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INTRODUCTION

Modal techniques are frequently employed to solve the free vibrational

motion of beams. For uniform beams, the method is analytical and is described

in the textbook literature (refs 1-4). However, when the beam's cross section

is nonuniform, it is often difficult, if not impossible, to find an analytical

solution. One of the most commonly used methods for beams in this category is

to divide the beam into a finite number of uniform sections and solve the

equations within each section. Klein (ref 5) developed a "component modes"

method based on this concept which she used to analyze a cantilevered helicopter

blade with a high degree of nonuniformity. For each se'-tion of the blade, modal

displacements were expressed by a Rayleigh-Ritz expansion, and continuity

between sections was enforced by Lagrange multipliers. Mittendorf and Greif

(ref 6) used a similar approach for a beam with general boundary conditions.

The mode shapes were expanded in a Fourier series, while the Lagrange

multipliers were used to enforce the kinematic transfer across section bound-

aries. A finite element approach, such as the one developed by Resende and

Doyle (ref 7), may also be used for these cases. They used a three-noded ele-

ment and a formulation based upon the quadratic isoparametric class. Identical

shape functions are used to define geometry, displacement, and variations in

cross-sectional properties.

For beams with special geometrical properties, a number of analytical tech-

niques may be used. Wang (ref 8) obtained a general solution for beams whose

sectional properties vary as a power of the axial coordinate. Mode shapes were

obtained in terms of generalized hypergeometric functions using the method of

Frobenius. Wang (ref 9) used the Galerkn method to determine frequencies.

Modes were represented by a set of Legendre polynomials which served as shape
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functions throughout the spatial domain. Lau (ref 10) derived the frequency

determinant for a profiled and truncated fixed-free beam with an attached end

mass using Bessel functions of the second order. Goel (ref 11) investigated

vibrations of linearly-tapered beams mounted upon rotationally-elastic bound-

aries.

All of these methods are satisfactory within the confines of their

modelling approximations. For example, with finite elements, the mode shape

between nodes is approximated by a piecewise set of cubic polynomials.

Continuity at element boundaries is satisfied up to the second derivative, and

in most applications this is all that is required. Unlike the FEM, analytical

techniques use functional representations which are particularly useful in

applications where differentiability is required.

The purpose of this work is to present a hybrid method (analytical/

numerical) to model the free vibrations of statically-determinant beams on

general supports. This method adapts the exact prismatic beam solution to

nonprismatic cases. In addition to a presentation of this method, the computer

routines that implement the method are explained and a few examples are compared

to the results generated by the FEM method.

ANALYTICAL METHOD

The transverse motion of a general nonprismatic beam is described by the

following partial differential equation (PDE) according to Thomson (ref 1):

(Ely")" + (w Elw (J + w+ -y (J + +

N

[Pn(x,t,y,Y', .... Y)] + Pn(x,t,yy' ..... Y)

n=1

EI ,,
kAG Pn(xty',Y ..... V) - w (1)
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where

E = Young's Modulus

I = transverse moment of inertia

J = pitch moment of inertia

G = modulus of elasticity in shear

A = area of beam's cross section

k = shear coefficient (function of cross section)

w = weight per unit length of beam

Pn = n-th forcing function (total of N)

g = acceleration of gravity

x = axial coordinate

t = time (independent variable)

y = transverse displacement (dependent variable)

= time derivative

= space derivative

This equation takes into account all possible effects of beam dynamics. The

second term accounts for the translational inertia of the beam, while the

remaining terms model rotatory inertia and shear deformation effects. All terms

are on a per length basis. The right side contains the driving loads which may

be functions of the dependent variable as well as space and time.

