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Preface

This document comprises a collection of technical notes ,n various aspects of high-
power microwave (HPM) generation, coupling, and interaction. The notes were
written between October 1983 and February 1986, and were originally distributed
rather informally as Microwave Notes to members of the HPM community. It has
since seemed worthwhile to edit and transcribe them, and to publish them as a
single report. Time and resources did not permit either as detailed an editing
job as would have been desirable, or recalculation and plotting of the numerical
results in a more elegant form. It is to be hoped, however, that this integrated
document will prove useful to the community.

The selection of topics addressed in the Microwave Notes was influenced by ques-
tions which arose at various stages of the author's involvement in HPM-related
activities. The subject of pulse radiation from aperture antennas subject to turn-
on time errors (cusdn Tc)for example, arose in the context of a pro-
posed HPM generation scheme. Consideration of the scattering cross-section of a
simple dipole and of its dual problem, the effective area of a thin slot ( C-

was motivated by the need to understand the penetration of such slot
apertures by HPM pulses. The slot-aperture penetration problem was considered
further in Note 5, where a oopcatecfsTot-o-internal-wire coupling config-,
uration was addressed, and in Note 7, where the problem of coupling through a
deep slot was considered. The "front-door" coupling problem was also of interest;
hence the treatments of pulse propagation in waveguides (Note 3) and of coupling
to a filamentary load in a waveguide (Note 6). Interest in estimating the HPM
power that might be scattered into an antenna located over a rough surface by
an incident field at which the antenna was not, in fact, "looking" motivated the
study of that problem (Note 4).

The order of the chapters in this report follows that of the original Notes. It is
perhaps worthwhile to point out that the analyses presented herein by no means por
represent original research. They were intended simply to make use of tried-and-
true analytical methods for the study of problems of current interest. Thus the ,
reader may be disappointed by the lack of extensive references. Suffice it to say 4 13
that Harrington's Time-Harmonic Electromagnetic Fields and the Handbook of 10'
Mathematical Functions (M. Abramowitz and I. A. Stegun, eds.) were most useful
during the preparation of the Notes. @"/

Availability Cdeo
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It is a pleasure to acknowledge the contributions of Dr. Eric P. Wenaas of JAY-
COR, who originally suggested that I write the Microwave Notes; Dr. Kelvin S.
H. Lee of Kaman Sciences Corporation, with whom I have had the pleasure of
discussing the problems considered herein (as well as many others); Mr. Gary
Kwitkoski of DNA, who encouraged the preparation of this report; and Ms. Susan
G. Brown of JAYCOR, who transcribed the original Notes into TEX format and in-
tegrated them into this document. Errors and omissions (which are surely present)
are my responsibility alone.
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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY - BY ) TO GET
TO GET - BY -- DIVIDE

angstrom 10-10 meters (m)
British thermal unit (thermochemical) 1.054 x 103 joule (J)
calorie (thermochemical) 4.184 joule (J)
degree (angle) 1.745 x 10-2 radian (rad)
electron volt 1.602 x 1019 joule (J)
erg 10- 7 joule (J)
erg/second 10- 7  watt (W)
foot 3.048 x 10- ' meter (m)
inch 2.540 x 10-2 meter (m)
micron 10- 1 meter (m)
mil 2.540 x I0 - ' meter (m)
mile (international) 1.609 x 103 meter (m)
statcoulombs 1/3 x 10- 9  coulombs
statcoulombs/cm 3  1/3 x 10- 3  coulombs/meter 3

statamperes 1/3 x 10- 9  amperes (A)
statamperes/cm 2  1/3 x 10- ' amperes/meter 2

statvolts/cm 3 x 104 volts/meter
statvolts 300 volts (V)
gauss cm 2  10- 8 webers

gauss 10 - 4  tesla

oersted 1/41r x 103 amp-turn/meter
maxwell 10- 8 webers
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SECTION 1
PULSE RADIATION FROM APERTURES
WITH RANDOM-PHASE EXCITATION

Summary: We examine the field radiated by a circular aperture antenna which
is excited by a pulsed field subject to turn-on time errors randomly distributed
across the aperture. In particular, we calculate the expected value and the auto-
correlation of the impulse response of the radiated field when the turn-on time is a
random function of location in the aperture. It is assumed that this function is a
stationary Gaussian random process with zero mean and an isotropic correlation.
Analytical and numerical results are presented showing the pulse stretching that
occurs as a result of the non-zero antenna fill time for off-axis observers and of the
random turn-on time errors. We also present results showing the energy density
radiated when the aperture field is a short cw pulse in the time domain.

In order to assess the potential threat posed by microwave directed-energy weapons
one must first understand the characteristics of the signals which can be radiated
by such weapons. These signals depend upon the microwave energy source and
upon the antenna system.

In this section we examine the effect of the antenna itself on the radiation of a
pulsed signal. In particular, we consider a circular aperture antenna excited by a
field which is spatially uniform except for random variations caused by localized
"turn-on time" errors. Using this model we investigate the effects of the finite
antenna fill time, and of the turn-on time errors, on the impulse responses observed
in the far field. Because of the assumed random character of the aperture field, we
consider certain statistical descriptors of the far-zone radiated field: the expected
value and the autocorrelation of the impulse response. These quantities can be
combined by convolution with a given aperture field to yield the expected signal
radiated by an aperture field of any specified time dependence.

Random-phase effects have been considered in the past for cw radiation from
aperture antennas 11]. Such errors produce a reduction in the on-axis antenna
gain and a broadening of the antenna's radiation pattern lobes. These phenomena
can be understood on the basis of power transfer from the "coherent" or error-free
radiation pattern into the "incoherent" pattern. The effect depends in detail on
the variance and the correlation length of the phase errors.

,, mm mmm mmmmlm mm m m m, mm



We shall examine these effects in the time domain. The general formulation of the
problem is given next, followed by analytical and numerical results for the field
and energy density impulse responses. Implications of these results for microwave
pulse radiation are discussed.

1.1 FORMULATION.

We consider a circular aperture antenna of radius a located in the plane z = 0, as
shown in Figure 1. A scalar field Ea(p, 0; t) is imposed over the aperture. This
aperture field is taken to be of the form

Exa(P,¢; = Exa[p,¢0;t - r(p,€)J (1)

where r(p, 0) is assumed to be a two-dimensional Gaussian random process having
zero mean, variance r, and isotropic correlation function r"). Thus

< TV ) >= 0 (2)
<r)(-)T(-') >= ro0r(I5- ,' I) (3)

with the brackets denoting the expected value; W3 and W3' denote positions in the
aperture.

In what follows we shall assume that the aperture field is spatially uniform except
for the variation in turn-on time r; thus

E.a(p, 0; t) = Eo[t - r(p, 0)] (4)

The Fourier transform of the aperture field is

Ex(P, ) = j0 Eo[t - r(p, 0)Jw tdt

- r( P' f Eo(t)e-j-dt

= e- ~~(P)0(jW) (5)

where Pc denntes the Fourier transform of the aperture field in the absence of
turn-on time errors. The far-zone radiated field corresponding to the assumed

2



aperture field is well known; it is given in the frequency domain by

E&(, ,0, ,5) - jk o(jw) 2, fa ijkp'sinecos(oi-O') (6

2irr Jo o

e-i(¢,*l dp'd l

wherein k is the free-space propagation constant' and E is expressed in terms of
the spherical coordinate system shown in Figure 1.

z

X

Figure 1. Aperture geometry.

In what follows we shall make use of the mean and correlation functions

< - j (p O) >= e - uo / 2 (7)

< e>- (8)

= [1 - e-w2= g] f(P F- 3' I) + e-2*

'k = wV'f5-oc , where po and co are respectively the permeability and the permittivity of free
space.
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wherein the function f(.) is defined by Equation (8). We shall calculate the
expected value and the autocorrelation of the radiated field under the assumption
that the aperture field in the absence of turn-on time errors is an impulse in the
time domain.

1.2 IMPULSE RESPONSE OF THE RADIATED FIELD.

The time-domain radiated field is given by

1 00
E. (r,0,0;t) = r E,(r,O, O)ej wtdw (9)

and the expected value of this field is

< E(,O;t >= 10 < k..(r, 0, 0) > eJwtdw (10)

by virtue of the linearity of the integration and expectation operations. Using
Equations (6) and (7), we obtain

< E.(r,O,0) > - JkEow)(J W2 21-2 e-(1k)
27rr

I2r j ejkp'sinecos(0-0') p'dp'dO'

The integral in Equation (11) can be readily expressed in terms of a Bessel function
of the first kind, yielding

< Er(r, 0, ) = jaEo(jw) e_, 2 r/2e-jkrj (ka sin 0) (12)r sin 0

We shall find it useful to employ the relation

1 t_ udu
J, (x) = - JX l (13)

so that
< aEo(jw) _ _, ___2 / _ _

k
u in  udu

0, > rr sin 0 e- Vf1 _in 2 (14)
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Now if Eo(t) is a delta function, Eo(jw) = 1 and we define

< h(t - r/c)> 2 a L/ ejw(t-r/c)e-w2 Tr/2dW (15)<h~t /c> -21r r sin8 0 _'

e Jkausin 0  udu

as the expected value of the impulse response of the radiated field. Suppressing
the time delay r/c, interchanging the order of integration, and performing the
integration over w, we obtain

a 0) t.ro') udu
< h(t) = G (u u+ -L;L(6

rtfrsin 0 -i t t v =u (16)

wherein we have defined the Gaussian function

G(x;o) = 1 (17)

and tf = a sin 0  (18)
c

denotes the radial "fill time" of the aperture for an observer at an angle 0 with
respect to the z-axis; c = 1v/p-fioc denotes the speed of light in free space.

Now it is easy to show that h(t) reduces, as it should, in the limit r0 -+ 0 to

-a t/t 1

lim < h(t) >= (It[< tf) (19)
7o- 7rrtf sin 0/1 - (t/t) 2

and also that < h(t) > is an odd function of t for any value of the parameter
ro/tf.2 We have calculated the normalized impulse response

f M 7rrtfsin0 < h(t) > (20)
a

as a function of normalized time t/tf, for various values of the parameter ro/tf.
The results are shown in Figure 2. It is evident from the curves shown that

2 We remark that < h(t) > is in general not causal. This is a consequence of our assumption
that the turn-on time is a Gaussian random process.
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the effect of increasing the value of r0 (the standard deviation of the turn-on
time) smooths and broadens the expected value of the impulse response. It is not
difficult to show that when ro/1t becomes comparable to or exceeds unity,

-7rrtf sinO0 1 /-7 2[ ]< h(t) >t [] e_,2 /2o 2  (21)
a 2 42ToJ -r

so that the width of the impulse response is ultimately controlled by T0 , rather
than by tf. We show in Figure 3 a plot of (ro/tf) 2f(t) vs. normalized time t/ro
for the case where r0 dominates the impulse response.

2t

f(t) */tf - 0.1

1.0

0
1 2

t/tf

Figure 2. Normalized impulse response f(t) vs. normalized time t/tf, for o/tj=

0.1, 0.5, and 1.0, 0 < t/itf 3;f(-t)= -f(t).

It is evident that the effects of the random turn-on time are dominant for small
observation angles 0. If we take as a maximum of tj the value a/c, we see that
turn-on time effects will dominate the impulse response for all observation angles
if cro/a is comparable to or greater than unity.

Since the impulse response, whether it is dominated by t! or by T0 , has a double
peak, the radiated field will exhibit the same feature if the aperture field has a
duration short compared to that of the impulse response. Thus a single short

6



pulse in the aperture can appear in the radiated field as a double pulse under
certain conditions. The two components of the double pulse will be separated
by a time of order 2tf or 2r0 , whichever is larger, and they will be opposite in
sign. Under these conditions the antenna cannot be considered a "faithful" pulse
radiator, because of the breakup of the radiated time-domain signal.

The expected value of the impulse response does not involve the spatial correlation
of the turn-on time over the aperture. To show the effect of this descriptor of the
aperture fields, we next consider the autocorrelation of the radiated field impulse
response.

0.4

0.3

2
(T t) f(t)

0.2

0.1

0
01 2 3

Figure 3. Normalized impulse response (ro/t 1 )2f(t) vs normalized time t/ro for
the case where ro dominates the response; f(-t) = -f(t).
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1.3 AUTOCORRELATION OF THE RADIATED FIELD
IMPULSE RESPONSE.

The expected value of the energy spectral density in the radiated field is
112

U(W) = - <1 E(r, 0, 0)I> (22)

where Zo = Iok/o denotes the intrinsic impedance of free space. Using equations
(6) and (8), we have

Uw) VI Eo(jwO) 12 fa pip 27r d a f~p27r d'. (341r2 Z 2  d(

ejk sin 0[p' cos(¢k-0')-p" cos(O-O")]

[-2,rO2 + (I - e--"") f (I ,'- ." I)]

Now U(w) as given by Equation (23) above can be expressed as

U(w) = I Eo(/w) 12 a2_,2.2 J(kasin0) (24)
Zor 2 sin 2

+ k 2 1o(jw) 12 (-ew

(1)2 LI ek"( ')f(15'- a " I)d s'd2 "

where denotes the unit vector in the radial direction. If, as we shall assume, the
correlation distance (i.e., the distance over which f(I -' - ," I) is close to unity)
is small in comparison to the aperture radius a, the integral in Equation (24) may

8



be approximately evaluated, yielding for U(w) 3

Eo(jw) 12 a 2 _(225U ---e 2J (ka sin O) (25)
Zor 2 sin 2 0

k2a2 +Eo(jw) 1- (1 -e - 2, ) e j f(u)Jo(kusinO)udu
+ 2Zor 2

The autocorrelation of the radiated field impulse response, H(t), is defined as the
inverse Fourier transform of ZoU(w)/l I o(jw) 12:

Hs ., {e'2 Je (ka sin 0) (26)H~~t) -- r sin 0

+ 2-(kI sin 0)2(1 -e-,212)I'f(Iv)o(klvsinO)vdv}

where I denotes the characteristic correlation length. H(t) thus comprises the
sum of the autocorrelation of the expected value of the impulse response and an
additional term which depends upon the spatial correlation of the aperture field
turn-on time. To illustrate the behavior of the added term, consider the simple
case where the aperture field turn-on times are perfectly correlated (r = 1) over
circular regions of radius I (1 << a) and uncorrelated outside these regions. Then
defining F()= " '{0~ 2J(asn)} (27)

F2 (t) F 2 (klsin 0)2(1 - C' '6 (28)

f f (lv)Jo,(klv sin 9)vdv}

3 1n the event that the phase correlation distance is comparable to or larger than the aperture
radius, O(w) reduces to the simple result

I() = Eo(jw) 12 J2 (kasinO)
Zor2 sin 2 g I

which is not dependent on the statistical properties of the turn-on time.
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so that

H(t) = 1 [Fi(t) + F2(t)] (29)

we find4
F,(t) =< h(t) > * < h(t) > (30)

F2(t) = -F1 {klsinO(1 - e-"-7o)Jl(k1sin0)} (31)

When the correlation distance I is small (more precisely, if k/sinO << 1 over the
frequency range of interest),

F2 (t) klsinO ) (1 (32)

(lsin9)2 d2  - 0/et214,2

Furthermore, if T0 is comparable to or larger than tf,

F(t) -(asin) ( 4 T ,) (33)F (t" , 2c dt (- 2VF o

so that

H(t) - ( -i (- 1--- e + 6(t) (34)

a ( ) - [ e-t2/4 , + 1 )

Thus the fact that the aperture field turn-on times are not highly correlated does
not lengthen the duration of the autocorrelation function H(t), and we conclude
that

1. If the aperture field turn-on times are highly correlated, the autocorrelation
duration is controlled by the fill time tf, essentially independent of 7o.

4The symbol * denotes the correlation operation.
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2. If the aperture field turn-on time is not highly correlated, the autocorrela-
tion duration is controlled by the larger of the fill time ty or the standard
deviation r0.

In the next section, we shall consider the effects of the fill time and the turn-on
time errors on the radiated field when the aperture field is a cw pulse and the
correlation function of the turn-on time is an exponential function:

r(u) = exp(-u'/ 2 ) (35)

The function U(w) for this case is

I k 0(jw) 1 2a 2 2
U(W) = . 20{ &w2 oJ,(kasinO) (36)

+ .l k1 ,,sinO ) (n 2 exp ( sin 0]

1.4 PULSED-CW RADIATED ENERGY DENSITY.

We have shown in the preceding sections that the impulse response duration is
essentially the sum of the aperture fill time t1 = (a/c)sin0 and the standard
deviation of the turn-on time error To. If the aperture field is a pulsed signal
of duration 2T, then the radiated field will be a "stretched" pulse of duration
2T + 2tf + 2r 0 . In this section we consider the radiated energy density (J/m 2 )

when the aperture field is a Gaussian pulse of the form

Eo(t) = Ee -t/2t coswot (37)
Ep denotes the peak electric field strength in the aperture and to is a measure of
pulse width. The center frequency of the pulse is wo.

The total radiated-field energy density is readily shown to be

0r E toa f (w.o) 2  +
U Zor2 sin 2f-O -  0 [A(W) + FA(W)J dw (38)
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with
Fi(w) = e- 1 J,(ka sin 0) (39)

F2() e 2~ (_ ) 2 
00 (wr.o) 2 , 1 (k2]

2(W) =e - 2 nk1 sinn0 2 exp -n --sin0 (40)

We shall consider the most important special case, that in which to >> tj and
to >> ro, so that the radiated pulse is a quasi-cw signal. The total energy radiated
is readily found to be

U = Uo -4e (Wot) 2  (41)

+ ()e-.2 2 E(L n?) exp [-(wot)
an=l ~!

where 3/2 2 4r 2t
/rk7a 4 Epto (42)

Uo = 4Zor 2

denotes the energy density radiated in the direction 0 = 0 when there is no turn-on
time error.

