reachable set, then the whole segment
{(pa, P1. P2, ¢): a=c= b} les in the reachable set. It is therefore clear what the surfaces
I'* and I, have to be: I™ consists of trajectories which are exit points for { X, [ X, Y]]
and I'y, of those which are entry points. Equivalently, we can speak of trajectories that
maximize/ minimize the coordinate x,.

For extremal trajectories that give rise to entry/exit points for [X,[X, Y]], an
additional transversality condition was to hold. One of the directions z{X,[X, Y]]
can be separated from an approximating cone to the reachable set at this point. In
our case these conditions simply say that A, =0 for trajectories that minimize x, and

1 =0 for those that maximize x,. In particular A; = 0 for those that do both and these
trzjectories are bang-bang with at most one switching. So again the common boundary
of I'* and I', will be a set C that has the structure of the boundary of the small-time
reachable set in dimension three.

We now determine [',. We can assume A,>0 and without loss of generality
normalize A, to 1. Thus, A, = —u and so A,-is strictly convex and positive along X,
strictly concave and negative along Y. Singular controls satisfy the generalized
Legendre-Clebsch condition [13]: (A, [g, (/. g]])=—-A,<0. It follows that the only
extremal trajectories are concatenations of a bang arc, followed by a singular arc and

* another bang arc. We now restrict to the time slice T = 1. Define

I_o-={0exp (s, X)exp(s.f) exp(5:X): 5,20, 5,+5,+5;=1},
' g ={0exp (s, X)exp (syf)exp(s,Y): 5,20, 5,+s,+5,=1},
Foo.={0exp(t,Y)exp(t;)exp(6,X): ,Z0, i, + t,+ 83 =1},
Finsi={0exp (6, Y)exp (t:N exp(,Y): 1,20, 1, + 1+ 1, = 1}.

We will show that these are two-dimensional surfaces with boundary which match up
and together form I', with

ar,={0exp (s, X)exp(s,Y): 50,5, +s.,=1}
UfOexp(t,Y)exp(6L,X): 1,20, 1+, =1}

Lemsa 3. Each of the sets 1., is a two-dimensional surface with boundary. For
any two of them the images of the open simplices are disjoint. Furthermore,

'y 0 =1 g={0expis;X)exp(s:f):5,20,s5,+5,=1},
'O =0 ={0exp(s,f)exp(s:X):s5, =0, 5, +s.=1},
Uy Nl =0 ={0exp(sf):0Ss=} =T . NI,

oo NEoge =T, ={0exp (s Nexp(s:Y): 5,20, 5,+s,=1},
oo Dy, =T0={0exp (s, YYexp(s.f): 520, 5, +s5.=1}.

Graphically, these relations can be illustrated as shown in Fig. 4.
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The proof of the lemma consists of straightforward computations that we shall
only illustrate in one case. It is easy to see that all the maps are regular with rank 2
in the interior, and it is clear how the maps behave on the boundary. So the [,,, are

C . two-dimensional surfaces with boundary. To prove that the images of the open simplex

under different maps are disjoint, we choose a way that does not use the specific form
of the equations, but works with a basis provided by the vector fields £, g, [f, g], and
[g. [/, g]]. This also gives au idea how the analogous argument in the general case
runs. We rewrite the defining equations in terms of canonical coordinates of the second
kind as products of the flows of the vector fields f, g, [f, g], and (g, [f, g]]. Since in
this case

(14) exp (f+g) =exp([g [/ g])/3) exp ([f, 81/2) exp (g) exp (),
we get, for instance, for ', o.:
0 exp (6,(f+g)) exp (12f) exp (13(f + g))
=0exp ((3nlg, [/, 21D exp Grilf; g]) exp (1g) exp (1, + 1))
x exp (363(8, [/, £11) exp (3630, g1) exp (£:8) exp (1,)
=0exp (Gt + 1) + nts(1, + 368, [ €1 exp (0 + 1)’ + 1) £, 81)
x exp ((1,+13)g) exp (/).
Analogously we have for I'_,.:
0exp (s,(f—g)) exp (s2f) exp (s3(f +g))
. =0exp ((is]—sisy+3s3+ 15,53 —5,5:5:)(8 [/ g]D)
xexp ((=is7+isi+ (s, +s)s)[f, g]) exp ((sy - 5,)g) exp (/).

, A simple computation shows that the equations we obtain by equating the coordin-
ates have no positive solution. Similarly this is shown for all pairs of surfaces. The
statements about the intersections are then clear. a

This shows that T, is a two-dimensional stratified set with its one-dimensional
relative boundary 8T, made out of bang-bang trajectories with at most one switching.
Figure 4 gives a precise description of the stratification. We now show that the points
on I, are, in fact, the points that have the smallest x; coordmatc among ail points of
Reach (0, 1) with a fixed (x,, x,, Xx;).
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Let us first compute the tangent spaces to the surfaces ['.o.. Note that in each
case the' pullback of the tangent space to the endpoint of the singular arc simply
consists of the space spanned by the vectors g and [ f; g] evaluated there (remember
that we are working in the time stice T = 1). This implies that [ X, (X, Y]]1=2(g [g./]]
always points to one side of the tangent space. In fact,

exp(—rad(fg)lgnexp(—tad(f£e)f glale (£ gll=1(grlf glals [/ g]]).

In the limit this also holds for the one-dimensional strata. Therefore [g, [g, f]] always
points to one side of the stratified surface T'y. It is easy to see that, in fact, we can
think of I', as the graph of a piecewise defined function x, = ¢(x,, x,). (The projections
of the images onto (x,, x») intersect only along the projections of the intersections of
the surfaces I',,..) Since we have exhausted all possible extremal trajectories that can
minimize the coordinate x; with [, it is now clear that given (%,, X,, X;)€ ', any
other point (x,, x,, X3) € Reach (0, 1) with x, = %, and x, = %, must satisfy x> %;. This
concludes the analysis of T',,.

Next we will determine I'*. Here we can assume A;=—1 and so A, =u, i.e., the
switching function ¢ is convex when ¢ is negative and concave when ¢ is positive.
This clearly suggests bang-bang extremals. However, now the situation is significantly
different from all previous cases: it will turn out that the times along bang arcs are no
longer free, which in turn will mean that we cannot a priori exclude bang-bang
trajectories with a large number of switchings. In general, it is a very difficult problem
to eliminate extremal trajectories with a large number of switchings (cf. [4] or [16]).
It turns out that in our approach we do not even have to address this issue.

Let us start by showing that the times along bang arcs can no longer vary freely.
Suppose we have a concatenation of a Y-trajectory followed by an X-arc with switchings
at the beginning and the end (- XY-). Call the switching points po, p,, and p, and let
s and ¢ be the times along X and Y, respectively. Then p,, p,, and p, are conjugate
points and therefore

O=exp(—sad X)YAXaYnrexp(rad Y)X

=(cxp(—sadX)—-l exp(radY)—l)X

)YAXA YA(
-5 t

(15) .
=XAYA[X, Y]+s(e [f g]IalY, X]~1lg [/ ¢]]

=(s— (XA YA[X, Y]nlg [ g]D.

Hence s = and the same is true for a - YX--concatenatiop. Therefore, so as not to
violate the Maximum Principle, and since we do not expect any degeneracies in the
structure of the reachable set, we restrict ourselves to the following two surfaces:

-'={0exp (si: X)exp(s:Y)exp (5:X): 5;20,5,+5,+5:=1,5=5,, 5,555},
" ={0exp(r,Y)exp(1:X) exp (,Y): 4,20, 1, + 1+ 1,=1, 1,51, ,S 1},

Our aim is to build I'* out of trajectories from [ and . However, as they are at the
moment, we still have too many extremal trajectories. The surfaces [~ and [* have a
nontrivial intersection y. To see this let us rewrite the defining maps in terms of
canonical coordinates as follows:

Oexp (s, X)exp (s, Y) exp {5;X) =0exp (s,5:(s:—5,)[2, [/, g]]) exp (5,5 X, Y])
xexp (s, Y) exp ((s, +5,) X),
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Oexp () Y)Yexp(nX)exp (Y)=0exp (1021, — 2+ 1) & [/ g]D) exp (10i[ X, Y])
xexp ((1,+16,) Y)exp (1..X).

If we equdle the coordinates, it follows easily that s, = 1,, s;=1(>, and sy =¢,. It follows
that {'* and [~ also intersect along the one-dimensional curve

y={0exp{sX)exp(Y/2)exp((i—-s)X):0=s=s1}.
We need to analyze the intersection more closely. Let
g=0exp (s, X)exp(s,Y)exp(s:X)ey.

Then the tangent space to [ at q is spanned by (recall that s, =1—15,-15,)
exp(—s;ad X)exp(-s.ad Y)X - X =5.([X, Y]+ (2s:-s.)g [/ g1,
exp(=s:ad X)Y - X =2g —5,[ X, Y} - silg. [/, g]).

The point g also lies on [ anda tangent vector to I at qis

t=exp{~tad )X -Y=="2g+1[X, Y]-tile. [/ 2]}
In the intersection t;=s,='5, s,=1and s;=4—s Thus
TI at=AQgalX, Y]aTg, [£2])
where
1 os-} —(s-3°
A=|.0 1 1-25 |=2s(s-})
-1 s —s?

1A

0.

Hence [~ and I'* intersect transversally except at the endpoints of 7 (s=0, s=3
Observe that.the endpoints are characterized by the condition that the conjugate point
relation s =t (=1) holds. We need to know which surface has a larger x;-coordinate.
It follows from

T, alg (& f11=—2g A[X, Y]r[g [ g]]

that ¢ and [g, (g, f]] point to the same side of ['~ at q. Observe that x, =0 for points
on ¥. Since the coefficient of ¢ at g is nzgative, the points of ['* for which x, <0 have
a larger x,-coordinate than those points on I Conversely for x, > 0 the x;-coordinate
of points on I is larger. Therefore we define

= {0exp(s;X)exp(s;Y)exp(5:;X): 5,20, 5, +5,+5,=1, 523},
I :={0exp(,Y)exp(:X)exp (5Y): =0, t, +t,+1,=1, 1,23}

Observe that '™ has the Y-trajectory in its boundary and that the X-trajectory lies in
the boundary of ['*. Define I™:=1" UF It follows from above that [ X, (X, Y]]=
2[ g, [g, 1] always points to one side of ['~, and similarly this holds for ™. Since x, =0
for points in '™, x, =0 for points in I'” and x, =0 exactly on the intersection, it follows
that I'* is a piecewise defined function x; = ¢(x,, x;).

1t is obvious that aF'* consists of all traj.ctories that are bang-bang with at most
one switching, i.e., 3l'* =al',. Graphically, the structure is illustrated in Fig. 5.

By directional convexity it is clear that the whole set R between I', and I™* lies
in Reach (0, 1). We need to show that it lies nowhere else. The points of [*and [~
that we deleted lie in the interior of R. (We delcted those points on i, respectively,
i~ that lie below I'™, respectively, ™ in the direction of [ X, [X, Y]].) Bul this implies
that the endpoints of bang-bang trajectories with more than two switchings lie in the
interior of the reachable set. Suppose we have an extremal XYXY-trajectory with




SMALL-TIME REACHABLE SETS IN LOW DIMENSIONS 135

YX
+—

X YXY - XYX Y

- +-+ R4 —+= +
XY
-+
FiG. 5

times s,, s,, 53, and s, along the trajectories. Then s,=s; by the conjugate point
refation, and thus s, <s,+s5;. By the invariance of the structure of the reachable set
it follows that 0exp (5,X) exp (s.Y) exp (s,X) € int Reach (0, s, + 5.+ ;). (This is a
point of the type we deleted!) Hence the trajectories that define I'" and '™ are the
only extremal trajectories that can lie on the boundary of the reachable set. This proves
R =Reach (0, 1).

Summary. For every time ¢ the time —¢— reachable set is a stratified set that is
topologically a sphere. Its boundary consists of two hemispheres [™(¢) and I' (1) whose
common relative boundary a[™(r) consists of all points reachable in time ¢ by a
bang-bang trajectory with at most one switch. [*(r) consists of all bang-bang trajectories
with at most two switchings for which the time along the intermediate arc is greater
than or equat to the sum of the times of the adjacent arcs. I' (1) consists of all trajectories
that are concatenations of a bang arc, followed by a singular arc and another bang
arc, where the times along these trajectories are free subject to 0 =time=1 The
stratification of its boundary is given in Figs. 4 and 5.

4.2.2. The general case. We now show that the qualitative structure of the small-
time reachable set does not change in the general case. Clearly, some of the arguments
will have to be adjusted; for instance, the correct generalization of the arguments using
directional convexity now use the integral curves of [ X, [X, Y]]. However, finding a
general version for the explicit computations in the analysis of the bang-bang extremal
trajectories is crucial.

We first define I', . Recall that the singular control is given in feedback form as
u=(5+1)/(56—-1) and since § <0 we have no problems with u hitting the control
constraint |u|/=1 in small time. Let p=1/(1-8), pe(0,1), and let S:=
S+ (6+1)/(8-1)g=pX +(1—p)Y, be the singular vector field. Define

I_._:={pexp(s,X)exp(s5.5) exp (5:.X): 5, 20, smail},
T_..i={pexp(s,X)exp(s.S)exp (s:Y): s, =0, small},
F...i={pexp(r,Y)exp(t.8)exp (1,X): 1,= 0, small},
T..={pexp(r,Y)exp(r,8) exp (1 Y): 1,20, small},
r,=T_, Ul...Ul., UT..,.

If we replace f by S in Lemma 3, then the statement stays true verbatim for [, .,
instead of I',,,. (The computations are a straightforward though somewhat messy
extension of the computation in the “free™ nilpotent case and we omit them.) So again
I', is a stratified two-dimensional surface; its one-dimensional relative boundary 4I",
is made out of the bang-bang trajectories with at most one switching.
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Lemma 4. For sufficiently small T the points on Ty are entry points of Reach (p, =T')
Jor [X,[X, Y1)

Proof. The strategy is the same as in the proof of Lemma 2. We first show that
the extremals on [, satisfy the necessary transversality condition for entry points
(which are not due to the time constraint). Then we show that ', actually is a graph
with the coefficient of the flow of [ X, [ X, Y]] as dependent variable. As in Lemma 2
this suffices to prove our resuit.

If ¥ is any trajectory containing a singular arc then, for sufficiently small time,
ALLX (X, YID will dominate (A, X), (A, Y), and {A,[X, Y]), in particular, it has
constant sign. Along the singular arc (A, [ X, [ X, YI)=28/(1-6) (A, [g[X, Y1]) and
the generalized Legendre-Clebsch condition implies that (A, [ X, [ X, Y]] is positive.
This shows that points in I', satisfy the necessary transversality condition. An argument
analogous to the one made in the proof of Lemma 1 shows that, in fact, any extremal
trajectory for which (A, [ X, [X, Y]]) is positive has to be of the form BSB, that is, we
have exhausted all possible candidates. To prove that indeed each point on I, has
the entry property, we show again that we can think of T', as the graph of a piecewise
defined function x, = ¥(x,, x;, X;), where (x,, Xx,, X,, X;) are canonical coordinates of
the second kind, and x, is the coefficient at the flow of [ X, [X, Y]] Let us consider,
for instance, I',,_. It is easier to compute the pullback of the ta. zent space to the
endpoint of the singular arc. It is spanned by X, S, and exp (~r, ad $)X. Note that
S=pX+(1+p)Y and it follows by induction that ad"S(X)=a, X +8,Y +v,[X, Y]
with smooth functions a,, 8,, ¥.:

[S,2d"™" S(X))=[pX +(1-p) Y, oy X +Bass Y + % [X, Y]]

= yori(pLX, [X, Y1+ (1= p) Y, [X, Y]})+£, g or (£, g]terms
. =plaX+BY +7[X, Y]).
Also [S, X]=[pX+(1-p)Y, X]1=2L,(p)g+(p—1)[X, Y]. Therefore
XaSnaexp(—1ad )X =(1-p)t,(1+0(8)) - (fagalX, Y)).
Now if we take the wedge-product with [ X, [ X, Y]] pulled back along X, ¢, this yields
XaSnexp(~tyad )X nexp{tad XX[X,[X, Y]]
=(1-p) 1+ O(T)) - (fag Al£,8]A[X[X, Y]]
and there are no problems with dominance since t, factors. Hence [ X, [X, Y]] always
points to one side of [',,_ in the interior. Analogously it foliows for the other surfaces.
By continuity this also follows for the one-dimensional strata. Straightforward but
slightly more tedious computations show also that the projections of the relative
interiors of the sets I'.,, onto (x,, X, X,)-space are pairwise disjoint. Therefore I'y is
a graph in canonical coordinates. This proves the lemma. a
The analysis of the bang-bang extremals is more difficuit. We start by computing
the conjugate point relations. Suppose ¥y is a - X YX--concatenation starting at p with
junctions at p, p,, p;, p; and times s,, 5,, s, along the respective trajectories. Then we
have (the vector fields are evaluated at p,):

exp (—s, ad X)—l\ Y/\(exp(s;ad Y)—I)X
-5 / s,

0=Xa YA(
(16) =XaYa[X, Y]—%s,[X.[X, Y11+ O{sHa-(X, Y]—%sz[ Y, [X, Y]]+ O(s3)

=%g(s.,s2)(xA YALX, YIALY, (X, YDl

where g(s,, 5;) = —58 —s5,+ O0(2).
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The equation o(s,,s.)=0 has a unique solution T,(s,) and in general XYX-
trajectories only satisfy the necessary conditions of the Maximum Principle if 5, = 5;(s,).
Note that g(0, 5,) <0 and so this is equivalent to g(s,, s,) £0. (Using an argument
analogous 10 (9) it can be shown that extremal trajectories do indeed have switchings
at s, =75,, but we will not need this.) Furthermore,

0=X(p:)a Y(p:)A< X(p))

exp (—-s.ad Y) - l)
A(eXp(s,ad X)—~1

R )Y(Px)
=XAaYa-[X, Y]+%32[Y,[X, Yii+---a[X, Y]+%SJ[X,[X, Yij+---

= 35052, 5)(X A Y ALK, YIALY,[X, Y],

where 0(s,, $1) = —5,— 5,8 + O(T?).

Again the equation &(s,, s;) = 0 can be solved by 35(s,), and YXY-concatenations
only satisfy the Maximum Principle if s; £55(s,). Since (s, 0) <0 this is equivalent
to &(ss, 55) =0. :

Therefore we define

F-={p exp (s;X)exp (s, Y) exp (5;X): 5, =0, small, s, is free,
g(sy, 52) =0, 6(s,, 53) =0}.

Analogously we must compute the conjugate point relations along a - YX'Y--concatena-
tion which yields

[":={pexp(,Y)exp (X) exp (1, Y): , 20, small 1, is free,
1(h, L) Z0S L= R(L)T(, )20 4,3 (1))
where
T, )=~ =8+ 0(TY),  #(ty, ;)= ~1,8 - t;+ O(T?)

and [, and 7, are the solutions of 7=0 and 7 =0, respectively. ['* and '~ are three-
dimensional surfaces with relative boundary made up entirely of bang-bang trajectories
with at most one switch.
LemMMA S. The surfaces I'™ and [ intersect along a two-dimensional surface [".
The intersection of [ with the relative boundaries 3F'~ and 3l are the following
one-dimensional curves:

y={pexp{(s;X)exp(s,Y): 5,20, small, s, = §,(s,)},

y= {pexp(t,Y)exp (6,X): 1,20, small, 1, = 17(1;)}

(i.e., the trajectories corresponding to the conjugate poinis). Away from y and y the surface
entirely lies in the relative interior of [, respectively, I'* and there the intersection is
transversal.

Proof. We want to solve the equation

(17) pexp(s,X)exp(s;Y)exp(s;X)=pexp(t;Y)exp(£X)exp(1,Y).
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Suppose a point g in the relative interior of [* or I~ lies on I". We claim that (16)
can be solved in terms of ¢, and ¢, near g. This follows from the Implicit Function
Theorem if the Jacdbian with respect to (s,, 53, 51, ;) is nonsingular at ¢. If we compute
these derivatives and pull the vectors back along X we get

exp(~s.ad Y)X A YnXaexp(s;ad X)Y

=32 S3
1 -
=§SZS,\ ) U(SI» SJ)(X A Y[X, Y] A‘:Yv [X, Y]])|’l:=l' exp iy, Nlexpis:Yi-

But in int{['") s, and s; are positive and also d(s,, 53) <0 since the conjugate point
relation does not hold. So we can solve in terms of t, and 1,. This computation shows
also that ['* and T~ intersect transversaily in int (f‘*) or int (l'").

Next we show that points g of this type exist. For that we rewrite both sides of
(17) in terms of canonical coordinates of the second kind. A short computation (cf.,
for instance, [16]) shows that

pexp(5,X)exp(s:Y) exp (5:X) =pexp (35:5:(5,6 + 5, + O(SH Y. [ X, Y]
“exp (515:(1+ O(5))[X, Y])
“exp ((s:+O(S?)) Y) exp ((s, + 5, + O(S*) X),
pexp (,Y)exp (t:X)exp (1, Y) = p exp (36620, + 5+ 1,5 + O(TH[ Y, [ X, Y1])
cexp (L6(1+O(THX, Y]
exp (1, + 1+ O(T?) Y) exp ((1,+ O(T*)) X)

where O(S*) or O(T*) stand for terms of order greater than or equal to k in the total
time, S=s,+s,+5s,, T=1+1,+1;,and § is evaluated at p. Equating coefficients we get

(i) s, +s5+0(8°)=06+0(T),

(i) s:+0O(S)=1,+5+0(TY,

(ii1) slsz(1+0(5))=rzi,(1+0(r)),

(iv)  5,5:(5,8+ 5,4+ O(8%)) = (,05(21,+ ; + 1,6+ O(T?)).

(18)

If we assume that all switching times are comparable, i.c., of order T, then (18(i), (ii)),
and

(iv) 5,8+5:+0(8)=20,+1,+ 1,6+ O(T?)

can easily be solved for s in terms of ¢ modulo higher-order terms:
1 2
5 =!;+gl.+O(T )
(19) H=4+6+0(T),
1 N
$=-3 6n+0(Te).

With these times the conjugate point refations cannot hold since

(20} . 6(5:,5)=~5-58+0(TH=-1,+O(TH

o e
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is negative. So the corresponding point g lies in fact in the relative interior and therefore
it is possible to solve for ¢ in terms of ¢, and 1,:

(21) t=—1,-86+O(T?).

This gives a soluticn to (18). Note that

(22) l:=pT+O(T:)=£+ o(TY).

As long as (1,,1,,1;) are bounded away from the boundary of the simplex
t+1,+t; =T, the times are comparable, these computations are justified, and we get
a two-dimensional intersection that we can parametrize by f, and ¢,. The problem is
whether it extends all the way to the boundary. But the equations (19 and (21) are
well defined for t,»0 (in a time-slice t,+ 1+ ;= T it follows that ty - —&1,+ O(r3),
i.e., to a limit of order T. By (20) this implies that the two-dimensional surface defined
by these functions of (1,, t;) stays away from the conjugate point condition & (s,, s;) =0.
Hence the implicit function theorem is still applicable.) Therefore [ extends all the
way out to 1, =0, i.e., to the XY boundary surface.

A precise characterization of I"NI~N{pexp (5,X) exp (5,Y): 5, Z0, small} is
possible. Clearly these are points such that ,=0, t,=5,, t;=15,, and 0=s,. Since
(51,5:,0)edom ™ we have o(s,,s;)=0, and since (0,s,,s;)edom ™ we have
7(sy, 5:) = 0. But in this case g(s,, s,) = 7(s,, 5,) (cf. (16) and the analogous formula
for 7). Therefore g(s,, 5;,) =0, i.e., 5, =75,(s,), the conjugate point relation.

This proves that "I extends all the way out to the XY-boundary surface and
that the intersection with the XY-surface is the one-dimensional curve y consisting of
the conjugate points.

Analogously we can show that (17) can also be solved in terms of s, and s, in
int (). Using these formulas we can show that [N extends all the way up to the
YX-boundary surface and that the intersection of I'” N with the YX-surface consists
of the curve y. 0

Note thatin a time-slice t, + 1,+ t; = T the qualitative geometric structure of I"UT™
is exactly as in the free nilpotent case. Only the condition t,= T/2 is replaced by
t,=(1/(1~8)) T (modulo higher terms) which shifts I" away from the center. This is
illustrated in Fig. 6. _ .

The surface I bisects I'* and '~ and only one of the two components has the Y-,
respectively, X-trajectory in its boundary. We define I'™ and I'" to be these components

5 < =1

Xy . { )
-+ Y

Y

+
YX Y
—_ -

FiG. 6
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and let *=T"UTI". It is then clear that '* is a three-dimensional stratified surface
whose relative boundary consists of all bang-bang trajectories with at most one
switching, i.e., sT™*=4l,.

