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Block 20 cont'd

Traditionally motion and shading have been treated as two disjoint problems. On the one
hand, researchers studying motion or structure from motion often assume uniform lighting
conditions over the whole surface and good contrast at high spatial frequencies to minize

the effects of variations of the image irradiance of the patch as the surface moves. On the
other hand, researchers primarily concerned with the shape from shading problem only consider
static brightness data in order to recover the shape without considering the change of brightness

induced by motion.

A new formulation for recovering the structure and motion parameters of a moving patch is
presented. It is based on using the spatiotemporal derivatives of irradiance that are computed
from a time-varying irradiance sequence and combined into a differential constraint equation.
The new approach determines the rigid body motion and the structure of the patch directly
from the irradiance sequence using both motion and shading information.

A new constraint equation, the full irradiance constraint equation (FICE), is derived. It
links the spatiotemporal gradients of irradiance to the motion and structure parameters and
the temporal variations of the surface shading. This equation separates the contribution to the

irradiance spatiotemporal gradients of the gradients due to texture from those due to shading

and allows the FICE to be used for textured and textureless surface. The new approach
combining motion and shading information, leads directly to two different contributions: it

can compensate for the effects of shading variations in recovering the shape and motion; and
it can exploit the shading/illumination effects to recover motion and shape when they cannot
be recovered without it. The FICE formulation is extended to multiple frames, and several
methods are presented for efficiently computing the structure and motion parameters directly

from a spquence of data.

Overall, the examples demonstrate the superiority of the FICE algorithms to the classical
CE algorithms in two distinct areas: the accuracy of the results is higher for textured surfaces

and a solution can be determined in the case of textureless surfaces.
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Abstract ' ,

Traditionally motion and shading have been treated as two disjoint problems. On the one
hand, researchers studying motion or structure from motion often assume uniform lighting
conditions over the whole surface and good contrast at high spatial frequencies to minimize
the effects of variatigis of the image irradiance of the patch as the surface moves. On the
other hand, researchers primarily concerned with the shape from shading problem only consider
static brightnes data in order to recover the shape without considering the change of brightness
induced by motion.

A new f mulation for recovering the structure and motion parameters of a moving patch is
presented/It is based on using the spatiotemporal derivatives of irradiance that are computed
from a time-varying irradiance sequence and combined into a differential constraint equation.
The new approach determines the rigid body motion and the structure of the patch directly
from the irradiance sequence using both motion and shading information.

A new constraint equation, the full irradiance constraint equation (FICE), is derived. It
links the spatiotemporal gradients of irradiance to the motion and structure parameters and
the temporal variations of the surface shading. This equation separates the contribution to the
irradiance spatiotemporal gradients of the gradients due to texture from those due to shading
and allows the FICE to be used for textured and textureless surface.- The new approach
combining motion and shading information, leads directly to two differe t contributions: it
can compensate for the effects of shading variations in recovering the sh4 e and motion; and
it can exploit the shading/illumination effects to recover motion and sha e when they cannot
be recovered without it. The FICE formulation is extended to multipik frames, and several
methods are presented for efficiently computing the structure and moton parameters directly
from a sequence of data.--

Overall, the examples demonstrate the superiority of the FICE alorithrns to the classical
CE algorithms in two distinct areas: the accuracy of the results is hi*her for textured surfaces
and a solution can be determined in the case of textureless surfaces.,
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Chapter 1

Introduction

In recent years, a lot of attention has been focussed on the problem of recovering the three-

dimensional structure and motion of objects from the corresponding two-dimensional planar

projections of these objects on the image plane. Advances in robot and mobile robot technology

have led to an increased demand for reliable algorithms that can determine structure and motion

of the surrounding environment from time-varying sequences. The problem arises in navigation,

e.g. (Bruss and Horn 1983, Negahdaripour and Horn 1987), where the motion of an observer

in a fixed environment is computed, object tracking, e.g. (Roach and Aggarwal 1980, Schalkoff

and McVey 1982), where one or more objects are moving against a slowly changing background,

object recognition and any other area where a machine interacts with its environment with the

aid o a vision system.

Humans can rapidly integrate a large number of visual cues like stereo, shading and motion

information and easily perform the task of recovering the three-dimensional world from a series

of essentially two-dimensional projections of the world on their retinas. Most current machine

vision algorithms do not provide data fusion nor do they use multiple sources of information

to compute the three-dimensional representation, i.e. the relative or absolute depths at each

point of an object and its motion. Currently prevailing algorithms either use stationary cues

to recover the structure, as in the shape from a problems, where z can be shading, texture,

silhouettes etc. or use motion cues to recover structure and motion. Each formulation has

its own set of assumptions and limitations and little has been done in the way of combining

information of different areas to increase the quality of the solution.

17



18 CHAPTER 1. INTRODUCTION

Traditionally motion and shading have been treated as two disjoint problems. On the one

hand, researchers studying motion or structure from motion often assume uniform lighting

conditions over the whole surface and good contrast at high spatial frequencies to minimize the

effects of variations of the image irradiance (or more subjectively the brightness) of the patch

as the surface moves. On the other hand, researchers primarily concerned with the shape from

shading problem only consider static brightness data in order to recover the shape without

considering the change of brightness induced by motion.

This thesis will combine the use of motion and shading information to estimate the three-

dimensional motion and structure of an object from its time-varying sequence of image bright-

ness. The new approach, combining motion and shading information, leads directly to two

different contributions: it can compensate for the effects of shading variations in recovering the

shape and motion; and it can exploit the shading/illumination effects to recover motion and

shape when they cannot be recovered without it.

1.1 Problem Description

The most general task would be to recover the three-dimensional motion and structure of

arbitrary, multiple objects from the time-varying sequence of 2-D projections of these objects

onto the image plane. Such a general formulation is not yet within reach and needs to be

specialized further by the type of motion and by the type and number of objects. One important

special case is rigid body motion. It provides a compact way of expressing motion compared

to the dense, 2-D velocity field computed in optical flow methods, and is quite realistic for a

large variety of objects that are rigid or can be segmented into rigid subparts.

The extent of the task will be further restricted to a single moving rigid object to avoid

dealing with the problem of scene segmentation which is beyond the scope of this thesis. Such

segmentation can be facilitated by knowledge of the structure or depth map, or an estimate of it,

since in many cases different objects can be separated on the basis of depth discontinuities. The

availability of stereo data from which We can compute a depth map, or direct range information

from sonar or radar scans, provides a possible solution to the segmentation problem.

Finally, the last restriction that will be imposed is on the type of object. Unless we are given

the structure information in terms of a depth map, in order to recover rigid motion, we need
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to assume some a priori structure, e.g. planar or curved patches, and determine the structure

parameters, like surface normals and curvatures.

After taking into account the previous restrictions, the problem that we want to solve can

be formulated in the following way:

Problem: Given a time-varying sequence of image irradiance patterns obtained by imaging a

single rigid object under inertial motion, and given an a priori structure and surface reflectance

model, we want to recover the structure parameters and the instantaneous velocity of the object

using shading and motion induced variations in the sequence of images.

Since we are concerned with instantaneous velocity, a differential approach to the problem

can be used and constraint equations that link the variations of irradiance, represented by

its spatiotemporal gradients, to the temporal variation of the shading on the surface, can be

derived. The problem can then be solved by a least-squares minimization of all the available

data. The constraint equations can be extended temporally to several frames at a time, under

mild additional assumptions, to increase the accuracy of the solution and decrease the noise

sensitivity by augmenting the amount of data used in the minimization.

1.1.1 Shading Constraints

Shading is a physical phenomenon produced by the interaction of a light source with the surface

of an object. The two-dimensional irradiance distribution, observed on the image plane, is

related to the geometry and properties of the three-dimensional scene by the process of image

formation (see section 2.1). Shading depends on many parameters of which the structure of the

object and its position in space with respect to the light source and camera are also parameters

relevant to the structure and motion recovery task, and need to be estimated.

In the shape from shading problem the goal is to recover the surface normal at every point

given a surface reflectance and a light source model. Depending upon the formulation and

assumptions, the light source direction and its strength are either given or estimated. Work

on illuminant direction determination can be found in Pentland (1984), Brown and Ballard

(Brown et al. 1982) and Lee and Rosenfeld (1985), while Brooks and Horn (1985) simultaneously

estimate the smoothest normal field from a Lambertian surface and the source direction. In

many cases the strong assumption that the surface is textureless, i.e. has constant reflectance
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properties across it, is required to solve the shape from shading problem.

In the formulation of this thesis, an a priori surface model is required for which we can predict

the spatial (across the surface) and temporal shading variations, given a reflectance model and

a source model and position. In a multisensor situation the shape could be directly available

in the form of range data, but in our case, image irradiance is the only input and a geometric

model of the surface is assumed. In this context, the easiest surface models are parametrized

patches that can be characterized by a small set of parameters, such as a unique normal for a

planar patch or the normal and curvatures at a point of a quadratic patch. However, unlike

the usual formulation of the shading problem, no restrictions are placed on the texture.

The shading equation relates the irradiance at a given point of the image to the normal at

the corresponding point on the surface and to the position of the light source. The brightness

constraint equation, more correctly called the full irradiance constraint equation (FICE), intro-

duced here expresses the relationship between the spatial irradiance gradient of a given image

point, the motion of the corresponding point on the surface, the temporal variation of the shad-

ing and the structure of the object. Given a point on the image plane, the shading constraint

allows us to separate the temporal variations of irradiance due to the change in orientation of

the surface, in motion with respect to the light source, from the spatiotemporal variations of

irradiance due to the motion of the 3-D point being imaged (see Section 2.3).

The framework developed in the thesis is valid for any parameterized surface patch although

the algebraic complexity increases much faster than the surface degree. For clarity in expla-

nation, most of development in the next chapters will be for planar surfaces when a specific

surface model is required. Extensions to the quadratic patches case will be treated in chapter 5.

1.1.2 Multiple Frames Processing

One of the main problems in dealing with real data is the inherent noisy nature of the data.

Careful acquisition of the data with good video cameras reduces the noise levels, but sensor

noise, spatial non-uniformity of the optics and quantization noise due to the conversion of the

continuous analog pixel intensity to an 8 bit quantity, always contribute to the overall noise in

the sequence.

The least-squares approach adopted in the algorithms allows us to minimize the effect of
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the noise and obtain robust solutions. The technique is particularly robust in cases where the

amount of data is very large in comparison to the number of parameters to estimate. The

noise averaging property of the least-squares method is proportional to the square root of the

amount of redundant data used. Given the spatial extent of the image, or equivalently the field

of view, and a spatial sampling, the amount of data available per frame is fixed and the only

way to increase it is to use multiple consecutive temporal frames. In the context of this thesis,

"multiple" means at least three, since all motion algorithms require a minimum of two frames

already.

Additional, mild assumptions on the motion are required in the multiple-frame formulation.

In order to keep the number of unknown parameters constant, and benefit from the additional

data, the instantaneous translation and rotation vectors need to be constant in the time in-

terval spanned by the frames used in the minimization. Although the assumption seems very

restrictive, typical motions can- generally be treated as constant over a brief period of time.

If the sequence is captured with a regular video camera, each field has a duration of 1/60 s,

and the motion constancy approximation is well justified, for normal motion speed, over three

to seven frames. The previous assumption can be relaxed and algorithms can be designed to

accommodate slowly varying motion. In essence, constancy is assumed when computing the

instantaneous motion vectors of the central frame, but the motion vectors are allowed to change

slightly when the temporal window is moved one frame and the motion parameters for the next

frame are computed. In practice, the motion vectors are made up of a base term, or initial

velocity term, and an update term that is computed in subsequent frames.

1.2 Previous Approaches

Two major classes of methods, two-stage and direct, are used in computing motion and struc-

ture. In the two-stage methods, the structure and motion parameters are not computed directly

from the brightness data but from an intermediate quantity that is derived from the data. Typ-

ical preprocessing operations are the computation of the optical flow or the determination of the

correspondence of discrete features. In contrast, direct methods compute the motion vectors

and recover the structure directly from the brightness field, bypassing the preprocessing stage.

Two-stage approaches are further split into discrete and differential methods. Discrete meth-
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ods deal with sparse data, or features, and generally compute finite motions while differential

methods can determine the instantaneous velocities. The direct approaches use, a differential

formulation exclusively.

Although a lot of work in the field has been aimed at obtaining more robust solutions and

reduced sensitivity to noisy data, it comes as a surprise that very little has been done to develop

algorithms that use, globally, the temporally highly correlated data provided by time-varying

sequences. Similar to the work in optical flow computation, algorithms have been developed

to use multiple frames only in a weak way. The final estimate of the flow, or motion and

structure parameters, is used as initial estimates in the processing of the next two frames of

data. Many of these algorithms perform very well if a good enough initial estimate is available,

and one can achieve a large reduction in the computation cost of subsequent estimates by using

the previous frames estimates. Even though they are apparently using multiples frames, these

latter algorithms are truly two-frame algorithms, and the quality of the successive estimates

is highly dependent on the very first step and the ability to find an initial guess that is good

enough for the algorithm. The Locally Constant Angular Momentum model (LCAM) of Huang

(Huang et al. 1986) is such a pseudo multiframe algorithm, and is successively applied to pairs

of frames in a sequence. True multiframe methods have been proposed and will be discussed in

greater detail in section 1.2.4.

Finally, we will review some previous attempts in including shading in the motion and

structure problem. The first two papers (Webb and Aggarwal 1983, Aloimonos 1987) are truly

alternate solutions to the shape from shading problems, since they only recover the structure of

the object, but use motion information, while Nagel (1989) addresses the problem of recovering

both structure and rigid motion using shading information but fails to present a realistic shading

model and does not go beyond the presentation of a model leaving open the question of the

solution.

1.2.1 Discrete Motion Estimation

In discrete motion estimation the problem is twofold. First, we have to determine good features

and compute an accurate disparity field, i.e. solve the correspondence problem, then we have

to extract the motion and structure parameters from the disparity field. Usually, features
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are points, corners or lines. In the second stage, the problem is reformulated with respect

to intermediate variables, often called essential parameters, that are solved first. The final

operation is to extract the motion and structure parameters from these variables.

Different schemes that use n points in p frames have been proposed, for example Tsai and

Huang (1981) use 8 points in 2 images while Roach and Aggarwal (1980) use 5 points in 3 views,

although, theoretically, 5 points in 2 frames are necessary and sufficient to recover the structure

and motion parameters. Most of the proposed schemes lead to a system of nonlinear equations,

although some algorithms for planar patches (Tsai and Huang 1984) only require the solution

of a set of linear equations. The discrete approach has the major disadvantage of requiring

the solution to the correspondence problem, that is the identification of corresponding image

features between successive frames, a task that can be extremely difficult. By definition, the

method relies on the spatial disparity of similar quantities and can run into trouble when feature

points are too close together. Finally, although such schemes can be coded very efficiently and

are computationally attractive, the method is very sensitive to noise and feature occlusion.

Ullman (1983) introduced a multiframe algorithm for wire frame objects that is relatively

insensitive to errors in the discrete measurements. His algorithm maintains a model of the

viewed object and updates that model each time a new frame is obtained. The model is updated

in a way that minimizes the amount of nonrigid motion necessary to accomit for the changes

observed in the new frame. This position-based model was later extended to a velocity-based

model by Grzywacz and Hildreth (1987).

The problem of recovering motion and shape from widely separated frames, using known

correspondence of several points in several frames, is similar to the classic photogrammetric

problem of relative orientation that can be solved iteratively from the parallax equations, e.g.

(Moffit and Mikhail 1980). Relative orientation is also a key issue in binocular stereo vision

where we need to determine the relative orientation of one camera with respect to the other.

Recently, Horn (1987) presented a new scheme that does not require an initial guess of the

baseline and the rotation, for the recovery of relative orientation and discussed the existence of

multiple solutions and their interpretation.
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1.2.2 Rigid Body Motion From Optical Flow

In some of the two-stage differential approaches (Longuet-Higgins and Prazdny 1980, Waxman

and Ullman 1983), the optical flow and its derivatives are used to determine the motion and

the structure of the scene. First applied to planar patches, e.g. (Waxman and Wohn 1984), the

method has been extended to curved surfaces, e.g. (Wohn and Waxman 1985) for quadratic

patches, by approximating the patch in the neighborhood of the line of sight by its truncated

(usually at the second order) Taylor series expansion. These methods, although very elegant

mathematically, suffer from pronounced sensitivity to noise since they use higher derivatives of

the optical flow or assume, unrealistically, that the optical flow and its spatial derivatives are

known exactly.

Differential methods are very often based on a l 'ast-squires formulation that uses a dense

field, like the optical flow, in conjunction with a constraint equation and, sometimes, a model

of the structure of the patch. For ezample, kdiv (1985), Ballard and Kimball (1983) and Bruss

and Horn (1983), do not assume any structure and use the optical flow field at every point of the

image in order to minimize the sensitivity to noisy data while Netravali and Salz (1985) performs

successive linearization around the current estimate without assuming any given structure.

1.2.3 Direct Estimation of Motion and Structure Parameters

More recently, several methods (Negahdaripour and Horn 1987, Horn and Weldon 1988) that

directly use the image brightness and its gradients, without computing the optical flow have

been proposed. These differential methods compute the motion parameters directly from the

observed data without requiring the intermediate step of optical flow computation and rely on

Horn and Schunck's constraint equation (Horn and Schunck 1981) rewritten in terms of the

instantaneous rotation w, instantaneous translation t and the reciprocal of the depth Z at each

point. The brightness constraint equation links the spatiotemporal irradiance gradients to the

rigid body motion parameters and to the object structure by the depth value at each point.

The authors present iterative and closed-form solutions for planar surfaces (Negahdaripour and

Horn 1987) and an iterative solution to the quadratic patch case (Negahdaripour 1986).

Direct methods have also been used to estimate special motion of arbitrary surfaces. Horn

and Weldon (1988) developed robust algorithms to recover pure rotation or pure translation of



1.2. PREVIOUS APPROACHES 25

a rigid body and demonstrated it on real data.

1.2.4 Multiple-Frame Algorithms

In addition to the apparent multiframe methods described in the introduction of this sec-

tion, two multiframe, discrete or feature based approaches have been proposed, a geometrical

approach and a stochastic estimation approach using Kalman filtering. In addition to these

discrete methods that all rely on correspondence of features, Bolles and others developed a

totally new framework that relies on very dense time sampling of image sequences.

The geometrical approach of Shariat and Price (1986) is reminiscent of the previously men-

tioned discrete approaches where there is a choice of how many points in how many frames to

consider in order to have a fully determined problem. In their work, they describe a 5 frames,

1 feature algorithm although they also mention possible use of 4 frames and 2 features or 3

frames and 3 features. The model consists of a rigid object, with constant motion, observed

from a temporally-uniform sampled sequence. The algorithm is based on the idea that, if the

translation of the rigid body is compensated for, every feature on the object will trace a circle

in space. They infer the necessary equations from geometrical relations. The convergence of

the algorithm is highly dependent on the choice of the initial guess and no proof of convergence

-or uniqueness of the solutions is given.

In their study Broida and Chelappa (1985, 1986) cast the problem of recovering motion

parameters into a classical parameter estimation problem in the presence of noise and use a

Kalman filtering and a maximum likelihood (ML) approach. In their model, they assume the

structure of the object and the image coordinates of the object match points and only consider

transparent objects to insure that every match point is always visible throughout the sequence.

They present both a recursive solution (Broida and Chellappa 1986) that uses an extended

Kalman filtering approach and a batch solution (Broida and Chellappa 1985) that computes an

ML estimate of the parameters. Additionally, it is assumed that the noise level associated with

the match points is known in the recursive approach, and that the initial angular orientation is

available in the ML formulation. These techniques perform very well on a wire frame synthetic

model and achieve results very close to the theoretical limit as given by the Cramer-Rao bound,

but have the major drawback of assuming that the correspondence problem has already been
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solved.

Bolles and other (Bolles and Baker 1985, Bolles et al. 1987) opened up a new dimension in

structure recovery by making time the preferred direction in their epipolar plane image analysis.

Although their goal is not to recover motion but to recover the structure of the scene from

motion sequences knowing the motion, their innovative use of the highly correlated temporal

information might spawn novel ideas in the field of motion and structure recovery and is worth

outlining here. In their method, they collect high frame rate video sequences, stack them into a

spatiotemporal parallelepiped, slice the data along the temporal dimension to localize features

in the temporal slice, deduce the 3-D location of the features and reconstruct the structure

of the scene. In their initial paper (Bolles and Baker 1985), they assumed a viewing direction

perpendicular to the direction of motion so that features were linear, but later (Bolles et al.

1987) relaxed the assumption and only required a known arbitrary motion.

1.2.5 Combining Shape, Shading and M-tion

1.2.5.1 Using Motion Information in Recovering Shape From Shading

Webb and Aggarwal (1983) incorporate motion information in their solution to the shape from

shading problem. Their analysis relies heavily on the assumption of rigid body motion, planar

surface and orthographic projection, but does not require explicit knowledge of the rigid mo-

tion. The algorithm applies to a Lambertian surface with arbitrary spatial variations in albedo

and a single distant light source of known direction, and starts by considering a single point

correspondence between two adjacent frames. The next step matches respective neighboring

regions of the matched point, by assuming that the texture of the two patches are related by an

afilne transformation (small rigid body motion assumption) and that the image intensities can

only change by a multiplicative factor. If nT = (-p, -q, 1) represents the normal at a match

point, these two constraints can be expressed by two conic equations in p and q. Once the

normal at the matched point is computed, the constraints are propagated to the neighboring

points within the match region.

In contrast to the previous approach, Aloimonos and Bandopadhay (1987) use the full

optical flow between two consecutive frames and recover both the shape of the object and the

light source direction. Their formulation assumes that the images are viewed under orthographic
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projection, that the surface has a Lambertian reflectance function with a constant known albedo

and that the retinal correspondence, i.e. the optical flow, is known. The source direction can

only be computed assuming a planar surface, while the computation of the shape only requires

the surface to be smooth, with the added strong restriction that the shape is known exactly at

the occluding boundary and that the normal at that boundary is parallel to the image plane.

1.2.5.2 Motion Recovery Using Shading

In a recent paper, Nagel (1989) introduces a new constraint equation that incorporates a shading

term and discusses other extensions to the classical constraint equation. The stated goal of the

paper is to derive a constraint equation using perspective projection, differential geometry and

radiometric information. Unfortunately, the results fall short of the goals. His derivations, using

differential geometry, tend to be more complicated than the traditional ones without increasing

the intuitive feel for the results. It is a little surprising that he presents, in great detail, the

derivation of the discrete motion equations, that require the solution of the correspondence

problem, and then proceeds to differentiate the equations, obtaining the classical optical flow

equations, and only uses the latter in the subsequent derivations.

More serious problems with his approach are the use of Schunck's divergence equation

(Schunck 1985) and his choice of a shading model. In the former instance, he fails to recognize

that Schunck's equation is only applicable to texture density and is wrong in the context of an

image brightness constraint equation. Contrary to his claim, his shading model has nothing to

do with a Lambertian reflectance model of the surface but only relies on the well known optical

imaging cos 4 a law where a represents the angle of the incident rays entering the lens assembly.

His model is inaccurate, since, in practice, any well-built system can be calibrated to eliminate

the cos4 dependence and this phenomenon is negligible compared to the vignetting effect1 that

occurs in real lenses.

All the problems outlined in this summary, compounded by the fact that Nagel does not

even attempt to solve his model, clearly reduce the usefulness of his contribution.

'Vignetting is the reduction of the light gathering process caused by the partial occlusion of inclined incident

rays by components of the lens assembly system.
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1.3 Machine Vision and Image Processing

Strong competition exists between the machine vision and the image processing communities.

Each camp advocates that their algorithms are more robust or realistic in solving the same

problem i.e. recovering the motion between two frames of a video sequence. Much of the

problem is the failure to recognize that, until recently, the two communities were solving different

problems.

Machine vision algorithms are trying to recover the true three-dimensional motion of the

objects and use this information in path planning, collision avoidance or robot navigation, while

the image processing algorithms, especially in the image coding field, only try to compute a

two-dimensional field that reduces the entropy of the residual error signals between the original

images and the coded one. The computed field may or may not have any relationship with

the optical flow depending on the methods used, but is a valid field as long as a coding gain is

obtained, compared to the non motion-compensated coding schemes.

More recently, there has been a demand for the computation of true motion fields for

television imagery and their use in motion-compensated interpolation, where the goal is to

reconstruct as faithfully as possible the missing frames from temporally and spatially sampled

frames. The newest algorithms are very close to the traditional machine vision optical flow

algorithms. The new requirements have, in essence, started to bridge the gap between the

image processing and machine vision communities. The former group has not yet started to use

and compute rigid body motion since typical broadcast television imagery is not composed of

rigid bodies. However, such an analysis is relevant when it comes to estimate and compensate

for the motion of the camera with respect to the scene. The difficulty in that situation is that

the scene is not static and it might be difficult, or impossible, to separate the rigid motion of

the camera from the individual motions of the elements of the scene being imaged.

1.4 Goal of the Thesis

In this thesis, we investigate the problem of combining shading and motion information to re-

cover the structure and motion of a parameterized rigid patch with respect to a fixed observer,

from a sequence of image irradiance The goal is to recover the three-dimensional motion by
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observing the image irradiance, its temporal and spatial derivatives and by assuming, or esti-

mating, a shading model for the parametrized surface, given a set of lighting conditions. More

specifically, the goal can be refined to the following three components:

1. Establish a theoretical and computational framework to incorporate the a priori knowl-

edge of shading conditions and use it, in conjunction with the motion cues, to refine the

structure and motion solutions and extend them to previously difficult cases under the

traditional assumption of brightness constancy.

2. Evaluate qualitatively and quantitatively the importance and relevance of shading infor-

mation with respect to the added complexity of the implementation and to the accuracy

of the solution.

3. Extend the analysis to longer sequences to use efficiently the additional data and improve

the noise performance of the solutions for real data.

Rigid body motion of objects with respect to a fixed observer is considered, as opposed to

the problem of-passive navigation, which considers rigid body motion of the camera with respect

to a fixed background. In the former case, an object based reference frame is usually chosen

and the motion of the camera, or observer, evaluated with respect to the stationary scene and

light sources. In the tatter case, a camera based reference frame is usually considered and the

motion of the rigid bodies is expressed with respect to the camera. The latter distinction is

very important because, in the case of passive navigation, with objects that have a reflectance

function independent of the viewing direction, there is no motion induced shading variations.

1.5 Summary of Results and Contributions

A new formulation for recovering the structure and motion parameters of a moving patch is

presented. It is based on the spatiotemporal derivatives of irradiance that are computed from

a time-varying irradiance sequence and combined into a differential constraint equation. The

new approach determines the rigid body motion and the structure of the patch directly from

the irradiance sequence using both motion and shading information.
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First, a new constraint equation (CE), the full irradiance constraint equation (FICE), is de-

rived. It links the spatiotemporal gradients of irradiance to the motion and structure parameters

and the temporal variations of the surface shading. This equation separates the contribution

to the irradiance spatiotemporal gradients of the gradients due to texture from those due to

shading and allows the FICE to be used for textured and textureless surface.

The theory of the new CE is first developed for a generic surface and an arbitrary shading

model; the minirmzation equations that define the motion and structure parameters, are derived

in the general case. The models are subsequently specialized and various implementation are

given for planar and quadratic patches; various shading models and numerical examples, that

use synthetic and real data, are presented for different combinations of surface, light source

geometry and surface reflectance.

The FICE formulation is extended to multiple frames, and several methods are presented

for efficiently computing the structure and motion parameters directly from a sequence of data.

Several examples that focus on the behavior of the multiframe algorithms in the presence of

noise are described. In particular, it is shown that the accuracy of the results is greatly improved

in the presence of noise with the multiframe implementations.

Overall, the examples demonstrate the superiority of the FICE algorithms to the classical

CE algorithms in two distinct areas: the accuracy of the results is higher for textured surfaces

and a solution can be determined in the case of textureless surfaces.

In this thesis, at least three major contributions to the problem of recovering the structure

and motion parameters were made: a constraint equation that allows the concurrent use of

motion and shading information is formulated; a study of the importance of shading in rigid

motion estimation is presented and situations in which the classical CE is too inaccurate to

be used is determined; the FICE is expanded to multiple frames and a global formulation is

provided. In addition to these contributions, insight is gained in the solution of nonlinear

system of equations and in the challenge offered by real data.

Prior to this work, there was no attempt to bridge the fields of motion estimation and shape

from shading and a single algorithm or class of algorithms could not recover the structure and

motion parameters from a moving patch with an albedo that can either be constant (textureless

surface) or arbitrary but smooth. In addition, there was no real understanding of the domain of
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validity of the classical CE that was used indiscriminately in all situations. Our work ptesents

evidence that, although the classical CE is a very useful and excellent approximation in many

cases, in other cases it is significantly in error and greatly improved results can be computed

with the novel formulation.

1.6 Thesis Overview

Because the use of shading information and multiple frames is decoupled, the theory of shading

information within a constraint equation and the of multiple frames is presented separately.

