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1. Introduction. We are concerncd with a klass offroblems described in a somewhat
imprecise way as follows., Consider a lincfr opgrator of the form L + V(x), where

I, is the generator of a Markov process

X nd thfg"potcntial V(x) is some
sv

real-valued function on the state space “of x¢. .We arc interested in probabili-
. : . . 4 e .
stic r ns for solutions ¢(s,x) to backward cqua§i22~:>

(1.1) FM -g-":- s Lp+ V(X =0, s<T,

with data ¢(T,x) = ‘(A) at a final time T._ It is well known that, under suitable

assumptions, <//
F
(1.2) $(s,x) = E {¢(xT)cxp I V(x )dt} )<<f61

gives such a represcntation. For instance, if Xp = Xt W =W, with W, @ *\\

brownian motion, then (1.2) is just the Feymman-Kac formula. We scek a different
kind of probabilistic representation for I = -log ¢, il {(s,x) is a positive
solution to (1.1). 1In this representation the gencrator I is replaced hy another

generator 1% of a Markov process £, (possibly time inhomogencous.) The operator

12 is chosen to solve an optimal stochastic control problem of the following kind.

The logarithmic transformation 1 = -log¢ changes (1.1) ‘into the nonlinear cquation

(1.3) {‘I-‘— S (1) - V() = 0, where
(1.4) i = -efee .

The function H is concave. For a fairly wide class of Markov processes, we wish

to write (1.3) as the dynamic programming cquation associated with a suitable optimal
stochastic control problem for Markov processes. The stochastic control problem is
specified by giving: (a) a suitable control space U; for cach constant control

u € U, the gencrator 1" of a Markov process; and (c¢) a cost function k(x,u)

) associated with constant control u and state x. Sce [6, Chap. VI]. It is re-

‘This research was supported in part by the National Science Foundation under contract
MCS 79-03554 and in part by the Air Force Office of Scientific Resciarch under contract
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‘quirdd that -

(1.5) NEIy(x) = min [LYT() + k(x,w)], x €L .
. u€y
Then (1.3) becomes a dynamic programming equation:

(1.6) ﬂ£_+ min [L“I + k(x,u) - V(x)] = 0.

ds u€u
Time and state dependent controls u(s,x), in feedback form, with values in the
control space U are allowed. The stochastic control problem is to find a feedback

u minimizing

T
(1.7) J(s,x3u) = ESXJ [k(Et,ut) - V(Et)]dt + \P(ET) )
s

where Et is the ‘(controlled) Markov process with gencrator bg, 55 = x, and

u, = gﬁt,ﬁt), ¥ =-log .

The Veritication Theorem of optimal stochastic control theory [0, p.l159] asscerts that
if I is a "well behaved" solution to (1.3) with I(T,x) = ¥(x), and'if certain other

“schnical conditions hold, then

) I(s,x) = min J(s,x;u) .
u -

Morcover, an optimal fecdback control gﬁs,xﬁ is found by minimizing LuI(s,x) + k(x,u)

over the control space U.

In this paper we take § = R", a subsct of n-dimensional cuclidean space. In §2

we rcview the case when Xy is a diffusion process on R"." For nondegenerate dif-
fusions, an appropriate stochastic control problem is immediately suggested by the
form of cquation (1.3). In 8§83 wec consider jump Markov processcs X, and associated
stochastic control problems. The choice of an appropriatc control problem is less
immediate for jump processes than for diffusions. In his Ph.D. thesis S-J Sheu {11,
uses a different control formulation, valid for a wide class of gencrators L(84).

