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ABSTRACT 1.2 Fractal Generation

Iterated Function Systems (IFS) [1offers a method One method of generating fractal sets is by start-
of describing complicated digital files with a small set ing with a seed pattern which is then scaled and re-
of functions exhibiting fractal properties. In coding peated to produce the global set. Another method is
an image, first cover it with contractive affine trans- iterative fractal construction which is the way that
formations of itself and then save the coefficients of the IFS fractal is produced. An iterative fractal be-
the transformations. Decoding is performed by gen- gins with the selection of an initial value X0, which is
erating a dynamical system whose attractor is suit- the input to a function, f(X, ). The resulting func-
ably" close to the original image. The amount ofdis- tion value, X1, is then used as the next input to the
tortion is dependent on the quality of the initial coy- function with the outcome also applied as an input
ering. This paper will describe the mathematics of to the fnction. The structure of this mechanism
IF',. thir codia :inl e111 ii( g ol a digital image with a feedback loop that generates a sequence of points.
IFS. -rror analys5is of IFS compression. and conipar- - , V , where X+ 1 f( V,,). For this
isoii to ot bt con1'r'sioii ellqus

s. techiiues. -paper XN = (x,1 , y,) E R 2 . The overall result is a
Discrete-Dynamical System (DDS) whose geometri-

1 Introduction cal behavior is determined by the properties of the
generating equations.

Mandelbrot [i] coined the term fractal to describe
sets that demonstrate detail under any arbitrary 1.3 Dynamical Systems
magnification. Mandelbrot described the properties
of sets with non-integer dimension, fractal sets , and A Dynamical System is a set of rules that govern
produced many examples from nature: coastlines, the behavior of points in a well-defined space. Con-
clouds, brownian motion, trees, etc... Human-made tinuous dynamical systems can be transformed into
mechanisms also display fractal behavior: the stock discrete systems through application of the Poincare
rnarkc t. bouici g balls, dripping faucets, etc... Man- map. We will only concern ourselves with the discrete
delbrot44+,made it clear that in nature fractal ac- case. An IFS is an example of a DDS. Upper-case
tion has a limit while pure mathematical fractals have Xk, refers to points in ]R,2 . Lower case (xIk, y. ) refers
structure at all scales. but both have in common sta- to the coordinates of the point, Xk. We will look at
tistical invariance under transformation of scale. An sequences of points in R 2 that begin with an initial
IFS generates a set with fractal properties. point and follow an orbitiinder the guidance. fbtrules

determined by a famity of functions. The orit, is
1.1 Properties of Fractal sets '\ formed by, the iteration 6f the functions.

Fractal sets are self-referencing, producing similar 1.4 Notation of DDS
structure at smaller and smaller scales. This prop-
ertyv causes many fractal sets to be continuous but The rule N.+t = f(Xk.) for generating a sequence
non-differentiable. This property can be measured 1"0
with the fractal dinision, D, a scalar that repre- of point , -Tile n e pon s arts with
sents the limit of the number of discs of diameter t, n point X. . The next p
N(c), to cover the set as e approaches zero. f(X 0), N2 = f(X 1 ) ... and so on. The function f

has 2 variables , zk and yk, which are the coordi-

D him In N() D nates of the point Xk. This is the iteration process
t-0 ln(1/(' D = fractal dimension (1) which takes the output of the function at each step



and feeds it back in as input. This feedback progress that in most cases is chaotic with fractal properties.
is what generates complex behavior from a set of Hutchinson [2] and Barnsley [1] developed the con-
simple rules. In function notation the iterates are: cepts. An IFS is a set of contractive-affine transfor-
X0 , f(Xo), f(f(Xo)), f(f(f(Xo))), ... OR mations in R 2 . Associated with the IFS is a unique
Xo, f(Xo), f2(Xo), fa(Xo),..., f"(Xo). Both no- attractor, such that any random sequence of the IFS's
tations express the orbit of the original point, X0 . affine-contractive mappings will converge to the at-
The latter, with superscripts, gives the number of tractor upon iteration in R 2 .
iterates for X 0 to arrive at another point in the se-
quence. 2.1 Definition of Affine Map

