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Abstract

We discuss new global optimization algorithms that are related to the stochastic methods of Riniooy

Kan and Timmer, and to our previous static, synchronous parallel version of this method. The new

algorithms have two main new features. First, they adaptively concentrate the computation in the

areas of the domain space that appear most likely to produce the global minimum. Second]:,, on

parallel computers, they use an asynchronous approach, combined with a central work scheduler, to

avoid load balancing problems. We investigate several mechanisms for deciding Nk hen and how to make

the adaptive adjustments. We also describe both algorithmic and implementation considerations

involved in constructing the parallel asynchronous algorithm. Computational tests on sequential

and parallel computers show that the adaptive and asynchronous features of our new method can

substantially reduce the number of function evaluations, and the execution time, iequired b) pre% ious

stochastic methods to solve global optimization problems.



1 Introduction

This paper presents new global optimization methods that were motivated by our consideration of

parallel methods, but which are of interest for both sequential and parallel computation. The problem

we consider is to find the lowest value of a nonlinear function, f, of n real variables, in a domain S

of R defiled by upper and lower bounds on each variable. It is assumed that f may have multiple

local minimizers, i.e. points z for which f(x) _: f(z) for all x in an open neighborhood containing z,

and that the global minimizer is in the interior of S.

The global optimization problem is important and difficult, and effective methods for its solution

have just begun to appear in recent years. These include deterministic methods such as the tunnelinlg

method [51, methods based on followed trajectories [11, and stochastic methods [6]. Since the problkm

is so computationally intensive, the advent of parallel computers has naturally led to interest in

creating parallel methods for this problem as well.

In the past few years, we have been investigating static, synchronous, stochastzc parallel methods

for global optimization [2]. By a static algorithm, be it sequential or parallel, we mean one where the

number of tasks, and usually their sizes, are known at the start of the computation. In particular,

there is no attempt during the computation to adjust these parameters in order to achieve a more

efficient solution. By a synchronous algorithm we mean one that periodically requires synchronization

of the processors to satisfy precedence constraints among tasks or to update some global information.

By stochastic we mean that the algorithm includes some random feature; the approach we take is

based upon [6] and includes random sampling of the function in the domain space. Finally, our

orientation towards parallel here is computation suited to any MIMD computer, i.e. a computer

where multiple processors can perfo.m independent computations concurrently. This includes shared

memory multiprocessors, distributed memory multiprocessors such as hypercubes, and networks of

computers used for concurrent computation.

In the course of implementing and testing the static synchronous parallel algoi ithm, we discovered

several possibilities for its improvement. First, the synchronous approach sometimes led to load

imbalance and poor processor utilization. This was because similar tasks that were performed in

parallel, and were followed by a synchronization point, had widely varying execution times. Secondly,

due to the static nature of the algorithm, insufficient effort was made upon focusing attention on the

most fruitful areas of the domain space. This shortcoming was independent of whether the algorithm

was sequential or parallel, although it was the partitioning of the domain space that was used in the

parallel algorithm that made it natural to consider alternatives.



These problems have led us to consider alternative approaches to stochati global optinuiztiun

that have two new main features. First, they adaptively concentrate the computation in areas of the

domain space that are most likely to produce the global minimum. Secondly, on parallel computers,

they use an asynchronous approach to avoid load balancing pr .blems. In the remainder of this section

we motivate this approach by reviewing the stochastic approach of [6], our static, synchronous parallel

version of it, and its performance ard deficiencies. We also introduce the remedies to these deficiencies

that are investigated in this paper.

1.1 Stochastic, static and synchronous global optimization algorithms

The global optimization algorithms described in this paper are all based upon the stochastic appioach

of [6]. These methods take an iterative approach. At each iteration, the function is evaluated at a

number of randomly generated sample points in the domain space (typically 100-1000). For these

and the previous sample points, all sample points that have lower function values than any sample

points within a prescribed "critical distance" of themselves are selected as start points for local

minimizations. (The critical distance is tied to the statistical properties of the method and decleaseb

at each iteration.) Then local minimizations are conducted from each start point, using a standard

unconstrained minimization algorithm such as the BFGS method, and terminating when they find a

local minimizer which is generally in the vicinity of the start point. After all the local minimizations

are completed, if various stopping conditions have been met, the local minimizer with the lowest

function value is selected as the global minimizer. Otherwise, another iteration is performed.

In tests by [6], the stochastic approach has been shown to have attracti% e computational properties

in comparison to other approaches. It also has strong theoretical properties : as the numnbei of

iterations and sample points approaches infinity, with probability one the global minimizer is found

and the number of local mini-'izations is finite. For these reasons, we have chosen to base our parallel

algorithms upon this approach.

Our static, synchronous parallel version of this algorithm [2] divides the domain space into P equal

subregions, where P is the number of available processors. Each processor independently conducts

sampling in the subregion it has been assigned, and then selects candidate start points from amo,g

its sample points, using the same procedure described above but consideiing onld the bamiple poiltab

in its subregion. The processors then synchronize and check, for any candidate start point withini the

critical distance of a subregion boundary, whether there is a lower sample point within the critical

distance of it in some neighboring subregion. If so, the candidate start point is eliminated as a start

point. Local minimizations are performed from the remaining stai t points; these poiats ln,.3 ,,ot
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be equally distrnuted among the subregions, so they are collected centrally and then distibuted to

the processors which perform the local minimizations. If there are more start points thanb piocessors,

initially one start point is distributed to each processor, and the remaining start points are distributed

to processois as they finish their current local minimizations. When all the local minimizations have

completed, the processors synchronize again in order to determine if the stopping conditions hate

been satisfied aad if not, the process is repeated.

Experimentation with this parallel algorithm showed that it was fairly effective [2][4] but also

illuminated some performance problems with the parallel approach. In particular, two aspects of the

algorithm sometimes led to load balancing problems, situations where some piocessors were idle N hie

waiting for other processors to complete their tasks and reach a common synchionization point. One

instance was in the start point selection computation. In the efficient versions of the algodithm, bcfoie

candidate start points are selected, all points with function values greater than some global threshold

(called the "cutoff level") are eliminated from consideration. This can leave widely %aiyilg numbers

of sample points in different subregions and, since the time for candidate start point selection is at

least linear in the number of sample points, cause the time for this phase to vary greatly between

processors. This causes some processors to wait for others at the synchronization point at the end of

this phase. Secondly, the local minimizations also may have widely variable computation times, and

there are a variable number of minimizations conducted. Consequently different processors often had

differing amounts of work in the local minimization part of the computation.