The optimal control in his sensc leads to the change of probability measures described
in (4.5). In §5 we give a formal derivation indicating why stochastic control methods
can be used to obtain asymptotic estimates. for cxit probabilities for a family xi

of ncnriy'dctcrministic jump processes. The results are not new (sec [1][12]); the -

interest is in the stochastic control method. Rigorous proofs are given in [11] using ~

such methods. ? ‘

In 86 we consider briefly the bonsker-Varadhan formula for the dominant cigenvalue

Al of L+V, from a control vicwpoint. For nondcgencrate diffusions the stochastic

control representation obtained for A_  is the same as Holland's [9]. . .buelom/
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v 2. Dt;fusionAppocesses; Let "Xy be a diffusion in n-dimensional R" , with gencrator

Y Y

1
Lf = E-tr a(x.)fxx + b(x) - fx

(2.1)
}
n " a2
0°f
tra)f._ = ¥ o, (X)g—r—" .
XX 4 3=1 1 axiaxj
and with £, the gradient. In this case,
' 1 1 .
(2.2) i = E;tr_a(x){xx + b&)°1x - E-Iia(x)lx o
: |
We may take U = Rn, u = (ul,---,u“),
\ u _ l‘ .
(2.3) LI = 5 tr a(x)Ixx +u 1x
(2.4) ' k(x,u) =,%(b(x)-u)'a‘l(x)(b(x)-u).

For a feedback control u , the drift coefficient b(x) in (2.1) is éhungcd to drift

ps s u
¢ ficient u(s,x) in the operator L— .

o ———— — — —

The stochastic contrdl representation (1.8) was used in [3] to give a stochastic
control proof of results of Ventsel-Freidlin tybe‘for some large deviations problems
for ncarly deterministic diffusions. In thosc results a(x) 1is replaced by ea(x), i
g small. In [4] the logarithmic transfoimation was uscd to obtain stochastic ) §
representations for positive solutions to the heat equation with a potential term, i
and to obtain the '"classical mechanical limit." In [5] [10] the same lopgarithmic
transformation was annlied to solutions to the pathwisc cquation of nonlincar filtering.
Large deviations results for the nonlinear filter problem arc obtained by Ilijab

[8] clscwhere in this volume.

In [7] llernandez-Lerma obtained similar results for certain degencrate diffusions,

for which the matrix (aij(x)), i,j=1,-~+,m < p is positive definitc and aij(x)=0

s = amant e — o m—  ——

if i>m or j > m.

3. Jump processes. To motivate our choice of stochastic control problem, let us

begin with a simple special case in which the process Xy jumps only by a fixed
increment y (as for examplc for a Poisson process.) In this casc the generator

L takes the forn

LE(x) = a(x) {£(x+y)-£(x)].

e e Tt ke




'From*?l.u) )
N(1)(x) = a(x)( - exp [L(x) - L(x+y)]).
The dual function to the convex function ¢ is u - u log u (u> 0):

(3.1) ‘ e = max fu - uxlog u + ur] .

us0
The max occurs when 1log u = r. Let

(3.2) LI(x) = va(x) [I(x+y)-1(x)], u> 0

(3.3) k(x,h) a(x)(u log u - u+l).,

By taking r. = I(x)-I(x+y) in (3.1) and changing signs (to replace max by min),

we get the required form (1.5) for H(I). In this spcciul.cusc the control u

is scalar, with u > 0. A constant control u changes the jumping rate from a(x)
to ua(x). A feedback control u(s,x) changes the rate at time s and state x from
a(x) to _g(s,x)a(x). If I(s,x) = -log ¢(s,x) as in §1, then the opéimal feedback

control is u*(s,x) = d(s,x)" 1o (s,x+y).

Let us now consider a jump process X, with generator of the form

(3.4) LE(X) = a(x) f [£(x+y) - £0]7 (x,dy).
n

’ R .

llere f € B(R"), the space of bounded Borel ncasurable functions on R, We assume

that a € B(RM) and that w(x,*) 1is a probability measure with a(s,A) Borel
mcnsurhblc for cuach Borel sect A and 7(x,{0}) = 0, Additional conditions on a

and " mneed to be imposed later. Motivated by the special cdase above, we control

the jurping distribution, replacing a(x)T(x,dy) by a(x)u(s,x;y)u(dy). ‘lo.formalize

this idea, we introduce the control space

1

(3.5) U= {uC): uu € B(R"), u(y) > 0 for all y¢€ R" ).

