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INTRODUCTION

Modal techniques are frequently employed to solve the free vibrational
motion of beams. For uniform beams, the method is analytical and is described
in the textbook literature (refs 1-4). However, when the beam's cross section
is nonuniform, it is often difficult, if not impossible, to find an analytical
solution. One of the most commonly used methods for beams in this category is
to divide the beam into a finite number of uniform sections and solve the
eguations within each section. Klein (ref 5) developed a "component modes"
method based on this concept which she used to analyze a cantilevered helicopter
blade with a high degree of nonuniformity. For each se~tion of the blade, modal
displacements were expressed by a Rayleigh-Ritz expansion, and continuity
between sections was enforced by Lagrange multipliers. Mittendorf and Greif
(ref 6) used a similar approach for a beam with general boundary conditions.

The mode shapes were expanded in a Fourier series, while the lLagrange
multipliers were used to enforce the kinematic transfer across section bound-
aries. A finite element approach, such as the one developed by Resende and
Doyle (ref 7), may aiso be used for these cases. They used a three-noded ele-
ment and a formulation based upon the quadratic isoparametric class. Identical
shape functions are used to define geometry, displacement, and variations in
cross-sectional properties.

For beams with special geometrical properties, a number of analytical tech-
niques may be used. Wang (ref 8) obtained a general solution for beams whose
sectional properties vary as a power of the axial coordinate. Mode shapes were
obtained in terms of generalized hypergeometric functions using the method of
Frobenius. Wang (ref 9) used the Galerk.n method to determine freqﬁencies.

Modes were represented by a set of Legendre polynomials which served as shape




functions throughout the spatial domain. Lau (ref 10) deéived the frequency
determinant for a profiled and truncated fixed-free beam with an attached end
mass using Bessel functions of the second order. Goel (ref 11) investigated
vibrations of linearly-tapered beams mounted upon rotationailly-elastic bound-
aries.

A1l of these methods are satisfactory within the confines of their
modeliing approximations. For example, with finite elements, the mode shape
between nodes is approximated by a piecewise set of cubic polynomials.
Continuity at element boundaries is satisfied up to the second derivative, and
in most applications this is all that is reguired. Unlike the FEM, analytical
techniques use functional representations which are ﬁarticu]ar1y useful in
applications where differentiability is required.

The purpose of this work is to present a hybrid method (analytical/
numerical) to model the free vibrations of statically-determinant beams on
general supports. This method adapts the exact prismatic beam solution to
nonprismatic cases. In addition to a presentation of this method, the computer
routines that implement the method are explained and a few examples are compared

to the results generated by the FEM method.

ANALYTICAL METHOD
The transverse motion of a general nonprismatic beam is described by the

following partial differential equation (PDE) according to Thomson (ref 1):

wyn V_‘ - ELV_‘_ T _gv_‘_ U=
(EIy™)" + g ¥ -+ gagv (gkAG)y

N N
} [pn(x't'y'y .---:y)] + ERG pn(x:t;yfy :---IY)
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= ERG pn(x;t:YIY'.c--;y) - W (1)
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where
E = Young's Modulus
I = transverse moment of inertia
J = pitch moment of inertia
G = modulus of elasticity in shear
A = area of beam's cross section
k = shear coefficient {function of cross section)
W = weight per unit length of beam

Ph = n-th forcing function (total of N)

g = acceleration of gravity

x = axial coordinate

t = time (independent variable)

y = transverse displacement (dependent variable)

= time derivative

space derivative
This equation takes into account all possible effects of beam dynamics. The
second term accounts for the translational inertia of the beam, while the
remaining terms model rotatory inertia and shear deformation effects. Al1l terms
are on a per length basis. The right side contains the driving loads which may
be functions of the dependent variable as well as space and time.