Curves of U/Uo as a function of wotf are given in Figures 4 - 22 for various values
of w0 r0 and 1/a. We observe that as i/a (the normalized coherence length in the
aperture) decreases, the effect of increasing the normalized standard deviation
woro becomes more pronounced, appearing first at smaller values of Wotf (recall
that turn-on time errors will dominate the impulse response if ro > t1 ).
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Figure 8. Normalized energy density U/U0 vs. wotf I/a =0.5, woro 5 r/6.
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Figure 9. Normalized energy density U/Uo vs. woif : /a = 0.5, wro = Sir/6.
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Figure 12. Normalized energy density U/Uo vs. wuot: 1/a = 0.3. woro =7r/3.
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Figure 13. Normalized energy density U/Uo vs. wot1  I/a = 0.3, woro = r/2.
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Figure 18. Normialized energy density U/Uo vs. wot! I/a =0.1, woro 7 r/3.
-21

- -25

-35

(.tf

Figure 19. Normalized energy density U/Uo vs. wotf: 1/a = 0.1, oro = r/2.
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Figure 20. Normalized energy density U/Uo vs. Wotf :/a = 0.1, woro = 27r/3.
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Figure 21. Normalized energy density U/Uo vs. wotf :/a = 0.1, woro = 57r/6.
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Figure 22. Normalized energy density U/Uo vs. wotj: 1/a = 0.1, woro = ir.

1.5 CONCLUDING REMARKS.

We have considered the electromagnetic field radiated from a circular aperture
excited by a field which is uniform except for randomly distributed turn-on time
errors. We have found the expected value of the impulse response and of the
autocorrelation of the radiated field, and have shown that the shape and the
duration of these functions depend upon the aperture fill time tf = (a/c) sin 0
and the standard deviation of the turn-on time to. The fact that these functions
possess two peaks separated by twice the sum of r0 and ti means that the field
radiated by a sufficiently short pulsed aperture field will comprise two more or less
distinct components separated in time. Thus a pulse radiated from the aperture
will "hang together" only if it is at least comparable in length to tf and/or r0 .

We have presented extensive numerical data for the pulse energy density radiated
by a quasi-cw aperture-field pulse and have shown the influence of the standard
deviation and of the correlation function of the turn-on time. In particular, for
a fixed value of r0 , decreasing the correlation distance causes a reduction in the
energy radiated in the axial direction and an increase in that radiated in other
directions: the source becomes, in effect, more nearly isotropic. A simular effect
!-i seen as the standard deviation r0 is increased for a fixed correlation distance.

We also note that the effect of the nonuniformity in turn-on time can be quite
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severe: the energy radiated in the axial direction decreases as exp(-wo-rj), where
wo is the pulse center frequency. Thus if woro = 7r (corresponding to one-half cycle
at frequency w0 ) the axial energy is reduced by over 40 dB if the tura-on time
errors are not highly correlated over the aperture.

The value of w0ot associated with the edge of the main lobe of a circular aperture
antenna pattern in the absence of turn-on time errors is 3.832, the first zero of
J1(). For a short cw pulse to be radiated essentially as a single pulse over the
corresponding angular range requires that w0to >> 3.832. If, for example, one
chooses w0to equal to 127r to satisfy this condition, then the aperture-field pulse
contains six cycles. Thus an aperture-field pulse of few cycles will be radiated as
a single pulse over the (cw) main antenna-pattern lobe. For angles greater than
0," sin-'(cto/a) the radiated pulse will be broken into two distinct pulses, '
each of which will have a much lower amplitude than the single pulse radiated in
the main lobe. The transition occurs over the angular range

[3.832 lcto < < (ct0 (

The implications of these results for microwave weapon threat analysis are that

" the principal threat comes from the main lobe of the transmitting antenna
pattern and comprises a quasi-cw pulse which is stretched by an amount
depending on the antenna fill time and the standard deviation of the turn-
on time error. The energy density carried by this pulse can be estimated
from results provided herein.

" the signal radiated well outside the main lobe of the transmitting antenna
can be expected to be a "double pulse" of low amplitude.

* turn-on time errors in the aperture field of the transmitting antenna can
drastically reduce the radiated energy density.

5 Note that if to > a/c, O, is a complex angle whose real part is r/2; thus a single pulse will
be observed at any real angle 0 if this condition is met.
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SECTION 2
SCATTERING CROSS-SECTION OF A DIPOLE:
IMPLICATIONS FOR MICROWAVE COUPLING

Summary: We calculate the power scattering cross-section of an unloaded dipole
antenna and estimate the equivalent source strength of a long thin slot "lluminated
by a plane-wave field. We also determine the impulse response of the s .ttered
field in order to find the amount of pulse stretching caused by the scattering
process. It is shown that under pulsed cw illumination, the peak power scattered
by the wire or transmitted through the slot can be estimated on the basis of the
cw cross-section in cases of practical interest.

A fundamental problem in the study of microwave interactions with systems is
that of determining the amount of energy which could be coupled from the exterior
to the interior of a shielded system by means of penetration through apertures in
the "skin". In this section we investigate coupling through a narrow slot aperture,
which may be of resonant length or longer, in a conducting surface. Our approach
is an indirect one, in which we first treat the dual problem of scattering by a
straight wire in free space and determine its equivalent power scattering cross-
section for continuous-wave (cw) illumination. It is then a simple matter to obtain
the equivalent transmission area of the thin slot.

The problem of electromagnetic-wave scattering by a wire has received a great deal
of attention in the literature. We have elected to employ a primarily analytical,
rather than numerical, approach to the problem based upon the Halldn integral
equation for the wire current [2,3]. This approach has been used by Marin [4]
to study the natural modes of various thin-wire structures and by Bedrosian [5]
to find the natural resonances and modes of stick-model aircraft. In the present
case, it leads to an (almost) closed-form expression for the scattering cross-section
convenient for analytical and numerical exploration. This expression then can be
carried over with minor modification to describe the electromagnetic penetration
through a thin slot.

Our principal interest is actually in the pulsed cw response of the wire or slot.
In order to estimate the total pulse energy scattered, we determine the impulse
response of the scatterer. The temporal duration of this impulse response defines
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the amount of pulse stretching which occurs in the scattering process. The peak
power scattered can be estimated from the cw response of the scatterer when the
illuminating pulse contains at least a few cycles of oscillation.

2.1 DIPOLE SCATTERING CROSS-SECTION.

The geometry of the dipole scattering problem is shown in Figure 23. A thin
cylindrical conductor of radius a lies along the z-axis between z = ±1/2. The
conductor's radius is assumed to be small in comparison to its length I and to the
free-space wavelength A. The scatterer is illuminated by a plane electromagnetic
wave polarized in the 9-direction and incident at an angle 0 with respect to the
z-axis.

Because the conductor is thin, the induced current and charge densities on it are
essentially independent of angular position; and the current is predominantly in
the axial direction. Thus the electromagnetic quantities of interest on the scatterer
are its net axial current I(z) and line charge density pj(z); these quantities are
related by the continuity equation

d + jwp = 0 (44)

We assume the time dependence exp (jwt) for all field quantities.

The total power scattered by the cylindrical conductor can be expressed as [61

1/2 1/2 [ sin -

P f1/2 lJ N [ (z)I(zI) - Iy' *(Z)(f)] k ) Z dzdz' (45)
2 2/2 47r2Iz - z

where IA0 and co denote, respectively, the permeability and permittivity of free
space and k = w -tfi . The incident power density Si, is expressed in terms of
the incident electric field amplitude E as

si, - I E j (46)2Zo

where Zo = Po/Eo denotes the instrinsic impedance of free space. The scattering
cross-section is simply P,

A, = -(47)
Si.
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z

x conductor radius = a

Figure 23. Geometry of the dipole scattering problem. The radius of the dipole
is a and the incident electric field is in the 0 direction.

Therefore, anticipating that I(z) must take the form

I(z) = ,f(kz) (48)

where Z' is an impedance per unit length and f(.) is a dimensionless function of
kz, we find with Eqs. (44) - (47) that

Ae, - Zo 2  
1/2 f,//2 [f () - df*(u)df(v)] sin(u-v) dudv (49)A 47r I-ZI 12 "-,,I'2 -,,,/2 du dv I u - v

The problem of determining the scattering cross-section A, thus reduces to that
of finding Z' and f(.).

The current induced on the scatterer is given approximately by the solution of
the differential equation [3]

d + k21 = sin Oe kzcos I- 2 (50)
dz 2  C2
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subject to the end conditions I(±1/2) = 0. The "antenna parameter" 0 is defined

Q = 21n(l/a) (51)

It is an elementary exercise to show that the solution of Eq. (50) which satisfies
the end conditions is

I(z) = o - in/ sink1 eakzcosO - 2jcos ksin (icos ) sinkz(52)

-2 sin k1 cos ( cs0)Coskz

The function in square brackets, which we shall identify as f(kz), can also be
written

f(u) = sinklejucose-sin[k1(1+coso) eju (53)

- sin [k(1 - cos 0)] e- jU

It is evident that I(z) as given in Eq. (52) is singular at the antenna resonances
kl = nr (I n 1> 1). To remove these unphysical singularities, we take the radiation
damping into account by writing the factor (k1 sin kl) -1 in the form of a Mittag-
Leffler expansion [71 and then shifting its poles into the upper half of the complex
k-plane. Thus 1

(k1 sinki)-' (54)
D(kl) (4

where
1 1 1 .-- (-0 1 (5
D~ -k -1 )2 4.- +  F -n k , a +  (5

D(kl) k!n=-oo --nir k-nr -Jan nr + jn

The prime (') on the summation indicates that the term for n = 0 is to be
omitted. The constants an are calculated using a perturbation analysis [4] and
can be written in closed form as

an= [f + ln(2In I r) - Ci(2n Ir)] (56)

27



wherein -y = 0.57721... is Euler's constant and Ci(.) denotes the cosine integral.

Using Eqs. (48) and (52) with (54), we find that

1 -4rjl (57)

ZI Zo[ sin OD(kl)

so the scattering cross-section Ae is written

47r12  
k,/2 IM2 [df f 1 sin(u - v) dudv (58)

Ae 12 J J f*(u)f(v) - "d'dvv(58)
f2sin2  I B I -kI/2 -k1/2 dLu CLV]

where f(u) is defined in Eq. (53) and D(kl) in Eq. (54). The evaluation of the
integral in Eq. (58) is tedious but straightforward. The real part of the function
in square brackets can be written as

4

[.1 = E a, cos [a,(u - V)] cos [/3.(u + v)] (59)
n=1

where
a, = sin 2 k1 sin 2 0

a2 = 4sin [k (I + cosO)] sin [k (1 - cosO)]

a3 = -2sinklsin [k(X + cosO)] (1 - cosO)

a4 = -2sinklsin [k(1 -cosO)] (1 +cosO) (60)

&L = cos 0 #1 = 0
a2 =0 =21

3 = (1 + cos0) /3 = "(1- cos0)
a4 =(1-cos0) 84=2(1+cos0)

An integral of the form

k8/2 h1/2 sin(u - v)
In = J/2 L/2 cos[a"(u -V)]cOs[/fl(u + V)] Snu - V dudv (61)
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can be expressed as

In = 2 s cos acfdf j cos /nidq (62)

by means of a straightforward change of variables. The latter form for In is
evaluated as

I,, = -sinkl{Si[(1 +a,.-/3,)kl
213,S

+Si [R1 - an - fln)k/] + Si [(I - an + Pn)k/]

+ Si[(1 + a. + O)kf}
1

-21.--cos ,,kl fIn [(I + ,n - an.) kl - Ci j(1 +fln - a)kfl (63)

-In [(I - an - fln)k/] + Ci [(1 - an - fln)kl]

-In [(1 + an - ,,)k] + Ci(1 + an - fln)kl]

+ In [(1 + an + /3,)kll - Ci [(1 + an + )k]}

When f3l = 0, we have

I,(fln =0) = k1{Si[(1 + an)k] +Si [(1 -an)kl]} (64)

1I- COS [(I + a )k +I- cos [(Ii - a )kfl}

Thus,

I,= kl{Si[(1 + cosO)k/l + Si[(1 - cosO)kl]} (65)

-{ + 1-cos(1: os O)k}
- 1 +I cos 0 1 - coseO

12 = sin ki Si(2k/) (66)

- cos k1 [a + ln(2kl) - Ci(2kl)
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13 = 2 co )1 {Si[(1 +cosO)kl] +Si[(1 -cosO)kl] +Si(2kl)}(67)

Cos [ i - Cos 0)]( f o {In[(1 - cos O)kJ - Cif(1 - cos O)kJ
(1 - Cos 0)

- in[(1 + cos O)k] + Ci[(1 + cos O)kl] + ln(2kl) - Ci(2kl) + 71

sin [2( +c ) {Si [(1 + cos0)k] + Si[(1 - cos 0)k] + Si(2k1)} (68)
(1+ os 0)Cos [ (1 + Cos 0)]{i( cs~ +S[1-oOk] i2/}(8

cos[-(1 +cosO)I {In[(1 +cosO)kl] - Ci[(1 +cosO)kl]

(1 + cos 0)

- In [(1 - cos0)kl] + Ci [(1 - cosO)kl] + ln(2kl) - Ci(2kl) + 71

Assembling these results, we find that A, is given by
4irl 2

Ae = 2 () 1 2 2 0 (f + f2 + f3 + f4) (69)

where
fi = 2 [1 - cos k1 cos(kl cos 0)] [,y + ln(2k/) - Ci(2k/)] (70)

f2 = 2 sin k1sin(kl cos0){2 log (tan 0) + Ci[(I + cos0)k] - Ci[(l - cos0O)kl]}

(71)

f3= {klsin2asin2 k - 2sinkl[cos(klcos0) - coskl]} (72)

{Si[(1 + cosO)k1] + Si[(1 - cos 0)k/J}

si 2 [LI (I +COS 0)] sin 2 ['1(1 - cOs 0)]
f4 = -2 sin 2 0 sin 2 kl { 1 + cos 0  + 1 - cos (73)

When 0 = r/2, i.e., when the cylinder is illuminated at broadside, A, simplifies
to

Ae = (.n2 D(kl) 12 g(kI) (74)
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with

g(kl) = 2(1 - cos kl)(y + ln(2kl) - Ci(2k)) (75)

+ 2 [klsin2 kI - 2sinkl(1 - coskl)] Si(kl)

- 4sin 2 kl s in 2 k1

2

We have calculated the normalized scattering cross-section A,/1 2 as a function of
k1 for various values of nI and 0, and as a function of 0 with Q and k1 as parameters.
The results are shown in Figures 24 - 40.

The characteristic resonances are apparent in the plots of A,/l' vs. ki, which
also indicate the maximum value (approximately 2.1) attained by this quantity at
the fundamental (half-wave) resonance. Thus the effective area of the unloaded
dipole near its half-wave resonance is of the order of the square of its length,
almost independent of its radius. The effect of changing the radius, and thus the
antenna parameter 1), is to alter the "Q" of the resonance.

0. 1OE-02

0. IOE-0I

Ae/12

0. I OE-00

0. 10-01
0. .00 0. 631 0.31 02 k 0. 191102 0. 211.0. 0. 31.0EOkt

Figure 24. Ae/l vs. k; 0 = 30", ft = 5.
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Figure 25. A,/L2 vs. kl; 0= 60, =5.
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Figure 26. Ae/1 vs. kl; 0 = 900, fl = 5.
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Figure 27. A,/1 2 vs. kl; 0 =300, = 10.
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Figure 28. A,/1 vs. kl; 0 =600, 1  = 10.
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Figure 29. A,/e vs. k1; 0 = 90° , 11 = 10.

The plots of A,/1 2 vs. f1 in Figures 30 - 35 also show the resonant behavior of
the structure and reproduce the features of the well-known radiation patterns of
long-wire antennas. In general, the cross-section tends to decrease as frequency is
increased from the fundamental resonance. The curves in Figures 30 - 35 are for
cases where the antenna is an integral number of half-wavelengths long. When
the frequency lies between the values shown, the curves are smoother. Examples
are shown in Figures 36 - 40.
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Figure 30. A,/I vs. 0; k = r,2 = 10.
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Figure 31. Ae/l' vs. 0; kl = 27r, 2 = 10.
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Figure 32. A,1(2 vs. 0; ki 31r, Q~ 10.
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Figure 33. A,/l 2 vs. 0; ki 47r, fl = 10.
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Figure 34. A,/P vs. 0; kI =57r, = 10.
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Figure 35. Ae/P vs. 0; ki = 6ir, 07 = 10.
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Figure 36. A,/1 2 vs. 0; kl = 3ir/2, Q = 10.
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Figure 37. A,/l vs. 0; kl = 5ir/2, fl = 10.
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Figure 38. A,/1 2 vs. 0; ki = ir/2, f2 =10.
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Figure 39. Ae.I 2 vs. 0; ki = 97r/2, fl = 10.
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Figure 40. Ae/I 2 vs. 0; k1 = llir/2, fl = 10.

2.2 EQUIVALENT TRANSMISSION AREA OF A SLOT.

The scattering cross-section which was derived in the preceding section can be
used to define an equivalent (power) source strength for a dipole. The equivalent
transmission area of a thin slot can be readily obtained from the dipole scattering
cross-sections.

The geometry of the slot-scattering problem is shown in Figure 41. The slot has
width w and extends from z = -1/2 to z = 1/2 in the y = 0 plane. The incident
wave is 0-polarized, so that the short circuit magnetic field on the surface y = 0+
is

H (y -= 0) = 2 E i sin Oa- el (76)
zo

independent of 4 for 0 < 4, < 7r. This field induces a magnetic current K, in
the slot having a functional form identical to that given in Eq. (48), with the
modification given in Eq. (49); but the parameter fl is replaced by f?,, where [8]

=. = 21n(41/w) (77)
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The total scattering cross-section of the slot is found to be identical to that of a
thin wire of radius w/4. The scattered power is divided equally between the two
sides of the conducting plane; thus the transmission cross-section is just half the
total. Hence

At transmitted power
incident power density (78)

1
2 .,-w/4

Z

It/

Figure 41. Geometry of the slot-scattering problem. The width of the slot is
w and the incident magnetic field is in the 0-direction.