Another performance problem was observed that is independent of the use of multiple piocessors.

It is that the static algorithm can be inefficient for problems that have local minimizels unevenly

concentrated in the domain space. This is because both the parallel and the sequential versions of

the algorithm do an equal amount of sampling in all areas of the domain space, even though there

may appear to be a greater potential for finding the global minimizer in some portions of the domain

than others, for example because more sample points and local minimizers with low function values

have been found in some portions than others. While this problem is common to sequential and

parallel versions of the stochastic method, it was the consideration of decomposing the domainl in1to

subregions, which is only done in the parallel version, that led us to consider alternatives.

To address these problems, this paper will consider the use of adaptive and asynchronous methods.

Adaptive methods are ones that react to the current state of a computation b attempting to focub

computation on the parts of the problem where this seems most fruitful. In our case, this will

involve adjusting the sizes of subregions, as well as the frequency and density of sampling in different

subregions. These modifications will not only decrease the total amount of woi k neccssary to solve the
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problem, but will also cause the times required to process different subragions to becomc iore similar.

Asynchronous algorithms are used for parallel computation and allow each part of the computation to

proceed independently of other parts. While it is not usually possible to write pai allel programs that

don't require any synchronization, the intent is to design algorithms whose paits are as autonomous

as possible. This allows elimination of processor idle time, but may requiie additional cooidination,

and may lead to some unnecessary computations being performed.

In section 2, we present the framework of an adaptive stochastic global optimizatioll algoi ithm that

can be used for sequential computation or as the basis for a parallel implementationi. Several adaptil e

heuristics that we have investigated are described. In section 3 we describe the asynchronous parallel

algorithm. We also discuss how the asynchronous and adaptive methods can be used together. Section

4 discusses the experiments we ran to test the algorithms. We present sequential computation results

for the static algorithm and for the adaptive algorithm using several different adaptive heuristics, as

well as results for all four possible combinations of the static or adaptive, synchronous or async.hronous

algorithms in a parallel implementation on a network of Sun workstations. In Section 5, we conclude

and present directions for further research.

2 Adaptive Stochastic Global Optimization Algorithms

2.1 Framework of the Adaptive Algorithm

The goal of our adaptive algorithms is to identify portions of the domain space that appeai pioductive

and give them more attention, while diverting attention away from portion~s that aie les fi uit'ul. A

convenient way to do this is by dividing the domain space into subregions (as is dune in oui parallel

methods), and then to adjust the sizes and/or the amount and frequency of work that is done

is different subregions. Specific techniques we will use to do this include splitting of subregions,

adjustment of sampling densities, and delayed scheduling of particular subregions.

The general framework for our adaptive global optimization algorithm is given below. (This

framework will al.o serve as the basis for the other new algorithms described in this paper.) Ve

describe the steps of the algorithm from the point of view of a particular subregion s of the o'erall

domain space, S. At this point, nothing is implied about the order of processing the subregions, which

could either be synchrcnous (each subregion completes iteration k before any begins iteration k + 1)

or asynchronous. Similarly, nothing is implied about when the minimization steps are perfoimed,

or their placement onto processors in a parallel implementation. In particular, the minimizations in

step 4 are not necessarily performed immediately after, or on the same piucessoi ,a, steps 1-3. Botlh
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of these topics will be addressed in Section 3.

Algorithm 2.1 - Adaptive Globjal Optimization Algorithm

For each subregion s of the domain space S, at every iteration, k,

1. Sampling : Generate a prescribed number of random sample points within s and calculate

their function values.

2. Start point selection : Select sample points with low function values in s to be start points,

using a procedure that is similar to the static algorithm but which does not involve communi-

cation with any other subregions.

3. Adaptive decisions : Apply a heuristic procedure to determine the sample size for s for the

next iteration, whether s should be split, and whether s should be scheduled or skipped at the

next iteration.

4. Local minimizations : Perform local minimizations, if any, from the start points generated

at step 2.

The difference between the start point selection method used in step 2 and the one used ill the

static algorithm is relatively small and is motivated largely by the possibilit) of all asynchionous

implementation. It will be discussed in Section 3.3. The remainder of this section discusse. some

possible ways to make the adaptive decisions at step 3.

2.2 Adaptive heuristics

We have investigated two different measures that indicate how productive a subiegion of the domain

space is, i.e. how likely it is that sampling in this subregion will lead to the discovery of low minimizers

and possibly the global minimizer. The first measure, the number of local minimization start points

generated i., the subregion so far, may be an indicator of how many minimizers remain to be found in

that subregion. This measure has not proven to be especially effective in identifying subregions that

are productive, and will not be considered further. The second measure is the percentage of sample

points in the subregion whose function value falls below some global threshold. This threshold, called

the cutoff level, is calculated at the first iteration of most stochastic methods, and is defined as the

function value for which X% of the sample points (say 20%) have lower valueb ,Lld the rein,tining
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(100-X)W have higher values. The percentage of sample points in a particular subregion whobe

function value i below the cutoff level can vary greatly, and has proven to be effective in identifying

productive subr~ionb. Hlbxe, the heuristics discussed in the remainder of this section will be based

on this measure of productivity.

Once we have a method for identifying productive regions, we need to determine how to use thi.,

information to devote more attention to productive subregions and di' ert attention awa) from less

productive subregions. We have investigated three techniques, that we Lse together, for accomplishing

this. Splitting a productive subregion into two smaller subregions is used to devote more attention to

that portion of the domain. The intent is to have the density (number divided by volume of subregion)

of the sample points that are generated at each iteration be greater in productive subregions than

in less product:ve regions. Splitting allows this to be done while keeping the cost of processing each

subregion nearly constant. In fact, as we will see in Section 4, it may reduce the total cost of start point

selection since this cost is generally more than linear in the number of sample points below the cutoff

level. In parallel implementations it also helps load balancing and allows more of the processors to

work on productive portions of the domain space. Sample size reduction and postponement techiques

have been used to divert attention away from subregions that are not productive. Sample size

reduction reduces the density of sample points generated at each iteration in unproductive subregions.