These algorithms are independent and can be used separately or together. Algorithms us-

ing shading information can be used with a minimum of two frames while algorithms using

multiple frames can use the conventional constraint equation as described in Negahdaripour

(Negahdaripour and Horn 1987).

In Chapter 2 an overview of the image formation process and representation of motion fields

is presented. The Full Irradiance Constraint Equation (FICE) and the incremental FICE are

derived and an extension oi these equations to second order derivatives presented. Presently

available numerical methods to solve systems of nonlinear equations are surveyed and the prob-

lem of efficient and robust computation of spatiotemporal irradiance derivatives treated. In

Chapter 3, different shading models, -the regular constraint equation, as derived by Negah-

daripour (Negahdaripour and Horn 1987), and the FICE model are examined and discussed.

Specific planar patch implementations and examples are featured in Chapter 4, while extensions

to quadratic patches and corresponding examples are presented in Chapter 5. In Chapter 6,

three multiple-frame constraint equations are derived and examples are shown. Finally, a

summary of the results and the conclusions are presented in Chapter 7.
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Chapter 2

Problem Formulation for Two

Frames With Shading

Image formation produces a sequence of irradiance patterns from snapshots of a real three-

dimensional object illuminated by light sources and moving in space. Motion fields mathemati-

cally represent the motion of the image of the object and shading characterizes the "appearance"

of the object interacting with its lighting environment. This chapter analyses the image forma-

tion process, the representation of the motion of an object and the shading variations induced

by motion, and presents algorithms that compute the structure and motion parameters from

the irradiance sequence.

The two-frame case is described in a generic way that does not rely on a specific object

shape or shading model and introduces all the tools and mathematical techniques needed for

the study. Algorithms are built incrementally from a simple, purely two-frame algorithm that

uses motion cues and shading information to recover the motion and structure parameters, to a

more complex formulation that recovers incremental motion from a stack of frames. The overall

purpose of this chapter is to provide the theoretical framework and to set up a computational

framework that is shape and shading model independent.

33
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2.1 Image Formation

An analysis of the principles of image formation is important to the understanding of the

methods for recovering structure and motion from brightness images. The analysis reveals two

main aspects of the image formation process, the geometric process by which a point from the

three-dimensional surface projects onto a point in the image plane, and the photometric process

that determines the irradiance of the points in the image plane.

2.1.1 Geometric Model

The analysis of a real lens-based camera is complicated. For regular focal length and normal

to wide angle lenses, the actual lens can be approximated by a pin-hole camera placed at a

distance equal to the effective focal length F of the lens from the image plane. Since light

travels in a straight line fr ,a a point in the object surface to a point in the image plane, the

transformation from the three-dimensional world to the projected two-dimensional image is a

perspective trausformation defined by

r R (2.1)
TF R.1

where R = (X, Y, Z)T represents the coordinates of the 3-D point in the world frame (camera

based coordinate system), r = (z, y, F)T the coordinates of the projected point and i is the

unit normal on the optical axis (see Figure 2.1). The 3-D vector r represents the projected

point in the image plane and the 2-D vector x = (z, y)T denotes the coordinates of the image

point in the image plane, i.e. x is the restriction of r to the two-dimensional subspace of the

image plane.

Although only normal or wide angle lenses are taken into consideration, and therefore only

the perspective projection model is used, it should be noted that zoom and telephoto lenses can

under certain circumstances be nicely and more easily approximated by orthographic projection.

An immediate consequence of the perspective projection equation (2.1) is that an image

point with coordinates r can be computed uniquely from the coordinates R of the corresponding

object point, but a unique object point cannot be determined from a given image point unless

the distance along the ray is known (structure), since any point on the ray can be backprojected

to the original point. The problem of recovering R from r is also known as the inverse optics
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Figure 2.1: Perspective transformation

problem. It is an ill-posed problem that canot be solved unless additional-assumptions or

constraints are introduced.

Pin-hole cameras have problems; if the size of the pin-hole is infinitely small, diffraction

occurs, if the size is too big our analysis no longer holds and a point on the object is imaged as

a small circle. Lenses overcome these problems to a large extent; they gather a finite amount

of light while keeping the object surface in sharp focus.

2.1.2 Photometric Model

We will briefly show how to compute the image irradiance E, also informally called image

brightness, and introduce the concepts of scene radiance and surface reflectance.

2.1.2.1 Computing Image Irradiance

The image irradiance, or apparent brightness of the surface, depends on the microstructure of

the surface, the distribution of the incident light and the orientation of the surface with respect

to the viewer and the light sources. It is formally defined as the power per unit area of radiant

energy falling on a surface. The scene radiance L, or informally scene brightness, is defined
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Figure 2.2: Image formation for a lens based optical system

as the power per unit foreshortened area emnitted in a unit solid angle, and is not an intrinsic

property of the surface. It depends on the reflectance property of the surface and can change

with motion and illumination.

Let us consider an object patch 60 that maps into the image patch 61 through the lens (see

Figure 2.2). Since rays passing through the center of the lens are not deflected, the solid angles

f6Z~ and Nso subtended at the center of the lens by 61 and 60 are equal, i.e.
F6lcosa 60 cos

"= (F/cos a), ~ = ((a. .)Icosa)

where a is the angluhe e incident rays from the light source and the optical as, and

0 is the angle between the surface normal and the rays at so. Taking the ratio of the solid

angles, we obtain

Let L be the radiance of a point of the patch 60 on the object surface. It is the result of
the light from the sources of illumination being reflected from the surface of the object and

depends upon the location and nature of the sources of illumination, and upon the orientation

and reflectance of the surface. The amount of light 6L emanating from the surface patch 60,

Sd s d at te c r o
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and concentrated on the image patch 61, is given by, e.g. (Horn 1986) or (Horn and Sjoberg

1979),

L = L60 cos Or( Cos a, (2.3)

where d is the diameter of the lens. If we neglect the losses in the lens, the image irradiance E,

defined as the ratio of L and 61, can be expressed as

E = L- ) cos4 a (2.4)

using (2.2) and (2.3). Equation 2.4 is one expression of the well-known cos" optics law. Very

often the quantity F/d is used as a direct specification of a lens, and is called the effective

F-number. In practice, systems are often calibrated to eliminate the cos 4 dependence.

2.1.2.2 Scene Radiance and Surface Reflectance

Radiance is a directional quantity that depends on the direction of the illumination, character-

ized by the polar angle 0, between the normal to the surface i and the direction of the rays

L, and by the azimuthal angle Oi between the perpendicular projection of t, and any chosen

line in a plane perpendicular to fi. Nicodemus (Nicodemus et al. 1977) introduced the Bidi-

rectional Reflectance Distribution Function (BRDF) that relates the incident irradiance 6E in

the direction (0i, O), to the reflected radiance 6L in the direction (0e, 0e) (see figure 2.3 for the

notations). The BRDF is defined as

BRDF(Oi, i; ., 0,) = 8L(9e,,'e (2.5)
6E(0,, 0)

and it determines how bright a surface illuminated in one direction appears when viewed from

another direction. If the illumination source is distributed over a range of directions (9,, Oi)

(extended source), the total reflected radiance is obtained by integrating equation 2.5 over the

solid angle of incidence.

The BRDF is a complete description of the relationship between scene radiance and image

irradiance but is too complex to use since, in practice, it needs to be determined experimentally

for each type of surface. Fortunately, there are some types of theoretical surface reflectance

that can be easily modeled and that approximate some actual surfaces nicely. We will present

two of these surfaces, the ideal Lambertian diffuser and the ideal specular reflector.
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Figure 2.3: Local geometry of incident and reflected rays for the definition of the bidirectional
reflectance distribution function (from figure 6 of Horn and Sjoberg (-1979)).

An ideal Lambertian surface is a perfect diffuser that appears equally bright from all viewing

directions and reflects all incident light, absorbing none. Although no real surface exactly

behaves like this, tightly pressed powders of highly transparent material like barium sulfate

and magnesium carbonate come close. Matte white paint, opal glass, rough papers and snow

are somewhat worse approximations. The BRDF of an ideal Lambertian surface has a constant

value 1/ir and the radiance of a surface illuminated by a single point source is given by

L(i, = 1 cos OE = 1 fi)E.
W Ir

The ideal specular reflector, very well approximated by polished metals, reflects all the light

arriving from (8i, Oi) into the direction (0i, 4i + ir). Its BRDF can be expressed as

BRD F., (0, 4i; 0, 40) _ (9e - 0)8(o. - €, - 10
sin Oi cos Oi

where 6() represents the Dirac function. The scene radiance relates to the image irradiance

simply by, L(O,,4,) = E(O,, 4, - ir).
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2.2 Images, Motion and Motion Fields

This section discusses the representation of three-dimensional motion, two-dimensional motion

fields and their relationship. The special case of rigid body motion is developed in some detail

and the relationship between motion and observed image sequences is discussed.

2.2.1 Representation of Motion

2.2.1.1 Image Motion Field

We saw in section 2.1 that an image is formed by the projection of a three-dimensional scene

onto the target of the camera. In general, each point in the image corresponds to a unique point

on the surface of the object. Transparent or translucent surfaces violate that rule and will be

excluded. The relative motion of an object and the camera results in the motion on the image

plane of the projections of the object points. The motion field is defined as the two-dimensional

vector field of instantaneous velocities of points in the image plane as a function of position and

time and is denoted by v(x, t). These velocities are related to the three-dimensional velocities

of the corresponding scene points through the perspective projection of the camera.

The motion will generally induce a spatiotemporal variation in the image plane irradiance,

and it is the analysis of these variations that allows us to estimate the motion which has

occurred. It should be noted that the motion is not always observable from the image irradiance

even though a nonzero motion field might exist everywhere. The case of a rotating textureless

sphere illuminated by a fixed light source is such an example. The image of the sphere is

nonuniform, due to shading effects, but the image Irradiance does not change with time.

A related concept, which is widely used, is that of the optical flow, defined as the apparent

motion of the image brightness pattern (Horn and Schunck 1981). Optical flow is defined only

in terms of the image and the apparent motion may be due to true motion, illumination effects,

or both. The optical flow is not uniquely determined by its definition and does not correspond

to any physical reality.

When dealing with temporally sampled images a quantity of interest, closely related to the

velocity field, is the displacement field. It establishes the correspondence between the points in

the image at time to and the points in previous and subsequent frames at time to - kT, where
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k E {...,-2,-1,1,2,...} and T is the temporal sampling rate. In the context of this thesis,

motion field will be used to refer to either a velocity or a displacement field.

2.2.1.2 Velocity and Displacement Fields

The projection of each object point traces out a trajectory in the image plane during the time

it is visible in the image. Trajectories can be specified by the function c(t;ro) which gives
spatial location at time t of the point which was at the spatial location ro at time to. From

this definition, it is clear that c(to; ro) = r0 . Let us denote by ti(r, to) the starting time and

by tj(r, to) the ending time of the trajectory of the point r. The velocity field gives the rate of

change of position at a given time for each pixel on the frame i.e.

dv(r, t) = -c(t;r) = v(c(r;to),to)
dt Itt

and, as expected the displacement field is related to the velocity field by integration. If

d(t1 ; r, to) represents the displacement of r from the time to to t, (ti > to)

d(tx,r, to) = v(c(r;to),t)dt.

The velocity field corresponds to the projection of the motion of the points in space and

can be expressed directly in terms of these points. Let R be a point in space with coordinates

(X, Y, Z) in a reference frame attached to the camera. We saw in section 2.1 that the image

of the corresponding point in the image frame is r = (z, y, F)T = FR/(R. .) where F is the

effective focal length of the lens and f is the optical axis. The point R is in relative motion

with respect to the camera with the velocity v = it, where dotted quantities represent time

derivatives. The corresponding motion of the projection of R on the image plane is -= (i, , 0)T

(or : = (j, j)T), if the analysis is restricted to the image plane subspace, and can be expressed

as
r F FdR P dRR

dt R-I dt (R 1)2 (dt)

This derivative can be rewritten in terms of r and rearranged:

i = -L (I x (R x r)). (2.6)
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2.2.2 Parametric Representation of Motion Fields

The previous description of the motion field is general and does not place any constraint on the

local form of these motion fields. In fact, the degrees of freedom of the fields can be reduced by

assuming a certain parametric representation associated with a restricted class of motion. One

important subclass of motions is rigid body motion.

If the point R is assumed to lie on a surface patch which can be considered as a rigid body,

then the instantaneous motion of all the points of the patch can be described by

R(t) =R = w X R+ t = fSR + t, (2.7)

where

( 0 - w. ,

-Wz w0 0

i-s the (3 x 3) skew-symmetric matrix isomorphic to the instantaneous rotation vector W =

(.z, ,w.)T , and t represents the instantadeous translation vector. Substituting equation 2.7

of the rigid body motion into equation 2.6 gives the expression of the velocity field of the

images of points on the patch of rigid body in question, in terms of the three-dimensional

motion parameters

= × rx X W - •-) (2.8)

The vectorial equation 2.8 represents the traditional optical flow equation and can be written

in the more familiar component form:

- F (F+ -YI F.(2 ~ . WY(Z +~ Ft, t ~ (2.9)

Appendix A presents a comparison between the equations of this section, which use the instan-

taneous motion, and the optical flow equations which can be derived directly from the finite

motion equation.

Motion fields are most easily visualized by means of needle diagrams, an array of vectors

indicating the magnitude and direction of the velocity on a selected grid of points (Figure 2.4 is
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Figure 2.4: Needle diagram of a optical flow field representing a zoom along the optical axis

an example of the flow field induced by a pure translation along the optical axis) or by a color

image where the hue indicates the direction and the saturation the magnitude of the field.

2.2.3 Time-Varying Images and Motion Fields

Having characterized motion by means of motion trajectories and motion fields, we can now

relate the observed time-varying images to these motion fields. As seen in section 2.1, im-

age irradiance E(x, t) is measured at each point of the image plane and the irradiance of the

projected image point depends, in general, on the position of the point in space, on the local

orientation of the patch, on the reflectance of the surface and on the light sources. The fun-

damental assumption in classical motion estimation is that the image irradiance varies slowly
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along the motion trajectory. In practice, shading variations have been ignored or considered

negligible vi .a via the spatial changes due to the texture of the surface. In most cases, no

quantitative or convincing qualitative explanations have been formulated to justify such an as-

sumption. In a recent paper, Horn (1988) provides some justification for the brightness change

constraint equation by showing that, in the case of a sinusoidal grating, it is possible to neglect

the change due to viewing direction or illumination as long as there is good contrast at high

spatial frequencies. Section 3.3 analyses the validity of such an assumption as a function of the

texture on the surface.

2.2.3.1 Classical Motion Constraint Equation

Assuming that the irradiance of a patch remains approximately constant as the surface moves

in the environment, that is dE/dt = 0, the frame difference signal can be related to the dis-

placement and to the spatiotemporal gradients of the image intensity. Limb and Murphy (1975)

and, to a greater extent, Cafforio and Rocca (1983) were the first to use implicitly what Horn

and Schunck called the constraint equation (CE) that can be expressed in the form (Horn and

Schunck 1981)

Ex. +Et = 0. (2.10)

In this equation Ex = Y = i) represents the spatial gradient of the irradiance E

with respect to x = (z, y)T, the image coordinates of the perspective projection of point R
OE.

onto the image plane at effective focal distance F, and Et = - is the temporal gradient of

the irradiance.

Although many, more or less correct, derivations of the CE have been presented, the above

formulation, to be meaningful, corresponds to tracking a specified point R = (X, Y, Z)T on the

3-D surface, or equivalently, if the point remains visible throughout the motion, its projection

r = (Z,y, F)T, or x = (z, y)T on the image plane and to consider its temporal variations.

Let us consider the projected trajectory specified by the function c(t; ro). The value of the

image irradiance E(x, t) along the trajectory c(t; ro), E(c(t; ro), t) can be considered as a one-

dimensional time signal denoted s(t; ro). Then, the assumption of no change in intensity along

the motion trajectory from the initial time ti to the final time tf is

a(t;ro) = E(ro, to), ti(ro, to) < t < tf (ro, to) (2.11)
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and the constraint equation is obtained by taking the derivative of (2.11) with respect to t,

applying the chain rule and evaluating at t = to.

The constraint equation can also be interpreted in terms of a directional derivative of the

brightness function E(x, t). If V&E denotes the directional derivative of E with respect to the

arbitrary vector a E R3 , where R3 = RPtij x Rti,n, then
a

VaE = - VE,
Halli

where VE is the spatiotemporal gradient of E(z, y, t), i.e. VE = (E., EV, Et)T.

If we consider the vector a = (k, 1 )T tangent to the motion trajectory, the directional

derivative along this vector is given by

Va -= 1 .Ex + Et) = - Er + Et)

which is equal to zero under the assumption of constant irradiance of the moving patch.

2.2.3.2 Relationship Between Displacement Field and Image Sequence

When dealing with a time sampled image, it is more natural to describe the motion in terms

of a displacement field d = d(t - T; x, t). Under the assumption of irradiance constancy, the

Displaced Frame Difference (DFD) denoted by DE(x, t, d) will be zero i.e.

Dg(x, t, d) = E(x, t) - E(x -. 4(t - T; x, t), t - T) = 0. (2.12)

A first-order Taylor series of the term E(x - d, t- T) in (2.12), produces an equivalent expression

to the motion constraint equation (2.10) in terms of the displacement field and the DFD:

DE(x, t, d) + d. VxE(x, t - T) = 0. (2.13)

If we assume that the velocity is constant in the time interval [t - T, t], d = vT = kT and the

previous equation can be written as

DE(x,t,d)t + .V1 E(x,t - T) = 0. (2.14)T

Equation 2.14 is equivalent to the motion constraint equation (2.10), as T approaches 0, since
9"E D(x, t, d) In practice, only equation 2.13 should be used when dealing with

2'!
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sampled images. The infinitesimal motions need to be approximated by finite displacements.

and the DFD value is a much better approximation to the temporal derivative than the usual

first difference (see section 2.5).

A more general form of equation 2.13 is obtained by taking a Taylor series of the irradiance

function E(x - d,t - T) about the point (x - d0 ,t - T)

DE(x, t, do) + (d - do) . VxE(x - do, t - T) = 0. (2.15)

Equation 2.15 is identical to (2.13) for do = 0 but may be a better approximation if do is

close to the true displacement because all the quantities are very small and the equation is an

excellent approximation to the differential motion constraint equation. These equations will be

reformulated directly in terms of the rigid body motion parameters in section 2.3.

2.2.3.3 Constraint Equation for Sampled Images

The constraint equation (2.10), derived in the previous section, only applies to the image as a

function of continuous space and time. In the following development, the effects of quantization

on the amplitude of the image irradiance value will be'neglected and only the three-dimensional

spatiotemporal sampling of the image sequence will be considered. Let A, be a sampling lattice

associated with the intensity image u(x, t) in the 3-D space-time coordinate system. Let

(Th, 2, Tt)T be the sampling periods and let xi be a 2-D image point from the sampling lattice.

The sampled intensity image is u.(xi, t) = u(x, t) where (xi, t) = (kTh, ,T ,mT, ) E A,,.

If the spectrum of the continuous image is limited to a unit cell of the reciprocal lattice A,,,

the irradiance signal can be uniquely reconstructed from its samples by means of an interpolation

formula of the form

u(x t) = Ua(xjT)'i(X -xit t)

where

4i(x, t) = K fw e(wx+Wtt)&A,

and W represents the baseband in the image plane. However, if the original image is not suitably

bandlimited with respect to the sampling lattice, error-free reconstruction is not possible and

aliasing will occur. Spatial aliasing can be easily avoided by low-pass filtering the analog video

signal before spatially sampling it. The main problem, in a regular video camera, is the temporal
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sampling. Let us consider a 3-D signal u(x, t) obtained from a 2-D signal uo(x) by uniform

translational velocity v, u(x,t) = uo(x - v(t - to)). The 3-D Fourier transform of u(x,t) is

related to the 2-D Fourier transform of uo(x)by the relation

*F[u(w.,w., wt)] = + uov 1, + W t).

If the signal u0 (x) is bandlimited to (1fl, If I) then the signal u(x,t) is bandlimited to

If,,f1,,ft where

f=t = fl:IlizI + fl It 1, (2.16)

and temporal aliasing is avoided if

Iftl < f1l'v'l + flylvyl•  (2.17)

Equation 2.16 shows that in the simple case of an object under uniform translation, the tem-

poral bandwidth ft is a linear function of the magnitude of the translational velocity v and

therefore, for velocity magnitude (lvii greater than one, the signal should be sampled fast enough

temporally to avoid temporal aliasing. The temporal anti-aliasing condition described by equa-

tion 2.17 is never met, or even approached, in present day video cameras and.temporal aliasing

will always be present.

In practice the continuous signal u(x, t) is not reconstructed exactly from the sampled

signal u.(xi,t) but u(x,t) = E u,(xi,r),i(x - xi,t - r) + e(x,t) = i(x,t) + e(x,t) where

i is the interpolated value of the image irradiance, T is an interpolation kernel and e(x, t)

represents the interpolation error functional which may be partially due to aliasing or partially

due to a suboptimal interpolation kernel. The choice of % has a substantial effect on the

accuracy of the solution. It will be discussed, in section 2.5 in the context of surface fitting

and irradiance derivative interpolation and computation. For a sampled image, the motion

constraint equation (2.10), can be expressed in terms of the interpolated continuous irradiance

function and takes the form

t+ Vx i+ t +v Vxe = O,

but will usually be approximated by

t+V VxA= 0.
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2.3 Full Irradiance Constraint Equation

In the previous section, the motion constraint equation was derived under the assumption of no

change in intensity along the motion trajectory. In this section, a motion constraint equation

called the full irradiance change constraint equation (FICE), that takes into account the change

in intensity along the motion trajectory is presented. Mathematically, the FICE is the equation

that defines the total derivative of the irradiance function E(r, t), i.e.

dE(r, t) 8E dz +E dy OE
dt + +t8dt8 (2.18)dt ax t 09 dt at

Equation 2.18 will be derived geometrically next, to gain insights in its physical meaning.

Let us consider- a segment of rigid body (E, to) at time to and the displaced segment (E, ti)

at time ti = to + dt (see Figure 2.5). Let M(Ro, to) be a generic point on (E, to) that projects

to ro(Ro, to) on the image plane (II). Let P'(S1 , t1) be the corresponding point on (E, t1 ) that

also projects onto ro, and P(So, to) the point on (E,to) such that P' = B(P) where B represents

the rigid body motion of the surface E. By construction, P(So, to) and P'(S,, t1 ) represent the

same point on the surface and have the same coordinates (c,/), called surface coordinates,

with respect to a coordinate system attached to the surface, the same albedo p = pA(a,/3) 1,

but have a different surface radiance due to the different orientation of the patches (E, to) and

(E, t1 ) relative to the light source. If we denote by P(R,t) the projection of the point P of

space coordinates R. at time t, and E (T(Rt), t) the corresponding image irradiance, we have

the relation

E(PI(Siti),t,) - E(P(Ro to)to)-

E (P(Si, ti),ti) - E (M(So' to), to) + E (M(R,o), to) - E (P(S§o,t), to) . (2.19)

&E(S ,So) AE(Ro,So)

The left hand side of equation 2.19 represents the temporal variations of the irradiance of the

point S, of surface coordinates (a,), due to the change of orientation of the surface E, i.e.

E(ro, to) - E(ri, t,). The first part of the right hand side of the previous equation, AE(S,, So),

represents the change of irradiance due to the motion of the observed point P. Since the

Ip(a, 3) denotes the surface albedo at wavelength A and surface coordinates (a,0). In practice, the continuous
wavelength data are not available and only their integrals with a small number of filter functions corresponding
to different channels are accessible.
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Figure 2.5: Relationship between the 3-D surface, the texture on the surface and the projection
of the surface onto the image plane for the full irradiance constraint equation.
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points P' and M project onto the same image point ro, AE(S1, So) = E(ro, t1) - E(ro, to) and
OE(ro, t)

lim = 8t AE(Ro, So) represents the difference of irradiance on the pointsdt--.O at

P and M on the surface (E,to) and kio AECRo, So ) = Er,,to)- Ero, to)) = dr.Er,(ro, to).

Taking the limit, as dt goes to 0, of (2.19) yields the FICE differential equation (2.18), that can

also be written as

Er. i + Et = E(r, t) = (2.20)

where t represent the temporal variations of the shading model.

Using the expression of i in terms of the instantaneous rigid body motion parameters (w, t)

(see equation 2.8), we can rewrite the FICE (2.20) in the form

tt- v = E (2.21)

where

-FE __ .F)

s=(Erx-)xr= -FE and v=-sx r F+-X E(- E,
(Z+;~ FF ()

zE. + yEI/ yE. - zEy

Equation 2.21 represents the FICE in the case of rigid body motion. Negahdaripour and Horn

(1987) derived the equation in the constant irradiance case, i.e. when E = 0 is assumed.

2.3.1 Motion and Structure Equations

A smooth CP surface can be represented by a th order polynomial patch that corresponds to

the truncated Taylor series expansion of the surface in the neighborhood of the line of sight.

If the viewer frame is oriented so that the i-axis is along the focal axis of the camera, the pth

order polynomial patch is given by
P 1 oi+ j z

Z(X, Y) = Zo + (i + j)! X'OYJ X IY 3"

The reciprocal of the depth can be expressed directly with a th order Taylor expansion in terms

of the image plane coordinates z, y. If )(-P) denotes higher order terms, the Taylor series of

1/Z is given by the expression

1 1 P , J) i-E = o o i 3 1) zi~y z "- + (e(')" (2.22)
i = T - TOi+i=l ( ) xa ~
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If the nonlinear terms are neglected, the patch is planar and can be represented by 3

quantities, Zo = (0 0 ZO) the intersection of the patch with the line of sight, and Zx and Zy

that give the orientation of the patch. The normal n to the patch can be expressed in terms

of spatial derivatives of the depth Z by n = (-Zx - Zy 1)T. A planar patch representation

can be assumed if the object under consideration is a plane or a polyhedra, or if the curvature

of the nonplanar patch is small. Since a planar patch is characterized by a single normal, the

surface radiance will be uniform across the patch, if the shading variations due to a nearby

light source are neglected and the reflectance function, e.g. Lambertian diffuser, is independent

of the viewing direction.

A planar patch, in the viewer frame, can be represented by the equation

Z-Zo+ZxX+ZyY 4 R..n=Zo
R -=(r€ n) = Z (2.23)

Z -FZo

i.e. the reciprocal of the depth R. . = Z can be expressed ezactly as a linear functional in the

image coordinates r.

If the second-order terms are included in the Taylor expansion, the surface is approximated

by a quadratic patch that is specified by the point Z0, the normal n at that point and three

curvatures that can be reduced to two principal curvatures in an object frame oriented along

the principal curvatures. Unlike the planar patch case, there is a different normal at every point

and therefore there are shading variations induced by the curvature of the surface. As a result

shading information is much richer, but is much harder to use since the normal at every point

is required.

2.3.1.1 Equation, Measurement and Parameter Counting

Let us consider an arbitrary surface patch E undergoing a rigid motion specified, at time t, by

the instantaneous, constant, motion vectors t,w and let us denote a its perspective projection

onto the image plane. The surface E is specified by a Lambertian reflectance functional and a

smooth albedo px(a, 03), and is illuminated by a single light source characterized by it position

1, in the camera centered frame, and its intensity Lo. For the purpose of counting equations,
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parameters and measurements, the surface a is assumed to fully cover the inag - plane of size

(n x m).

The observables are, equivalently, the irradiance values of a sequence of images, the spa-

tiotemporal derivatives of the irradiance or the irradiance values of the first frame and the

temporal derivatives of the brightness values in subsequent frames, and we want to recover the

motion parameters t, 4, the structure of the surface Z(X, Y), or a set of parameters charac-

terizing the parametric surface patch, and, optionally, the direction and intensity of the light

source. The problem is specified by two constraint equations, the FICE (2.21) that relates

the spatiotemporal changes in irradiance to the motion and structure parameters and to the

shading variations at every point of the projected surface a, and the shading equation (SE)

that specifies the value of the image irradiance at every point of a from the source direction L,

the surface normal ft and the value of the albedo at the corresponding point of E.

For a sequence of p frames, we observe, in general, p x (n x m) independent irradiance values

from which we can extract at most (n - 1) x (m - 1) spatial gradients and (p - 1) x (n X m)

temporal derivatives. We need to estimate 6 motion parameters (the components of t and w),

4 parameters for the light source (position and intensity) 2 and n x m albedo and n x m depth

values. Naive counting would associate an unknown value to the depth and albedo for every

point in each p frames without realizing that, once a depth and albedo is associated with an

image plane point, or equivalently to a surface point, their variations in subsequent frames are

driven by the rigid motion and the points are tracked throughout the sequence. In practice, the

number of unknowns fluctuates slightly since points of the surface disappear and appear at the

edge of the image plane but this first-order effect can be ignore in global, average counting. The

previous, naive, count would suggest that a p-frame sequence produces p x n x m independent

measurements, 6+ 3+ 2nm unknown parameters and could therefore be solved using a minimum

of 3 frames ! That analysis does not take into account that some parameters cannot be estimated

independently, that a sequence of p frames does not yield p x n x m independent measurements

in most cases and that, in practice, the ratio of independent observables to unknown parameters

is too small to produce a meaningful, let alone robust, solution. Specifically, only the direction

of the translation vector can be determined since t only appears as t/Z in the FICE, or to put

2 For a distant source like the sun, only the direction 1 (2 unknowns) and intensity Lo of the source are relevant.
For a nearby source, the full position 1 of the source and its intensity are required.
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it another way, t can only be determined within a global scaling factor. Similarly, the light

source position 1, or direction 1, and intensity L0 cannot be recovered independently since they

only appear as a product, L01 or L 01, in the FICE and SE. Consequently, the intensity of the

source will be set to unity.