1.5 Definition of Attractor of a DDS Definition 2 (Affine Map in R 2 )

Of interest is the long-tern behavior of the dynam- .4 Transformation 2 : - .p,
ical system. If the orbit of the dynamical system con-
verges to some local neighborhood and once entering IV X,) = (a b) (x ) + (e)
this neighborhood, stays for infinite time we say that 9k c d k f
the orbit has converged to an Attractor. Attractors
are typically points, periodic orbits, or quasi-periodic Affine maps in R 2 perform the operations of ro-
cycles. If the attractor is none of-the-above, then it tation. translation, and scaling on points X. =
is termed a Strange 41tractor which often has fractal (1yk. k) E ]R.2 .The 2 x 2 .Matrix (a,bc.d) accom-
properties. plishes rotation and scaling. The 2 x I NMatrix (e.f)

Definition I (Attractor ) P is an attractor of aperfors translation (ab.c.d.e.f E R.

DDS if there exists an open neighborhood of P. ' 9.9 Definition of Contractive Affine Niap
such that if.\ E U, X t p. - lim,P, f"(N) = P

1.3 Chaos in a DDS A contractive affine map in R 2 brings points closer
together. To define an IFS in R 2 we form a set

DDS's with attractors possessing complex geomet- of contractive-affine maps. The contractive property
rical behavior are commonly Strange Attractors with guarantees that the attractor will be well behaved
fractal properties. Systems with strange attractors and non-divergent. The IFS allows encoding a given
exhibit the properties of chaos. The IFS attrac- image as a set of transformations. The original in-
tors are commonly strange attractors and are Chaotic age can be discarded, it's information represented as
Systerms that arise from the iteration of determinis- the coefficients of the affine transformations. This is
tic sets of functions. Following the orbit of a DDS. the basis for IFS compression of digital images. To
once the sequence of points enters the boundary of find the transformations that will produce a given
the Strange Attractor it undergoes a transition from image we apply Barnslev's Collage Theorem which
order to chaos. The orbit of a DDS once it enters the describes a covering whose IFS will have a unique
attractor is chaotic in two ways. If the initial point attractor suitably close to the original image.
is perturbed even a small amount then the resulting
orbit will eventually diverge from the original (Sensi. Definition 3 (Contractive Affine Map in R2 )
tive Dependence on Initial Conditions). Additionally Let d(X, Y) be a distance function defined for all X, Y
the orbit within the attractor, given enough time, will in R 2 . Let s be 0 < s < 1, s=Contractive factor,
come arbitrarily close to every interior point (Topo- THEN a contractive affine map W, : R 2  -R 2 ,
logical Transitivity). satisfies d(tiV(X), TVi(Y)) < sd(X, Y) for all X, Y in

R 2.

2 Iterated Function Systems 2.3 Definition of IFS

An IFS is defined as a finite set of contractive
For image compression an Iterated Function Sys- affine-mappings in R 2 that map the space into itself.

tem (IFS) is constructed to have a unique attractor The contractivity factor of an IFS is the maximum



of the individual contractive factors of the mappings. point. The beginning iterations may be discarded
This definition guarantees that each IFS has a unique since they represent a transient containing no infor-
attractor. However, it is not the case that each at- mation. Once the sequence of iterations enters the
tractor has a unique IFS. attractor it will never leave.

2.4 Collage Theorem 3.1 Random Algorithm for IFS Attractor

The Collage Theorem [1] says that given an arbi- The random algorithm starts with an arbitrary ini-
trary image defined in a closed bounded space, such tial point X0 = (zo, yo) E R 2 . One of the mappings
as a computer screen, we can construct an IFS with a of the IFS, Wk, is then selected at random and the
unique attractor, that we can force to be arbitrarily next point, X1 , is found by evaluating Wk(X0) = X1.
close to the original image. Hence, X 2 = Wm(Xi) with Wm picked at random.