It is implicit in the above that for the wire or the slot, the incident wave is polarized
so as to yield maximum scattered power. For the wire scatterer along the z-axis,
the electric vector of the incident wave is in the 0-direction. From the results in
the previous section one is led to conclude that the equivalent transmission area
of the slot is approximately 1.05 P2 at the fundamental (half-wave) resonance.
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2.3 TIME-DOMAIN SCATTERED FIELD.

We consider the dipole once again and find the scattered field in the time domain
when the illuminating wave is a pulsed cw signal. In what follows, we determine
the field scattered in the direction 0', denoting as before the direction of incidence
of the illuminating field by 0. We have

0= jkZ sin e-jk J/2 I(z,)ejkz' cose'd (79)
V4rr -1/2

Substituting for I(z') from Eqs. (52) - (54) and carrying out the integration, we
find

Ejl sinOl&- kr 2sinklsin [-L(cos0' + cos0)]
E = D(kl) sing r cos 0+cos 0

2sin [L'(1 + cos 0)] sin [-(1 + cos 0')]

1 + cos 0'

2sin [-,(1 - cos 0)] sin [-(1 - cos 0')]}

1- Cos 0'

which may be written in the equivalent form

El sinle - jkr 1(1 +cos0)cos Ikl- k(cos0+cos0')] (81)
E D(kl)sin0 r (1 -cos0)(cos0+cos9')

(1 - cos0) cos [k1 + E (cos 0 + cos 0')]

(1 + cos 0')(cos 0 + cos 0')

cos ['(Cos0 - Cos0')]

sin 20 f
In order to account properly for causality, we introduce two modifications to the
frequency-domain result in Eq. (81). First, we multiply by the factor exp(-jkl cos 0/2)
so that the wave incident upon the scatterer will have zero phase at the end of

42



the scatterer which is struck first. Second, we replace D(kl) by b(kl) exp(jkl),
where 1/b(kl) is the "pole-shifted" Mittag-Leffler expansion of the function

ejkl

kI sin ki
We have

1 1 1 1o

D(kl) - (kl)2  jk 2 (jkl + Cj)2 + (ni.)2 (82)

wherein a contribution of order Q- 2 has been neglected. This latter modification
ensures that the current at any point on the scatterer differs from zero only after
that point has been illuminated.

The quantity in curly brackets in Eq. (81) is simply a weighted sum of exponential
functions. Thus with the modifications discussed above, we see that the time-
domain scattered field is

Ee(r,0,t;0) =1 sin0' Ei(t),fo(t)* {w1(0,0) [(t + cos 0' -rc) (
rIsin 0E() 6' 2c' 83Eo-('t;O) - ricsGrinO -wdG~.At- - cs - - /c )  (8)

+b- -cscosO'-r/c) -W2(0,0' ) b(t 2 cos- cosO'-r/c)
c 2II C c 2c

+ b(t + Icos0' -,r./c) -csc 20, b(t .. .I Cos 0+ 1 cos e -,-/c)

2-c cos - 2cc

+ b~~t - 1 + cos 0'-rc

( 2(1 - cos 0')(cos 0 + cos) (84)
1 - cos 0

W,2(0, 0') = 1 oe(85)2(1 + cos 0) (cos 0 + cos 0')

and

fo(t) c _ t + 1+ 2 . 1-- /I sin . U(t) (86)
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In order to illustrate the time-domain scattered field in a relatively simple way,
we consider the "forward-scatter" case wherein 0' = 7r - 0. The forward-scattered
time-domain field Ee is given by

Eq(r, 0r-,t;0) - d, * fo t c 2 c°SO (87)rfo dt j2c C 2t7 - co

I o t I Co 0) -+-CSC2 o Fo(t) + Fo t -21)
2c 2c~l-eA A .4eefIR f4-,l

-Fo t -1+ ICos 0) -Fo (t-- -Cos 0

where
Fo(t) = fo(t)dt (88)

and the propagation delay time r/c has been omitted. The function in curly
brackets in Eq. (87) "turns on" at time t = 0; its final contributioa begins at time
t = 21/c and decays at a rate principally determined by the damping constant a1,
the characteristic decay time being l/(alc). Typical values of a, are (a few) - ',
so the total duration of the function is a few to several transit times 1/c. This
behavior is illustrated in Figures 42 to 47, wherein we display the normalized step
response (the function in curly brackets in Eq. (87)) as a function of normalized
time ct/l for various values of 0 and fQ.

We may make use of this result to determine under what conditions a quasi-steady
state analysis of the problem can be applied. If Ei(t) consists of n cycles of a cw
signal at frequency fo, then the incident pulse length is n/fo sec. A steady-state
condition is reached in approximately 41/c sec; thus n >> 41fo/c, the scattered
field is essentially a cw pulse of amplitude

e E(fo)l kolsinkol (89)
QD(kol) {osno

4 CSC2 0 sin[ 1 0+Cos 0)] sin [1 (1 - Cos 0)}

I f the dipole (or slot) is excited near its half-wave resonance, the condition becomes n >> 2,
a condition likely to be met in practice.
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where k0 = 2rfo/c and E,(fo) is the amplitude of the incident pulse. Further-
more, the total scattered energy can be accurately approximated by the product
of the power scattered at frequency fo and the incident pulse width. Thus un-
der conditions where the slot-transmitted or wire-scattered power is largest (i.e.,
near the fundamental resonance) a quasi-cw analysis would appear to be entirely
appropriate.
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-1.0 1 ' 2 3 4 5 

T

Figure 42. Normalized step response H(r) vs. normalized time r; 0 = 300,
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Figure 43. Normalized step response H(r) vs. normalized time r; 0 9 00,

11.O = 2 3
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Figure 45. Normalized step response H(T) vs. normalized time T; O = 300,
Q = 10.
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Figure 46. Normalized step response H(T) VS. normalized time r; 0 = 600,

= 10.
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Figure 47. Normalized step response H(r) vs. normalized time r; 0 = 90*,
n= 10.

2.4 CONCLUDING REMARKS.

We have considered the power scattering cross-section of an unloaded wire and
the transmission cross-section of a narrow slot in a conducting plane and have
presented numerical results to illustrate the behavior of these quantities as the
various problem parameters are varied. We have shown that the equivalent trans-
mission area of a slot of length 1 can be as large as (approximately) 1.05 12, for
frequencies near its fundamental resonance. We have also presented analytical
and numerical results illustrating the impulse response of the scattered field and
have derived the condition under which a steady-state analysis of the problem
would be appropriate.

We conclude with a numerical example. Let the slot under consideration be 1.5 cm
long. Then for illumination at normal incidence (and with proper polarization:
E-field across the slot) and at a frequency of 10 GHz, the equivalent slot area
will be approximately 2.4 cm 2 . If the incident power density is 10 watts cm 2,

then 24 watts will penetrate the slot; for a pulse width of 10 ns (corresponding to
100 cycles in the incident pulse), the total penetrant energy will be 240 nJ. This
energy will be radiated into the system interior.
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SECTION 3
PULSE PROPAGATION IN WAVEGUIDES

Summary: We examine the propagation of transient signals in waveguides. By
employing a saddle-point method of inverting the Laplace transform of the propa-
gating signal, we display the various phases of this signal: the Sommerfeld precur-
sor, the anterior transient leading to the main signal buildup, and the posterior
transient. We consider single-mode propagation in some detail; multimode prop-
agation can then be treated by superposition. As examples, we investigate the
propagation of short cw pulses whose center frequency is above the dominant-
mode cutoff frequency and whose envelopes are initially Gaussian or rectangular.

The propagation of pulsed signals in waveguides is a subject of critical importance
for studying the potential effects of microwave weapons on systems. The subject
is not a new one, especially in its general form wherein the mathematical problem
is that of treating propagation in a dispersive medium. A waveguide constitutes
a special case of the more general problem.

We shall address the problem with a view to demonstrating the principal features
of the dispersed signal. We draw most heavily on the work of Sommerfeld [91
and Haskell and Case [10]; Sommerfeld investigated the percursor signal which
propagates in a dispersive medium and which is the first signal component ob-
served at early retarded times, while Haskell and Case considered transient signal
propagation in a cold plasma. The latter problem has a mathematical form which
corresponds to the waveguide propagation problem.

The propagation of a cw signal of frequency w in a given waveguide mode gives
rise to the simple relation

z

f(z,t) = A cos(wt- c. 2 -w +q) (90)

where f(z, t) is the signal at a point z in the guide and A and 0 are the amplitude
and phase of the signal at z = 0. It is assumed in (90) that w > w,, the cutoff
frequency of the mode under consideration. In the event that w < W,, we have

f(z,) = A cos(wt + ) exp( 2 -W2) (91)
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and the signal does not propagate. The phase and group velocities of a monochro-
matic signal are defined

c
= (92)

v9 = cv1 - (we/w)2  (93)

where c denotes the speed of light. The fact that these velocities are not indepen-
dent of the signal frequency indicates that the guide is dispersive: a pulsed signal
will be spread, or dispersed, since its higher-frequency components travel with a
greater group velocity than the lower-frequency components.

The signal dispersion can be illustrated by considering the propagation of a Gaus-
sian pulse of center frequency wo (wo > w) and width to:

f(0,t) = Ae- 2 /2t coswot (94)

The signal at a point z > 0 in the guide can be written as a Fourier integral:

f(z,t) = 12 Fo(ow)e (-dw (95)

where

F0(jw) = Ator!2 [e- (w- O)2t°/2 0  (96)

By expanding the function

g(w)= ( t - Z F W 2 - U )  (97)

near w = wo as

g(jw) jwo(t - z/vpo) + j(w - Wo)(t - z/v'o) + -j(w - Wo) 2p (98)

where vpo and vgo are as given in (92) and (93) with w = WO,

p c=-e (w o -2 w )3/2 (99)
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and similarly for w = -wo and evaluating the integral in (95), we find

(Z)t) P2) - A - 1/4 [ (t - z/VO) 2 1 (100)
1exp 2t'(1 + p2 /t')

+ 1 p p(t- zlv)1

cos 0(t - z/VP) + 1 tan '- t(l / )

[w~tZvP) 2 t2 20~(1 + p2 /t4)

We remark that if the term in (98) involving the parameter p were neglected, we
would obtain

f(z, t) Ae-(t-Z/V9g) 2/2 cos [wo(t - z/vPo)] (101)

indicating that the pulse envelope travels at the group velocity v90 and the points
of constant phase travel at the phase velocity vpo. Keeping the term involving p,
we see that while the center of the pulse envelope travels at speed vo, the width of
the envelope increases as it propagates, and its amplitude decreases. Furthermore,
the phase changes in a complicated way as the pulse propagates.

We note that the governing parameter in this example is

P= (z Z (L2/W2 _ 1j ) - 1  (102)

from which it is evident that pulse distortion will occur if any of the following
conditions are met:

e the propagation distance (measured in units of cto) becomes large;

* the pulse width (measured in units of w- 1) becomes small; or

& the center frequency of the pulse becomes close the the cutoff frequency.

We show in Figure 48 the variation in the pulse envelope as the pulse propagates
as a function of normalized retarded time (t - z/vgo)/to for different values of
normalized propagation distance p/t0.

Having demonstrated the phenomenon with this simple example, we turn in sub-
sequent sections of this chapter to a more general treatment of pulse dispersion
in waveguides. We examine single-mode transient propagation and then discuss
a simple generalization to the multimode case.
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Figure 48. Gaussian pulse envelope vs. normalized time (t - z/vgo)/to for
various values of normalized distance p/to.

3.1 FORMULATION: SINGLE-MODE PROPAGATION.

The calculation of the dispersed signal associated with the propagation of a single
waveguide mode of radian cutoff --equency w, reduces to the problem of evaluating
the integral

f(z,t) = r (103)

where F is the Bromwich contour (T - joo to o + joo) in the complex s-plane and
where Fo(s) denotes the Laplace transform of f(O, t):

Fo(s) = fo0jf(0,t)e-dt (104)

We shall assume in the following that the only singularities of Fo(s) are poles in
the left half-plane. The points s = ± jwc are joined by a branch cut so that the
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s-plane appears as shown in Figure 49. The cut is chosen so that on the upper
Riemann sheet,

(s +w) 1 1W = RiR 2 expj(01 + 02)/2] (-7r/2 < 01, 02 < 37r/2) (105)

We shall evaluate f(z, t) approximately, using an appropriate set of analytical
techniques. We shall show that in many cases of interest, the dispersed signal
comprises three phases: first, the "Sommerfeld precursor" which appears at early
times (t slightly greater than z/c); next, an anterior transient phase which precedes
the main signal buildup at times near z/v 9 , where v. is the group velocity near
the dominant frequency of f(0, t); and finally, a posterior transient phase at late
times. , l,(s)

Re(s)

JW 2
C

N

Figure 49. The complex s-plane. The x's indicate poles of the function Fo(s).

3.1.1 The Sommerfeld Precursor.

We begin by deforming the Bromwich contour into a semicircle of (large) radius
R in the right half-plane and adding its image in the left half-plane as shown in
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Figure 50, so that

f(z, t) = j d (106)

The contribution from the closure in the left half-plane is negligible for t > z/c;
CR denotes the circular integration path. On the path, we assume that

Fo(s) Sn (n >1) (107)Sn

where A is a constant, and write

f--- 
O c2__

Z

N/ W' / 2 . = S(t -z/c) 2c+ "(108)
St-c C2sc

Thus

f(z,t) = 2 r j k R )ds (109)

where T = t - zlc is the retarded time and

W2 z- c (110)=2c

Now the integral in (109) can be evaluated by defining a new variable € through

s = - - ej (' (111)

and identifying /-T as the radius of the circular integration path. Then

= A n(T) (n)/2~ ('V -

2' t) _ e -2jVft-c°O-j(n-I )OdO (112)

= A[ Z)] (n-I)/2
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Figure 50. Deformation of F into a contour suitable for evaluating the
Sommerfeld precursor. CR denotes the circular contour.

where J,,-,(.) denotes a Bessel function. Evidently, if Fo(s) can be expanded in a

series of the form POS A, (s _+ 00) (113)

then the precursor signal can be expressed as

f(z,t) = 0A, (Ct'J J ) i t- wc t- (114)
1=1 LcZ iI Cj

at early times.
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To illustrate the application of this result, we consider a specific example. Let

f(O,t) = aosin wot U(t) (115)

so that

woao 
(116)Po(S) - s2 +,W,2

3
2  S

4

Thus the Sommerfeld precursor is

f~~ z~t) oo 2 ( C , 1 , q °

)= ) .z ]1)+.. (117)Wc z C

which involves the frequency w0 only in the amplitude factor. The oscillatory
character of this function depends only upon the cutoff frequency w,. We shall
return to consider the Sommerfeld precursor after we examine the next phase of
the dispersed signal, the anterior transient.

3.1.2 The Anterior and Posterior Transients.

To investigate the behavior of the dispersed signal after the earliest times, we
employ a saddle point integration technique. Define

zf-
a(s) = st - -ZV, + 7L, 2

c WC (118)

This function has two saddle points, located at

s± = ±jwp = =jWc (ct/z) (119)
V/(ct/Z) 2 - 1

We expand g(s) about the saddle points in Taylor series, obtaining

g(s) = g(±jwp) + I (s : jw)2 d +9 + (120)
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where 2 3/2
--gJ F [ -t1  1 (121)

dS2  Wc [() 1

Now deform the original contour F into the steepest-descent path SDP, as shown

in Figure 51. We have shown in the Figure the fact that the deformation of F

into SDP can pick up some of the poles Fo(s) lying in the left half of the s-plane.

Thus

f(zTh 1 PO 2(s)e-9(3ds + ZRes Fo(s)eg(s) (122)

where s,n denotes a pole crossed by the deformation of the contour. By virtue of

the fact that the poles crossed will occur in the complex-conjugate pairs (s, =

-a,, ± jw,) and that f(0, t) is a real function, we have for a typical pole-pair

contribution

fj,(t,z) = 2Rne - Int+ "z cos(wnt - /, z + 9n)U(t - t,) (123)

where
Res Fo(s) I-.+jwn = Pe jo"  (124)

- n + j3n = JW4 - (Wn + jan) 2  (125)

n=-z - )2 (126)

When the saddle points are not close to poles of PO(s), the contributions to f(z,t)

from the neighborhoods of the two saddle points are easily found. We obtain for

f.p(z, t), the contribution to f(z, t) from integration along SDP,

f'P(zt) = (2w) 2 -] owp) (127)

cz 4cos (" c t)- r )-57
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Figure 51. The steepest-descent contour in the s-plane. Poles in the region
bounded by the dashed lines cannot be crossed by SDP.

where we have written
PO(j wp) = Po(j wp)Le) (128)

The above result applies when the saddle points are neither too close to poles
of Po(s) which might lie close to the jw-axis nor too close to the branch points
at s = ±jwc, which are the points approached by the saddle points at very late
times. Before proceeding to the investigation of these situations, however, we
observe that if Fo(s) as given in our example for the Sommerfeld precursor is
applied to the calculation of f8 p(z, t) at early times, we find

f~p(z, 1) --+ ao (~() / ]/. (129)

cos (WCz(-)2 -1 ')
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when ct/z is only slightly greater than unity. One immediately observes that
the result in (129) is identical to that obtained if one uses (117) with the usual
asymptotic approximation for J,('). Thus the early-time saddle point integral
expression for f(z, t) matches the Sommerfeld precursor expression when ct/z -
1 << 1 and

V2 wz ci_ 1 >> 1 (130)
C PZ

The required conditions can be simultaneously met if z is at least a few wave-
lengths at the cutoff frequency. We shall assume that z is always at least this
large, and we identify the transition between the Sommerfeld precursor and the
early-time saddle-point expression as the onset of the anterior transient.