Postponement suspends processing of an unproductive subregion for one or more iterations.

Below we describe formally how we have implemented these techniques. An interesting feature of

these heuristics is that we never increase the density of the sample points generated per iteration, in-

stead it is kept the same for productive subregions and decreased for the iemaindei of the subiegioun.

This was found to be more efficient than increasing the density for pioducti%e subiegions. Fiist N~e

need some definitions.

Definitions

C - The global cutoff level.

Pbelow - The percentage of sample points in some subregion whose function values fall bWow the

cutoff level C.

SPLIT-P - The percentage above which a subregion is considered to be productive.

S; - The ith subregion of the domain space S.

sample-sizei - The total sample size of Si (over all iterations).
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sample-size-incri - The number of new sample points generated in S, at each iteration.

SPLIT-SIZE- The lowest total sample size at which a subregion is allowed to split.

REDUCTION- Factor used for sample size reduction.

MIN-SAMPLE-INCR - The minimum sample size increment that a subiogio i muist inailtdizA.

POSTPONE(s, DELA Y) - Postpone the scheduling of subregion s by DELAI l'iterations.

1. Subregion splitting

As in all the heuristics, the percentage of sample points whose function value is below the global

cutoff level is used to determine if a subregion is productive. If it is, the density of new sample

points is kept the same. The subregion is split into two smaller subregions, unless the total

sample size already is below some threshold, in which case the subregion is not split.

Heuristic: If Pbelow > SPLIT-P and sample-sizei > SPLIT-SIZE
then

Si is split into Sio and S;i
sample-size-incrio, sample-size-incril +- sample-size-incr/2

else
Si, sample-size-incri remain the same

2. Sample size increment reduction

If the subregion is not productive, this heuristic reduces the sample size increment, unless it

has already reached some minimum value in which case it is not changed.

Heuristic: If Pbelo, < SPLIT-P
then

if sample-size-incr2 > MIN-SAMPLE-INCR
then sample-size-incri +-- sample-size-incri/REDUCTIO N

else
sample-size-incri remains the same

3. Subregion splitting and postponement with sample size reduction

This heuristic combines the splitting and sample size increment reduction heuristics descibed

above. In addition, if the sample size increment of an unproductive subregion is already at or

below the minimum value, then the processing of this subregion is suspended fox one oj more

iterations.

7



Heuristic: If Pbelow < SPLIT-P
then

if sample-size-incri > MIN-SAMPLE-INCR
then sample-size-incri - sample-size-incr[1 RED U CTIO N
else POSTi'ONE(S;, DELA1)

else
if sample-sizei > SPLIT-SIZE

then
Si is split into Sio and Sil
if sample-size-incri > MIN-SAAMPLE-INCR

then sample-size-incri +- sample-size-incri/2
else sample-size-incri remains the same

else
Si remains the same
sample-size-incri remains the same

In section 4, we will discuss experiments that were performed using each of th, adaptive heuristics.

The third heuristic will be seen to give the best improvements over the static algorithm. The main

reason is that it both focuses attention on productive subregions and diverts attention away from less

productive subregions.

3 An asynchronous, stochastic parallel global optimization algo-

rithrr

In this section we present an asynchronous, stochastic parallel global optiraization algorithm and

describe its implementation on a distributed memory computer. We also discuss lioy the as3 nchronous

parallel approach can incorporate adaptive techniques.

Recall from section 1 that the static, synchronous, stochastic parallel glob.l optimization algo-

rithm is an iterative method with the following steps. At iteration k:

1. Generate sample points in all the subregions and calculate their finction values.

2. Select candidate start points for local minimizations from all the subregions.

3. Wait for all processors to finish their start point selection phase, and then eliminate candidate

start points for which there are lower sample points within the critical distance in neighboring

subregions.

4. Perform local minimizations from all start points generated at steps 2-3 by distributing one

minimization at a time to each processor.
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5. Wait for all minimizations to complete, then decide whether or not to stop.

As we mentioned in Section 1.1, some processors can have much more work than others in steps

2 and 4. Because of this, some processors may be waiting for a long time, in an idle state, foi the

synchronizations at steps 3 and 5. In step 2, the imbalance in workload arises because the time to

perform the start point selection is dependent upon the number of sample pohits in the subiegion

below the global cutoff level, which can vary greatly, even though the total number of sample points in

each subregion is the same in the static algorithm. In step 4, the imbalance alises because the numbel

of iterations and function evaluations required for a local minimization ma be highly variable and

cannot be predicted a priori. In addition, the number of local minimizations may not be a multiple

of, or even as large as, the number of processors.

The asynchronous algorithm addresses this load imbalance by eliminating the synchionization at

steps 3 and 5. To do this it changes the overall viewpoint of the method fiom the global one used

above to the subregion-based perspective already used in Section 2. The basic tasks are the same,

in particular sampling/start point selection, and local minimizations. But the precedence relations

between these tasks are relaxed or removed, and the order that they are conducted in may change.

To implement the asynchronous algorithm, there must be some mechanism for controlling the

entire process, i.e. for scheduling the tasks and assigning them to processors. In conjunction, there

must be a mechanism for stopping the entire algorithm. In addition, the start point selection algorithm

needs to be modified, so that it doesn't require the task performed at a global level in step 3 above,

but still eliminates unnecessary start points efficiently. The remainder of this section discubes these

three issues, as well as the incorporation of adaptive techniques into the dsynchionous inedtid, and

the overall advantages and disadvantages of the asynchronous approach.

3.1 A centralized control implementation

We have used a centralized control organization to implement the asyncionous pazallel algorithm in

a distributed memory computing environment, which is very similar to the organization of Schedule

[3], a system developed by Dongarra and Sorenson for centralized scheduling of rORTRAN piograms

in a shared memory environment. By centralized control, we mean that there is a set of master

processes that are responsible for scheduling and placement of tasks and manipulation of global data

structures, and that control a set of slave processes. The slave processes perform the computational

tasks of the asynchronous algorithm, which we refer to as schedulable tasks. The two schedulable

tasks of this algorithm are subregion tasks and local minimization tasks. Subiegion task. zefcz to
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worker ... . . . . .
prrooess

- oeuler b %

-a b g d worker . . .
binding of proce ,, es) to a process

Fire1:communication andtwr.€. ", processob i

"==-="="communication between schedler: and worker

. . . . . communication between global handler and worker

........ binding of process(ts) to a processor

Figure 1: Communication and processor bindings

one iteration of sampling and start point selection for a given subregion (steps 1-2 of Alg. 2.1,

including the modification discussed in section 3.3), and local minimization tasks refer to a single

local minimization from step 4 above.