The free vibration modes (or mode shapes) are determined by solving the

homogeneous form of Eq. (1). For a prismatic structure (i.e., when I, E, J, G,

A, w, k are constant throughout the spatial domain), the free vibration equation

takes the form

Ely fill + y - (J + EI +)" Jw . (2)
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The solution of this equation is straightforward and can be found in the works

of Bozich (ref 12) and Dolph (ref 13). Following the method used by Bozich, the

PDE becomes a function of the structural parameters and the natural vibration

frequencies as follows:

Ely""it + (J , E )w - (1 -)(L y = 0 (3)
gkAG g kAG)jy

where

w = natural vibration frequency

Equation (3) can be nondimensionalized by introducing a new independent variable

x (=x/L). By normalizing each term with respect to w2/g and using the parame-

ters suggested by Kruszewski (ref 14), the resulting dimensionless equation,

valid for any uniform beam, is

i Z + (KR + KS) -Y - (1- KBKRKS)y 0 (4)

B d" R

where

2 = (5a)

K2 1 El (5b)L2 kAG (b

K 2  w (5c)

These coefficients represent the contributions of bending, shear, and rotatory

inertia, respectively. In this form, Eq. (4) has the solution:

y(x,t) = [A cosh Ax + B sinh Ax + C cos ax + D sin ax]cos wt (6)

where
/

/ + (K'+K') + V(KA-Kg)2 + 4/Kg
a = K - 2 (7a)
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/ - (K'+K') + V(KA-Kg)2 + 4/KB
= K - 2 (7b)

The coefficients A, B, C, and D are determined by the boundary conditions of the

beam. The vibration frequencies, w, and their respective mode shape functions

are found by applying the appropriate boundary conditions.

To adapt this analysis to the nonprismatic case, the beam is represented by

a finite number of prismatic segments. Within each segment Eq. (6) portrays the

mode shape for the assumed uniform properties of that segment. The conditions

at the common boundary between adjacent segments must match to preserve con-

tinuity between segments. The appropriate end boundary conditions are applied

at the extremities of the beam. The equation defining the mode shapes for each

segment is developed from Eq. (6) as follows:

*ij(x) = Aij cosh Aijx + Bij sinh Aijx + Cij cos aijx + Dij sin aijx (8)

where

i = segment number

j = mode shape number

A,B,C,D = function coefficients (by mode/segment)

Employing these segmented-mode shape functions, the natural vibration frequen-

cies and mode shape coefficients can be determined to within an arbitrary con-

stant for any set of end boundary conditions. For example, consider the case of

a free-free beam which is composed of M segments. The boundary conditions are

slj(O) = 0 (9a)

1Mj(1) = 0 (9b)

(lj(O) = 0 (9c)

ft

NMj(M) = 0 (9d)
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Continuity at the common boundaries between the segments is preserved by

equating displacement, slope, moment, and shear calculated by adjacent mode

functions. These conditions are as follows:

Oi-lj(xi) = Oij(xi) (lOa)

*ilj(Ri) = Oij(Ri) (lOb)
I, I,

II !off

(EI)i_i~pi_lj(Ri) = (EI)i(Pij(Ri) (10d)

where

i= left boundary of i-th segment

For a model containing M segments, there are 4M coefficients and one frequency

to be evaluated at each mode shape. Setting a coefficient of the mode shape in

the first segment to unity renders the system deterministic and yields unique

solutions at each natural frequency.

A set of algebraic equations in terms of the natural frequency, Wi, and the

4M-1 coefficients is presented in matrix form in Figure 1. The system matrix

contains an orderly set of entries representing the enforcement of the boundary

conditions (B.C.) and continuity conditions (C.C.). At global location 1,1 the

2 by 4 subarray contains the terms for evaluating the B.C. at x = 0, whereas a

similar array ending at N,N represents the B.C. at x = 1. "Walking" along the

main diagonal are M-1 subarrays, 4 by 8 in size, which represent the C.C. across

segment boundaries. The global address of the upper left corner of the initial

subarray is 3,1 and is incremented 4,4 for each additional interface. The

remaining terms are zero. The nonzero entries are functions of the segment

properties, end-point locations, and the vibration frequencies. Setting the

determinant equal to zero and solving for the roots of the resulting :harac-

teristic equation produces values for these frequencies. At each frequency, a
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reduced system is developed by setting the appropriate mode shape coefficient in

the first segment to unity, eliminating the first row, and shifting the

corresponding column to the right side of the matrix equation. This new system

of equations is deterministic at each frequency. The values for the remaining

mode shape coefficients may then be calculated. The orderliness of the entries

to the system matrix enables an efficient and dedicated computer code for its

solution to be developed.