Successive points are generated similarly.
Theorem 1 (Barnsley '85) Let {W : Wi E Let {tV W E R2 , i = 1 ... , n} = IFS, VIV, (i =
R2 , i = i.... n} IFS, Let L C R2 , with 1....,n),3Pi ' y- 1=p, = 1 (see sec. 3.4) Now

d(L. U IV(L)) c C, C > 0, THEN d(L,A) < define a sequence of points {-Yi} i= X,.
( /(I - s), Where A Attractor of IFS, s = Con- 1V(X,-) with the constraint P(IV) = Pk. This
tractit,ity Factor. algorithm generates a discrete dynamical system

The Collage Theorem [1] states that the inverse prob- X0, .X_.. X that converges to a unique attrac-
lem can be solved. One method is to cover an image tor. Each point in the sequence is generated by one

with contractive-affine mappings of itself. Then solve of the maps picked at random. As long as the ini-
the transformations to obtain the IFS. Once the IFS tial point is within the IFS's basin of attraction then

i a the DDS will eventually converge to the attractor.assigning The number of iterations for the random sequence toa probability weighting to each map then followinga ranom orbit that will eventually convere to the converge to the attractor depends on the distance of
the initial point from tie boundary of the IFS's at-attractor. If the covering was done with care it will

be suitably close to thle original image. tractor. Generally the first 50 iterations represents a
transient and should be discarded.

2.5 Collage Theorem algorithm2 C3.2 Deterministic Algorithm for IFS Attractor

For fast image compression the best situationo best man au omcsalgorith fo t siatin An alternate method of finding the attractor of anwould be an automatic algorithim for generating the

IFS of an arbitrary digital image. Unfortunately it IFS is to simulta0eously apply all the mappings, of
- 0the IFS, to an initial set of points rather than just oneis difficult to implement such a process because of I

the numerous degrees of freedom possible in covering point. In this algorithm no probabilities are assigned
to each map causing all thle functions to cont ribute to

with the afline transformations. The example in this t teattractor equal.Ti ehdi lwrta h
paper was done by tiling the image with contracted the ually. This method is slower than the0 ~random algorithm, unless programmed onl a parallel
copies of itself controlled by affine maps. The cover- r
ing was done by issuing commands from the keyboard processor, and has less versatility in producing dif-

ferent textures in the interior of the attractor, sinceand mouse that applied the affine maps on the com-pute sceen One th enembe o map adquaelythe distribution of the mappings is uniform (see sec.puter screen. Once the ensemble of maps adequately 3.)

covered the image to be compressed, they were saved 3.4).
in a file to be used in generating the attractor.

3.3 Finding the IFS

3 IFS Attractor To apply the collage theorem in R 2 , cover the tar-
get image with contractive-affine copies of itself then
solve for the coefficients that map the original image

Each IFS has a unique attractor, but the reverse to each of the tiles. For example consider the affine
is not true. Given an IFS, it's attractor can be function necessary to map a large triangle, T, to a
found by a random iteration starting with the initial contractive copy of itself, t. Identify 3 tie points on



T and the 3 corresponding tie points on t. Each point 3.5 IFS Probability Distributiont/ , y )(

of T, (Xk,Yk), is mapped to a point of t, (4,yk) (k
1,2,3), by the contractive-affine mappings: Assigning a probability to each map of the IFS

determines the distribution of points in the inte-
(Xk' a b) (Xk.\ (e) k) rior of the attractor. Lowering the probability of a

Yk= + = (2) map lowers the frequency of points visited by that

map. Changing the probabilities does not change the
With 3 tie points the affine map can be represented boundaries of the attractor, what changes is the dis-
as 6 linear equations, which can be partitioned into 2 tribution of the attractor's interior points. The at-
systems of simultaneous linear equations, of 3 equa- tractor's boundaries remain invariant as long as the
tions in 3 unknowns, sufficient to solve for the coeffi- affine-map coefficients remain the same. By count-
cients: a, bc, d, e, and f ing the total number of iterati, - that visit the at-