In order to build a robust solution, all the measurements, i.e. the full image a, are used in

the minimization and the number of unknowns is reduced by assuming a parametric surface

patch, specified by a few parameters. However, parametric surface models not only reduce the

number of parameters but can also reduce drastically the number of independent measurements.

In some cases, for specific combinations of surface illumination, source models and geometric

surface shape, the number of independent measurements is insufficient and the problem becomes

underconstrained. Specific cases will be discussed in detail in chapter 4 for planar patches and

in chapter 5 for quadratic patches. -

2.3.1.2 General Minimization Equations

Given the irradiance values and the two constraint equations FICE and SE, we can either

(a) minimize the square of the error in the FICE alone, (b) perform (a) subject to the SE

constraint, (c) minimize a weighted sum of the square of the error in the FICE and the square

of the error in the SE, or (d) minimize the square of the error in the SE alone. Scheme (a) is

the traditional least-squares formulation, as used by Negahdaripour (1986) in the case where

E = 0, and is only applicable if the changes in illumination are negligible and the spatiotemporal

variations are purely due to the texture. Algorithm (b) represents the general least-squares

formulation that allows the determination of the motion and structure parameters for a patch

with arbitrary smoothly varying albedo. The problem is set up as a constraint minimization

where the unknown albedo values are determined by the shading constraint that relates directly

the irradiance values on o to the albedo values on E. The constrained minimization (b) is turned

into an unconstrained minimization with the introduction of a stabilizer functional derived from

the shading equation. Scheme (c) is the "regularization" formulation of algorithm (a). Scheme

(d) only recovers the normal of the surface and ignores the motion information and will not be

further discussed 3. Each of the previous minimizations can be performed, when appropriate,

3Brooks9 and Horn (1985) used this approach to recover shape and source information from shading.



2.3. FULL IRRADIANCE CONSTRAINT EQUATION 53

with added parameter constraints like ilfi12 = 1 or J1 i12 = 1. These additional constraints are

required if unit vectors like the normal fi or the source direction t are estimated. In general,

the FICE depends both on the normal and the unit normal and either can be recovered with an

unconstrained minimization for n or an equivalent constrained minlimization for ft. Once n or ft

is determined, the other quantity is readily available since fi = T and n = -.-. However, in

practice, the complexity of the algebra and the numerical implementation, and ultimately the

numerical accuracy of the estimates, is highly dependent on the type of minimization performed.

More specifically, if we let

A =Et - (v.- ) -_i(,.- t) -

= ., A2dr

B = E(x,t) - p(a,,3)e(L, fi)

B ff B2dr

C =11ft1 2 - 1 and D-=1L 1

the following unconstrained and constrained minimizations can be performed:

(a) minA

(b) 47 --= min A + A(r)Bdr
I subject to B = 0, Vr E a 4/

(c) min(A + aB3), a weighting constant
a.

as well as the corresponding constrained minimizations that include additional parameter con-

straints like C and D,

minAZ
(at) a 4-- min(A+XC + YD)

subject to C = 0, D =0 0+

(b') subject to B = 0, Vr E a - a min + p(r)Bdr + XC + YD (2.24)

subject to C = 0, D = 0

where A and Y are Lagrange multipliers and p(r) is a Lagrange multiplier function.
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The minimization equations developed in this section use a generic expression for the recip-

rocal of the depth, 1/Z = C(ft, *), and a generic shading model, E(r, tj = pA(a,)e(f,, ft) and

its associated temporal derivative E = dE(x, t)/dt = p.(a, )et(,, ft, w, t). In general, shading

depends on the source direction L, and therefore I and R, the unit surface normal ft and the

surface albedo p,(a,3) , assumed to be a smooth functional of the surface coordinates. The

temporal derivative of the shading equation additionally depends on the motion vectors w and

t. For the parametrized patches considered in this work, 1/Z can always be expressed in terms

of the normal n at a specific point and other optional variables represented symbolically by *.

For example, n is the unique normal and * is nil for a planar patch, while n is the normal at

the point of expansion of the Taylor series for the patch, and * represents the curvatures at the

same point for a quadratic patch.

The next section presents a symbolic solution to the minimization problem b where the

light source direction t is known. This generic solution outlines the general procedure used

to solve such a minimization problem and gives an idea of the complexity of the resulting

equations. Specific minimizations, with explicit structure (lZ) and. shading model, and their

numerical implementations, will be presented in chapter 4 for planar patches, and in chapter 5

for quadratic patches.

2.3.1.3 Generic Solution to a Constrained Minimization Problem

Let us consider the minimization problem b with the only parameter constraint C = -O and let

us assume that the reciprocal of the depth IZ is only dependent on n, i.e. 1/Z = ((n). If we

let G(w,t, n) = Et - (v . w) - ((n)(s • t), b can be written in the expanded form

= miJ ((G(WI t, n) - pAet(t, fi, w, t))2 +p(r)(E(r,t) - pe(i, fi)))dr + A(Iij 2 -1 )

(2.25)

For an extremum of 6 we must have

0, and -=0
at
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that result in the three vectorial equations4

f&v+p \-t) (G(W,t,n)-p\e)dr=O (2.26)

Jj p.e-t (G(,t,n)-pA)=dr=0 (2.27)

Jj(s t( - - a ) (G(w'tn)- pe)dr+ A(r)pxL-Af= 0  ( 2 .2 8 )

where 13 represents the 3 x 3 identity matrix.

The Lagrange multiplier A and the Lagrange multiplier functional j&(r) can be eliminated

from (2.28) by taking the dot product of the vectorial equation with two vectors (e.g. i and L)

and by solving the resulting linear scalar system in the unknowns A and Jj p(r). The choice of

the vectors, used in the previous dot product, is shading and structure dependent and produces

a more or less complex linear system. Once the system is solved, the solution is plugged back

into (2.28) and we are left with a nonlinear system of three vectorial equations in the unknowns

w,t and ft. The specific degree of nonlinearity of each of these variables depends on the models

used but, in general, all the variables will be at least quadratic and only a global, nonlinear

method can be used to solve the system. In some cases, with some simple shading models, the

system of equations is partially linear in some of the variables and iterative mixed (linear and

nonlinear) methods can be used in these instances.

In all cases studied, the system of vectorial equations is too complicated for a direct vectorial

solution. The vectorial system is transformed into a scalar system by projecting the vectorial

equations onto suitable axes. In many instances, the best projection directions are the orthog-

onal unit vectors of the camera frame of reference (i, Sr, ). However, substantial algebraic

simplifications can be achieved with some shading and structure models by using privileged

directions. In particular, some of the vectorial equations = 0, = 0 and -- = 0 contain

rank deficient matrices whose eigenvalues are easy to compute, and projecting in the direction

of the null space of the matrix and its orthogonal direction, results in significant algebraic sim-

plifications. Once the vectorial equations are projected, the system consists of a Tational or

polynomial system of equations in the unknowns W., WY? Wz, t,, ty, tz, n., n. and n,, for a planar

patch for example. This system S can be represented globally, and more generally, by the

"For clarity's sake, the explicit dependency of some of the functionals on the various variables will be dropped
when no confusion is possible.
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vectorial equation f(x) = 0 where f = (f1 ... f,)T is the vector of nonlinear functionals in the

unknowns x = (z...z,)T E R' . In the next section we review some of the methods available

to solve nonlinear systems and discuss their drawbacks.

2.3.2 Discussion on Numerical Methods for Nonlinear Systems

The general characteristic of all available methods for solving nonlinear system of equations,

or a single nonlinear equation for that matter, is the recursive nature of the solution and the

lack of guaranteed global convergence. The convergence properties vary from algorithm to

algorithm. Very often the radius of convergence is fairly small and these algorithms perform

poorly for rough surfaces and fail to converge to the global minimum unless the initial estimate

is close enough to the solution. This problem is exacerbated by the high dimensionality of the

parameter space and the degree of nonlinearity.

Two main classes of methods are used in solving such systems: a minimization approach

where the system is solved by least-squares minimization, min g(x) = fj(x), x E Rn and
t-=1

a direct approach where the system is solved recursively while keeping the structure of the

equations intact.

2.3.2.1 Minimization Techniques

Minimization techniques can be decomposed into several classes of methods: descent methods,

conjugate-direction methods and Gauss-Newton type methods. Descent methods for g(x) are

algorithms for which the iteration decreases the function value at each step i.e.

g(x(k+l)) _ g(x ( k)) (2.29)

where g(x) : R' -* R, is a real-valued function. The general form of the iteration is

x(k+1) = x(k) - akC-1V.g(x(k))

where C& is a symmetric, positive definite matrix. A simple descent method is damped New-

ton's iteration where Ck is the Hessian of g(x). The damping constant ak varies the step length

and is chosen in accordance with (2.29). A simple and widely implemented method is steepest

descent where C-1 is the transpose of the Jacobian of g. Steepest descent chooses the direction
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of maximal local decrease of g for each iteration. It breaks down if the initial estimate lies

in a neighborhood of a nonzero minimum of g, and can be very slow. More specifically, in

the quadratic case g(x) = xTQx - xTb, the convergence rate depends on the value of the

eigenvalues of the positive definite n x n, matrix Q. The convergence rate of steepest descent

slows as the contours of g(x) become more eccentric and conversely the algorithm converges

in one step for circular contours. In particular, even if n - 1 of the n eigenvalues are equal

and the remaining one is a great distance from these, the convergence will be slow and hence

a single abnormal eigenvalue can destroy the effectiveness of steepest descent. On the other

hand, steepest descent performs nicely when only a poor initial approximation of the solution

is available. Levenberg-Marquardt (More 1977) is a composite algorithm that includes a pa-

rameter controlling the form of the iteration. For high values of the parameter, the iteration

is like a steepest descent step while for a zero value of the parameter, the method reduces to a

Newton step. This algorithm provides the speed of the Newton's iteration while avoiding the

unpredictability of Newton's in the large residual problem where a steepest descent iteration is

more favorable. Another highly popular method that is much faster than steepest descent is the

Davidon-Powell-Fletcher (Fletcher and Powell 1963), which uses a variable metric algorithm.

The second class of methods are the conjugate direction methods. They were initially

developed for linear system of equations. For the minimization of a quadratic functional g(x) =
I XTAx - bT + c, A symmetric, positive definite matrix, the basic iteration is

x(k+1) = x(k) _ ap(k)

where the p(k) are A-orthogonal and a k = (Ax(k) - b)p(k) / (Ap(k)) Tp(k). The main advantage

of this method is its speed of convergence. If the function g is quadratic, {x° } converge to the

unique minimizer of g in at most n steps, where n is the number of equations.

The third basic method relies on the Gauss-Newton iteration,

x (k+l) = x(k) + s(k)

where s (k) is defined by the equation

J(X(k))TJ(x(k))s ( k) = -J(X(k))Tf(x(k))

and J(x(k)) = ff(x(k)) is the Jacobian off at x(k). The main difference between it and Newton's

is that the Newton model is based on the assumption that g can be adequately modeled by
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a quadratic function, while Gauss-Newton results from the stronger assumption that f can

adequately be modeled by an affine function. Augmented Gauss-Newton methods exist in

which part of the Hessian matrix is computed exactly and part is approximated by a secant in

a fashion analogous to the Davidon-Fletcher-Powell algorithm

In our experiments, we implemented a modified Levenberg-Marquardt method (More 1977)

when casting the equations into a minimization problem. This algorithm is reasonably fast, has

nice convergence properties while avoiding the implementation complexity and slowness of the

conjugate direction algorithm.

2.3.2.2 Direct Method for Solving Nonlinear Systems

Two radically different classes of methods are discussed. The first class of algorithms is b.sed

on the Newton-Raphson iteration and is closely related to the minimization methods described

in the previous section. Not too surprisingly, the algorithms' performances are very similar, in

terms of speed and region of convergence, to their minimization counterpart. The second class

of algorithms is composed of algorithms based on homotopy methods.

The basic iteration is the Newton-Raphson, x(h+1) = x(k) + 6 () wheie the direction 6(k) is

defined by the linear equations f(x(k)) +J 6 (k) = 0 where J represents the Jacobian matrix of the

system of equations f. A common modification is to retain the direction given by 6 (k) but restrict

the length with the introduction of a parameter A(k), x(lk+l) = x(h) + A(k),(k). The parameter is

chosen in a way that decreases the value of g at each iteration (descent method). The problem

with this basic iteration is that the solution may converge to a point that is not a stationary

point of g(x). The basic iteration can be modified and improved with the introduction of a

switch parameter p. For A = 0, the classical iteration is unchanged while the direction 6(k)

tends to the steepest descent direction for large values of p. A good implementation of this

type of method is Powell's hybrid method (Powell 1970). In essence the hybrid method is very

dose to Levenberg-Marquardt but it does not require the explicit expression of the derivatives

and uses successive values of f,(x(k) to build up a numerical approximation to the derivatives.

The method does not impose the reduction of the sum of the squares at each iteration because

this technique depends on the scaling of g and might cause convergence to a point at which the

equations are not satisfied.



2.3. FULL IRRADIANCE CONSTRAINT EQUATION 59

We implemented this method and observed that the results were very similar to the modified

Levenberg-Marquardt minimization method in terms of speed and convergence but turned out

to be slightly more flexible when dealing with mixed systems of linear and nonlinear equations.

2.3.2.3 Homotopy Methods

Homotopy methods, also known as continuation methods or methods of incremental loading,

rely on a totally different mechanism to solve nonlinear equations. They construct a continuous

map 1 (the homotopy) from a simple function s(x), with known zeros, to the function f(x)

with the unknown zeros. More formally, let B be a Banach space and let s and f be defined on

B. The horiotopy map is defined by

4: Bx[0,1] - B

(X, A) i- $(x,)

such that I(x, 0) = s(x), I(x, 1) = f(x). Then, by solving the equation §(x, A) = 0 in B x [0,11,

one atter, +o move from the known zero of s(x) (at A = 0) to the unknown zero of f(x) (at

A = 1). There is a considerable amount of theory concerning when this procedure will work

(Ortega and Rheinboldt 1970) but in general, moving from a zero of s(x) to a zero of f(x) may

or may not be possible. For the calculation of fixed points, the supporting theory is much more

satisfactory. Chow (Chow et al. 1978) have proved that computing a fixed point of f merely

amounts to tracking a smooth zero curve of pa(A, x) = A(x - f(x)) + (1 - A)(x - a), where the

index a represents the start of the curve, and global convergence is guaranteed with probability

one. The same algorithm can be used to find zeros also, but then the global convergence is not

guaranteed. The homotopy map for zeros is pa(A, x) = Af(x) + (1 - A)(x - a).

The earliest implementation of a similar, simplified, algorithm was done by Deist and Sefor

(1967) but the idea underlying the method was first described by David~ko (1953). The success

of their method largely depends on the cleverness of the implementator: given a set of nonlinear

equations, one has to modify it to a form that can be handled analytically by introducing a set

of parameters. These simpler equations, of which a solution can be found, are then changed to

their original form while simultaneously tracing the roots. The solution amounts to the solution

of a first-order system of ordinary differential equation. Their approach is less systematic than

the homotopy mapping and only really works well for systems of equations that can be simplified
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by a single parameter.

Our implementation is based on the homotopy algorithm described by Watson and Fenner

(1980). It produces nice results in some cases but at a very high computational cost. The

algorithm needs to perform fairly precise numerical integration in the root tracing process.

2.8.3 Dynamical Frame Unwarping Incremental FICE

The full brightness equation (2.21), developed in the previous section is afflicted by several major

problems such as lack of flexibility and extendibility to multiple frames and poor performance

for widely separated frames. The FICE was derived in the two-frame case and is based on the

differentialmotion occurring between these two frames. However, in practice, there is no control

on the frame rate and the resulting motions are far from being infinitesimally small. In addition,

we want to compute the motion parameters at any instant in time (not necessarily aligned with

a given input frame) and we want to easily extend the constraint equation to multiple frames.

The first issue can be addressed by the use of multiresolution methods where the brightness

images are filtered and spatially sampled. to contract the motion. The second problem can,

apparently, easily be solved by brightness values and gradient temporal interpolation5 although-

a constraint equation formulation with a flexible virtual reference frame is easier to understand.

The last and most important problem, the use of multiple frames in conjunction with the FICE,

is unsatisfactory with the previous FICE, as shown in chapter 6, and a more sophisticated

constraint equation is required. Most of the difficulties outlined here can be resolved with the

use of a Dynamical Frame Unwarping (DFU) type of constraint equation, which is presented

next.

The DFU scheme makes use of a displaced frame difference (DFD) type of quantity (such

a DFD was introduced in section 2.2.3.2) in conjunction with an incremental computation of

the motion parameters. In the incremental scheme, only the difference between the current

estimates of the motion parameters and the true parameter is computed. Equation 2.15 is an

example of such a formulation in the special case of optical flow computation from two known

frames at time t and t + T, under the assumption of brightness constancy. The proposed DFU

is best described in the context of optical flow recovery at time t from two successive arbitrary

"The general subject of interpolation and surface fitting will be discussed in section 2.5.1.



2.3. FULL IRRADIANCE CONSTRAINT EQUATION 61

x

00 0 
x X

x

X X

x xe Au
Tu To e Ad

Figure 2.6: Geometry of velocity field frame with respect to the preceding and following bright-
ness frame

frames at times t, and ti + AT. The shading variation effects due to surface motion will be

discussed throughout the presentation of the optical flow model, while the specialization of the

equations to rigid body motion will be treated last.

Let A, be a sampling lattice characterized by the sampling vector (Th, T,, T and as:

sociated with the given brightness frame u(x, t) and let A, be characterized by the vector

(Th, 7-, Tt) T the- sampling lattice associated with the estimated velocity field frame. Let

T = t [--J -be the normalized (with respect to the interframe distance T) temporal dis-
1 r

tance between the motion field, at time t, and the preceding image (see Figure 2.6). With the

definition of r, the preceding image is indexed in time by t- = t - rTt while the following image

is indexed by t+ = t - (1 - ')T.

The motion field at, estimated from the image fields u(x, t+) and u(x, t-), is computed

at every point (xi, t) of the Ar lattice. Assuming linear motion trajectories, the 2-D vector

field of displacement is defined by at = {dt(xi, t), (x, t) E Ar} and is such that V(xi, t) E

A, at(xi, t) is the displacement between the point (xi - rat(xit),t-) in the preceding frame

and the point (xi + (1 - r)at(xi , t), t+) in the following frame. The displaced frame difference

D(xi,t, ', at(xi, t)) is defined by

D,(xi, t , , a) = h (x + (1 - at (xi, *)t+) - (xi -rat(xi, bp t i e

where i(x, t,) denotes the brightness value at site (x, tk) A retrieved by spatial interpola-
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tion. The DFD represents the unwarped difference between the preceding and following fields.

Conceptually, the preceding and following fields are realigned so that every point in the same

spatial location matches. If the unwarping is perfect, the DFD only represents the variation in

shading due to the change in orientation of the 3-D point X, that projects identicaUy into xj

in the frames t- and t+. Under the constant shading assumption, the DFD is identically zero

for perfect unwarping.

Let a(")(xi, t) be an estimate of the displacement field at the nth iteration. Using a first order

Taylor expansion of fi(xj, t), D(xi,t, r,at) can be approximated by the known D(xi, t, , a(n))

and the spatial derivatives of fi(xi, t). In fact,

D(xit, -r,at) = i(x + (1 - -)a() (1 -,)(an)-at), t+)

f(xi- -ra(n) + -(a(n)- at),
= D(x1 ,t,r,a(n)) - (a(n ) - rVXf

(1 - r)V.fi(xi + (1 - r)ac),t+)) o(I~a()- aII).

At the optimum, i.e. when at= dt the true motion field, the DFD-D(xi, t, r, dt)-is zero under

the brightness constancy assumption and is equal to t, the tem poral variation of.shading, in

the general case. In the optical flow case, the DFU full irradiance constraint equation takes the

global form,

D(xit,,, a - )- a t)(rvx f(i-ra(-, t )+(-T) , + -)a-,t+)) t. (2.30)

Equation 2.30 can be rewritten in the form

t = D(x,t',ra(")) - (a(,) _ at) (v~i,(xi +. (1 -7-)ao,),t+)+

(VxS(x, _ a(), _) - VXi(X, + (1 - )a(), t+))) (2.31)

= D(xi,t,, a(n)) _ (a()-_ at) (3 - (V( +(1-)ac-t+)

D_ (xi, t,,-,aln))-_ (a¢-)-_ at) ( Vx(xi + (I - -)a¢-), t )).

The latter approximation is valid for a motion field at = (dzt, dyt) that is either slowly varying,

i.e. lJVdztlJ and I)VdytJ! are small, or locally translational or constant. The relationship between

gradients and Hessians of corresponding points is presented in appendix B.



2.3. FULL IRRADIANCE CONSTRAINT EQUATION 63

The preceding development makes it quite apparent that the concept of a dynamically

unwarped constraint equation is not limited to two frames. Under the assumption of constant

motion (or linear trajectories in the optical flow case), it is fairly obvious how to define a DFD

with as many unwarped frames as wanted. Once unwarped by their respective displacement

with respect to a central, possibly virtual, frame, all the frames are spatially aligned and can be

stacked without any problem. If the alignment is perfect, the only irradiance difference between

each unwarped frame is due to the underlying changes in surface orientation that can readily be

computed from the rigid body motion parameters. The multiframe DFU constraint equation

is developed in detail in chapter 6.

On the one hand, the DFU concept is very attractive because of it extendibility and flexibility

as well as its increasing accuracy since, at every step, the quantities are smaller and the DFU

equation is a better approximation to the original differential equation. On the other hand,

the computing burden is far higher since, at every iteration, gradients and brightness values at

different locations not belonging to the image sampling lattice need to be computed. Section 2.5

will describe how such computations can be achieved in an efficient manner.

Having derived a DFU constraint equation for the optical flow case, our attention will be

restricted to the direct motion estimation and similar results derived in the rigid body motion

case.

Let s(r, dt, t) = (Vxu(x + dt, t) x 1) x r and v(r, dt, t) = s(r, dt, t) x r and let (w,t)

represent the true motion parameters, (c;,t) the estimated parameters and (w("),t(")) the

estimated parameters at the nth iteration. With this notation, the dynamical frame unwarping

constraint equation (2.30) can be written, for the rigid body motion, in the form

D(xj, t, r, d()) + (rv(x, rd(), t_) + (1 - r)v(xi, (1 - )d(), t+)) (() - W)+ (232)

('s(xTi,ci("), t_) + (1- r)s(x,, (1 - T)d("), t+))(t(n) - t) = E

and can be approximated, if the field is either locally constant, translational or slowly varying,

by the simpler expression

D(xi, t, r,d(n)) + v(x,, (1 - r)d(), t+)(,(n) -w) + is(xi, (1- r)d(n), t+)(t(") - t). (2.33)

Both (2.32) and (2.33) require the computation of the v and s fields at each iteration

since both fields depend on the current estimate of the displacement. The latter equation only
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requires half as much work as the former equation in computing the fields v and s since they

are only evaluated at time t+. The efficiency in calculating both fields essentially depends

on the efficiency in computing the unwarped spatial gradients Vxu(x, rd(n), t) in frame t_

and Vxu(x, (1 - r)d(n), t+) in frame t+. Section 2.5 presents a fast method for computing

the new unwarped gradients when the change in incremental displacement is moderate, that is

tId(n+1) - d(n)I S 1 pixel.

2.4 First and Second Order Constraint Equations

In the previous sections, we derived constraint equations that were based on a first-order ap-

proximation of the irradiance function, or more specifically, only used spatio-temporal gradients

of the irradiance. In this section, a second-order formulation that uses the gradients and Hes-

sian of the irradiance function is presented and an approximation of the second order terms

by a linear combination of the gradients of the preceding and following irradiance frames is

used. The second-order formulation is first derived for the classical constraint equation case,

i.e. under the assumption that the temporal variations of the shading dE/dt are zero and non-

incremental displacements are computed. The new constraint equation is then extended to the

incremental displacement computation by use of the DFD formulation. It should be noted that

the equations initially presented in this section are only meaningful for irradiance functions

continuous in both time and space. The situation is quite different once the equations are dis-

cretized on a grid. In particular, the choice of stencils or masks, for the computation of the

spatiotemporal gradients truly determine the order of the discrete equations. This issue will be

further discussed in section 2.4.3.

2.4.1 Classical Continuous Second-Order Constraint Equation

Let u(r, t) represents the irradiance at time t at the image plane location r and u(r + de, t + dt)

the irradiance at time t + dt and spatial position r + dt. Assuming that dt is a first-order

differential quantity, u(r + dt, t + dt) can be expanded into a second-order Taylor series around

the point (r, t + dt)

u(r + d,t + dt) = u(r,t + dt) + Vru(r, t + dt)dt + d T VVru(r, t + dr)dt + O(IldtI 2 ).
2 t ur
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Assuming that dt represents the displacement field between the frame t and t + dt, and that

the temporal variations of shading are zero

u(r,t) = u(r + dt, t + dt) (2.34)

= u(r,t + dt) + Vru(r,t + dt)d + O(Idtl).

Taking the gradient of equation 2.34, we obtain

Vru(r,t) = Vru(r,t + dt) + VVru(r,t + dt)dt + - Vru(r,t + d) + O(Ildt112)OX. (2.35)

- Vru(r, t + dt) + VVru(r, t + dt).

The latter approximation is valid for a motion field dt that is either slowly varying or locally

translational or constant. Combining equations 2.34 and 2.35 to eliminate the second-order

terms and expanding u(r, t + dt) into a first order Taylor series in the variable t results in the

constraint equation

u(r, t) + 1 (Vru(r,t) + Vu(r, t + dt))--d- = 0. (2.36)

Although the constraint equation 2.36 only requires the gradients of the irradiance in two

frames, it implicitly contains the second-order variations of the irradiance function and is,

therefore, more accurate and stable than the classical first-order constraint equation. Second-

order variations are incorporated into the constraint equation.by considering a smoothed version

of the spatial gradients. The spatial gradients in the preceding or following frame, depending

on the formulation, are replaced by an average of both spatial gradients. This formulation was

first introduced by Bierling (1986) in the context of optical flow computation for TV imagery.

This formulation is a special case of the previously presented unwarped equation where the

constraint equation is evaluated at a virtual frame positioned in between two real frames. The

DFU approach is more general because it computes the unwarped gradients at an arbitrary

virtual frame. Equation 2.36 corresponds t evaluating the spatially corresponding gradients

for a virtual frame situated exactly in the ddle of two real frames, i.e. r = 0, a(") = o
in equation 2.30 and the DFD replaced-by the temporal gradient of the irradiance function.

Bierling reported improved stability in displacement estimates using equation 2.36 instead of the

classical first-order equation. Additional improvements were expected and measured using the

unwarped gradients because gradients of matching neighborhoods are averaged, unlike Bierling's
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formulation where gradients of potentially unrelated regions are averaged in the case of moderate

to large displacement fields.

The parallel between the two formulations also makes apparent that the dynamical frame

unwarping constraint equation captures the first and second order variations of irradiance func-

tion although it was derived without the explicit use of the Hessian of the irradiance function.

2.4.2 DFU Second-Order Constraint Equation

Bierling's method can be easily extended to the case of incremental motion by considering the

second-order Taylor series development of u(r + a(n), t + dt) where a(n) represents an estimate

of the displacement field at the nth iteration. A development similar to the one in the previous

section yields the incremental second-order constraint equation

D + (Vru(r + a cn) , t + dr) + Vru(r, t)) (d a(s)) - 0 (2.37)

where the displaced frame difference is defined by D = u(r+ a(n), t+dt)-u(r, t) and d represents

the true displacement. Equation 2.37 is identical to (2.30) where the umwarped gradients are

replaced by regular gradients.

2.4.3 Discretized Second-Order Constraint Equation

Section 2.4.1 presented a continuous second-order constraint equation that is approximated

by first-order spatial gradients in two consecutive frames. This second-order equation 2.36 is

a better approximation than the regular continuous first-order equation 2.10 because it takes

into account both the gradient and Hessian of the irradiance data. However, when dealing with

sampled data, these equations need to be discretized and the true order of the discrete equation

depends on the type of stencils used in computing the spatiotemporal gradients. In particular,

only a naive use of intra frame first difference or centered difference stencils will produce a

different discrete version of equations 2.10 and 2.36.