Lemma 6. The points in T™* are exit points of the small-time reachable set for
[X.[X Y]]
. Pr_oof It is easy to see (cf. (10)) that, for sufficiently small time, all extremals on
I'" or I'" satisfy the necessary transversality condition (A, [X,[X, YD =0.

We show first that the points that we deleted from [~ and {"* are not exit points
(see Fig. 7). Let

g=pexp(s;X)exp(s:Y)exp (s;:X)=pexp(f,Y)exp{5,X)exp(1,Y)

be a point in the relative interior of [ [~ and I'* intersect transversally. It follows as
in the proof of Lemma 2 (cf. (11)) that the XYX- and YXY-surfaces are graphs
Xxs=¢(x,, x5, X3) in canonical coordinates of the second kind with x, the coefficient
at the flow of [ X, [X, Y1]. This inherits on [~ and I['*. To prove that the parts of [~
(respecuvely, ™) that we delete are not exit points, it suffices to show that these parts
lie below [ (respectively, I'7) in direction of [X, [X, Y]].

(X, 1X,¥1]

=3t

Fi1G. 7

The tangent space to I at g is spanned by X, exp(-s;ad X)Y and
exp (—s, ad X)(exp ((—=s;ad Y)—1)/~s,) X. To show that the part of [ that we deleted
lies below [~ near q it suffices to show that [ X, [X, Y]] and a tangent vector ¢ to [
that is oriented toward the sector of [ that we deleted point to opposite sides of T,l' .
We get such a vector £ if we lengthe: the time along the last Y leg. (We delete the
piece that contains in its boundary the trajectories corresponding to the conjugate
point relation 1, = f;(1,).)

Instead of computing at g we pull back all vectors along X, s5; and get

exp (+s3ad X)(T,I7) aexp (+s,ad X)[ X, [X, Y]]

- (x AYa (M>x nexp (s, ad X)X, [X, Y]])

-5,

= —(8+O(T))(x’\ YA[X, Y]A[Yy [xv Y]])‘p;-pelp(l.X)elull,V)v
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exp (s; ad X)(qu")A exp(s;ad X)Y

=53<XA Y/\(exp(—s:zd Y)—])XA(exp(s,adX)—l) Y)
—3$2 S3

j—'% 5,5(52, IUX A Y ALX, YIALY, (X, YID,,

But g is a point in [, and [ lies entirely in the relative interior of I~ except for the
obvious boundary curves ¥ and y. In particular (cf. also the proof of Lemma 5) the
conjugate point relation 53=5,(s2) does not hold, or equivalently, &(s,, 53)<0. So
these wedge-products have opposite signs, which proves our claim. This also implies
that the portion of [~ that we delete lies below [.‘*, and since there is no other intersection
this holds for all the points we deleted.

The stratified sets I'™* and I',, enclose a region R that lies in the small-time reachable
set. In particular, the portions of ['” and ['* that we deleted therefore lie in the interior
of the reachable set. Since these pieces contain the trajectories corresponding to the
conjugate points f; = f3(f;) and s; = §;(s;), it follows that no bang-bang trajectory with
more than two switchings lies in the boundary of the small-time reachable set. Hence
the points in I'* are the only possible exit points of the small-time reachable set for
[X,[X, Y]]. It follows from the construction of I'" and I'* that ™ is also a graph.
Again, the projections onto (x,, x,, x;)-space are disjoint. Therefore it follows as in
Lemma 2 that the points on I'* have the exit property for sufficiently small time. [

Finally, I'* and I', do not intersect in their relative interiors. It is now clear how
the small-time reachable set looks: It is the set of points enclosed by the two three-
dimensional stratified surfaces I'* and I'y. I'* consists of bang-bang trajectories with
at most two switchings such that modulo higher-order terms

(23) 1+ 81+ 1,=0
if t,, t,, and t; are the consecutive times along a YXY arc and
(24) 5:6+5,+5820

if 5;, 52, 5; are consecutive times along XYX. I', consists of all concatenations of a
bang arc, followed by a singular arc and another bang arc where the time along the
trajectories is free. I'* and T, have a common relative boundary C consisting of all
trajectories that are bang-bang with at most one switching. For sufficiently small-time
T a time-slice of the reachable set has exactly the same qualitative geometric structure
as for the free nilpotent system (13). Furthermore, if 8(-) is an integral curve of
[X, (X, Y]] such that 8(¢,) and 5(1,), t, <t,, lie in the small-time reachable set, then
so does the whole curve 8(t), 1,=t=t,. The points on I, are entry points for
(X, [ X, Y]I; the points on I'* are exit points.

Remark. We emphasize that the result is not what might be expected intuitively.
From dimensionality we could conjecture the occurrence of bang-bang trajectories
with two switchings, respectively, BSB trajectaries in the boundary of the small-time
reachable set. Also, this is essentially what was partially known from earlier results.
However, we see no simple reasoning that could explain why, in fact, some of these
bang-bang trajectories with two switchings are not a part of the boundary. This is only
revealed by our analysis.

4.3, Time-optimal control in dimension three. Our results have immediate implica-
tions on time-optimal control in dimension three. Suppose the triples (g, [f, g1, [/ + 8,
(£, g1)) and (g, [ £, 2], [f — & [, g]]) consist of independent vectors at a point p in R’.
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Equivalently, suppose that the constant controls u=+1 and u= —1I are not singular.
If we augment the three-dimensionai system I to a four-dimensional system X by
introducing time as a coordinate, X, =1, x,(0) =0, i.e.,

() =)

then if a S-trajectory x(-):[0, T]-R" steering p to g is time-optimal, the augmented
trajectory X lies in the boundary of the reachabie set from p. The augmented system
T satisfies . ur assumptions (A) and (B), and therefore time-optimal trajectories are
bang-bang with at most two switchings or concatenations of a bang-arc, followed by
a singular arc and one more bang arc. Under additional assumptions this result was
obtained earlier by Bressan [4], who studied only trajectories emanating from an
equilibrium point of f and by Sussmann [22] and Schittler [17] who both assumed
in addition also that f, g and [f, g] were independent. Our analysis shows that the
vector field f is irrelevant and we do not have to make any assumptions about it. Our
results are also more precise in the sense that we can exclude the optimality of those
bang-bang trajectories with two switchings that violate (23) (respectively, (24)) in the
bang-bang singular case. We summarize in the following corollary.

COROLLARY. Suppose the vector fields g, [ f, g] and [f+g, [ f, g]] are independent
near a reference point peR’>. Write

[f-glfgll=ag+bf gl+c[f+sg [ gl

and assume that ¢ does not vanish. Then we have in small time:
(i) If ¢>0, then time-optimal trajectories are bang-bang with at most 2 switches.
(ii) Ifc <0, then time-optimal trajectories are bang-bang with at most two switching.
or are concalenations of a bang arc, a singular arc, and another bang arc. Time-optimal
XYX (respectively, YXY) concatenations satisfy modulo higher-order terms

c(s,+53)+5,Z0 (resp., t; + 13+ c1,=0)
where s,, 54, S3 (respectively, t,, t,, t3) are the consecutive times along the bang arcs.

5. A brief outlook to higher dimensions. We have outlined a general method to
determine the structure of the small-time reachable sets and proved its effectiveness
in nondegenerate cases in small dimensions. One of the difficulties that will become
more and more prominent in higher dimensions is that the necessary conditions of the
Maximum Principle will not restrict the class of extremal trajectories sufficiently enough
to give the candidates for [™* and T .

Under assumptions (A) and (B) in dimension four, we could overcome this problem
by taking a corresponding “free” nilpotent system of the same dimension as a guide.
We do not expect this to happen in general. In fact, for the five-dimensional system
I, where we assume that f, g, [/, g), [/, [/, g]), and [g, [/, g]] are independent, the
small-time reachable set has extremal trajectories in its boundary that do not appear
in the analogous five-dimensional free nilpotent system. The reason for this lies in a
qualitatively different behavior of the singular controls, specifically, in the fact that
singular controls can now hit the controi constraint [u[=1 and may have to be
terminated. Nevertheless, the free nilpotent system contains most of the information
about the smalil-time reachable set, though it does not characterize it completely. To
be more specific, we will briefly describe (without proofs) the structure of the reachable
set for the free nilpotent system in dimension five and how the general case differs
from it.
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We take as our model:

xi.

Yol

Xo=1, X =u, X;=x, X=X, X=

It is no problem whatsoever to carry out the analysis within our technique as in the
construction in § 4.2.1. Now the reachable set is convex in direction of (0, 0,0, 0, nT=
[g,[g./]] and T'*, respectively, I, will consist of those trajectories that are exit,
respectively, entry points.

It follows from the generalized Legendre-Clebsch condition that I', contains
concatenations with singular arcs, whereas I'* will consist of bang-bang trajectories
only. Singular controls are constant, but now they can take on any value in {—1,1].

Letl,=I_, Ul ,.UTl,,_UTl,,., where

F_,_={0exp (5;X) exp (s:(f+ug))exp (5:X): 5, =0, 5, +s5,+s5;=1, ue[-1,1]},

etc. (By the invariance property of the reachable set we can restrict to the time-slice
T =1.) The points on T, are preciselv the ones that minimize the coordinate x,.

For a fixed value u, of the singular control, —1 < ¥, < +1, the qualitative structure
of I, ., =T, restricted to values u = u, is precisely as in 4.2.2, Fig. 4 (see Fig. 8).

Forup=+1,I'_,_| u=1reducesto'_,_andall otherstrata become trivial whereas
for up=—1,I,,.} u=-~1=T,_, and the remaining strata are trivial. For each of these
two-dimensional surfaces (u, fixed) the relative boundary consists of all bang-bang
trajectories with at most one switching. The surfaces I, , themselves interpolate
between I'._, for uy=~1 and I'_, _ for uy=1. Topologically [, is a stratified sphere

¥X
iy
X Y
L & :
XY
-+
Fi1G. 8
r‘.
XYX
YX
Z ]
Xy
YXY
Fi1G. 9
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with o, =T_,._UT,_,, ie., all bang-bang trajectories with at most two switchings
(see Fig. 9).
The surface [ consists of bang-bang trajectories analogous to the bang-bang
singular case in dimension four. Now
I"={0exp(5;X)exp(s:Y)exp(s:X)exp(s,Y): 5,20, 5,+s:+5:+5,=1,
5= 53, 5, = 5.-conjugate point relations},

=10 exp(nY)exp(n: X)exp(r;Y)exp (t,X): 4,20, 1, + 6+ t3+1,=1,
1, = (3, 1, E (,-conjugate point relations}.

I'” and I'" intersect in a two-dimensional surface [', which consists of those trajectories
for which

(s, + 53):" (5y+ 53) + 255, =0,
respectively,
(h+ 05~ + ) +20=0.

The intersection is transversal except at those points that lie on the relative
boundary of I'” or I'". These points are again characterized by the conjugate point
relation

for...={o exp (YY) exp (6 X)exp (3Y) exp (1,X): 1,=0, ta =15},
FNr._.={0exp(1,Y) exp{t:X)exp (t;Y) exp (1.X): t, =15, t,=0}.

We define I'™ (respectively, I'") as the component of [~ (I'*) containing the
YX-curve = {0 exp (s, Y) exp (5:X): 5, 20, 5, + 5, =1} (respectively, the XY-curve) in
its boundary. Then I*:=T"UT" consists precisely of those points that maximize x,
on the reachable set. Note that topologically I'* also is a stratified sphere with
ar*=r_,_UTl,_,, the set of all bang-bang trajectories with at most two switchings
(see Fig. 10).

The key fact here is that it is still obvious that 8I'* and aI', match up. They are
identical. It is therefore clear that Reach (0, 1) is the set of all points that lie between
*andrl,.

It is precisely this simple reasoning that breaks down in the general case. The
cause for this lies in the structure of the singular controls. The analysis of the bang-bang
trajectories carries over to the general case with only one minor change in the structure.
Whereas in the free nilpotent system the two curves NI and TNT_,_ both have
points corresponding to the X- and Y-trajectories as endpoints, this need no longer
be true: fNCr._. is a curve starting at O exp (1 + Y) but which in general no longer
ends in O exp (1 - X) but rather on a point in the XY-curve (respectively, YX-curve).
This distortion is due to the presence of fourth-order brackets. One possible case is
depicted in Fig. 11.

Stil! the relative boundary of [* consists of all bang-bang trajectories with at most
two switchings. The structure breaks down in the analysis of the singular surface [,
for u near +1. The reason is that in the presence of fnurth-order brackets the singular
controls are no longer constant, and thus the analogue of I'y ,, for us=—1 does not
reduce to [._,, i.e., to bang-bang trajectories with two switchings. For instance, it
may not be at all possible to start a singular control with u, = —1. This is the case if
i <0 at uy = —1, which happens under generic assumptions on fourth-order brackets.

—
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YXY

XY-curve YX-curve

to the left of  : YXYX
to the right of f: xXYXy

XYX

-1>

Fi1G. 10

XY-curve YX-curve

to the right of T : XYXY
to the feft of I : YXYX

XYX

For the same reason, singular controls with u, close to +1 may have to be terminated
when they become one in absolute value. If the singular control becomes saturated
(i.e., hits the constraint and cannot be continued) then this determines the subsequent
structure of the trajectory and it is easy to see that concatenations such as BSBB or
BBSB, which are not present in the free nilpotent system, come into play. Therefore
I, has trajectories in its relative boundary that contain singular arcs. The main challenge
in applying our technique to higher dimensions seems to be finding a way to decide
whether structurally different trajectories, such as a bang-bang trajectory, and a concate-
nation that contains a singular arc steer a system to the same point. Once 9I™* and 4T,
can be identified, it is clear that the set they enclose is the small-time reachable set.
Note, however, that this structural instability only happens near I’y _, and T 4,.
The structure of most of the trajectories in the boundary is still the same as in the free
nilpotent systems. And it is intuitively clear that the structure of the exceptional
trajectories will come up in a higher-dimensional niipotent system. Therefore, in our
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view, the study of the structure of the reachable sets for nilpotent systems will be the
key to the general problem.

6. Summary. We have described an approach to determining the qualitative struc-
ture of the small-time reachable set in a nondegenerate situation. It is a nongrivial
extension of a construction done by Lobry in dimension three. In dimension foi_we
succeed completely in determining the small-time reachable set. For higher dimensions
obstacles still have to be overcome. However, they do not lie in the general structure
of our approach, but in the fact that too little is known about the structure of extremal
trajectories in higher dimensions. For instance, in the five-dimensional case, what is
the precise structure of extremal trajectories that contain a saturated singular arc? For
dimensions six and beyond, the crucial new ingredient appears to be the incorporation
of chattering arcs, another structure of extremal trajectories about which little is still
known.
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1. INTRODUCTION

The close connection between Markov processes, diffusions and parabolic partial
differential equations is of course well-known. In this paper we shall describe the
beginning of a new theory which links reciprocal processes, second order diffusions and
the partial differential equations of fluid mechanics, i.e., the continuity, Euler and
energy balance equations.

2. RECIPROCAL PROCESSES

In the early thirties E. Schrodinger [2,3] introduced a new class of stochastic processes
in attempt to formalize the stochastic aspects of Quantum Mechanics. This concept was
formalized by S. Bernstein [1] in an address to the International Congress of
Mathematicians in Zurich in 1932. Bernstein defined a reciprocal process x(t) as one
where conditioned on the values x(to) and x(tl) of the process at two times to Sty the

process exterior to [ty,t;] is independent of the process interior to [ty,t;]. This is readily
seen to be a generalization of the Markov property, i.e., conditioned on single time tg
the process before tgis independent of the process after to: Hence every Markov process

is reciprocal but the converse is not true.

The reciprocal property is the specialization to one dimension of P. Levy's definition
of a Markov random field [20]. There are two other ways of viewing the reciprocal
property. Suppose x(t) is a random process taking values in R™ and defined for t € [0,T).
We define another process X(t;,t)) = (x(ty),x(t,)) taking values in R2". We view this

process as parametrized by pairs (to,tl) where tg < tyor equivalently by

subintervals (tO,tl). Subintervals are partially ordered by inclusion. It is easy to see

*Research supported in part by NSF under DMS—8601635 and AFOSR under NM85-0267.
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that the original process x(t) is reciprocal iff the two time process X(to,tl) is Markov
. g S I FIA
relative to this partial orderiﬂg.
Alternatively we can view a reciprocal process as being conditionally Markov in the
following sense. Given any tg € [0,T] and e R", we define a conditioned process

x(t] tO,xo) consisting of all sample paths of x(t) satisfying x(to) = x with the

conditional probabilty measure. The process x(t) is said to be conditionally Markov if
every i(t|t0,x0) is Markov for t € {0,t;] and is also Markov for t € {t,,T]. (It need not

be Markov on [0,T}.) It is straightforward to note that a process x(t) is reciprocal iff it
is conditionally Markov.

To essentially specify a stochastic process one must describe all finite dimensional
distributions of the pr8cess, e.g., give the probability distribution of
x(to),x(tl), .. ,x(tn) where 0 € b <o St g T. One reason that Markov processes

are so well—studied is that they are completely determined by only two functions. The
first is po(xo), the probability density of x(0). (Throughout we assume that probability

densities exist although the discussion can be easily extended using probability
distributions.) The second p(s,x;t,y) is the Markov transition density of x(t) = y given
that x(s) = x. By Bayes' formula the probability density of x(tl) = xl, s x(tn) =x"

where 0 < t §t2g..._tn5Tisgivenby

1

1 0 1 -1 0
ol g™ = a0 Oty xT) (e X 0.

A function p(s,x;t,y) is a Markov transition density iff it satisfies the well-known
Chapman—Kolmogorov relations, i.e.,

f p(s,x;t,y) dy = 1
and

p(s,x;u,z) = fmnp(s,x;t,y) p(t,y;u,z) dy

where 0 <s <t <u<T,.
There is a similar development for reciprocal process du. to Schrédinger 2] and
Jamison {5]. A reciprocal process x(t) is completely detcrmined by the joint density

Py T(xo,x ) of the end points x(0) and x(T) and a reciprocal transition density

als.x:t,ysu,z). The latter is the probability density of x(t) = y given that x(s) = x and
x(1j = z where 0 <s <t <u <'T. The finite dimensional densities of x(t) are then given
by

. 8
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0 1 T
p(tl,xl, e tn,xn) = pr’T(xo,xT) q(to,x by ;Tox™)

1 2 T -1 T 0, T
q(tl,x BgX ;Tyx7 ). q(tn_l,xn ;tn,xn;T,x ) dx"dx

To be a reciprocal transition density, q(s,x;t,y;u,z) must satisfy the
Schrodinger—Jamison relations

[ alsxitysu,z) dy = 1
and

q(r,w;s,x;u,2) q(s,x;t,y;u,2) = q(r,w;t,y;u,2) q(r,w;s,x;t,y)

whereOSrSsgtSusTandw,x,y,zean.
Suppose x(t) is a reciprocal process and X(to,tl) is the associated two time process

which is Markov relative to the inclusion partial ordering. One can show that the
Chapman—Kolmogorov relations for the Markov transition density of X(to,tl) are

equivalent to the Schrédinger—Jamison relations for the reciprocal transition density of
x(t).

Schrodinger realized that there is Bayesian way of constructing a reciprocal transition
density q from a Markov transition density p,

P _ pis,x;t t,y;u,z
a(s,x;tyu,z) = Qﬁ—'—ygl))g%%;jl'—‘—)

Of course the conditionally Markov property allows one to reverse the process and define
a Markov transition density p from a reciprocal transition density q,

p(s,x;t,y) = q(s,X;t,y;T,xT)~

If we start with a reciprocal transition density q, which we use to define a Markov
transition density p which we use to define another reciprocal density q then by the
second Schrédinger—Jamison relation, § = q. If we start with a Markov transition
density p which we use to define a reciprocal transition density q which we use to define
another Markov transition density p, it does not follow that p = p.

Schrédinger used a Markov transition density p to construct reciprocal transition
density q. With this and an end point density pO,T he was able to construct reciprocal

processes. Jamison (6] showed that the resulting reciprocal process is actually Markov
iff the end point density satisfies
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0 T
oo 00 T) = 7o) 7y (T (0T xT)

for some nonnegative functions ro(xo) and rT(xT).

Jamison [6] also studied one dimensional stationary Gaussian reciprocal processes.
He showed that covariance r(t) of such a process must satisfy a second order linear
differential equation

where a is a constant. He then used this in an attempt to classify all such processes and
this program was successfully completed by Chay [8] and Carmichael-Masse— .
Theodorescu [11].

The author became interested in reciprocal process through his study of acausal linear
systems [14] driven by white noise and satisfying independent random boundary
conditions of the form

dx = A(t) x dt + B(t) dw
v=V0 x(0) + vl x(t).

Here x(t) is an n dimensional Gaussian process, w(t) is a standard n dimensional Wiener
process and v is an n dimensional random vector independent of w(t). We assume that
the above boundary value problem is well-posed so that the Green's matrix I'(t,s)
exists. We can express the solution of the stochastic differential equation as

T
x(t) = #(t,0) v + [ . I'(t,s) B(s) dw(s)

where the integral is a Wiener integral and §(t,s) is the fundamental matrix solution of
x = Ax. We have normalized so that V04 vl §(T,0) =1

We have proved {14] that the solution of such a stochastic boundary value problem is
a reciprocal process and we speculated that every Gaussian reciprocal process is the
solution of such a stochastic boundary value problem. This conjecture was motivated by
the fact that every Gaussian Markov process is the solution of a stochastic initial value
problem, i.e., vi-1 and V1 = 0. This conjecture is not true and this led us to discover
a theory of reciprocal diffusions and stochastic differential equations of second order.

3. Diffusions

We recall the Feller postulates for a Markov diffusion x(t). First some notation, let
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x* denote the transpose of a n dimensional column vector x and x"=2 the outer product of
x with itself x*2 = xx*, this is n x n matrix. The forward difference operator dtis
defined by

dTx(t;de) = x(t+dt) — x(t)

where dt > 0 is a small positive quantity. Typically we suppress arguments as in dtx.
Conditional expectation given that x(t) = x is denoted by

Ex(t) (-)=E(-] x(t) =x)

The symbol O(dt)k denotes a function of x,t and dt for which there exist €,6>0 such
that if dt < 8 then |O(dt)| < e dtX for all x ¢ R™ and t € (0,T). The symbol o(dt)¥
denotes function of x,t and dt which for every ¢ > 0 there exists a § > 0 such that if
dt < Sthen |o(dt)¥| < e dtX.

A Markov process x(t) is a Markov diffusion if there exists n x 1 and n x m valued

functions f(x,t) and g(x,t) such that

(MD1)  Prob {| x(t+dt) —x| > €| x(t) = x} = O(dt)

(MD2)  Ey (d¥x) = f(x,t) dt + o(dt)

(MD3) E, (d¥%)*2 = (g(x,t))*2 dt + odt)

(MD4) Third and higher centered conditional moments of dx vanish like o(dt).

The interpertation of these postulates is that conditioned on x(t) = x, the forward
increment d 7 x of the process has a mean value approximately equal to f dt and variance
approximately equal to g*2 dt. In other words x(t) is mean differential but the
individual sample paths are not for they have an extremely large standard deviation
o(dt)}/2.

Fru:n these postulates one can deduce that the density p(x,t) of x(t) satisfies the
Fokker—Plank equation

&, 0 1
=+ *x (of;) — 2B, (0 & 851) = 0-

Moreover using the Ito stochastic integral we can realize x(t) as the solution of the
stochastic differential equation

d¥tx = f(x,t) dt + g(x,t) dHw

x(0) = x".
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We now sketch out the foundations of a parallel theory of reciprocal diffusions that
we have recently developed. More details can be found in {21}. We need some more
notation. We define the centered average, centered first difference and centered second
difference as

%(t;dt) =x(t+dt); x(t—dt)

dx(t;dt) = x(t+dt) 5 x(t—dt)

d2x(t;dt) = x(t+dt) —2 x(t) + x(t—dt)

Frequently we suppress argument as in X(t) or dx. We also introduce another
conditional expectation operation

E)‘((t) (-)=E(-|x(t;dt) =x)

A reciprocal process x(t) is a reciprocal diffusion if there exists n x 1 valued functions
f(x,t) and u(x,t), n x n valued functions g(x,t) and 7(x,t) and n x m valued function
h(x,t) such that

(RD1)  Prob { |x(t) —x| > €| %(t;dt) = x } = O(dt)
(RD2)  Eg(yy (dx) = u(xt) dt + o{dt)

(RD3)  Egqy) (d%x) = (f(x,t) + g(x,t) u(x.t)) dtZ + o(dt)?
(RD4)  Eqg,) (d)*2 = 2 ((x,0))*2 dt + x(x,t) di® + o(dt)?
(RDS)  Egyyy (@%)*2 = 2 (h(x,t))*2 dt + o(dt)?