Suitable Lu(.) ard k(x,u(*)) are obtained by intcgrating (3.2), (3.3).with respect
to MW(x,dy):

(3.6) L“(')J(x) = a(x) I'Jl(x+r)-l(X)]U(y)"(x,dy)
R

(3.7) K(x,u(+)) = a(x) J [u(y) log u(y)-uy)*1Jn (x,dy).
Rﬂ

We get as in equation (1.5)

. (3.8) D) = min L1004k x,u6))
uf+)eu
If ¢/s,x) is a positive solution to (1.1) and 1 = -log ¢ , then the optimal Feed-

————re «
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back control is
* .
(3.9) u (s,x;°*) = "T(S(;"—;-)—’— .

As outlined in the next scction, it is sometimes more convenient to consider instead
a related control problem. In particular, the formulation in 84 is the one used in
[11] to give control method proofs of the rcsults on the cxit problem mentioned in
§5. '

4. The Sheu formulation. In [11] another kind of control problem is considered. Let

L be a bounded linear operator on C(Z), the space of continuous bounded functions
on ! , such that L obeys a positive maximum principle. (In particular, I may

be of the form (3.4) above.) For w = w(*) a positive function with Ww,w _}'G'C(E),

n

definc the operator 1Y by

i~

(4.1) I = 2 qLwf) - fLu].
In addition, define Kv(x) by
(4.2) K= (¥ (logw) - %Lﬁv).

p .o . s .- ~ ¥
For unbounded L, additional restrictions on w arc necded in order that Y oand WY
be well defined.

From the duality (3.1) between f and u log u - u, it is not difficult to show {11]
that for 1 € C(})

(4.3) HEI) = min (Y1 + €] .
w

The minimum is attained for w = cxp (-1). For 1. the generator of a jump process,

the two formulations are rclated by [ , where u is the (stationary) fcedback

control dcfined by

(4.0) | u(xy) = 2

Morcover, K'(x) = k(x,u(x;+)).

In Sheu's formulation, thc control problém is to choosc ‘Vt(-) for s <t 5'T to
minimize i
T we o
Flsxim) = B K 58 - VED e + vEp)
s

W
whern € ic a Marlov nracece with onnevatne 1. 7 and with §F = «, flore

et e m s e 4 E— » - el eis bl Ritatuiidumesnninit it isutataiiiiidontitabieliisatamind
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%

1 t .
we assume that L is the gencrator of a Markov process x_ which implics in particu-

t
lar '.‘:’ = 10

Suppose that ¢ is a positive solution to (1.1), with 4’(5,*),‘1’(5;,')"'l €cl)
and with V € C(Z). We can use (4.3) together with the Verification Theorem in
stochastic control to conclude that I(s,x) < S (s,x;¥)  with equality whdn

* *
We = $(t,»). Thus the control W = ¢(t,) is optimal in this sensc. " For jump

processes this agrees with (3.9), according to (4.4).

%
W
The change of generator from L to L =1 t corresponds to a change of probability
measure, from P to 5, as follows: '
- B JE(x ) (x,)]
4.5 3 c ) = = .8 T, f .
(4.5) lsxf(gt) Iiwtb(x,r) K s<t<T, f €C()

This is scen from the following argument. The denominator of the right side is
d(s,x). Let

Wis,x). = B [E(xJe(x)] = HSX[F(xt)¢(t,§t)] .

Since ¢ and ¢ both satisfy (1.1) with V = 0, the quotient v = w¢-l satisfies

v _ _ |l‘_"i N LA % [Levp) - v LT,

95 ¢ ¢2
(1.6) %{-+ =0, s <t,

with v(t,x) = f(x) as required.

The author wishes to thank M. Day for a helpful suggestion rclated to (4.5).