Horn (1986) proposed a consistent way of estimating the spatiotemporal first-order deriva-

tives by using first differences in a 2 x 2 x 2 cube of irradiance value (see figure 2.7). If the

indices i, j and k correspond to x, y and t, respectively, the three first partial derivatives of the
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Figure 2.7: Cube of irradiance values for the estimation of the spatiotemporal gradients at the

center pixel (from figure 12-7 of Horn (1986)).

irradiance are obtained by

E.=- E,,k) + (E2+-,-+,k -+

1 ((Ei+lj,+l - Ei,I,k+l) + (Ei+,,+1,k+l - Ei,+l,k+l)))

EV= ~(I((Ei~j+lk - E1 ,3 ,k) + (Ei+,,j+1,k - E+,~)

((Ei~+l+l - Ei~,kA+l) + (Ei+1,j+1,k+l - iljkl

Bt = -((Ei,j,k+l - Ei,j,k) + (Ei+lj,k+l -Ei+ljk)+

(Ei,3 +1,k+1 - Ei,3+l,k) + (Ei+l,I+,,k+, - Ei+l. +,,k+l))

A lot of the problems in estimating consistent spatiotemporal gradients, and in particular

temporal gradients, are suppressed by the use of the DFU constraint equation that is applied

directly to the sampled data.
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2.5 Spatiotemporal Derivatives Computation

A significant difficulty with differential methods is the requirement for accurate estimates of

spatiotemporal irradiance gradients from the sampled irradiance sequences. We saw in sec-

tion 2.2.3.3 that, if the original irradiance image is suitably bandlimited and noise free, an

error-free reconstruction is possible by means of the interpolation formula

u(x, t) = EZu(xi, r) $ij(x - xi, t -7r)

where the interpolation kernel li(x, t) is the product of three ideal low-pass filters 0(a, i, T,*)

with impulse response defined by

0(c, i,Tu*) = sinc (a - iTi?)

where T." represents the sampling period in the a-dimension.

Once the continuous band-limited signal u(x, t) has been reconstructed in terms of the dis-

crete samples u,(xi, 'r), the components of the spatial gradient Vru(x, t) and temporal gradient
Ou(x, t) can be expressed by

at

OXq.r L Z', , Th)¢(y, y,, 1

Vntcx, t) = u(x1, 9 ) ( • y )(t,r Tu)

V&u(x, t) = u(x, E)( u0,
i,,r

9u(x, t) - u(X, 7-)4' z, lZ , Th) ' (y , u, T')L (t, r, T)
at

Unfortunately, real irradiance sequences are neither bandlimited nor noiseless. In particular,

we showed in section 2.2.3.3 that, in practice, the signal is never sampled fast enough in the

temporal direction, severe temporal aliasing always occurs and the temporal gradient estimates

will be poor. On the other hand, temporal aliasing is usually not too visible in moving pictures6 ,

because of the motion blurs. One way of avoiding this problem is to reformulate the constraint

equation in terms of a displaced frame difference to eliminate the need for temporal gradients

computation.

'One notable exception is the highly visible phenomenon of the wagons wheels that are turning backwards in
movies or on TV.
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The problem of estimating reliable gradients from sampled noisy, possibly aliased data is

far from being solved and many tradeoffs have to be considered before deciding on a method.

A wide spread and computationally cheap technique is to approximate the gradients by finite

differences. In that case, the computation of gradients is equivalent to convolving the irradiance

images with a filter mask, or stencil, and can be implemented very efficiently since most of the

stencils used have very small supports. Typically, stencil support for gradient computations

range from 1 by 2 to 5 by 5.

An "alternate" solution, very much in favor in recent motion estimation work (Martinez and

Lim 1986, Krause 1987), is to parameterize the irradiance function by fitting a surface to the

data and computing the spatiotemporal gradients from the parametrized, continuous function.

A close look at these two methods reveals that, in most cases, they are identical and that the

more complex surface fitting method is only justified in particular cases. A detailed discussion

of the topic will be offered in section 2.5.2.

2.5.1 Surface Parameterization

The problem of finding a local, continuous parameterization of the sampled, noisy irradiance

function is equivalent to the problem of designing an interpolation filter that performs noise

reduction during the reconstruction process. There is no optimal way of reconstructing a con-

tinuous signal from noisy, aliased observations. Instead, we will consider a specific set of N

orthogonal interpolation functions %ki that simplify the parameter estimation while offering a

flexible and adequate fit to the irradiance function. The irradiance function u(x, t) is approxi-

mated by the parametric signal u(x, t) defined by

N
ia(x,t) -- U~x,)P~ - xt- (.8

i=1(2. 38)
= 1T

-UTT,

where U represents the N-dimensional vector of signal parameters and P represents the vector

of the N orthogonal basis functions.

The vector U is determined by minimizing the error between the observed and predicted
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irradiance samples. The function that is minimized is

S(u, (X,r) _ UTI(X, T))
(x.,i)EWx x W,

where Wx and Wt respectively represent the spatial and temporal analysis window used in de-

termining the signal coefficient vector U. In order to obtain robust estimates of the coefficients,

the analysis window is chosen large enough to overdetermine the fit, that is, to supply more

observations than necessary to uniquely determine the coefficient vector U. Overdetermined

fitting essentially performs a low-pass filtering of the irradiance function and reduces the noise.

The least-squares estimate is easily computed and is given by

U ( pT E ( Pu. (xir) = A- 1 b. (2.39)

The matrix A = E qr is independent of the data and is constant if the current pixel, on

which the window analysis is centered, is used as the origin. Therefore, the matrix A- 1 can be

computed off-line in advance and only the vector b needs to be computed on the fly. Efficient

computations of b are possible depending on the choice of the basis functions.

A versatile and efficient set of basis functions is a set of orthogonal polynomials z'yjtt.

Polynomial curve fitting has been used both by Martinez (1986) and Krause (1987). The

choice of the specific degrees of the polynomials is a tradeoff between computational complexity

and accuracy in modeling the irradiance function. A high order spatial fit ziyj allows very

accurate modeling of the spatial variations of the irradiance function; a high order temporal

model increases the flexibility in tracking the variations of the irradiance from frame to frame.

Experimental evidence shows that a quadratic spatial fit, that is fi(x) = uo+u~x+u i+u .z 2 +

uZYZY + u.y 2 and ,T _ (1 z y zy2 zY y 2 ) for basis functions, is a reasonable compromise.

A higher dimensional model is not advantageous because, in many cases, the data are noisy

enough that a higher than quadratic fit produces worse results and a lower order fit (planar)

is too crude to model the spatial irradiance variations. In the DFU formulation, irradiance

frames are dynamically unwarped; the unwarped temporal slices, within the analysis window,

become very similar as the estimates of the displacement are refined. In fact, at the optimum,

the only temporal variations are caused by the -temporal variations of the shading model. For

this reason, the temporal variations of the model are chosen to be at most linear. Higher
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than globally quadratic basis functions (tz 2, tzy, ty 2) are discarded because no performance

improvements are observed in keeping the full 12 basis functions given by (if, t4). As a result,

the vector T, of orthogonal basis functions is chosen to be !FT = (1 Z y t zt yt Zy Z22 y2).

With this choice of basis functions, the most efficient scheme for computing the vector b

is to use a sliding-block technique and to shift the center of the spatiotemporal window to

(0, 0, 0). Components of b that are independent of z can be computed by sliding the window

along the i-axis. At each step, the next value is obtained by subtracting out the effect of the

first column at the left edge and adding the new column to the right of the analysis window.

A similar method is used to compute the components of b independent of y by sliding the

window along the k-axis and subtracting and adding top and bottom rows. In this fashion,

only the b. component needs to be computed with a full summation at each point. Further

computation savings are achieved by precomputing the components bi, b2, bu, bn, b , by in

each frame and only performing the temporal summation to obtain bt, b..t, b, on the fly after

the frames are unwarped by the current displacement value. However, in practice, the frames

are not unwarped but indices in the various frames of coefficients are shifted by the value of

the displacement. The precomputation and storage of the primary components of b result in

substantial saving in computation in the incremental DFU method where the gradients need

to be evaluated many times at different offset locations during the iteration. The gradients are

computed from the parametrized irradiance function by differentiation of equation 2.38. With

the chosen basis function the gradients are simply expressed by

au = U. + 2zU=2 + yUy +tUxt

.u = U, + 2yU ,2 + zUay + tU . (2.40)8y
au
T- = Ut+ zUt+yU t

If the gradients are only required at the original irradiance sampling lattice points, the partial

derivatives in equation 2.40 are evaluated at the spatial location x = (0, 0),

au U Y + tU yt

FYOu
-- = U , +trU,

a.. Utat
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In order to provide the fastest gradient evaluation for the usual case, i.e. computation of the

gradient at the central pixel, midway between the two real frames, the parameterization coeffi-

cient vector U is temporally offset so that t = 0 corresponds to the temporal position midway

between the two frames; the spatiotemporal gradients are given directly by the coefficients

(U., UY, Ut) of the parameterization coefficient vector.

The next section focuses on the relationship between surface fitting and the stencil method

of computing derivatives.

2.5.2 Relationship Between Stencils and Surface Fitting

At first glance, it appears that the surface fitting method is a much more flexible and accurate

method than the stencil method since a least-squares fit for each point of the irradiance field

is computed and the resulting coefficients are used to compute the spatiotemporal gradients.

However, a closer look reveals that the two methods produce exactly the same results in most

situations at the expense of a far higher computational cost for the surface fitting technique. In

many cases, only the gradients at locations falling on the sampling lattice grid and at a fixed

temporal position are computed. For this case, at most five coefficients of the parameterization

are use0i (U., UY, Ut, U, Uyt); the computation of the gradients is space invariant. Then,

the comiputation of the gradients with the surface fitting method and with a fixed stencil method

are identical. Equation 2.39, which computes the values of the coefficient vector U in terms

of the , asis functions and the sampled data, is in fact an equivalent mathematical expression

of the convolution of the data with a fized filter mask determined by the choice of the basis

functic.is and the size and shape of the spatiotemporal analysis window. The matrix A-' is

fixed, space invariant and only depends on the basis functions and the size of the window7 ,

while the vector b both depends on the vector P and on the data. Vector b can be rewritten

in the more explicit form

b=QD

where Q = (fP(xj,tj) P(x 2, t 1 ) ... T1(x,,,t,,)), is the matrix of the basis vector W evaluated

at each arbitrarily numbered point (xi, ti) of the analysis window in the local pixel-centered

coordinate frame, and DT - (u(xI, t1) u(x 2 ,t2) ... u(x,,,t,)) represents the vector of

?This statement is only true when A is evaluated in a local coordinate system centered at the current pixel.
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the values of the irradiance function evaluated at the same points. Appendix C symbolically

computes the matrix A for the chosen basis functions for a general and symmetric window and

gives the numerical values of the matrix and its inverse for 3 x 3 and 5 x 5 spatial windows.

2.5.2.1 Example of Stencils Generated by Surface Fitting

In this section, the results of appendix C are used to show what types of stencils are implicitly

used in usual surface fitting configurations. A-' denotes the a,)3 element of the inverse of

the A matrix where the elements are indexed by the basis functions (eg. A-',) and the
vector - (Pp, P S p P T p !p p )T represents the spatial summation of

the product of the !? basis fimctions with the irradiance function within the spatial analysis

window in frame i, that is P,' = E u(x, ti), P'- -Z zu(x, ti) etc. With this notation,
Wx WX

the vector b is expressed by

pti t, E E~l E Ep, E ptj

t t t t t t t

Let us examine the value of the temporal coefficient Ut. For a symmetric, square window

(that is, W, = [-k..O..k] = W, and Wt = [-l..O..]), U, simplifies to

Ut = A-' (z t, + A-' (E tP") (2.41)

For a 2-frame temporal window (t = 0 and t = 1) and an N x N-point spatial window,
A-' = -2A- 1 =p, = pO P p , tp, Pt'+ and equation 2.41

-~ ~1,t Ty +t ip"!

evaluates to

= 1, (1) P(Xt0)

i.e. the temporal gradient is computed by the average of the frame difference over the N x N

window. Similarly, the spatial gradient in the first frame is expressed by

VWU(Xt) T 1
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and represents the N line (row) average of the N/2 centered differences. For example, with a

3 x 3 x 2 analysis window, the corresponding stencil is

-1 0 1 -1 -1 -1

x -1 0 1 0 0 0 (2.42)

-1 0 1 1 1 1

2.5.2.2 Advantages of Curve Fitting

In the previous section, we saw that surface fitting has no advantage over stencils if the only

task is to compute the spatiotemporal gradients at lattice points; it is a waste of time to

determine a local parameterization of the surface. The major advantages of the continuous

parameterization of the irradiance function are the direct evaluation of the function and gradi-

ents at non-grid points without interpolation and the cheap computation of multiple irradiance

values and gradients at neighboring locations from a single local parameterization. The latter

feature is very important and desirable in the DFU method because it provides a fast way of

evaluating multiple gradients at low cost within the inner incremental parameters computation

loop. Once the iteration has reached the correct parameters within one pixel, the same local

parametrization can be used to compute the gradients by equation 2.40 and convergence to the

optimum parameters is very fast.

Finally, the next section explores the parallels and differences of surface fitting and direct

interpolation of the irradiance function and its gradients.

2.5.3 Approximation versus Interpolation

The previous discussion highlighted the major advantage of the surface fitting method as op-

posed to the stencil technique: the determination of a continuous signal model that approxi-

mates the irradiance function. This property is essential in the DFU algorithm because most

of the computations occur at neighboring, non-grid points and the continuous, local approxi-

mation of the irradiance field allows efficient irradiance and irradiance gradient determination.

An alternate path in obtaining a continuous model of the irradiance function is to use spa-

tial interpolation. One fundamental difference between interpolation and surface fitting, or

approximation, is that in the former case the values of the interpolated function and of the
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original function match at the sample data points (e.g. Lagrange interpolation polynomial).

One drawback of interpolation is that, in the case of noisy data, it makes little sense to match

the noisy values and it is preferable to have a global approximation of the data and interpolated

points. The problem can be alleviated by first smoothing the data with a low-pass filter before

interpolating. Low-pass filtering is implicit (see section 2.5.1) in the process of surface fitting.

A more global way of looking at the problem is to realize that both interpolation and surface

fitting are special cases of the linear filtering problem of noisy, sampled data.

Let us examine the properties of the linear (in the system sense) bilinear, biquadratic and

bicubic interpolator that models the irradiance function by a first-, second- and third-degree

surface. Since these operations are separable, only the 1-D case is discussed. Once the surface

is modeled, the gradient estimates at arbitrary locations are inferred from the local irradiance

model and, due to the linearity of the system, the spatial gradients are linear functions of deriva-

tive of the impulse response of the filter. The three linear (in the system sense) interpolators,

linear, quadratic and cubic are Lagrange polynomial interpolators. Let g(x))iED represent the

values of the discrete function g for the points xi belonging to the domain D. The Lagrange

interpolator functions Jju,(h), §4 a(h) and §,,b(h) are defined by

glj.(h) = (1 - h)g(Xk) + hg(Xk+l)

(h) = (h - 1)(h - 2) h(h-1)

2 -2 gk)
h(h- 1)(h-2) (h- 1)(h + 1)(h-2)

6 2(zk)
h(h - 1)(h - 2) g(z,+2) + h(h - 1)(h + 1)g(Xk+s)

2 6~k2

where h E [zk, zk+ j. The interpolation kernels are inferred from these interpolator functions

and the impulse responses are given by the expressions

Linear Interpolator u(z) = I -[z I  for 0 < 1 I < 1

= 0 outside

u(z) = -IX12 + I for 0 < 1:1 <

Quadratic Interpolator = _- I12: _ [z + 1 for 1 < IzI <

= 0 outside
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1 1

U(Z) ?1 2r- 14,+ 1ZI+lI for G < 1j<I
Cubic Interpolator f - .Z.I + IZ,2 - 1zj + 1 for 1 < zI: < 2

= 0 outside

and the impulse responses of their derivatives are obtained simply by differentiating the impulse

response with respect to the variable z. Figure 2.8 (a) shows the impulse response of the

linear, quadratic and cubic interpolators. Figure 2.8 (b) displays the impulse response of their

derivatives. Note that the linear and cubic interpolators have continuous impulse responses

and that the quadratic impulse response is discontinuous at z = -1.5, -. 5, .5 and 1.5, while

the impulse response derivatives are discontinuous for the linear and cubic interpolator but

continuous for the quadratic interpolator. Experiments have shown that motion estimation

algorithms are far more sensitive to gradient discontinuities than irradiance discontinuities.

Discontinuous gradients can produce instability and divergence of the algorithms. Bilinear and

bicubic interpolators have consistently produced far poorer results than the biquadratic one.

Algorithms tend to be unstable with the former interpolators and badly behaved optical flows

are produced when these interpolators are implemented in optical flow algorithms.

If the extra accuracy of the bicubic interpolator is required, it is possible to design an

bicubic C 1 interpolator. Keys (1981) interpolator is a bicubic interpolator that provides both

a continuous impulse and continuous derivative impulse (see figures 2.9 (a) and 2.9 (b)). In

fact, Keys' interpolator matches the Taylor series development of the function at the origin

up to the third derivative. Keys and biquadratic interpolators tend to perform equally well

for optical flow computation although the optical flow produced by the Keys' interpolator is

slightly smoother.

Quadratic surface fitting on raw data and Keys cubic interpolator on low-passed data, have

comparable computational complexity and give similar results when used in the FICE method.

However, the quadratic surface fitting scheme displays a clear advantage in the DFU method

because the fit is computed using multiple unwarped frames that increase the noise smoothing

and produce a more accurate parameterization of the irradiance function than the one generated

by the pure intra-frame Keys cubic interpolator. After testing different interpolators, quadratic

surface fitting was used exclusively in the implementation because it offered the most flexibility

and very good results with noisy data at a reasonable computational cost.
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Figure 2.8: (a) Impulse responses of the linear, quadratic and cubic interpolators, (b) derivatives
of impulse response of the linear, quadratic and cubic interpolators
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Figure 2.9: (a) Impulse response of the Keys cubic interpolator, (b) derivative of impulse
response of the Keys cubic interpolator.
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2.6 Summary

This chapter derived a differential constraint equation that links the irradiance spatiotemporal

gradients, the motion and structure parameters and the temporal variations of the shading

model of the surface. The constraint equation was derived for a general surface, or equivalently

for an arbitrary depth map and a generic shading model. The surface was then specialized to

be a polynomial patch in order to characterize it by a small number of parameters that could

be estimated directly. Several constrained and unconstrained minimizations were presented in

the general case for polynomial patches and one of the most complete and general models was

solved to explicitly derive the system of vectorial nonlinear equations that defines the motion

and structure parameters. The complexity and structure of the nonlinear system was described

and several potential numerical methods presented and evaluated in terms of their ease of

implementation, convergence properties and speed. Finally, the computation of the irradiance

spatiotemporal gradients was discussed in detail and the advantages and drawbacks of several

methods argued and compared in terms of their behavior in the presence of noise, efficiency in

computation and flexibility.
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Chapter 3

Shading Mode.s

In general, the reflectance function is very complex and cannot be modeled easily. One possible

approximation for the image irradiance is to consider it as the sum of an ambient (indirect) light

term and of incident (direct) light term that is composed of the weighted sum of Lambertian

and specular components. The ambient illumination represents the light incident from the

environment, i.e. reflections of the direct light from all the materials in the scene, while the

incident illumination is the light originating from specific light sources with no intermediate

reflections. In practice, ambient light is not easy to estimate and subtract out but is an irrelevant

issue when differential techniques to estimate the motion are used.

The use of specular reflections in conjunction with motion estimation is not easy and might

not provide useful and reliable information. One of the problems is that the resulting expres-

sions are very cumbersome and quite useless. Computer graphics has produced very realistic

models for specular reflections and the more realistic models, like Bui-Tong's (1975) or Blinn-

Torrance's (Torrance and Sparrow 1967), are very powerful in image synthesis but are rather

awkward to use in analysis. Another problem is the unreliability of the information: specular

and glossy ref ,ions vary greatly with surface finish and a smudge or a fingerprint can change

them a lot. Moreover, unless one is very careful in acquiring the data, sensors can saturate, in

which case the data represent the sensor properties, not the highlight characteristics.

If the only goal is to eliminate the undesirable specular reflections, a possible segmentation

of a patch into Lambertian and specular surfaces can be based on the heuristic that, most of

the time, the light sources are "white" and a specular reflection corresponds to an image of

81
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the source and, therefore, appears to be very bright and achromatic. If we are given a color

representation of the data (like RGB or XYZ) we can compute the chromaticity components

(rgb) or (xyz) and segment the latter based on the occurrence of bright, equal chromaticity

patches.

In the rest of the thesis, we will assume that we are dealing with a purely Lambertian

surface or a segmented Lambertian surface where the purely specular and glossy regions have

been removed. Such a model is a good approximation to real data and allows us to account for

the variations of irradiance due to shading in the constraint equation.

3.1 Lambertian Model

In general, t' amount of light captured by a surface patch will depend on its inclination relative

to the incident beam. As seen from the source, the surface is foreshortened and its projected

area is its true area multiplied by the cosine of the incident angle i. Thus the irradiance is

proportional to cos i. In order to have the radiance of the surface patch proportional to cos i,

we need a surface that reflects all the incident light and appears equally bright from all viewing

directions. The ideal diffuser, or Lambertian reflector, is such a surface.

3.1.1 General Larnbertian Model

If we assume that the Lambertian surface has a continuously varying albedo p,\ with respect

to the surface coordinates (ca,j3) and a radiance (R), that can be expressed in the observer

frame, the shading equation can be written as

E(r,t) = £(R) = p,(a, 0)Locosi = p,(a,/)L(L. ft) (3.1)

with
L= (l-R) and L=I-R

II- RII

where I represents the source position in the observer frame, R is a point on the surface measured

in the observer frame, ft is the unit normal at the point R,. and L0 is the intensity of the source.

With these definitions, L represents the illumination vector from the point on the surface to

the light source.
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The irradiance equation (3.1) is the product of two distinct terms, a purely surface dependent

term p,\(a,j3) that represents the markings or texture of the surface, and an illumination term

L0 (L • A). In general, the illumination term depends both on the position and normal of the

illuminated point on the surface. Thus the spatial shading variations are due to the relative

position of the point with respect to the source and the local orientation at that point. The

spatial variations of the irradiance, with a nearby-source, are complex to analyze even for simple

surfaces like planar patches. In most cases, the source will be far enough from the surface (i.e.

L zL 1) and the shading variations will only depend on the local curvature. In particular, for a

planar patch, the ill- mination term is constant for a distant source and the irradiance variations

are purely due to the texture.

We saw in Section 2.3, that in the FICE, the shading effe-ts are represented by the temporal

variations of the irradiance equation. The temporal derivative of the shading can be expressed

(see appendix D) as

- p(a,3)Lo (((w x R t). fi)+(L. (w x ft))-((w x R+t).)(t. f))

_p,\(a,j3)Lo ([,,i+(.-(t-( 1).(3.2)- IL11

where the term E, is due to rotational motion and the term Et is due to translation. The

notation [L,,l] represents the mixed product (determinant) of the three vectors L, w and

R.

The rotational component of the temporal derivative can itself be decomposed in two distinct

elements, a "distant" term E7: = [1,w, ij/1fLII and a "near" term (L. h)[Lw,R]. The former

term can be approximated by [l,w, h if IJR1H/I1 < i and captures the contribution to the

temporal shading variations of a infinitely distant point source, while the latter term represents

the temporal variations of the shading induced by the nearby spatial variations of shading.

The translational component only depends on that part of translation orthogonal to L,

t = t - (t - L),. This result could have been predicted directly since a translation does not

change the orientation of the patch; the incident angle of the rays is the same in the case of

a translation along the rays and irradiance values of a Lambertian surface only depend on the

relative angle between the surface normal and light source direction.
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The expression (3.2) for the temporal shading is, in general, complicated to use in the

constraint equation. Part of the complexity is due to the presence of the variable R (explicit in

P , and implicit in ILl1). In fact, expressing R in terms of the image plane variable r, R = Z-

makes explicit the dependency of P on the depth, or structure. To remove this dependency,

special cases of motion, like pure translation or rotation, and/or approximate expressions for

t need to be considered.

3.1.2 First-Order Lambertian Model

In most situations, the relative distance of the light source from the object and object to camera

is very small i.e. IIR1/I1lll '< 1, and t can be approximated (see appendix D.2) by a first-order

Taylor series with respect to IIR1/IlI,

E = pA(a,)Lo ([]W, -] + (]. ] 11 R1 - (ti.f ii) - (3.3)

where t[ = t - (t- 1)1 and A = i* is the unit viewing direction vector.

Unlike the rotational component Ew, the translational term -pLo(t_ . )/llj in (3.3) only

depends on the position of the light source, on the translation and orientation of the patch and

is independent of the-structure of the patch.

Assuming that the light source is at infinity (11111 --+ oo), in the direction 1, the previous

equation simplifies greatly to

S= p,(a,/3)Lo[,wfi]. (3.4)

The previous expression (3.4), for a distant point source, can be derived directly from the

distant Lambertian shading equation,

E = p,(a,0)Lo(1. ft) (3.5)

by differentiation with respect to time

p= I (0 . = pJL0((w x h) = p, Lo[w, fti.
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3.1.2.1 Lambertian Model With Hemispherical Source Along I-Axis

In this model we assume that the light source is an hemispherical uniform source along the axis

I The shading equation, see (Horn and Sjoberg 1979), takes the form

E(r,t) = C(R) = pf3)Lo(1 + (fi

and the temporal variations of this shading model are expressed as

1
E = p,(a,/3)Lo[w, ,fi. (3.6)

This hemispherical source model can be generalized to an arbitrary light distribution. It can be

shown that an arbitrary light distribution on a unit sphere is equivalent to a single, infinitely

distant, collimated light source in a direction 1. The punctual light source direction I is defined

by the unit vector that links the origin of te sphere to the center of mass of the light distribution

on the unit sphere.

It is remarkable that equation 3.4, for the general distant Lambertian case, and equation

3.6, for the hemispherical extended source along the I-axis, are formally identical within a

multiplicative constant factor 1/2. However, this formal identity is only superficially true. In

fact, the irradiance of a Lambertian surface illuminated by a collimated source is expressed by

E(r, t) = p(c,/)Lomax(O,( fi)),

with the result that the temporal variations of the irradiance of a Lambertian surface for a

distant source and a uniform hemispherical source along the I-axis are only identical, within

a scale factor, for surface orientation such that (I . fi) > 0 and differ otherwise. Figure 3.1

shows the irradiance function as a function of the product (I. fi) for a distant source and

an hemispherical source. In the following sections, distant point sources and hemispherical

extended sources along the I-axis will not be distinguished although they are not identical.

3.2 Attenuated Lambertian Model

The Lambertian model presented in the previous section 3.1.1 only applies to sources and con-

ditions where the apparent brightness of the source does not significantly change with distance.
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Figure 3.1: Lambertian reflectance for a collimated distant source and for an hemispherical
uniform source

When dealing with artificial light sources the attenuation of the intensity of the light source

with distance must be taken into account. The power emitted by a light source is dissipated

isotropically in a spherical volume resulting in an effective attenuation that is a function of the

inverse of the square of the distance betweeni the light source and the object. This attenuation

is not an issue for a natural light source like the sun because the sun is so far away that no

changes in attenuation can be measured on earth.

In general, additional attenuation is produced by scattering and diffiaction but its study

in different mediums is complex and requires the knowledge of the physical properties of that

medium. In this section, we consider a case of practical importance where the attenuation needs

to be taken into account, the case of underwater photography or filming, with artificial lights.

3.2.1 General Attenuated Model

In clean, undisturbed water, a Lambertian surface illuminated by a punctual source can be

modeled by a Lambertian reflectance function where the apparent intensity of the light source

decreases as the square of the distance between the source and the patch. This model does
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not take into account the phenomenon of light scattering and diffraction caused by microscopic

particles in suspension in the water and the variations in transmission and refraction indices

of the water due to temperature gradients and underwater currents. However, this attenuated

Lambertian model is a reasonable approximation of underwater vision and the irradiance of the

Lambertian surface can be expressed as

E(r,t) = A-j(L- (3.7)"

where R = IIRII represents the distance from the camera to the patch.

It is straightforward to compute the temporal derivative of equation 3.7 using the expression

of the temporal derivative of the general shading equation. If E2enera Lamb represents the

temporal derivative of the irradiance of a Lambertian patch, as defined by equation (3.2), the

underwater shading equation can be written as

I EGeieral Lamb - 2piX0L fi)(R- t)'T2E~andLm R4

pALo (tri +- ( t) . (3.8)

R2 (L(I ([,W ll + (t- ii) t, W, 1 (tR 2  i

The resulting expression is similar to the simpler expression (3.2) but is of little practical

value unless reasonable simplifying assumptions can be made. Unlike the regular Lambertian

case, it cannot be assumed that the light source is distant, since beyond a small zone, all light

is absorbed by the water and none would reach the object. On the other hand, the problem

can be simplified by assuming a realistic, particular geometry of light source and camera.