When the saddle points pass close to a complex-conjugate pole pair the expression
for f5 p(z, t) given in (127) must be modified. We remark parenthetically that if
the poles are located at s = -a, ± jWp where op is small and wop > w,, the saddle
points and the poles are closest when w, = WP, or when

z = ct1 - (Wtl/wp)2  (131)

= vq(wp)t

where v,(wp) is simply the group velocity for a signal at frequency wp.

When a pole is close to a saddle point, we write for Fo(s)

FPo(s)- Res -(sp) + G0(s) (132)
S - SP

where Go(s) is analytic at s = sp. Then the contribution to f(z,t) from the
integration over SDP can be written

1 1
2"-- LsDP ( s )e9( ' )ds = - Res o(sp) L eP ds (133)

D S -- Sp
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2ri SDP G°(s)e2(s)ds

The second integral on the right-hand side of (133) yields a contribution of the
form given in (127) and (128) with 0 replaced by 0 . The first integral can be
expressed in terms of the complementary error function; and we find that the
contribution to the integral over SDP made by poles near the saddle points before
SDP crosses over the poles is

f .P(z, t) -  (134)

1 i(wt-C 7 -J/4 /FF +-Res Fo(s)e cO c/erfc (w2 a + j)S
2 p Le 2  P )P]

+-Res Fo'(sP)e\ vO cJ : 2'erfc W' - S

where s± - -up ± jwp and

P = [ 2 - 1 (135)

After SDP has passed over the poles, we include the pole contributions to obtain

f(z,t) I Res Fo(s)e( (136)

{2 - erfc [e j-/4i (-js+ - WS.)] }

+ 2Res F(s)ep e)

{ 2 - erfc [,eir4 42 (is; - W1,,)]

We observe that f(z,t) as given in (134) and (136) above is continuous as SDP
picks up the pole contributions; this is a consequence of the symmetry property
of the complementary error function [11]:

erfc(-iz) = 2 - erfc(iz) (137)
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At very late times, the saddle points approach the branch points. It is, however,
not necessary to modify the result in (127) in the limiting case, since the magnitude
of g"(s) becomes very large as the branch points are approached. Thus

C)1,2 (Z)3/2

f8-(Pt (Z I _P) (-)F~w)Icos (wct + + O/c) (138)\rz / ct 4

as t -- oo.

We now consider our example once again, where f(0, t) is a sine wave of frequency
wo turned on at t = 0. The precursor signal which appears at the earliest times is

~ ct
fzt) = v2 ao- I -1 ,2- cz~ (139)

WC z z

The anterior transient signal before the saddle points approach the poles at ±jwO
is

= ) aowo -[()2 1]1/4 [(Ct) 2 (W2 -W2) + (140)

When the saddle points approach and pass through the poles, we have for wp, > w,
(i.e., before the crossing occurs)

f(z,t) 4 3 {eJ (wOt- 1cV Ic)erfc [ej7/4v' (wsp - wo)] (141)

C -erfc [e-jw/4 iJ(W's-WO)}

After the poles are crossed,

f(z,t) = 4 e--- 2- erfc e'4 f(WO - (142)

_ e(w - [2 - erfc (e- // P(wo - wo,)] }
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Finally, after the saddle points have moved away from the poles, we have

1114 r(t 2 2)
Z,)= aowo -1 (wo - w2) -0 _•j (143)

Co C1 + -+ ao sin t- - W LV,

which comprises the posterior transient and the steady-state signal at frequency
Wo.

Near the time of the main signal buildup, the function f(z, t) in (141) can be
written in the form

f(z,t) sintwo(t - z/vpo) (144)

+ 1 oo()n 2 n+' sn[wt7; E (2n. + I)n! snoct - Z/V'.) + +

wherein vpo denotes the phase velocity at frequency wo:

c( o - 2/wf 1/ 2  (145)

and
q=d ( z)1/2 [(Ct)2 1]/4[ +WOo( l ) (146)
q + L11c )L -- 1o V\ (146

One notes that q passes through zero when t = z/vgo, where vgo is the group
velocity at frequency wo

vc /L,)2  (147)

If we write
f(z, t) = A(z, t) sin [wo(t - z/vo) + O(z, t)] (148)

where A(z, t) is an amplitude and O(z, t) a phase function, we can readily show
that the amplitude function A(z, t) is given by

A(z, t) = R2+ S) +S2 
496
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where
S1 k cos (nr +r)

(...fq~llCS(150)S /7 =O (2n + I)n! sin k 2 4)

When q 0 0, we have

1 ( o(- z/vo) (151)A(z, t) L- - + Z/oo (151)rw z

whence the rate of rise of the signal amplitude near the time of the main signal
buildup is clearly

dA 1 (152)

t = z/Vo

The decrease in the rate of rise as kCz increases or as wo approaches w, is apparent.

We show in Figure 52 a plot of f(z, t) as a function of normalized retarded time
r, = wo(t - zic) for the case wo/wc = 1.5, kcz = 607r. The saddle point crosses the
pole at -r, = 96.6 for this parameter choice. One observes that the precursor and
anterior transient signals build continuously in amplitude from -r = 0 and that
the sum of the pole contribution and the posterior transient produce a slow "beat"
in the envelope of the signal after the pole has been crossed. The amplitude of the
signal gradually approaches unity at late times, the beat amplitude decreasing as
t-3/2.

3.2 A PULSE-PROPAGATION EXAMPLE.

We now consider the application of the foregoing analysis to a practically inter-
esting problem of pulse propagation. Specifically, we assume that

f(0,t) = ao sinw ot [U(t) - U(t - to)] (153)

where wotolir is equal to an even integer.
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Turn-On Sine Wave
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Figure 52. Turn-on sine wave of frequency wo as a function of normalized
retarded time wo(t - zic) for wo/w,=1.5; normalized
propagation distance kcz = 60r.

By virtue of the fact that this signal is simply the difference of two turn-on sine
waves separated by an interval to, we have immediately

f(z, t) = fo(z, t) - fo(z, t - to) (154)

where fo(z, t) now denotes the function given in (139) to (143) above.

We show in Figures 53 - 58 the (pulse) function f(z, t) as a function of normalized
retarded time wo(t - z/c) foy wo/wc = 1.5, w0 t = 8r and various values of kcz. The
results show the dispersion of the pulse as a function of propagation distance.
We note that when k~z is not large, the peak value of the propagated signal can
exceed its value at z = 0. This is related to the "beat" phenomenon mentioned
earlier in connection with the turn-on sine wave.
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Sine-Wave Pulse
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Figure .53. Sine-wave pulse vs. normalized retarded time wo(t - zic) for k~z =0;

w0t = 8r. Sine-Wove Pulse
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Figure 54. Sine-wave pulse vs. normalized retarded time wo(t - zic) for
k~z = 57r; w0to = 8r.
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Sine-Wave Pulse
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Figure 55. Sine-wave pulse vy. normalized retarded time wo(t - z/c) for
kcz = 101r; .aotoi = 8wr. Sine-Wave 
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Figure 56. Sine-wave pulse vs. normalized retarded time wo(, - z/c) for
kcz = 20r; woto = 8r.
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Sine-Wave Pulse
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Figure 57. Sine-wave pulse vs. normalized retarded time wo(t - z/c) for
k~z = 407r; w0i0  87r.

Sine-Wave Pulse

1.5
Normalized Distance - 0.Pi

Normalized Pulse Width - 9*PI
1.0

.5AA

f Q. Q 0.0

-1.0

100 501 50 200

Normalized Retarded Tim

Figure 58. Sine-wave pulse vs. normalized retarded time wo(t - zic) for
k~z = 607w; woto = 87r.
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3.3 MULTIMODE PROPAGATION.

The transverse electric field inside a conducting waveguide of general cross-section
can be expressed in terms of the individual modal field distributions em( , r/) in
the form

Et( , q, z; t)= amnmn( , T)fmn(Z, t) (155)
mn

where amn is the amplitude of the (m, n)th mode and

fmn1(Z, t) ' Fo(S) exp (st- z s2+Wmn) ds (156)27)_ c +

The frequency Wcmn is the cutoff frequency of the (m, n)th mode and and q are
the transverse coordinates. It is assumed that the time dependence f(0, t) is the
same for each mode. Each of the integrals (156) can be treated as in the foregoing
and the results superposed to yield the total transverse electric field at any point
in the guide.

We consider a simple example to illustrate the multimode propagation problem.
Let the waveguide be rectangular in cross-section such that the interior is defined
by 0 < x < a, 0 < y < b, and let the electric field at z = 0 be Eof(t)al. Then in
the guide, the electric field Ey for any position z > 0 is

00 4Eo n7rx

EY (X,y,z;t) = E - sin - . (157)

(odd)

1 s Z

2rjIJ &S) exp (St~ - S2L;2w) ds

where Wcn = nrc/a. Consider the field across the center of the guide (x = a/2)
when f(t) is a sinusoidal pulse with a Gaussian envelope. Then from results
obtained earlier in this section, we obtain

Ei( ,,z;t = Z in - 1+ 1-n " (158)

(odd)

exp [2t02 (1 tg) cos [wo (t - z/vpn) + On(z, t)]
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where to is a measure of the pulse width at t = 0 and

z .2
Pn = - ) (159)

c _n

v, c= 1 W2 /W2

Vpn = C2 / Vgn

1 t a n 1  P ,, P , (t - z / v g ,)2

¢,(z~~~t) = t(1 + p /t4)

and n.~ is the largest value of n such that wr < wo.

We have computed E/Eo as a function of normalized retarded time wo(t - z/c)
for various values of normalized z-position, for the case woto = 47r, wo = 5.5irc/a.
The normalized distance is taken to be kclz = wlz/c. Three propagating modes
(n = 1, 3, 5) are excited in the waveguide. Numerical results are presented in
Figures 59 to 64. Multmode Gaussion Pulse

Normalized Distance - O*Pi

.a d Pulse Width - 4-PI

1.0

.5 

A
VC.t 0. 0 VV

-1"-40 40 10 320 i6C

Normltized Retmded Ti.

Figure 59. Mode sum EI/Eo vs. normalized retarded time wo(t - zfc) for
Gaussian-envelope pulse. Normalized propagation distance
kciz = 0; woto = 4r.
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Multimode Gaussian Pulse
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Figure 60. Mode sum Ey/Eo vs. normalized retarded time wo(t - zic) for
Gaussian-envelope pulse. Normalized propagation distance
kc1z = 21; w0 to = 4w.
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Figure 61. Mode sum Ev/Eo vs. normalized retarded time wo(t - z/c) for
Gaussian-envelope pulse. Normalized propagation distance
kcIz = 57r; w0to = 4r.
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Multimode Gaussian Pulse
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Figure 62. Mode sum E/Eo vs. normalized retarded time wo(t - z/c) for
Gaussian-envelope pulse. Normalized propagation distance
kdlz = 10r; w0to = 47r.
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Figure 63. Mode sum EI/Eo vs. normalized retarded time wo(t - z/c) for
Gaussian-envelope pulse. Normalized propagation distance
k,1z = 20r; woto = 4ir.
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Multimode Gaussian Pulse
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Figure 64. Mode sum E /Eo vs. normalized retarded time wo(t - z/c) for
Gaussian-envelope pulse. Normalized propagation distance
kclz = 307r; w0to = 4ir.

Figure 59 shows the sum of the three modes at z = 0. The peak amplitude exceeds
unity because the non-propagating modes have not been included in the sum. In
Figures 60 to 64 we show the signal at different positions in the guide. One will
note that as the distance kcz increases the TE5 0 mode contribution separates
first, followed by the TE30 contribution. When kc1z = 57r, the TE50 contribution
is already very highly dispersed, while the TE30 contribution is just beginning to
appear. The development and separation of this contribution is evident in the
remainder of the plots. It is interesting to note that after the higher-order mode
contributions have been separated, the dominant-mode contribution exceeds the
three-mode sum at z = 0. This is a consequence of the fact that the TE10 mode
amplitude coefficient is 4/r = 1.27; when this modal contribution is separated from
the higher-order modes by the dispersion, the total signal amplitude displays the
peak value of the TE10 mode alone.

Figures 65 - 70 display the three-mode sum for the case w0to = 21r. The increased
dispersion associated with the broader bandwith of this pulse is apparent.
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Multimode Gaussian Pulse
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Figure 65. Mode sum Ey/Eo vs. normalized retarded time wo(t - z/c) for
Gaussian-envelope pulse. Normalized propagation distance
kclz = 0; w0 to = 2r.
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Figure 66. Mode sum E/Eo vs. normalized retarded time wo(t - z/c) for
Gaussian-envelope pulse. Normalized propagation distance
k,,z = 21r; w0to = 27r.
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Figure 67. Mode sum EJ vs. normalized retarded time wo(t - zic) for
Gaussian-envelope pulse. Normalized propagation distance
k~lz 5wr; w0to 2w.
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Figure 68. Mode sum E/ vs. normalized retarded time wo(t - z 1c) for
Gaussian-envelope pulse. Normalized propagation distance
k~1z = l~w; w 0 to = 2wx.
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Multimode Gaussian Pulse
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Figure 69. Mode sum EIovs. normalized retarded time wo(t - zlc) for
Gaussian-envelope pulse. Normalized propagation distance
k~lz =207r; w0to = 27r.
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Figure 70. Mode sum E/ vs. no-'nalized retarded time wo(t - zic) for
Gaussian-envelope pulse. Normalized propagation distance
k~l z = 30wr; w0to = 2w.
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3.4 CONCLUDING REMARKS.

In this chapter we have considered the approximate analytical evaluation of tran-
sient signals propagating in waveguides. Both Gaussian and rectangular pulses
have been used as examples. The multimode problem was also discussed and
illustrated by example.

The propagation of a pulse whose center frequency is not much greater than the
fundamental mode cutoff frequency is characterized by substantial dispersion. The
peak amplitude and the rate of rise of the pulse decrease as it propagates, while the
apparent pulse length increases. A pulse whose center frequency greatly exceeds
the cutoff frequency propagates with little distortion; but several modes would
typically exist simultaneously in such a situation. It was shown in an example
that the dominant mode propagated almost undistorted and that the appearance
of the total signal was essentially that of the dominant mode followed by a "tail"
comprising the higher-order mode contributions. Thus when the center frequency
of the pulse is well above the dominant-mode cutoff frequency, the dominant-
mode contribution to the total field will be the first to arrive at a given point
and will likely be the largest-amplitude portion of the total signal. Multimode
propagation per se would not appear to be an issue in microwave interactions with
systems; the important point would seem to be simply that a signal well above
the dominant-mode cutoff frequency can propagate essentially undistorted in the
system waveguides.
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SECTION 4
POWER COLLECTED BY AN ANTENNA OVER A LOSSY

ROUGH SURFACE

Summary: We develop an expression for the power received by an antenna over a
lossy rough surface. We perform representative calculations for the case where the
illumination is randomly polarized and normally incident, and where the rough-
surface height is a two-dimensional stationary random process with isotropic cor-
relation.

A receiving antenna situated over a rough surface which is illuminated by a re-
mote transmitter will receive power both directly from the illuminating field and
indirectly from the field reflected by the surface. The reflected field will comprise
both coherent ard incohereiit contributions, the latter resulting solely from the
roughness of the surface. The coherent contribution arises from reflection from the
"average" surface. Ii the surface height variations are of the order of the incident
wavelength or larger, the coherent contribution is very small and the reflected field
is dominated by the incoherently scattered contribution.

We consider the power received from the incoherently scattered field. Although
rigorous theories of scattering from very rough surfaces do not exist, an approxi-
mate theory bastd on first-order perturbation methods does exist and can be used
to address the problem. The approximate theory is strictly valid only when the
surface height variations are small in comparison to the wavelength, but it pro-
vides a phenomenological framework within which the more general case can be
studied. We employ the first-order perturbation theory in this section and remark
as appropriate on the use, for example, of experimentally derived scattering data
in the theoretical framework.

In the following we review the rough-surface scattering problem as it applies to
a rough interface between free space and a lossy medium. Then we consider the
power collected by an antenna over such an interface when the illumination is
normally incident from above. We end the section with an example calculation.
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4.1 ELECTROMAGNETIC SCATTERING FROM A LOSSY
ROUGH SURFACE.

Consider a monochromatic plane electromagnetic wave incident at an angle Oi on
a rough surface, as shown in Figure 71. The incident wave carries power densities

" Sih¢ in horizontal polarization

* Si., in vertical polarization

The power densities in each polarization which are incoherently scattered by an
area AA on the rough surface in the direction 0,, 0, are given by

[ASC = A Uhh ah Ihn (160)
A- S~ '] = A 'h 1 hnc ]AS- 47rr 2 I. vh Uv iv 10

where O'hh... denote the scattering cross-sections per unit area of the rough sur-
face and R is the distance from the area AA. Each of these cross-sections depends
on the angles O, O,, and 0,; the (complex) relative permittivity fr of the scattering
medium; the frequency; and the statistical properties of the rough-surface height.
Specifically, the first-order perturbation theory yields [12]

o, = 4rk 4 cos 2Ocos2 OW(ksin0, cosk, - ksinOi, ksinO, sin 0,) I a 12 (161)

where k is the propagation constant of a plane wave in free space and where

Cfhh =-('Er - 1) , (162)
(cos Oi + cr- -sin 2 0o) (cos 0. + VE7:- sin 2 0)

ahv(c - 1) sin , VE- sin2 0 (163)
(f, cos Oi + jf: -sin 2 0 .) (cos 0 + JE -sin 2 0 ')

h = ~ E-(r - 1) sin 0, fr -sin 2 o. (164)
(cosOi + JVEr -sin

2 0 .) (fr cos0. + Vr- sin 2 0 . )
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Figure 71. Geometry of the rough-surface scattering problem.