Our implementation of the asynchronous algori hm uses three types of processes, whose Cornmu-

nication and processor bindings art I -icted in figure 1. The scheduler process is the primary master

process and provides the centralized control of the computation, determining %hice and w hen bched,-

lable tasks should execute, gathering results from these tasks, and deciding when the computatio.

should terminate. Worker processes are the slave processes of the computation. Each %vot kei process

exists for the duration of the computation and is statically bound to a processor. It is continuall3

assigned schedulable tasks, either subregion or local minimization, by the schedulei, and also commu-

nicates with other worker processes. The global information handler process is the secondary master

process. It manages a data structure that keeps track of all the minimizers that have been found,

and the oversample points that have been generated (see Section 3.3). Worker processes request

this sample information from the global information handler when they are performing a subregion

task. Generally the scheduler and the global information handler are staticall) bound to the samc
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processor.

A high level pseudo code description of each type of process is given in figures 2, 3, and I.

These descriptions provide the basic description of our asynchronous algoiithm, but do not specif,,

two important details, namely how schedulable tasks are prioritized, and ho% they aie mapped to

processors. These issues are discussed next.

The scheduler determines priorities among the currently schedulable tasks as follows. Fizst,

schedulable tasks from a lower numbered iteration have higher priority than tasks from a highei

numbered iteration. Secondly, within the same iteration, subregion tasks have higher priorit. than

local minimization tasks. Finally, schedulable subregion tasks, or local minimization tasks, fiora the

same iteration are scheduled first come first served, with the one possible exception mentioned in the

next paragraph.

Any subregion and local minimization tasks can be placed onto any available processor. There

is no attempt (or need) to try to place specific tasks onto specific processors. with the following

exception. If there are multiple subregion tasks that share the highest priority, and/or multiple free

processors, then, if possible, subregions are assigned to the bame processol % hei c the) were processed

at their last iteration. This is done to avoid the movement of sample points from one piocessor to

another. It is often not possible, however, due to the asynchronous nature of the algorithm.

3.2 Termination of the asynchronous algorithm

As shown in Figure 2, when the scheduler process determines that aii iteration is complete, it checks

the termination criteria. Iteration k is complete if iteration k -- 1 is Lomplete, all subregion ta&ks for

iteration k have been completed, and all local minmization tasks generated by subjegion tasks fiora

iteration k have been completed. Stopping criteria similar to those in [6], which are derived flora the

probabili-tc anal? sis of the method, could be used. In our tests, hoNwever, we have simply stopped

when a given percentage of the (known) nmber of local minimizers was found, because we found

that this led to a fairer comparison of the methods.

At the time when the algorithm is terminated, some processing of subregion and possibly local

minimization tasks from subsequent iterations will already have been conducted. This "ruito~er" work

is unneressary, and is one of the main tradeoffs that one must accept in return or the improvement

in load balancing that comes from eliminating synchronization.
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Initialize task queue with subregion tasks for initial subregions
REPEAT

if a processor is available
then schedule a task with the highest priority

generate new tasks from completed tasks and ins- n priority order
- create new local minimization task for each

new local minimization start point
- create new subregion task(s) for iteration k+1 (or higher)

for each subregion task that has completed iteration k
if all steps of an iteration have completed

then decide whether or not to stop
UNTIL stopping criteria have been satisfied

Figure 2: scheduler process

REPEAT
wait for a new task
if new task = local minimization

then find a local minimum starting from the given start point
else {new task = subregion task}

generate new sample points
- acquire previous sample points for this subregion

from other processors
- acquire minimizers and oversample points from gl. info. handler

select new start points
determine new sample size increment for this subregion and whether to

split the subregion; inform scheduler and global info. handler
send new start points to scheduler

request new work
UNTIL scheduler stops me

Figure 3: a worker process

Initialize data structures
REPEAT

receive message
if message = send oversample and minimizer information

then send information to the appropriate worker process
if message = split request

then update data structure to reflect subregion split
if message = add oversample points or minimizers

then update data structure to add new points
UNTIL scheduler stops me

Figure 4: global information handler process
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3.3 Start point selection in the asynchronous parallel algorithm 

The sequential stochastic method of [6] selects start points for local minimizations as follows. At each 

iteration, a critical distance is calculated which is a function of the largest possible sample density 

(i.e. no consideration is made for sample size increment reduction) and the iteration, and is tied to 

the probabilistic analysis of the method . Sample points that have the lowest function values among 

all sample points within the critical distance from themselves are selected as start points. 

Our static, synchronous parallel algorithm achieves the same result in a slightly different manner . 

First candidate start points are selected that have the lowest function values among all sample point s 

in that subregion within the critical distance from themselves. Then candida.te start points that 

are within the critical distance of another subregion(s) are compared to sample points from that 

subregion(s), and are eliminated as start points if a lower sample point is found within the critical 

distance. 

Our asynchronous algorithm modifies this procedure in the following way. Candidate start points 

for a given subregion are still selected as described above for the synchronous algorithm, but after 

this is done, it is no longer feasible to compare candidate start points near subregion boundaries to 

current sample points from neighboring subregions. The reasons why this is infeasible include the lack 

of synchronization, the migration of sample point data between processors from iteration to iteration, 

and the possible adaptive splitting of subregions. Instead, a technique called oversampling is used. 

Suppose that the subregion's sample density is D, tha.t the critical sphere (sphere with radius equal 

to the critical distance) around some candidate start point falls partly outside the subregion , and that 

the volume of this sphere is 11. At most D * V new random sample points, called oversample points, 

are generated within this sphere. As each oversample point is generated, it is checked to see whether 

it falls outside the subregion, and if so its function value is calculated. (If none of the oversample 

points falls outside the subregion, then one oversample point that is within the critical sphere , but 

outside the subregion, is generated in a non-random manner.) If any oversample point has a lower 

function value than the candidate start point's, then the candidate start point is eliminated, otherwise 

the candidate start point is used as a local minimization start point. 