The free vibration modes (or mode shapes) are determined by solving the
homogeneous form of Egq. (1). For a prismatic structure (i.e., when I, E, J, G,
A, w, k are constant throughout the spatial domain), the free vibration equation

takes the form

we w ..o gl!_ coar _QV_V_ G
3




The solution of this equation is straightforward and can be found in the works
of Bozich (ref 12) and Dolph (ref 13). Following the method used by Bozich, the
PDE becomes a function of the structural parameters and the natural vibration

frequencies as follows:
EIw_\ oy _ W - JwEy ey =
Ely + (J + gkAG)w Y g (1 kAG)w y 0 (3)

where

w = natural vibration frequency
Equation (3) can be nondimensionalized by introducing a new independent variable
x (=x/L). By normalizing each term with respect to w2/g and using the parame-
ters suggested by Kruszewski (ref 14), the resulting dimensionless equation,

valid for any uniform beam, is

%g jgy + (KR + Kg) j;’f - (1 - KBKRKS)y = 0 (4)
where
K§ = weL* fy (5a)
S = Is &g (50)
K& = {7 39 (5¢)

These coefficients represent the contributions of bending, shear, and rotatory
inertia, respectively. In this form, Eq. (4) has the solution:
y(x,t) = [A cosh Bx + B sinh Bx + C cos ax + D sin ax]cos wt (6)

where

/

/ + (Kpekg) + Y(KR-KS)? + 4/Kg

@ = KV -------------  RRRREEE e (7a)




/

/ - (Kg+K§) + Y(KR-Ks)? + 4/Kg
B =Kg/ =cm=mmmommmo oo (7b)

The coefficients A, B, C, and D are determined by the boundary conditions of the
beam. The vibration frequencies, w, and their respective mode shape functions
are found by applying the appropriate boundary conditions.

To adapt this analys{s to the nonprismatic case, the beam is represented by
a finite number of prismatic segments. MWithin each segment Egq. (8) portrays the
mode shape for the assumed uniform properties of that segment. The conditions
at the common boundary between adjacent segments must match to preserve con-
tinuity between segments. The appropriate end boundary conditions are applied
at the extremities of the beam. The equation defining the mode shapes for each

segment is developed from Eq. (6) as follows:

¢1-J'()-() = Ajj cosh B'ij;‘ + Bjj sinh Bij)—‘ + Cjj cos a-iJ')-( + Djj sin a-;j; (8)
where
i = segment number
j = mode shape number
A,B,C,D = function coefficients (by mode/segment)

Employing these segmented-mode shape functions, the natural vibration frequen-
cies and mode shape coefficients can be determined to within an arbitrary con-
stant for any set of end boundary conditions. For example, consider the case of

a free-free beam which is composed of M segments. The boundary conditions are

$15(0) = 0 (9a)

oMj(1) = 0 (90)

$15(0) = 0 (9¢)

oMj(1) = 0 (9d)
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Continuity at the common boundaries between the segments is preserved by
equating displacement, slope, moment, and shear calculated by adjacent mode

functions. These conditions are as follows:

$i-15(%i) = &4;(xq) (10a)
$i-1§(X4) = &§j(%4) (100)
(E1){-193-15(R4) = (EI){075(%;) (10¢)
(E1)j-163575(%4) = (EI)4955(%4) (10d)

where

;i = left boundary of i-th segment
For a model containing M segments, there are 4M coefficients and one frequency
to be evaluated at each mode shape. Setting a coefficient of the mode shape in
the first segment to unity renders the system deterministic and yields unique
solutions at each natural frequency.

A set of a1gebraic equations in terms of the natural frequency, w;, and the
4M-1 coefficients is presented in matrix form in Figure 1. The system matrix
contains an orderly set of entries representing the enforcement of the boundary
conditions (B.C.) and continuity conditions (C.C.). At global location 1,1 the

2 by 4 subarray contains the terms for evaluating the B.C. at x = 0, whereas a

similar array ending at N,N represents the B.C. at X

1. "Walking" along the
main diagonal are M-1 subarrays, 4 by 8 in size, which represent the C.C. across
segment boundaries. The global address of the upper left corner of the initial
subarray is 3,1 and is incremented 4,4 for each additional interface. The
remaining terms are zero. The nonzero entries are functions of the segment
properties, end-point locations, and the vibration frequencies. Setting the
determinant equal to zero and solving for the roots of the resulting charac-

teristic equation produces values for these frequencies. At each frequency, a




reduced system is developed by setting the appropriate mode shape coefficient in
the first segment to unity, eliminating the first row, and shifting the
corresponding column to the right side of the matrix equation. This new system
of equations is deterministic at each frequency. The values for the remaining
mode shape coefficients may then be calculated. The orderliness of the entries
to the system matrix enables an efficient and dedicated computer code for its
solution to be developed.