Ctv (Er - 1) (Cr sin Oi sin 0. - cos Er - 5__sfl2 0, c, - sin 2 o., (165)

(Er Cos 0, + V( - sin 2 ') ( E' Cos 0, + Vf_ - sin2 0-.)

The function W(p, q) is the spatial-frequency power spectrum of the height of the
rough surface: 1 to foo

W(p,q) = -i ]' foo e-'Px-'q R(x, y)dxdy (166)

where R(x,y) =< ((x',y')C(x' - x, y'- y) > is the autocorrelation function of
the rough-surface height ((x', y'). The brackets <> denote the expected value;
and it is assumed that the height ( is a stationary, zero-mean random process in
two dimensions.

We shall examine the special case in which

* the incident wave is randomly polarized;
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e the angle of incidence 0i = 0; and

e the autocorrelation R(x, y) is isotropic.

When the incident wave is randomly polarized, Sih. = c  Thus

-= AA O'hSinc (167)

AS',-= A A 2"O'vSinc (168)

where
1whr -(O'Ihh +{ O'hv) 

(169)
2

atv = I(atvh + 'ov) (170)

Furthermore, when Oi = 0 we find

ahh = -ah COS¢, (171)

ahv = ahsin, (172)

avh = -a, sin s (173)

av, = -a .cose0 (174)

where

h= s (175)COS 0, + V¢c -si n2 0,

(V/ -,- 1) c' - s in 20,CA = (176)

Er cos 0, + 4, - sin 2 0.

Finally, when the autocorrelation function can be written in the form

R(x,y) = h2f (VX- + y2/1) (177)
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where I is a characteristic correlation distance and h2 is the variance of the rough-
surface height, we find that

W(.) = 212 h2 j f(u)Jo(klu sin 0,)udu (178)

= 122 P(klsin O,)

where J0 (.) denotes the Bessel function of order zero. Thus

Oh= 2irk41 2h2cos2 OF(klsin 08 ) i ah 12 (179)

a, = 27rk 412'2cos'O 9F(kI sin O,) a, j2 (180)

We next consider the power received by an antenna situated over the rough surface.

4.2 POWER COLLECTED BY AN ANTENNA OVER A ROUGH
SURFACE.

Let the antenna be located at height h over the rough surface and let its axial
direction be defined by angles 0B, qOB, as shown in Figure 72. The effective
aperture of the antenna is denoted A,(O',O') where 0' and 0' are defined with
respect to the antenna axis.

The power density scattered in the direction of the antenna by a small area AA
in the z = 0 plane is

AS hc, = AA
47rR2 Oh,vinc (181)

and the power AP received from this small area is

A ph,, = Sin.CA, (0, 0') 'h, A A cos0. (182)
4r cos 0, R 2 (

Now AAcos 0,1R 2 is just Al, the solid angle subtended by the area AA. Thus
the total power received by the antenna is simply

ph,v _ Sinc J Ae(0',')ah,,(O8 ) df) (183)
4 r o cos 08
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where Q0 denotes the total solid angle (of 27r steradians) subtended by the rough
surface.

We consider the special case where the axis of the antenna is parallel to the x-axis,
so that

cosO8 = sin O'cosl$' (184)

sin O, sinS 8 =sin O'sin5' (185)

X5

- e' z' (antenna axis)

k I
y' 0 < 0

--- I\,

47 Tr2f ',! 0,d

/

x

Figure 72. Antenna over a rough surface: geometry.

Furthermore, drQ = sin 9'dO'ddp' in the antenna coordinates with -r/2 < 46' <

ir/2, 0 < 0' < 2'. Thus

p =v p_,2 sec¢'d6'J A ( O', ¢')Orh,( O )dO' (186)

Substituting eqs. (179), (180), (184), and (185) into eq. (186), we obtain

phv= ISikkl 4h 12 T 2 cos r'd l'J sin 2 O'dO' (187)
2 -42 0
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(kill - sin 2 0' cos 2 €') Ae(O', 0')I rho(', 0')

where

ah = (188)
sin 9' COS' +/ - 1 + sinl2 9' cos 2 €'sin 1+ sn 0sos

v (vr - 1) 7 -1 + sin2 9'COS2 0 (189)
c, sin 9'cos 0' + - 1 + si 2 9' cos 2 €Y

P 2 f(u)Jo(u )udu (190)

In eqs. (186) and (187) above, phv has been expressed in terms of an integral over
the antenna coordinates 0', 0/. It may also be written in terms of the coordinates

0, and 0,. Specifically, defining

Ae(0.,,) = Ae(0',4/) (191)

we obtain

phv Sinc f/2 tan Oah,,(O8 )dO., I._ AS(0s, Os)d€s (192)

--Snk 4 2h-f2 jl/ Iah'v(Os) 12 cs~Osin k 12V - / 1 h,, 0 ,) 12 (k l sin 0,) sin O0, co s O dO, .
2 fs

This latter expression may be more suitable than that given in eq. (187) for a
given application.

4.3 EXAMPLE CALCULATIONS.

It is evident that except under conditions which allow many simplifying approx-
imations to be made, Ph," must be evaluated numerically. We shall confine our
attention to a specific antenna configuration, the rectangular aperture with uni-
form illumination. For such an antenna,

A (o', ') = ab sinc 2 k sinO'cos4') sinc 2 kb sin O'sin ') (193)
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2 ) sinc2 (bsin0,sin 0) (194)

where a and b are the aperture dimensions and the sides of length a are taken to
be parallel to the z-axis. Furthermore, sinc(x) _ (sin x)/x.

We shall also consider that F( ) is of the form appropriate for a Gaussian corre-
lation function (cf. eq. (177))

R(x, y) = (195)

Thus

f(e) = 1_-2/4 (196)

Substituting eqs. (194) and (196) into eq. (192), we obtain

ka,,v(0 8) e2 -di.)2 sinc (cos • (197)

sin 0, cos OdO., /2 sinc2  sin 0, sin 0, de,

wherein we have altered the limits of the integral over 0, to include only the
"forward-looking" portion of the antenna pattern.

The integral over 0, can be expressed in terms of a function G( ) defined as
follows:

G( ) -2 7/2 sinc 2(. sin O)dO (198)
7r dO

00 (_)k2k

k=0 (2k + 1)k(k + 1)!

with

( ) ( oo) (199)

Thus

phv S 2fb k4 12W I a,,t,(Oa) 12 e( s°) 2 
. (200)

sinc2 ( Cos0.) G (b sin 0o) sin0, cos 8,dO,
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A plot of the function G( ) vs. is shown in Figure 73.

We have performed sample calculations of the expression for Ph given in eq. (200)
for the case in which J E, 1>> 1. In this case, OCh 1; and we have evaluated the
normalized quantity

ph

Ph = abS (201)

1 12- r/2 2si 0, 2 2 k s0.
=2k41h2 (2 e "1 ,) sinc 2  Cos 0.

G - sin 5 OI sin O, cos OdO,
(2 j

which is the ratio of the power received from rough-surface scattering to the total
power which is available to the antenna.

It is evident from eq. (201) that the parameters on which Ph depends are the
electrical dimensions of the antenna, ka and kb; the electrical correlation length
kl; and the electrical rough-surface height variance kh 2 . The factor k2h can be
considered as the limiting form for small height variances of the factor

1 - exp (-k2h - )

whose maximum value is unity. In order to bound the collected power we shall
assume this factor to be unity in the computational results. Thus

ph A 2u G ( ) udu (202)

It is easy to show that 3h becomes, in the limit of long correlation lengths 1,

lim Phk= s ac - (203)

00I3 1=i 2
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Figure 73. G( ) vs. . The function differs significantly from 1/ only for
0 < <3.

This limit is obviously related to the effective area of the aperture antenna at
grazing incidence (scattering angle 0, = 0). For simplicity in the numerical results
to follow we shall take ka = 2n, (n > 1). Thus the limit of P3h for large 1 will be
zero in every case which we consider. The maximum gain Go of the aperture is

1 b 4n 2irb (20)
Go -(ka) 2 =(24

ra a

We shall choose ratios b/a such that (204) is satisfied for a given value of Go.
Thus Ph can be written

Ph = 2 ( h)jexp - u sinc2 (nur) G ( Gou) udu (205)
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wherein Go, n and I/a are parameters. We have evaluated Ph as a function of I/a
for the cases listed below:

Go= 10 dB, n 1 (b/a = 0.80)

Go=15 dB, n = 1 (b/a = 2.52)
n =2 (b/a = 0.63)

Go = 20dB, n = 2 (b/a = 1.99)
n = 3 (b/a = 0.88)
n = 4 (b/a = 0.50)

-20

10 log Ph

-30

-400

0 0.25 0 .5 0.75
L/a

Figure 74. Normalized received power Ph~ vs. normalized correlation length I/a.
Go is given in dB.
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The results are shown in Figure 74. It is evident from the curves shown there that

1. The peak value of Ph as a function of 1/a decreases as the antenna gain is
increased and as n is increased.

2. The value of i/a at which the peak occurs decreases as the gain is increased
and as n is increased, and is less than 0.5 in all curves considered.

3. The peak value of ph in dB is less than the negative of the antenna gain in
dB.

4. The peak value of Ph is not a strong function of n.

Results 3 and 4 indicate that at least for the configuration considered here, the
maximum power collected from rough surfacc scattering is easily estimated and
that it is not a strong function of the antenna pattern.

4.4 CONCLUDING REMARKS.

We have considered the scattered power collected by an antenna over a rough
surface and have calculated some representative results for a rectangular aperture
antenna whose axis is directed parallel to the surface. It has been shown that
the collected power decreases as the antenna gain increases and that this power
is maximized when the coherence length of the scattering surface is less than the
antenna's vertical dimension. The peak value of the collected power, normalized
to the power available to the antenna, is roughly equal to the negative of the
antenna gain in dB and does not depend strongly on the details of the antenna
pattern.

Our treatment of this problem has been based upon an analytical model derived
from a first-order perturbation theory. This theory provides the scattering cross-
sections Uhh,.., in terms of the properties of the scattering medium and its rough
surface. If experimental data for these quantities are used, the framework of the
analysis given herein remains unchanged. The result given in (183) would simply
employ experimentally derived expressions for Uh and ao, rather than those used
here.
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SECTION 5

APERTURE COUPLING TO A WIRE IN A CYLINDRICAL
CAVITY

Summary: We examine the electromagnetic coupling to a thin wire on the axis of
a circular cylindrical cavity through a thin azimuthal slot aperture on the cavity

side wall. The wire is shorted to a cavity end wall at one end and it becomes the
center conductor of a coaxial cable at the other end. The coupling is described in
terms of the Th~venin equivalent circuit driving the feed point of the coaxial cable,
so that an arbitrary load may be considered. The source is specified in terms of the
voltage across the slot aperture in the outer wall, so that the exterior-to-interior

coupling problem may be approximately decoupled. Representative numerical
data are presented to illustrate the results.

In this section we examine a relatively simple and analytically tractable approxi-

mate treatment of electromagnetic coupling through an aperture in a cavity wall
to a wire inside the cavity. Our purpose is to develop the transfer function which
relates the incident electromagnetic field on the exterior of the cavity to the cur-
rent induced in an internal load.

The geometry of the problem is shown in Figure 75. The cavity itself is a right
circular cylinder of radius b and length 1. A wire radius of a is coaxial with the
cavity and shorted to the cavity wall at z = 0. It leaves the cavity at z = 1,
forming the center conductor of a coaxial line whose outer radius is c. We assume
that a << b and c << b. The cavity is excited by a thin circumferentially-oriented
slot of width w and angular extent A0, located at z = zo in the cavity side wall.

In our analysis of the exterior problem the slot is treated as if it were located in
an infinitely extended conducting plane. Use is made of results in Section 2 to

estimate the voltage across the slot. This slot voltage is then used to drive the
interior problem. Thus the transfer function from the incident field to the internal
wire current is the product of

" the transfer function relating the incident field to the slot voltage, derived
in Section 2; and

" the transfer function relating the slot voltage to the internal wire current,

derived herein.
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The approximation employed herein obviously does not take into account the
effect of the cavity itself on the fields in the slot. This approximation will cause
the cavity Q to appear higher than it actually is, because reradiation from the
slot is not accounted for.

Scenter wire radius =a

I I I
z=O 0

Figure 75. Geometry of the problem. The slot width is w and the outer radius
of the coax leaving the cavity is c.

5.1 FORMULATION.

The electromagnetic field which ex.,ites axial currents on the center conductor in
the cavity is the axially symmetric TM, portion of the total field, expressed in
terms of a scalar function 0 by the relations

1 0 2ik
E0= - 02V, Op(206)

jW% Op'z

1 (02 + k2)
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The function ?k is a solution of the scalar Helmholtz equation in circular-cylindrical
coordinates

1 0 + z + k20 = 0 (207)

wherein k2 = w2/y 0o with po and fo denoting the permeability and permittivity of
free space respectively. The time dependence exp(jwt) is assumed and suppressed.

Our approach to solving the problem of electromagnetic coupling from a slot
aperture on the outer side wall of the cavity to a transmission line which leaves
the center of an end wall is as follows: first, the current I0 on the center conductor
due to the excitation of the outer slot is determined as a function of the average
slot voltage V and written in the form

I0 = YOVo (V = 0) (208)

In the calculation of Io it is assumed that the coupling aperture to the transmission
line is closed. Next, the current I, due to voltage V1 across the transmission-line
aperture is determined, assuming that the outer-wall slot is closed, so that

h, = YV 1  (7o = 0) (209)

The total current, I0+I,, is then related to the voltage V1 by the input admittance
to the transmission line Y:

1o + h = YV, (210)

The relation (210) is used to solve for V in terms of V0 . Thus

Vi = YoVo(Y - Y)-1 (211)

and the solution is complete. Knowledge of the external excitation (V) and the
line input admittance (Y) yields the line excitation (VI). In the following, we
carry out each of the steps leading to the result (211).

5.1.1 Coupling through the Outer Slot.

The electric field E, at the outer slot at p = 6, 1 : AO/2, z = zo is presumed
known:

E,, = Vo(0)b(z - zo) (p = b) (212)
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We assume that Ej = 0 over the slot. The function 0 is conveniently represented
in the form

n= to = jwfo A A, cos n7r) Co(Anp, Ana) (213)
n=O n

where the coefficients An are to be determined and

Co(x,y) = Jo(x)No(y) - Jo(y)No(x) (214)

A2 = k2 - (nir/1)2  (215)

The form for 0 given by (213) and (214) above ensures that E, vanishes at z = 0
and z = 1 and that E, vanishes at p = a; Ek is identically zero throughout the
cavity.

Matching the boundary condition (212) in the least-squares sense, we readily
obtain for An

A0 = 7o (216)
tCo(kb, ka)

An = 2Vocos(n7rzo/l) (n 1
lCo(Anb, Ana)

where

21rA /
1 -- [,',f2 V0(¢)d¢$ (217)

The current on the center wire at the endpoint z = I is given by

--o =1jco (218)
o = 4jw-olVo{ k2lCo(kb, ka)

2 (_ )n cos(nirzo/l)

+ A2 12Co(Ab,Ana)

=_Yoo

which completes the solution of the first part of the problem.
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5.1.2 Current Due to End-Slot Excitation.

A suitable representation for the function 0 is

S= = jwfoBo In - cos kz (219)
a

+ 2jwEo jAB, cos - h z) Co(hnp, h,,a)
n=1

where the coefficients hn are obtained from the roots of the equation

Co(hnb, hna) = 0 (220)

The form chosen for 01 ensures that E. vanishes at p = a and p = b and that E,
vanishes at z = 0.

The radial electric field E. at z =l is given by

Ep(z = 1) = (a < p:5 c) (221)piln(c/a)

where c < b. V1 is the voltage across the coaxial line leaving the cavity. Imposing
the boundary condition (221) leads to the relation

kBo 00 ::h21 (222)
- B-sinkl- 2 E B,,V2- h n sin k-F h 1)2
P n=l

h, C°(h.p,ha)- V (a < p c)

p ln(c/a) -

wherein

CO(x,y) = J (x)No(y) - Jo(y)ND(x) (223)

= Jo(y)NI(x) - JI(x)No(y)

- -C(x,y)

Integrating (222) with respect to p from p = a to p = b and using (220) yields
-V1

Bo = ksin klln(b/a) (224)
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Then multiplying (222) through by pCO(hmnp, hma) and integrating with respect

to p, we obtain

Bm V Co (h,.c, hma ) (225)
2k 2 - h2 sin (k 2 - h.2j) ln(c/a)Nm

with

fhrob

Nm = U [C(u, hma)]2 du (226)
JJma

h~2  1 r2_ 2 Ci,,.rb, hm.a) -

Now the current I, on the center conductor at z = 1 is given by

I, 4jwolV r 2klkn(b/a) (227)

22k Inhbl)}2 *cot (y[-T h2 1) Co(hnc, h,,a)

n=1 2 T2 - h lN, ln(c/a)

We shall assume that both c and a are small and make use of the fact that in this
limit Co(h,,c, hna) _2 In c (228)

7r a

Thus

2 rJwEOllcot kl (229)Y ~ ~ ~ k -2rwol iln(b/a)

+ 0 cot (Vk2 - h2 1)

n=1 (Vk2 - hn 1) [(7rh~bI 2  1 (h9b, h4a) - I]
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5.1.3 Exterior to Coaxial Line Coupling.