The extra cost of this oversampling procedure is fairly small, and is a.nother tradeoff for the 

improvement in load balancing that comes from eliminating synchronization. Function evaluations at 

oversample points are utilized further by shipping them and their values to the subregion they reside 

in (see Figures 3. and 4 ). 
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3.4 Incorporation of adaptive features, and implementation considerations

The adaptive features discussed in Section 2 fit naturally into the asynchronous global optimization

algorithm described in Figures 2-4 above. In fact, the high-level description in Figures 2-4 already

allows for adapti, e features, in the third step of the subregion task poi tion of the workei process and

the second message type of the global information handler. The combination of the adaptive anid

asynchronous approaches is natural because both are based on an individual subregion-oriented view

of the problem, rather than an iteration-based view, or a view based on the overall domain spa~c.

To implement an adaptive, asynchronous algorithm we use dynamic data structures in each of

the three types of processes. In the scheduler process, subregions are represented as tasks that aze

present either in a ready queue, if they are not currently executing, or an active queue, if they are

executing. The task queues allow a dynamic number of subregion and local minimization tasks. When

a subregion splits, the scheduler creates two new tasks that reflect the new subregion boundaries,

their iteration, and other information. Subregion tasks that are postponed for execution remain in

the ready queue until some future iteration. At the worker process, sample points are included as

part of a subregion, so that when a subregion splits, the sample is also split betm een two subregiots.

Finally, the global information handler keeps track of the oversample points for each subregion. When.

a subregion is split, the global information handler updates a tree that has as its leaves the current

subregions and their oversample points.

3.5 Advantages and disadvantages of the asynchronous approach

The goal of the asynchronous approach was to avoid the idle processor times that oLcuLI inl the 1yi-

chronous global optimization algorithm due to the variability in the computational times of subiugio n

tasks, or local minimization tasks, in a given phase. By allowing the overlapping of tasks from differ-

ent phases or iterations, the asynchronous algorithm should accomplish this goal. Idle times should

only occur due to communication delays, or if there are not as many schedulable tasks as piocessors.

The latter situation is easily avoided by using enough subregions.

The discussion in this section should also make it apparent that there are several new costs

inherent in the asynchronous approach. First, there is the additional cost of the master pzoccsseb

(the scheduler and global information handler) as compared to the relatively small cost of the master

process for the synchronous algorithm. Secondly, as mentioned in section 3.2, the asynchronous

algorithm will suffer from "runover" costs, because by the time it decides to terminate the entire

algorithm after some iteration k is complete, some unnecessary work at highzl itelat:Olls will h14C
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Figure 5:46 minimizer problem

been performed. Also, the asynchronous start point selection procedure described in Section 3.3

requires some extra function evaluations at the oversample points and may still result in more start

points than in the synchronous algorithm, which would require extra local minimizations. Finally,

more data movement is required in the asynchronous algorithm, since subregions do not necessarily

execute on the same processor at different iterations and if not, the existing sample points must be

shipped between two processors. The computational results in Section 4 %%ill shed some light on the

effects of these factors.

4 Computational Results

In this section, we present experimental results of tests we have run on the global optimizationi

algorithms discussed in Sections 2 and 3. First we discuss sequential tests comparing the static

algorithm and the three adaptive heuristics. Next, we discubs parallel tests compaling all four possible

combinations of static and adaptive, synchronous and asynchronous algorithms.
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4.1 Construction of the experiments

4.1.1 Test problems

All the experiments reported in this section use a single artificial test problem that we constructed.

The reason we constructed a new problem is that there are very few global optimization test problems,

and they all seemed unsatisfactory for testing these algorithms, either because they had veiy few

minimizers (e.g. the set used by [6]) or too many minimizers to be affordable for the testing we

performed (e.g. the set used by [5]).

Our test function is the two variable function depicted in Figure 5. Both x, and x2 range betmeen

0 and 8. Each box illustrated contains the fourth order polynomial

f(z) = (box number) + (xi - ei)2 + (x 2 - c2)2 + (1 + 2 * (x1 - c1)2 + 3 • (x2 -

where cl and c2 are the coordinates of the center of this box. That is, there is a local minimizer

at the center of each box, whose function value is equal to the box number. (The overall function

is discontinuous at the borders between boxes, but this is unimportant to the algorithms discussed

in this paper.) Thus the test problem has an uneven concentration of minimizers, with the global

minimizer having a relatively small region of attraction. Such a function should give an indication

of the best type of improvements possible from the algorithms described in this paper. We feel that

examining our algorithm under such conditions is useful for understanding whether the approach has

any utility, and differentiating between variations upon it.

The methods under consideration perform differently depeinding on the initial sample size, and

the initial number of subregions. Thus, for each experiment, we ran tests using se% eral different

combinations of these initial parameters. For each combination, we performed 10 runs and a%eraged

the results. This was necessary because of the stochastic nature of the algorithms. Also, to nzake oul

testing more representative of real problems, where function evaluation is usually moderately to vcy

expensive, we have added irrelevant computations to the function evaluation so that its cost is about

0.2 seconds on a Sun 3/60.

Due to the numberof different configurations tested, the need to perform 10 1 uns pei configuration.

and the considerable cost of each run, the tests reported herein are very expensive and time consuming.

For this reason, we have not yet been able to try other test problems, but intend to involve a more

complete set of test problems in future tests.
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4.1.2 Test algorithms

We tested static and adaptive, syndronous and asynchronous versions of the methods described in

Sections 2 and 3, in both sequential and parallel environments. For convenience, all the test algorithms

used the framework outlined in Figures 2-4. This framework is intended to support the as) achrouius

algorithm, and uses three types of processes (scheduler, global handler, and workers). To construct

synchronous algorithms using this framework, we simply modify the priorities so that no iteration

k+ 1 subregion process can execute before iteration k is complete. To construct sequential algorithms.

we use one worker process. In the static, synchronous case, the overhead of this implementation is

a little higher than for ar, algorithm constructed specifically for this case, but the differences are

not significant. In the adaptive, synchronous case, most of this framework is necessary anyhow. In

the sequential cases, it might have been slightly cheaper to run a one-process algorithm (though

the pr)gram would be more difficult to write), but again the differences are not significant and are

mitigated by the factors discussed below.

