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&Sluirdt that

(1.5) II(I)(x) = min [LUI(x) + k(x,w)], x E .
uEU

Then (1.3) becomes a dynamic programming equation:

(1.6) dI + min [LUI + k(x,u) - V(x)] = 0.

ds uEU

Time and state dependent controls u(s,x), in feedback form, with values in the

control space U are allowed. The stochas.tic control problem is to find a feedback

u minimizing

(1.7) J(s,x;u) = Esx s  [k(Ct,ut) - V(t)]dt + T)

where t is the '(controlled) Mar'kov process wLth generator LU' H = x, and
t

ut = u(t,t), T = -log 4)

The Verification Theorem of optimal stochastic control theory [(, p.159] asserts that

if I is a "well behaved" solution to (1.3) with I(T,x) = T(x), and-if certain other

-rhnical conditions hold, then

I (s,x) m- .i .,1 (s,x;u)
it

Moreover, an optimal feedback control u(s,x) is found by minimizing lUI(s,x) + k(x,u)

over the control space U.

In this paper we take Z c Rn , a subset of n-dimensional euclidean splice. In §2

we reviLew the case when xt is a diffus.ion process on It For nondegenerate dii'-

fisions, an appropriate stochastic control pvt)obiem is immedi ately suggested by the

form of equation (1.3). In §3 we consider jump Mlarkov processes xt, and associated

stochastic control problems. The choice o " an appropriate control prol)lem is less

immediate for jump processes than for diffusions. In his Ph.l. thesis S-J Shell 1114

uses a different control formulation, valid for a wide class of generators L(§4).

The optimal control in -Ils sense leads to the change of prolablity measures described

in (4.5). In §5 we give a formal derivation indicating why stochasti.c control methods

can be used to obtain asymptotic estimates, for exit probabilities for a family xE

of neariy 'deterministic jumpt processes. The results are not new (see I [112 1); the.

interest is in the stochastic control method. Rigorous proofs are given in [11] using

such methods. C3

In §6 we consider briefly the Donsker-Varadhan formula for the dominant eigenvalue ..

, of L+V, from a control viewpoint. For nondegenerate diffusions the stochastic

control representation obtained for A is th6 same as Iolland's [9]. .
Availability _0ea
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2. Dfusion processes, Lot .xt be a diffusion in n-dimen.ional Rn , with generator

(2.1) Lf = tr a(x)f + b(x) • f

n ' a2f
.tr a(.fxx a Cx)

j,j=l

and with f the gradient. In this case,

(2.2) 11(1) = Ltrax)I + b I - I Ia(x)I

We may take U = R, u ,--- ,u1)

(2.3) L UI = tr a(x)I + u I

(2.4) k(x,u) 2 (b (x) -u) a- (x) (b (x) -u).

For a feedback control u , the drift coefficient b(x) in (.2.1) is changed to drift

c. ,ficiefit u(s,x) in the operator 0i

The stochastic control representation (1.8) was used in [3] to give a stochastic

control proof of results of Ventsel-Freidlin type for some large deviations problems

for nearly deterministic diffusions. In those results a(x) is replaced by ca(x),

c small. In [4] the logarithmic transformation was used 1o'obtain stochastic

representations for positive solutions to the heat equation with a potential term,

and to obtain the "classical mechanical limit." In [5] [10] the same logarithmic

transformation was amnplied to solutions to the pathwise equation of nonlinear filtering.

Lhrge deviations results for the nonlinear filter problen are obtained by llij')

[8] elsewhere in this volume.

In [7] Ilernandez-Lerma obtained similar results for certain degenerate diffusions,

for which the matrix (a..i (x)), i,j=l,---,rm < n is positive definite and aii. (x)=O

if i > in or j > m.

3. Jump processes. To motivate our choice of stochastic control prolblem, let us

begin with a simple special case in which the process xt jumps only by a f.ixcd

increment y (as for example for a Poisson process.) In this case the generator

L takes the forn

Lf(x) = a(x)[f(x+y)-f(x)].



From, (1.4)

11(1)(x) =a(x)(l - cXj) [1(x) - (x+y)I).

The dual function to the convex function c r is u -u log u (u :> 0):

(31 r~ = max [ti -u log u +ur].
U>0

The max occurs when log u = r. Let

(3.2) L uI(x) = ua(x)[I(x+y,)-I(x)], u > 0

(3.3) k(x,u) = a(x)(u log u - u+l).