The total current on the center conductor at the feed point of the coaxial cable
is just 1o + I,. The two current components are now related by imposing the
condition that the coaxial cable leaving the cavity presents an impedance Zi at
the point z = 1. Thus, with Yi = 1lZi, we have

10 + I, = YV (230)

Using (218) and (227) and solving for V1, we obtain

V, = Y - Y)-1 0 (231)

which is the desired relation between the "external" excitation represented by V
and the "internal" excitation V1.

We may also construct an equivalent circuit representing the source at the feed
point of the coaxial cable. The open-circuit voltage at the feed point is

V 0r = -YV/Y (232)

and the short-circuit current is

I. = Io = YoV 0  (233)

Thus the equivalent circuit takes either of the forms shown in Figure 76. Such
equivalent circuits can be used to determine the voltages and currents induced in
an arbitrary load.

5.2 REPRESENTATIVE NUMERICAL RESULTS.

We present numerical results for the transfer functions relating the current or
voltage induced in a 50 Q2 load to the average slot voltage V and to at incident
electric field.
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(a) Th venin (b) Norton

Figure 76. Equivalent circuits for the feed point of the coaxial line.

The current in a resistive load RL connected across the terminals of either of the
equivalent circuits shown in Figure 76 is easily shown to be

IL = YO (234)
RLY - I

We define a transfer admittance Yr as

T =(235)
V RLYI

We have calculated YT as a function of frequency for the "baseline" configuration:

RL = 50 Q1 (load resistance)
I = 40 cm (cylinder length)
zo = 20 cm (aperture position)
b = 10 cm (cylinder radius)
a = 0.5 mm (wire radius)

as well as excursions from this baseline, over the frequency range 0-6 GHz. Plots
of the magnitude of Yr are shown in Figures 77 to 84.
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Figure 77. Magnitude of YT vs. frequency for baseline configuration: I
40 cm, b = 10 cm, z0 = 20 cm, a = 0.5 mm, RL = 50 11;
0 1 <6 GHz.
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Figure 78. Magnitude of YT vs. frequency for altered configuration: 1
30 cm, b = 10 cm, zo = 20 cm, a = 0.5 mm, RL = 50 0;
O< f <6 GHz.
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Figure 79. Magnitude of YT vs. frequency for altered configuration: I =
50 cm, b - 10 cm, Zo = 20 cm, a = 0.5 mm, RL = 50 Q;
0< f < 6 GHz.
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Figure 80. Magnitude of YT vs. frequency for altered configuration: I =
40 cm, b = 10 cm, zo = 10 cm, a = 0.5 mm, RL = 50 Q;
0< f ,<Hz.
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Figure 81. Magnitude of Yr vs. frequency for altered configuration:
1 = 40 cm, b = 10 cm, z0 = 30 cm, a = 0.5 mm, RL =
50 11; 0< f < 6 GHz.
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Figure 82. Magnitude of YT vs. frequency for altered configuration:
I = 40 cm, b = 5 cm, zo = 20 cm, a = 0.5 mm, RL = 50 SI;
0< f < 6 GHz.
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Figure 83. Magnitude of YT vs. frequency for altered configuration:
i = 40 tm, b = 15 cm, zo = 20 cm, a = 0.5 mm, RL = 50 Q;
0< f < 6 GHz.
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Figure 84. Magnitude of Yr vs. frequency for altered configuration:
S=40 cm, b = 10 cm, zo = 20 cm, a = 1 mm, RL = 50 D;
0< f < 6 GHz.
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The highly resonant character of the configuration is evident in each of these plots.
The TEM mode resonances are seen at the lowest frequencies and are especially
clear in Figure 82, where the cavity radius was chosen to be 5 cm. The higher-
order mode resonances generally cause I YT I to peak at higher values than the
TEM mode resonances and the Q of the higher-order modes is also higher. The
peak values of I YT I in every case are a few tenths of a mho. For a load impedance
of 50 Q, therefore, the load voltage at the resonant peaks is of the order of 5 to
10 times V0, the average slot voltage. Away from the resonances, the load voltage
is of the order of the average slot voltage or less.

It is of greater practical interest to consider the exterior-to-interior coupling prob-
lem in its entirety. To do so, we need to V the average slot voltage o in terms
of the field incident upon the cylind( - from LiLe outside. We may use the results of
Section 2 to show that t h voltage across a slot of width w in an infinitely extended
conducting plane illuminated by a normally incident plane electromagnetic wave
whose electric vector is direA-d acro-,- the slot is given by

V(z') 27rjEil in k i) _ '/2) (236)V~z' k - ) sinkl- 2sin---coskz'i ( 1/2)

wherein l denotes the slot length, z' is a coordinate along the long dimension of
the slot, Q2 is the antenna parameter

Q=21n W(237)

and

1 I 1 4 0 (_ [+ )n= - ---= [k - - +r. nr +jam (238)

The damping constants a, are given by

a [ + ln(2In1r)- Ci(2InIr)] (239)

wherein -t = 0.57721 ... (Euler's constant) and Ci(.) denotes the cosine integral
function [131.

'The prime on the summation sign indicates that the n = 0 term is to be omitted.
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We shall use the expression (236) to describe the voltage across the slot in the
cylindrical surface, assuming that the total angular extent of the slot AO is less,
say, than one radian. The average slot voltage is easily shown to be

- JE12  [si k 4 .k]

o= - -sink- 4sin2 -i (240)
bfD(kl)[I ki 2

We show in Figures 85 and 86 plots of the magnitude of the quantity

2r bo- =2rj l sinkl- 4.sin2k i (241)
E, 12  QD(ki' k1 2!

as a function of ki (0 < ki < 2r) for Q = 5 and Q = 10.

The voltage VL across a load resistance RL driven by the equivalent sources in
Figure 76 can be expressed in terms of V0 and the transfer admittance YT as

VL = VoYTRL (242)

/ kl~ Y RL-1jE 2 = sine i -4sin2 1) a on u
-bSQD(kl) ( ki 2] YIRL- 1

We have calculated the transfer function VL/(E1) as a function of frequency for
the baseline configuration and excursions described earlier in this section, under
the assumption that the slot length 1 = 5 cm. The fundamental slot resonance
occurs at 3 GHz. Plots of the magnitude of this transfer function as a function of
frequency are shown in Figures 87 - 94 for Q = 5 and 95 - 102 for Q = 10.

The broadly resonant character of the average slot voltage as a function of ki is
evident in the curves shown in Figures 85 and 86. The peak value of the quantity
plotted there is almost unaffected by the slot width w, but the sharpness of the
resonance is increased slightly as w is decreased. The overall effect of the slot
response on the normalized load voltage VLI(Ejl) is simply to "envelope" the
many cavity resonances, as shown in Figures 87 - 102. The peak values of the
magnitude of the load voltage are in every case less than Ejl and are typically only
a few tenths of Ejl. It is easy to show that the effective area of the slot penetration
is thus of order P at a resonance of the interior cavity and considerably less away
from resonance.
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Figure 85. Normalized average slot voltage vs. ki for QI = 5.

107



0.45-

0.40-

0.35-

0.30-

0.20

0.15-

0.10-

0.05

0.00~
0.0 1 .0 2.0 3.0 4.0 5.0 6.0 7.0

Figure 86. Normalized average slot voltage vs. ki for f2 = 10.
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Figure 87. Magnitude of VLI(Eil) vs. frequency for baseline configuration:
1 = 40 cm, b 10 cm, zo =20 cm, a= 0.5 mm, RL =50 0
1= 5 cm; Q 5.
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Figure 88. Magnitude of VL/(Eii) vs. frequency for baseline configuration,
except I = 30 cm; QI = 5.
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Figure 89. Magnitu ' e of VL/(E1) vs. frequency for baseline configuration,
except I = 50 cm; Q 5.
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Figure 90. Magnitude of VL/(E1) vs. frequency for baseline configuration,
except z0 = 10 cm; f?= 5.
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Figure 91. Magnitude of VL/(Eii) vs. frequency for baseline configuration,
except z0 = 30 cm; fQ = 5.
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Figure 92. Magnitude of VL/(Eil) vs. frequency for baseline configuration,
except b = 5 cm; fZ = 5.
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Figure 93. Magnitude of VL/(EI) vs. frequency for baseline configuration,
except b = 15 cm; Q? = 5.
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Figure 94. Magnitude of VL/(E 11) vs. frequency for baseline configuration,
except a = I mm; Q~ = 5.
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Figure 95. Magnitude of VL/(Eii) vs. frequency for baseline configuration:
I = 40 cm, b= 10 cm, z0 = 20 cm, a = 0.5 mm, RL = 50 Q,
= 5 cm; Q= 10.
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Figure 96. Magnitude of VL/(Eii) vs. frequency for baseline configuration,
except 1 = 30 cm; f0 = 10.

118



0.30

0.25

0.20

0.10-

0.05

0 .0 0 

"

0.0 1.0 2.0 3.0 4.0 5.0 6.0

FREOUENCY (GHZ)

Figure 97. Magnitude of VL/(Ejl) vs. frequency for baseline configuration,
except l= 50 cm; Q = 10.
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Figure 98. Magnitude of VL/(Eil) vs. frequency for baseline configuration,
except z0 = 10 cm; fQ = 10.
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Figure 99. Magnitude of 4,//(Eji) vs. frequency for baseline configuration,
except z0 = 30 cm; P = le.
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Figure 100. Magnitude of VL/(Ei1) vs. frequency for baseline configuration,
except b = 5 cm; 9 = 10.
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Figure 101. Magnitude of VL/(E1) vs. frequency for baseline configuration,
except b =15 cm; Q = 10.
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Figure 102. Magnitude of VLI(Eii) vs. frequency for baseline configuration,
except a =1 mm; Q~ 10.

124



5.3 CONCLUDING REMARKS.

We have considered a simple problem of microwave coupling to a load in the
interior of a shielded region, the penetration occurring via a thin slot aperture
oriented and excited so as to yield the maximum coupling to the load. The
treatment of the problem was approximate in the sense that the effects of the
cavity on the average slot voltage were not taken into account. This approximation
causes the cavity resonances to appear sharper than they actually are, because
the reradiation of the cavity fields out of the slot is not accounted for.

For the configuration which was explored numerically, the cavity resonances were
much sharper than that of the slot aperture, so that the frequency-domain mag-
nitude of the load voltage (normalized to an incident voltage Eii) was dominated
in its structure by the sharp cavity resonances. The effective area of the slot aper-
ture was of the order of the square of the slot length at a resonance of the cavity,
decreasing to zero at anti-resonances. The effective area for a pulsed signal will
depend upon the center frequency and bandwidth of the pulse.

Several extensions and variants of the present problem would be of interest for
microwave applications. One such variant would be the problem of coupling to a
cavity homogeneously filled with an absorptive material representing, say, circuit
boards and other electronic components. One would compute the total energy
absorbed by the lossy material under pulse excitation of the cavity. It would also
be a worthwhile exercise to refine the treatment of the problem treated herein to
include the effects of the cavity fields upon the slot voltage.

Microwave coupling applications of interest at the present time will tend to involve
cavities which are reasonably large in comparison to the wavelength, and coupling
apertures which are comparable to the wavelength in size. Thus the number of
cavity resonances "spanned" by the aperture response will, as in the case treated
in this section, be large.

It is an interesting exercise to estimate the total power or energy coupled to a load
inside a general slot-excited cavity. It is easily shown that the number of cavity
modes having resonance frequencies between f and f + Af is approximately

8rV
AN = - f 2Af (243)

C3

where V is the cavity volume and c denotes the speed of light. A signal of center
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frequency fo and bandwidth A f 0 will thus excite approximately
8iWV

ANo- = f2Afo (244)

modes. Denote the quality factor of these (loaded) resonant modes by Q2. Thus
the width Afr of a given resonance will be approximately

Af- = fo (245)

Q
and the power absorbed in a single resonance will be

Pr - iS Ao (246)

where Sin, denotes the incident power density spectrum (watts per square meter
per Hz) and Ae is an effective area. The total power absorbed P is thus

P. P PA No (247)

= ^- A 8rVfg

SincAe 8 r 3

eC3Q

where Sin, = SinAfO is the incident power density (watts per square meter).

Now if the center frequency fo is that of the (broad) slot resonance, we have

fo = C (248)
21

Furthermore, if A, at a cavity resonance can be written as

A, =al2 (249)

where a is a constant, we have
P. a 7 rV

P Sic (250)Q1
2 it is, of course, an approximation to ascribe the same value for Q to each of the (many)

modes under consideration.
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Thus the effective area for power absorbed from the incident signal is

A ff r =(251)Ae- Q1

where the center frequency is close to that of the slot resonance and when the
bandwidth of the incident signal includes several cavity resonances. For the ge-
ometry considered in this chapter, and estimating Q 50 and a 1/7r, we find
Aff * 16 r cm 2.
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SECTION 6
WAVEGUIDE FIELD COUPLING TO A FILAMENTARY LOAD

Summary: A model is constructed to represent the Th6venin equivalent circuit
which drives a thin coaxial probe in a rectangular waveguide. The model is in-
tended to represent the drive on a detector/mixer diode in a microwave receiver.
Representative numerical results are presented which display the coupling to a
linear resistive load as a function of the various problem parameters, over the fre-
quency band in which only the dominant mode can propagate in the waveguide.
It is found that even when the probe reactance is uncompensated, the absorbed
power can still reach within 3 dB of the incident power for the example cases
considered.

An important problem in microwave system vulnerability analysis is that of de-
termining the coupling of energy which has entered the system to a potentially
vulnerable detector or mixer - typically a very sensitive diode. The diode is
typically coupled to the electromagnetic field in the waveguide by a thin coaxial
probe which extends into the guide. The detected signal is then observed across
the diode. We consider a model for the equivalent circuit which drives the diode.
We assume that the waveguide is terminated beyond the coaxial probe location
by a short circuit. This configuration is typical; the position of the short is ad-
justed to maximize the signal at the probe position, at the center of the operating
frequency band.

In the remainder of this section we set up an equivalent circuit at the probe ter-
minals and evaluate the elements in this circuit. We present numerical results
which show the power coupled to a linear load representing the small-signal diode
impedance. In particular, we explore the frequency dependence of the absorbed
power over the operating frequency band. Implications for vulnerability assess-
ment are discussed.

6.1 EQUIVALENT CIRCUIT FOR A WAVEGUIDE PROBE.

The geometry of the waveguide/probe configuration is shown in Figure 103. The
waveguide is rectangular in cross-section, of dimensions a x b (a > b), and extends
from z = -o to z = 1, where it is terminated in a short circuit. '.he probe is
the center conductor of a coaxial connector on the bottom (y = 0) wall of the
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waveguide; its radius is denoted r and it is centered at x = xo, z = 0. It is
assumed that r << a and that the frequency of operation is such that only the
dominant TE10 mode can propagate in the waveguide.

A transmission-line equivalent circuit for this configuration is shown in Figure
104 [14]. The purpose of the analysis of the next subsection is to evaluate the
transformer ratio N and the reactance Xp. Before proceeding, however, we reduce
the transmission-line model of Figure 104 to a Thdvenin equivalent circuit at the
terminals of the coaxial connector.

We assume that a TE1 0 mode field is incident on the probe and the waveguide
termination from z = -oo. The incident electric field across the center of the
guide will be denoted E0, so that the incident signal voltage V = Eob (recall that
b is the height of the waveguide). The characteristic impedance of the TE10 mode
will be denoted Zo. Transforming the source and termination to the probe location
yields the equivalent circuit shown in Figure 105. The transformed termination
impedance ZT, is

Z4 = jZo tan 3lol = jXT (252)

where I31o denotes the propagation constant of the dominant mode.

a

-. 4-- 2r 0
T

X0------ 01

side view end view

Figure 103. Geometry of the waveguide and probe configuration.
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Figure 104. Transmission-line equivalent circuit for the waveguide and probe.
Zo denotes the characteristic impedance of the TE10
waveguide mode.

2Eob

Figure 105. Th6venin equivalent circuit at the probe connector terminals.
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Once the parameters N and Xp have been determined, the circuit model can be
exercised with an arbitrary load. A diode load will, of course, be nonlinear; in
that situation a circuit-analysis code would be used for accurate computation of
the diode voltage and the power dissipated in the diode. However, it is instructive
to consider a linearized diode model. We describe the diode as a pure resistance
Rd. Then the power absorbed in the diode, normalized to the incident power, is
g.vcn by the expression

Pba _ 4NjR'Zo jXT 2

A. 4jXT(Rd + jXp) + Zo(Rd + jXp + jN 2XT) (253)

where the incident power is expressed as 1

bZ
Pine -- -0I E0I2  (254)

We shall numerically explore this normalized power later. We turn now to the
evaluation of the transformer ratio N and the reactance X.

6.2 PROBE INPUT IMPEDANCE.

Since the parameters N and Xp are independent of the details of the waveguide
termination (a shorting plate at z = 1) we address the computation of the probe in-
put impedance by considering the waveguide to be matched at z = ±o. Further-
more, although we can choose a variety of probe configurations in the waveguide,
we consider only the case where the probe runs all the way across the waveguide
and is connected to the wall at y = b. The modeling of other probe configurations
can be carried out using methods employed in this section.

We assume that the current on the probe is of the approximate functional form

I(y) = I0sec kbcos k(y - b) (255)

The electromagnetic field in the waveguide is TMy and derivable from a scalar
function Vk via the relations

fl = V X tVa, (256)

'This expression for the incident power results from the choice Vo = E0 b in the Thdvenin
equivalent circuit.
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E-V x V x ¢a (257)

where ¢ satisfies the scalar Helmholtz equation

v 2 V, + k 2 o = 0 (258)

The propagation constant k = w/c, where w denotes the frequency (the frequency
dependence exp(jwt) is assumed and suppressed) and c is the speed of light.