This method has one main advantage over finite element techniques because
the segmenting of naturally uniform sections is not required since the mode
function is exact within this domain. Thus, only a few segments are needed for
structures with uniform or gradually varying sections. Another advantage of
this method is that the number of modes which can be calculated is not a func-
tion of the number of segments. In finite elements, the mode shapes are defined
by the location of the model's nodes so that an accurate representation of the
mode shapes at higher frequencies requires a large number of nodes. This is not
the case for the USM, since its "nodeless" elements use trigonometric and hyper-
bolic functions to represent the mode shapes. Finally, in cases where the modes
are used in dynamic analyses (ref 15) and the loads are functions of the depend-
ent variable and its derivatives, the USM mode functions can accurately repre-
sent these loads since they are differentiable. The orthogonality of the USM-
generated mode shapes permits the use of the usual expansion techniques. Their
finite element counterparts are usually represented by cubic polynomials which

possess limited differentiability.

COMPUTER CODES
A set of FORTRAN-77 computer routines has been written and tested on an IBM

4341-N12 minicomputer driven by the VM/SP Operating System. A total of 2000




lines of code was written for this analysis. The overall operation is
controlled by an executive routine called MOD-MAIN. This routine directly calls
7 of the 20 subroutines used in the analysis. Figure 2 is a flowchart of the
overall operation. The data entry and initialization portion of the analysis is
shown on the left side of the figure. Specifically, input data consists of the
physical and geometric characteristics of the beam, the location of segment bor-
ders, and the boundary conditions at the beam extremities. In addition, the
number of modes to be determined, parameters regarding the search procedure,
tolerance on the root estimates, and output requirements are read from a stored
disk file.

The right section of Figure 2 shows the flow through the analytical portion
of the routines. A loop is shown that is traversed once for each mode
requested. During each pass, a vibration frequency and set of mode shape coef-
ficients are determined and the results sent to various disk files. The proce-
dure for locating a root is contained within the routine labelled ROOT SOLVER.
In this solver, a search procedure is conducted by marching along the frequency
axis in fixed steps, filling the system matrix, and calculating its determinant
at each step. A change in the sign of the determinant between a pair of adja-
cent frequencies signifies the existence of a root between these freguencies. A
modified secant method (ref 16) is then invoked to accelerate the search proce-
dure. The root is determined to within the specified tolerance and is passed
back to MOD-MAIN along with current values in the system matrix. The mode shape
coefficients are then determined by a call to the coefficient solver. 1In these
routines the system matrix is reduced according to the boundary conditions
imposed on the left end and the coeffcient used for normalization. The new set
of linear equations is then solved for the unknown mode shape coefficients and

control is passed back to the MOD-MAIN, The output is generated by calls to the




various output routines. The program then returns to the top of the loop, the
current frequency is incremented, and the process is repeated for the next root.
The looping continues until all of the requested roots and coefficients are

found, and the associated output is generated.

TEST CASES

This method was evaluated by comparing it to results generated by an FEM
code. The software chosen was ABAQUS Release 4.7 developed by Hibbitt, .
Karlsson, and Sorenson (ref 17). The beam used in this study was 2540 millime-
ters (mm) long with a tapered circular cross section starting at a left end
diameter of 125 mm: The diametral tapers ranged from 0.005 to 0.020.

A sketch of the beam and its two modelling representations is shown in
Figure 3. The finite element model consists of 53 nodes and 52 two-noded
linear elements. The beam elements consider the effect of shear but not rota-
tory inertia. The tapered section was subdivided into 13 prismatic sections
with four elements in each section.