3.2.2 Light Source, Viewer Approximation

In a typical underwater set-up, the lights are mounted directly on the camera and, to a first

approximation, light and camera can be assumed to be coincident. Under this assumption, the

light source and the camera are located at the origin of the coordinates, L = -R, I = 0, and

the general equation 3.8 simplifies to

= pxLo _
-R-3 -((t.- ft) - 3(ft t)(A . fi))(39

R. p 33A -i 3 13t

-~ ( -k'l 3L 3 A ti)=( (13 t) (.9
'Although convenient for a single manned camera, much better results are obtain by widely separating the

camera and light sources.
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The latter expression is formally equivalent to a Lambertian-like expression where the light

source vector t is replaced by (t - 3(A.. t)A) /R 3 , a space and motion variant attenuated "light

source". Since the light source and the camera are spatially coincident, the temporal variations

of the irradiance only depend on the translation of the object and not on the rotation measured

in the camera frame.

3.3 Constraint Equation vs FICE

The validity of the classical constraint equation (CE) has been qualitatively challenged due

to its unjustified use. Opponents of the CE argue that the brightness constancy assumption

is physically impossible and there is always some variation of the irradiance as the object or

camera moves. Proponents argue that the CE is a good approzimation of the physical reality

and use optical flow estimates computed from the CE as evidence.

Part of the confusion is that although the experimental conditions and the set-up of the

problem widely vary, the CE is used indiscriminately. At least three factors are important in

determining the validity of the CE: the physical structure of the problem, the nature of the

surface and the type of motion. Two different classes of problems are generally considered,

the passive navigation problem where the environment is fixed relative to the moving observer

(camera) and the situation where an object is moving in the environment with respect to a fixed

camera. These two problems are in general not the inverse of each other. They are equivalent in

a kinematic sense, i.e. the motion of the camera with respect to the environment is the inverse

of the m .on of the environment relative to a fixed camera, but they are not, in general,

photometric inverses because of the light sources and because of the reflectance properties of

the objects. In the passive navigation problem, the overall environment moves with respect to

the camera, but imaged objects are fixed relative to the light sources. Therefore, there are no

surface shading variations induced by the relative motion of the object and light sources.

The second factor, the nature of the surface, can be divided into three distinct components:

the surface reflectance property, the albedo and the shape of the surface. The surface reflectance

of the imaged object dictates the amount and type of shading variations that occur when either

the light sources move relative to the object, the camera moves relative to the object or both

happen. We saw in section 2.1.2 that the surface reflectance is described by the bidirectional
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reflectance distribution function that depends on both the illumination and yiewing directions.

For example, the brightness of a Lambertian surface is independent of the viewing direction,

therefore no temporal irradiance variations occur in the passive navigation situation and the

constraint equation is exact. In general, no surface is truly Lambertian but the changes in

irradiance caused by the variation of the viewing angle are usually negligible. The albedo of

the surface, or texture, is a major factor in determining the validity of the CE approximation.

Horn (1988) shows in the passive navigation case, using a sinusoidal grating on the image plane,

that the changes of brightness of the surface with time are small as long as there is significant

contrast at high spatial frequencies, i.e. the image spatial gradients due to the texture are

dominant in the CE with respect to the temporal changes in shading (texture driven CE).

The approximation becomes worse as the surface markings become weaker. At the limit, for a

textureless surface, all variations are due to the shading (shading driven CE) and, by design,

the classical CE cannot deal with these cases.

Surface shape is another important element in determining the validity of the CE approxi-

mation. The approximation is the best for a planar surface and is increasingly worse for highly

curved surfaces. Shading and its variations depends on the normal of the patch; as the normal

varies rapidly, the spatial and temporal variations of shading become larger.

The third factor, the type of motion, is also a key element in the validity of the CE in

the case of an object moving relative to the light sources. Intuitively, rotational changes are

expected to be substantial because rotation causes a change in the surface patch orientation and

therefore, a modification of the irradiance. On the other hand, few variations are anticipated

in the translation case. This intuitive analysis is consistent with the expressions obtained for

the temporal variations of the shading (equation 3.2 in the general case). In fact, looking at

the first-order expansion (3.3) of the general equation (3.2), shows that the temporal variations

of shading depends on the rotational motion w with a zero-order term CL A] , but on the

translational motion t with a first-order term (t . ft) 1

The analysis of the effects of the temporal variations of the shading can be carried out

analytically to some extent and experimentally in a broader sense. The next section focuses

on the analytical analysis of some configurations of texture and shading models in order to

evaluate the importance of the various terms in the FICE.



90 CHAPTER 3. SHADING MODELS

3.3.1 Analytical Analysis of the FICE

The goal of the analysis is to separately compute the three components of the FICE and evaluate

their relative magnitude as a function of the texture and the motion. The three constituents

of the FICE are (VrE -/i), the product of the spatial gradient with the optical flow, Et, the
dE

interframe change of the irradiance and L, the rate of change of the irradiance. In order to

compute the various quantities in terms of texture, the texture of the object on the image plane

needs to be tracked to express the image coordinates of the projected object in terms of the

original surface coo, iates of the texture on the object.

In general, Et is the most complex quantity to evaluate analytically because it relates the

irradiance of two separate surface points that have different albedos and surface normals. VrE

is complicated to compute for a general surface since the variations of irradiance are due to

the variations of both surface normals and texture. However, for planar surfaces, the normal is

constant and the spatial variations are only due to the spatial variations of the albedo, unless

the source is close to the surface and each point of the surface sees a light source at a different

spatial location. E relates the irradiance of two image points that represent the same point

on the object and, therefore, have the same albedo but a different unit normal and is easily

computed.

In order to compute the different quantities of the FICE in terms of the texture on the

surface, we need to express the geometric relationship between the surface coordinates UT -

(u, v, w) of the object, in which the texture is fixed, and the world coordinates X or image

coordinates x. For clarity, the equations are shown for the planar case only. The formulation

for a general surface is similar, although the mapping between the surface and world coordinates

can be much more complex. Let us consider the rotation matrix P and the translation X0 such

that

X = PU + X0

or, equivalently,

U = PT(X- Xo). (3.10)

It is always possible to find a nonunique matrix P and vector X 0 that maps the arbitrary plane

in space to a frontal plane at the origin of the world coordinates, i.e. the 2-D surface coordinates
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uT = (u, v) coincide with the 3-D world coordinates XT = (X, Y, 0) and with the 2-D image

coordinates xT = (z, y) at the origin. Equation 3.10 enables us to directly compute the albedo,

given by a function of the surface coordinates, at an arbitrary point X of the object. In most

cases, it is more convenient to directly consider the relationship between the image and surface

coordinates, since we observe the irradiance function E(x, t) which is expressed as a function

of the image coordinates. If ft represents the unit normal of the planar surface, we have the

dual relations (assuming a unity focal distance)

1

r= (PU.1)+ Zo(PU + Xo)
U p T z. *

U pT X0 . ftr- X) (3.11)

The irradiance spatial gradients are computed from the albedo gradients by means of the

Jacobian Jux of the transformation from x to u. For a planar surface defined by the normal it

and illuminated by a infinitely distant light source in the direction 1, E(x, t) = Lo(i. ii)p(u).

The spatial irradiance gradients are expressed by

VxE = Lo(I ' fi)JuxVup

-Lo(i. - ((t) i) -ftXT) P + ( jP T)) vUp,ol r. i2 (((X: -l1

where P = 12,3 P13 ,2 is a restriction of the rotation matrix P, fiT = (P 3 1 , P 3 2 ) is the vector

formed by the first two components of the last column of the matrix P and (X 0 . ft) = 1
(rt) Z

Using the expression of optical flow (equation 2.9) rewritten in the matrix form

i = Aw + T

where

A = -(1 _ Y and t' (: t,

the term (VxE- i) can be computed in term of the motion parameters, the image coordinates

and the analytical expression of the albedo spatial gradients

(r. w) A + 1 T ) x fl)12 - fix T)p + iipT)) V.p. (3.12)
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In the case of a distant light source, the temporal variations of the shading are given by

(3.4), and can be rewritten in the form

2(x,t) = Lop(u)[,w,f,] (3.13)

with u is expressed in terms of the image coordinates by means of (3.11).

Equations 3.12 and 3.13 allow the computation of the two terms t and (VxE • i-) as a

function of the motion and texture. The ratio 6 of t and (VxE. ) that can be computed using

(3.12) and (3.13) when the denominator is nonzero is a meaningful quantity in judging the

accuracy of the CE approximation. This criterion is used in the examples of the next section

to display the accuracy of the constraint equation.

It is difficult to draw general conclusions from the expressions (3.12) and (3.13) because

their analytic form is fairly complex in the general case. If the simplified case of a sinusoidal

grating p(u) = (1 + sin(f- u)), where fT - (,g) represents the vector of spatial frequencies of

the grating on a frontal plane (i.e. P = 13) is used, the previous equations take the simplified

form

k = Lo[,w, .] (I + sin(f. x)) (3.14)

and

(VxE . i) = Lo(f + g~) cos(f, x). (3.15)

Equation 3.15 suggests that the term (VxE . i) of (3.14) can be very large compared to the

term t due to the multiplicative factor (f* + g), provided the motion is not parallel to the

ridge of the grating, i.e. (fi + g ) = 0. However, for a given spatial frequency f, E may not

be negligible with respect to the other term, since t depends on the rotational velocity w. and

both terms are multiplied by the texture contrast L0 . This example demonstrates that when

the object moves with respect to the light sources, Horn's conclusions (Horn and Weldon 1988)

cannot be inferred even in the same simple case.

The previous discussion shows that, even in very simplified situations, it is not obvious that

the temporal shading variations are negligible in the constraint equation. In practice, a texture

contains many different spatial frequencies and the accuracy of the CE approximation can only

be judged by the tedious process of numerically evaluating the different terms of the FICE

and comparing their magnitudes, or by performing the parameter estimation with the CE and



3.3. CONSTRAINT EQUATION VS FICE 93

Figure I Rotation w in degrees Translation t in pixels]
a-b (.5,-.4,.6) (.64,.4,-.32)
_--d (.5,-.4,.6) (.064,.04,-.032)
e-f (.05,-.04,.06) (.064,.04,-.032)

Table 3.1: 6-plots motion parameters.

FICE on known surfaces with a known motion and by comparing the accuracy of the motion

and structure estimates. The next section provides a few examples that qualitatively show the

goodness of the CE approximation for different textures and amounts of motion.

3.3.2 Qualitative Assessment of the CE Approximation

The examples presented in this section use the ratio 6 as a measure of accuracy of the CE

approximation. Specifically, an 8-bit grey level, thresholded plot of the ratio 6, expressed

as a percentage, is used. The overall image is shifted by 128 to represent signed quantities.

Consequently, neutral grey represents 0% ratio, i.e. t = 0. Once a threshold T is chosen, all

values of 6 such that 6 > T, are mapped into black (0), and similarly values of 6 such that

6 < -T are mapped into white (255). All other values 6 E [-T, T are uniformly mapped by a

grey scale ramp. Two thresholds, 5% and 10%, are used. in the plots.

The first example shows the influence of rigid motion, rotation and translation, on the CE

for a multiplicative sinusoidal grating. Figure 3.2(a) displays the irradiance of a plane rotated

100 around the *-axis, 15' around the j'-axis and 30° around the i-axis, and mapped with

the texture p(u) = 128 (1 + cos(wu) cos(7rv)), with u, v E [- 1,1]. Figure 3.2(b-d) represents the

temporal gradient, x-gradient and y-gradient respectively for a rigid motion of the plane given

by the parameters wT = (.5, -. 4, .6), expressed in degrees of rotation around the elementary

axis, and tT = (.64,.4, -. 32) expressed in image pixels. Figures 3.3(a-f) represent the 6-plots

with a threshold of 10% for the imagos on the left and 5% for the images on the right. Table 3.1

summarizes the values of the motion parameters for the various images of figure 3.3(a-f).

The results in the figures 3.3(a-f) confirm the intuition and the analytical results of the

previous section. Translation has a very small effect on the CE accuracy while rotation has

a major impact. Only a slight difference is visible between the images 3.3(a-b) and 3.3(c-d)
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Figure 3.2: Cosine grating on a slanted plane. (a) (top left) is the irradiance image, (b) (top
right) the temporal gradient, (c-d) (middle left and right) the x- and y-gradients.
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Figure 33: 10% and 5% s-plots for three sets of motion parameters, given by table 3.1, with
the cosine grating. The plots on the left ((a) top (c) middle, (e) bottom) are the 10% plots,
the plots on the right ((b) top, (d) middle, (f) bottom) the 5% plots.

......
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although the translation has been decreased by an order of magnitude. On the other hand,

a dramatic change is observed when the rotation is decreased by an order of magnitude from

figure 3.3(c-d) to figure 3.3(e-f).

The second and third example shows the influence of texture on the accuracy of the CE.

The example of figure 3.4 uses a cosine grating of multiplicative ramps, defined by p(u) =

128(1 + cos(r 2 uv)), with (u,v) E [-1, 1], as a texture mapped onto a plane identical to the

one used in figure 3.2. The example of figure 3.5 uses an exponentially damped cosine defined

by p(u) = 128(1 + e-11"ul cos(2rirul)), with (u,v) E [-1,11 and is mapped on the same planar

surface as before. The motion parameters of the moving plane in these two cases are the same

as the one used in figure 3.3(a-b), namely wT = (.5, -. 4,.6) and tT - (.64, .4, -. 32). These

examples demonstrate that for some types of texture the CE is a fairly bad approximation and

the FICE should be used instead.

3.4 Summary

In this chapter, several Lambertian models were presented and their temporal variations com-

puted and examined. The general Lambertian model was considered first. This model captures

both the shading effects of an infinitively distant source and the spatiotemporal variations in-

duced by a nearby source and is therefore fairly complex especially for high order surfaces. Two

simplifications of this general model were derived, a first-order expansion in terms of the ratio

of the distance between the object and the camera and the distance between the light source

and the camera, and the case of an infinitely distant source. The former simplified model is

helpful for sources that are neither distant nor immediately next to the surface, while the latter

model represents the usual situation of natural light illuminating objects on earth and was

shown to be very similar, but not identical, to the case of extended light sources. An atten-

uated Lambertian model was proposed and simplifying assumptions introduced in the case of

underwater photography. Finally, an analytical analysis of the FICE was done and the validity

of the CE examined. More specifically, the importance of shading and the influence of the type

of motion and texture was evaluated in order to assess the validity of the CE approximation.
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Figure 3.4: Multiplicative cosine grating on slanted plane. (a) (top left) is the irradiance image,
(b) (top right) the temporal gradient, (c-d) (middle left and right) the x and y gradients, (e)
(bottom left) the 10% 6-plot and (f) the 5% 6-plot.
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Figure 3.5: Exponentially damped cosine on slanted plane. (a) (top left) is the irradiance image,
(b) (top right) the temporal gradient, (c-d) (middle left and right) the x and y gradients, (e)

(bottom left) the 10% 6-plot and (f) the 5% 6-plot.



Chapter 4

Planar Patch Estimation

This chapter discusses the specific problems and forms of the general minimization equations,

developed in chapter 2, when applied to the planar patch case. Specific implementations with

various shading models are derived and results of the algorithms on real and synthetic data

presented.

A planar patch is the easiest surface structure that can be considered but is still a fairly

complex case to study in the context of the FICE for a general Lambertian shading model.

The planar case is well studied and understood; Negahdaripour and Horn (1987) presented a

closed-form solution in the general motion case. Their solution amounts to solving an eigenvalue

problem in the case of the traditional constraint equation. However, in the FICE formulation,

no closed-form solution exists; the parameter estimates are determined by a system of nonlinear

vectorial equations that vary in complexity depending on the choice of the shading model and

albedo function. Once the vectorial system is determined, a scalar system is obtained by

projection of the vectorial equations onto various axes. Although, in theory, the solution of the

original vectorial system does not depend on the choice of the projection axes, the algebraic

complexity and numerical behavior of the resulting scalar system vary greatly; a proper choice

of the projection axes is required to obtain accurate parameter estimates.

Several different implementations are derived for various shading and surface models; ex-

amples of parameter estimation are presented in the next sections.

99
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4.1 Implementations of the Planar Patch Case
A planar patch is ezactly represented by equation (2.23), r= Fn) i

is, the reciprocal of the depth is expressed as a linear functional in the image coordinates r. In
(r.n)

the FICE, the structure term, (-r n), only appears in the product with the term (s.t), resulting

in a scale ambiguity between n and t. In fact, the same solution to the problem is obtained if

n is replaced by kn and t by t/k, therefore, the translation t can only be recovered within a

global scale factor, or in other words, only its direction can be determined. As a consequence,

the explicit scale factor 1/FZo can be omitted from the equations without loss of generality.

However it is required in the practical implementation with real data, where the focal distance

of the camera F and the absolute distance Zo are known, to directly compare the estimated

parameters with the known experimental parameters of the set-up. This scale ambiguity can

be turned into an advantage.

Very powerful simplifications can be obtained in cases where the temporal shading variations

only depend on the unit normal fn as opposed to both n and ft. This distinction comes about

because the shading- equation usually only depends on the direction of the normal, i.e. ft, while

the reciprocal of the depth is expressed in terms of the full normal n, and both the direction

and the magnitude of the normal are relevant information. Therefore, the temporal derivative

of the shading expression can depend on n and ft concurrently when the distance of the patch

to the source or camera is involved (like the nearby source case). The normal n can be replaced

by the unit normal fA in the term (r. n), that arises from the expression of the reciprocal of

the depth in terms of the surface coordinates, producing yet another scaling of the translation

vector t. This substitution results in a FICE that only depends on the unit normal, and the

vectorial equation (2.28), obtained by differentiation of the minimization equation (2.25) in

section 2.3.1.3, simplifies to

) C et\ ej (S -t,XL)(G(w,t,n)-oAeo)- A(r)p, ) dr + f- =O.
8~~)P d +t 8f ft0.f

In order to fully specify the planar patch FICE, a specific shading model is required. Only

Lambertian surface reflectances are considered in this thesis, as previously mentioned. The

Lambertian shading model is determined by the type (punctual or extended) and position

(nearby or distant) of the light source(s) and by the characteristics of the albedo function.
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In this study, the albedo px(a,/3) is either constant, the surface is textureless and all the

spatiotemporal variations of the irradiance function are due to shading, or continuously varying

and the spatiotemporal variations are due to both shading and texture. More specifically, the

spatiotemporal gradients of a textured surface have a component caused by the surface markings

(texture) and a component that is due to the spatiotemporal variations of the shading on the

surface.

4.1.1 Distant Punctual Source Illuminating a Lambertian Patch

The simplest Lambertian reflectance model that can be considered is the one with a distant

punctual source and a constant albedo pX. It is easily seen that the irradiance (equation 3.5)

is spatially constant and that the temporal rate of change of the irradiance (equation 3.4) is

constant. Since the irradiance is spatially constant, the spatial gradient field Er is zero and so

are the vector fields v and s. It is clear, without further equations, that the problem is grossly

underconstrained and cannot be solved even by considering multiple frames.

Assuming a set of discrete constant patches leads to a similar problem. The problem is

underconstrained within each patch, and the previous equations are not valid at the patch

boundaries.

In order to obtain more information, in the distant source case, a Lambertian surface with

a continuously varying albedo is required. The source strength L0 , which cannot be estimated,

is set to unity and the albedo p(a,g3 ) is denoted by p(r) to emphasize the fact that it is,

indirectly, a function of the image coordinates. It should be noted that the notation p(r) is

deceptive because the albedo depends on the surface coordinates (a,,3) and not on the image

coordinates r. However, (a,o3) can be expressed (see section 3.3.1) in terms of the image

coordinates r and vice-versa. This issue is not relevant in the two-frame case because texture

does not need to be tracked there. The two-frame case can be exclusively specified by the

spatiotemporal gradients of the irradiance. In practice, a lot of synthetic data used in the

two-frame situation are produced by directly generating the spatial gradients and computing

the temporal gradients directly from them by means of the CE. However, this approach failed

in the case of multiple (more than two) frames because texture needs to be tracked in this case.
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4.1.1.1 Solution Using the FICE

This section deals with the case of a planar Lambertian surface with a smoothly varying albedo

and illuminated by a single punctual source of known direction with straight FICE used as a

constraint equation. This case is solved by a minimization problem of type (b') (equation 2.24)

with a unique parameter constraint on the unit normal ft. This minimization is identical to the

generic minimization of section 2.3.1.3, where the unit normal ft is substituted for the normal n

because the temporal variations of the shading model only depend on ft. The generic functions

C(n), e(, ft) and et(t, ft,w,t) are specialized to

C(n) = (r. .i)
e(L, f) = p(r)(l. )
et (t, fi, w, t) -- p(r)[(1, w, fi].

If we let F(w, t, fi) = Et - (v . w) - (r. fi)(s- t) - p(r)[lw, i], the unconstrained minimization

equation 2.25 can be written in the form

-min(J (F 2 + u(r)(E(r,'t) -p(r)(l. ii)))dr+ A(IIfihI 2 
- 1) (4. 1)

and the resulting vectorial system, obtained by differentiation of (4.1) with respect to the

parameters t, w and fi, takes the form

F(-v - x ))dr = 0 (4.2)

J F(-s(r. f))dr = 0 (4.3)

JJ (F(-(s. t)r - p(r)(w x 1)) - p(r)p(r)i)dr + Aft = 0. (4.4)

The Lagrange multiplier A and the Lagrange multiplier function j(r) can be eliminated by

taking the dot product of equation (4.4) with the vectors ft and I and by solving the resulting

scalar linear system in the unknowns A and u(r)p(r)dr. If we let I = f x (l x f) andA I III X f1112

n= ( L x) x! the Lagrange multipliers are given by
f= 

(x J())A=-//. 11 (s-O -pr(wx d
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and can be eliminated from (4.4) to yield (if (. ft) 0 0)

fJF(-(s )(13 - Ih1T)r + p(r)(I3 - ni W)(W x 1))dr, (4.5)

where the albedo p(r) is expressed in term of the irradiance data by means of the shading

equation, p(r) = E(r,t)/(I. fi).

Equations (4.2), (4.3) and (4.5) form a system S of three nonlinear vectorial equations and

can be solved by any of the methods described in section 2.3.2, once it has been projected

onto suitable axes. An alternate, more efficient, way of solving S is to notice that the first

two equations (4.2) and (4.3) are linear in w and t; that is, the system S is in fact semilinear

and can be broken into a linear system £ formed by the first two equations and a nonlinear

equation A (4.5) in ft. This semilinear system can be solved iteratively: C is solved using"

the current estimates of ft, then A is solved using the estimates of w and t. The iteration is

initially started with an arbitrary value for Ax. The advantages of this method, as opposed to

a general global nonlinear method, are the speed, the improved convergence performance and

its elegance. The increase of speed is partly due to 'the fact that two of the vectorial variables

are solved by a linear system and partly due to the fact that we are dealing with a nonlinear

equation as opposed to a system of nonlinear equations. The improvement in convergence is

caused by the lower dimensionality of the nonlinear part of the system. Experiments suggest

that the convergence of the higher dimensional nonlinear system is far worse than the semilinear

method. Unfortunately, the convergence of the semilinear iterative implementation is difficult

to prove or support, even intuitively. The elegance results from the ability to directly solve the

vectorial linear system without need of projecting it onto a specific axis. £ can be written in

the matrix form

(M M 2 e (4.6)
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where

J/ f [(v + p(r)(ft x ))(v + p(r)(ft x 1))T]I dr

= If [(--T) + p(r) ((V(a X )T) + ((×X 1)VT) + p(r)2 X(( x)( X )T) d

M2= Aj(rAf) ((v +p(r)(f x ))ST ) dr

M4 = ff(r x)2(ST)dr

= ff Et (v + p(r)(fx x 1))dr

e2 = JjEt(r. fi)sdr

and the solution to the system (4.6) is given by

M= 2 - MTM- 1 M)(MT'Mj1 e, - e 2 )

W = -Mj'(e+M 2 t)

In order to numerically im.plement the nonlinear vectorial equation (4.5), it needs to be

broken down into scalar components. It is possible that the eigenvectors of the two matrices

MT - 1 3)T and MT = (nL it -3)T are advantageous projection axes. The eigenvectors

of the matrix MT are 1, associated with the single eigenvalue 0, and any two linearly independent

vectors orthogonal to l , associated with the double eigenvalue 1. The eigenvectors of the

matrix MT are fi, associated with the single eigenvalue 0, and any two linearly independent

vectors orthogonal to ni associated with the double eigenvalue 1. The eigenvectors ft and I are

unsuitable because the dot product of fA with the nonlinear equation (4.5) produces a scalar

equation linearly dependent on the equation (4.3) of the system S, while the dot product with

I produces a null equation. However, the use of the common eigenvector (I X A) of MT and

MT results in a simple scalar equation. In our numerical implementation, the two other scalar

equations were obtained by projection onto the basis * and $-axis.

At first glance, it might appear that solving the different equations and the linear system is

very costly, since the integrations over the whole image I need to be performed at each iteration.

Appendix F shows that most of the components of the vectors and matrices in the previous

equations can be precomputed resulting in a very efficient numerical implementation.



4.1. IMPLEMENTATIONS OF THE PLANAR PATCH CASE 105

4.1.1.2 Solution Using the Dynamical Frame Unwarping FICE

The previous section assumed that the simple FICE was used in the minimization procedure.

In practice however, the DFU incremental FICE is used, and the previous equations need to

be slightly altered. More specifically, the temporal irradiance gradients are replaced by the

displaced frame difference, DE(r, t, -r", (), t(')), defined in section 2.3.3, the vector fields v and

s now depend on the current estimate of the motion and, finally, the motion parameters are

replaced by the incremental motion parameters. Under this framework, the linear system £

(4.6) becomes

M T c ( -), t en ) ) ( , n , t -)t - ")( . n , ~ )

where

d 1 (w(-),t(1-)) = IL DE(rt,rW( )' t(-)) (v(W(n), t(n)) + p(r)(fi x 1))dr

d2 (.(n), t(n)) = JjDE(rt,r , ()'t(n))(r" fi)s(w(n),t('))dr,

and the system (4.7) is solved for w(n+1) and t(T+l), the (n + I)th estimates of the translation

t and rotation w.

Similar adjustments of variables and parameters are performed on the nonlinear equation

(4.5) or on the overall system S when considered globally as a system of nonlinear equations.

In practice, the straight FICE implementation is identical to the DFU implementation, where

the extra iterative loop, which computes the incremental motion parameter, is disabled and the

field unwarping step suppressed, resulting in motion independent vector fields v and s.

4.1.2 General Punctual Light Source Illuminating a Lambertian Patch

The previous section dealt with the case where there were no shading variations induced by the

proximity of the light source. The advantage of the previous case is its simplicity; its drawback

is its inability to deal with textureless surfaces, because in the distant case, the irradiance and

the temporal variations of the irradiance on the surface are constant. This section examines

the use of the general Lambertian shading model (3.1), presented in section 3.1, in the FICE.

The complexity of the temporal variations of the shading model (equation (3.2) in the general
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case and equation (3.3) in the first-order Lambertian model) is far greater than in the distant

case and is mostly due to the presence of the structure term R r , which depends on
F(r -n)'

dE
n, in -7-. Due to its complexity, the full model is more appropriate in the case of textureless

surfaces (p constant) and/or in the case of special motions like pure translation or rotation,

than in the general motion and texture case.

In order to slightly simplify the presentation of the general case, the equations shown in

this section are derived for the textureless surface case. In this instance, a minimization with

a single constraint on the parameter h is performed and the vectorial equations only cortain a

single Lagrange multiplier A associated with the parameter constraint 1[5i[ 2 - 1. The general

texture case would be treated in a fashion similar to the distant case of section 4.1.1, and the

Lagrange multipliers eliminated in an identical way.

4.1.2.1 General Model

Let F(w,t, ft) = Et - (v .w) - (r. 5f)(s.t) - gL where E9 j represents the temporal variations

of the general Lambertian case, i.e.

The unconstrained minimization equation can be written in the form

6=ni (Jj F'dr + A(tfa 2 - 1)),

and the resulting vectorial equations take the form

F( fi)+(tft)(tx 1)))dr = 0 (4.8)

F(s~ f)- 1,-tf~i~r= 0 (4.9)

F(-(s.t)r-+ - dr+ Ai = 0 (4.10)

where

otEal (%TO T _

O--L fL+ _((I)+LLc, .• (tXW) - q
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OR -1 T2 nTn
with j- = r. N and Nh = - 3 - - L)-

It is noteworthy that the above system is also semilinear in t and w and can be solved

with a method similar to the one described in section 4.1.1 and the linear portion of the

system is only sightly more complicated than its distant counterpart. On the other hand,

the nonlinear equation is far more difficult to implement numerically in the general case. More

robust numerical implementations are achieved in special motion cases, as in the pure translation

case (w = 0), where the nonlinear equation (4.10) simplifies to

-(s)r- 13 + OR) ) + Af = 0

-JJ n (4.11) -

The general case described in this section is only relevant when the light source is very close

to the surface relative to distance of the plane to the lens. Very often the light source is further

away, and it can be assumed that IIRII/llll < 1. The relative proximity of the light source still

induces a variable shading across the plane surface but the overall implementation is simpler

as we will see in the next section.