4.1.3 Testing environment

The sequential and parallel experiments were run on a network of Sun 3/60 workstations. We first

ran several if the sequential experiments on a single workstation, meaning that the scheduler process,

the global handler process, and a single worker process were all on one processor. This proved to

be extremely time consuming because most of the time was spent in context switching between the

three processes. As a result, the overall elapsed time of the computation did not plo%.ide a reasoable

basis for evaluating the speed of the algorithm. Instead, we found that if we considered the separate

times for each of the three processes, the worker process time was by far the largest tud provided

a good measure of the time really required by the algorithm. We also found that if we placed the

scheduler process and global information handler process on one workstation, and the woi kei proLess

on another, then the overa.U elapsed computation time came within 2 % of the the ' orker process time

in the one-processor experiments. These two processor experiments do not suffer from the problems

of context switching, are mich faster, and are able to provide us with a reasonable indication of

the sequential computation speed. Consequently, all of the sequential experiments that we report

in this section are performed in this manner. Note that this method of calculating sequential times

underestimates them slightly, so that speedups based upon them also are slight underestimates.

The parallel experiments were run on a network of nine Sun workstations, with eight workstations

dedicated to worker processeo and one workstation dedicated to both the sched ulci plioce and glubl
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information handler process.

4.1.4 Reporting of Test Results

For each configuration of algorithm, initial parameters, and number of piocessors that mc tcbtud.

we report the averages (over the 10 runs) of the number of complete iteration6 performed by thy

algorithm, the total number of function evaluations performed, the total numbei of sample points

generated, the total number of local searches performed, and the total computation time. The

number of function evaluations includes one at each sample point, plus all those performed in the

local minimizations (including n per finite difference gradient evaluation). The computation times

are the actual elapsed times required by the algorithm.

4.2 Sequential experiments

We examined the performance cf the sequential, synchronous global optimization algorithm using

the static method and each of the three adaptive heuristics described in Section 2.2. Recall that the

first adaptive heuristic is subregion splitting, the second is sample size increment reduction, and the

third is subregion splitting and postponement with sample size increment reduction. The experimental

results are summarized in Table 1.

In experimenting with the adaptive methods, it became apparent that neither of the fiist two

heuristics was, by itself, sufficient to consistently realize a significant improvement ovei the static

algorithm. Since each of these heuristics addresses a different problem, the best iesults 'nere obtained

by combining the two heuristics, and adding the postponement technique, as is done in the third

heuristic. We found that this heuristic yielded considerable improvements over the static synchronous

algorithm.

The following discussion analyzes the performance of each of the adaptive heuristics.

1. Subregion splitting

The cutoff level measure is a good way of identifying subregions that are productive. Howevel,

splitting alone does not effectively concentrate the computation in the more productive subre-

gions, because it does not adjust the sample densities. Instead, splitting has two other benefits

for sequential computation. First, it significantly reduces the time for start point selection.

This is because the productive subregions have the most sample points below the cutoff level,

and the time required for start point selection is more than linear in this nu.ber of points.

Thus splitting the productive subregions reduces the time for computing start points in the
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initial sample = 1000, 8 subregions Static Synch Heuristic 1 Heuristic 2 Heuristic 3

total number of iterations 8.6 6 8.2 6.1
total sample size 8689 6121 5110 38,14
total number of local searches 44 54 43 45

total function evals 9624 7277 5110 4759
fnc eval improvement over static case 24 % 47 % 50.5 %

computation time 84:03 31:22 68:20 23:21
time improvement over static case 63 % 19 % 72 %

initial sample = 1000, 16 subregions Static Synch Heuristic 1 Heuristic 2 Heuristic 3
total number of iterations 6 5.2 5.8 5.2
total sample size 6263 5534 3880 3095
total number of local searches 68 76.8 67 51
total function evals 7666 7102 5270 4109

fnc eval improvement over static case - 7 % 31 % 46 %

computation time 37:49 30:36 29:38 20:47
time improvement over static case - 19 % 22 % 45 %

Table 1: Performance statistics for the adaptive heuristics - sequential tests

subregions where this is most expensive. Second, we observed that there tend to be more local

searches per iteration when subregions are split, and that they lead to the discovery of more lo-

cal minimizers, and hence the termination of the algorithm, in fewer iterations. This is becaube

when the subregion is smaller, there are more candidate start points, and empirically it seems

that the oversampling procedure of Section 3.3 does not eliminate as many of these as xould be

eliminated if the subregion were bigger. The earlier, extra searches turn out to be beneficial.

The combination of these effects account for the substantial decreases in computation time (19

% and 63 %), and the smaller decreases in iterations, total sample size, and function evaluations

for heuristic 1 shown in Table 1. Note that another possible benefit from splitting, allowing more

processors to concentrate on productive subregions, is not relevant for sequentil .otnputtiuii.

2. Sample size reduction

The sample densities of unproductive subregions are reduced by this heuristic, which is reflected

in the decrease in total sample size required to solve the problems. This decrease is not as

large as it could be because unproductive subregions tend to reach the lower limit for sample

size increment and cannot be reduced further. (This observation led us to consider using

postponement as is done in heuristic 3.) The benefits from splitting, namely reduction in

computation time required for start point selection, and more searches per iteration leading to

fewer total iterations, are not achieved.
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3. Subregion splitting and postponement with sample size reduction

This heuristic effectively combines the benefits of the previous two. The cutoff level identifiec.

productive subregions well. Sample size reduction combined with postponement effectix el ser' e

to concentrate most of the sampling and searching in the productive subregions. Splitti,,g scres

to reduce the computation time of start point selection in the areas wheic it is expensike, and

to generate more start points per iteration, which allows the computation to tei minate in fe% el

iterations. The overall result is a substantial reduction in both computation time (45 7 anld 72

%) and the total number of sample points and function evaluations (about 50 %).