5. Asymptotic estimates for cxit probabilities.

Let xi be a Family of Markov processes, s < t < T, depending on a small parameter

e > 0, such that xi tends (in a suitable sense) to a deterministic limit x2 as

£ 0, Let ¢€ denote the probability that x& belongs to a set ' of trajcctorics
which docs not include trajectories "ncar" xo . Typically ¢C is exponentially
small., Its asymptotic rate of decay to 0 can be found from the thecory of large
deviations [1}[12][13]. 1n the cxponent a constant I0 appears, which is the mini-

mum of a certain action functional over a sct of smooth paths.

In many instances thesc dsymptotic estimates can also he obtained by introducing a
stochastic control »roblem of the kind indicated in previous scctions, for cach € >

131 1117, With this method a (stochastic) optimization problem appears for cach

2 = esremay  —

ey e ———- S—
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% 3
"€ > (, not just in the limit as € -+.0.

. : ) £ : s
Let us consider the 'special.case when ¢ is an cxit probability:

¢° (s, x) P (E

<,

€ . . . R € . . ’
where T is thie exit time of x, from a bounded, open set D& R", and where xg €D

t

for s <t <T. We consider nearly deterministic jump processes, as follows. Nearly

deterministic diffusions were consicdered in [3] [7].

rescale the jump process in  §3, replacing y by

’

. £
obtain thec generator for x.:

Following Vent'cel [12] lect us
gy and a(x) by c']a(x) to

t
(5.1 Lef(x) = e'la(x) J [F(x+uy]-€(x)] m(x,dy).
ph

Fix xg = x. TFor s <t <T, the path x® tends in probability as €~ 0 (D-metric)
to xU , where xg satisfices

(lxg 0 0
(5.2) ac a(xt) J yn(xt,uy), s <t < T,

n{n

. cqs € . s .
with xg = x. The cxit probability ¢ (s,x) is a positive solution to

(5.3) &+ 19° =

. 0 - . . . &
in (~,T) * 1, ‘The logarithmic transformation T

(5.4) g%-+ e 11,7 11%) = o,

where HE(I) = ~c]L€(o-[). Then

: L .
= -t log P~ changes (5.3) into

(5.5) el (e71) = a(x) I i - cxp[“")'ls(X+ ) (x,dy)

Rll

For I(x) such that I, I\c are continuous, hounded

. -1y o _
éig € g (€D ”O(X’Ix)
with Ix thé gradient and
(5.6) ( Hptem) = atx) [ - o
R

This suggests (but certainly does not prove) that

3

€
1

) y)n(x,dy).

tends to a limit IO as £ o 0,

0 s e . . .
where 1° satisfies (perhaps in some generalized sensc)

 —— e i
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0
_ a1 0
(5.7) Ty + ll(X,Ix) = ).

Now (5.7) is the dynamic programming equation for the deterninistic control problem

with control space U as in §Z, with running cost k(&t,ut(o)),_and with dynamics

(5.8) o= b

b(x,u()) = a(x) J y u(y)un(x,dy).
ph
€
Sheu [11] proved that indeed I - 1 as €+ 0 under the following hypotheses:

(i) a(s) is bounded, positive, and Lipschitz;
(ii) m(x,dy) = g(x,y)ﬂl(dy) with "l a probability measure, ni({o}) = 0,
g(+,y) uniformly Lipschitz, and 0 < ¢y < g(x,y) 2y
(Gii) I L CXp (a|y|2)nl(dy) <o for some O > 0{
R

(iv) the convex hull of the support of ny contains a ncighborhood of 0.

Condition (iv) indurcs that Ho(x,p) is the dual of the usual "action integrand" A(E,£)

in large deviation tlieory, where for &,§ € R

(5.9) AE,E) = min {k(E,u(+)): é = b(E,u(-))} .
u '
Then U
(5.10) - Io(s,x) = min J A(Et,ét)dt, Xen.
S

The minimum is taken among C1 paths §,. with §_ = x such that Ct First reaches
-3 at time O <. The requirvement in (5.10) that Et exit From D hy time T
is suggested by the boundary condition [E(T,x) = + o for x € D. This corresponds

in the limit as € - 0 to an infinite penalty for failurc to rcach D by time T.
In both [3] and [11] the stochastic control method used to show that 1% - I0 depends

on comparison -arguments involving an optimal stochastic control process when € > 0

and an optimal 50. in (5.10) when €=0.