This method has one main advantage over finite element techniques because

the segmenting of naturally uniform sections is not required since the mode

function is exact within this domain. Thus, only a few segments are needed for

structures with uniform or gradually varying sections. Another advantage of

this method is that the number of modes which can be calculated is not a func-

tion of the numher of segments. In finite elements, the mode shapes are defined

by the location of the model's nodes so that an accurate representation of the

mode shapes at higher frequencies requires a large number of nodes. This is not

the case for the USM, since its "nodeless" elements use trigonometric and hyper-

bolic functions to represent the mode shapes. Finally, in cases where the modes

are used in dynamic analyses (ref 15) and the loads are functions of the depend-

ent variable and its derivatives, the USM mode functions can accurately repre-

sent these loads since they are differentiable. The orthogonality of the USM-

generated mode shapes permits the use of the usual expansion techniques. Their

finite element counterparts are usually represented by cubic polynomials which

possess limited differentiability.

COMPUTER CODES

A set of FORTRAN-77 computer routines has been written and tested on an IBM

4341-N12 minicomputer driven by the VM/SP Operating System. A total of 2000
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lines of code was written for this analysis. The overall operation is

controlled by an executive routine called MOO-MAIN. This routine directly calls

7 of the 20 subroutines used in the analysis. Figure 2 is a flowchart of the

overall operation. The data entry and initialization portion of the analysis is

shown on the left side of the figure. Specifically, input data consists of the

physical and geometric characteristics of the beam, the location of segment bor-

ders, and the boundary conditions at the beam extremities. In addition, the

number of modes to be determined, parameters regarding the search procedure,

tolerance on the root estimates, and output requirements are read from a stored

disk file.

The right section of Figure 2 shows the flow through the analytical portion

of the routines. A loop is shown that is traversed once for each mode

requested. During each pass, a vibration frequency and set of mode shape coef-

ficients are determined and the results sent to various disk files. The proce-

dure for locating a root is contained within the routine labelled ROOT SOLVER.

In this solver, a search procedure is conducted by marching along the frequency

axis in fixed steps, filling the system matrix, and calculating its determinant

at each step. A change in the sign of the determinant between a pair of adja-

cent frequencies signifies the existence of a root between these frequencies. A

modified secant method (ref 16) is then invoked to accelerate the search proce-

dure. The root is determined to within the specified tolerance and is passed

back to MOD-MAIN along with current values in the system matrix. The mode shape

coefficients are then determined by a call to the coefficient solver. In these

routines the system matrix is reduced according to the boundary conditions

imposed on the left end and the coefficient used for normalization. The new set

of linear equations is then solved for the unknown mode shape coefficients and

control is passed back to the MOD-MAIN. The output is generated by calls to the
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various output routines. The program then returns to the top of the loop, the

current frequency is incremented, and the process is repeated for the next root.

The looping continues until all of the requested roots and coefficients are

found, and the associated output is generated.

TEST CASES

This method was evaluated by comparing it to results generated by an FEM

code. The software chosen was ABAQUS Release 4.7 developed by Hibbitt,

Karlsson, and Sorenson (ref 17). The beam used in this study was 2540 millime-

ters (mm) long with a tapered circular cross section starting at a left end

diameter of 125 mm. The diametral tapers ranged from 0.005 to 0.020.

A sketch of the beam and its two modelling representations is shown in

Figure 3. The finite element model consists of 53 nodes and 52 two-noded

linear elements. The beam elements consider the effect of shear but not rota-

tory inertia. The tapered section was subdivided into 13 prismatic sections

with four elements in each section.