Bly taking r, = I(x)-I(x+y) in (3.1) and changing signs (to replace max by mill),

we get the reqluired form~ (1.5) for II(I). Ini this special case the control u

i s scalIar, with ii > (0. A constant control ut changes the jiumpi ng rate from a (x)

to ua(x). A feedback control u(s,x) changes the rtite at time s anl;d state x from

a (x) to u(s,x)a(x). If l(s,x) = -log 4(s,x) as in §1, then the optimal feedback

control 'is u*(sx) = $(s,x)-l (s,x+y).

1,ct us now consider a jump process x t with generator of thc form

(3.4) Lf(x) = a(x) ([f(x+y) - f(x)].IU(x,dy).

I lore f E B (it) the space of bounded Borel tsraIcF'unlCti~ Oi ons oV111 ic a "S11uw
that a E B (R111) and that 'Ir(x,.) is a p)roba~bilityi measure With 11 (.,A) Boi-vi

measurable for each Borcl set A and 1(x,{0j) = 0. Additional conditions onl a

and Ai need to be imposed later. Motivated 1by thle special. 6asc above, we control

the juw~ping distribution., rej~lacillg a(x)71(x,dy,) lby a(x)u(s,x;y)It(dy) . To. formalize

this idea, we introduce the control space

(3.5) U = (1u(): u,u -1 E 113(it11),(Y) > 0 fo W y E It"1

Suitable Lu() an~d k(x,u(.)) are obtained by -integrating (3.2), (3.3).with respect

to ir(x,dy):

(3.6) LtI( )I,(x) = a(x) JT [(X+y I)-I-(x)iu~yl (x,dy)

(3.7) k(x,u(*)) = a(x) J[u(y)log u(y)-u(y)+l~ir(x,dy).

We get as in equation (1 .5).

(3.8) I(p) (X) = mi~n [Lu(Il(x) +k (x, u()1
u(. ) EU

if +VS ,x) is a pos itivye solution to (I .1I) anld 1 = - lg (1) , thenl tile opt .11W 11 Foed-



back control 'is

(3.9) u (s,x; ) ( x )

As outlined in the next section, it is sometimes more conveniefit to consider instead

a related control problem. In particular, the formulation in §4 is the one used in

[11] to give control method proofs of the results on the exit problem mentioned in
§5.

4. The Sheu formulation, In [11] another kind of control problem is considered. Let

L be a bounded linear operator on C(J), the space of continuous bounded functions

on I , such that L obeys a positive maximum principle. (In particular, L may

be of the form (3.4) above.) For w = w(',) a positive funct:ion with w,W - E 'C(E),

define the operator iI by

(4.1) f = [L(wf) - fLw].

In addition, define I (x) by
1 )

(4.2) kw' = ,!(logw) - L w).

For unbounded L, additional restrictions on w are needed in order that iN and k%

be well defined.

From the duality (3.1) between or and u log u - u, it i.s not difficult to show [11]

that for I E C(E)

(4.3) 11(1) = min [I, I + ] .

w

The minimum is attained for w = exp (-1) . For. I, the generator oF a jump pIrocess,

the two formulations -are related by I =L- , where u is the (stationary) feedback

control defined by

(4.4) u(x;y) = w(x+y)
- w v(x)

Moreover, K (x) = k(x,tu(x;.)).

In Sheu's formulation, the control problem is to choose 't(.) for s < t < T to
t- -

,minimize

/(sx;w) = Ex { f. -t v(t)]dt + T ,
S 114 t

,,,lr r f it: nI V r,my nIr¢r.(,,z,- wi.-(h ,rlr "'' 1' . .111d wit( h r X- . (Horn



ie assume that L is the generator of a Markov-lprocess xt which inpl.ies in particu-

lar b.- = 1.