Solve for a, b. and c as a system of linear equations, tractor and the number that visit each pixel a his-

Xi Y1 (a (x tograrn of the DDS density is generated. The rela-oe ford 1 a x'1  tive density. rdense, ofeach pixel would be: rdense =X",_ y -2 b = 4f; 3 N (i,j)/Ite ir, w ith V;(i,j) = total iterations at pixel

X3 Ya e 3 location (i, j) and Iter = total number of iterations
, fsimilarly, inside the attractor. Once rdense is computed a color

/ Yi I ~lookup table could be constructed to assign color val-
,' U 1 ues to the attractor based on the histogram. Textures

., .1=) - (.t) could also be generated by reassigning the proba-
)Y3 bilities to generate a different histogram with cor-

Each mapping contained in the IFS for R 2 is repre- responding density.
sented by 6 numbers: a,b,c, and d which denote ro-
tation and scaling, while e and f signify translation.
If there are n mappings thei the IFS is encoded with
6n coefficients. To generate the attractor of the IFS, 4 Measurements of IFS
equivalent to decoding, a probability weighting is as-
signed to each map. To measure the error between the original image.

L, and the IFS's attractor, A, two methods are used3A. Assigning probabilities to IFS
n in this paper. The first is relative difference rdiff

and the second is the Hausdorff distance hid between
Suppose there are i, mappings in the IFS, then to and A. Both metho ass o nco di ital

L and A. Both methods assumne monochrome digital
use the random algorithm to generate the attractor i. , 0images. The rdiff measures points present in L but
it is necessary to assign n probability weightings, one0 n not in A and is d imens ion less. The rdiff measure
to each map. The sum of the probabilities should be would be 0 for an errorless compression, I for the
one. worst-possible case.

Determine the probability, Pi, )feach W1 by taking
the absolute value of the determinant of the rotation- ( number of points in IL - A 1 1/2
scaling matrix. This weighting is most accurate if rdiff total number of points in (6)
the coverings do not overlap. The sum is normalized
to unity by dividing by the absolute sum of all the The Hausdorff distance is a metric between 2 sets in
probability weightings. This insures that each map a metric space, in our case the space ft 2 . The Haus-
is randomly selected, directly proportional to the in- dorff metric is found by first finding the minimum of
formation it contributes to the attractor. the distance from all the points in L to the points

of A. Next the minimum of the distance from all the
de / i points in A to the points of L is computed. The max-

de i bi - imum of these 2 minimums is the Hausdorff distance.
Pi \ ci di = Iaid. - bicij Because the metric space the algorithm works in is a

~( d a: b)i 1 jaibi - cidil computer screen, the hd units are in pixels.

(5) hd(L, A) = Max (Min(d(L, A)) , Min(d(A, L))),



Where d = distance function inal set, an application of Barnsley's Collage Theo-

4.1 IFS Compression rem. The 6 parameters per map are saved as the code
for the compression. To reconstruct the original im-

A computer experiment was conducted with the age, a probability weighting is assigned to each map.

target image being a digitized map of the U.S.A.. The weighting is determined by the information each

The Collage Theorem was applied and 50 contrac- map contributes to the attractor and is computed

tive affine transformations constructed that covered strictly from the parameters. To generate the attrac-

the original image. Associated probability weight- tor an initial point is selected which is used as input

ings were computed, as in sec. 3.4. The random to one of the maps selected at random. All the suc-

algorithm was used to generate the attractor of the cessive points are found by iteration of the maps se-
lected by random. This generates a random sequenceIFS. The compression results are measured in 2 ways: lce yrno.Ti eeae admsqecof points that, after settling down, converges to the
attractor. The attractor of this discrete-dynamical

ratnt otl (7) system will be within epsilon distance of the original

total of numbers to describe A image. Epsilon is determined by the quality of the

number of bvtes i L covering. This compression method works best with
ratbyt = nuiMber of bytes in A (8) images that display self-similarity, such as coast lines.

For example. if L could be described with 1500
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Compression with IFS is accomplished by finding

a set of contractive-affine maps that cover the orig-