(RD6)  Eqy,) (4% dx*) = 7 (6t (h(x,))*% dt® + o(dt)?

(RD7)  Third and higher joint centered conditional moments of dx and d%x vanish like
2
o(dt)

Basically these postulates assert that the first and second joint conditional moments
of dx and d%x exist and have the indicated expansions in power series in dt. They define
the coefficients f,g,h,u and = of the power series and they imply certain relation between
these coefficients. These definitions and relations are as follows:

(1) The dt part of RD2 defines u.

(ii) The dt? part of RD3 defines f + g u.

(1ii) The dt and dt? parts of RD4 defines h*2 and r.
(iv) The dt.2 part of RD6 defines g h*2,
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(v) The dt part of RD3 vanishes.
(vi) The dt? part of RD5 vanishes and the dt part is four times the dt part of RD4.

Any process satisfying (RD1-6) is called a second order diffusion.

We refer to u as the mean velocity, p u as the mean momentum, f + g u as the mean
acceleration, h as the noise coefficient and p r as the mean momentum flux of the
process x(t). A related quantity p o = p(u u* — 7) is called the stress tensor. The
reason for the terminology will become apparent in a moment.

A reciprocal diffusion satisfying RD1-7 is said to be a solution of the second order
stochastic differential equation.

d2x = f(x,t) dt2 + g(x,t) dx dt + h(x,t) d2w

where w(t) is a standard m dimensional Wiener process. This is a (partial) mnemonic
for the above portulates. In particular applying Ei(t) (+) we obtain RD3 from RD2

under the assumption that a%w is independent of x(t). Applying E)‘((t) (-)to (d2x)*2
yields RDS. Finally RD6 follows from applying Eqyy (+) to d%x dx* using RD4.

To get a feeling for these axioms it is convenient to introduce another conditional
expectation

Ex(tidt) (+) =E (| x(t+dt) = x¢v dt )

Suppose x(t) is a reciprocal diffusion which also satisfies the stronger conditions.

(RD3%) Ey1.q0) (d%x) = (f(x,t) + g(x,t) v) dtZ + o(dt)?
(RD4%) By, a0 (@2)"2 = 2(h(x,t)) 2 dt + o(dt)>

(RD6)  Eg,) (d% dx*) = § g(xt)(h(x,t))*2 &t
+1(x,0) u(x,t)® + glxt) 7(x,t) dtd + o(dt)®

Then x(t) is called a strongly reciprocal diffusion.

Conditioned on x(t+dt) = x4v dt the mean sample path of the process over the time
interval [t—dt, t+dt] traces out a parabola in (t,x) space passing through (t£dt, x £ v dt)
and with second derivative equal to f(x,t) + g(x,t) v. Hence the mean path deviates
from the straight line between (t+dt, x+v dt) by O(dt)2. Compared to this, the
standard deviation of sample paths from the mean path is very large, O(dt)l/z.

Conditioning on x(t;dt) = x rather than x(t) = x is crucial to the above development.

Even for very nice processes, such as an Ornstein Uhlenbeck process, the quantity
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Ex(t) (d2x) is O(dt) rather than O(dt)2. In the stochastic mechanics of Nelson [18] the

dt part of this quantity is twice the osmotic velocity. Nelson's current velocity, the dt
part of Ex(t) (dx) is generally equal to our mean velocity u(x,t) from (RD2).

The first question that comes to mind is "Are there any reciprocal diffusions?”. In
[21] we showed that answer is decidely yes. In particular we showed that any reciprocal
Gaussian process with smooth covariance R(t,s) satisfying certain technical conditions is
a strongly reciprocal diffusion. This includes such Markov processes. For a Gaussian
reciprocal process the second order stochastic differential is linear of the form

d%x = F(t) x dtZ + G(t) dx dt + H(t) d°w

where

f(x,t):F(t)x—[32 Rt)—a)d (u)]
gx,t) = G(t)—[ (t0) - 32R (tt][a—(tt -g%*(t,t)]—l

(bx )2 = (H()*? = - l%% (1) - (m)]

*2
The principle technical conditions are that R(t,t) = I and H(t) is invertible. The other
quantities u(x,t) and z(x,t) are given by

uix,t) = U(t) x = 5 [-a— (t,t) + 75 6R (t,t)] X
7(x,t) = u(x.t) u (x,t) — a(x,t)

o(x,t) = — ["’2"‘ (t,t) + IR e’ t)] + U(t) U* ().

All of the above evaluations are at s =t~
Suppose x(t) is Gaussian process and a solution of the first order stochastic boundary
value problem

dx = A(t) x dt + B(t) dw

v=v0x0) + v x(t)
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in the sense defined above using the Green's matrix. Assume R(t,t) = I and B(t) is
invertible. Then x(t) is a reciprocal diffusion satisfying the second order linear
stochastic differential equation above with

H(t) = B(t)

G(t) = — (A%(t) - A*%(t) + A(t) - A*(t)) (B(t) B*(1)) !

F(t) = A2(t) + A(t) — G(t) A(%).
Because of the complexity of these relations, it is possible for a process to satisfy a
relatively simple first order equation and a relatively complicated second order equation

or vice versa. The latter is the case for the Brownian Bridge or pinned Wiener process
x(t) which satisfies the first order equation

dtx = 1:% xdt +dtw
x(0) =0
and the second order equation
d2x = d2w
x(0) = x(1) = 0.
The density p of a Markov diffusion satisfies the Fokker—Plank equation. For a
strongly reciprocal diffusion the density p, mean momentum p u and mean momentum
flux p r satisfy at least in a weak sense a system of hyperbolic conservation laws similar

to the continuity, Euler and kinetic energy balance equations of fluid mechanics. They
are

%P="8Wk(ﬂ Uk)
AIRIEEIVES Sy

and

% (p 'ij) =p(fu* +uf + gr + rg*)ij

a
—;};l: (p (u; Uy Uy = o5 Uy~ Oy U O u:))
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with summation on repeated indices understood. A second order or reciprocal diffusion
need only satisfy the first two of these equations.

Suppose we consider a volume with boundary in x—space. If we integrate p over this
volume we obtain the probability measure of the volume. The first equation states that
the time rate of change of the probability of the volume is equal to the flux of particles
through the boundary due to the mean velocity.

If we integrate p u over the volume, we obtain the total momentum in the volume.
The second equation states that the time rate of change of momentum in the volume is
equal to the forces acting on the particles in the volume plus the net flux of momentum
through the boundary.

If we integrate p 7 over the volume we obtain the total momentum flux in the
volume. Physically this is somewhat hard to comprehend but for smooth processes the
contraction %— P is the kinetic energy. Hence we view % P T as a tensor form of

kinetic energy. More precisely, if ’\i is a constant n vector then the scalar valued
process z(t) = A.x;(t) has kinetic energy equal to % P s ’\i’\j' With this interpertation

the third equation states that time rate of change of tensor kinetic energy in the volume
is equal to the mean work done on the particles in the volume by the force d2x/dt2
acting through the distance dx plus the flux of tensor kinetic energy through the surface
of the volume. This flux is due to mean tensor kinetic energy % p ;U (called internal

energy) transported by mean velocity u, random tensor kinetic energy — % p o i
transported by mean velocity uy and mixed random/mean kinetic energy transported by

random velocity. The latter represented by the last two terms of the flux are usually
described as viscosity or stress terms in fluid dynamics. They represent the transport of
energy due to random jumps of particles between regions of differing mean velocity.

The third equation expresses kinetic energy balance at the standard time scale, i.e.,
the dt? part of E)‘((t) (dx)*z. There is also a form of energy at a fast time scale, i.e., the

dt part Ei(t) (dx)*2. We call this hyperkinetic energy and its balance is described by

another conservation law
il
i (ph h*)ij = g (gh h* +hh* g*)ij
a
=g (o (h W50y

which is also satisfied by secoua order diffusions.

Notice that the first three equations can be viewed independently of this last. We
chose the name "hyperkinetic" to suggest a hyperkinetic child sitting at his school desk
whose endless fidgeting is to no net effect (except possibly on his teacher).
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In [21] we formally derived the four conservation laws from the postulates of a
strongly reciprocal diffusion. Although they can be thought of in physical terms, they
are not conszquences of physical principles or assumptions. We verified that these
conservation laws are satisfied by the reciprocal Gaussian processes discussed above.
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We develop a theory of second order diffusion processes and associated stochastic
differential equations of second order. We show that equations of evolution of the
density, mean velocity and momentum flux are a family of first order conservation
laws similar to those of continuum mechanics. We verify that the theory is satisfied
for a large class of reciprocal Gaussian processes.
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1. RECIPROCAL DIFFUSIONS

One of the most beautiful parts of modern mathematics is the rich
and wonderful interplay between Markov diffusion processes, linear
parabolic partial differential equations and stochastic differential
equations of first order. We shall describe the foundations of a
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394 A. J. KRENER

parallel theory involving reciprocal diffusion processes, nonlinear
conservation laws and stochastic differential equations of second
order.

Let (Q, %, Pr) be a probability triple consisting of a sample space
Q, g-algebra of events & and probability measure Pr. Let E denote
expectation with respect to Pr. Throughout we let x(t) denote a
stochastic process over this triple defined for te[0,T] and taking
values in R"™!. We assume that

T
E [ |x(2)|* dt < .
]

Given 0=, <t =T, let T (to,t,), €(to,t;) and B(ty,t,) be the o
subalgebras of & generated by x(t) interior to, exterior to and on
the boundary of the interval defined by ¢, and ¢,. In other words

T (to,t)=0a{x(t):teto,t,]}
E(to, ty)=a{x(t):te[0,20] u [t,, T}
By, t1) = {x(to), x(t)}.

We denote by F (to,t,), &(to,t;) and P(to,t,) the space of square
integrable random variables which are measurable with respect to
T (to,ty), E(to,t;) and B(t,,t,) respectively.

The concept of a reciprocal process was introduced by Bernstein
(1] following ideas of Schrodinger [2,3]. A process x(t) is reciprocal
if on every subinterval of [0,T], the interior and exterior are
conditional independent given the boundary. More precisely, if
peT (ty,t,) and Yeé&(ty,t,) then

E(@y | B(1o,1))) = E($ | B(to, 1)) E(W | B(to, ).

We refer the reader to [4-17] for more detailed discussions of
reciprocal processes. The have also been called quasi Markov or
Bernstein processes. They are closely related to conditionally Markov
processes. Following Schrodinger’s original motivation and Nelson’s
stochastic mechanics, Zambrini [20-22] has related reciprocal
processes to quantum mechanics.
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It follows immediately from the definition that Markov processes
are reciprocal but not vice versa [S].

To define reciprocal diffusions we must introduce some notation.
Given a process x(t) and a small time increment dt>0, define the
centered average evaluation x, centered first difference dx and
centered second difference d’x as

%(t.dt) =x(t +dt) -;—x(t —dt)

x(t+dt) —x(t—dt)
2

dx(t;dt) =
d?x(t; dt) = x(t + dt) — 2x(t) + x(t — d).

Frequently when the context is clear we suppress the argument dt as
in x(t), or both ¢t and dt as in dx. We also have the forward d* x and
backward d~x first differences

d* x(t; dt) = x(t + dt) — x(t)

d™ x(t; dt) = x(t) — x(t - dt).

In contrast to the standard conditional expectation of Markov

theory,

E()=E.(")=E(:|x()=x)
we shall utilize

E{)=Ezqan(")=E( | x(t;dt) =x)

and occasionally the stronger conditioning

E¢ o) =E qsa(’)=E(:|x(t £ dt)=xt v dr)

= E(-|%(t; dt) = x, dx(t; dt) = v d1).
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We now give the second order analogs of the Feller postulates for
a first order diffusion. A stochastic process x(t) is a second order
diffusion if there exist functions f{x,1), g.,4x,t), hu(x,t), u{x,t) for
i, j=1,...,m such that

E{dx)=ufx,t)dt +o(dt) (1.1a)
E{dx;dx;)=3hu(x, Dhy(x, £) dt + 7 (x, 1) de>+ o(d1)>  (1.1b)
ELd*x) =(f{x, t) + gi(x, ufx, 1)) de* +o(dr)* (1.1¢)
E{d*x;d*x;)=2hy(x, t)h(x, t) dt +o(dt)? (1.1d)
E(d?x;dx;) = 38u(x, Yy (x, )hy(x, t) dt* + o(de)* (1.1e)

The higher conditional moments of dx and d2x agree
to the lowest nonzero powers of dt with those of
Gaussians with the above first and second moments. (1.1f)

In the above we have utilized the summation convention. Con-
ditioned on x(t;dt)=x for fixed x,t, the expression o(dr)* is a
deterministic quantity y(dt;x,t) which vanishes faster than dt* as
dt—0 uniformly in x and ¢t. In other words for every £>0 there exist
5>0 such that |y(dt; x,1)| <edt* for all dt<d,xeR" and te(0, T). We
denote by 0(dt)* a quantity y(dt;x,t) for which there exist ¢8>0
such that |y(ds; x, t)| <edt* if dt<d.

If x(r) is both a reciprocal process and a second order diffusion
then we say it is a reciprocal diffusion.

A stochastic process x(t) satisfies the second order stochastic
differential equation

d*x = f(x,t)dt* +g(x,t) dx dt + h(x, t) d*w (1.2)

where w(t) is a standard m dimensional Wiener process if x(t) is a
reciprocal diffusion satisfying (1.1a—f). Actually (1.2) is a mnemonic
description of (1.1) in the same way that the first order stochastic
differential equation

d*x= f(x,t)dt +h(x,t)d* w (1.3)

is a mnemonic for the axioms of a first order diffusion.
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E(d* x) = f{x,t)dt +o(dt) (1.4a)

E(d*x;d* x;)=hy(x, Dhy(x, ) dt +o(dt) (1.4b)

all higher centered conditional moments of dx vanish
like o(dt). (1.4¢c)

In particular (1.1c) asserts that conditional mean acceleration
equals f+gu where u is the conditional mean velocity given by
(1.1a). Note the difference between the conditional expectations in
(1.2) and (1.4). Conditioning on X(t;dt)=x is an essential part of the
second order stochastic calculus. If we were to condition on x(t)=x,
we would find that generally E (d?x) is order dt rather than dt2. In
fact it is precisely this conditioning which distinguishes our work
from that of Nelson [18] and Zambrini [20-22]. In Nelson’s
stochastic mechanics the order dt part of E (dx) is a vector field
v(x,t) called the current velocity while the order dt part of 1/2E (d*x)
is another vector field u(x,t) called the osmotic velocity. In our work
the order dt part of Efdx) is a vector field u(x,t) called the
conditional mean velocity. For a Gaussian process with a smooth
covariance, Nelson’s current velocity equals our conditional mean
velocity and we suspect that this is true whenever both exist. On the
other hand in our theory E{d?x) is postulated to be of order dt.
Hence the coefficient of dt?> can be viewed as an acceleration. For
this reason it differs from Nelson’s osmotic velocity. Zambrini’s work
also uses the Nelson framework.

We call the nx 1 vector field u(x,t) the mean velocity. The density
of x(t) is denoted by p(x,t). The nxn tensor field p(x,t) n(x,t) is
called the momentum flux tensor. A related nxn tensor field, p(x,t)
oi/x,t)=p(x, ) (ufx,t) ufx,t)—mn;(x,1)), is called the stress tensor. The
reason for these names will become apparent in Section Four.

Formulas (1.1,2) suggest that the random parts of dx and d?x
conditioned on x(t;dt)=x are given by

—
dx=dx —E{dx)=dx—u(x,t)dt
d?; =d*x — E{d*x)=g(x, t);i?+ h(x,t)d*w.

We use x* denote the transpose of x and x*? to denote the
symmetric square or outer product, x**= xx*.

STOCH E
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Note that u(x,t) and =n(x,t) from (1.1) do not appear explicitly in
(1.2). As we shall see in Section 4, this is because these quantities and
the density p(x,t) satisfy a system of nonlinear conservation laws
determined by f, g and h. This system of four first order partial
differential equations is very similar to the equations of fluid and
continuum mechanics. They express conservation of probability,
balance of momentum and balance of a tensor form of work in two
time scales. They replace the familiar Fokker—Planck equation for a
first order diffusion (1.3,4).

Equations (1.1a-e) assert that the conditional moments of dx and
d*x can be expanded in powers of dt as shown. These formulas give
names to the coefficients. The only constraints on the coefficients are
found by comparing (1.1b,d and e). Equation (1.1a) asserts that the
conditional mean velocity exists and gives it a name u(x, t). Equation
(1.1b) describes the variance of dx. The order dt part arises from the
fluctuation of the second difference d?w (t;dt) of the Wiener process
that appears in (1.2). The factors of 1/2 and 2 in the dt part of
(1.1b,d) are explained by

Edw)** =41 dt
E/d*w)** =21 dt.

The second order part ndt? of (1.1b) has a deterministic contribution
u*?dr> from (l.1a) and a stochastic contribution —odt?=
(n—u*?)dt? from the noise throughout [0, T].

The immediate question that arises is “Are there any second order
or reciprocal diffusions?”. We answer this in the affirmative in the
next section by showing that under mild technical assumptions
Gaussian processes with smooth covariances are second order dif-
fusions, and Gaussian reciprocal processes with smooth covariances
are reciprocal diffusions. Of course the latter includes Gauss—Markov
processes. We derive explicit formulas for the quantities appearing
in (1.1) in terms of the covariance matrix of the process.

In Section Three we explore how second order diffusions trans-
form under change of variables and in Section Four we derive the
conservation and balance laws which are described above. In Section
5 we verify that Gaussian reciprocal processes of Section 2 satisfy
these laws.
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2. RECIPROCAL AND GAUSSIAN PROCESSES

Let x(t) be a Gaussian process defined on [0, T] and taking values
in R"*!. For convenience we assume x(t) is zero mean and we
denote by R(t,s) its covariance matrix,

E(x(t))=0
E(x(t)x*(s))=R(t,s).

We shall assume that R(t,s) is a smooth (C®) function of t,s in the
triangle 0<s<t<T and the limits of R and its partial derivatives
exist and are continuous on the closed triangle. Because
R(t,s)=R*(s,t) we need only consider R in this triangle.

We shall also assume that

R(t,0)=1 (2.1a)
l * —_—
R¥t+z.t—1) is nonsingular for small t>0  (2.1b)
R(t+1,t—1) I
oR OR*
' 2.1
o B+ <0 (2.1c)

All evaluations of R and its partials at t=s are limits of values in the
interior of the triangle 0<s<t<T. Notice that (2.1a) is merely a
normalization assuming R(t,t) is invertible. Moreover (2.1c) essen-
tially implies (2.1a,b) holds for almost all .

In [15] we showed that any stationary reciprocal Gaussian
process satisfying (2.1) has a C*® covariance in the above sense and
moreover the covariance R(t—s)=R(t,s) satisfies a pair of second
order matrix differential equations

R=GR+FR (2.2a)
R*= —GR* + FR*. (2.2b)

We now extend this to the nonstationary case. We refer the reader
to [14,15] for full details.




400 A. J. KRENER

Let 0<s<t<T then by the Gaussian and reciprocal properties
the covariance R(t,s) satisfies for >0 sufficiently small

1 R*(t+t,t—1)]!
R ’ = R X2 R t’t
(¢, 5)=[R(t,t — ) R( +r)][R(t+t’t_t) ; ]
«| RE=T9] (2.3)
R(t+1t,5s)
We define K{t,7) in the obvious fashion so that this becomes

R(t—r,
R(t’ s)= [Kl(t, T)KZ(t’ T)] [Rg'*': Z;]

We differentiate this twice with respect to 7 to obtain

azR(t 1,5)
0=[K1([’1,')K2(t,1')] 92
52 Rt+1.9)
[ @
—R(t—1,5)
+2| Greaen] |
_aR(t+'r,S)
32K asz [ R(t—1,5)
l: (I ) (t )] R(t"l"T,s)].

By (2.1) and arguments similar to those of [15] we verify that the
limits of K(t,7), /0tK(t,7) and (8/dt)*K(t, 1) exist as 1—0. In particu-
lar K{(t,0)=2%I and so we obtain for all 0<s<t<T

2

Py = R(t,9)= G(t) (t s)+ F(t)R(t,s) (2.4)
where

G(r)= —2(6—1&0 0)— —(t 0)) (2.5a)

W
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0’K, K,

But notice in our derivation of (2.4) we did not use the fact that
t>s, we only used the fact that re(t—1,t+1) and s¢(t—1,t+1).
Hence (2.4) must also hold for 0<t<s<T Since R(t,s)=R*(s,t) we
conclude that for 0<t<s<T,

azR* =G 9R* F(t)R*(
? (S,t)— (t)?(sot)-‘t- (t) S’l)'

By interchanging the symbols ¢ and s, we see that for 0<s<t<T
we have

2 *

ﬁi R*(t, s)=G(s)6—R~(t, s)+ F(s)R*(t,s) (2.6)
Os cs

By continuity (2.4) and (2.6) must hold for 0<s<t<T. We also
obtain alternative formulas for G(t) and F(t), namely

0*R 0*R* JR OR* -1
G(t)= (5{2—(:, t)— FE3 (t, t)> (—ét— (t,t)— —(t, t)) (2.7a)

Js
J*R JOR O*R* JOR*
F(t)=—a-t-2—(z,t)—G(t)E(t,t)=0—82—(t,t)—G(t)-—a—s—(t,t) (2.7b)
We define H(t)H*(t) by
. OR OR*
H(t)H (t)——(E(t,t)— 3 (1. r)). (2.7¢)

We have proved

THEOREM 2.1 Let x(t) be a zero mean Gaussian reciprocal process
with smooth covariance R(t,s) satisfying (2.1). Then R(t,s) satisfies the
matrix differential equations (2.4) and (2.6) on 0<s<t<T where F(1)
and G(t) are given by (2.7a,b).

Every Gauss—-Markov process x(t) with a smooth covariance is an
Ornstein—Uhlenbeck process, i1.e., a solution of a first order linear

STOEH F
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stochastic differential equation of the form
d*x=F(t)xdt+H(t)d* w.

The next theorem shows that every Gaussian reciprocal process x(t)
with smooth covariance satisfying (2.1) is a solution of a second
order linear stochastic differential equation

d*x =F(t)xdt® + G(t) dx dt + H(t) d*w.

THEOREM 2.2 Let x(t) be a Gaussian process with smooth covariance
R(t,s) satisfying (2.1). Then x(t) is a second- order diffusion. If x(t) is
also reciprocal then it is a reciprocal diffusion. In either case
f(x,t)=F(t)x, g(x,t)=G(t) and h(x,t)=H(t) of (2.7) and u(x,t), n(x,¢)
are given by

u(x, t)=U(t)x (2.8a)

U(t)=—(aR(t t)+ (t t)) (2.8b)

7(x, £) = u(x, Ou*(x, ) — o(x, 1) (2.80)

06,0 =)= — 1(2:—;( 0+ 7K, r)) FUQUY. (284)

Proof The proof of this theorem is a straightforward exercise in
computing conditional expectations of Gaussian random variables.
We shall sketch the details.

By assumption (2.1)
E(x(t)**=R(t,t)=1 (2.9a)

SO

JR JR
0=E(t, t)+5£(t, t) (2.9b)




]
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and
0’R 3’R J’R
O0=— E (¢, t)+2a (t,)+ I — (6, 1). (2.9¢)

In particular (2.9b) insures that HH* (2.7a) is symmetric and U(t)
(2.8b) is skew symmetric.
Next

E(dx(t))*2 =3(R(¢t +dt,t +dt)— R(t +dt,t —dt)
— R*(t+dt,t —dt)+ R(t —dt,t — dt))

By Taylor series expansion and (2.9) we obtain

w2 | a_R _aR*
E(dx(t))** = 5(at’(z,t) E» ,)dt

2 2px%x
+-<%( t)+a R——(t t))dt2+0(dt)2- (2.10a)

In a similar fashion we obtain

E(x(t)*2 =1+~ : (6 (t, t)+ (t t)) dt+o(dt)  (2.10b)

2
E(d*x(1)*? —2<—( t———(t t))dt+o(dt)2 (2.10c)
_ 1/¢
E(dx(t)x(t)*)=§<5~ L)+ —(tt)dt+o (dr)  (2.10d) |
2
E(dzx(t)i(t)"')=%<aat§(t,l) aR )dt +o(dt)* (2.10e)

2 2px
E(d*x(t) dx(t)*) = ———<? (t,8)— 6(;; (t,t)>d12
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PR PR*
do3. (2.10f
+2<Mz( 0+ taz)dt +o(d?)?. (2.10f)

Therefore we obtain

E {(dx) = E(dxx(t)*)(E(x(1))**) " 'x

_2<aR(t t)+aR*(t z))xd:+ o(dt)

=U(t)x dt + o(dt) (2.11a)

and in a similar fashion

2 2%
E,‘(dzx)=—(a R(t t)+a R (t, t))xdt2+o(dt)2

=(F(t)+ G() U(t))x dt*+ o(dt)*. (2.11b)
One can also show that
E; o(d*x) =(F(t)x + G(t)v) di* + o(dt)*. (2.11¢)
To obtain the conditional second moments of dx and d?x, we
utilize the particular property of Gaussian random variables that the
conditional variance is independent of the conditioning and so
E{dx — E {dx))*? = E(dx — E{dx))*?