4.1.2.2 First-Order Model

Under the assumption that the relative distance from light source to object and from object

to camera is small, the shading equation and the temporal variations of shading equation can

be approximated by a first-order Taylor series with respect to (see section 3.1.2). For a

planar patch, the shading equation takes the form

E(r,t) = p (. F(r: n) ((r - (r 1)1) •.t) jRl)

i.e. the distant uniform shading is modulated by a first-order, in 111-- shading variation across

the planar surface. The temporal variations Ef,,t are computed by equation (3.3) and can be

rewritten, in the planar patch case, in the form

0( p ) r !n111j11 (t i -n)
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If we let F = Et - (v .) - (r. fi)(a, t) - tj,,.t, the resulting vectorial equations, which define

the parameters t, w and n, are, for a textureless surface,

Jj F(-v -P(1 x h + Fj j( )14 dr= 0

f LF(-(r -f) -(1, 1xF) dr = 0

AjF(-(s t)r +~~. dr+ Aft = 0

where

=Paix+111Irn 1 -Jr1 ,L' fk ti

These equations are numerically more stable than the equivalent general shading equations

of the previous section. Moreover, they represent a reasonable approximation of the general

equations for ratio R up to about 10% and should be preferred if the speed required for

solving the equations is more important than the accuracy of the solution.

4.1.3 Attenuated Lambertian Model

The last model presented is the attenuated Lambertian model under the assumption that the

light source and the viewer are coincident. This model was developed in section 3.2 for the case

of underwater photography with the light source mounted on the camera. It is described by

the shading equation

E(r,t) = P(ctQ (., ft) = P/a,0) (f. f);JIIL, I=' - I'IR I1

its temporal variations of shading, expressed by equation (3.9) can be rewritten in the form
pZo

4 = ((1, 30 t - i.

If we let F = Et- (v.w)-(r. f)(, t)- A4 , the system of vectorial equations in the parameters

t, w and n, for a textureless surface, is simply given by

JLFvdr = 0 (4.12)

JJ F(-u(r. (i) - p ) 11 (13 - 3U1T)i)dr = 0 (4.13)

F -( .t)r _-'3 - f (13 - dr + A i = 0. (4.14)
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4.1.4 Conclusions on the Planar Implementations

The previous sections presented several implementations of the rigid body motion and structure

recovery problem with shading in the planar patch case. The vectorial systems of equations

defining the motion parameters t, w and the structure parameter fh were derived for several

shading models, different types of albedo functions and for the regular and dynamically unwarp-

ing frame FICE. In most instances, the equations were given in the simpler case of a textureless

surface and used the FICE as a constraint equation. Section 4.1.1 showed how to derive the

relevant equations when the shading equation is used as a constraint in the general texture

case. The method used in the distant case is general, and only the form and complexity of

the Lagrange multipliers change in the other cases. Section 4.1.1.2 explained how to modify

the equations derived with the FICE, in order to obtain the equations under the DFU case.

The modifications amount to introducing an extra iterative loop for the computation of the

incremental motion parameters and to updating the now variable vector fields s and v. No

attempt was made to present the scalar equations that were actually numerically implemented

because this operation is very tedious and no additional information is gained in displaying the

scalar equations.

The next section presents a set of examples that illustrates the performance of the proposed

algorithms, compares the results to those given by a classical implementation, when appropriate,

and explains the numerical difficulties present in the implementations.

4.2 Examples

The examples presented in this section attempt to demonstrate the performance of the algo-

rithms in various situations with both synthetic and real data. Synthetic data are used in most

examples because, in many cases, the experiments could not be simulated, easily and reliably,

with real data, and synthetic data provide a way of evaluating the accuracy of the estimates by

comparing them to the true values. Synthetic data were produced by ray-tracing an analytical

texture function on a moving plane. This method allows perfect control of all the lighting,

structure and motion parameters and produces high quality images at various resolutions. The

irradiance data were quantized to eight bits and only the quantized data were used in most of the
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experiments where the algorithm estimates the spatiotemporal gradients from these irradiance

data.

Real data acquisition is very delicate and it was extremely hard, given the equipment and

experimental set-up available, to control lighting and to measure accurately the motion param-

eters and camera parameters such as focal distance. Nevertheless, real data were used in the

experiments because they were the driving force behind the development of the multiple-frame

DFU algorithms which allow the estimation of the rigid body motion and the structure directly

from the irradiance data obtained from a video camera. However, the structure and motion

estimates that are obtained are difficult to interpret, as far as accuracy is concerned, because

the real parameters are only approximatively known.

Real data are used in the distant Lambertian case, while synthetic data are produced in the

distant, nearby and attenuated Lambertian case for a general albedo function and textureless

surfaces. The use of synthetic data in the nearby punctual source and the attenuated cases is

a necessity because no real, meaningful data could be obtained in these instances. Most of the

examples presented in this section use the DFU formulation of the FICE, and multiple frames

are used in the real data cases. In this section, the only goal of the experiments with real

data is to obtain the best estimates possible without regard to the specifics of the multiframe

algorithm. The discussion of the performance of the algorithms, as a function of the number of

frames used, is delayed until chapter 6.

The examples shown in this section demonstrate the superiority of the FICE with respect

to the CE in two ways: more accurate results are obtained in the case of textured surfaces

and the FICE formulation is able to solve the case of textureless surface, where all the spa-

tiotemporal variations are due to the shading, unlike the CE formulation that cannot deal with

weakly marked or textureless surfaces. However, these new, improved results have a higher

computational cost than those obtained by the less accurate and general CE formulation.

4.2.1 Distant Source

The distant, or hemispherical, source' illuminating a Lambertian surface case represents the

most basic and fundamental situation. Under the assumption that the surface being imaged
'Distant and hemispherical sources are not equwaieant but have similar behaviors as it was explained in

section 3.2.
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has a reflectance that is a good approximation of a Lambertian reflectance fimction, this case

corresponds to the generic video recording situation. As such, the images can be processed, to

compare the performances, with the algorithms described in this thesis and with conventional

algorithms that use the classical constraint equation.

The closest, comparable classical algorithm is the direct motion algorithm for planar surfaces

of Negahdaripour and Horn (1987). A direct, fair comparison with the experiments published in

the cited paper is unfortunately impossible for two reasons: they did not specify the parameters

of the multiplicative sinusoidal patterns used in the experiments and the image gradients are

computed analytically assuming that the constraint equation is satisfied. Under these condi-

tions, the motion and structure parameters are recovered perfectly and their algorithm displays

perfect performance. Unfortunately, these data are unusable in the general case, since they

assume, a priori, that the CE holds and discard, by construction, all shading variations in-

formation. No experimental results are provided in the situations where the spatiotemporal

gradients are estimated directly from an irradiance pair of images (synthetic or real), and the

motion and structure parameters are computed from-these gradient fields. Since no methiod is

provided to compute the required gradients from the irradiance images, the FICE implemen-

tation is used in both the CE and the FICE cases when comparing the performance of the two

algorithms in the presence of shading induced variations. When used in a CE mode, the FICE

implementation estimates all the gradients using the DFU method, but the temporal shading

variations are assumed to be zero. In this way, the best possible spatiotemporal gradients are

used in the two implementations and the difference in performance is only due to the additional

use of the shading information in the FICE implementation.

Three types of experiments were run for the distant source case. The first experiment uses

purely synthetic gradient data and demonstrates the ability of the system to correctly determine

the solution under idealized conditions. The data of the first experiment are also used in the CE

case, to show the bias that is obtained in the parameter estimates when the temporal shading

variations are neglected. The second experiment is similar to the first one but uses synthetic,

8 bit quantized irradiance data, from which the spatiotemporal gradients are estimated. The

third experiment uses real data.
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4.2.1.1 Synthetic Data

The first experiment requires exact synthetic irradiance gradient data in order to evaluate the

accuracy and the sensitivity of the nonlinear methods with respect to the initial estimates in the

FICE case. The data are generated by analytically computing the irradiance spatial gradients in

the image plane from the gradients of an analytical texture function p(a,3) on a mapping plane

and from the position of a plane in space using the Jacobian of the transformation that maps

the original mapping plane to the image plane (see section 3.3.1 for the relevant equations). The

temporal gradients are computed directly from the FICE equation given the spatial gradients,

the motion and structure parameters and the light source direction, that is,

Et(x, t) = - (v(r, t) .w) - (r • f)(s(r, t) t) + p(r, t)[i,w, f]. (4.15)

The irradiance data E(r, t) are also computed analytically since they are required in the FICE

formulation when the shading equation, which relates the irradiance values to the value of

the texture on the surface, is used as a constraint. Figure 4.1(a) shows the irradiance data,

figure 4.1(b), the temporal gradients and figures 4.1(c,d), the spatial gradients (E. and E.

respectively). The texture used in the previous example is a sinusoidal grating with a sinusoidal

phase variation. More specifically, the texture is specified by the expression

f E(:, t) =sin (ZZ + (_sinQ Lx)))

In the first phase of the experiment, the analytically computed fields E(r,t), VzE(r,t) and

Et are used directly as an input to a two-frame, non-DFU implementation of the FICE algo-

rithm, and the structure and motion parameters evaluated with various numerical implemen-

tations. The purposes of the experiment are to validate a given numerical implementation, to

analyze its performance in terms of the initial estimate and number of iterations, and to demon-

strate the validity of the algorithm, i.e. its ability to recover perfectly the parameters under

these idealized conditions. Five numerical implementations were tried, three semilinear where

the nonlinear equation was implemented with a minimization method (Levenberg-Marquardt),

a direct method (Powell's hybrid) and an homotopy method, and two globally nonlinear meth-

ods: Levenberg-Marquardt and Powell's hybrid. In general, the globally nonlinear methods
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Figure 4.1: Cosine grating with sinusoidal phase variations on a slanted plane. (a) (top left) is
the irradiance image, (b) (top right) the temporal gradient, (c-d) (middle left and right) the
x- and y-gradients.



114 CHAPTER 4. PLANAR PATCH ESTIMATION

failed to converge to the correct solution or simply failed to converge for an arbitrary initial es-

timate of all the parameters, unless the initial estimate was close enough to the correct solution,

in which case the two methods perform equally well and converge to the correct solution within

the specified tolerance (usually 10's or 10-8). To insure convergence to the correct solution,

the globally nonlinear methods require a fairly accurate estimate of all the parameters. Such an

estimate can be obtained by the simpler CE implementation for an arbitrary surface orientation

and rigid motion, or for specific initial values of the normal to the plane, the translation and

the rotation. The initial estimate of the normal can be set to (0 0 1) (frontal plane) and zero

for the translation and rotation vectors in situations where the slant and tilt of the plane is

small (less than 100) and the motion is small (less than .5-.8* for the elementary rotations and

less than .5 to 1 pixel translation in either directions).

The semilinear methods are somewhat more forgiving as far as tie initial estimate is con-

cerned but are surprisingly slow due to the huge number of iterations required to converge to

the correct solution. Up to 1000 iterations may be required to converge for a moderately tight

tolerance 6 of 10', i.e. the relative variation between two successive estimates is less than 6. A

random initial value for the normal resulted in the convergence to the wrong solution in a few

cases, although an initial estimate of (0 0 1) (frontal plane) never failed to converge to the right

solution and was chosen as the default initial value unless a more specific value was determined

by other means. The homotopy method converges to the correct estimates in far fewer itera-

tions, but the saving in number of iterations is somewhat offset by the cost of each iteration

(10 to 20 times the cost of a typical nonlinear implementation using Levenberg-Marquardt or

Powell's). Table 4.1 shows the true motion and structure parameters as well as the initial value

used for the simulation. Table 4.2 presents the results of a typical simulation using a sernilinear

method which implements the nonlinear equation with the Powell hybrid method, and table 4.3

displays the results for a typical simulation using an homotopy method.

In the second phase of the first experiment, the same synthetic data are run through a

classical CE implementation of the algorithm. Table 4.4 shows the final results and relative

errors corresponding to the parameters of table 4.1, and also displays the results for a case

similar to the previous one with the exception of the rotation vector that is set to one-tenth

of the previous value. As expected, both simulations produce biased estimates and the bias
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True rotation in radians: w. = .00698 W2 = -. 00524 W3 = .00873
True rotation in degrees: w = .4 W2 = -. 3 W3 =.5
True translation: t= = .00781 t 2 = .00469 t3 = -. 01172
True translation in pixels: tI = 1.0 t2 = .4 t3 = -1.5
True normal: n, = .4663 n 2 - -. 2956 n 3 = 1.0
Orientation of plane: Slant = 150 tilt = 25 °

Initial guess for normal: n, = .0 n2= .0 n3 = 1.0

Table 4.1: Motion and structure parameters and initial values used in the planar experiments
with synthetic data.

Iter Rotation Translation Normal
No W1 W2 W3 ti t2 t3 n, n2 n3

1 .00929 -. 00192 .01103 .00326 .00657 -. 01131 .12152 .01013 1.0
2 .00888 -. 00220 .01077 .00349 .00616 -. 01129 .17112 -. 00552 1.0
3 .00880 -. 00239 .01064 .00368 .00617 -. 01139 .19854 -. 01630 1.0
4 .00876 -. 00254 .01055 .00385 .00617 -. 01143 .21689 -. 02486 1.0
5 .00872 -. 00267 .01049 .00401 .00617 -. 01146 .23116 -. 03237 1.0

10 .00858 -. 00316 .01024 .00464 .00612 -. 01151 .28042 -. 06353 1.0
20 .00842 -. 00356 .01001 .00518 .00603 -. 01153 .31890 -. 09374 1.0
30 .00819 -. 00401 .00973 .00584 .00585 -. 01156 .36072 -. 13369 1.0
40 .00808 -. 00417 .00961 .00608 .00576 -. 01158 .37563 -. 15016 1.0
50 .00790 -.00443 .00943 .00647 .00560 -. 01159 .39817 -. 17782 1.0
100 .00733 -.00499 .00896 .00739 .00505 -.01166 .44635 -.25316 1.0
150 .00716 -.00512 .00884 .00761 .00487 -.01169 .45698 -.27452 1.0
200 .00705 -.00519 .00877 .00774 .00476 -.01171 .46298 -.28778 1.0
300 .00699 -.00523 .00873 .00780 .00470 -.01172 .46585 -.29452 1.0
400 .00698 -.00524 .00873 .00781 .00469 -.01172 .46624 -.29545 1.0
449 .00698 -.00524 .00873 .00781 .00469 -.01172 .46629 -.29556 1.0

Table 4.2: Evolution of the motion and structure parameter estimates for experiment one using
FICE. Semi-linear implementation with a Powell hybrid method for the nonlinear equation.



116 CHAPTER 4. PLANAR PATCH ESTIMATION

Iter Rotation Translation Normal
No W1  (_02 (A_3 t t2 t3 n n2 n3

1 .00919 -. 00166 .01108 .00293 .00648 -. 01119 .04712 -. 16159 1.0
2 .00824 -. 00211 .01066 .00352 .00582 -. 01165 .10701 -. 21627 1.0
3 .00783 -. 00283 .01027 .00441 .00548 -. 01175 .18785 -. 23505 1.0
4 .00765 -. 00369 .00984 .00549 .00530 -. 01168 .28642 -. 23649 1.0
5 .00753 -. 00447 .00942 .00654 .00515 -. 01157 .37468 -. 23860 1.0

10 .00705 -. 00522 .00877 .00778 .00474 -. 01167 .46232 -. 28711 1.0
15 .00699 -. 00523 .00873 .00781 .00469 -. 01171 .46592 -. 29476 1.0
20 .00698 -. 00524 .00873 .00781 .00469 -. 01172 .46626 -. 29552 1.0
25 .00698 -. 00524 .00873 .00781 .00469 -. 01172 .46630 -. 29559 1.0
30 .00698 -. 00524 .00873 .00781 .00469 -. 01172 .46630 -. 29560 1.0

Table 4.3: Evolution of the motion and structure parameter estimates for experiment one using
FICE. Semi-linear implementation with an homotopy method for the nonlinear equation.

increases with the magnitude of the rotation vector. The relative error in the rotation vector

is higher for the smaller rotation, but it is not significant since the magnitude of the rotation

is very small and the absolute error is barely 3 x 10- 5 radians, i.e. 1.7 x 10-' degrees. This

experiment demonstrates that the FICE provide better performance in the case where the

temporal variations of shading, albeit small, should not be neglected and the computational

cost is justified.

The second experiment relies only on the 8-bit quantized, synthetic irradianc6 values. The

synthetic image is the same as the one used in the first set of experiments and shown in figure 4.1.

In this experiment, the spatiotemporal gradients are estimated directly from the quantized

irradiance data. On a gray level picture, the estimates of the gradients are virtually impossible

to distinguish from the analytically computed gradients, but the effect of the quantization of

the irradiance and of the defects due to the estimation process can be seen, for example, on

the contour plot of the gradient field E.. Figure 4.2 shows the contour plot of the analytical

gradient field, while figure 4.3 displays the contour plot of the estimated field. Small variations

in levels and contour smoothness can be observed. These variations in turn affect the accuracy

of the estimates of the motion and structure parameters. Table 4.5 recapitulates the final

estimates of the parameters for the synthetic gradients and synthetic irradiance cases using the

FICE and CE algorithms. As expected, the estimated parameters are not identical to the true
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True rotation in degrees: w, = .4, w2 = -. 3, w3 = .5
CE algo. Rotation Translation Normal
Final iter. .00700 -. 00531 .00871 .00794 .00467 -. 01166 .48020 -. 2835 1.0
Rel err (%) .3 1.3 .2 1.7 .4 .5 3 4.2 .0

True rotation in degrees: w, = .04, W2 = -. 03, W3 = .05
CE algo. Rotation Translation Normal -

Final iter. .00073 -. 00054 .00087 .00784 .00472 -. 01172 .46609 -. 2927 1.0
Rel err (%) 6.4 14 1 .4 .6 .0 .06 .1 .0

Table 4.4: Final estimates and relative errors of the motion and structure parameters using the
CE for two values of the rotation vector. Other parameters are determined by table 4.1.

I Rotation 1 Translation Normal

True para. .00698 -. 00524 .00873 .00781 .00469 -. 01172 .4663 -. 2956 1.0
FICE est. .00702 -. 00533 .00870 .00798 .00466 -. 01160 .4852 -. 2895 1.0

Rel err (%) .6 2.1 .3 2.2 .6 1.0 4.0 4.1 0.0
CE est. .00706 -. 00552 .00867 .00829 .00462 -. 01149 .5191 -0.2654 1.0
Rel err (%) 1.1 5.3 .7 6.1 1.5 2.0 11.3 10.2 0.0

Table 4.5: Final estimates and-relative errors of the motion and structure parameters using the
FICE and CE on the synthetic quantized irradiance sequence depicted in figure 4.1. All the
parameters are specified by table 4.1.

ones, although the variations are small (on the order of 1-4%) and the bias between the results

computed with the FICE and CE is about constant. This result is not surprising since the

implementations of the FICE and CE are almost identical.

This experiment demonstrates that the algorithm is robust in the case of noiseless, quantized

data and very good performances are achieved in the estimation of the motion and structure

parameters. No noise study of the two-frame implementation is performed in this chapter since

a study of the performance of the general multi-frame algorithm with respect to noise is done

in chapter 6.



118 CHAPTER 4. PLANAR PATCH ESTIMATION
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Figure 4.2: Contour plot of the analytically computed horizontal gradients of the lower right
quadrant of the irradiance image shown in figure 4.1(a).
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Camera parameters: F = 60mm, pixel size 1/60mm
Distance focal plane to object: Z0 = 1250mm

Rotation in degrees Translation in pixels Normal

Measured parameters .0 .0 .5 1.0 -1.0 .0 .0 .0 1.0
Final estimates .031 -. 081 .590 .682 -. 695 .0814 .0542 -.034 1.0
Absolute rel. error (%) 3.1 8.1 18.0 31.8 30.5 8.1 5.4 3.4 0.0
Corrected estimates .031 -. 081 .59 .859 -. 836 .0814 .0542 -. 034 1.0
Absolute rel. error (%) 3.1 8.1 18.0 14.1 16.4 4.1 5.4 3.4 0.0

Table 4.6: Final and adjusted estimates and corresponding relative errors of the motion and
structure parameters using the multiframe DFU FICE on the real irradiance sequence shown
in figure 4.4.

4.2.1.2 Real Data

The last set of experiments that were performed for the distant source case involves real data.

The object used in these experments is a plane covered with a highly textured, matte piece of

wall paper illuminated by a diffuse light source. Due to the primitive experimental set-up, only

two degrees of freedom are available, a translation along the optical axis and a rotation around

the optical axis. Two more degrees of freedom are generated, two translations parallel to the

image plane, by synthetically shifting the irradiance images by an integer number of pixels in

the z and y directions.

The results of the experiment need to be taken with a grain of salt since all the measurements

were done directly on the experimental set-up, and the rotation was performed manually and

measured with a protractor. -The real purpose of the experiment is to show that plausible

results can be obtain with real images using the multi-frame DFU algorithm. Figure 4.4(a)

shows the irradiance data, figure 4.4(b) the temporal gradient, and figure 4.4(c-d) the spatial

gradients used in the experiment. The gradients are computed using the DFU method for

the approximate motion parameters shown in table 4.6. Table 4.6 summarizes the measured

parameters of the experiment and the computed motion and structure parameters.

As expected, the computed and measured parameters are fairly different. Several factors can

explain the discrepancies. The planar surface being imaged was not rigorously perpendicular

to the optical axis, resulting in some extraneous, nonzero n, and ny components as well as
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Figure 4.4: Real data of matte piece of wallpaper on a frontal plane. (a) (top left) is the
irradiance image, (b) (top right) the temporal gradient, (c-d) (middle left and right) the x-
and y-gradients.
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spurious w. and w. components. The value of the rotation around the optical axis is reasonable

considering the crude measured effective rotation. On the other hand, the estimate of the

translation is rather poor both in terms of the relative size of the each component and in terms

of the overall scale factor that is determined by the measured distance Zo and the effective focal

distance F of the camera. However, Zo is subject to measurement errors and the advertised

value of the lens focal length (60 mm) was used; it is known that this differs substantially from

the effective focal length. The anomalies in the z and y components of the translation vector

can be explained by the fact that the center of rotation of the planar surface was not exactly

coincident with the intersection of the plane with the optical axis; therefore, the measured

translation is in fact the sum of the true translation, i.e. the translation obtained when the

optical axis and the axis of rotation are coincident and two translation components in the plane

perpendicular to the optical axis. This assumption was verified experimentally by runnifg the

algorithm on a set of data obtained from the same set-up but with only a rotation. around the

optical axis and no translation. The true center of rotation was estimated from the resulting

optical flow and found to De approximately at the coordinates (13, 9) from the intersection

of the optical axis with the plane. This position was confirmed by the measurement of the

focus of expansion location on a sequence, where the motion was a pure translation along the

optical axis. Another set of experiments were run with only synthetic translations in a plane

parallel to the image plane in order to estimate the overall scale factor for the translation

vector; the correction was found to be 1.08. The final estimates obtained during the original

experiment were adjusted to take into account the induced translation provoked by the off-

center center of rotation and the overall translation scale factor and the corrected values are

also shown in table 4.6. The compensated values are far better than the raw estimates and are

very respectable.

4.2.2 Nearby Source

The case of a planar Lambertian surface illuminated by a nearby source is richer than the previ-

ous, distant source situation but is also much more complex to implement due to the analytical

complexity of the expressions for the shading and temporal shading variations (equations (3.1)

and (3.2)). The spatial irradiance gradients are produced in part by the spatial variations of
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Figure 4.5: Exponentially damped cosine on a slanted plane. (a) (top left) irradiance image with
far-away source, (b) (top right) irradiance image for close-up source, (c) (bottom) irradiance
image for textureless surface.
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Figure 4.6: Surface plot of the irradiance image of textureless surface shown in figure 4.5(a).
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the texture and in part by the spatial variations of the shading across the surface as opposed to

the distant case where the spatial irradiance gradients are only due to the texture. The spatial

shading variations are induced by the proximity of the light source that is seen from a slightly

different spatial position by each point on the surface. Figure 4.5(a) shows an exponentially

damped zone plate texture illuminated by a distant source in direction 1, and figure 4.5(b)

displays the same textured plane illuminated by a nearby source in the same direction. The

difference between the two cases is best demonstrated by figure 4.5(c) that represents a texture-

less plane, with the same geometry and position as before, illuminated with the same nearby

source. Figure 4.5(c) is in fact the ratio of the irradiance of the planar surface illuminated by

the nearby source by the irradiance of the same planar surface illuminated by the distant source.

The perspective plot (figure 4.6) of the irradiance function depicted in figure 4.5(c) provides a

more striking picture of the spatial shading variations across the surface. The reference level

of the plot is the fiat irradiance level that occurs in the distant source case. More specifically,

the plot shows exactly the additive shading variations, across the surface, that are present in

the nearby source case as opposed to the distant source case, i.e. it represents the difference

between the irradiance produced by the nearby and distant sources.

It can be observed that the spatial irradiance variations are very smooth and, as expected,

the small spatial irradiance variations generate, in turn, extremely smooth spatial gradients (see

figures 4.7(a) and 4.7(b) for the horizontal and vertical gradients respectively) with practically

no contrast. These very small spatial gradients cause a lot of difficulty in determining the

structure and motion parameters. The very smooth gradients result in a very slow convergence

of the algorithm and can provoke instabilities.

Table 4.7 shows the results of a typical run for a textureless planar surface with the structure

and motion parameters described by table 4.1. These results were obtained for "near-perfect"

data, i.e. the irradiance sequence was kept as a floating point array and the gradients were

computed directly from the floating point sequence. Under these favorable conditions it takes

about 16000 iterations to converge from a frontal plane initial estimate of the normal (n =

(0 0 1)) and the convergence is excruciately slow as the figures in the tables show.

Moderate success were obtained for the 8-bit quantized data with an arbitrary initial esti-

mate of the normal. Convergence with relative error of 3-10% between the estimated parameters



126 CHAPTER 4. PLANAR PATCH ESTIMATION

Figure 4.7: Surface plot of the spatial irradiance gradients of the textureless surface shown in
figure 4.5(a). (a) (top) horizontal gradient, (b) (bottom) vertical gradient.
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Iter Rotation Translation Normal
No w, -W W3 t1 t t3 n, n2 n3

1 .01080 .00062 .01445 -. 00338 .01583 -. 01379 .00596 -. 00477 1.0
2 .01077 .00057 .01454 -. 00365 .01633 -. 01378 .00890 -. 00717 1.0
3 .01073 .00052 .01463 -. 00389 .01680 -. 01378 .01179 -. 00955 1.0
4 .01070 .00048 .01470 -. 00412 .01723 -. 01377 .01462 -. 01190 1.0
5 .01067 .00043 .01477 -. 00431 .01762 -. 01377 .01737 -. 01420 1.0

10 .01053 .00023 .01495 -. 00487 .01887 -. 01376 .02975 -. 02462 1.0
25 .01028 -. 00015 .01477 -. 00443 .01888 -. 01372 .05351 -. 04490 1.0
50 .01006 -. 00040 .01433 -. 00330 .01746 -. 01370 .07045 -. 06258 1.0

100 .00975 -. 00057 .01392 -. 00230 .01593 -. 01372 .08060 -. 08389 1.0
200 .00932 -. 00063 .01362 -. 00166 .01463 -. 01381 .08243 -. 11251 1.0
300 .00899 -. 00064 .01347 -. 00140 .01390 -. 01390 .08074 -. 13369 1.0
400 .00872 -. 00063 .01338 -. 00123 .01336 -. 01396 .07910 -. 15084 1.0
500 .00849 -. 00063 .01330 -. 00109 .01293 -. 01401 .07795 -. 16535 1.0

1000 .00768 -. 00067 .01303 -. 00063 .01148 -. 01416 .07796 -. 21711 1.0
1500 .00714 -. 00078 .01283 -. 00028 .01055 -. 01422 .08368 -. 25237 1.0
2000 .00672 -. 00093 .01265 .00007 .00984 -. 01425 .09377 -. 28042 1.0
3000 .00602 -. 00151 .01218 .00099 .00859 -. 01422 .13367 -. 32902 1.0
4000 .00535 -. 00287 .01122 .00279 .00722 -. 01392 .23157 -. 38022 1.0
5000 .00516 -. 00433 .01003 .00477 .00622 -. 01330 .34746 -. 40355 1.0

10000 .00663 -. 00517 .00889 .00730 .00503 -. 01201 .45027 -. 31904 1.0
11000 .00675 -. 00520 .00883 .00748 .00492 -.01191 .45587 -.31125 1.0
12000 .00683 -. 00521 .00879 .00759 .00484 -.01185 .45954 -. 30592 1.0
13000 .00688 -.00522 .00877 .00767 .00479 -.01180 .46194 -. 30234 1.0
14000 .00692 -.00523 .00875 .00772 .00475 -.01177 .46349 -.29998 1.0
15000 .00694 -.00523 .00874 .00775 .00473 -.01175 .46449 -.29844 1.0
16000 .00695 -.00523 .00874 .00777 .00471 -.01174 .46513 -.29743 1.0
16631 .00696 -.00523 .00874 .00778 .00471 -.01174 .46542 -.29699 1.0

Table 4.7: Evolution of the motion and structure parameter estimates for a textureless planar
surface using the FICE and a Powell hybrid implementation of the nonlinear equation. Motion
and structure parameters are as specified in table 4.1.
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and the true parameters was obtained for initial estimates relatively dose to the true value of

the normal, but no systematic way of determining the initial estimate was found. A classical CE

implementation cannot be used, as in the previous section, to obtain a crude initial estimate,

because such an implementation cannot deal with a textureless surface where all the variations

are due to shading.