We first model the surface density f, in the plane z = 0 as resulting from a
zero-thickness filament. Thus

J, = I0sec kbcos k(y - b)6(x - xo)d, (259)

Writing the function 0 as

00 00 a mirrx niry
S sin - cos - exp(-j3M.n I z ) (260)

m=l n=O a b

wherein
02= k - (mr/a)2 

- (nir/b)2  (261)

and employing (256) and (259), we write the boundary condition at z = 0 as

2j00 O a s mrx nry
Ej E On f mn Sin - cos - Io sec kb cos k(y - b)b(x - xo) (262)
m=l n=O a b

The coefficients amn are then easily shown to be

amn ofjZ.boskb sin mrXo b cos k(y - b) cos--Ydy (263)

kIoE, tan kb sin(mirxo/a)

j/Imnab [k 2 - (nr/b)2]

where Neumann's number -,, = 1 if n = 0 and En = 2 if n > 1.

We evaluate the complex power supplied by the probe current by performing the
integral

P = -- I E U 1 -Ir sec kbcos k(y - b)dSp (264)
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where S. denotes the probe surface. Since we have assumed that the probe ra-
dius is small, EY will be essentially uniform around the probe so that P is given
approximately by

P I 0Ey (xo, y,r)sec kbcos k(y - b)dy (265)2

Now since P can also be written in terms of the input impedance Zi, seen at the
probe terminals from the coaxial connector side, we have

1 ]
P = IZi. Ii 0F(266)

Thus using (265) and (266), we find

= jwpob (tan kb 2 0 0E, sin 2 (mrxo/a)e-j0mmn (267)kb ) $E E j,3a [I - (n(r/kb)2]m=1 n=O

On the waveguide side of the transformer in Figure 104, the input impedance is,
by inspection, Zo/2. 2 The real part of Zin in (267) must transform to ZO/2; thus

N = 2o (Z i') (268)

= 2b (tan kb ) 2 si 2 rxo-a k-b a i2- -

where we have used the fact that Zo = w po/I3 1o.

Furthermore, it is evident that

X , = !(Z 2 ,) (269)

(tank6\ 2 k _b EEn sin 2 (,nrxo/a)eC-ar
= w1 0 b kO kb ,a[1 - (nr/kb)2]

(m,n) (1,0)

where
/= (m7r/a) + (nr/b)2 - k2  (270)

2Recall that for the purpose of evaluating Zi, we have taken the guide to be matched at
Z = ±00.
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This completes the formal evaluation of the parameters necessary to specify the
equivalent circuit of Figure 105. We now reduce the expression in (269) for Xp to
a simpler and more easily computed form. First write XP as

( tan kb 2 e-c' T" sin 2(rxo/a)
k= wjob b) 2 aa [I (271)

00 - 0/MiX) [snnr emrr/al

n=O (n m=/kb)2 a=2 amna mTr

00 En  00 m ~rx 0  1 mr/

+ E - Z sin2 -- ___me'/I
n=O (nit/kb)2 m=2 a mir I

In what follows, we set x0 = a/2; this is the situation of practical interest. Now
(15]

00

Z 1 - (n/kb) 2 = kbcotkb (272)

1: 1 m /a In /coth rri 1 Yrr/a (273)M -3 = , 2r 2a 7 r r 2 3

(odd m)

so that

=tan kb 1 ( rr e (274)XP= witob I . n coth -(74

k kb )21r K 2a it

*2(tan kb) -~ ___ a.-r_____

+ 2 E aia [1- (nit/kb)2]

( ( ta n k b ) 1 n [e - m "' e- - m rr/a ]+ \kb n= 1- (nr/kb)2 M= mn
(odd m)

The infinite series in this representation for Xp are rapidly convergent and the
numerical evaluation of Xp is straightforward. Curves of Xp, normalized by the
free-space intrinsic impedance 70 = 1207r Q, are shown in Figure 106 as a function
of normalized frequency ka/7r for b/a = 0.5 and r/a = 0.01, 0.03, and 0.1. We
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note that Xp is negative, indicating that the probe impedance is capacitive over
this frequency range.

0

-2 r/a = 0.10- r/a = 0.03

r/a = 0.01

-4

'ix
no -6

-8

1.0 1.2 1.4 1.6 1.8 2.0

ka/iT

Figure 106. Normalized probe reactance vs. normalized frequency for b/a =
1/2; r/a = 0.01, 0.03, 0.1.

6.3 NUMERICAL RESULTS FOR ABSORBED POWER.

In this section we present numerical results for the normalized absorbed power
of Eq. (253) as a function of normalized frequency ka/ir. The waveguide and
termination dimensions are chosen such that

b = a/2 (275)

1 = a/2 (276)

This choice for I makes XT = oo at ka/r = V2-. The normalized absorbed power
can be written

Pab, 4N 2 RdZo

Pi- (Rd cot i310l - Xl) 2 + (Rd + N 2 Zo + XV cot 01ol) 2
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where Rd is the small-signal diode resistance, Xp is given in (274), N is given in
(268), and

Zo= 'o 1- _)] (278)

a k

011 r (k ] 1/2 (279)

We have performed numerical calculations of PabslPinc as a function of ka/7r for
a variety of cases. First, in Figure 107 we plot Pab,/Pi, vs. ka/ir when the probe
reactance Xp _ 0. In this case, we assume that the reactance is tuned out at
every frequency; Pab,/Pnc becomes

Pabs/Pic = 4N 2RdZO (280)
x,,_=o Rd cot 2 /1iol + (Rd + N 2 Zo)2

1.0

0.8

0.6

Pabs

Pinc Rd
nc 0.4 - a1.

no

0.495

0.2 0.25

0
1.0 1.2 1.4 1.6 1.8 2.0

ka/,

Figure 107. Normalized absorbed power vs. normalized frequency for Xp = 0;
Rd/Ao = 0.25, 0.495, 1.0.
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This quantity has a maximum with respect to Rd occurring at

Rd = N 2 Zo sin/l,01 (281)

The value of the maximum is

Pabl inc 2 sin /3ol (282)
Pabs/Pc x - + sin1

When i-l = 7r/2, a condition that would denote the design point, the maximum
value of Pabs/Pinc is unity. A value of Rd = 0.495r/0 meets the condition of Eq.
(281) at the design point.

We observe from Figure 107 that changing Rd from this value still permits P~b'/Pinc
to approach unity; the frequency at which this occurs decreases if Rd >0.495lo
and increases if Rd < 0.495r/o. This is a consequence of the frequency dependence
of N 2 Zo and of cot/ 1o1. We conclude from this result that if the probe reactance
can be tuned out (as it certainly can, at least at a given frequency), essentially all
of the power incident upon the diode can be absorbed by it, at some frequency in
the band.

We show curves of Pab,/Pin, vs. kabr for various uncompensated probe induc-
tances (determined by differat ratios r/a) and various values of Rd/I7o in Figures
108 - 110. The trends are adequately shown by the curves in Figure 109 for r/a
= 0.03. Pab,/Pic reaches a higher maximum value at a lower frequency as Rd/lo
is increased. The differences in peak values become more pronounced as r/a de-
creases, that is, as the probe inductance increases. However, the decrease in peak
value of Pab,/Pi, when Rd/ylo=0.25 and r/a = 0.01 is only a factor of two, or
3 dB. We conclude that even when the probe reactance is uncompensated, the
fractional power absorbed in the load can be substantial. We remark also that
the half-power width of these curves is nearly ka/27r - half of the TEl 0 operating
band.
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Figure 108. Normalized absorbed power vs. normalized frequency for r/a =

0.01; Rd/rlo = 0.25, 0.495, 1.0.
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Figure 109. Normalized absorbed power vs. normalized frequency for r/a =

0.03; Rd/Iro = 0.25, 0.495, 1.0.
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Figure 110. Normalized absorbed power vs. normalized frequency for r/a =

0.1; Rd/rho = 0.25, 0.495, 1.0.

6.4 CONCLUDING REMARKS.

We have constructed a mathematical model for the power absorbed in a resistive
load coupled to a waveguide by a thin probe extending across the short dimension
of the guide cross-section. It has been assumed that at TE10 mode field is incident
upon the probe and that the guide is terminated in a short circuit. The frequency
range considered is that over which only the dominant TE10 mode can propagate.
Representative calculations have shown that even when the probe reactance is
uncompensated, a substantial fraction of the incident power is absorbed in the
load. The width of the absorption curve is approximately one-half of the TE10
mode band for a waveguide whose cross-sectional aspect ratio is 2, a typical value.

The values of Rd, the load resistance, which were considered were in the range
100 - 400 f. This range includes typical small-signal diode resistances.

It is not surprising that coupling to a load in a waveguide can be so highly efficient
- after all, this is the desired purpose of the configuration. From the standpoint
of vulnerability modeling, however, the relatively broad-band character of the
response over the frequency range associated with pure TEj0 mode propagation

139



would lead us to conclude that in-band vulnerability of a microwave system is
largely defined by the power which reaches the diode end of the system. Power
which reaches this point will be absorbed.

Time has not permitted us to explore the out-of-band coupling problem. When
more than one mode can propagate in the waveguide, the model of Figure 105 will
contain a transformer for each propagating mode. This case can be explored using
the methods employed herein, and is worthy of consideration. Other cases which
might profitably be examined include that in which the probe extends only part-
way into the waveguide and that in which the resistive load is placed inside the
waveguide itself. The analysis of both of these latter problems is straightforward.
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SECTION 7
ELECTROMAGNETIC PENETRATION OF LONG SLOTS:

AN APPROXIMATE ANALYSIS

Summary: Electromagnetic penetration of an infinitely long, electrically narrow
slot of arbitrary depth in a plane conductor is investigated using a relatively simple
analytical technique. The quantity of interest is the total power transmitted
through the slot under plane-wave illumination with magnetic field parallel to
the long axis of the slot. Analytical and numerical results for this quantity are
provided, as is an elementary equivalent circuit model of the problem. The analysis
approach can be applied to more complicated problems.

There exists considerable need for models of various electromagnetic coupling
configurations for use in the study of electromagnetic interactions with systems of
many kinds. Unfortunately, only a few such configurations have been studied in
detail, yet the need for models remains. At the present time, extensive numerical
and experimental programs are under way whose purpose is to develop increased
understanding of coupling through thick apertures, multiple apertures, loaded
apertures, penetrating conductors, and other complex configurations. While these
efforts have yielded useful results, these results are often not in a form which is
readily usable by one responsible for making approximate coupling estimates or
for quantifying hardening requirements. Analytical approaches, where they can
be applied, are often the best means for obtaining relatively simple, although
sometimes approximate, results for near-term use.

Our principal interest is in developing relatively simple analytical expressions for
the power transmitted through a rectangular slot of arbitrary depth, illuminated
by a plane wave. In this section we discuss the basis for our approach to that
problem in the context of a simpler one: the case in which the slot is infinitely
long. This problem has already been treated by Harrington and Auckland [16]
using a slightly different method from that employed herein. The analysis and
the results developed in this chapter are not new; but it is our intent to illustrate
this approach for treating other more complicated problems.

The method which we shall employ herein is described in Harrington's text Time-
Harmonic Electromagnetic Fields [17]. It consists in making reasonable assump-
tions concerning the tangential electric field in the aperture connecting two regions
of space, calculating the electromagnetic field in each region from the assumed
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aperture field, and then requiring that the complex power flow be continuous
through the aperture. This final condition, which permits the solution for the
aperture-field amplitude to be obtained, represents an approximate means for
satisfying the condition that the tangential magnetic field be continuous through
the aperture. This technique is ideally suited to many of the problems encountered
in microwave coupling to systems via back-door paths.

We begin by considering the problem of penetration of a long, narrow slot in an
infinitesimally thin conductor. This serves to illustrate the method, to demon-
strate that the results are not sensitive to the form of aperture field chosen, and
to show how a simple equivalent circuit can be derived which contains all the
relevant features of the original problem. Then we address the deep-slot problem.
We construct an equivalent circuit and present representative numerical results
indicating, inter alia, the slot-depth resonance. The formulation of this problem
includes the possibility of slot loading by a material different from free space. We
also present a brief discussion of the problem of coupling to an infinitely deep slot.
Certain mathematical results are given in the Appendix.

7.1 THE THIN, LONG SLOT: FORMULATION AND SOLUTION.

The geometry of the problem is shown in Figure 111. An H-polarized plane
electromagnetic wave is incident at an angle 0 (I 0 1!5 ir/2) on a thin, perfectly
conducting plane occupying the surface z = 0. The plane is cut by an infinitely
long slot aperture in the region I x 1< w/2; the center of the slot lies along the
y-axis. The medium on either side of the conducting plane is free space. It is
assumed that the slot is electrically thin; that is, for field time variations of the
form exp(jwt), kw = ww/c << 1 where c denotes the speed of light. The object
of the analysis is to calculate the power transmitted through the slot.

Our approximate approach to the solution of this boundary-value problem pro-
ceeds as follows: first, an electric field E(x) of (assumed) known spatial variation
but unknown amplitude is imposed across the slot and the total electromagnetic
field is computed in the regions z < 0 and z > 0. Next, the fields are connected
through the slot by forcing the complex power flow to be continuous there. This
condition permits us to obtain the amplitude of the electric field across the slot
and thus to calculate the power transmitted through the "ot.
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The electromagnetic field comprises components E , H., and E, related by

E. = -ZoOHy (283)
jk Oz

Z0 OH2
E - M,(284)

jk Ox

where
-2 -2 + k H 0 (285)

x

( ,I ) ( ,co )

W

Figure 11. Geometry of the thin-slot problem. The slot width w is assumed to
be small compared to the wavelength.

143



and Zo denotes the intrinsic impedance of free space. Denoting by Eo the ampli-
tude of the incident electric field and by V the total voltage across the slot

~W/2
V o]/2 Ex(x, O)dx (286)

we obtain the following expressions for the relevant components of the electro-
magnetic field:

z<O:HH, = 2E e-j.xsincos(kzcos0) (287)zo
kVo [00~~~h+ ~r =_~ dh

+ 20rZ0 F(h)ei h2

E.= 2jEocosOe - j k x sin sin(kz cosO) (288)

Vo f F(h)eih-+j -/k_2 h2zdh
27r -oo

-:i , 00 F(h)ejh10 _ dh (289)
z > 0 : H y - O 22-h ,v 2  -h

, 'f F(h)eJhxlk-= dh (290)

The function F(h) is to be determined. The field expressions given above are read-
ily shown to satisfy Eqs. (283) and (285) as well as proper boundary conditions
at I z o--o 0 if

Rvrk"2 - 2 0> (291)

<vk2 -h 2  0 (292)

The electric field in the aperture plane E(x, 0) is

E.(x,0)- J F(h)ejh-dh (293)
2ir

whence

F(h) w/2 E,(x,,O)e-jhr'dx' (294)
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and from Eq. (286), F(O) = 1. Thus the tangential electric field E. is continuous
at z = 0 and E, = 0 on the conducting surface if Eq. (294) is satisfied.

An exact solution to this problem would follow from forcing continuity of HY
through the slot. This condition can be written

2E0 _ kxsin6 _kV 0  Fhe I dh
- - -of- F(h)eh- h2 (I x I< w/2) (295)

which can easily be shown to lead to an integral equation for the electric field
across the slot. We shall apply a less stringent condition: multiply both sides
of Eq. (295) by (1/2)EZ(x,O) and integrate over all x. This condition makes
the complex power continuous through the slot, a necessary but not sufficient
condition for the satisfaction of Eq. (295). We obtain

1 00 (2* f *( jehxd (2EO) -jikxsi.0(261 dx ( ) / F*(h)e- hdh 9o6 '
2 _ -2 oo Zo

/dx ( -2) _F* (h) e- xdh \-o]/oF(h')e" k_,

and making use of the result

L e'id = 6 (a) (297)

where b(.) denotes the Dirac delta-function, we find that Eq. (296) reduces to

EoF*(-ksinO) = -kVo I- I F(h) 12 dh (298)

Furthermore, the real power transmitted through the slot is given by

kIVo Ih
P, = 2o k I F(h) 12 dh(299)

Now it is evident from Eq. (294) that

F(-k sin O) = 1 + V(kw sin 0)2 (300)

Further, defining

I F(h) 12 dh I + Ii (301)
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we have L = F~h J2  dh ~ ir
I,.=_ h= - I 2(kw << 1) (302)

- I F(h) 12 d(i I h2- 2 (303)

so that, for kw << 1,
-2Eow

Vo= kw (1 + 2jli/r) (304)

and

t w oI 1 2  (305)
' = Zokw [1 + (21/lr)2]0

We may define an effective slot width we as

we = t (306)
sinc

where Sin, =1 Eo 12 /(2Zo) denotes the power density incident on the slotted plane.
We obtain

2 w
kw [1 + (2Ii/7r)21  (307)

whence We 2

w kw[1 + (21/7r)2] (308)
is the normalized effective slot width.

It is useful to construct an equivalent circuit describing the penetration of the
slot. From Eq. (298) with F*(-ksinO) 2 1, we have

Vo = -J:.I(2Y') (309)

where J, = 2Eo/Zo is the short-circuit current density across the slot and

Y I-= 2 Zo 1 + )(310)

is an admittance per unit length. Writing Y' = G' + jB', we have

G' k (311)

2z1
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B' k Ii (312)
Z0or

where G' and B' are respectively the slot conductance and susceptance per unit
length. The equivalent circuit is shown in Figure 112.