Hence

E {dx)** = E(dx)*? +(E {dx))** — E(E {dx))*?

1 /3R OR* 9’R 0*R*
= 5(5(@:)— ra?(t,t))dw(z( (t ”Hazas (t,t)>

+ U(t)(xx* — I)U‘(r)) dt? + o(dt)?
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=3H(t)H*(t) dt + n(x, t) dt?® + o(d1)>. (2.12a)

In a similar fashion we conclude that
E{dx)*? = E(d’x)*? +(E{d*x))** — E(Edd*x))*?
=2H(t)*? dt + o(dt)? (2.12b)

E; 4 (d*x)*? =2H(t)** dt + o(dt)* (2.12¢)

and
E{d*x dx*)= E(d’x dx*) + E (d*x)(E {dx))*

— E(E{d’x)(E{dx))*)

1/d*R 0*R* )
=— §<3t?(t, t)— ey (t, t)) dt

LR PR PR
A ARAETr

+(F()+G(U@)(xx*=1) U"‘(t)) de® +o(dt)®
=3G(t)H(t)H()* dt? + o(dr)>. (2.12d)

If x(¢) reciprocal then by utilizing the sum of partials of (2.4) and
(2.6) with respect to s and t respectively we obtain

E{d*x dx*)=1G(t)H(t)H*(t) dt?
+(F()+ G()U((D)xx*U*(r)
—G(t)a(t)) dt® + o(dr)>. (2.12¢)

Of course (1.1f) follows from the Gaussian assumption. Q.E.D.

It is enlightening to apply the above formulas to particular classes
of reciprocal processes. For example suppose x(tf) is a stationary
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Gauss-Markov  process  satisfying (2.1) with  covariance
R(t,s)=R(t—s). It is well-known that R(t)=exp(At) where the
spectrum of A lies in the open left half of the complex plane and that
x(t) satisfies on [0.c0] the first order stochastic differential equation

‘d*x=Axdt+Bd*w (2.13a)
x(0)~ N(0,1) (2.13b)

where w(t) is an n dimensional standard Wiener process independent
of x(0) and the fluctuation-dissipation relation is satisfied,

A+ A*+BB*=0. (2.13¢)

By the above discussion this process also satisfies the second order
stochastic differential equation

d*x=Fxdt* + Gdxdt+ H d*w (2.14a)
where

F=A*—GA (2.14b)
G=—(A*—A**)(HH*) ! (2.14¢)
HH* = BB*. (2.144)

Moreover
U=4§A-A4% (2.15a)
c=3A*+A*H)+ UU*. (2.15b)

The stationary Gaussian reciprocal one dimensional processes
have been compiletely classified [7,8,11]. See also [15]. The covar-
1ance R(t) must satisfy (2.2) which in the case of scalars reduces to

R=FR.

There are three cases F>0, F=0 and F <. If F>0 there are after
various normalizations only 3 possibilities.
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l.a) Ornstein—Uhlenbeck Process: R(t)=e, t>0, which satisfies
the second order equation.

d2x=xdt2+\/§d2w x(0)~N(0, 1)

and U=0, a=1. Of course this is also Markov and satisfies the first
order equation

d*x= ——xdt+ﬁd+w.

1.b) Cosh Process: R(t)=cosh(3—t)/cosh] for 0<t<1 which
satisfies

d*x=xdt*+./2tanhid*w  x(0)=x(1)~N(O,1)

and U=0, o=1. This process is not Markov but it does have a
realization by a stochastic differential equation with an independent
boundary condition [15].

l.c) Sinh Process: R(t)=sinh(3—¢)/sinhi for 0<t<1 which
satisfies

d*x=xdt*+./2cothid*w  x(0)=—x(1)~N(0, 1)
and U=0, o=1. Again this is not Markov but can be realized by a

stochastic differential equation with an independent boundary con-
dition [15].

2) Slepian Process [4]: R(t)=1—2t for 0<t<1 which satisfies
d*x=2d*w
x(0)= —x(1)~N(0,1)

and U=0, 6=0. This is not Markov and again has a stochastic
boundary realization [15].

3.a) Cosine Process: R(t)=cost for —oo <t< oo which satisfies

d*x = —x dt? x(0)= —x(n) ~ N(0, 1)
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and U=0, 6=—1. This is not Markov but the sample paths are
completely determined by x(t,), x(¢t,) where t, —t, is not a multiple
of m.

3.b) Shifted Cosine Process: R(t)=cos(t+1)/cost for 0Lt <n—2r1.
To be a covariance, T must satisfy 0<t<n/2. The process x(t)
satisfies

d’x = —xdt2+\/27t;r;;d2w x(0)= —x(n—21)~N(0, 1)

and U =0, o=1. This process is not Markov and cannot be realized
by a scalar first order stochastic differential equation with initial or
boundary condition.

We close this section with another interesting example. The
Brownian bridge or pinned Wiener process x(t) is obtained from a
standard Wiener process by conditioning that x(0)=x(1)=0.
Another representation is x(t)=w(t) —tw(1) where w(t) is a standard
Wiener process. This is a zero mean Gauss—Markov process with
covariance R(t,s)=s(1—t) for 0<s<t<1. It satisfies the first order
differential equation

d+x=(l—Txt)dt+d+w x(0)=0

and also satisfies the second order differential equation
d*x =d*w x(0)=x(1)=0.

Note that this is essentially the same differential equation as that of
the Slepian Process.

3. CHANGE OF VARIABLES

In this section we develop some formulas that we shall need in the
next. Suppose x(t) is a second order diffusion satisfying (1.1) and
(1.2). Let ¢(x,1),y(x,t) be C* scalar valued functions and define
d(t) = p(x(t),1) Y(t)=1(x(t),1). We compute the centered mean, first
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difference and second difference of ¢(t) using the identities

dx(t)= +(x(t +dt)—x(t)) (3.1a)
d?x(t) =2(x(t) — x(t)). (3.1b)
Now
5(0)= ¢(t +dt) + p(t —dt)

2
= ¢(X(1), 1) + H(t +d) — H(X(1), £) + Pt — dt) — P(X(1), 1)

o 1 0%
PO =(x(1),1) +3 oxdx,

(X(t), £) dx;dx; + O(dx)*+ O(d1)*.  (3.2a)

The symbols O(dx)* and O(dt)? denote quantities that go to zero as
fast as |dx|* and dt® respectively. Next

_(t+dn)—¢(t—dr) +d>(f(t), t) — ¢(x(1), t).

49 2 2

By a similar Taylor expansion we obtain

89 9
d¢= 5;' (X(8),t)dx; + m (x(), 1) dt
R CON)

dx;dx;dx
~ -~ k
6 éx;Cx;éx,

1 &2 (x(1), 1)
DALY s dx
2 axgax,ar T

1 &3¢(x(1),1) 5
2 oz !

N 1 & (x(t), 1)

120 éx, Ox 0%, 0x,0x,,

dx;dx;dx, dx dx,,

+ 0(dx)® + O(dx)* O(dt) + O(dx)* O(dt)* + O(dt)*  (3.2b)
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and
2
d2¢——¢( X(t), 1) d*x; +a ¢ (x(t) t)(dx dx; —%d’x d*x )
2 2
2-~?~(x(t) t)dx; dt+a (f(x(t) t) de?

Ot 0x;

1 O*¢(x(1),0) P

ZPATNR d2 . dz
24 ox, o, ox, i x4 X

1 &%), 1)
12 ( 16

1
——— 2~ | dx;dx;dx,dx;,——d*x;d*x;d? d2
12 0x; 0x;0x, 0x, Rl K@ X 8% x,>

1 3*p(x(1),1)
o OOXLY sy dx.dx.d
+3 0x; 0x; 0x, Ot X;dx; dx, dt

1 0° p((t), )
1920 0x; 0x; 0x, 0x, 0x,,

d*x;d*x;d*x, d*x, d*x,,

+ 0(d*x)® + O(dx)® + O(dx)* O(dt) + O(dx)* O(dt)* + O(dt)® (3.2c¢)

Hence it follows from (1.1) that

l 2
Edd(t)=¢+- —— e

330 x, ———— hyhydt +o(dy) (3.3a)

¢ a—d’dt + o(dt) (3.3b)

ot

E(d$)=

0
Ef(d2¢)=a_i(fi +gijuj)dt2

¢ ¢ *¢
Ty dt* +2 ——u;dt* +
0x; 0x, T dt® + 66i o

+ ——-dt? + o(dt)? (3.3¢)

0¢ oy
t ot

E,(dqsdw—f’ -‘1’4 huhyedt+ 7, de%) + =

“2d? +o(dt)? (3.3d)
a J
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E(d%¢ d2y)=2 a¢ a"’ hih, dt +o(d1)? (3.3¢)
dp oy oy
Ei(d2¢ dW) _5 a— a— lkhkrhjr dtz + —a_x—J ukhirh}'r dtz
¢ oy
+— 310x, ox h,,h,, dt* + o(dt)>. (3.3f)

The right sides of the above are evaluated at (x(t),t)=(x,t). Note
that these are not in the form of (1.1) in that the mean differences of
¢(t) are conditioned by x(t) rather than ¢(t).

4. CONSERVATION LAWS

Suppose x(t) is a Markov diffusion satisfying the first order stochas-
tic differential equation.

d*x=fdt+hd*w. 4.1)

The probability density p(x,t) of x(t) satisfies the Fokker-Planck
equation,

d 0 1 0
5p+a—x,.(pf‘)— 2 .0, (p ahu)=0. 4.2)

This is a second order parabolic partial differential equation.
Suppose x(t) is a strongly reciprocal diffusion satisfying the second
order stochastic differential equation.

d*x=fdt*+gdxdt +hd*w (4.3)

then we shall demonstrate that the density p(x,t), mean velocity
u(x,t) and momentum flux tensor pr(x,t) satisfy, at least in the weak
sense, a system of conservation laws, very similar to those of
continuum mechanics,

0 0
ap'*‘"—(P u)=0 (4.4a)
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¢

é
. (l’“.’)=P(f«'+gik“k) - ;{’ (pmy) (4.4b)
X,

Ct
0 p 0
ot (phi,hy)= 3 (& hklhjl + gjkhklhil) - a}—k (pukhirhjr)' (4.4¢)

In addition we shall show in Section 5 that at least for the
reciprocal Gaussian processes of Section 2 an additional conser-
vation condition must hold

0
3 (pri) =p(fij+ u; fi + gaTj + Tk je)
t

é
- Ex‘(p(“iujuk_aijuk_aikuj’"djkui))~ (4.4d)
K

Since o;;=uu;—n;, (44a,b,d) appear to be a complete set of
equations for the unknowns p, u, m in terms of f and g in the
Gaussian case. But, we doubt that (4.4d) holds for all reciprocal
diffusions.

Before we derive these equations, let’s take a look at their
meaning. Equation (4.4a) express the conservation of probability
under the mean flow described by u. This corresponds to conser-
vation of mass in continuum mechanics. A similar equation relates
the density and current velocity of Nelson [18].

Equation [4.4b) expresses thc balance of momentum pu. If we
integrate the left side over a volume in x-space we obtain the time
rate of change of momentum within the volume. The integral of the
right side of (4.4b) has contributions from two sources. The first
integral involving p(f;-+gau,) is the change of momentum due to the
mean acceleration of the particles inside the volume, the random
acceleration produces no net change of momentum. The integral of
the second term over the volume can be converted to a surface
integral over its boundary by Stokes’ Theorem. The integral over the
surface bounding the volume of pm; contracted with outward unit
normal is the total flux through the boundary. Recall the definition
(1.1b) of =¥/ as the dt? part of EJ{dx;dx;). This tensor has a
deterministic and a random component, pm;;=puu;—po;; and each
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contributes to the momentum flux. Notice that the order dt part of
E{dx;dx;) in (1.1b) does not contribute anything to the momentum
flux. Intuitively this is because these changes are so fast and so
random, they cannot transport momentum.

In continuum mechanics the contraction 3pm; describes the
density of kinetic energy. This has two parts, the first $puu; due to
deterministic part of the velocity and the other —(p/2)o; due to the
random part. The latter is frequently called the internal energy
density.

The tensor 3pm; describes the density of kinetic energy in every
component of the x process. If A; is a constant n vector then the
scalar valued process z(t) = A;x{x) has kinetic energy density given by
3pmAA;. For this reason we call Jpn;; the tensor kinetic energy.

There is an alternative definition of =; as JELd¥x;d x;+
d* x;d”x;))=mn;d* +o(dt)> which reduces to the standard one for
smooth process. Based on this and Eq. (4.4c) which we discuss in a
moment, we define the kinetic energy density to be (p/2)m;. This
definition of kinetic energy is similar in spirit but different from that
of Guerra-Morato [19]. It is interesting to note that some of the
examples of Section 2 have negative or zero kinetic energy. For the
Ornstein—Uhlenbeck, Cosh and Sinh process, n=—1, and for the
Slepian process n=0. The Brownian bridge has both negative and
positive kinetic energy depending on x and t.

Equation (4.4d), which may hold only for Gaussian processes, is a
tensor form of the balance of kinetic energy and work. In other
words Eq. (4.4d) expresses the balance of kinetic energy and work
for every scalar process z(t)=4;x;(t). The momentum flux
or tensor kinetic energy is (p/2)m;;, the di* part of (p/2)ELdx;dx;).
The tensor part of the rate of work done or power is the dt? part of
(p/2)E{d*x;dx;+d*x;dx;) which explains the first term on the right
side of (4.4c). The second, flux term represents the flow of tensor
kinetic energy across the boundary of the volume under consider-
ation. This flux has contributions both from the deterministic and
random parts of the motion. The first term wuu, represents the flux
due to strictly deterihinistic motion, the others due to a mix of
deterministic and stochastic motion. In continuum mechanics,
(p/2)0u, is the flux of internal energy and po,u; is the flux of energy
due to viscosity or stress. In our stochastic model, (p/2)o,u, is the
flux of random kinetic energy transported by the mean velocity and
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poyu; is the flux of energy due to the random motion of particles
between regions of differing mean velocity.

But (4.4d) only expresses a balance between tensor kinetic energy
and tensor work terms of size dt>. The quantities involved also have
terms of size dt and the balance of these is expressed by (4.4d). We
view ph,h, /4 as the tensor form of the hyperkinetic energy due to
hypervelocity part of dx, namely, Ax=0(d1)'2. The tensor
(p/2)(gixhi,hj, + g jchi hy,) is the hyperpower and (p/2)h;hju, is the flux
tensor of hyperkinetic energy. Of course this extra equation leads to
an overdetermined system of equations for p, u, and n but if we
consider h,h; as an unknown also, this problem disappears. An
interesting question which we don’t address is that of boundary
and/or initial conditions for (4.4).

In particular, (4.4c) implies that we cannot find processes satisfying
the second order stochastic differential equation (1.2) for arbitrary
choices of f, g and h. Notice that if h is constant in x and ¢, (4.4c)
and (4.4a) imply that the tensor field g(x,t) is skew-symmetric
relative to the symmetric tensor field h*?(x,¢), ie.,

ghh* + hh*g* =0. (4.5)

We shall derive Eqgs. (4.4a,b,c) using no a priori assumptions of
conserved quantities. Rather they shall follow from basic mathemati-
cal facts. We warn the reader that our derivation is somewhat
formal, we shall interchange limiting operations, neglect small quan-
tities, etc. In the next section we shall verify that the reciprocal
Gaussian diffusions treated in Section 2 satisfy (4.4a,b,c) and also
(4.4d).

Before we start we list some basic formlulas about centered
differences that will be useful. Let x(t), y(r) be n-dimensional
processes defined on [0, T]. Suppose O<to<71,<T and t,=1,+
(r—9dt, 1,=ty+3dt. Then

N
Y dx(t,;dt)=x(z,;dt/2) — X(z4; d1/2) (4.6a)
r=1

N
Y. dx(t,; dt) =2(dx(t,; dt/2) —dx(z,; dt/2)) (4.6b)
=1

r
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d(xy*)(t; dt) = X(t; dt) dy*(t; dt) + dx(t; dt) 7 *(t; dt)

dx(t; dt) = dx(t; dt) = L dx(¢; 2 dt)
d(dx)(t,dt) =L d?x(t; 2 dt)
d(dx dy*)(t;dt) = 4(dx(t; 2 dt) d>y*(t; 2 dt)

+d?x(t; 2 dt) dy*(t; 2 dt)).

415
(4.6¢)

(4.6d)

(4.6¢)

(4.6f)

Let x(¢) be a second order diffusion satisfying (1.1a—f) with density
p(x,t), mean velocity u(x,t), momentum flux p(x,t) n(x,t) and stress
p(x,t) a(x,t). We assume that as |x|-»o0, p goes to zero faster than
every rational function of |x| uniformly for all te[0, T]. We also
assume that |u|, || and |o| are bounded above by some polynomial
in |x| for all t€[0, T]. Let ¢(x,?) be a smooth scalar valued function
also bounded in norm by a polynomial in |x| and suppose ¢(t,x)
vanishes off some closed subinterval of (14,7,). Finally we assume
that density g(x,t,dt) of x(t;dt) converges to the density p(x,t) of x(t)

as dt—0.
Using (4.6a) we have

0=E Y, dd(t;:d))=EY. ELd(t;do)
1 1

r=

We employ (3.3b) and let dt—>0 to obtain

_ op ol
O—Jf(gguk+a>pdtdx

Integration by parts yields a weak form of (4.4b),

op 0
0= rL - )
fjd) (6t + o, pu,‘> dtdx

In similar fashion (4.6b) yields

_ 1 A 2 . — 1 2 .
0=4 E L d*9(tid) = EY ELd(1,do)
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We employ (3.3c) and let dt—0 to obtain

é’¢ 3¢ ¢
JQJ‘(—(f,+guu)+ "+26t8 c,’2>pdtdx

Integrating by parts yields

9 3 2o ap
0 [ [ 5o (ot rum) 5 tom = 500 )= 2t 5

By (4.4a) this reduces to a weak form of (4.4b),

J j (p(f +giu;)— (pn,k) (pu))dtdx.A

Finally we start with (4.6f) applied to ¢, which we sum and divide
by dt to obtain

1
0=—E Z d2P(z,; 2dt) d(z,; 2 di)
8 dt o

811 EZ E{d*¢(z,;2dt) d¢(z,; 2 dr)).

So by (3.3f)

¢ 3¢ ¢

i 00 0 hyhpdt + —— hi,h;, dt
T 2 Ox; 0x; ox, Bt ax,; X, cxjuk ir

52¢ 0¢
5t 0x; 0

h . dt + o(dr). (4.7)

As dt—0 we obtain

1d¢ 0 0? 2 0
JJ( ¢ ¢ Lik krh]r+ 4) ¢ khirhjr+ ..( .,¢‘ ¢h,~,h,-,>pdtdx.

2 6x 7 ox 6xk (’ Ctéx; 0x;
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We symmetrize this with respect to i and j,

L (/1 3¢ o
=§J.J<2 Ox. a (glkhkrhjr'*'g;khkr u)

ox. \ax, o, ) el h,h
+axk (5)(,- axj> k'tir jr+a (ax Ix > ir _;r)pdt dx

and integrate by parts

o¢ 0
J‘J d) ¢( (gukhkrh1r+gjkhkrhxr)

0 0
- s b = 2 o) )
which we recognize as a weak form of (4.4¢).

5. RECIPROCAL AND GAUSSIAN PROCESSES
REVISITED

In this section we verify that the Gaussian (reciprocal Gaussian)
processes discussed in Section 2 satisfy the three (four) conservation
laws of Section 4. Let x(t) be a Gaussian process with smooth
covariance R(t,s) satisfying (2.1), (2.4) and (2.6) where F(t), G(t) and
H(t) are defined by (2.7) and u(x,t), n(x,t) and a(x,t) by (2.8). Since
R(t,t)=1 (2.1a),

p(x,1)=(2m) """ exp —3|x]?

which satisfies

dp
8
9P _ _px, (5.1b)
0x,

consider the conservation of probability (4.4a)

STOCH G
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0
LA x.)=0. 5.2
at+ax"(,oU,ij) 0 (5.2)

By (5.1) and (2.8) this reduces to
p(x Upjx;+ Up) =0
which holds since U is skew symmetric.

Next we return to the balance of momentum

d G,
b;puijxj=p(Fi+GirUrj)xj_ é};(pnik)' (5.3)

The left hand side is

-

S wU.yx.=E ji
a\U*i=3\ 57 Y 5as Tares T as?

All evaluations of R and its partials are always at t=s. It is
straightforward to verify that

d

where [-];; denotes the i-j entry of the enclosed matrix. Hence the
left side of (5.3) equals

The right side equals

L [Uxx*U*],
Cx,

plF+GU];x;j+ px ([Uxx*U*—a],)—p
=p[F+GU],-ij—pGikxk

+p[Ux]{x*U*x) —p[Ux);U—p[UU];x

J
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which equals the left side by the skew symmetry of U.
Next we verify (4.4d) for reciprocal Gaussian processes. In this
case (4.4d) becomes

%pnij=p[Fxx*U*+ Uxx*F* + Gn+nG*];;

0
- 5;‘ p(UirUijklxrxmxl —0;;Upx,
k

—UikUjrxr“‘ijUirxr)- (5.5)

It is convenient to break up each side of this equation in:v ierms
that are time varying multiples of p and terms that are time varying
multiples of pxx*, there are no others. We refer to these as constant
and quadratic terms.

On the left side, the constant terms are

PR | &R  0°R* &°R* d
[ 2 ) o],
ij ij

2| a5z Y aras? T asar T aras &t

By (2.4) (2.6) this equals
o[ (R 3*R*\ (R O°R*\
2[G<6tas+6t5s)+ oias T aras )¢

OR* OJR dR OR*
. _ _ *
+F< ot * 8s>+<6t - Os )F ],-j

d
sl Luu
pl:dt U]U

By (2.8b,d) and (5.4) this equals
p[GLUU*—a)+(UU*—0)G*+ FU* + UF*];
—p[(F+GU +UU*—a)U*+ U(F + GU + UU* —0)*];

=p[(U~G)a+o(U~G)*];
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which equals the constant terms on the right side of (5.5).
The quadratic terms on the left side of (5.5) are

d
p‘—i—t(Uxx*U*)ij=p[(F+GU—a+ UU*)xx*U*

+Uxx*(F+GU —o+UU¥)];
On the right side (5.5) the quadratic terms are
p[(F + GU)xx*U* + Uxx*(F + GU)*];;

+px Ux, [Uxx*U*);; — pxi (02 U x, + 03U, x,)

—p[UUxx*U* + Uxx*U*U*];;

—pUulUxx*U*];;

=p[(F+GU -+ UU*)xx*U*
+ Uxx*(F+GU —a + UU¥*];;

as desired to prove (5.5).
Finally we verify (4.4c) for Gaussian processes which reduces to

0 0
—(pHH"‘)=£(GHH"‘+HH*G*)— —(pU,,x,)HH*. (5.6)
ot 2 0x,

By (5.2) this becomes

d

d—tHH"‘=%(GHH*+HH*G"‘).

By (2.7c) the left side equals

62R+62R 0*R* O*R*
ot2  Otds Otos Os?

Since R(t,t)=1,d*/dt?R=0 and so
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1 3R N 2R 10°R
2 0t2 Otds 2 95

This reduces the left side of the above to

o o oo

1(62R 0*R  0*R* 62R"‘)
2

which equals the right by (2.7,a,c).

6. CONCLUSION

We have described a theory of stochastic differential equations of
second order and have demonstrated that the theory is not vacuous,
it includes the reciprocal Gaussian processes which satisfy some mild
assumptions. We have also demonstrated that the density, mean
velocity and momentum flux obey a system of nonlinear conser-
vation laws similar to those of continuum mechanics.

Obviously considerable work remains to be done including the
following.

1) A theory of stochastic integration for second order stochastic
differential equations. _

2) Further study of nonlinear second order stochastic differential
equations and non-Gaussian reciprocal processes.