The main reason for the near failure in determining the structure and motion parameters,

in the textureless planar surface case, is that the shading variations are too weak, even for

a very close light source, to generate sizable spatial gradients. The problem is easier, in this

respect, for quadratic patches because the shading variations are much more pronounced due

to the curvature of the surface and the spatial gradients have significantly more contrast. Un-

fortunately, quadratic patches are far more complex to deal with, and only the distant source

case can be reasonably dealt with. Chapter 5 presents an example of a textureless surface for

a distant light sc'irce.

4.2.3 Attenuated Lambertian Model

The attenuated Lambertian model is closely related to the previously described nearby source

model, with the addition that the irradiance is now proportional to the reciprocal of the square of

the distance between the source and the planar patch. Such a model is usable for the estimation

of the. motion and structure parameters of a textureless surface, because the shading across the

surface is not uniform. By comparison to the previous model, the spatial variations of the

shading are stronger, and the spatial gradients have higher contrast because of the additional

attenuation term that modulates the irradiance at each point. In fact, each point on the surface

sees a light source in a slightly different spatial position and with a slightly different intensity.

Figure 4.8(a) presents a planar surface with an attenuated Lambertian reflectance function and

illuminated by a nearby source; figure 4.8(b) displays the same surface illuminated by the same

light source but with a regular, nonattenuated, Lambertian surface and figure 4.8(c) shows the

ratio of the irradiance of the attenuated Lambertian surface of figure 4.8(a) and the irradiance

of the Lambertian surface of figure 4.8(b). As such, figure 4.8(c) corresponds to the irradiance

of a textureless surface with an attenuated Lambertian reflectance and illuminated by the same

nearby source. As expected, the spatial shading variations over the surface are more pronounced
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than in the nearby case with a nonattenuated Lambertian reflectance (see figure 4.5(c) and

figure 4.8(c)); the estimation should to be easier to carry out, i.e. the convergence rate should

be higher and the choice of the initial estimate for the surface normal less critical than before.

The general attenuated case is virtually intractable without the source-viewer approxima-

tion, presented in section 3.2.2, resulting in the simplified system of equations (4.12), (4.13) and

(4.14). Table 4.8 presents the results of a typical run for a textureless planar surface with the

structure and motion parameters described by table 4.1. The experiment was run with "near-

perfect" data, i.e. with synthetic floating point irradiance data. The convergence is about eight

time faster than in the nearby case although still slower than comparable runs for a textured

surface. The estimates of the solution tend to approach the neighborhood of the solution fairly

fast and then the rate of convergence drops dramatically. These experiments suggest that faster

convergence could be obtained with an implementation that switches numerical method once

the estimated solution is close to the true solution.

Table 4.9 displays the final results and relative errors for 8-bit quantized irradiance data. It

was not necessary to provide an initial estimate that was very close to the true solution for these

experiments, unlike the nonattenuated Lambertian nearby case, because the spatial gradients

due to shading were strong enough to allow the algorithm to lock on the correct solution. The

relative errors ranged from about .5% to 3% for the various components of the parameters.

4.3 Summary of Results and Comments

This chapter presented several implementations for different types of Lambertian surfaces and

illumination conditions (nonattenuated, attenuated), different types of textures (gratings, con-

stant, real data) and for various numerical methods in the planar patch case. It was found

that the FICE performs better than its conventional CE counterpart in cases where the CE has

been traditionally used (Lambertian surface illuminated by an infinitely distant punctual light

source or hemispherical extended light source), and that the FICE implementation can recover

the structure and motion parameters in the case of a textureless surface.

The results of the simulations demonstrated the advantages of the FICE in providing extra

accuracy in computing the parameters and in extending the range of cases that can be handled

by the algorithm. Specifically, the FICE formulation can deal with weak surface markings
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Figure 4.8: Exponentially damped cosine on a slanted plane. (a) (top left) irradiance image
with close-up source and attenuated Lambertian reflectance function, (b) (top right) irradiance
image for close-up source and regular Lambertian surface, (c) (bottom) irradiance image for
textureless attenuated Lambertian surface.
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Iter Rotation Translation Normal
No i G 3 ti t2 t 3  ni n1 n3

1 .01117 .00100 .01442 -. 00107 .01251 -. 01378 .01210 -. 00769 1.0
2 .01112 .00091 .01447 -. 00110 .01269 -. 01376 .01784 -. 01119 1.0
3 .01108 .00081 .01451 -. 00112 .01284 -. 01375 .02335 -. 01446 1.0
4 .01104 .00073 .01455 -. 00112 .01298 -. 01374 .02864 -. 01752 1.0
5 .01101 .00064 .01457 -. 00112 .01309 -. 01372 .03370 -. 02036 1.0

10 .01088 .00029 .01458 -. 00096 .01338 -. 01365 .05569 -. 03188 1.0
50 .01045 -. 00077 .01372 .00066 .01231 -. 01340 .12339 -. 07127 1.0

100 .00997 -. 00105 .01327 .00129 .01131 -. 01343 .13901 -. 10291 1.0
200 1.00922 -. 00134 .01283 .00187 .01013 -. 01353 .15403 -. 14948 1.0
300 .00870 -. 00163 .01247 .00235 .00930 -. 01355 .17161 -. 18277 1.0
400 .00829 -. 00196 .01213 .00286 .00862 -. 01351 .19346 -. 20874 1.0
500 .00797 -. 00234 .01175 .00344 .00800 -. 01343 .22020 -. 23015 1.0

1000 .00707 -. 00461 .00947 .00680 .00538 -. 01227 .40387 -. 29016 1.0
1500 .00698 -. 00520 .00878 .00774 .00473 -. 01176 .46224 -. 29587 1.0
2000 .00698 -. 00523 .00873 .00781 .00469 -. 01172 .46607 -. 29565 1.0
2047 .00698 -. 00523 .00873 .00781 .00469 -. 01172 .46615 -. 29563 1.0

Table 4.8: Evolution of the motion and structure parameter estimates for a textureless planar
surface with an attenuated Lambertian reflectance function using the FICE and a Powell hybrid
implementation of nonlinear equation. Motion and structure parameters are as specified in
table 4.1.

I Rotation Translation Normal
True para. .00698 -. 00524 .00873 .00781 .00469 -. 01172 .4663 -. 2956 1.0
Last est. .00694 -.00508 .00877 .00757 .00472 -. 01184 .4798 -. 2861 1.0
Rel err (7) .6 3.0 .5 3.1 .6 1.0 2.9 3.2 .0

Table 4.9: Final estimates and relative errors of the motion and structure parameters using
the FICE on the synthetic quantized irradiance sequence depicted in figure 4.5(a). All the
parameters are specified by table 4.1.
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and textureless surfaces provided the spatial variations of the shading are strong enough to

generate sufficient spatial gradients as in the nearby source and attenuated Lambertian cases.

The major drawback of the FICE algorithm is its very high computational cost as well as its

numerical implementation complexity. It is clear that such a formulation is not recommended in

applications were only a reasonable estimate is sought since a much simpler CE implementation

can provide the required accuracy in cases where the data are reasonably approximated by the

constraint equation (see section 3.3.1). On the other hand, if the accuracy of the solution is

the prime concern, the FICE implementation is a legitimate candidate.

In addition to the use of the FICE, this chapter showed the advantage of the DFU in-

cremental method to compute the motion parameters. Such a method enabled us to run the

algorithm on real data acquired by a video camera and can be implemented very efficiently

for rigid motion and optical flow applications independently of the type of constraint equation

used.



Chapter 5

Quadratic Patch Estimation

This chapter discusses the specific problems and forms of the general minimization equations,

developed in chapter 2, when applied to quadratic patches. Specific implementations with

specific shading -models are derived and results of the algorithms on synthetic data presented.

Geometrically, a quadratic patch is only slightly more complicated than a planar patch and

is fully defined by the normal fo at a given point Z0 and its associated principal curvatures

d and dc, along the principal axes pi and P2; alternatively, the curvature tensor is repre-

sented, for convenience, by the vector do at Zo (see figure 5.1). The implementation of the

quadratic patch case for the CE is only marginally harder than the planar patch- situation,

and Negahdaripour (1986) proposed an implementation for the direct motion case. One of the

major differences with the planar case is that no closed-form solution exists and the structure

and motion parameters are estimated by an iterative procedure similar to the semilinear iter-

ative procedure used for the planar patch case. However, in the FICE formulation, the task

of estimating the parameters is an order of magnitude more complex, even in the case of the

simplest distant punctual source. The complexity stems from the need to determine the nor-

mal n and/or unit normal fi at every point on the surface as a function of the normal ho and

curvature vector do, and to evaluate the shading at each point. Contrary to the planar case,

spatial shading variations always occur, even in the distant source case, and its spatiotemporal

variations need to be tracked in the FICE formulation. Figure 5.2(a) and figure 5.2(b) show

two examples of shading caused by a distant punctual source for an elliptic hyperboloid and an

ellipsoid respectively. The complexity of the formulation and therefore of the implementation

133
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Figure 5.1: Quadratic patch geometry.

limit the study of the quadratic patch case to the distant punctual light source case which can

be solved for both textured and textureless surfaces.

The next section presents the analytical formulation of the minimization equations in the

distant source case and is followed by examples of runs on synthetic data.

5.1 Implementation of the Quadratic Patch Case

A quadratic patch is fully defined by two vectors, a normal no and a curvature(tensor) do at a

single point on the surface, and the reciprocal of the depth Z can be expressed in terms of the

image coordinates, r = (z, y, F), the normal no and the curvature do at Z0 . Using a second

order Taylor series of the reciprocal of the depth around the point Zo (see equation-2.22), 1/Z

can be approximated by

y-(r. no) + (q. do) (5.1)

where q = (lz 2 ,zy, Zy 2 )T is a quadratic coordinate vector, and do = -(Z., Z., Z,)T is the

curvature vector at the point Zo. It should be noted that, in the quadratic patch and higher
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Fig-ure 5.2: Irradiance image of an elliptic hyperboloid (a)(left) of an and ellipsoid (b)(right)
illuminated by a distant punctual light source.

dimensional patch cases, the reciprocal of the depth is only given by an approximate equation

at a given order, unlike the planar case where 1/Z can be expressed exactly in terms of the

surface coordinates. Equation (5.1) is a second-order approximation.

The normal n and unit normal fL at image point r can be expressed, to second order, by

n no Zo(1 - (i. no))"Hr (5.2)

and

n, - Zo (i - .no) (13-fi)Hr - - (rTFrfio + 2(io. Hr)Hr)  (53)
,no i 2 jnotl'

where -r (z Y 0)T ,  H 2 - 3thofiH and

H Z'y Zy 0
HKz Y z§:

0 0 0

The details of the derivation that leads to the equations (5.2) and (5.3) can be found in ap-

pnliix E. The next section derives the quadratic patch minimization equations for a distant

punctual source model.
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5.1.1 General Equation for the Far-away Punctual Source Case

Let us consider a distant punctual source in the direction I and examine the shading equation

for a quadratic patch. Using the second-order Taylor series expansion of the unit normal ft

(equation 5.3), the distant shading equation takes the form

E(r,t) = p((I. fio)+ Zo10 Hr - Zo(r. -fio)l - 2o 2rT(( • fio)H + 2(HTfiol )H)r) (5.4)

where Z0 = Zo/ Ilnoll and l = I - (I. fto)fio. Equation 5.4 shows that the irradiance is a

quadratic functional of the image coordinates r and includes constant and linear terms. If

the light source direction I is parallel to the normal rio, the previous equation takes the much

simplified form

E(r,t) = p,(1 - l-o2rT(2 + (Hfio)(Hfio)T))

that is, the spatial irradiance variations are purely quadratic without any linear component,

and the spatial gradients V, are linear,

E, = (H2 + (Hrzo)(Hfio) T )r.

Figure 5.3 shows the irradiance, horizontal and vertical gradients of an elliptic hyperboloid with

a light source I parallel to the normal ho of the tangent plane at the origin and figure 5.4 shows

the irradiance, horizontal and vertical gradients of an elliptic hyperboloid with a light source

not parallel to the normal Aio. The smoothness of the spatial shading gradients suggests that

the convergence of the algorithm for a textureless surface is going to be very slow and that the

global behavior of the algorithm is going to be similar to the nearby source, textureless, planar

patch one.

Let F(w,t, fio,do) = Et- (v.w) - (r. fio)(s.t) - (q.do) (s.t) -p(r)[,w, fi(r)], where fi(r)

is specified by equation (5.3). The unconstrained minimization equation can be written in the

form

C = min~ (F2 + p(r) (E(rt) - p(r)(I- fi(r))) ) d + A(tfI% 2  1).

At an extremum of C, the derivatives of C with respect to the motion parameters w, t and

structure parameters h%, do are zero, i.e.

8C OC OC 8C-=0, -=0, -=0 and -=0.
8w t aso Odo
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Figure 5.3: Elliptic hyperboloid illuminated by a light source I parallel to the normal % of the
tangent plane at the origin. (a) (top) irradiance image, (b) (bottom left) horizontal gradient,
(c) (bottom right) vertical gradients.
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Figure 5.4: Elliptic hyperboloid illuminated by a light source Inot parallel to the normal fio
of the tangent plane at the origin. (a) (top) irradiance image, (b) (bottom left) horizontal
gradient, (c) (bottom right) vertical gradients.
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The resulting system of vectorial nonlinear equations, that defines the parameters t, w, hlo and

do, takes the form

IL F(-v - p(r)(fio x 1))dr = 0 (5.5)

fF(-s(r.fio)-s(q.d0))dr = 0 (5.6)

JjF(-q(s.t))dr = 0 (5.7)

IL(F(-(s.t)r-p(r) (-) (c x1))- p(r)p(r) (p-) )dr +Auo = 0 (5.8)

BA .

where 8 is computed using (5.3). The expression of this partial derivative is complex and

can be found in appendix E along with its derivation. The Lagrange multiplier A and the

Lagrange multiplier function p(r) are eliminated by taking the dot product of equation (5.8)

with the vectors ito and I and solving the resulting scalar linear system in the unknowns A and

,(r)p(r)dr. The expressions for the.multipliers are very cumbersome, due to the 3- term,

-and are omitted here. Once the multipliers are determined, their value is plugged back in (5.8)

to obtain a system of four nonlinear vectorial equations in the unknowns w, t, ho and do.

It should be noted that the previous vectorial equations are, formally, fairly similar to

those of the system S obtained in the distant planar patcli case. Equations (5.5) and (4.2) are

formally identical, the new parameter do adds an extra term in (5.6) and gives rise to the new

equation (5.7). However, the similarity between the two systems of equations in the planar and

quadratic cases is deceptive. In fact, the unit normal ft = fi(r) is no more a constant vector

but depends on the image coordinates r and the previous system of nonlinear equations is far

more complex to implement than its planar patch counterpart. In particular, equation (5.8) is

extremely hard to implement numerically and the scalar expressions are messy due, in part, to

the lack of privileged axes of projection, found in the planar case.

5.1.2 Solution of the Global Nonlinear System

The previous system can be solved either as a global nonlinear system or as a semilinear system.

The global nonlinear system was not implemented because the simpler planar case was already

exhibiting fairly poor convergence properties, compared to semilinear implementation, and the
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quadratic case is even more nonlinear and of higher dimension and its behavior can only be

worse.

The first equation is linear in w, t and do, the second in w and t, the third in w and do and

the last in do only. Two semilinear implementations can be considered. The global system can

either be broken into a linear system in the unknowns wi and t with the first two equations and

a nonlinear system in do and no with the last two equations or into a linear system in w and do

with the first and third equations and a nonlinear system in t and n with the second and fourth

equations. The former implementation was chosen for two distinct reasons: its implementation

is fairly close to the linear patch implementation, and it segregates the parameter estimation

into motion parameters obtained from the linear system and structure parameters obtained

from the nonlinear system. The linear system can be written in the form
(M- N2 ) oN N 4 t -  if2 (5.9)

where M, and el are the same as in the planar case, with ft replaced by Ns, and

N 2 = f,(r.fio+q.do)((v+p(r)(fo xl))sT)dr

N 4 = Jj(r.fo+q.do) 2 STdr

f2 = jEt (r.iO+q. do) sdr

and the solution to the system (5.9) is given by

S - N 2 M 1 N 2 ) 1 (N2M 1  -f 2 ){ = .(5.10)

W = -M' 1(ei + N 2t)

The nonlinear part of the system was implemented with Powell's hybrid method.

The next section presents two examples that illustrate the performance of the algorithm and

compares the results to those given by a classical CE implementation in the case of a textured

surface.

5.2 Examples

Two examples are presented in this section, a saddle surface with an exponentially damped

zone plate synthetic texture and the same surface with a constant albedo (textureless surface).
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Rotation in radians: = -. 01047 W2 = .00698 W3 = .00785
Rotation in degrees: w= -. 6 W2 = .4 Wo3 = .45
Translation: ti= .00468 t 2 = -. 00625 t 3 = .00895
Translation in pixels: t1 = .6 t2 = -. 8 t3 = 1.1

Normal to tangent plane at origin: n1 = .3640 n 2 = -. 2851 n 3 = 1.0
Orientation of tangent plane: Slant = 15* tilt - 200
Curvatures at origin: di = -1.0 d2 = 0.0 d3 = 1.0

Table 5.1: Motion and structure parameter values used in the quadratic experiments with
synthetic data.

Figure 5.1 lists the motion and structure parameters used in the quadratic patch experiments. A

large field of view of 900 is used in the experiments so that the second order terms are significant

and the saddle surface does not appear similar to its tangent plane at the origin. The goal of

these examples is to show the increased accuracy of the FICE algorithm over the traditional

CE algorithms, in the case of textured surfaces, and to demonstrate the ability of the algorithm

in recovering the motion and structure parameters for textureless quadratic surfaces. The data

that are used are synthetic floating point data, i.e. the irradiance surface were raytraced as

floating point arrays, and the spatial gradients are estimated directly from these arrays instead

of the eight bit quantized irradiance images. Such data were used to assess the performance of

the algorithm with respect to the-convergence speed and the initial estimates choice without

having to worry about the errors introduced by the quantization process. These experiments

are meant to show the maximum performance that can be obtained with nonquantized data.

5.2.1 Textured Surface

As it was argued in section 5.1.2, only a semilinear implementation was used in the quadratic

patch case with w and t computed from a linear system of equations and /io and do from a

nonlinear system of equations. In many cases, the algorithm failed to converge to a solution or

to the correct solution for an arbitrary initial estimate of the structure parameters when the

tangent plane of surface at the origin was highly slanted (Tr or a > 25") or the curvatures were

high. In the example used in this section, the tangent plane slant and tilt were small enough

(" = 15" and a = 20") so that an initial estimate of no = (0 0 1) (frontal tangent plane) was



142 CHAPTER 5. QUADRATIC PATCH ESTIMATION

Initn ormal nj = 0.0 n2 = 0.0 n3 = 1.0
Ihit curvat di = 0.0 jd 2 = 0.0 1d 3 = 0.0

[FICE I True parameters Last estimates (1648) IRelative error (%)
Rotation -. 00470 .00698 .00785 -. 00476 .00716 .00778 1.34 2.61 0.84
Translation .00468 -. 00625 .00859 .00464 -. 00537 .00869 0.85 1.95 1.21
Normal .36400 -. 28510 1.00000 .37450 -. 27760 1.00000 2.91 2.61
Curvature -1.00000 .00000 1.00000 -1.01840 .05100 .09784 1.84 0.51 2.16

[CE True parameters I Last estimates (1841) Relative error (%)

Rotation -. 00470 .00698 .00785 -. 00523 .00667 .00882 11.4 14.5 12.3
Translation .00468 -. 00625 .00859 .00411 -. 00711 .00982 12.1 13.8 14.4
Normal .36400 -. 28510 1.00000 .30460 -. 32800 1.00000 16.7 15.4
Curvature -1.00000 .00000 1.00000 -1.17800 .12300 .83500 17.8 12.3 16.5

Table 5.2: Final estimates and relative errors of the motion and structure parameters using the
FICE and CE on the synthetic, floating point irradiance sequence depicted in figure 5.5. All
the parameters are specified by table 5.1.

adequate for all types of textures used. On the other hand, an initial null estimate for the

curvature (planar surface) only works for sufficiently high contrast textures. Weak textures

require a more accurate initial estimate for the curvature and do = (-.5 X .5) was found to

be adequate for any texture mapped onto the surface specified by the parameters of table 5.1.

Figure 5.5 shows the irradiance and spatio-temporal gradients of the quadratic patch, defined

by table 5.1, mapped by an exponentially damped zone plate texture. Table 5.2 shows the

real values, the initial and final estimates of the motion and structure parameters as well as

the corresponding relative errors for two experiments using the irradiance data of figure 5.5(a).

The two sets of results that appear in table 5.2 are for an implementation of the classical CE

and for an implementation of the FICE.

It does not come as a surprise that the number of iterations (1648) required to converge

to the right solution is larger than the equivalent planar patch case since the problem is of

higher dimension, 11 parameters to recover instead of 8, and the nonlinear part of the system

is numerically far more complex. In addition, the cost of solving the nonlinear system for the

structure parameters, ft0 and do is about 14 times the cost of solving the nonlinear equation

for the parameter fio in the planar patch case.

The accuracy of the estimates for the FICE experiment, less than 3% error, is very good
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Figure 5.5: Exponentially damped zone plate texture for a saddle surface defined in table 5.1.
(a) (top left) is the irradiance image, (b) (top right) the temporal gradient, (c-d) (bottom left
and right) the x- and y-gradients.
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considering that only the irradiance data were synthesized (in floating point accuracy) and the

spatiotemporal gradients were estimated from these irradiance data. The results for the CE

implementation have a much higher bias than in the planar patch case and the relative errors

range from 11 to 18%. These results are not really surprising because the irradiance data for

a quadratic patch exhibits a strong spatial shading, induced by the distant source, across its

surface and the temporal shading variations are far more substantial than in the planar patch

case. The strong shading effects are best seen on figure 5.6(a) for a textureless surface.

Experiments with eight bit quantized data were not very impressive because of the strenuous

requirement of providing a fairly good initial structure estimate in order to converge to the

correct solution. In the case of the quadratic patch with a distant light source and quantized

data, the CE hnplementation did not provide sufficiently good estimates, i.e. within 20 to 25%

of the real values, except in the case of very strongly marked surfaces. Similarly, experiments

with real data were inconclusive because the uncertainties on the true measured motion and

structure parameters were so large, that the relative errors between the final estimates and the

measured values of the parameters were totally meaningless.

5.2.2 Textureless Surface

In this experiment the same geometric saddle surface, defined by the parameters of table 5.1,

is- used but the albedo is now constant on the surface. Figure 5.6 shows the irradiance and

the spatiotemporal gradients for the textureless surface. It can be observed that the shading

spatial gradients are stronger for the textureless quadratic patch case than for the textureless

planar patch case. This situation should stimulate a faster convergence to the correct solution

and increase the region of convergence i.e. the algorithm for the quadratic patch case has

the potential of being less sensitive to the initial estimate than the corresponding planar patch

algorithm. Unfortunately, the example in the previous section demonstrates the need for strong

spatial gradients to insure convergence for arbitrary initial values for the structure parameters

and a textureless quadratic surface does not provide gradients with enough contrast. The

example of figure 5.6 did not converge to the correct solution for the canonical initial values

(no = (0 0 1) and do = 0) and a new initial estimate was selected. Table 5.3 displays the true

parameters, the initial values and the final estimates and provides the relative errors between
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Init normal In, = 0.0 n2 = 0.0 n3 = 1.0

Init curvat dl= -0.5 d2 = 0.0 d3 = 0.5

IFICE True parameters Last estimates (5410) Relative error (%)

Rotation -. 00470 .00698 .00785 -. 00478 .00674 .00794 1.78 3.41 1.15
Translation .00468 -. 00625 .00859 .00462 -. 00726 .00877 1.31 1.62 2.12
Normal .36400 -. 28510 1.00000 .37520 -. 29950 1.00000 3.10 2.98
Curvature -1.00000 .00000 1.00000 -1.02410 -. 00112 1.02680 2.41 1.12 2.68

Table 5.3: Final estimates and relative errors of the motion and structure parameters using the
FICE on the textureless synthetic, floating point irradiance sequence depicted in figure 5.6. All
the parameters are specified by table 5.1.

the true parameters and the final estimates. The errors are more or less identical to those

obtained in the textured case but the number of iterations is more than three times the number

of iterations required in the textured quadratic patch case. A strict comparison in number of

iterations required by the planar and quadratic patch case, for a textureless surface, as opposed

to a textured surface, is impossible because, in the former case, the same initial estimate is

used in the textured and textureless surface situations and, in the quadratic case, a change of

initial estimates was required.

The results of the experiments with quantized data were very similar to the results of

the experiments in the planar patch case: very good initial estimates are required to attain

convergence to the correct solution. The problem of systematically finding the initial values

is very difficult in the textureless case because the CE algorithm cannot handle textureless

surfaces and is, therefore, unable to provide any useful solution.

5.3 Conclusions

The overall implementation of the quadratic patch case in the simplest possible shading case,

the distant punctual source, turned out to be extremely hard and the convergence properties

rather poor for a random initial estimate of the surface normal and quadrature vector and an

arbitrary quadratic patch geometry. The simple, canonical initial estimate of a frontal plane

i.e. no = (0 0 1) and do = 0 failed in many cases unless the curvatures and inclination of the

tangent plane at the origin were small or the surface markings very strong. The convergence
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Figure 5.6: Textureless saddle surface defined by table 5.1. (a) (top left) is the irradiance image,
(b) (top right) the temporal gradient, (c-d) (bottom left and right) the x- and y-gradients.
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properties are worse than those of the planar patch case because the overall system is far more

nonlinear and the number of unknows is higher. The nonlinear portion of the global system

is no more a relatively simple nonlinear vectorial equation, but is now a full system of two

vectorial equations, one of which (5.8) is very complex. The only guaranteed way of converging

to the correct solution is to provide a - tirly good initial estimate of the normal and curvature

vectors. Negahdaripour's iterative scheme (Negahdaripour 1986), which solves the problem

for the classical constraint equation, was used to obtain an initial estimate in cases where the

texture gradients were strong and reasonable estimates could be computed using the CE scheme.

On the other hand, very good results were obtained for both textured and textureless surfaces.

In the textured cases, the FICE performances were much superior to the performances of the

CE implementation and the relative error was two to three times smaller. Very nice results were

also obtained in the textureless case, a case that cannot be handled by CE based algorithms.

These implementation difficulties demonstrate that the quadratic patch case is really the

most complex case that can be solved using this formalism. As it was hinted before, the
implementation complexity grows an order of magnitude faster than the degree of the surface

patch, leading very early on to intractable systems. The main source of complexity is due to

difficulty in expressing analytically the unit normal at each point of the surface and in computing

its derivatives with respect to the fixed parameters of the patch (e.g. o and do). On the other

hand, it is possible to recover the structure and motion parameters for a textureless surface and

the parameters obtained in the textured surface case are more accurate than those determined

by an algorithm that relies on the CE.
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Chapter 6

Multiframe Formulation

This chapter discusses the multiframe implementation of the DFU constraint equation intro-

duced in chapter 2 and compares it to two alternate algorithms that rely on a more classical

use of the regular or full irradiance constraint equation. The performances of the various multi-

frame algorithms are examined with special emphasis on the relationship between the number

of frames used, the amount of noise present in the irradiance sequence and the accuracy of the

estimated results. The performances are evaluated for synthetic data, where noise of known

variance is added and systematic comparison of performance is possible, and for a sequence of

real data acquired with a video camera.

The multiframe techniques described in this chapter do not rely on the use of shading

information and can be utilized with any differential technique that uses a constraint equation.

Moreover, shading information and multiple frames are two different techniques that can be

used separately or together in a given implementation and the performance of each one does

not affect the other one. The multiple-frame schemes that are presented are not only applicable

to algorithms that compute the rigid body motion and structure but also to algorithms that

estimate dense optical flow. The results are more dramatic in the former case because the

highly overconstrained problem provides a better noise smoothing capability than in the case

of the optical flow estimation that is a far less overconstrained problem.

In this chapter, the minimization equations are presented for the full irradiance constraint

equation with a distant light source model; the algorithms are run on data compatible with

these assumptions. The real sequence, processed by the multiframe DFU incremental FICE,

149
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was used in chapter 4 in the experiments with real data for a planar patch. The example will

be further studied in this chapter to show how the accuracy of the estimated parameters varies

when the number of frames used in the multiframe DFU algorithm is changed.