6. The dominant eigenvalue. 1In [2] Donsker and Varadhan gave a variational formula

[(6.4)below] for the dominant eigenvalue Al of L + V. Another.derivation of this

~

formula is given in [11], using the family of operators ¥ mentioned in §4.

_When L is the gencrator of a nondegenerate di ffusion process, Holland [9] expressed

Al as the minimum average cost per unit time in a stochastic control problem. let us




. Y

impose strong restrictions on L, and give a short derivation of (6.4).

Assume that L+V .has a positive cigenfunction ¢1 corresponding to AI:(L+0)¢1=Afb1’

Let I, = -log ¢1. Then

1) ] Y
(6.1) i n(Il) + V 1
Assuming that there is a stochastic control representation (1.5) for IH(I), cquation

(6.1) becomes

(6.2) min [yull(x) + k(x,u)] - V(x) = -\

uEl 1

Equation (6.2) is the dynamic programming cquation for the following average cost per
unit time control problem. We admit stationary contrcls u(e) such that the con-
trolled process with generator 12 has an cquilibrium distribution M . The criterion

to be minimized is
(6.3) I = fz [KC6,u00) - V0O du().

. . ey I T u oo
(If therc is a unique cquilibrium distribution y =p— then reference to i on the
left side of (6.3) is unnccessary.). The principle of optimality states that

-Al_i J(u,u) with equality provided u*(x) gives the minimum over v €U of

Lull(x) + k(x,u).

Let us now assume that ¢ is compact, that the generator L is bounded on ¢

and V €C(L). As in [2) for any probability measure M on J let

F(w) = sup J, H(Ddp = -inf J %?-du ,
1 ) p> 07y

where T, P €C(L). The Donsker-Varadhan formula is

(6.4) . Al = sup [ I vdu - _#Z(u)].
v )
Let

P(T,u) = IE [-11(1) + V)dy .

The function P is convex in I and linear in it . Formula (6.4) will follow if we

can find Il’ W, with the saddle point property:

1

(6.5) P(Il,u) E-Al f_P(I,ul) for all 1, u.

(This ideca was known to Donsker and Varadhan a long time ago, and figures in their




«
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LN s

From (6.1) we have in fact P(Il,u) = A for all probability measures M« Lon %

1 u
To get the right hand incquality, choosc. gf as above and assume that 1™ is
bounded on C(L). The corresponding Markov process E: has an cquilibriuﬁ distri-

bution ul, and

*
(6.6) fz-(l}i Ddy =0, for all 1€ G(Y).
u® .
(If 1~ 1is unbounded ge nced to assume the cxistence of “l’ aid to restrict
I to the domain of L% ). By taking u = gf(x) in (1.5) we have for 14 C(})
*

u *
L= I+ k(x,u) -V>HTI)-V.
By integrating both sides with respect to ul,

Ay =L 2 -PLK), A PN,

as rejuired.

In order to derive (6.4) in this way we had to imposc unnccessarily restrictive
hypotheses. In particular, we assumecd that kl is a dominant cigenvalue in the
strict sense that (1, + V)fb1 = X1¢1, with ¢1 > 0. Actually, (6.4) holds if L 1is
the gencrator of a strongly continuous, nonnegative scmigroup Tt on C(}), such
that Ttl = 1, L has domain dense in C(}), ang . satisfics the maximum principle

[2]. With such assumptions A] is a dominant cipgenvaluc in the sensc that the

spectrum of I, + V. is contained in {z: Re z < Xl} and X] - (I, + V) does not

have an inverse,
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