4.3 Parallel experiments

In this section we present our computational results for the four parallel algorithms, namel% the static,

synchronous algorithm, the static, asynchronous algorithm, the adaptive, synchronous algoi ithm, and

the adaptive, asynchronous algorithm. In both adaptive algorithms, the adaptive heuristic used is

subregion splitting and postponement with sample size reduction. In comparing the algorithms, we

will attempt to isolate how the adaptive aspect and the asynchronous aspect each contribute to the

improvement over the static synchronous case. We also discuss the speedups of the parallel algoz ithnis

over their sequential counterparts.

4.3.1 Comparison of the four parallel algorithms

The results of the four parallel algorithms are summarized in Table 2. Each algorithm has becn tcbted

using five different initial configurations for sample size and number of subregions.

The results show that the asynchronous algorithms are moderately effective in redtcing the told

computation time of their synchronous counterparts. In the static cases x'ith S subiegioul. thu

reductions by the asynchronous algorithm are fairly large (about 35 % in 2 of the 3 cases). This is

because both the synchronous and the asynchronous algorithms have fairly large, but irregular sized

tasks, and so the asynchronous approach leads to much better load balancing. The improvements by

the asynchronous algorithms are also good for the adaptive cases with 8 initial subregions (up to 35

even though the adaptive approach could be expected to itself improve load balancing aid thus

diminish the potential for further improvements. In both the static and adaptive cases with 16 initial

subregions, however, the times required by the synchronous and asynchronous methods are about the

same. This is apparently because the load balancing of the synchronous algorithm is already rather

good due to the larger number of subregions and smaller task sizes, so that the impioenicut ii load

20



density = 5SO, 8 subregions Static Synch Static Asy. Adapt Synch Adapt Asvnch
total numbe of iterations 13.9 11.1 11.5 9.4
total sample density 6977 6319 3591 2784
total number of local searches 40.4 50 58 63.5
total function evals 7816 7383 4808 4133
fnc eval improvement over static synch - 5 % 38 % 47 %
computatian time 23:06 14:26 5:00 3:16
time improvement over static synch - 37 % 78 % 86 %

density = I00, 8 subregions I Static Synch Static Asynch Adapt Synch Adapt Asynch
total number of iterations 8.6 7 6.5 6.1
total saml density 8383 8532 4026 3963
total number of local searches 39.6 46 47 53
total function evals 9186 9474 4966 5055
fnc eval improvement over static synch -3 % 46 o 45 1
computation time 23:19 15:01 4:10 3:25
time improvement over static synch - 35 % 82 % 85 %

density = 2000, 8 subregions Static Synch Static Asynch Adapt Synch Adapt Asynch
total number of iterations 4 4 3.8 3.9
total sample density 8077 10592 5591 5850
total number of local searches 36.4 87 48 55
total function evals 8734 11391 6548 6926
fnc eval improvement over static synch - -23 % 25 % 21 %
computation time 14:22 13:30 4:29 4:05
time improvement over static synch 6 % 69 % 71%

density = 1000, 16 subregions Static Synch Static Asynch Adapt Synch Adapt Asynch
total number of iterations 5.6 5.7 5.4 5.7
total sample size 5891 5010 30.18 3369
total number of local searches 69.9 81.5 45 69
total function evals 7341 6697 3976 4788
fnc eval improvement over static synch - 9 % 46 % 35 c
computation time 5:04 5:10 3:33 3:23
time improvement over static synch I -2 % 30 % 33 %

density = 2000. 16 subregions Static Synch Static Asynch Adapt Synch Adapt A~ynch
total number of iterations 3.6 3.6 3.4 3.5
total sample density 7488 7958 5261 5152
total number of local searches 51.9 66 62 60
total function evals 8510 9266 6529 6326
fnc eval improvement over static synch - -9 % 23 % 26 %
computation time 5:51 5:48 3:54 3:39
time improvement over static synch 1 -0.8 % 33 % 37 %

Table 2: Performance comparison of the static synchronous, static asynchronous, adaptive syn-
chronous and adaptive asynchronous algorithms
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balancing from the asynchronous approach is offset by the additional work for extra partial iterations

(see Section 3.2).

The improvements in going frcm stat;c to adaptive algorithms are quite inpressie in all cabeb.

In the synchronous cases the reductions in computation time range from 30 % to 82 %, while il the

asynchronous cases they range from 34 % to 77 %. These results are consistent with the sequential

resu!;s in Section 4.2; indeed we see that the improvements by the adaptive approach sometimes

are even larger in the parallel case, presumably because, in addition to the advantages discussed in

Section 4.2, the adaptive techniques also improve load balancing.

The overall reductions in computation time between the static synchronous and the adaptive

asynchronous algorithm range from 33 % to 86 %. In spite of these improvements, however, there

are two points that cannot be overlooked. First, the number of local searches for the adapl~te '11d

asynchronous methods is always higher than for the static, synchronous method. One leason seems

to be that the adaptive methods have more subregions, which lead to more candidate start points,

and the oversampling phase of the algorithm is not entirely effective at eliminating the sample points

that will lead to redundant searches. We intend to investigate ways to reduce this problem in the

future, either by changing the method for selecting start points, or by halt;ng searches that appear to

be redundant prematurely. A second reason is apparently the "runover" effect of the asynchronous

algorithm, i.e. that extra searches are performed at iterations beyond the eventual stopping point.

This effect seems to significantly increase the number of searches between the synchronous and asyn-

chronous static algorithms, but not between the synchronous and asynchronous adaptive methods.

Since the adaptive methods appear preferable, this effect is not a major concern.

Secondly, it must be noted that the static synchronous algorithm is far more efficient with a higher

number of initial subregions than it is with a smaller number of initial subregions. Consequently, the

improvements by the adaptive, asynchronous algorithm are not as dramatic in this case (although

they are still around 33 %). The reason that the synchronous algorithm is more efficient with moic

subregions is that the cost of start point selection, which is a significant portion of the total time,

decreases significantly as the number of subregions are increased. This also impioves load balancing

which further decreases the execution time. For complicated functions with more variables, however,

an inordinately large number of initial subregions might be necessary to make the start point selection

times small for the static algorithm, but the overhead costs associated with this number of subregions

might quickly become prohibitive. In these situations, adaptive methods should be very useful.