3) Possible applications in statistical mechanics, continuum and
fluid mechanics and quantum stochastic mechanics.
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APPROXIMATE NORMAL FORMS OF NONLINEAR SYSTEMS*
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Abstract A first degree approximation by a linear system is the
standard approach for treating most nonlinear systems. Exact
transformation of certain nonlinear systems into linear systems is
possible under nonlinear state feedback and coordinate change, as
shown by Jakubzcyk and Respondek [13] and Hunt and Su [10].
The approximation of nonlinear systems to higher degrees by
linear systems has been treated in {16] and recendy in {17]. In this
paper, we develop a method of solution to find such higher degree
approximations by reducing the linearization problem into the
solution of a set of linear equations. We suggest a solution that, in
some sense, minimizes the error in the approximation.

1. Introduction

" In the analysis of scientific and engineering systems, one often
encounters situations which do not lend themselves to exact
solutions by conventional methods. The assumption of linearity in
most control system models, for example, is an oversimplification
at best, and it reflects the difficulties one would rather avoid in
dealing with an otherwise nonlinear model. Seldom a technique
can be found to solve & given nonlinear problem exactly. Since
the control system designer is equipped with powerful methods
and tools for attacking linear control systems, the motivation for
“linearizing” a nonlinear problem is clearly very strong.

Therefore, whenever possible, a nonlinear control problem
must be suitably transformed to bring it into an appropriate form
that enables the implementation of linear control design
techniques. However, the systematics of such modifications by
transformation are usuallly not seif-evident. The simplest of
these modifications is a first degree linear approximation by
calculating a series expansion at a nominal operating point. The
validity of this approximation depends on the relative size of the
second degree terms. In systems where nonlinearities are strong,
the higher degree terms cannot be neglected, and the
approximation fails.

The carliest example on the question of whether a
nonlinear system can be equivalent to a linear system under some
group of transformations such as change of coordinates was
solved by Poincaré {19]. Various researchers in (6,8,9,15,20,21]
discussed the question of when a nonlinear control system can be
transformed into a linear system by a change of state coordinates.
Jakubczyk and Respondek (13]. and Hunt and Su {10,11,12]
independently considered the full state feedback and coordinate
change problem. Related work also appeared in (2,22,23,24). In

* Supported in part by grant AFOSR-85-0267

(16}, Krener investigated an approximate linearization considering
the second and higher degree terms in the truncated series
expansion of a the vector field, and proved a weakened version of
the Hunt-Su linearization condition. In [17], further results in an
attempt to solve for the resulting transformations were presented.
An application for nonlinear observers also appeared in [4).

The objectives of this paper are to: 1) Present a solution to
the approximate linearization problem, 2) Suggest a method to
solve the Homological equations to minimize the error in the
approximation in some sense. For further work see [14].

2. Higher Degree Approximations to Autonomous
Systems: Normal Form Theoréem
In this section, the normal form theorem of Poincaré will be
introduced. The approximate linearization problem for a control
system will be formulated later in a similar spirit. As a reminder
of the connection between the two, we continue to use the term
“Homological Equations” (after Amold [1]).

Let us consider an autonomous system:
x =f(x) (1a)
x(0) = x°. (1b)
where x € ™" and the system is assumed to be at rest at the
origin, i.e. f{0) =0. Without loss of generality we will assume
x" = 0. First, consider the lincarization of (1) at x°:

x=Fx (2a)
F=YL o @b)
ox

We will seek a coordinate change for (1) of the form identity plus
higher degree terms, such that the resulting system will agree with
(1) up to an error of degree O(Jr)‘”l where p is the degree of

approximation. The following treatment is for p = 2. The results
can be easily generalized to any arbitrary degree p by induction.
We assume a transformation of the form:

2=x-47(0) o)
where z denotes a new set of coordinates. om(x) is a polynomial
of degree 2. The function Ax) in (1a) is expanded in a series:
f0) =P + P + o) ,

= Fx+fPm + o’ ' @
The goal of the transformation (3) is to choose Qm(x) such that in
z coordinates the dynamics of the system is represented by




1=Fz + O(z)3 )
namely the second degree terms in the series expansion (4) vanish
under the coordinate change, We take the time derivative of (3)
and using (1a), (4) and (5) evaluate each side by ignoring O(Jc)3
and higher terms:

2)
Fie- 0Py =Fx + f P —9"—5—@1& )
X

Now we introduce some notation. The Lie bracket of two vector
fields £, g is another vector field defined by:

v =Ly a
Rearranging and cancelling terms in (6), and using (7) we obtain
P = 1#x6 ) ®
Equation (8) is called the Homological Equation [1]. In [5], 2
similar derivation is also presented. The Lie bracket operation in
the above defines a mapping

t7x, - 1: 6900 - (Fxe Py ©
Obviously, (9) represents a lincar mapping from "2(n + 1)/2
dimensional parameter space of the coefficients of tb( )(x) to an
nz(n + 1)/2 dimensional parameter space. The question is whether
f(z)(x) in the range of this mapping, i.c. can we always find a
0@ (x) that will satisfy (8)? This problem was first solved by
Poincaré [19]. In the following, we present a slightly modified
proof that closely follows {1,5):

Suppose F has a full set of linearly independent
eigenvectors. Then we can take the right eigenvectors of F as a set
of basis vectors, and the left eigenvectors as a set of coordinates,
which are defined by
Fvt =2t (10a)
wF =Aw; (10b)
where vie €"* !, w;e €' *"and A, A,e €. We define a basis
for n-dimensional vector valued polynomials of degree 2 as
follows:

9500 = Vw0 0)
Using this basis for the polynomials in Eqn. (8), we evaluate the
Lie bracket:

(Fx g5 01 = O + 4= A6t 00 (12)
The mapping (9) is onto if (A; + JL]- —X,) = 0 for all
Jok=1,...m i=1,..J. In the literature, this is called the
resonance condition. We note that this is only a sufficient
condition. A general proof for the case when F does not have a
full set of independent eigenvectors may be found in [1].

The above can easily be extended to an arbitrary degree of
lincarization p. We present the final form:

(Frgi, 000 = Oy v 4 h -A00f @) (13)
with (l.,'l o4 ki’ - ) # 0 the condition of no resonance.

forj,k=1,..n;i=1,. 4. (11)

3. Higher Degree Approximations to Control Systems
In this section we will seek a solution to the problem of
linearization for control. Full state observability is implicitly

assumed. Consider a nonlinear system affine in control:

x=f(x) + g(x)u (14a)
x(0) =x". (14b)
where xe R"and ue R™. The system is assumed to be at rest
at the nominal operating point (x°; u* = 0). Again, we will assume
x* =0. First, consider the linearization of (14) at x*:

x=Fx+Gu (15a)
F =-a£(0). G =g(0). (15b)
ax

We want a coordinate change for (14) of the form identity plus
higher degree terms, such that the resulting linear plant will agree
with (14) up to an error of degree O(x,u)*! (ie. terms of
O(x)p”and O(x,u)?) where p is the degree of approximation.
When p =1, the first degree approximation (15) is obtained.
Similar to the previous section, the case for p = 2 will be derived
first, and the results will be generalized to an arbitrary degree p by
induction. First, the functions fand g are expanded in a series:

10 =P + P + oy’

=Fx+fP) + o’ (16)
8@ =20 + 5 + o’

=G+ + 0w’ an
and the nonlinear system (14a) is rewritten as
#=Fx+£P0 + (6 + g 0)u + 0wy’ (18)
We assume a transformation similar to the one proposed in Sec. 2:
z=x- 6P (19)
In addition, a new input v is chosen as
v=aPw « a+ 3w Qo)

where o.(z)(x) is an n x 1 vector of second degree polynomials,
and I + B(‘)(x) is an m x m identity matrix plus first degree
terms with nonsingular f(x). Now we want the system to
become, in z coordinates,

2=Fz+Gv+ O(z.v)3 (21
We take the time derivative of (19), and introducing (18), (19),
(20) and (21) we obtain:

P = (Fx6P w01 + 6aP) (220)
g(l)(x)u = [Gu.o(z)(x)] + GB(I)(x)u V constant u. (22b)
Because of its similarity to the homological equations derived in
the previous section, we call (22) the Generalized Homological
Equations. For a detailed derivation of (22), see [17]. In the

same reference, the above approximation is extended to an
arbitrary degree as
P = (Fxo® w1 + 6aP0 @3
1 1
2% m = 16ue® ) + 68 Voo
The resulting system is accurate up to degree p:
1=Fz+Gv+ O(z,v)rMI (24)
Once a higher degree linear approximation is obtained, one
of the important issues is the stability of the closed loop system.
Thus one may choose, for instance, a linear state feedback for the
approximate model

Y constant u. (23b)




z=Fz+Gv (25)
by setting v = Kz. The gain matrix K is chosen such that in the
closed loop the system gives the desired performance. If we
assume that the model has been linearized up to second degree,
using the feedback v = Kz and Eqn. (19) we evaluate (20):
Kkx - k62w = @) + (1 + 8V m)u (26)
and calculate the feedback u as:
u=(1+pPw) " (kx - ko

=kx - {BPwkx + k6%x0) « P} + 0y’ 27
In the above, purpose of the feedback u becomes immediately
clear. In addition to the linear feedback, there are second degree
correction terms (inside curly brackets in (27)). While the
purpose of the feedback u = Kx is to achieve stability, pole
placement, etc. for the first degree approximation (15a) to get
x=(F +GK)x, (28)
the feedback (27) cancels certain second degree terms to achieve a
second degree approximation (accurate to second degree compared
with a linear model) toward the same feedback design goals:
i=F +6Kx +£ P + sV wkx -6 {pPwkx

+k62@ + P} + o’, 29

An important feature of the feedback (27) and the resulting closed
loop system (29) is that one need not transform the state variables
into the new coordinates z that was introduced for the sake of
calculations. Feedback design can be performed in the natural
coordinates in which the system is originally presented. If some
of the states are not observable, one can estimate the unavailable
state variables by means of an observer, and apply the same
procedure. For further work on this problem, see [18].

w - aPw)

4. Analysis of the Linear Mapping
In the homological equations (22) of Sec. 3, the second degree
terms f @ (x) and gm(x)u can be cancelled out under certain

2
solvability conditions by proper choice of ¢(2)(x). a( )(x). and
8(x). When the coefficients of the like terms in (22) are set
equal, a linear mapping is obtained as

¢(2)(X)

)
«Pe) —>{f m} 30)
()
m & @
B
A simple count yields the diinensions of the domain and the range:
nz(n2+ l)+mn%+ﬁ+mzn__)n2n+l +nlm 3N
To analyze the mapping, we make a table for the dimensions:
Form= | For m =2;
Suate State
Space Domain  Range Space  Domain Range
n=2 11 10 n=2 20 14
n=3 27 27 n=3 42 36
n=4 54 56 n=4 76 72
n=3 125 125

Dimensions of the domain and the range become equal whenever n
=2m + 1. However, this does not imply that the mapping is of
full rank. For example, when m = 1, n = 3 the rank is 26, not
27. In general, for a single input system, the rank of the mapping
is always one less than the dimension of the domain forn 2 3.

We will restrict our analysis to the second degree
linearization problem with a single input «, i.e. m = 1. We will
start with the analysis of the linear mapping.

A necessary condition for finding a coordinate change-
feedback pair for a nonlinear control system is the local
controllability condition at the nominal point. For the system (18)

with a scalar input, this implies
rank (G FG ... F*1G) =n. 32
On the other hand, we define a 1 x n matrix K such that
, . [0 1Si<n
KFi-1Gi = { (33)
1 i=n

Then, the following collection of one forms is of full rank:
rank (K KF ... KF*1) = n. (34
(32) and (34) together imply that we can define a basis for the
second and first degree monomials as follows. Define as a basis
vk = G (358)
and a co-basis
w;=KFi-1 (35b)
Now we define a basis for second degree monomials as
o5 = v‘(wg)(wfr) forjk=1,...n;i=1,..J. (36)
and a basis for first degree monomials as
¢f(x) = v‘(w}x) fork=1,...n;i=1,...n 1))
Using the definitions (36) and (37) is a great convenience for
calculating the Lie brackets that appear in the generalized
homological equations (22). Calculation of (22a) gives
(Fx0f(0) 1 =

k+1

k , .
¢‘.4‘ld’+¢kl'.j+1_¢ij lSlSj<n;lSk<n

RIS 2y isi<j=n1Sk<n (38
._Q‘l;:;l i=j=n;1<Skc<n

In the evaluation of (38), when k = n, the expressions become
slightly more complicated. However, transforming the control
system into a Brunovsky canonical form [3] prior to the
linearization helps simplify the expressions [14].
Next, we calculate (2.2!7.)
i,j<n
k n .
(G0 1=9 % f<y=mn (39
26, i=j=n
These two formulas are used to compute the kernel and co-kernel
of the mapping

0?0 o -
@
Py > { o } (30)
O J g x)
B



and we now obtain a set of linear equations expressed in matrix

Ho -

,3“) 1)
In (40), L is a constant coefficient matrix of nz(n+l)/2 + n2 rows
by nz(n+l)/2 + n(n+1)/2 + n columns that is found from the above
evaluation of the Lie brackets of the mapping. In

2
l—¢( ) f(z)
@& 1 and [ m] the constant coefficients of their

[-ﬁ(l)

corresponding second degree terms are stacked in a consistent
lexicographic ordering. For the single input linearization problem,
the column rank of L is (nz(n+1)/2+n(n+1)/2+n -1).

A solution to the linearization problem is developed as
follows. First, we note that since the mapping (40) is deficient in
rank for n > 2, a control system with nonlinear terms f @ (x) and
g(])(x)u will not, in general, have an exact solution to yield a
second degree linearization. In fact, the Hunt-Su resuit (9] (or

Krener's extension of the same to the approximate case in [16]) is
a test for precisely this condition. Consequently, Eqn. (40) will
not usually have an exact solution. For a system with n =3, m =1:
2fP -g3+g3=0 1)
is the condition for exact linearizability up to second degree. In
41, fkl represents the coefficient of an element of £ (2 in the
basis ¢; j(x) for second degree monomials obtained when the
system is in Brunovsky canonical form. Similarly, g‘ is the
coefficient of the corresponding element of g () in the basis 0’,5 for
first degree monomials, Eqn. (41) is called the co-kernel
equation.

When an exact solution does not exist, it is reasonable to
seek an approximate solution which will minimize the error in the
linearization with respect to some norm. In order to give a precise
meaning to this problem, first assume that we have adequate
knowledge about the operating regime of the control system and
the desired accuracy as determined by

p(x,u): A probability density function; typically uniform
over some compact set, or Gaussian.

Q: A sensitivity matrix, positive definite,

And define the “error”

10)- ()

def 2) ~(2 2
= J.J"f( - f( Yy (8“)— E(”)u‘Qp(x,u)dxdu (42)

2

~{2)
We want to choose( (!)) such that the above error is
7

minimized. Note that this term is in the range of the mapping, i.e.
it satisfies the generalized homological equations

“ R —

~ 2
7P = 1Fx, ¢‘2’u>1 +6a®w (43a)
V0 = 16u6P@) + B Veonsantu,  (43v)
(2)
¢
Furthermore, we wish to choose the smallest qm
(1)

that wili

achieve the above. Again, we choose positive definite matrices S,
R and minimize

jj" (2)‘ + (2)( )+ B (x)u l;p(x,u)dxdu (44)

or one can take a weighted combination of the above. In fact, §
can be taken to be equal to Q of (42), but the choice is not limited
to this case. We illustrate the minimization in Figs. (1) and (2).

2
Fig. 1 represents the L%i-ll+ n? dimensional parameter space

for the range of the mapping. The coefficients of the second

degree terms in the control system define a point in this space,
€3]
denoted by (f ® ) The range of L is represented by a straight
g .

line going through the origin. Those points in the range space of
L 1hat exactly satisfy (40) will fie on this line. Among these

=(2)
infinitely many points we want to find the one (shown as( (1))
g

on the figure) which will minimize, with respect to a norm as
defined carlier, the error berween the actual system that is being
approximately linearized and a model whick is exactly linearizable
(up to degree 2) by the coordinate change and feedback. Fig. 2
shows the n2(n+1)/2 + n(n+1)/2 + ndimensional domain space of
the mapping , and the minimization done in the domain space.

The numerical solution to (40) is found by linear algebraic
methods. For illustration purposes consider a mapping

A:RN—>RrM (45)
and solve

Ax=b. (46)
If the mapping is not of full rank, it can be expanded as follows
(‘:):x -—)(Axx)e RNV +M 47

where [ is the identity matrix of appropriate dimension. The
mapping (47) is always of full column rank. Now we solve for

[1--12]

, N+M
Then one can choose a metric Gon R *

G 0
c=[ " ] 49)

0 Gy
and find a solution to
n W% II ' (50)
xe R ’
The well-known solution of (50) is
-1
x=(u AN 4] uvate [} ] D




»

Finally, we note the following correspondence between the
dimensions and variables in (51) and in the linearization problem:

2
N: nz(n+l)l2 +a(n+1)2 +n

M:—-S-z——ln ntl +n2;

(2)

o (2)
X2 a(z) K b: f
M ! )
8

S$00
G:[O R O]
00¢0
§. An Example

In this section we linearize the following nonlinear plant using the
method outlined in Sec. 3.:

X =x, +05x3 +xu (52a)
X, = Xy~ XXy + XoU (52b)
X =u +0.5x3+ x,u (52)

Calculation of the coordinate transformation and feedback gives:

7 =Xy — XXy (53a)
2y = x5 + 0.522 — xpx, (53b)
2y =Xy + X)Xy — X X3 — X3 (53¢)
v= XX+ 15x2 —xpx 4 (1~ x; + 2, - 205)u. (54)

With the above, we obtain the exact linearization (implying that the
system (52) satisfies the Hunt—Su condition):

7 =2 (54a)
2 =124 (54b)
i3 =v. (54¢)

A simple feedback design v = Kz that places the closed loop poles
at locations ~1, -0.707 £ 0.707; yields the gains as k, = -1, k, =
~24142, k, = -2.4142. Using v = K(x - 62 (x)), (54), and
(27), the feedback u is evaluated. The nonlinear input is then
applied to the system (52). Note that this will introduce O(x,u)3
terms into (52). In Figs. 3 through 8, we present simulation
results and comparisons for the above linearization and feedback
problem. In all plots, continuous lines represent the time response
curves for a fictitious linear system equal to the linear part of (52)
with feedback u = Kx applied. The higher order linearization
method of this paper for the nonlinear system (52) is compared
against this exact linear model (dashed lines). A feedback design
based on a first order approximation (i.c. the feedback u = Kx),

and applied to the nonlinear model (52) is plotted with dotted
lines. Figs. 3, 4, and 5 show the responses to a step input x, =

0.4. In Figs. 6, 7, and 8 the response curves for a step input x, =
-0.4 is shown. The simulations demonstrate the advantage of the
proposed nonlinear feedback. The time response of the nonlinear
system with nonlinear controller is closer to the response of a
linear system (specifically, the linear system obtained from the
first order part of the vector field) than a control design based on a
first order approximation. The effect and the improvement of this
nonlinear control on the stability bounds of a nonlinear system is
being investigated.

Conclusion

In this paper, we presented a method to solve the approximate
linearization probiem of nonlincar control systems. The problem
is reduced to the solution of a set of linear equations as follows:
First, the generalized homological equations are derived. By

introducing an appropriate basis for expressing higher degree
monomials in the vector field, a set of equations linear in the
coefficients of the monomials are found. An exact solution to
these set of equations is not always possible. A least square
solution is proposed that minimizes, in a statistical sense as
defined above, the error in the approximation.

We note that in the equivalent linear map, the case when
the nonlinear terms to be canceiled are not in the range of the
mapping exactly correspond to the violation of the integrability
conditions in the Hunt-Su linearization thcorem. In other words,
the given nonlinear system in this case is not exactly linearizable.
In the method developed here, we still find a “partialfy” linearizing
solution to this problem. The least square solution minimizes
precisely the error in such an approximation.

Especially for systems with higher dimensions and higher
degrees of approximation, the dimension of the system of linear
equations may become extremely large and difficult to solve. A
computer program that automates the solutions is under
development by the authors.

The multi-input case for the generalized homological
equations is slightly more complicated to derive. Research is
continuing for the description and solution of these equations in
the most general input-output setting, and for an arbitrary degree
of linearization.
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1. Introduction. Over the past several years a group of faculty and graduate students at
UC Davis have been developing a set of tools for the design of controllers and observers for
nonlinear systems. Our approach has been based on normal forms and approximate normal
forms for nonlinear systems. When a nonlinear system admits a normal form the design of
a controller or observer is greatly simplified and standard linear design tools can be
employed. The people that have been involv d in this program are Mont Hubbard, Sinan
Karahan, Andrew Phelps, Yi Zhu, Ruggero Frezza and myself. This work has been

supported in part by AFOSR. In this paper I'll give an overview of our program.

2. Normal Forms. Following Kailath's terminology, [10], there are four normal forms for
linear systems, i.e., controllable, observable, controller and observer form. The first two
are relatively straightforward to obtain, provided the system is controllable or observeble.
However, the latter two are more useful in the design of stabilizing state feedback control
laws and asymptotic state observers. If a linear system is both controllable and observable
then it admits all four normal forms.

In [14] we discussed the nonlinear generalizations of the four linear normal forms.
Unfortunately, even controllable and observable nonlinear systems do not admit all four
nonlinear normal forms. A nonlinear system which admits controller normal form is
sometimes said to be state feedback linearizable in the sense of Hunt—Su [8] and
Jakubczyk—Respondek {9]. For a system in controller normal form, the design of a
stabilizing state feedback control law is a straightforward task. However, most systems do
not admit a controller normal form and even when one does, the transformation of a
system into controller normal form involves solving a system of first order linear partial

differential equations which can be quite difficult.




Similar remarks are even more appropriate for observer normal form. For a system
in observer form, the design of an observer is a straightforward task. But very few systems
admit such forms and the computation of observer normal form is, in general, extremely
difficult.

For these reasons, we have introduced approximate versions of nonlinear controller
and observer form {15, 16]. These may be thought of as finding systems nearby to the
original which admit controller or observer form. The computation of such a system is
relatively straightforward, and reduces to solving a set of linear equations. Unfortunately,
these linear equations are not always solvable and they increase in size quite rapidly with
the dimension of the system.

We start by introducing modified versions of controller and observer normal forms

of the nonlinear system.

(2.1a) ¢ =1(¢) + g(Ou
(2.1b) y = h(¢)
(2.1c) £0)~ ¢ =0

around the nominal operating point £°, which for convenience we assume to be 0. We
assume f(0) =0 and h(0) = 0. If this is not the case, then in many important cases it
can be made so by a possibly time varying change of state and output coordinates. As is
usual, the state ¢ is n dimensional, the control u is m dimensional and the output y
is p dimensional. It is relatively straightforward generalization to consider systems where

y depends directly on u, asin

(2.1d) y = h(§) + k({) u,




however to simplify the exposition we shall not do so.

We are interested in studying (2.1) under the pseudogroup of state coordinate
transformations around ¢° = 0. In [14] we studied arbitrary change of coordinates and
attempted to bring the systeme into normal form based on prime systems. Such normal
forms are closely related to Brunovsky form and its dual. In this article we shall restrict
our attention to changes of state coordinates x = x(£) whose Jacobian at €% =0 is the

identity

gXE(O) =1

Such transformations have two virtues. The first is that they leave invariant the

first order linear approximation to (2.1),

(2.2a) z= Az + Bu+ O(z,u)2
(2.2b) y = Cz + 0(z)°
(2.2¢) z(t) = £(t)

where

(2.3a) A= g% (0)
(2.3b) B = ¢(0)
(2.3¢) C= g% (0)

The second is that the nonlinear coordinates € and the normal form coordinates x

agree to first order,




(2.4a) §=x+ ¢(x)
where

(2.4b) $0)=0, % )=0.

Typically, the original coordinates in which the system is described have some natural
meaning and the coordinates have different dimensions, e.g., distance, velocities, mass, etc.
Property (2.4) means that at least to first order the normal form coordinates have the same
dimensions and intuitive meanings as the natural coordinates.

The system (2.1) admits a modified controller form if there exists a change of state

coordinates (2.4) which transforms (2.1) into

(2.5a) x = Ax + Bu + B(a(x) + f(x)u)
(2.5b) y = Cx + 7(x)

It follows from (2.4) that the nonlinear terms are quadratic or higher in (x,u), i.e.

(2.62) o(0) =0, $2(0) =0
(2.6b) #(0) =0,
(2.6¢) 2€0) =0, 3(0) =o.

We require that the m x m matrix 1 + f(x) be invertible for x of interest.
These conditions (2.4) and (2.6) insure that A, B, C are given by (2.3). Hence the linear
part of modified controller form of (2.1) is the same as the first order approximation (2.2)

to (2.1).




The system (2.1) admits a modified observer form if there exists a change of state

coordinates (2.4) which transforms (2.1) into

(2.7a) x = Ax + Cu + a(y) + B(y)u,
(2.7b) y=y+ Ay,
(2.7¢) y = Cx.

It follows from (2.1) that the nonlinear terms are quadratic or higher in Yy, i.e.