Suppose that ' is a positive solution to (1.1), w:ith E c(s,'), (s,') - '1  C(s)

and with V E C(E). We can use (4.3) together wi.th the Verifi cation Theorem in

stochast-ic control to conclude that I(s,x) < /(s,x;w) with equality whdn

Wt = '(t,.). Thus the control wt = '(t,.) is optimal in this sense. For jiunip

processes this agrees with (3.9), according to (4.4).

q*I

The change of generator from 1, to = corresponds to a change of probability

measure, fromt P to P, as follows:

lI Jf(xt),D(XT)1])F(d = sx (t r  "s< t < , f EC (E).

sx rx~

This is seen from the following argueilent. The denominator of the righ.t side is

'(s,x). Let

''(sx),= sx [f(xt),(XT.)]I = ]sx[f(xt) (t ',xt)]

-1
Since ' and I both sati, fy (1.1) wi.th V = 0, the quotient v = t14 sati sf:ies

Iv LI, DiL' 1 1l(v4) - v b,.4 ,

(4..6) + lv = 0, s< t,

wi th v(t,x) = f(x) as required.

'lhe author wishes to thank M. Day for a helpfill suggestion related to (,I.5)

5. amnltotic esti:mates for exit )robabilities.

Let xE be a Faihily of Nlarkov processes, s < t < T, depending ol a sinai p parameter

> 0, such that x tends (in a suitable sense) to a determin:istic limit x a (s

C- 0. Let 'pv  denote the probability that x€ belongs to a set r oF trajectories

which does not include trajectoriCs "near" x0 . Ty':pically ' c is exponentially

smalI. Its asymptotic rate of decay to 0 can le found From the theory of large

deviations [I][12][13]. In the exponent a constant I 0  appears, which is the mini,-

mum of a certain action functional over a set of smooth paths.

In many instances these asymptotic estimates can also be obtained by introducing a

stochastic control problem of the kind indicated in previous sections, for each c > 0

131 Jill. mth this mthod a (stoch s tic ) opt'mi at-ion pI)obl lem alpplarl. I'o erach



C > 0, not just in the limit as C " '0.

Let us consider the .special. case when #F is an exit probability:

4' (s,x) = Psx( < r),

where T is the exit time I of xt  from a bounded, open set D C R , and where xE D

for s < t < T. W%'e consider nearly deterministic jump processes, as follows. Nearly

deterministic diffusions were considered in[J.3] [7]. Following Vent'cel [12] let us

rescale the jump process in §3, replaciing y by cy and a(x) by cla(x) to

obtain the generator for 
xE

( Jf(x) = Cla(x) J [F(x+y)-f£(x)] ir(x,dy).
JR

CC
Fix X = x. For s < t < T, the path x5 tends iin pro)ability as E:- 0 ()-nietri c)

to X , where xt  snti sf~ies

dx 0
(5.2) - = a(xo) f yir(x0,dy) , s < t < T,

with x0 = x. The exit probabi lity t C(s,x) Js a 'posit:ive solution to
s

(5.3) as t + £S 0

in (-) x I). The logaitithmi.c transformation T C = 0g o changes (5.3) ito

31 C - 1 C
(5.4) + C Il T( ) = 0,

where II (1) = -e]I, (e Then

(5.r) ell(C-l) = a(x) (I exn[l Y)I)(xdy)

I

For I(x) such that I, Jx are continuous, bounded

lim S I1C (C- 1 ) = ilo(X',I

with I th0 gradient and

(5.6) 1 (xP) =a (x) J (1 - c-p "Y)i(Xdv).

This suggests (but certainly does not prove) that 1 tends to a limit T as 0 - 0,

where 1. satisfies (perhaps in some generalized sense)



aI 0  o
(5.7) + Il(x,x ) = o.

Now (5.7) is the dynamic programming equation for the deterninistic control problem,

with control space U as in §3, with running cost k( tut(.)),, and with dynamics
d,; t , (F, t),i
d t(5.8) d- tut }

b(x,u(.)) = a(x) J y u(y)'ir(x,dy).

E 0 .
Sheu [11] proved that indeed I I as E + 0 under 'the following hypotheses:

(i) a(.) is bounded, positive,, and 1ipschitz;

(ii) %(x,dy) = g(x,y)Tr1 (dy) with it a probabiL;it)y measure, 71 ([01) = 0,'

g(.,y) uniformly Lipschitz, and 0 < c1 < g(x,y) < C2 ;

(iii) ex (ae),-)7 I 1 (dy) < for some a > 0;

(iv) the convex hull of tlb gupport of iI 1contains a neighborhood of 0

Condition (iv) insures that 11o(x,p) is the dual of the usual "action integrand" A( ,)
0'

in large deviation theory, where for 
E, E 1n

(5.9) A(,) ma {k(C,u(.)): t= bCtu(.)).

u(')

Then

(5.10) 10(s,x) m= 1is A(Ft,t)dt, x E I).