The USM model contains three segments of equal lengths whose diameter is

the average diameter of that section of the beam. Six boundary condition com-

binations out of a possible 32 were evaluated for four diametral tapers. The

first five bending frequencies were calculated yielding a total of 120 "data"

points for each model. The entire 120 runs were accomplished in one afternoon.

A comparison between each pair of values indicates that at most a 6.7 per-

cent discrepancy exists between the results of both models. Most calculated

values were well within this extreme. In general, the FEM values were greater

than those obtainet' from the USM for the first three modes. However, the

reverse is true for modes four and five. These comparisons are shown graphi-

cally in Figures 4 through 6 for three of the boundary conditions. In these
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graphs the frequency is plotted against diametral taper for all modes. The

upright triangles represent the values determined by the USM, whereas the

inverted triangles are results calculated by the FEM. Overall results indicate

that the effect of the taper is greater for the higher modes. For example, for

the fix-pin beam, the fifth frequency is reduced from 970 to 820 Hz as the taper

is increased from 0.005 to 0.020, a 15 percent reduction. The primary fre-

quency, however, has been reduced by only 8 percent from 60 to 55 Hz.

In Figures 7 through 9, the fourth bending mode shape of *each model is

compared for the extreme taper value (0.020). The shapes are very similar, but

the magnitudes of the USM displacements are slightly greater than those from the

FEM. The greatest discrepancy of 11 percent occurs for the fix-guide boundary

condition at the three-quarter point along the axis. In retrospect, the USM

model could have been refined by either changing the geometric properties of

each segment or by adding more segments to better approximate the taper.

To compare the differences in mode shapes as a function of taper, consider

the results plotted in Figure 10. This figure contains the fourth mode shape

generated by the USM for the fix-pin boundary condition at all values of the

taper. As is expected, the beam possessing the thinnest cross section at the

right boundary has the greatest deflection. The deflection for the thinnest

beam is about 15 percent greater than for the heaviest beam. A frequency shift

from 650 to 550 Hz is also indicated.

To compare the differences between beam modelling POE, consider the results

shown in Figure 11. In this figure, the mode shapes for the fourth bend mode

and the steepest taper are plotted for all three models using the USM. The

boundary conditions are fix-pin. The difference between the shapes is hardly

discernible for this geometry. The frequency shift is about 20 Hz, the highest
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being associated with the Euler model. This type of response is expected since

inclusion of additional terms in the POE tends to retard all flexural free

vibration frequencies.

DISCUSSION AND CONCLUSIONS

This work, which was developed in conjunction with the author's disser-

tation (ref 15), presents an accurate and efficient method to determine the free

vibration frequencies and mode shapes of nonprismatic end-mounted beams on

standard boundaries. The term Uniform Segment Method has been coined to

distinguish this modelling from the more popular finite element techniques. A

dedicated computer routine has been developed and tested against results

obtained from an FEM model for a tapered beam. The maximum discrepancy for any

frequency calculation was 7 percent, whereas the maximum difference in any local

value of the mode shape was 11 percent. Greater accuracy can be obtained by a

modest increase in the number of USM segments.

Future work with this method includes linking the model to an optimization

package so that discrepancies between USM-calculated frequencies and a set of

known frequencies (either FEM-generated or experimentally determined) are mini-

mized. The optimization variables would be the segmentation spacing and the

section properties of the segments. Linearly elastic boundary conditions (in

both transverse and rotational directions) will be included along with the

standard boundary types. Finally, the development of a transient analysis

package using the differentiable USM modes will permit the determination of

forced responses for a variety of displacement-dependent loadings.
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TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF
COPIES