Oa
(2.8a) (0) =0, =(0)=0
: %
(2.8b) B(0) =0,
(2.8¢) 10) =0, 92 (0) = 0.
dy

We require that the mapping (2.7b) be invertible between the y and y of interest.
Once again the A, B, C of (2.7) are the same as those of (2.2, 3, 5).

Henceforth we shall drop the "modified" and refer to (2.5) and (2.7) as controller
and observer forms. Of course generally it is not the same change of coordinates taking
(2.1) to (2.5) and (2.7) and the a, B, 7 are different. In particular, the dimensions and
arguments of a, 3, 7 differ between (2.5) and (2.7). When necessary we shall use
subscripts ¢ and o to distinguish controller coordinates X, =€~ ¢C(xc) and functions
ac(xc), ﬁc(xc), 7C(x c) from observer coordinates x 0= £ — qbo(x and functions

o)
aO(CxO), ﬁo(Cxo), 7,(Cx,)-

3. Poincaré Linearization. Henri Poincaré considered the problem of transforming a
nonlincar vector field into a linear vector field by a change of coordinates around a critical

point. We briefly describe his theory, a fuller description can be found in Guckenhetmer




and Holmes [6] and Arnold [1].

We are given a single vector field

(3.1¢) & =1(¢)
(3.1b) £(0) = 0

with a critical point at £° = 0. We are interested in finding a change of coordinates (2.4)

which transforms (3.1) into a linear vector field,
(3.2) x = Ax

where A is given by (2.3a).

Poincaré noted that one could develop the change of coordinates term by term in
homogeneous powers of x. At degree two we seek an n dimensional vector field ¢(2)(x)
whose entries are homogeneous polynomials of degree 2 in x such that under the change

of coordinates

(3.3) e=x+ ¢ (x)

the differential equation (3.1) is transformed to

(3.4) x = Ax + O(x)

whose O(x)3 denotes cubic and higher terms in x. Superscripts in parentheses will be

used to indicate that the function is homogeneous of the degree of the superscript in its

arguments. If we expand f(£) in homogeneous powers of ¢,




(35) i(6) = A¢ + 1) + g + -
then (3.1) is transformed into (3.4) iff ¢(2) (&) satisfies the so called homological equation
(362)  [Ax o) = P

where [ , ] is the Lie—Jacobi bracket

on)  (ax 69 = 22 (0 Ax— a0

It is straightforward to verify that [Ax, -] is a linear map from homogeneous
vector fields of degree 2 into homogeneous vector fields of degree 2. Moreover the
homogeneous n dimensional vector fields of degree 2 form a linear space of dimension
n2(n+l) /2. Hence (3.6a) is solvable for arbitrary f(2) iff zero is not an eigenvalue of the
linear mapping defined by [Ax, -]. Poincaré noted that the eigenvalues of this mapping
are related to the eigenvalues of A in a simple fashion. To see why, suppose A is

1,...,vn of eigenvectors of A

semisimple, i.e., there exists a basis v

(3.7a) AV = )‘i v

possibly over the complex numbers.

Let W W be a cobasis of left eigenvectors of A,

(3.7b) wA =\ ow




Then the space of n vector fields homogeneous of degree 2 has as a basis
(3.8) #5(x) = v¥(w.x) (w;x)
when 1<i<j<n and 1<k <n. A straightforward calculation yields
[Ax, 65,001 = (4 + A= A) #5.(x)
* Fij Y i Tk T\
Hence the eigenvalues of [Ax, -] on vector fields homogeneous of degree 2 are
when 1<i<n and 1<k <n.

Hence the homological equation (3.6a) is solvable if no expression of the form (3.9)
is zero. Of course this is a sufficient but not necessary condition because a particular f(z)
might well be the range of [Ax, -], e.g., f(2) = 0.

If (3.6a) is solvable one can proceed to look for a transformation canceling the third

degree terms in f,
(3.10) ¢ =x+ ¢3(x)

and [Ax, -] is linear mapping of these vector fields homogeneous of degree 3 into

themselves. The eigenvalues of this mapping are

(3.12) SRESER DY




where 1<i<j<k<n,1<€<n.

Hence (3.11) is solvable for arbitrary i3) it none of (3.12) is zero. This generalizes to
higher degree. If one of (3.9) or (3.12) or their generalization ic zero then there is
"resonance” and linearization is not always possible. We refer the reader to 1] and [6] for

more details.

4. Approximate Controller Form. S. Karahan in his Ph.D. thesis {12] studied the
application of Poincaré's method to finding controller forms and approximate controller
forms. We give a brief description of his work.

One starts by expanding (2.1) into homogeneous powers of (¢, u),

(4.1a) E=Af+Bu+ f(z)(g) + g(l)(E) u+ ..
(4.1b) y=ce+0®g + ..

One seeks a change of coordinates
(42) e=x+ 920
transforming (4.1) into approximate controller form

(4.3a) x = Ax + Bu + B(eDx) + ADu) + O(x,u)°
(4.3b) y=Cx+ 7(2)(x) + O(x)3

Following Poincaré, we see that this will happen iff

10




(4.42) (Ax, 6D x)] + B oD x) = {¥(x)
(4.4b) By, 6] + BAD(x)u = gD (x)u

where (4.4b) must hold for each consiant u. We refer to these as the generalized
homological equations. Like the homological equations, they are linear equations but they
are generally not square. The space of unknown ¢(2)(x), a(z)(x) and ﬂ(l)(x) is
n2(n+1)/2 + mn(n+1)/2 + m?n dimensional. The constraint space of f(2) and g(l) is
n2(n+1) /2 + n’m space. These dimensions agree iff n = 2m+1. Generally the map -
¢(2), 0(2), H(l) — f(2), g(l) is not of full rank so it is not always solvable even when
n = 2m+1l.

Karahan has analyzed this mapping using a basis and cobasis related to the
controllability matrix (B, AB, ..., An—lB). We refer the reader to [12] for details.

Since the system (4.4a) is generally not solvable one is forced to seek approximate

2) and é(l) in the range of the mapping (4.2)

solutions. One way of doing so is to find %(
which is closest in some least squares sense to the given f(2) and g(l). Moreover one
would like to choose the smallest ¢(2), a(2) and ﬂ(l) which maps into i (2) and é(l).
Again we refer the reader to [12] for more details.

Before closing this section it should be mentioned how an approximate controller
form (4.3) can be used to stabilize a nonlinear system (2.1) (or equivalently (4.1)) by state
feedback. The standard approach is to approximate the nonlinear system to first order by

(2.2), choose a stabilizing feedback law for (2.2), u = Fz, transform this back into original

coordinates,
(4.5) u = F¢&

Expressed in homogencous terms the closed loop dynamics is

11




; 1 3
(4.6) &= (A +BF) €+ £2)(e) + gV(e) Fe + 0(¢)
and hence the system is locally stable around {0 = 0. Of course, if it is too far from
{o = 0, the quadratic and higher terms may drive it unstable.

In the normal form approach, we typically will use the same stabilizing state
feedback gain F but to apply it to the second order linearization (4.3) rather than the first
order linearization (2.2). The resulting feedback is
(4.7) u+ 0(2)(x) + ﬂ(l)(x)u = Fx
which results in x coordinates the closed loop system

(4.8) x = (A + BF)x + O(x)

Generally speaking, it is better to implement the feedback in the original £ coordinates

taking advantage of the fact that the inverse to (4.2) is

(4.9) x=¢-4e) +0(e)®

Neglecting higher than quadratic terms we obtain from (4.7) the feedback
(@) u=Fe- FeD (&) + @) + A1) Fe) + 0(e)°.

Note that to first degree the standard feedback (4.5) and the feedback (4.9) agree.

However, the second degree terms of (4.10) cancel the second degree terms of (4.6) to

12




obtain in x coordinates (4.8). One expects that (4.10) is asymptotically stabilizing over a
larger neighborhood of ¢° then (4.5).

Of course one can also seek a higher degree approximate controller form. The
dimensions of the homological and generalizad homological equations grow exponentially in
the degree of the approximation. Hence this approach may not be recommended. It might
be more efficient and effective to find approximate controller forms of degree two around

several operating points rather than an approximate controller form of degree three around

a single point.

5. Approximate Observer Form. The work I'm about to describe is joint with Andrew

Phelps. We seek a change of coordinates of the form (4.2) which transforms (4.1) into

approximate observer form

(5.1a) % = Ax + Bu + d2@) + AF)u + oxu)®
(5.1b) y = Cx + 1393 + 0x)®
(5.1c) y = Cx.

As before this is possible iff we can solve another set of generalized homological

equations

(5.2a) (Ax, 6] + ol (cx) = ¥ x)
(5.2b) Bu, 6P + AV (Cx)u = g1 )(x)u
(5.2¢) T ex) - co®x) = 1)

As before (5.2b) must hold for cach constant u.

13




These equations are a linear mapping from the space of functions ¢(2)(x),
0(2)(Cx), ﬂ(l)(Cx), 7(2)(Cx) to the space of functions f(2)(x), g(l)(x), h(2)(x). The
dimension of the domain is n2(n+1)/2 + np(p+1)/2 + m 2p + p2(p+1)/2 and that of the
range is n2(n+1)/2 + mn(n+1)/2 + pn(n+1)/2. In general, these equations (5.2) are r.ot
solvable so as before one must seek a least squares solution. We shall report on that in
more detail at another time.

If (2.1) (equivalently (4.1)) can be transformed to approximate observer form then
it is easy to construct an observer. We choose H so that A + HC is sufficiently stable.

An approximation x(t) to x(t) is defined to evolve according to

(5.3) % = (A + HC) x + Bu— H(y — 12(y))
+ 0(2)(y—7(2)(y)) + ﬂ(z)(y—'r@)(y))u

then the error ;c(t) = x(t) — ;c(t)

satisfies

2

(5.4) x = (A + HC) x + O(x, x, u)°.

Hence if the initial error is not too large and u is also not too large, we can expect
x(t) » 0 as t-oo.
Of course, it is preferable to implement the observer in natural coordinates so we

transform (5.3) using 5 = x + ¢(2)(;<) to obtain

14




(5.52) £=Af + Bu+Hy —y) + 1@ + D@ u
+ d@(y) = oD y) + (BP(y) - LDy
i @ . -
+ 1D y) - D)) + gf— (&) Hy — y)

+0(&, & u)°
(5.5b) y = ce+h@g
(5.5¢) £(0) = €° = 0.

Notice that the linear part of (5.5) is the observer for (2.1) one would obtain from the

linear approximation (2.2), namely

(5.6a) z = Az + Bu + H(y — )

(5.6b) y=Cz
(5.6¢) 2(0) = ¢° = 0.

The error z = f—; between (2.1) and (5.6) satisfies

(5.7a) z = (A + HC) z + O(¢, €, u)>

while the error of the observer (5.5) expressed in x coordinates satisfies (5.4). Hence onc
expects (5.5) to perform better as an observer for (2.1) over a larger operating range.
As with the state feedback (4.10), the second degree terms of the observer (5.5) are

a correction to the standard linear observer for the quadratic nonlinearations of the

15




original system. In implementations one would replace the state £ in the state feedback
control law (4.9) with the estimate é from (5.5).

One can continue this process and look for a third degree change of coordinates
which transforms the system into approximate observer form where the error terms are
O(¢, u)3. One obtains in this further third order correction to the state feedback (4.10)
and observer (5.5). Viewed in this light, we see that the approximate normal form
approach allows us to start with a standard linear design based on the linear approximation
(2.2) and build in a succession of higher degree corrections to overcome the nonlineararities
of (4.1). Throughout we can keep the same feedback gain K and observer gain H, and
these can be chosen by standard linear design techniques applied to the linear

approximation (2.2).

6. Coprime Factorizations. This work is joint with Yi Zhu [19]. Suppose we have a

system in controller normal form

(6.1a) x, = Ax_+ Bu + B(o,(x,) + B,(x,)u)
(6.1b) y= CxC + 7c(xc)
(6.1¢) xC(O) =0

where the c—subscripts indicate coordinates and functions associated to controller normal

form. We view (6.1) as defining an input/output map

(6.2a) Giu(-)—y ()

from functions u(t) to y(t) for t > 0.

16




We seek a right factorization of G

G=NoM™

where N and M are input/output maps

(6.2b) M: v(:) +—s u(-)

(6.2¢) N:v(-) —y(+),

M is invertible and o denotes composition. There is a large and growing literature on
coprime factorization of both linear and nonlinear systems. A sampling is (25, 7, 10, 11,
13, 17, 18, 20—-26]. In particular our approach follows (3, 4].

To describe the input/output maps M and N we shall use a state space

realization. In particular we define M to be the input/output map of

(6.3a) ’§C = (A + BF) { + Bv i
(6.3b) a(€) + (1 + B ))u=Fé +v |
(6.3c) £,(0)=0

where (6.3b) defines u as a function of {. and v.
We consider the composition N = G o M, this is realized by the 2n dimensional

system (6.1, 3) described in fc’ X, coordinates. Let e = x, — §e then

17




(6.4) e = Ae + B(— F¢ —v+ax,)
+ (1 + B(x.) (1+ B (FE +v = a (€)

If e(t) =0 then ¢(t) = 0. Since e(0) =0 we conclude that e(t) =0 forall t>0. L.
other words, the realization (6.1, 3) of N is not controllable because e(t) is unaffected by
the input v(t).

A controllable realization of N is

(6.50) (.= (A +BF) (,+ By
(6.5b) y = C¢, + 1.(¢,)
(6.5¢) ((0) =0

Hence we conclude that G = No M1 where N and M are realized by (6.5) and (6.3).
Notice that M is invertible since (1 + ﬁc) is invertible by assumption.

Notice also that if (A, B) is a controllable pair then we can choose F so that (6.3)
and (6.5) are stable systems. Hence we have factored G over the ring of stable nonlinear
systems. We are being deliberately vague about the precise definition of a stable nonlinear
svstem. It is clear that (6.3, 5) are "stable" under any reasonable definition.

Of course, we are interested in coprime factorizations over the ring of stable
nonlinear systems. Again we should not try to make this concept precise but following
Hammer [7] and others we shall say that G = N o M7l isa coprime factorization if there

exists P, the input/output map of a stable system,

(6.6a) P: (;) —_

18




such that the composition
(6.6b) PoMyvia (Y —w
N y

is the identity, w = v.

The input/output map of (II\\I/I) can be realized by an n dimensional system

(6.7a) §,=(A+BF) ¢ + By

(6.7b) a(§) + (L + B(E)u=F¢ + v
(6.7¢) y=C&+ 71.(£.)

(6.7d) £,(0)=0

A left inverse of (6.7) is

(6.8a) éc = Az, + Bu+ B (a,(z.) + B,(z,) v)
(6.8b) w=a(z)+ (1+ B(z))u—Fz,
(6.8c) z,(0) =

If e= {c—zc then

e = Ae + B(e,(€,.) - ac(zc) +(B8,(6,) - B(z.)u)

If e(t) =0 the e(t) =0 and since e(0) =0 it follows that e(t) =0 forall t> 0. If
e(t) = £ (t) =z (t) =0 then w(t) = v(t) so (6.8) inverts (6.7).
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However we do not know that (6.8) is stable. To insure the stability of (6.8), we
must add to (6.8a) an extra term. This term must stabilize (6.8) and also must be zero
when £, =z, sothat (6.8) remains a left inverse of (6.7). How do we find such a term?

Notice that the dynamics (6.8a) is the same as the dynamics of the original cystem
(6.1a) and notice that the other output y of (6.7) does not appear in (6.8). Perhaps we
can inject y into (6.8a) to stabilize it? This is more or less equivalent to asking whether
output injection can be used to stabilize the original system (6.1). This is always possible

for systems in observer form, hence we assume that there exists a change of coordinates
(6.9) X, =X, + ¢ (xO)

satisfying (2.4b) transforming (6.1) into observer form

(6.10a) 5(0 = Ax, + Bu + a (Cx ) + f,(Cx )u
(6.10b) y=0Cx,+ 70(Cx0)
(6.10¢) x,(0) = 0

Suppose we consider a similar change of coordinates for (6.8)

(6.11) 2, =12, + ¢(zo)
to obtain
(6.12a) z, = Azy + Bu + 0 (Cz,) + B (Cz )u

(6.12h) w = ao(zo + ¢(zo)) + (1 + ﬂc(z0 + ¢(ZO)))u

~ Pz, + 6(z,))




(6.12c) z, (0) = 0.
We add to (6.12a) the term
(6.13a) a () — a,(Cz,) + (By(y) — B,(Czy)) u + H(Cz, —y)
to obtain
(6.12aa) io = (A +HC)z + Bu + ao(ﬂ + B, (y) u—Hy
where y is a function of y of (6.7c) defined by
(6.13b) y =y + 1,(y) = C{, + 1,(C&,)
and £ is the state of (6.7) in observer coordinates
Notice that (6.13a) is zero whenever €0 = 2o hence the input/output map P of
the (6.12aa, b, ¢) is also an inverse of (6.7). Also, if (C,A) is an observable pair then we
can choose H so that (6.12aa, b, c) is stable.
In summary, we have shown that if a nonlinear system admits both controller and
observer form than its input/output map G can be factored into the composition
NoM ! of input/output maps of stable syctems N and M. Moreover this composition is

coprime in the sense that the input/output map (%) has a left inverse P -which is

realized by a stable system.
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We have not presented this as a theorem because we are reluctant at this point in
time to give formal definitions of coprimeness and stability for nonlinear systems. However
the above development is very analogous to the linear theory [3, 4]. See also Hammer (7]

Unfortunately the analogy is not so straightforward for left copiime factorizations.
The theory of left coprime factorizations for nonlinear systems has some substantial
differences with the linear theory.

We start with a system in observer form (6.10) realizing an input/output map G.

We define another input output map

(6.14) M: (;) — W,
by
(6.15a) ¢ =(A+HC){ —Hy + o (¥) + B,(y) u

where y is an invertible function of the input y defined by

(6.15h) y=y+7,)

and the output is

(6.15¢) w=-C{ +y

(6.15d) £,(0) =0
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Consider the serial connection of (6.10) and (6.15), this is not a realization of the
Mo G but it is a realization of N =M o ((I;). (This is the first important difference with

the linear theory). If we define § = x_— ¢  then N is realized by

(6.16a) ¢, = (A +HC)C_ + Bu
(6.16b) w = CCO
(6.16c) CO(O) =0

because in fo, x,, coordinates for (6.10, 15) only the ¢ coordinates are observable from

o
the output w. We consider N, M as a left factorization of G, although it is really a left

factorization of ((I;) in the sense that
(6.17) Mo(l)=N
Notice that we cannot compose this on the left with 1(4_1 since I;/[ is not

invertible as a mapping from (‘;) to w.

Perhaps the best way of viewing the situation is

(6.18a) [;&]o[é]z[

or

(6.18h) [é]:[;&]—l"[é] {

The matrix notation is somewhat misleading because M depends on both u and y.
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In any case, if (C, A) is an observable pair then both (6.15) and (6.16) can be
made stable by proper choice of H. In particular, the nonlinearities in (6.15a) are
memoryless functions of the inputs u and y hence (6.15) is BIBO stable.

Next we address the coprimeness of the above factorizatio...

We consider the input/output map

(6.19a) [—&Mﬂbhqw

where again the matrix notation is somewhat misleading since both u and y are inputs

to I\./I, ie.,

(6.19b) =-M@+M@y

This input/output map can be realized by an n dimensional system
(6.20a) & = (A + HC)¢, + Bu + ofy) + B (y)u — Hy

where y is an invertible function of the input y defined by

and the output w is given by

(6.20c¢) w=-C{ +y
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We wish to find a input/output map P realized by a stable system so that P isa

right inverse of [— III, l\~/I],

(6.21a) P:vi— (‘y‘)
(6.21b) [~ I;I, 1(4] oP:vi— w=v.

We start by constructing an inverse for (6.20),

(6.22a) éo = Az —Hv + Bu + a (y) + B, (y)u
(6.22b) y=Cz +v

(6.22c) y=y+ 1,

(6.22d) u=7

(6.22¢) zO(O) =0

We leave unspecified for the moment the output u which also appears in the dynamics
(6.22a). Notice that if e = { —z is the error between the states of (6.20) and (6.22)
then e = 0 whenever e = 0. Since e(0) = 0 we conclude that e(t) =0 for all
t >0 and so by (6.20c) and (6.22b) we have w(t) = v(t). In other words (6.22) is a right
inverse of (6.20).

What about the stability of (6.22)? We would like to choose the output u in such
a way that (6.22a) is stable in some sense. If we ignore the —~Hv term of (6.22a) this looks
like the original system is observer form. This is not exactly true because y is defined by
(6.22b) with v present. Suppose the original system can be transformed into controller
form (6.1) by a change of coordinates (6.9). If we apply a similar change of coordinates

(6.11) to (6.22) we obtain
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(6.23a) z, = Az, + Bu + B(a,(z,) + B(z )u) — Hv
—-gg— (Hv) + (1 + g—g—) (a(Cz, +v) —a (Cz )

+ (B,(Cz, + v) = B,(Cz,))w)

Suppose we choose an F such that (A + BF) is stable and define u by
(6.22dd) ac(zc) + ,Hc(zc) u=Fz.

When the input v = 0, (6.23a) becomes
(6.23b) éc = (A + BF) Ze:

Unfortunately we cannot conclude that (6.23a) is BIBO stable since the input v is
multiplied by a function of the state.

We conclude by noting that a "nonlinear Bezout identity" holds for the above. In
other words beside P being a left inverse (6.6b) for (11\\}1) and P a right inverse (6.21b)
for [— 121, I\-d], it is also true that

Y M,. u
(6.24a) [N, M]o(§)vi—()r—w=0
L y
and

(6.24b) P o P: vt——»(l;l)t-—-owzo

In abuse of notation we summarize these equations by
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The verification of (6.24) is straightforward.

From the work of Doyle 3] Francis [4] and others the, the existence of a nonlinear
Bezout identity suggests that it might be possible to develop a nonlinear version of Youla's
Q parameterization of all stable and stabilizing controller of a linear system. This
generalization would apply to those nonlinear systems which admit both controller and
observer form. This class is very thin, but perhaps such a result could be extended
approximately to those systems that approximately admit controller and observer form.

Work in these areas is continuing.

7. Concluding Remarks. We have briefly described an approach to nonlinear compensator
design based on nonlinear normal forms and approximately normal forms. This approach is
being pursued by a group of researchers at U.C. Davis with support from AFOSR. The
principle advantage of the normal forms approach is that to a large extent it reduces
problems in nonlinear design to problems in linear design. We are developing software
tools which utilize this approach as a compliment to existing linear design software so that
these linear design packages can be used for nonlinear systems that admit at least

approximate normal forms.
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A LOCAL CHARACTERIZATION OF RECIPROCAL DIFFUSIONS

J.M.C. CLARK

Department of Mathematics
University of California Davis
{
A reciprocal diffusion is a 'thi* ned' diffusion in the following -
intuitive sense: view the paths of a Markov diffusion on {0,1] as the shoots
i 1 dense thicket of highly contorted shoots, all cut to a unit height (height
is the independent parameter). A reciprocal diffusion is a diffusion thicket
that has been thinned out just sufficiently so that the tops and bases of the
shoots conform to an artificially imposed joint distribution. In particular a
pinned diffusion is a reciprocal diffusion thinned so that the shoots start
and end at single points (a pointed 'bush'). Much of the structure of the
original distribution of the diffusion will be present in all its thinnings. The
aim of this paper is to give a local characterization of this common

‘reciprocal’ structure.

Krener (1988a) has made a fundamental study of the infinitesimal
properties of reciprocal diffusions. The problem of local characterization is
onc of a number of intriguing questions that were only partially answered in
his paper. It turns out that the reciprocal structure of a Gaussian
reciprocal diffusion has a beautifully simple characterization in terms of a
linear self—adjoint second order differential operator (Frezza, Krener, Levy,
1989). Our concern is with the nonGaussian case, which has to be treated
by different methods.

To proceed it is necessary to introduce some notation. Let Q be

n . . _
the space of R7—valued continuous functions on [0,1], ,\'L(w) the coordinate

map (1) and F the Borel o—field generated by the topology of uniform
convereence. Suppose X = ({xt: 0 <t <1}, Q) F, ) is a Markov diffusion

“Eh veseareh was supported by the National Scienee Foundation nnder
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with continuous strictly positive initial and transition probability densities
pO(x) and P, x(t,y), 0 <s < t<1. Itis a straightforward matter to show

that the probability law P of x has a unique factorization into the initial
distribution po(x) dx the final conditional distribution pOx(l,y) dy and a

probability kernel (x,y) - ll’(l)i on &, narrowly continuous as a function
of (x,y), that is the law of X conditional on Xg =X, X| =y.