It remains to consider the slot electric field and evaluate the integral I. To show
that the result is not sensitive to the specific form chosen for Ex(x, 0) we consider
two different expressions for this field:

E(')(x,1 ) - V (313)

E(')(x, 0) V 34
r (w/2) 2 - X2

The first of these expressions represents a field which is constant across the slot.
From Eq. (294), we obtain

F(h) , sinc ( ) (315)

where sinc(x) - sinx/x. The second expression for E.(x,O) accounts for the
singular behavior of the electric field at the edges of the slot and is an accurate
representation of the field in the limit kw --+ 0 (181. Again from Eq. (294), for
this case

F(h) = Jo (hw) (316)

where J0 (.) is the Bessel function of order zero. Thus define

I0)= sinc 2 (kwvu/2)du (317)

-2) J0 (kvu/2) du (318)

It is shown in the Appendix that

lim 1) - 3/2 +n ,2_(19
k-O + k (319)

= In (8.963)
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O P() = 1.3863. - + In (320)kw.- y

= In( -)

where -y = 1.781. - is the exponential of Euler's constant. It is apparent that the
change produced in Ii by different choices for the slot electric field occurs only as
a factor multiplying kw in the argument of a natural logarithm, a slowly varying
function.

We show in Figure 113 plots of w/tvl as a function of kw/7r for Ii = 1) and

Ii = I'2). One will observe that the differences are small, a result of the fact that
the quantity calculated depends on the integral of the aperture field rather than
on its detailed behavior. We shall use this fact to advantage in the next section,
wherein we consider the effect of finite slot depth.

+

Y1 i sx Y1 V 0y t  j~SC J~

(illuminated side) (shadowed side)

Figure 112. Equivalent circuit for the thin-slot problem. J" is the short-circuit
current density across the slot and Y' is an admittance per unit
length.
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6!

We/W

4

0.00 .05 .10 .15 .20 .25 .30

kw r

Figure 113. Normalized effective slot width we/tv as a function of kw/t7r.
The solid curve results from choosing Ii = 1) and the dashed
curve from Ii = 2). xI

(uo,eo) (uo,Co)

W
'JSC S

<'

E: 0

Figure 114. Geometry of the deep-slot problem. It is assumed that kw << I
and that kd is arbitrary. The slot may be filled with a
homogeneous, isotropic medium other than free space.
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7.2 THE DEEP, LONG SLOT: FORMULATION AND SOLUTION.

The geometry of the deep-slot problem is shown in Figure 114. The depth of the
slot is d and it is assumed that this depth is not necessarily small. As in the thin-
slot problem, we shall assume that the forms, but not the complex amplitudes, of
the electric fields across the entrance and exit of the slot are known.

The fields in the regions outside the slot are given by

z < 0:

Hv  
2 Eo-jkxsin cos(kzcosO) (321)
zo

kV /,o F(h)ekx+3,/Vh z dh

+ 2rZ0 - c -/1 2

E., = -2jEcos0e- j kxsin 6 sin(kz cos 0) (322)

_Vi c c F(h)eJhx+j keh2zdh
2 7r -oo

z > d:
_ -kVo jcc F(h)ekx-j ,/k 2 -h 2(z-d) dh (323)Hu=27rZ0 L FhVk 2 -h 2 (3)

E - -cc F(h)ejhxjk 2 vkh 2 (z d)dh (324)

where now Vi denotes the voltage across the input aperture at z = 0 and V0 is the
voltage across the output aperture at z = d. We shall assume that the slot field
is uniform, so that

F(h) = sinc ( ) (325)

The field in the slot itself is represented by forward-and backward-going TEM
modes. In order to account for loading within the slot, we assume that the prop-
agation constant k, and intrinsic impedance Z, of the medium filling the slot are
not necessarily those of free space. Thus
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0 < z<d:
E. = Ae - jkz + Bej k z (I x 1< w/2) (326)

H = (AeJkoz - Beksz) (I x 1< w/2) (327)

where the amplitudes A and B are determined from the relations

A + B = (328)
W

Aejk,d + Bejkd - V0  (329)

w

and are given by
A = (2jw sin ksd)-'(-Vieik ad + Vo) (330)

B = (2jw sin k,d)-(-Vo + Viejksd) (331)

As in the thin-slot problem considered in the previous section, we construct equa-
tions expressing the continuity of H, across the slot apertures and then satisfy
these conditions in an integral sense. Continuity of H. at z = 0 yields the condi-
tion

2Eo -jkxsin0 k1 + i 41 _ dhe  f F(h - (332)
0 2rOoo ' Vk 2 -h'

jwZssinkd(-Vcoskd + Vo) (I x I< w/2)

Continuity of Hy at z = d yields

-kWo [2o Fh e j h - _.dh1d'Zh - 1 + Vocosk sd) (I x j< w/2)
_00 V - jwZ sin kdt

(333)
Now multiply Eq. (332) through by (1/2) E.(x,0) and Eq. (333) by (1/2)EZ(x,d)
and integrate with respect to x. The result is the pair of equations

(1+ V'I+-I (334)
4 \ 7r)

= wZo si (V - V cos kd)

'2jwZ, sin d
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- 0 ( 2I, = (VOCoskId-V3 (335)

4 1 + = 2jwZ, sin kd

where we have used the fact that for kw << 1, F*(-ksinO) 1 and I , 7r/2.

Now it is a simple matter to solve Eqs. (334) and (335) for the slot voltages V
and V. We obtain

Eow [(Zo/2jZ) cot kd+ (kw/4) ( + (33

Vo D (336)

VO=Eow [RZo/2jZ4, csc k.,d (337)

where

D = csckd) - [2 Zo cot kd + ( I (338)

As in the thin-slot case, we can construct an equivalent circuit representing the
thick-slot configuration. This equivalent circuit is shown in Figure 115. The
admittance Y is given by

Y 2-kw ((339)

and the source current I, is
I, = J:2w (340)

This equivalent circuit yields the correct voltages at the slot apertures and at
points inside the slot. Powers calculated with this circuit should be divided by
the slot width w to yield power per unit length along the slot.

The normalized effective width of the slot is

lkw Zcsc k~d2

WW V) 2jZ, D 
(341)
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Y Y is (Zs ,ks) Y

I d

Figure 115. Equivalent circuit for the deep-slot problem.

which can be written as

WeI/W = 2kw
Ij (Zo/Z, + Y 2ZoZ.)sink, d + 2YZocoskd 2  (342)

Note that 9
lim We/w 2 (343)d kw [1 +(2/7)I

as required by Eq. (308).

Curves of w,(d)/w,(O) are plotted in Figure 116 as a function of kd/ir for fixed
values of kw/ir when k. = k and Z., = ZO, i.e., when the slot is unloaded. We
observe an initial decrease in w,(d)/we(O) as kd/r is increased from zero, followed
by an increase when kd/7r is close to, but less than, one, and return to unity
at kd/ir = 1. This effect is readily understood in terms of the circuit model of
Figure 115. As kd/ir increases, the admittance seen looking into the entrance
aperture changes. Between kd/7r = 0 and 1 there will exist a condition where a
conjugate match of source and apparent load admittances will most nearly occur;
the transmitted power will be maximized at this point. The maximum possible
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values of weIw and w,(d)Iwe(O) can be found from the maximum power-transfer
theorem to be

W/W 2 (344)
max kw

w,,(d)/ w,,(0) mx=1 + (21)2 (345)

It is of potential practical interest in revealing the existence of deep-slot penetra-
tions to consider the effective width of the entrance aperture for power scattered
back into the illuminated region. This normalized effective width, denoted w' /w,
is given by

I/ kw\ (Zo/2jZ,) cot kd + (kw/4) [I+ (2jIj/ir)) 2 (36S2)D (346)

Curves of w'(d)/w,(O) are plotted as a function of kd/r for various values of kw/r
and k8 = k, Z, = Z in Figure 117. We observe that w'(d)/w(O) behaves similarly
to w,(d)/w(O). Thus it would appear that deep-slot resonance effects should be
observable from either side of the slot.

7.3 PENETRATION OF AN INFINITELY DEEP SLOT.

If the slot is taken to be infinitely deep, the fields in the slot are of the form

E= -= ' x 1< w/2) (347)
W

ZOw

Continuity of Hy across the opening of the slot requires that

2E0 -jkxsinO Wv [ dh -ve + k JI F(h)ejhx d- - V (I x j< w/2) (349)

ZoC 2irZ0 _o FV ~ - 2 ZW
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we F07
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kd/-r

Figure 116. Normalized effective width we(d)/we(O) as a function of kd/r for
kw/ir = 0.01, 0.03, 0.1. The slot is unloaded, i.e., k = k
and Z, = Z.

12

0.01

10

we(d) 0.03

0.1

2- kw/n 0.3

.2 .4 .6 .9 1.0
kd/r

Figure 117. Normalized effective width w'(d)/we(O) as a function of
kd/rr for kw/r = 0.01, 0.03, 0.1. The slot is unloaded, i.e.,
k = k and Z, = Zo.
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Enforcing this condition in the integral sense used throughout this section yields
an expression for Vi:

=i -2wEo

Zo/Z. + (kw/2) (1 + 2jli/r) (350)

The real power entering the slot is

I (351)

and the normalized effective slot width is
= 4Zo(1/Z,)(3

IZo/Z. + (kw/2) (1 + 2jIi/r)l2  (352)

A plot of we/w as a function of kw/r is shown in Figure 118 for the case Z, = ZO,
i.e., when the slot is empty. Note that

lir wdw = 4R(Z.)/Zo (353)kw -0

4

3

e /W 2

5 .10 .15 .20 .25 .30

kw/ r

Figure 118. Normalized effective area of an infinitely deep slot as a function of
kw/ir. The slot is taken to be unloaded, i.e., k, = k and
Z = Zo.
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7.4 CONCLUDING REMARKS.

We have presented some approximate analysis, equivalent circuits, and relatively
simple formulas for assessing the penetration of electromagnetic fields through
slot apertures which are electrically narrow (the short aperture dimension is small
compared to the wavelength), infinitely long, and of arbitrary depth. We have
employed a technique which can be utilized in many other related problems of in-
terest in microwave coupling, including penetration through a slot of finite length.

We wish to stress in concluding this chapter that, while not exact, analytical meth-
ods such as those employed herein can provide useful models for many "back-door"
coupling problems. They should be "bench-marked" by checking the limiting cases
for which exact analytical solutions are available and/or by careful numerical mod-
eling studies of special cases. Through this means the limitations on the validity
of the simple analytical models can be established and their accuracy quantified.
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APPENDIX TO SECTION 7
EVALUATION OF INTEGRALS

EVALUATION OF I) AS kw -+ 0

We express sinc (kvu/2) in integral form as

sinc (!5 f) l e ju/ 2 d (354)

and write I(1) as

i) 1 f f'ddf cos(kvu -I / 2 )du
4 j IV--(355)

where Y0(') denotes the Neumann function of order zero. Since kw << 1, the
argument of the Neumann function will be small over the range of integration and
the function can be replaced by its small-argumcnt approximation

lim YO(x) = - In (356)
X-0 7r " Y

where - = 1.781 ... is the exponential of Eler's constant. Thus

=m -iItn dhdi (357)kW-0 4 1l , ,( q

which is readily evaluated to yield

1irI) p3 + in(358)
k- 2 ~ 10v(38

( 8.963
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EVALUATION OF I2) as kw -* 0

We use the integral representation of the Bessel function

i: (kw) 1 7r ejkwucos 0/2do (359)

to write I(2)F in the form

I(2) 1 r Fr <r cos(kwu I cos -cos /2)
(2r)2 ] " du (360)

1 -W I (lviCos 0 - Cos 0i i d~dO487r ( Y cs-csldd

Again using the small-argument approximation for the Neumann function, we
obtain

ilim i(2) 2 X r In 4 d-do, (361)kw-0 4 " -7 Tr I r kw I cos €-cos V I

and with the help of the identity

In (2 cos¢ cos ![ -2 0 1
E-= - cos no cos nV (362)

n---1 7z

we find

lim 2I2) = In - (363)
kw-o ykw

9

In T--w + In 4

= 1.3863 i-n
kkw
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ATTN: NOP 098(OFC RES-DEV-TEST & EVAL) U S RESEARCH & DEVELOPMENT COORD
ATTN: NOP506 ATTN: USRADGO
ATTN: NOP 551
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USAF/LEEEU GTE GOVERNMENT SYSTEMS CORPORATION
ATTN: LEEE ATTN: TECH LIBRARY

WEAPONS LABORATORY HONEYWELL, INC
ATTN: AWP ATTN: LIBRARY
ATTN: AWPB
ATTN: NTAA HONEYWELL, INC
ATTN: NTCA (B SINGARAJU) ATTN: SR&C LIBRARY/T CLARKIN
ATTN: SUL HUGHES AIRCRAFT CO

DEPARTMENT OF ENERGY ATTN: G SARAN

lIT RESEARCH INSTITUTE
LAWRENCE LIVERMORE NATIONAL LAB ATCN INMINDE

ATTN: L-156 ATTN: I MINDEL

ATTN: L-156 (R KING) INSTITUTE FOR DEFENSE ANALYSES
ATTN: L-86 H CABAYAN ATTN: CLASSIFIED LIBRARY

LOS ALAMOS NATIONAL LABORATORY ATTN: TECH INFO SERVICES
ATTN: MS D408 IRT CORP
ATTN: MS F617 ATTN: B WILLIAMS
ATTN: MS F630 (M GILLESPIE) ATTN: R W STEWART
ATTN: MS F635 (LTCOL J DUNN)
ATTN: MS H827 JAYCOR
ATTN: MS P364 REPORT LIBRARY ATTN: E WENAAS

SANDIA NATIONAL LABORATORIES JAYCOR
ATTN: DEPT 1235 (J HOFFMAN) ATTN: E WENAAS
ATTN: DEPT 2230 (J RENKER) ATTN: M SCHULTZ, JR
ATTN: DEPT 7555
ATTN: ORG 1230 J E POWELL JAYCOR
ATTN: TECH LIB 3141 ATTN: R BONN

OTHER GOVERNMENT JAYCOR
2 CYS ATTN: K F CASEY

CENTRAL INTELLIGENCE AGENCY
ATTN: OSR/SE/F KAMAN SCIENCES CORP
ATTN: OSWR/NED ATTN: K LEE
ATTN: OSWR/SSD/SWBATTN: OSWR/STD/MTB KAMAN SCIENCES CORPATTN: OSWR/STD/TTB ATTN: C EKLUNDATTN: B KINSLOW

DEPARTMENT OF DEFENSE CONTRACTORS KAMAN SCIENCES CORP

BATTELLE MEMORIAL INSTITUTE ATTN: E CONRAD

ATTN: ELEC SYS DEPT V PUGLIELLI KAMAN SCIENCES CORPORATION

BDM INTERNATIONAL INC ATTN: TECHNICAL LIBRARY

ATTN: E DORCHAK KAMAN SCIENCES CORPORATION

BDM INTERNATIONAL INC ATTN: DASIAC
ATTN: LIBRARY ATTN: R RUTHERFORD

BOOZ-ALLEN & HAMILTON, INC KAMAN SCIENCES CORPORATION

ATTN: L ALBRIGHT ATTN: DASIAC

CHARLES STARK DRAPER LAB, INC LITTON SYSTEMS, INC

ATTN: TECH LIBRARY ATTN: J SKAGGS

EG&G SPECIAL PROJECTS INC LOCKHEL. MISSILES & SPACE CO, INC

ATTN: J GILES ATTN: GLUM
ATTN: TECH INFO CTR D/COLL

ELECTRO MAGNETIC APPLICATIONS, INC METATECH CORPORATION
ATTN: J BOWERS ATTN: W RADASKY

GENERAL DYNAMICS CORP
ATTN: TECHNICAL LIBRARY MISSION RESEARCH CORPATTN: EMPGROUP

Dist- 3



DNA-TR-89-108 (DL CONTINUED)

MISSION RESEARCH CORP ROCKWELL INTERNATIONAL CORP
ATTN: D SULLIVAN ATTN: B-1 DIV TIC (BAOB)

MISSION RESEARCH CORP ROCKWELL INTERNATIONAL CORP
ATTN: M BOLLEN ATTN: AUTO STRAT SYS DIV/TECH LIB

MISSION RESEARCH CORP ATTN: G MORGAN

ATTN: J LUBELL S-CUBED
ATTN: J R CURRY ATTN: A WILSON

MISSION RESEARCH CORP, SAN DIEGO SANDERS ASSOCIATES, INC
ATTN: V VAN LINT ATTN: G H BOLLES

MITRE CORPORATION SCIENCE & ENGRG ASSOCIATES, INC
ATTN: M FITZGERALD ATTN: V JONES
ATTN: TECHNICAL REPORT CENTER

SCIENCE APPLICATIONS INTL CORP
PACIFIC-SIERRA RESEARCH CORP ATTN: TECH LIBRARY

ATTN: H BRODE ATTN: W CHADSEY
ATTN: L E JOHNSON

SCIENCE APPLICATIONS INTL CORP
PHYSICS INTERNATIONAL CO ATTN: P J DOWLING

ATTN: DOCUMENT CONTROL
ATTN: J BENFORD SRI INTERNATIONAL

ATTN: D ARNS
PULSE SCIENCES, INC ATTN: ELECTROMAG SCI LAB TECH LIB

ATTN: TECHNICAL LIBARY
TEXAS INSTRUMENTS, INC

R & D ASSOCIATES ATTN: -TECHNICAL LIBRARY
ATTN: C MO

TRW INC
R & D ASSOCIATES ATTN: LIBRARIAN

ATTN: LIBRARY
TRW INC

R & D ASSOCIATES ATTN: A R CARLSON
ATTN: J P CASTILLO ATTN: J PENAR
ATTN: R PARKER ATTN: P BHUTA

RAYTHEON CO TRW SPACE & DEFENSE SYSTEMS
ATTN: H FLESCHER ATTN: 0 M LAYTON

ATTN: A SPEHAR
RCA CORPORATION

ATTN: G BRUCKER UNISYS CORPORATION-DEFENSE SYSTEMS
ATTN: TECHNICAL LIBRARY

ROCKWELL INTERNATIONAL CORP
ATTN: AUTO SENSORS & ACFT DIV/TECH LIB VARIAN ASSOCIATES INC

ATTN: TECHNICAL LIBRARY
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