The USM model contains three segments of equal lengths whose diameter is
the average diameter of that section of the beam. Six boundary condition com-
binations out of a possible 32 were evaluated for four diametral tapers. The
first five bending frequencies were calculated yielding a total of 120 "data™
points for each model. The entire 120 runs were accomplished in one afternoon,

A comparison between each pair of values indicates that at most a 6.7 per-
cent discrepancy exists between the results of both models. Most calculated
values were well within this extreme. 1In general, the FEM values were greater
than those obtained from the USM for the first three modes. However, the
reverse is true for modes four and five. These comparisons are shown graphi-

cally in Figures 4 through 6 for three of the boundary conditions. In these




graphs the frequency is plotted against diametral taper for all modes. The
upright triangles represent the values determined by the USM, whereas the
inverted triangles are results calculated by the FEM. Overall results indicate
that the effect of the taper is greater for the higher modes. For example, for
the fix-pin beam, the fifth frequency is reduced from 970 to 820 Hz as the taper
is increased from 0.005 to 0.020, a 15 percent reduction. The primary fre-
quency, however, has been reduced by only 8 percent from 60 to 55 Hz.

In Figures 7 through 9, the fourth bending mode shape of each model is
compared for the extreme taper value (0.020). The shapes are very similar, but
the magnjitudes of the USM displacements are slightly greater than those from the
FEM. The greatest discrepancy of 11 percent occurs for the fix-guide boundary
condition at the three-quarter point along the axis. In retrospect, the USM
model could have been refined by either changing the geometric properties of
each segment or by adding more segments to better approximate the taper.

To compare the differences in mode shapes as a function of taper, consider
the results plotted in Figure 10. This figure contains the fourth mode shape
generated by the USM for the fix-pin boundary condition at all values of the
taper. As is expected, the beam possessing the thinnest cross section at the
right boundary has the greatest deflection. The deflection for the thinnest
beam is about 15 percent greater than for the heaviest beam. A frequency shift
from 650 to 550 Hz is also indicated.

To compare the differences between beam modelling PDE, consider the results
shown in Figure 11. In this figure, the mode shapes for the fourth bend mode
and the steepest taper are plotted for all three models using the USM. The
boundary conditions are fix-pin. The difference between tﬁe shapes is hardly

discernible for this geometry. The frequency shift is about 20 Hz, the highest
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being associated with the Euler model. This type of response is expected since
inclusion of additional terms in the PDE tends to retard all flexural free

vibration frequencies,

DISCUSSION AND CONCLUSIONS

This work, which was developed in conjunction with the author's disser-
tation (ref 15), presents an accurate and efficient method to determine the free
vibration frequencies and mode shapes of nonprismatic end-mounted beams on
standard boundaries. The term Uniform Segment Method has been coined to
distinguish this modelling from the more popular finite element techniques. A
dedicated computer routine has been developed and tested against results
obtained from an FEM model for a tapered beam. The maximum discrepancy for any
frequency calculation was 7 percent, whereas the maximum difference in any local
value of the mode shape was 11 percent. Greater accuracy can be obtained by a
modest increase in the number of USM segments.

Future work with this method includes linking the model to an optimization
package so that discrepancies between USM-calculated frequencies and a set of
known freguencies (either FEM-generated or experimentally determined) are mini-
mized. The optimization variables would be the segmentation spacing and the
section properties of the segments. Linearly elastic boundary conditions (in
both transverse and rotational directions) will be included along with the
standard boundary types. Finally, the development of a transient analysis
package using the differentiable USM modes will permit the determination of

forced responses for a variety of displacement-dependent loadings.
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TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: SMCAR-CCB-D
-DA
-0C
-DM
-DpP
-DR
-DS (SYSTEMS)

CHIEF, ENGINEERING SUPPORT DIVISION
ATTN: SMCAR-CCB-S
-SE

CHIEF, RESEARCH DIVISION
ATTN: SMCAR-CCB-R

-RA

-RM

-RP

-RT

TECHNICAL LIBRARY
ATTN: SMCAR-CCB-TL

TECHNICAL PUBLICATIONS & EDITING SECTION
ATTN: EMCAR-CCB-TL

DIRECTOR, OPERATIONS DIRECTORATE
ATTN: SMCWV-0D

DIRECTOR, PROCUREMENT DIRECTORATE
ATTN: SMCWV-PP

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE
ATTN: SMCWV-QA

NO. OF
COPIES

— e b pd b b b

s

- N

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF

ANY ADDRESS CHANGES.




TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

ASST SEC OF THE ARMY
RESEARCH AND DEVELOPMENT
ATTN: DEPT FOR SCI AND TECH
THE PENTAGON

WASHINGTON, D.C. 20310-0103

ADMINISTRATOR

DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-FDAC

CAMERON STATION

ALEXANDRIA, VA 22304-6145

COMMANDER

US ARMY ARDEC

ATTN: SMCAR-AEE
SMCAR-AES, BLDG. 321
SMCAR-AET-0, BLDG. 351N
SMCAR-CC
SMCAR-CCP-A
SMCAR-FSA
SMCAR-FSM-E
SMCAR-FSS-D, BLDG. 94

SMCAR-IMI-1 (STINFO) BLDG. 59

PICATINNY ARSENAL, NJ 07806-5000

DIRECTOR

NO. OF
COPIES

12

RO 4= bbb b b e

US ARMY BALLISTIC RESEARCH LABORATORY

ATTN: SLCBR-DD-T, BLDG. 305

1

ABERDEEN PROVING GROUND, MD 21005-5066

OIRECTOR

US ARMY MATERIEL SYSTEMS ANALYSIS ACTV

ATTN: AMXSY-MP

1

ABERDEEN PROVING GROUND, MD 21005-5071

COMMANDER

HQ, AMCCOM

ATTN: AMSMC-IMP-L

ROCK ISLAND, IL 61299-6000

NOTE:

COMMANDER

ROCK ISLAND ARSENAL

ATTN: SMCRI-ENM

ROCK ISLAND, IL 61299-5000

DIRECTOR

US ARMY INDUSTRIAL BASE ENGR ACT
ATTN: AMXIB-P
ROCK ISLAND, IL 61299-7260
COMMANDER

US ARMY TANK-AUTMV R&D COMMAND
ATTN: AMSTA-DDL (TECH LIB)
WARREN, MI 48397-5000

COMMANDER

US MILITARY ACADEMY

ATTN: DEPARTMENT OF MECHANICS
WEST POINT, NY 10996-1792

' US ARMY MISSILE COMMAND

REDSTONE SCIENTIFIC INFO CTR
ATTN: DOCUMENTS SECT, BLDG. 4484
REDSTONE ARSENAL, AL 35898-5241

COMMANDER

US ARMY FGN SCIENCE AND TECH CTR
ATTN: DRXST-SD

220 TTH STREET, N.E.
CHARLOTTESVILLE, VA 22901

COMMANDER

US ARMY LABCOM

MATERIALS TECHNOLOGY LAB
ATTN: SLCMT-IML (TECH LIB)
WATERTOWN, MA 02172-0001

CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

NO. OF
COPIES

A

PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING




TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST {CONT'D)

NO. OF NO. OF
COPIES COPIES
COMMANDER COMMANDER
US ARMY LABCOM, ISA AIR FORCE ARMAMENT LABORATORY
ATTN: SLCIS-IM-TL 1 ATTN: AFATL/MN 1
2800 POWDER MILL ROAD EGLIN AFB, FL 32542-5434
ADELPHI, MD 20783-1145
COMMANDER
COMMANDER AIR FORCE ARMAMENT LABORATORY
US ARMY RESEARCH OFFICE ATTN: AFATL/MNF
ATTN: CHIEF, IPO 1 EGLIN AFB, FL 32542-5434 1
P.0. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 METALS AND CERAMICS INFQ CTR
BATTELLE COLUMBUS DIVISION
DIRECTOR 505 KING AVENUE
US NAVAL RESEARCH LAB COLUMBUS, OH 43201-2693 1
ATTN: MATERIALS SCI & TECH DIVISION 1
COOE 26-27 (DOC LIB) 1

WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.