Now suppose k(x,y) is a strictly positive continuous probability
density on R™ x R™ and let ¢ be the modified law on F: Q(A):
- J PoY(A) k(xy) dxdy. Then we shall call the process Y = ({x,}, Q),

with law @ on (9, &), a reciprocal diffusion governed by a Markov
diffusion X. If the marginal density k is replaced by a distribution

7(dx, dy) we could create other reciprocal diffusions f .n X with laws
singular to P; for instance, the pinningsof X at t =0 and 1, but to
keep the development simple we restrict our attention to governed
reciprocal diffusions. Markov diffusions are trivially reciprocal and two
diffusions governing the same reciprocal diffusion govern each other; in fact
it follows from Theorem 3.1 of (Jamison, 1974) that the ratio of their
end—point densities must take the form hO(x) hl(y) for some continuous

positive functions h0 and hl' Reciprocal diffusions, on the other hand,
are not generally Markov. For instance, if Y has the law of {Z + B,:

0 <t <1}, where {B} isa Brownian bridge with By = B, =0, and 2

0
is an independent nondegenerate random variable, then Y is a reciprocal
diffusion (governed by a Brownian motion) that is not Markov. However,
reciprocal diffusions inherit many of the properties of Markov diffusions.
For 0 <r<t <1, let J?_ denote the interior o—field o {xS: r<s<it}

and (‘S’It_ the exterior o—ficld ¢ {xS: 0<s<ror t<s<1} in &. Thena

reciprocal diffusion Y is a Markov ficld on the line in the sense that for

. 1
any 0<r <t <1, conditioned on X and x,, clements of .71_ are

t’

independent of elements of & : Also for any 0 <s <1 the pinned process

v ({.\:l b.Qe |,\'Q - X)) e Mankov diffusion. The first property s the




definition of the reciprocal process introduced by Bernstein (1932) to give a
probabilistic interpretation of Schrodinger's equation; the second the
definition of a reciprocal diffusion in the sense of Krener (1988b). A
detailed study of these and other properties can be found in Jamison (1974,
75). A reciprocal process possesses a 'governing' Markov process provided
some technical 'end—point' conditions are satisfied. The writing of a
governing diffusion into the definition adopted here simply allows us to
avoid these technicalities.

The kernel (x,y) - I!’(l)i can be thought of as the reciprocal structure

that is common to the Markov diffusion X and all its subservient
reciprocal diffusions. Similarly for s < t the unique narrowly continuous
probability kernel on Jé given by ng( (A) = lP(A]xS =X, X, = y)

represents the common reciprocal structure on the interval ([s,t].

We can now define the notion of a set of local reciprocal
characteristics. Let & denote the set of all probability laws of reciprocal
diffusions. We shall say that an assignment of a continuous function
pQ( +,+) on [0,1] xR™ to every law § in & is a reciprocal invariant on
[s,t,] if the restriction of pQ(u,~) to the interval s < u <t is the same for
all @ with a common reciprocal structure on [s,t] and that p  is a local
reciprocal invariant if it is a reciprocal invariant on [s,t] for all
0 <s <t <1. Finally we shall say that a family {pi, pé, ey pI’]} of local

reciprocal invariants is a set of local reciprocal characteristics if it uniquely
determines the reciprocal structure on [0,1]; that is, given a set of
functions {rl, Loy * " rn} within the joint range of {pl, cee pl']} those

laws in the inverse image {Q: /)? =r,i=1, n} possess a common
l-
0--

The next section presents a theorem showing how a set of local
reciprocal characteristics for a reciprocal diffusion can be constructed by a

reciprocal structure P

differential transformation of its semimartingale local characteristics.

The final section presents twe formulae that give a probabilistic
mterpretation of local reciprocal characteristics. The first is a curiously
factored form of Girsanov's formula that is applicable 1o pinned diffusions.

The second reguires some preliminary explanation. Krener (19835

heempvodoeed dommber ol interrelated Velier ke posaabares, that e




satisfied by reciprocal diffusions and that display the infinitesimal form of
particular conditional amounts of their first and second differences. The
diffusion matrix a(t,x) (that is, the rate of change of the matrix quadratic
variation process) plays a central role. One important, postulate states that
for constant x, v ¢ IR“, the limit*

. 1 S o
lim P_ E[xt+h —2x + Xt~h|)‘t+h =x+vh,x _, =x vh]

= f(t,x) + g(t.x)v (1)

for some vector and matrix functions { and g (when expressed in
Riemann normal coordinates with respect to the Riemann tensor a—l).
Another is the corresponding expression (1') for the (matrix) second
moment of the secor;d difference; here the right member is 2 a(t,x).

Our second formula (Theorem 3) can be regarded as an integrated
non—asymptotic variation of (1) for constant diffusion matrices a.
‘Together with the matrix a its coefficients form a set of local reciprocal
characteristics. So, at least in this integrated form, Krener's postulate (1),
together with the matrix a, characterize the reciprocal structure. The
general case with non—constant a will be treated elsewhere.

My thanks are due to A.J. Krener who besides offering me
hospitality and support at U.C. Davis, largely provided the inspiration for
this work, and to B.C. Levy and R. Frezza for educating me in the ways of
Gaussian reciprocal processes.

™ In (1988a) Krener uses a slightly different conditioning in his postulates:
Ef - | X¢ 1 T Xy = 2x]- This introduces quantities such as Nelson's

current velocity that are not generally reciprocal invariants.




A LOCAL RECIPROCAL CHARACTERIZATION.
From now on we use the summation convention. Using the notation
of the previous section, suppose x = ({x,}: 0 <t < 1} , &,P) (or ({x},

P) for short) is a Markov diffusion in R" with diffusion matrix a(t,x) and
drift vector b(t,x). For simplicity we assume that the components of a
and b are C2, (that is, they are bounded and have bounded derivatives of

all order) and that a is uniformly elliptic. Then x possesses a strictly
positive transition density psx(t,y). It is also a continuous semimartingale

on {Jg} and has the decomposition
dx, = b(t, x,) dt + dN,

where {N;} is a continuous martingale on {.78} diffusing at the rate

a(t,xt); that is, its (matrix) quadratic variation is of the form
t

j afs, x )ds.
0

Now suppose Y = ({xt}’ Q) is a reciprocal diffusion governed by X.
Suppose k is its positive continuous end—point density, and kO its initial
density. Let hx(l,z) be the conditional end—point density relative to

DOX(l’Z) given by
b (1,2) = k(x,2) (kg (x) Py (1)

then hx(1,~) is positive and continuous and possesses a 'space—time

harmonic extension' with respect to x given by:

hx(t,y) = [ hx(l,z) pty(l,z) dz, for 0 <t <1,

Let D() denote d/ A and l)i denote (')/(')yi. By 1to's formula hx

ctisfies (for fixed x. with the sunimation convention in foree)




i ij =
DOhx +b Dihx + a DiDjhx =0

. . {
on [0,1] xR". Then M,: = hxo(t, x,) is the martingale Ep(dQ/dP| )

and has the representation

X _ a4X ,
dM¥ = M} . L. D,(log hxo(t, x,)) dN,.

A 'Girsanov' argument then leads to the representation: On (Q, &, Q),

dx, = cxo(t, x,) dt + dNt’
where c)i((t,y) = bi(t,y) + V) Dj log b (t,y) and where Nt is a continuous
martingale on {.78}, again diffusing at rate a(t, x;). The full details of

the argument can be found in Theorem 2 (and its proof) in Jamison (1975).
Notice that cf(- ,+) is continuous and uniquely defined. The pair a and

c. can be thought of as the local semimartingale characteristics of Y with
respect to the filtration {J(t)}. We can obtain a different characterization

by conditioning at t = 1; that is, with respect to the augmented filtration
{& 1}, then

dx; = e (t, xt)dt + d(martingale)
1

where the martingale (on {& i}) still diffuses at rate a(t, x) and e,

takes the form: for 0 <t < 1

e,(Ly) = b'(Ly) + all(Ly) Djlogp, (1.2)

The arcument is almost the same, though now 07(1,.4\') hecomes sinaular at

I




Similar but more complicated characterizations can be obtained for
conditionings at intermediate times. Now let a«__ be the inverse of the

matrix a. Introduce the differential operator

Re(a,b)i = DO(aij bj) + % Di(bj o5 bk + ajk Dj(akf bé))j i=1---,n,

mapping a C* matrix—vector pair into a C® vector field. We can now
make the following statement.

Theorem 1 Let X be a Markov diffusion with a continuous positive initial i
density, a diffusion matrix a(t,y) and drift vector b(t,y). Let Y bea
governed reciprocal diffusion with semimartingale characteristics a(t,y)

and cx(t,y). We assume that the components of a, b,a and c_ are C‘g

and that a and a are uniformly elliptic. Let 0 <s <u<1l. Then X
and Y possess the same reciprocal structure on [s,u] if and only if the
following functions of (t,y) are equalon [s,u] x R

i) a=a
i) Forall xeR"i,j=1,2,---n
k
Di(ajk b™) —Dj
i)  Torall xeR"i=1,2, --n.
Re(a,b), = Re(a, ¢ ),

K - X ~ X
(¢ b7) = Dy(ay, ¢) = Djley <))

Remark 1) This result is close to being a corollary of a remarkable
short—time asymptotic expansion of Krener (1988b) for the reciprocal
transition density lP(xt € lext—h =X, X, T z) of a Markov diffusion
that parallels the corresponding expansions of Azencott (19S1) and
Molchanov (1975) for Markov transition densities. However. the expansion
is quite complicated and | have not used it in the proof as the following
argument is more direct.

2) The theorem also holds if the € is replaced by the augmented

semimartingale charactenstices (37(1.‘)') provided all the funcnons are




restricted to 0 <t < 1. )
3) For simplicity let ﬂi be the function aij b for i=1,---,n

k y ok Dj(akf be)). Then the

and let f; be the function —1 J2(b} %y b
left member of ii) is Diﬂj ~— Djﬂi and that of iii) is Doﬂi — Diﬂo. Then the
theorem states that the n(n + 1)/2 functions Diﬁj — Dj[}i, i,j=0,1, ---,

n,i < j, and the n(n + 1)/2 components of the matrix a (or more
pedantically, their assignments to the probability law of X) form a set of
local reciprocal characteristics. Clearly these characteristics are not
independent; in fact, in differential—geometric terms, the Diﬁj — Djﬂi are -

the components of the exterior derivative of the 1—form (ﬂo, By w0 By

Proof of the ‘only if' part. Without loss of generality we may take s =0,
u=1. Assume that X and Y possess the same kernel [P(l)i on &. Then

Y is governed by X and by the previous argument it follows that, for
some positive continuous X—space time harmonic function hx(t,y),

a(t,y) = a(t,y) and
e (ty) = bl(ty) + a)(ty) D;log b (t.y)

Let B;,i=0,1,---,n be the terms introduced in Remark 3 and let B, be

the corresponding terms (note a = a).

—a.cli=1 .- D VO RO S ¢
Bi O/iijl—l, n, 730— i(cxajkcx+a Dj(akfcx))

(From now on we generally omit the subscript x). Then Bi — ﬂ.l = Di
logh for i=1,---n. If we can show that in addition /70 — iy =Dy
log h,\' then B() — ﬁO is a gradient vector and, by Remark 3, ii) and iii) will

follow immediately. From (1) ¢ = log h satisfies




Dyt =-b'D.L T} a.ij(DiDjl +D;¢D;0)
= _gl) BB~ B) — % aij(Di(Bj —B)) + (B, — B)(B; - £;))
__ % aijmiﬂj — BB + Di(Bj = By)
= (By — B,

So B. — . isa gradient on [0,1) x R" and the proof is complete.

The 'if* part. Assume the identities hold for the pairs (a,b) and (a, c ).

To show that X and Y have the same reciprocal structure it suffices to
show that (1) holds for some X—space—time harmonic function h x(t,y)

with hx(O,x) = 1. Now for each x the vector function
(Bx i(t,y) - ﬁi(t,y)) is by ii) and iii) the gradient of some smooth function

¢ on [0,1] xR™. Then it follows from a reversal of the derivation above
and the definition of Bx o and B, that

N 1 i -

Set hx(t,y) = exp[¢x(t,y) — qﬁx(O,x)]. Then h_ is a positive smooth

X—space-time harmonic function with the properties required.

PROBABILISTIC INTERPRETATIONS

The previous theoremn is purely analytical in nature and sheds no
light on the probabilistic 2aning of local reciprocal characteristics. In this
section we give two probabilistic formulae in which they occur naturally.
They are formulated for Markov diffusions. Theorem 1 makes it clear how
they can be extended to non—Markovian reciprocal diffusions.

Suppise X = ({xt}, P) with diffusion a and drift b is the Markov

diffusion satisfying the conditions of Theorem 1. Let X = ({x}.P) bethe
Markov diffusion with diffusion a and zero drift. po\,(L,y). ﬁﬂ\_(l.}') arc

. - o 17 17
the correspondi ransit. msities Let ! ! A ’
h sponding transition densitios, Lot Oy i O ff‘)\A and ﬂ”
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respectively denote narrowly continuous versions of P(- | Xq = x),

P(- | Xg =X, X| = z), etc. ﬂO, ﬁl, ‘e ﬂn are defined as before. The first

formula is a factored version of Girsanov's formula for ll’(l))z(

Theorem 2 There is a random variable S, defined a.s. [Féi—uniquely for

all x, z can, and a function k continuous on IR?[1 such that

1,1
1
S=exp [y JO JO (Dlt B fet, ex) —D ﬂu(ct, €x;)) cdc(x‘t‘ (?xl{ - x't/ 6x‘t‘) |

and such that for almost all z (Lebesgue).

lplz
L () =k(x2)S(w),  as. P
d{FO
X
whereJ e 8)3{ denotes a Stratonovich integral (convention of

Rogers—Williams (1987)), the summation indices g, v range over

0,1,2,---,n, and X =t.

Remark 1 The integrand of the double integral in S is precisely the "exact
2—form" made up of the reciprocal characteristics given by Theorem 1.
Notice that S does not depend on x and z.

2) There are many similar expressions; this is just one of the simplest. The
double integral is given by a Stokes formula on the fan—shaped surface
obtained by subtending the path {t, X, 0 <t <1} attheorigin. Any

surface stretched between thie path and a piecewise smooth curve beginning
at x, and ending at X, and depending only on x, and x; could also be
used.

3) Iuias highly likely that tne phrase “for almost all 2" can be dropped,

but 1 have not proved this.
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Proof Let G be the Girsanov formula for d Py /d Py ; in terms of the

B,i=1,---,n, thisis
G = exp [JI B, dxi‘lr B, ald . dt
g 1t 2 L j

(ﬂi = Bi(t, x,), etc.,). G and the other stochastic integrals that we

introduce can be so chosen that they are defined a.s. IP(l))Z(—uniquely for all

X, Z € R™. Now transform G into Stratonovich form and than expand the
resulting line integral by a stochastic form of Stoke's theorem. These are
familiar steps in stochastic differential geometry; see for instance Meyer
(1982, p. 202) for the former and Bismut (1981, p. 208) for the latter. So

1 --
G= exp[JO g, oxl _%Jo (2D 4+ 4, 2" B)at)

1
=expj B oxH
0o 4t

Now

1 1.1
JO fﬂ” (et, €x,) c"bft‘ =J JO (ﬂﬂ(ct, €x,) + ¢ Dlﬁu(ct, cxt)xlt/)dc 8\’:

=1 0

Making use of a stochastic Fubini's theorem (Ikeda and Watanabe
1981) we have

|| 1
b . B _ c Ve
JO JO /J” de Ox = Jo[ﬁ” (€, ex)) xq [3”(0, €X()xg

1
—¢ JO D, B (ct, ex)) xl: (?xlt/]d(

v

and on combining these we find




12

1 1
-[0 ﬂ” (t, xt)ax‘: = Jo(ﬂ”(c, cxl) x’f — ﬂﬂ(O, cxo)xg) de
1,1
+ JO JO Dﬁu(ct, cxt) (x'{ Bx‘t‘ - x‘t‘ 6x'{) ede

= I(x, x;) +J (=logG)

On rearranging the double integral we find S = eJ. Forall A ¢ &,
B ¢ B(R"), we have the identities

)1 -1
JB PAZ(A) py, (1,2)dz = Py (AN x;! B)
= 1 . Ggar =J J GdPFLp (12)dz

1z
= JB [JA G leOx ko(x,z)]pox(l,z) dz.
where kj = EOX(I,Z)/pOX(l,z). Hence for almost all z, and all A ¢ &,
PL2A) = | G dFM% Kk (x2)
0x - A Ox "ONTEH

and so

dWlZ

0 I(xq, X
—dml—’;~ = G k(- 2) = § !0 XUk (x,2)
Ox

Note that X = X and X; =7 as. U‘(l)f Setting k(x,z) = el(x’z) ko(x,z)

then gives us the result.
Krener's postulate (1) is quite subtly defined in that the
conditioning variables slide, as the limit is taken, along geodesics of the

Riemannian metric &5 The following formula can be thought of as an

integral variation of (1) conditioned more conventionally on the members of

a partially nested family of o--ficlds. 1t is stated without proof for the case
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with constant diffusion matrix a. A full treatment of the general case,
which requires the introduction of the stochastic differential geometric
concepts of stochastic development and parallel translation, will be
presented elsewhere.

It is convenient to introduce the following definition. Given the
set—up (Q, &, {‘7;}’ {6;}, P) we shall say that a continuous process Z,

is a free motionifforall 0 <s<t<u<l

u -t t — s uy _
B2 -y =% w5 Lul8sl =0

Ifweset r=t—h,u=t+h then we see that this deﬁnition essentially
says that the mean 'acceleration' of Z (conditioned on gt ¢ }}:) is zero.

(cf. martingales; for these the predicted 'velocity' is zero) For example, if
X is a Brownian motion, then Z, = x, + k(x, x{)t is a free motion. If a

free motion Z is adapted to {& t} then it is a continuous semimartingale;

I have not explored its other properties. However, in the following
particular case the martingale part of the free motion is 2 Brownian motion.

If X is Gaussian Z can be given a more precise description (see Frezza,
Krener, Levy 1989).

Theorem 3 With the definition of Theorem 1, if [aY] is a constant mu.rix,
then the process

iyt X
2l =xl—a JO JO (D), B, =D BI3xE + (Dy B, = Dy By dr] ds (2)

is a free motion, where D}\ﬂ = Dkﬁ(r x ), etc., and J, k are summed

over 1,2, --- n. Alternatively, forany 0<s<t <u<l
D LA LS T A
e e L
L ou STS u — sy

ool k
# | A 8= DgIIY 5 (g g [ =0
1S
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where 7;u(r) = (u —uq(g =5) for & <t

O (D IV

Remarks 1) Following Krener's point of view, we can formally but usefully

rewrite the integral equation (2) as a second order stochastic differential
equation.

2 ij k ij 2 2
Fx, =2 J(Dkﬁj —Df,) oxy di + aJ(DOﬂj —Difg) dt” + 972, (3)

2 . S
where 97x, etc. is to be thought of as an infinitesimal central second

difference, with the usual proviso that (3) is no more than a mnemonic for
(2).

2) A comparison with Krener's postulate (1) suggests that the coefficient of
dxdt in (3) should be g in (1) and that of dt? should be f. This is

certainly so for Gaussian X, but for nonGaussian processes the agreement
has still to be verified.
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Abstract Right and left coprime fractional representations are shown to exist for
a special class of nonlinear systems which have both controller and observer forms.
Furthermore, a generalized Bezout identity is given for this class of nonlinear

ey ¢alYSIEMS.

LIntroduction The purpose of this paper is to obtain the right and the left coprime factorizations
of a class of nonlinear systems which have both controller and observer forms and to prove that a
generalized Bezout identity holds for this class of nonlinear systems.

The fractional representation method of linear systems can be traced back to the early 1970's
when Rosenbrock([16] used transfer matrix to study multi-input/multi-output systems. Since then,
this method has been studied intensiVely by many researchers[4], {7], [11]. Desoer{3] generalized
the general concept of coprimeness to a ring. Recently, Hammer [9] used the coprime factorization
approach to tackle the discrete nonlinear systems, and there is a growing interest in applying the
coprime factorizations approach to study nonlinear systems.

In this paper, we use the state space descriptions as realizations of a nonlinear mapping so that
we can work on both state space and input-output mapping just as one does in the linear situation.
Our approach is based on the nonlinear normal form theory of Krener{13]. Using the controller
form of a nonlinear system, it is possible to design a nonlinear feedback controller. The given
sysiem can be right factorized into a composition of a stable postprocessor and an inverse of a
stable preprocessor. The right coprimeness concept is based on this right factorization. If we
combine the postprocessor and the preprocessor, they form a higher dimensional system. The

existence of a stable left inverse of this higher order system is our definition of right coprimeness.




This follows Hammer{9]. In a similar way, we start from the observer form of a nonlinear system
used to design a nonlinear asymptotic observer. A modification of this gives a way to left factorize
the given system into a composition of an inverse of a stable postprocessor and a stable
preprocessor. If we put them together to form a higher dimensional system, the existence of a
stable right inverse of this higher order system is our definition of the left coprimeness. We shall
give the rigorous definitions later on. It turns out that for those nonlinear systems which have both
controller and observer forms the development of right coprime factorizations is a rather
straightforward generalization of the linear theory but the development of left coprime
factorizations differs with substantially from the linear situation. The nonlinear right and left
coprime factorizations satisfy a generalized Bezout identity.

This paper is organized as following. We first talk about two normal forms of nonlinear sys-
tems briefly, and then discuss right and left factorizations. Finally, the generalized Bezout identity

1s given.

2.Normal forms This work is based on nonlinear normal form theory. A complete discussion
of nonlinear normal form theory is beyond of the scope of this paper. We only describe those
aspects of controller form and observer form which we are going to use in this paper. A more de-
tailed discussion can be found in Krener's paper{13].

Constider the following nonlinear system

(2.1a) E =£(E) + gE
(2.1b) y =h(&)
(2.1c) &) =£°.

where f: R" —> R", g R"—> Rmx", h: R" —> RP are all smooth(C™) functions. Assume that
f(0) = 0 and h(0) = 0. We seek a lacal change of coordinates x = x(E) under which (2.1) has a
simpler form in some neighborhood of the norminal £°= 0. In this paper we shall restrict our

attention to the changes of coordinates whose Jacobian at the £°= 0 is the identity




x O =1

g

Such changes of coordinates can be written
(22) § =x+6(x),
where

¢0) =0, % ©0)=0.

ox

They leave invariant the first order linear approximation to (2.1)
(2.3a) z= Az + Bu + O(z,u)’
(2.3b) y = Cz + O(z)°
(2.3¢) 2(0) =&(0)
where
(2.4) A= s—é ©0), B=g0), C= 3—2 ()

Controller form
We say system (2.1) admits a controller form if there is a change of coordinates (2.2) and a

controllable pair (A,B) such that (1) can be transformed into the following form

(2.5a) x = Ax + Bu + Ba (x) + BB (x)u
(2.5b) y =Cx+7.(x)
where

@ () =0(x)’, B =0(x), ¥ =0x?,
and A and B are constant matrices defined in (2.4). o, (x), B.(x), and y(x) are all arbitrary smooth
matrix-valued functions of dimension mx1, mxm, and px1 respectively. Furthermore the matrix I
+ B.(x) must be invertible at each of interest.
Controller form is useful in designing nonlinear feedback controllers. If we let
u=u+ o (x)+ B (x)u,
then (2.5a) becomes a linear system

x = Ax + BU.




Since (A,B) is a controllable pair so that we can find a matrix F such that A+BF is stable. If we
- apply the feedback u =Fx + v or equivalently

2.6) u=[1+B001 (Fx — o (x) + V),

then the closed-loop system is a stable system

@.7) x = (A +BF)X.

The nonlinear feedback control law (2.6) is used to cancel the nonlinearity of the given system.
We see from it that the invertibility of I + B_(x) is necessary to guarantee the existence of the non-
linear feedback (6).

Observer form
The system (2.1) is said to admit an observer form if there is a change of coordinates (2.2) and

an observable pair (C,A) such that (1) can be transformed into the following form

(2.82) x = Ax + Bu+ 0, (y) + B,(y)u
(2.8b) Y=Y +7,0)

(2.8¢) y = Cx.

where

@, (x) =0(x), B,&x)=0(x), %,(x)=0xY,

and A and C are constant matrices defined in (2.4). & (x), B,(x), and y_(x) are smooth matrix-val-
ued functions with dimensions nx1, nxm, and px1. They are arbitrary except x + ¥ (x) must be lo-
cally invertible function. Notice that the change of coordinates is typically different from the one in
controller form.

Observer form is useful in designing asymptotic observers. Now introduce an observer
29) X =AX +a (y) + B, (y)u - Hy — CX).
If we denote X = x — X, then the error satisfies
(2.10) X=(A+HOX .