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: SMCAR-CCB-D 1

-DA 1

-DC 1

-DP 1
-DR I
-DS (SYSTEMS) 1

CHIEF, ENGINEERING SUPPORT DIVISION
ATTN: SMCAR-CCB-S 1

-SE 1

CHIEF, RESEARCH DIVISION
ATTN: SMCAR-CCB-R 2

-RA 1
-RM I
-RP 1
-RT 1

TECHNICAL LIBRARY 5
ATTN: SMCAR-CCB-TL

TECHNICAL PUBLICATIONS & EDITING SECTION 3
ATTN: SMCAR-CCB-TL

DIRECTOR, OPERATIONS DIRECTORATE 1
ATTN: SMCWV-OD

DIRECTOR, PROCUREMENT DIRECTORATE 1
ATTN: SMCWV-PP

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1
ATTN: SMCWV-QA

* NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF
ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COPIES

ASST SEC OF THE ARMY COMMANDER
RESEARCH AND DEVELOPMENT ROCK ISLAND ARSENAL
ATTN: DEPT FOR SCI AND TECH 1 ATTN: SMCRI-ENM
THE PENTAGON ROCK ISLAND, IL 61299-5000
WASHINGTON, D.C. 20310-0103

DIRECTOR
ADMINISTRATOR US ARMY INDUSTRIAL BASE ENGR ACTV
DEFENSE TECHNICAL INFO CENTER ATTN: AMXIB-P
ATTN: DTIC-FDAC 12 ROCK ISLAND, IL 61299-7260
CAMERON STATION
ALEXANDRIA, VA 22304-6145 COMMANDER

US ARMY TANK-AUTMV R&D COMMAND
COMMANDER ATTN: AMSTA-DDL (TECH LIB)
US ARMY ARDEC WARREN, MI 48397-5000
ATTN: SMCAR-AEE 1

SMCAR-AES, BLDG. 321 1 COMMANDER
SMCAR-AET-O, BLDG. 351N 1 US MILITARY ACADEMY
SMCAR-CC 1 ATTN: DEPARTMENT OF MECHANICS
SMCAR-CCP-A 1 WEST POINT, NY 10996-1792
SMCAR-FSA 1
SMCAR-FSM-E 1 US ARMY MISSILE COMMAND
SMCAR-FSS-D, BLDG. 94 1 REDSTONE SCIENTIFIC INFO CTR 2
SMCAR-IMI-I (STINFO) BLDG. 59 2 ATTN: DOCUMENTS SECT, BLDG. 4484

PICATINNY ARSENAL, NJ 07806-5000 REDSTONE ARSENAL, AL 35898-5241

DIRECTOR COMMANDER
US ARMY BALLISTIC RESEARCH LABORATORY US ARMY FGN SCIENCE AND TECH CTR
ATTN: SLCBR-DD-T, BLDG. 305 1 ATTN: DRXST-SD
ABERDEEN PROVING GROUND, MD 21005-5066 220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901
DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTV COMMANDER
ATTN: AMXSY-MP 1 US ARMY LABCOM
ABERDEEN PROVING GROUND, MD 21005-5071 MATERIALS TECHNOLOGY LAB

ATTN: SLCMT-IML (TECH LIB) 2
COMMANDER WATERTOWN, MA 02172-0001
HQ, AMCCOM
ATTN: AMSMC-IMP-L 1
ROCK ISLAND, IL 61299-6000

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'O)

NO. OF NO. OF
COPIES COPIES

COMMANDER COMMANDER
US ARMY LABCOM, ISA AIR FORCE ARMAMENT LABORATORY
ATTN: SLCIS-IM-TL 1 ATTN: AFATL/MN
2800 POWDER MILL ROAD EGLIN AFB, FL 32542-5434
ADELPHI, MD 20783-1145

COMMANDER
COMMANDER AIR FORCE ARMAMENT LABORATORY
US ARMY RESEARCH OFFICE ATTN: AFATL/MNF
ATTN: CHIEF, IPO 1 EGLIN AFB, FL 32542-5434 1
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 METALS AND CERAMICS INFO CTR

BATTELLE COLUMBUS DIVISION
DIRECTOR 505 KING AVENUE
US NAVAL RESEARCH LAB COLUMBUS, OH 43201-2693 1
ATTN: MATERIALS SCI & TECH DIVISION 1

CODE 26-27 (DOC LIB) 1
WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.