The minimum is taken among CI paths . with :. = x such that t First reaches

(11) at time 0 < '1'. The requiirement in (5. 10) that t exit from I) hV ti0me T

is sggested by the boundary condition I (T,x) = + for x E I). This correslionds

in the limit as c - 0 to an infinite penalty for failure to reach ( ) by time T.

Ii both [3] and Ill] the stochastic control method used to show that 1E - 10 dcpcnds

on comlpari.son'arguments involving an optimal stochastic control process when 6 > 0

and an optimal 0 . in (5.10) when E=(.

6. The dominant eigenvalue. In [2] Donsker and Varadhan gave a variational formula

[(6.4)berow] for the dominant eigenvalue XI of 1, + V. Anothr.derivation of this

formula is given in [11]', using the family of operators Lw mentioned in §4.

When I, is tile generator of a nondegenerate diffulsi.on process, Ilollaid [9'] expressed

,\ as the milni mum av'eragc cost per unit 0"e -in a stochastic control )rol)l('n. let us



Impose strong restrticti.ons on L, and' give a short derivation of (6.4).

Assume that L+V has a posi'tive eigenfunction l corresponding to X : (,+V)p,=X 1 1 .

Let I= -log I. Then

(6.1) -11(1i) + V = .

Assuming that there is a stochatic control representation (1.5) for 11(1), equat:ion

(6. 1) b)ecoii,.

(6.2) min [LUI (x) + k(x,u)] - V(x) =u EUl'

Equation (6.2) i:s the dynamif programming equation for the following average cost per

unit tine control problem. We "aditit stationary contres u(-) such that the con-

trolled process with generator l,1 has an' equilibrium di.strihut.on *1 . The criterion

to be minimized is

(6.3) J(11,") f [k(xu(x)) - V.Cx)]dp(x).

(If there is a unique equilibrium distribotion 11 = 1It then reference to p on the

left side of (6.3) is unnecessary.). The principle of optimality states that

-< < J(pu) with equality provided u*(x) gives the minimnum over u E U1 of

LUII(x) + k(,x,u).

Let ts now assume that Z is compact, that the generator 1, i.s bounded oi c(q)

and V E C( ). As in [2J for any probability measure ji on let

. '(p) = sup II(T)dp = -inf - dIA

where I, 1l E C(J). The Donsker-Varadhan formula is

(6.4) 1 
= sup) [f Vdl -Y_(p)].

Let

(,1) = [-If(]) + Vjd,

The function P is convex in I and linear in It . Formula (6.4) will foll6w if we

can find I1, IJ1 with the saddle point property:

(6.5) P(IJP) <A1  i'(I,1I) for all 1, It.

(Thi-s idea was known to l)onsker anid Varalhan alog ti me a1o, and figires ill their,

i



From (6.1) we have in fact P(Ii,Il) = for all probability meaures it on

To get the right hand inelual'i ty, .hoose u as above and assume that 10 i's

bounded on C(J). The corresponding Markov process V has an equilibriuri distri-t

bution ill, and

(6.6) {Li*I)dlL 0, for all I E C(.

(If Ip- is unbounded we need to asstime the existence of Iy, afid to restrict

I to the domain of L-=). By taking u = u*(x) in (I.5) we have for I L C()

01 1 + k(x,u) - V > 1 () - V.

By integrating both sides with respect to |,

= > -P(I,<y), 1 < (1,i'),

as reluired.

In order to derive (6.4) in this way we had to impose unnecessarily restrictive

hypotheses. In particular, we assumed that -% is a dominant eigenvalue in the

sttict sense that (1, + V) I = X1 1 , with , > 0. Actually, (6.4) holds if 1, is

the generator of a strongly continuous, nonnegative semigroup Trt on C(I), such

that Ttl = 1j L has domain dense in C(J), and 1, sat'isfies the maxiimum I)incipletI
[2]. With such assumptions X is a dominant cigenvalue in the sense that the

spectrum of 1, + V is contained in [z: Re z < X and - (I, + V) does not

have in inverse.
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