Since the pair (A,C) is observable, we can choose a matrix H such that A+HC is a stable matrix,

and then (9) is an asymptotic observer of (8).




If a nonlinear system can be transformed into controller form and observer form ( typically in
two different coordinate systems ), then we can design an observer-based controller just like we do
for linear systems.

The question here to ask is that under what conditions the nonlinear system (2.1) can be trans-
formed into controller form (5) and observer form (8), and for what conditions the pairs (A,B) and
(C,A) of the linearization are controllable and observable pairs respectively. The answer is the
nonlinear system (1) must be controllable and observable in the nonlinear sense and satisfy certain

additional conditions. Again readers who are interested in the details should refer to[13].

3.Right fractional description Suppose we have a nonlinear system in controller normal

form

(3.1a) x, = Ax_ + Bu + B(a(x) + B(x Ju)
(3.1b) y =Cx +7.(x)

(3.10) x(0) = x°

where the c-subscripts indicate coordinates and functions associated to controller normal form. We
view (3.1) as defining an input/output map
(3.2a) G: u() = y(o)
from functions u(t) to y(t) for t > 0. We seek a right factorization of G
G =NoM™
where N and M are input/output maps
(3.2b) M: v(-) 1= u(-)
(3.2¢) N:v() 1= y(),
M is invertible and o denotes composition. Among others, Khargonekar and Sontag(12], Doyle[5)
Francis([6,7], Sontag[12] have treated such factorization of linear systems and Hammer([9] has dis-
cussed similar ideas for nonlinear discrete systems. We shall follow these authors, particularly

[5,7].




To describe the input/output maps M and N we shall use a state space realization. In particular
we define M to be the input/output map of

(3.3a) E.=(A+BF)&_+By
(3.3b) o€ + (I+ B u=F +v
(3.3¢) E0) =0

where (3.3b) defines u as a function of §_ and v.

We consider the decomposition N = GoM, which is realized by the 2n dimensional system
(3.1,3.3) described in €, x_ coordinates. Let e = x. — & then
(34)  e=Ae+B(-FE —v + o (x) + (I+Bx )1+ BEN " (FE—aE)+v) )
If e(t) = 0 then e(t) = 0. Since e(0) = 0 we conclude that e(t) = 0 for t 2 0. In other words, the re-
alization () of N is not controllable because e(t) is unaffected by the input v(t).

A controllable realization of N is

(3.5a) {.=(A+BF)_+Bv
(3.5b) y =CC, + 7.8
(3.5¢) £0=0

Hence we conclude that G = NoM ! where N and M are realized by (3.5) and (3.3). Notice that
M is invertible since (I + B) is invertible by assumption.

Notice also that if (A,B) is a controllable pair then we can choose F so that (3.3) and (3.5) are
stable systems. Hence we have factored G over the ring of stable nonlinear systems. We are being
deliberately vague about the precise definition of a stable nonlinear system. It is clear that (3.3,3.5)
are "stable” under any reasonable definition.

Of course, we are interested in coprime factorizations over the ring of stable nonlinear systems.

Again we shall not try to make this concept precise but following Hammer{9) and others we shall

say that G =NoM ! is a coprime factorization if there exists P, the input/output map of a stable

system,

(3.6a) P: [3] - w




such that the composition
(3.60) [N ]:vio [3] ~w

is the identity, w = v.
The input/output map of [zl] can be realized by an n dimensional system

(3.72) E. =(A+BF)E +Bv

(3.7b) a &)+ (I+B.E)u=F +v
(3.7¢) y = CE, +7.(E)

(3.7d) £.(0) = 0.

One left inverse of (3.7) is realized by

(3.8a) 7. = Az, + Bu + B(a(z_) + B,z )u)
(3.8b) w =0 (z) + (1 +B(z) Ju—Fz,
(3.8¢c) 2(0) = 0.

If e=& —z_then
& = Ac + B(o(€) — & (x) + (BL) — Blx ) )

If e(t) = 0 then e(t) = 0 and since ¢(0) = 0 it follows that e(t) =0 for all t 2 0. If e(t) = & (1) — z (V) =

0 then w(t) = v(t) for all t > 0 so (3.8) is inverts (3.7).

However we do not know that (3.8) is stable. To insure the stability of (3.8), we must add to

(3.8a) an extra term. This term must stabilize (3.8) and must be zero when &c = z_ so that (3.8)

remains a left inverse of (3.7). How do we find such a term?

Notice that the dynamics (3.8a) is the same as the dynamics of the original system (3.1a) and

notice that the other y of (3.7) does not appear in (3.8). Perhaps we can inject y into (3.8a) to

stabilize it? This is more or less equivalent to asking whether output injection can be used to

stabilize the original system (3.1). This is always possible for systems in observer form, hence we

assume that there exists a change of coordinates
(3.9) X=X, + O (x,)

satisfying (2.2) transforming (3.1) into the observer form




(3.102) x, = Ax, +Bu + 0,(Cx_) + B,(Cx u

(3.10b) y =Cx, +7,(Cx)

(3.10c) x,(0) = x. ),

Suppose we consider a similar change of coordinates for (3.8)

3.1D z, =z, +§_(z,)

to obtain

(3.12a) z, = Az, + Bu + 0 (Cz.) + B(Cz )u

(3.12b) w =0 (z,+ O, (z,) + (I + B(Z+ Po(z,)) Ju— F(z + 0 o(2,)
(3.12¢) z,(0)=0

We add to (3.12a) the term

(3.132) (1) = 0,(Cze) + (B, =B, (Cz,)u + H(Cz, - y)
on the right hand side of (3.14a) to obtain

(3.1222) z, = (A +HC)z, + Bu + a_(y) + B,G)u — Hy
where y is a function of y of (3.7¢) defined by

(3.13b) Y=Y+ Y= C§; +7,(CEy)

and £_ is the state of (3.7) in observer coordinates

(3.13¢) . =8, +0E&,)

Notice that (3.13a) is zero whenever & = z_, hence the input/output map P of the (3.12aa, b,
c) is also an inverse of (3.7). Also, if (C,A) is an observable pair then we can choose H so that
(3.12aa, b, ¢) is stable.

Now we summarize the analysis into the following right factorization theorem.

Theorem If the nonlinear system (2.1) admits controller form (3.1) and observer form

(3.10), then there exist stable mappings M: vi—> u and N: vi—>y, where M is invertible, such
that the input/output mapping G defined by the system can be factorized as G=NeM"". And fur-
thermore, M and N are right coprime, that is, the mapping [x] DV—> [;] has a stable left in-

verse P: [;] +—>v such that the composition po [,l:;l ] is identity mapping.




4.Left fractional description In linear system theory, observability is dual to controllabil-
ity. Unfortunately the analogy is not so straightforward for coprime factorizations. The theory of
right coprime factorization of nonlinear systems is very similar to the theory for linear systems but
theory of left coprime factorizations for nonlinear systems has some substantial differences with
the linear theory.

We start with a system in observer form (3.10) realizing an input/output map G. We define an-

other input output map

~ lu
@.1) M: [y].—>w
by
(4.22) £, = (A +HOE~Hy + o @) + B,F)u

where y is an invertible function of the input y defined by

(4.2b) Y=Y +7%®)
and the output is

(4.2¢) w=~-CE +y
(4.2d) £,(0)=0

Consider the serial connection of (3.10) and (4.2), this is not a realization of the MoG but it is a

rez*zation of N = Mo [(I;] . ( This is the first important difference with the linear theory). If we

define { =x —§_,then N is realized by

(4.3a) L, =(A +HO), +Bu
(4.3b) w=CC,
(4.3¢) (0 =0

because in & , x, coordinates for (3.10, 4.2) only the £  are observable from the output w. We

consider N, M as a left factorization of G, although it is really a left factorization of [(I;] in the

sense that
~ l ~
(4.4) Me[g]= N




10

Notice that we cannot compose this on the left with M since M is not invertible as a map-
ping from [;] to w.

Perhaps the best way of viewing the situation is
I 0 7rIq 1
’ 144
(#:32) [ 0o M ] G [N]

or

(4.5b) [é]{ (I, :?i ]—l"[é]

The matrix notation is somewhat misleading because M depends on both u and y.

In any case, if (C,A) is an observable pair then (4.2) and (4.3) can be made stable by proper
choice of H. In particular, the nonlinearities in (4.2) are momeryless functions of the inputs u and
y hence (4.2) is BIBO stable.

Next we address the input/output map

(4.62) [-R, M ]: [;] —>w

where again the matrix notation is somewhat misleading since both u and y are inputs to f’l, ie.,
= ~ [u
(4.6b) w=-New+# []

This input/output map can be realized by an n dimensional system

(4.7a) éo = (A + HO)¢ + o, (y) + Bu + B (y)u — Hy

where Yy is an invertible function of the input y defined by

(4.7b) Y=y +Y,(Y)

and the output w is given by

(4.7¢) w =—CE +7y.

We wish to find an input/output map P realized by a stable system so that P is a right invertible of
[-%, M ]

(4.82) P:v—>[y]

(4.8b) [_ﬁ, M ]oP Vo w=v

We start by constructing an inverse for (4.7),
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(4.92) zo—Az —Hv + Bu + o (y) + B, (Y)u
(4.9b) y =Cz +v

(4.9¢) y =y +Y®)

(4.9d) u =7

(4.9¢) 2,(0)=0

We leave the u, which also appears in the dynamics (4.9a),unspecified for the moment. Notice that
if e = § — z_ is the error between the states of (4.7) and (4.22) then e = 0 whenever € = 0. Since
e(0) = 0 we conclude that e(t) = O for all t 2 0 and so by (4.7c) and (4.9b) we have w(t) = v(t). In
other words (4.9) is a right inverse of (4.7).

What about stability of (4.9)7 We would like to choose the output u in such a way that (4.9a) is
stable in some sense. If we ignore the —Hv term of (4.9a) this looks like the original system is in
observer form. This is not exactly true because y is defined by (4.9b) by a change of coordinates
(3.9). If we apply a similar change of coordinates (3.11) to (4.9) we obtain

(4.10a) ic = Az_+Bu+B(a(z) + B (z)u) - (1 + %(zo))mv )+
ZO

0
(1+ ai;%o»uao(cw V) = 0, (Cz)] + [Bo(Czo+ v) = Bo(Cz,)lu)

Suppose we choose an F such that (A + BF) is stable and define u by

(4.9dd) a.(z)+ (I+B.(z))u=Fz_.

The u in (4.9d) is chosen in (4.9dd).

When the input v = 0, (4.10a) becomes

(4.10b) z_=(A + BF)z, .

We view (4.10a),(4.10b),(4.9b) and (4.9¢) as a realization of P : vi—> [;] then P is a right in-
verse of [_f\], M ]

We summarize the above analysis as the following theorem.

Theorem If nonlinear system (2.1) admits observer and controller forms, then there exist

~ [u ~ ~ ~ ~ ~
stable mappings M:[ ]r——>v and N: u—>v such that M°[(l;] = N. Furthermore M ahd N are
y
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left coprime under the sense that the left combined mapping [_ﬁ, M ] : [;l,] +—>v has a right stable
inverse P: vi—> [;] such that the composition [_fj' M ]oP is identity .

5.Bezout identity We conclude by noting that a "nonlinear Bezout identity” holds for the
above. In other words beside P being a left inverse (3.6b) for [{:}l ] and P aright inverse (4.9b)

for |, M ] itis also true that

(5.1) [-R [N ]:vim [§] - w=o0
and
(5.2) PoP:vi> w=0.

We summarize these equations by (5.3) in the following theorem.

Theorem (nonlinear Bezout identity) The systems defined in last two thcorcms
[R;l] [—N M] and P satisfy the following Bezout identity:

p M I0
i [l l-Lo o]
-N,M N 0 I
M ~ jd o~ - . .
where [N ], P, [—N, M ], P have realizations as discussed.
6.Conclusion We have briefly described an approach to nonlinear factorizations based on non-

linear normal forms. The research is just the beginning. Many concepts are not rigorously defined.

We hope that this attempt will give the nonlinear system study a push in this direction.




..7.————/-

-
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The spacecraft attitude control has been studied before, see
[3). In this note, we give a method of observing the attitude of a
freely rotating spacecraft by measuring one of its principal axis.
This problem is solved in §2 and §3. In §4, a method of
determining the angular velocity by the trajectory of one of its
coordinates is given.

1. INTRODUCTION

In the following, we consider a freely rotating rigid body
with no externel torques acting on it. Let {e),eo,e3} be a set of
orthonormal axis fixed in the spacecraft, with the origin at the
center of @m&md each axis parallel to one of the principal axis. A
second frame {ry,r9,r} is an inertially fixed basis. In page 445
of [2), Symon describes the motion of a freely rotating body as
follows. Fix an ecllipsoid on the spacecraft, which can be
represented as

1=] 1=

3 3
[inei | zli"iz =1}
1

It is called the inertia ellipsoid. There is a fixed plane, P, which is
called the invariant plane. As the spacecraft is rotating freely, one
can imagine that the inertia ellipsoid is fixed on the spacecraft and
it is rolling on the invariant plane without slipping and its center is
fixed at the origin, see figure 1.

Suppose r is the vector from the origin to the point of
contact between the ellipsoid and the invariant plane. Then, the
angular velocity ® satisfies

@ = br

where b is a constant.The following equations describe the
evolution of the spacecraft’s attide

Loy + (13- Iwye3 =0
Ly + (I - [3)0y03 =0

Ly + Iy - I wywp =0

. siny cosy
= -1 +
¢ sin@ 1 sin@ M

- smwcosem ) c:os\;lcosem2 .

sin@ i sin@

0= cosyy - sinywy

where (¢, v, 8) are Euler angles (see [3]),and
3
W = Z | w;e;
i=
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is the angular velocity. The inertia tensor is
Ij0 0
1=]0 Iy 0
0015

Inerua Ellipsoid

Invariant Plane

L

Figure 1. The inertia ellipsoid rolls on the invariant planc

2. OBSERVABILITY
Suppose the output of system (1) is the position of the
third principal axis, e3(t), in inertial coordinates. We consider the
observability of the model, i.e, whether the complete motion can
be determined from the time history of e3(t)in inertial coordinates
and the equations of motion (1). Rewrite the system as follows:

@1 = awyw;
wy=Po;w; 2-1)
03 = 0107
¢ siny cosy o || @
sin6 sin@
. ©2 22
v -sinyctgh -cosyctgh 1 22
w3
[ 61 L cosy -siny 0

The inertial coordinates of ¢4(t) are the observation and are given
by

‘\/ 1 - cos2@sin¢ h1(6,9)
Y=l A1-cos28coso | =] h2(6.9) 2-3)

cosO h3(6.¢)

Here

o

l2-[3 l3-ll ll-lz
B "R A ©

Theorem 1.The system (2) is observable iff o+ # 0 and
(B+1)w12 + (a-l)m22 #0.




Proof: To prove this system is observable, ﬁsing the
method of [1], we need to find the dimension of the distribution

C(r) generated by {dy , Lgdy, .., LF“ldy]. Because

h3=i q1~h12+h22

the dimension of C(r) can be determined by:

dhy, Lgdhy, o, L 1dhy

But Ldehi. i=1,2, are complicated. To determine the dimension,
we make a change of coordinates in the output space. Let
dh; dh,
d a6
dhy oh 2
d¢ 9o

. kx
Then, det(A) = cosBsin6; and A is nonsingular whenever 0% 5

.The angle 0 depends on the choice of the inertially fixed basis.

We can chose suitable basis to avoid the case 0 = EZE in a local

neighborhood. Therefore, by change of coordinates in the output

space we can take 6 and ¢ the output..The observability of (2) is
equivalent to the observability with respect to the output

ol

By calculation, we know that
L6 = wjcosy - wpsiny
. 1
=(w
Lo = (0ysiny + mzcosw)gﬁ
L26 = sinfcosO(Lp4)? - w3sind(Lp4)

+ auyw3cosy - Popwzsing

coso

L0 = ctgdLpd)(Lg) +— (LpOLg)

* 0)3sin9 * sin@ a3t sin@ 193

In dLF2¢ and dLer. all the terms containing d6, d¢, dLg¢ or
can be cancelled, the dimension of C(3) is the same as the
rank of the following matrix:

10 0 0 0

0
01 0 0 0 0
00 - Sy-,Cy Cy Sy 0
090 ©Cy-wrSy Sy Cy 0

0 0 -00y035y-Buw03Cy B35Sy aw4Cy (a-1)ayCy-(B+1)a, Sy
00 umz(o:,Cv-Bwlwﬁv Bo)3Cv aw,Sy (a-l)o)ZSw»(Bﬂ)mlC\y

where Cy = cosy and Sy = siny.
The determinant of this matrix is

(B + g2 + (& D)@+ B)
Therefore, this is not zero iff C(3) has full dimension.

Remark 1: (B + Dwg2 + (@ - 1)0y2 # 0 implics that
@jand , can not be zero at the same time. If W) = w9 =0, then

the spacecraft turns around e3, the output is a constant vector and
itis impossible to determine ey, e; from the trajectory of es(1).

Remark 2: The condition ¢ + § # 0 implies L #1),IfI} =
I, then the spacecraft is symmetric with respect to e3, We can not
tell the difference between e and €. Moreover, €, and e, are not
uniquely defined. So it is impossible to determine the position of
[ 1 e2.

3. ATIITUDE DETERMINATION

In this section, we assume that I} > 15 > I3and w3 # 0. If

w3 =0, then w; # 0 (see [3]). So, from the similar method in this
section, we can determine the attitude by measuring €.

From [3]and the introduction, we know that the motion of
the spacecraft is totally determined by the following three
constants.

, (1) The direction of L, which is the normal vector of the
invariant plane P.

(2) The distance, d, from the origin to the tangent plane P.

(3) The energy T.

As the inertia ellipsoid rolls on P, the vector eg turns
around the axis L. Suppose that the coordinate of e3(t) in the
inertially fixed basis is (x(t), y(t), z(t)), it is expressed by Euler
angles in (2). Imagine that the curve described by e3(t) has mass

with the density a constant 1. Then L is a vector passing through
the center of this mass. So the coordinates of L in the inertially
fixed basis are

So So So
Jx(s)ds fy(s)ds [z(s)ds

0 y, = Jg 7 = g 3)
so "LT s "LT s

Where s is the length of the curve described by e3(1) at time t. The
number s; is the length of the smallest closed curve described by
e3(t) if €3(t) moves in periodic, If it is not periodic, we must take
the limit of these integrals as the length S £OCS (0 oo,

X, =

To find d, we consider L-e3. Let's take the inertia
cllipsoid as

llrlz + Izl‘zz + 131'32 =1 @)
So, the vector L is parallel to
Iirje; + Ihrgey + l3r3e3

3
where r= Z"iei is the vector from the origin to the point of contact
i=1
between the ellipsoid and the invariant plane. Therefore




3
lirie;
p=—21L ()

3
%2
=

Ilrl + Izrz + 131'3
A\ / YT A / Y2
i=1 i=1

bt
eL = T =1 Iid 6)
2

=1

d=Lr=

So

The function le3-L! has its maximum value iff Ir5) has its maximum

value.From the first three equations of system (2), we can easily
prove

2 2
223 constant
B 4
So (wo(1),m3(t)) describes an ellipse. In 2], it was proved that r =

ba , therefore (rp,r3) is also on an ellipse. The function Ir3(1)l
has the maximum value implies r9=0. The equation (6) implies
that Ir3(t)l has its maximum value iff IL-e3l has its maximum

value. Denote this maximum value of IL-e3l by A. So IL-e3l=A
implies ro=0. From (4) and (5), we obtain

Ilr12+l3r32= 1 a

Ijryeq +I3r3e3
-\ﬁ12r12 + 132r 2

so, L is in the e, €3 plane.

Loep=£+[T - (Leg)?=V1- A ©)

®

The equation (6) and (9) imply
rljd = +V1-A2
nlid=A
Therefore
’1”\/1_1}2- '2"13% (10)

Substtute (10) to (7), we have

1-A2 . A2 iy
a2 " 1pd?

From this, we obtain

an

Now, we try to determine the energy T by the frequency of e5.
Suppose

X = (x1(1), x9(t) x3())

is the solution of

).(l = QaX2X3
x = Bxyx3
X3 = YX1X2

such that the initial condition is on the inertia ellipsoid and

1

3
2
i=1

Its period is ag. Consider

d=

@ = Ax;(At)
It can be proved that @y, ®; and w3 satisfy the first three
equations in (2).The energy

2

1 A2 X
T=70le = T(11x12+12x22+ I3X32) =3

The period if © is aTO . Suppose the period of w5 is a, then

_%_3%
2= =T
So
2
T=8a_(a)7 12)

Here, a is the period of w3, which is unknown. But we proved
that

e3-L = r313d

r3=buy
where b is some constant. So, a is also the period of ey-L.

Therefore, we can use (3) to determine L, (11) to
determine d and (12) to determine T. From the proof, we could
sce that the center of the curve described by e3(t) is L, the

amplitude of le3-Li determines d and the frequency of le3-LlI
determines the energy T.

4. ANGULAR VELOCITY OBSERVATION AND THE

In this section, we study the observability of the following
system:

_ .




(;.)1 = (!0)20)3
@ = Boj w3
@3 = Yo 0,
y=w,;

13

This is a subsystem in the spacecraft attitude problem which is
related to the angular velocity and the energy. In this section, we
assume I} >Ir >I30rly <Iy <I3.

Theorem 2. If I3 # I (o # 0), ) # 0, @y + w320, then
system (13) is observable.

Proof: The following relations can be easily proved.
Lydoy = awydw) + amydey
Lp2do; = aBa)32dml + 20fw; w3day
+ 2d(ol + 20ryw; Wodwy

Therefore, the dimension of the distribution generated by dwy,
Ledw, Ldeu)l is the same as the rank of the matrix

1 0 0

0 aw; oy

0 2ayw(0; 2afw;wg
Its determinant is

20?01 Be? - yp?)

Because Iy >Ip >I30rI) <1y <I3, we know that B and v have

different signs. So, the distribution has dimension 3 whenever a
#0, g 20, 0)22 + a)32 # 0. The theorem follows.

Remark: In the remarks after theorem 1, we explained why
the condition 1 # I and m12 + o)zz # 0 arise. This can also be

used to explain the condition on I, I3, 0y and 3 in theorem 2.
The condition wj # 0 is necessary. From the following
discussion, we can see that if @y = 0, then @y, @3 can not be
estimated by y = w;.

Theorem 3. Under the same hypotheses as theorem 2,

m22=%w12- B-a-max(w,2) (14)
w32 =£m12 - yo-max(@;2) (15)

Proof: From (13), we have

140)12 =ld°’22_ld“’32
o & B dt ¥ dt
Therefore,
2 @2
220,

&g_l__ﬂ:z
Y a

Because Iy > Iy > I3 or I <1 <3, the constants & and § have
different signs, the constants o and vy have the signs.

0)22 m12

—“.——=q

B o
is an cllipsc. So (max(wy},0) is on the ellipse. So
cp=- a-max[colz)
Since

(1)12
e——=C
P 2

w32
Y

is a hyperbola, @ # 0 means that colz takes its minimum value if
(.03 =0. So

Cp=- a-min{mlz)

Therefore, the formulas in theorem 3 are proved.

In the following, we are going to find a kind of change of
coordinates so that (13) can be transformed to observer normal
form, i.e, we want to change (13) and make it look like

i = AX + f(y.u)
y=Cx
where (C,A) is an observable pair.

In [1], this method is discussed in detail. In example 7.3
of [1], the author proved a necessary and sufficient condition for a
system like (13) to be transformed to observer form. Unfortuately,
it can be proved that system (13) does not satisfy this condition.
Therefore, we have to think about this problem from another point
of view.

In theorem 4, we will find a family of changes of
coordinates x = x(,c) such that for each output trajectory, there
is a constant ¢y so that x = x(w,cq) transforms (13) to an

observer normal form. x(,c) and the observer normal forms are
continuous with respect to c.

Theorem 4. Under the same hypotheses as theorem 2,
we define

X1 =@
X2 = Ghw3
x3 = oafojoy? + ayoyan? (16)

2B+ P2+ )y} - oPrey
= - a{max(y?) + min(y2))

Then x(uxt),c) satisfies




.

il‘=x2
xg=x3+ 3@y +B2+Pyd +apry ()
x3=0

=X .
y 1 BT
IR Bt

. e
Pmof:'sug'snn‘[q (16) into (17), and use (14), (15).
In this note, we assume the spacecraft moves freely. An

obvious question is, how to observe the attitude when the system
has nonzero input ? This is an important open question.

Another interesting problem is, for what range of the

output, system gl3) can be estimated by theorem 4 without
changing the parameter c.

The results in this note are applicable to the rigid body

problem, but most recent spacecraft research is directed towards
large flexible space structures and the models are much more
complicated. However, the rigid dynamics are still interesting and
important.
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