Finally, note that the improvement in the total number of function evaluations required by the

best adaptive, a.,,ynchronous method (best in terms of function evaluations) over the bebt ttiL,
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Speedup 1 Speedup 2 Speedup 3 Speedup 4
density = 1000 3.6 5.6 5.6 6.8
8 subregions
density = 1000 7.4 7.3 5.85 6.1
16 subregions I I I

Table 3: Speedups of the parallel algorithms

synchronous method is 47 %. Thus the adaptive, asynchronous method would also be advantageous

if function evaluation was the dominant cost. Interestingly, the smallest total number of function

evaluations for the adaptive, asynchronous method comes from using the smallest initial sample size

and number of subregions. The time is also lowest in this case, although the variation in computation

time for the adaptive, asynchronous algorithm between the different starting configurations is small,

whereas the variation in total function evaluations is significant.

4.3.2 Speedups

Table 3 gives the speedups, in computation time, by the parallel algorithms over their sequentiai

counterparts, for the two sets of experimental configurations (initial sample size and number of

subregions) that are common to Tables 1 and 2. The 4 columns of Table 3 are the following:

1. Speedup 1 - Static Synchronous Sequential/Static Synchronous Parallel

2. Speedup 2 - Static Synchronous Sequential/Static Asynchronous Parallel

3. Speedup 3 - Adaptive Synchronous Sequential/Adaptive Synchronous Parallel

4. Speedup 4 - Adaptive Synchronous Sequentiai/Adaptive Asynchronous Parallel

In the sequential experiments we used one worker process (on one processor), and in the parallel

experiments we used 8 worker processes (on 8 processors). Thus we consider the kigical parallelism

of the experiments to be 8, even though we used an additional processor for the scheduler and global

information handler processes in all the experiments.

For tbe static experiments, notice that the speedup in the synchronous S subregion case (speedaq,

1) is low, due to the load imbalance associated with using a small number of subregions. The

speedup improves considerably by switching to an asynchronous parallel algorithm (speedup 2). In

the 16 subregion case, the load balance is much better, and the speedups for both the synchronous

and asynchronou 'gorithms are over 7.
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For the adaptive experiments, the speedups in the synchronous cases (speedup 3) aie reasonabl

good, but there still is evidence of load imbalance with both 8 and 16 subregions. The asynchronous

cases (speedup 4) show good speedups, but since the adaptive sequential algorithms are far more

efficient than the static sequential algorithms, the overhead of their parallel countei parts no becomes

more significant and prevents the speedups from being higher than 6-7. This o~erhead consists of

extra local searches, due to less efficient elimination of redundant start points, and extra sampling,

due to subregions that perform work at an iteration beyond the one %here the asynchronous algorithm

actually terminates.

5 Summary and Future Directions

We have presented a family of algorithms for stochastic global optimization that use adaptive and

asynchronous techniques. In our tests, these techniques have improved the speed of static and s.N n-

chronous algorithms considerably, on both sequential and parallel computers. For sequential algo-

rithms, an adaptive heuristic that uses subregion splitting, sample size increment reduction, and

postponement, is up to 72 % faster than the static sequential global optimization algorithm. For

parallel algorithms, we have demonstrated that a static parallel algorithm may be improved solely by

using asynchronous techniques, and that an adaptive asynchronous parallel algorithm is up to 86 %

faster than the static synchronous parallel algorithm.

Our research has also demonstrated several shortcomings of our nev methods, however, and

part of our ongoing research is to investigate ways to improve the algorithms. In addition, we

are interested in experimenting with alternative implementations of the parallel algorithrms, sucl

as a parallel asynchronous implementation that does not have a central schedulei process. hi the

remainder of this section, we briefly discuss some of the interesting directions foi futnie resedlch.

Before we take steps to improve the parallel algorithms, we intend to do some mole extensive

tests that will further isolate the factors contributing to improvements in peiformance, and the

factors that are causing extra work to be done. For example, in the paper we have hypothesized that

the oversampling technique (Section 3.3) contributes to the large number of local searches that are

observed in the new parallel algorithms, and that this could be viewed as an unnecessary extra cost.

On the other hand, we also observed that the algorithms that run faster do so because the extra local

searches cause them to require fewer iterations. Thus the question remains whethei oversampling is

creating unnecessary searches, or whether these "extra" searches are indeed necessary to speed up

the solution of the problem. To investigate this question, we will run more tests, with and without
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oversampling. Our experimentation will also include running test problems of highel dincilsion , d

with a larger number of local minimizers. We suspect that the differences between the performance

of adaptive and static algorithms will be greater with these larger problems.

Another possibility for reducing the cost of extra local searches in our new methods is to in-

corporate heuristics into the local minimization procedure that terminate redundant rnininiz tiuu,

prematurely. If the local minimization procedure has some knowledge about minimizeis pie'iousl)

encountered, it can discontinue minimizations when they begin to search in the vicinity of a knowln

minimizer. This might eliminate a large portion of the cost of the unnecessary local searches.

In order to improve the parallel algorithms, we can take steps to reduce some of the overhead

costs that arise from asynchronous "runover" (see Section 3.2). "Runover" costs can be reduced by

simply going back to a synchronous algorithm, but our results show that the adaptive as% nclu onoits

parallel algorithm consistently has the best performance. A question that remains is whether we

can make the performance of the adaptive synchronous algorithm be closer to that of the adaptive

asynchronous algorithm. One possibility is to fine tune the splitting heuristics so that subregion tasks

are as regular as possible, thus reducing load imbalance.

Finally, we are concerned with the parallel computation issues that tl e adaptive and as% nchronous

algorithms present. One of the important issues surrounding the design and implementation of

parallel algorithms is what type of algorithm is best suited for a particular parallel architecture.

The algorithms presented in this paper use centralized control for scheduling taskb, telminatiug

the algorithm, or accessing global data. An alternative implementation that w e die exploiing useb

distributed control. A distributed control algorithm does not have a centralized mechanism for

scheduling tasks, distributing work, determining when a computation should terminate, oi accessing

global data, instead, each of these issues is handled locally. We are currently evaluating different

possible distiibuted control implementations using simulation; among the issues that are intelesting

are different ways to distribute work and determine termination. We will ultimatel desigii and

implement a distributed control version of a parallel global optimization algoithm to run on a pai allel

computer.
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