6.1 Multiframe Algorithm Implementations

The global goal in using multiple frames is to reduce the sensitivity of the algorithm to noise by

using a larger amount of correlated data in the least-squares formulation. The key to this type

of formulation is the derivation of a constraint equation, or of a series of constraint equations,

that link the various frames so that a global parameter estimation can be performed on the

augmented spatiotemporal block of data.

Three different schemes are presented in this chapter: a central frame algorithm, an in-

cremental constraint equation (ICE) scheme and the DFU algorithm that was introduced in

chapter 2 in the two frames case. All three algorithms share the assumption that the rigid body

motion is constant within the temporal analysis window. More specifically, the translational

velocity t, the rate of rotation 11w I and the direction and position of axis of rotation are con-

stant. Under this assumption the rotational and translational displacements of the rigid object

in frame i, with respect to the initial frame 0, are expressed, for a unit time step, by w(') = iw

and t(0) = it, respectively1 . This assumption seems very restrictive but is in fact fairly benign

for temporal windows of three to seven frames, in the case of ordinary motions. It will be shown

later that the assumption can be somewhat relaxed to allow slowly varying motions from frame

to frame.

The next three sections present the three multiframe algorithms for recovering the motion

and structure parameters and are followed by a study of the performance of some of the algo-

rithms with respect to noise. In order to simplify the mathematical expressions, the algorithms

which are derived for the planar patch case, instead of the generic depth map case, use the full

irradiance with the distant source model, and assume that the surface is textureless. The algo-

rithms can be adapted to the different light source and surface models that were presented in

the previous chapters at the cost of a more complex formulation. In particular, textured surface

algorithm implementations are obtained by the introduction of the shading model constraint

'In this chapter the parenthesized superscripts refer to the frame number.
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via a Lagrange multiplier function that is eliminated in a manner similar to the one employed

in section 4.1.1.1.

6.1.1 Central Frame Algorithm

The central frame algorithm is a straightforward extension of the regular two-frame algorithm.

Let us assume that 2n + 1 frames, indexed from time t-. to tn, are used and let us consider the

2n individual constraint equations CEj, i E [-n, n] - {0}, between the reference frame 0 and the

frame i. Each constraint equation CEi relates the same reference frame to a given frame i in the

sequence and the collection of constraint equations is globally minimized, or more specifically,

the integral of the sum of the squares of all the 2n constraint equations is minimized. The choice

of the reference frame is arbitrary and any of the 2n+ 1 frames could be chosen. The advantages

of the central frame as reference frame is that the symmetry introduces some simplifications

in the expressions and the constant motion assumption is a better approximation since the

maximal temporal distance between the reference frame and any other frame in the sequence

within- the temporal window is n. The minimization problem can be formulated asn 2
mi ( (E() - (v.to(O) - (r. f)(. t(')) - pl, (') dr + \(1fI12 - ) • (6.1)

To facilitate the expression of the summation, the k = 0 term is included because E )  0 and

o(-) = t(o) = 0. Under the constant rigid body motion assumption, w(i) = iw and t() = it, and

after some simple algebraic manipulations, it is apparent that this formulation and the resulting

equations, obtained by differentiation of equation (6.1) with respect to the parameters t, wo and

ft, are similar to the one developed in section 4.1.1. For example, the equivalent linear system

takes the form

MT M4 t 6

where MI, M 2 and M 4 are identical to the quantity of the-same name in the system (4.6) and

e = Jj iE i i2 (v + p(ti x I))dr; 62 - iE i/ i2 (r. f)sdr.
a/,\=-n = -- n = i--n / =-n

The overall effect of the central frame minimization is the averaging of the temporal gradients

over the length of the temporal window. This result is not surprising because, by design, only
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the spatial gradients of the central frames are used and all the other quantities, besides the

temporal gradients, are independent of the frame indices.

The only advantage of this formulation is its simplicity. The multiframe implementation

is nearly identical to the two-frame implementation and the two-frame implementation is in

fact the multiframe implementation for two frames. The drawbacks are numerous and serious.

The formulation underuses the available data, the spatial gradients are only computed from the

reference frame, and the rest of the sequence is merely used to compute the temporal gradients.

This method only solves the noise problem in a weak sense because it only provides noise

reduction by smoothing the gradient data in the temporal direction and it is totally ineffective

in dealing with the noise present in the spatial gradients. In addition, for large motion, the

smoothing of the temporal gradients can be detrimental to the convergence of the algorithm

and worse results can be obtained in the multiframe case than in the two-frame case. This

method was presented with the unique goal of showing how some quick improvements, over any

two-frame algorithm, can be gained at the cost of very few minor changes to the two-frame

implementation.

The next section describes an algorithm, called the incremental constraint equations algo-

rithm, that fully uses the spatiotemporal gradients of each frame in the sequence. However, the

algorithm leads to a system of highly nonlinear equations that are very delicate to implement.

6.1.2 Incremental Constraint Equation Algorithm

Given n + 1 consecutive frames in a sequence, the ICE algorithm minimizes the integral of

the sum of the squares of n constraint equations that link two adjacent frames at a time.

Each constraint equation is a two-frame constraint equation, that relates the spatiotemporal

gradients of two successive frames, and is, consequently, different from the constraint equation

at neighboring pair of frames. Under the assumption of constant rigid body motion, the motion

parameters and the intrinsic structure parameters (e.g. do) are identical in each CE, but the

normal to the planar patch, or to the tangent plane at the origin for higher order surfaces, is

different. More specifically, in the distant source case, the minimization problem can be written
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as

min C - Jf O-(v()- (r ) t)-p[|,w, -i )]) dr- (1l,11 2-2 ))

(6.2)

where fi(s) f t + i(w x ft) and f2 = fa(0) denotes the unit normal in the starting frame. In

addition, the vector fields v() and s() are different in each frame i and are computed using the

ith frame spatial gradients.

Under the assumption of constant rigid body motion, this scheme amounts to performing

n simultaneous two-frame minimizations to recover a common set of motion and structure

parameters (e.g. w, t and h in the planar patch case). Expanding the normal fi(i) in the

minimization equation (6.2) and differentiating C with respect to the structure and motion

parameters leads to the following system of three nonlinear equations

j "' (-v(') + i(rx f)(s(') .- t)-p((X) + ifix (ixw)- iX (w x t)))dr = 0

I 1i) (- smi((r. - ) + [r, w, f]))dr = 0

(F() -(('.-t)(r +i(* x w)) -((! x w - i~ x w) t)) ) dr+ Vit = 0,

where F()(w, t, fi) = E(i) - (v) .-w) - ((r. ft) + i[r, , ft]) (() .t) - p([l,(', fi] + i(1 x W)(ft x w)).

It can immediately be noticed that the previous equations are no longer linear in the motion

parameter w, resulting in the loss of the semilinearity of the overall system that can now only

be solved by a general nonlinear global method. As a result, it should be expected that the

convergence of the nonlinear system is far from being guaranteed for an arbitrary set of initial

conditions and an accurate initial condition is required. However, when restricted to two frames,

the system becomes semilinear, its convergence properties are improved, and the solution can

generally be found for an arbitrary initial condition. Therefore, the problem is first solved in

the two-frame case and its solution is used as an initial estimate to the full multiframe system,

resulting in a fast convergence to a more accurate solution. The convergence is fast because

the initial value is usually a very good estimate of the final solution.

The ICE algorithm fully uses all the irradiance data available in the sequence and provides

a systematic way of computing the constant motion parameters and the structure parameters

from a given set of frames in a sequence. Its drawbacks are twofold: the algorithm leads to a
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fully nonlinear system of vectorial equations and the approach segments the temporal data into

a set of n separate two-frame problems that are solved simultaneously instead of solving the

(n + 1)-frame problem directly. In this respect, the ICE algorithm methodology is similar to

the one used by some nonlinear system solvers that decompose the structure of the system by

considering each equation separately, and minimi.e the sum of the squares of the residuals of

each equation instead of solving directly the initial system.

The next section presents a method that offers more flexibility, globally uses all the data,

and leads to a semilinear implementation of the system of nonlinear equations.

6.1.3 Dynamical Frame Unwarping Constraint Equation

Section 2.3.3 introduced the concept of the DFU constraint equation in the case of one virtual

frame and two real frames. The DFU constraint equation algorithm relies on a dynamical CE

that uses a displaced frame difference, computed for the current motion estimate, in lieu of

the temporal gradients, and that minimzes the square of the residuals of the DFU constraint

equation over the full image. The major difference with the classical method is that the con-

straint equation, which is minimized at each iteration, is not static, but depends on the current

estimate of the motion parameters; the spatial gradients are dynamically computed from the

unwarped irradiance fields at each iteration. In effect, the DFU process takes the two irradiance

fields and spatially distorts them so that a given point in the image plane is the image of the

same object point at times t, and t2. The unwarping process effectively undoes the motion to

temporally align each object point so that it projects on the same image point throughout the

sequence.

It does not take much of a change to extend the unwarping process to an arbitrary number

of frames. Let us define the global displaced frames difference, DG(xi, t, r, n, At(xi, t)), as the

sum of the 2n elementary DFDs formed by the n pairs of symmetric frames around the virtual

frame2 . Using the notations that were first introduced in section 2.3.3, the global DFD, DG,

is given by
n

D Z(fi(X + (1 - - i(Xi - kra,(xit* t~k))
k=o

2In practice, the central frame is a virtual frame when the number of frames is an even number but is middle,

real frame for odd number of frames.
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where t(k) = t - kTT' and t ) = t - (1- k)Tt, and is used to derive the multiframe DFU-FICE

expressed by

D(Xit8=(3.rn'al)) - (a(n) - at)' (E 3- kg. ) (Vxfl(xi + (1 - k
-

) a ( ")  I = A) (6.3)

in the optical flow case. Equation (6.3) is the multiframe equivalent of equation (2.30) that was

derived in the two-frame case. In the rigid body motion formulation, and in the simplified case

where the motion field is locally constant, translational or slowly varying, equation (6.3) takes

the simpler form

DG(Xi, t, r, n, (n))- VG(Xi, t+, r, n, d(n))(w(n) - w) + (r. i)SG(xi, t+, 'r, n, d(n))(t(") - t) = E

(6.4)

where
VG(x,t+,r,n,d(n)) v(x,(1 - ( ) )

.n. (6.5)

The multiframe equation (6.4) is identical to the two-frame equation (2.33), where the DFD is

replaced by a global DFD, that is the sum of the individual DFD of a pair of frames symmetric

about the virtual frame, and the v and s vector fields are replaced by the global VG and SG fields

that are the sum of the individual v and s fields. In this respect, the multiframe formulation is

formally identical to the two-frame algorithm and all the results and implementations described

in the preceding chapters are directly applicable.

The DFU constraint equation provides a uniform way of dealing with sequences of frames

by dynamically unwarping the individual frames of the sequence to temporally align them,

stack them into a spatiotemporal block of data and estimate, in one step, the motion and

structure parameters of the full block of data. The elegance of the DFU algorithm is that the

two-frame case is effectively the general case, and only modest modifications are required to

deal with an arbitrary number of frames. The main drawback of the multiframe method is its

higher computational cost, caused in part by the computation of the unwarped gradients at

each iteration. Section 2.3.3 provided a more thorough discussion of the computational cost of

the method.
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In the practical implementation of the multiframe algorithm, it is advisable to start the

iterations with only two frames and increase the number of frames only when a decent estimate

of the motion parameters is available. In fact, if no a priori estimate of the motion is known,

and the iterations are started by assuming a zero motion (the most probable alternative), it is a

mistake to stack several raw frames at once, especially if the motion is large. The computation of

the spatial gradients that uses the full spatio-temporal analysis window is then heavily distorted;

the computed gradients are grossly inaccurate and can inhibit the convergence of the algorithm

to the correct solution. In practice, the multiframe algorithm is run as a two-frame algorithm

up to a point where the difference between two successive estimates of the parameters is below

a predefined threshold, and then the full sequence, within the temporal window, is unwarped

and the full multiframe algorithm enabled3.

6.1.4 Slowly Changing Motion

All the algorithms described in the previous sections were derived under the constant rigid

body motion assumption and a unique set of motion parameters are computed for the set of

frames belonging the temporal analysis window. This assumption can be somewhat relaxed and

the algorithms modified to take into account slowly varying motion-where the translation and

rotation vectors can be thought of as made out of a root term, which represents the velocity at

time t, and a first-order update term, which represents the incremental portion of the velocity

vector between the frame at time t and the frame at time t + t.

At a given time t the motion parameters are computed, using the multiframe algorithm, by

assuming that the motion is constant within the spatiotemporal window of analysis. At the next

time step, t+6t, the spatiotemporal window is moved by 6t, and the new motion parameters are

computed using the previous estimate as initial estimate. This process is particularly well suited

to the DFU incremental FICE, because the incremental formulation only computes the update

term and the computation can be performed very efficiently for small increments. In summary,

slowly varying motion parameters are accommodated by assuming that the parameters are

constant within the analysis window at a given time, and are changing slightly as the analysis

3 1n reality, as it was pointed out earlier, the unwarped sequence is never computed but the indices of each
temporal arrays are shifted by the amount of estimated motion in each frame and the unwarping process is a
mere computation of offset indices in the various arrays.
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window is displaced temporally; an update of the motion parameters is computed at the next

time frame.

The next section presents synthetic and real data examples of multiframe parameter estima-

tions. The emphasis of the section is the study of the change in the accuracy of the estimated

parameters as the number of frames and the noise are varied.

6.2 Examples

Multiframe processing is a way to increase the robustness and accuracy of the solution by

providing additional redundancy to the algorithm. Under the assumption that the noise in the

irradiance sequence is a zero-mean, additive process uncorrelated with the signal, the accuracy

of the estimated parameters is a monotonous increasing function of the number of frames; the

error between the true and estimated parameters approaches zero as the number of frames

increases (at least in the FICE case, where no bias is present due to the use of the constraint

equation on data which do not obey it).

These results are confrimed for synthetic images where the rigid body motion is truly con-

stant and the noise is moderate (10 to 15 %). For high noise level, the computation of the

gradients is too inaccurate and the algorithm can either diverge or converge to the wrong

solution. The mode of failure and susceptibility to noise is different for the ICE and DFU

algorithms. The ICE algorithm is very sensitive to noise, because of its high degree of nonlin-

earity, and small amounts of noise are enough to prevent convergence-to the correct solution.

The DFU algorithm is much more robust in the presence of noise. However, the two-frame

algorithm is fired first and a high amount of noise can make it diverge or prevent it from locking

on the correct solution, in which case the multiframe algorithm cannot recover from the initial

incorrect unwarping of the sequence and does not converge either. It is paradoxical that the

multiframe algorithm behavior in the presence of noise is conditioned by the behavior in the

two-frame algorithm, but the multiframe DFU algorithm can rarely be started directly, except

in cases where the motion is moderate, because the stacking of many nontemporally aligned

frames can prevent it from converging to the right solution.

In the case of real data, the improvements in accuracy are only observed up to a certain

point, generally five to seven frames for regular motions, and then the performance degrades.
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The problem with real data is that the assumption of constant motion, within the temporal

analysis window, is only a reasonable approximation for a small number of frames; when too

many frames are used, the assumption breaks down and the results rapidly get worse. It was

found experimentally that the maximum reasonable length of a centered temporal window is

about seven frames, i.e. three frames before and after the frame under consideration. However,

most of the time, five frames were enough to converge to the true solution with sufficient

accuracy.

Three experiments are presented in the next sections: the first one uses the central frame

scheme, the last two the DFU algorithm. The first experiment demonstrates the limits of ap-

plicability of the central frame algorithm; the second presents the results of the DFU algorithm

for a synthetically generated sequence, in terms of the number of frames and of the amount of

noise, and the last experiment shows the behavior of the DFU algorithm for real data.

6.2.1 Central Frame Algorithm Example

By design, this very simple scheme can only improve the accuracy of the estimated parameters

on sequences where the main source of noise is in the temporal gradients and little can be

achieved in terms of lowering the error in the estimates, caused by noisy spatial gradients, by

using more frames. The noise in the spatial gradients is not averaged by this algorithm because

only the central frame is used to compute the spatial gradients. In fact, when the noise is

concentrated on the spatial gradients, the error in the estimates is approximately constant and

independent of the number of frames used. The bias in the solution is caused by the noise

in Er. When both the spatial and temporal gradients are noisy, the accuracy of estimates

increases with the number of frames and eventually levels off at a level that represents the bias

introduced by the noisy spatial gradients.

The data in this experiment are totally synthetic: the spatial gradient of a planar patch

mapped with a cosine grating with a sinusoidal phase variation (see figure 4.1) is analytically

generated and the temporal gradients are computed directly from the distant source FICE.

The true motion parameters are w = (1.3,-.1, -1.2)102 radians, and t = (.25,.5,1.25)10-2,

and the unit normal is fi = (.0371, -. 0371, .9278). These ideal gradient data are selectively

corrupted by 5% additive noise in three different ways - the temporal irradiance gradients Et
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are noisy and the spatial gradients Er noise-free - the temporal gradients are noiseless and

Er noisy - both Et and Er are noisy. The spatiotemporal gradients are directly input to the

central frame algorithm.

Table 6.1 displays the relative errors, expressed in percentages, between the true and the

estimated parameters for multiframe runs ranging from two to six frames. As expected, the

accuracy of the estimates increases with the numnber of frames in the case of noisy temporal

gradients; the relative error reaches about 10 - 3 for all the parameters when six frames are used.

The performance of the algorithm is independent of the number of frames in the case where

only the spatial gradients are noisy, and the computed solution exhibits a relative bias of about

.5% at convergence. In the case of noisy spatiotemporal gradients, the accuracy of estimates

initially increases with the number of frames then reaches a constant level, the bias level of the

previous case, in about five frames.

The analysis of these results clearly shows the strong limitation of the algorithm: only

temporal gradient noise can be reduced by the central frame algorithm; spatial noise is not

averaged but is translated into a bias in the final. estimates of the motion and structure pa-

rameters. On the other hand, the results dearly indicate the gains that are achieved by the

multiframe formulation and prove that substantial performance improvement is available from

these multiple-frame techniques.

6.2.2 DFU Algorithm: Synthetic Data

This experiment focuses on the measure of the accuracy of the estimates as a function of the

number of frames and of the noise level. The irradiance data (see figure 4.1) are generated in

floating point, then zero-mean, noncorrelated noise is added and the noisy data are quantized

to eight bits. The synthetic sequence is generated from a perfect constant rigid body motion,

that is given in table 4.1, along with the structure parameters. The irradiance sequence is the

only input to the DFU algorithm and the spatial gradients are dynamically estimated from the

unwarped, quantized irradiance frames.

In this experiment, the multiframe algorithm is started as a two-frame algorithm and runs

as such until the relative error between two successive estimates is less than 20%, at which point

it is switched to the multiframe mode. The 20% threshold is rather arbitrary. It was determined
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5% noise in Et, 0% noise in E

# frames R[ el. rotation error Rel translation error ReL normal error

2 2.96 2.94 1.82 1.02 7.53 4.95 3.17 3.07 7.01
3 0.92 0.92 1.10 1.02 2.51 1.28 0.94 0.94 1.65
4 0.53 0.53 0.16 0.70 1.54 0.69 0.54 0.54 1.41
5 0.18 0.18 0.07 0.08 0.39 0.32 0.18 0.18 1.58
6 10.09 0.09 0.07 0.00 0.17 0.19 0.09 0.09 1.43

0% noise in Et, 5% noise in Er
# frames I] Re rotation error IRel. translation error IRel normal error

2 0.22 0.22 0.00 0.21 0.65 0.33 0.23 0.24 1.68
3 - 0.44 0.44 0.02 0.65 1.43 0.53 0.44 0.42 1.64
4 0.56 0.56 0.00 0.65 1.43 0.78 0.55 0.54 1.63
5 0.21 0.21 0.00 0.20 0.52 0.31 0.20 0.10 1.61
6 0.38 0.38 0.01 0.48 1.01 0.50 0.37 0.36 1.60

- 5% noise in Et, 5% noise in E-r

# frames 1 ReL rotation error Rel translation error I ReL normal error

2 2.58 2.58 2.52 1.21 2.4 5.4 7.83 7.86 7.30
3 1.27 1.27 1.41 1.03 1.43 1.64 1.43 1.43 1.59
4 0.64 0.64 0.54 0.63 1.01 0.64 0.94 0.95 1.40
5 0.33 0.33 0.36 0.45 0.34 0.32 0.54 0.53 1.52
6 0.32 0.33 0.27 0.51 0.98 0.38 0.41 0.42 1.57

Table 6.1: Relative errors, expressed in percentage, of the motion and structure parameters
as a function of the number of frames for the noisy synthetic irradiance sequence depicted in
figure 4.1 processed by the central frame algorithm.
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by trial and error and represents a safe level at which the unwarping of the full sequence by

the current motion estimate does not prevent the algorithm converging to the correct solution.

Three levels of noise were selected-1%, 5% and 10%. Table 6.2 reports the results, which are

expressed in percentages of relative error between the final estimates and the true Value of the

parameters, for the three noise levels and for a variable number of frames (2-7). Globally, it

can be observed that the accuracy steadily increases with the number of frames and that this

increase is particularly dramatic for the noisiest sequence, where the initial gain is the largest.

In general, the gain in accuracy obtained from switching from two frames to three is much

bigger than the incremental gain achieved by adding additional frames. The results suggest

that, for a large number of frames, the errors is going to zero. Unfortunately, in most cases,

the motion constancy assumption is met for at most seven frames; it should not be expected

that the error will be zero for seven frames in the case of moderately noisy data.

This experiment shows that the overall multiframe DFU algorithm is very robust against

noise and that excellent performance can be achieved in cases where the rigid body motion

is constant. However, we should be aware that the results on the accuracy of the estimated

parameters obtained with these synthetic data represents an upper bound on the gain in perfor-

mances that can be achieved for noisy quantized data. Although the DFU algorithm was run on

the synthetic data in a realistic way, i.e. the noisy, quantized irradiance data were fed directly

to the algorithm, these data are still ideal. In particular, the motion is rigorously constant, the

shading is analytically computed and the added noise is very controlled. Real motion is rarely

constant; even for a short temporal analysis window, the shading equation is, at best, a decent

approximation of the real situation and the noise process is neither truly zero-mean, nor purely

white and additive and worst results should be expected in the real data case.

The next section presents the results of the same algorithm applied to real data acquired

by a video camera.

6.2.3 DFU Algorithm: Real Data

The data in this experiment are those used and described in section 4.2.1.2. In particular, it

should be recalled that the measured parameters from the set-up were not very accurate and

that the final estimates, presented in table 4.6, were ultimately corrected for errors in the focal
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1% noise in irradiance image
# frames Rel. rotation error Rel. translation error I Rel. normal error

2 0.81 2.62 0.45 2.41 0.73 1.13 4.61 4.72
3 0.32 1.21 0.38 1.13 0.26 0.68 1.99 2.02
4 0.11 0.46 0.38 1.13 0.26 0.68 1.99 2.02
5 0.06 0.21 0.05 0.25 0.06 0.11 0.69 0.54
6 0.01 0.09 0.00 0.11 0.02 0.07 0.19 0.23
7 0.00 0.01 0.00 0.03 0.00 0.01 0.06 0.11

5% noise in irradiance image
# frames el rotation error Rel. translation error Rel. normal error

2 1.41 3.99 1.31 3.67 1.84 2.45 6.51 6.49
3 0.62 1.42 0.51 1.45 0.72 1.04 2.42 2.36
4 0.29 0.61 0.32 0.84 0.29 0.67 1.03 1.07
5 0.14 0.39 0.21 0.52 0.12 0.41 0.67 0.69
6 0.08 0.21 0.13 0.34 0.09 0.29 0.31 0.32
7 0.06 0.10 0.08 0.15 0.07 0.19 0.17 0.18

10% noise in irradiance image _

# frames ReL rotation error] Rel. translation error Rel. normal error

2 2.64 5.75 2.47 6.12 3.42 4.89 8.69 8.71
3 1.04 2.12 1.09 2.90 1.42 2.17 3.12 3.10
4 0.63 1.31 0.67 1.72 0.80 1.19 2.15 2.13
5 0.41 0.77 0.41 0.85 0.57 0.69 1.41 1.42
6 0.30 0.48 0.27 0.49 0.30 0.37 0.83 0.84
7 0.19 0.28 0.15 0.28 0.17 0.17 0.41 0.41

Table 6.2: Relative errors, expressed in percentages, of the motion and structure parameters
as a function of the number of frames for the noisy synthetic irradiance sequence depicted in
figure 4.1 processed by the DFU incremental FICE algorithm. The true motion and structure
parameters are given by table 4.1.
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# frames[I Rel. rotation error Rel. translation error Rel. normal error ReL avg. error

2 11.4 26.6 46.1 39.7 43.5 13.2 18.1 16.2 26.9
3 6.2 14.1 25.9 21.3 22.7 7.1 11.3 9.4 14.7
4 4.1 12.7 22.7 18.8 19.1 5.9 7.7 5.2 12.0
5 3.1 8.1 18.0 14.1 16.4 4.1 5.4 3.4 9.1

Table 6.3: Adjusted relative errors, expressed in percentages, of the motion and structure
parameters as a function of the number of frames for the real irradiance sequence shown in
figure 4.4, processed by the DFU incremental FICE algorithm. The true motion and structure
parameters are described in table 4.6.

length of the camera, the distance between the projection center and the object and the position

of center of rotation. As such, less attention should be focussed on the actual individual values

of relative error and more on the global trend that is given by the average relative size-of the

errors as a function of the number of frames. In the case of real data, the exact relative error

figures for the various parameters are nearly meaningless because the true parameters are not

known with enough precision to perform a direct comparison with the actual parameters, but

the performance of the algorithm can still be judged by the.average relative accuracy of the

-algorithm with respect to the number of frames used in the estimation.

Table 6.3 presents the adjusted relative errors between the measured and estimated param-

eters, i.e. the relative error in the parameters once the correction to these final estimates is

computed. The improvement in performance is dramatic and the average relative error drops

from 27% in the two-frame case to about 9% in the five frame case. This example illustrates

the necessity of a multiframe algorithm when dealing with real data as opposed to synthetic

data or synthetic gradients data and clearly demonstrates the substantial gains in accuracy that

can be achieved. It is fair to state that most two-frame algorithms that are described in the

literature and only tested for synthetic gradient data could not be used directly for real data.

6.3 Conclusions

This chapter presented several multiframes techniques that are, intrinsically, independent of

the type of constraint equation used (CE or FICE) and are applicable to rigid body motion
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and structure estimation or to optical flow computation problems.

The most attractive method was found to be the DFU incremental algorithm; because it

can estimate all the motion and structure parameters of a full block of spatiotemporal data at

once, it leads to an efficient, semilinear implementation; its complexity is independent of the

number of frames and it can very efficiently compute the incremental motion update terms to

deal with slowly varying motion parameters.

The most severe restriction in these algorithms is the assumption of constant rigid body

motion within the temporal analysis window; in practice, this assumption Limits the useful

number of simultaneous frames to five or seven. Experimental results on synthetic data suggest

that, for moderate amount of noise, more than five to seven frames are needed fro the algorithm

to converge to the exact solution. The underlying limitation of these multiple-frame algorithms

is that they use a small number of frames at a time, i.e. the memory of the system is limited in

practice to five to seven frames. A state variable approach, like the -Kalman filtering approach,

does not have these restrictions and might be more appropriate for dealing systematically with

multiple frames.



Chapter 7

Summary and Conclusions

This thesis addresses the problem of recovering the shape and motion of patches moving with

respect to a fixed camera and fixed light source. The primary goal is to recover the motion and

structure parameters of a moving patch directly from the time-varying image sequence using

motion and shading cues without either computing the optical flow or establishing correspon-

dences between features in the image sequence. The primary goal consists of three subgoals,

the use of shading information, the relevance of shading information, and the use of multiple

frames.

This thesis establishes a theoretical and computational framework for incorporating a priori

knowledge of shading conditions and for using it, in conjunction with motion cues, to compute

the motion and structure parameters of a generic patch. More specifically, a class of constraint

equations that link the spatiotemporal gradients of the irradiance of a sequence of images to the

temporal variations of shading is derived for arbitrary depth functions. The generic surfaces

are specialized to polynomial patches in the minimization equations in order to express the

depth functions in terms of a few structure parameters that fully define the patches. Further

specializations to planar and quadratic patches are carried out later in the implementation

examples.

The advantage of the new class of constraint equations is twofold: it provides a more accurate

solution to problems where surface irradiance changes are due to motion, and it provides a

solution for textureless surfaces. Under the classical CE, which assumes that the irradiance of

a a given point does not change with motion, only highly textured surfaces can be used, and

165
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the solution is only approximate in cases where the classical CE is not a good approximation.

The minimization equations are derived in a wide variety of cases and a specific imple-

mentable set of equations is given for different combinations of albedo (arbitrary and constant),

source types (collimated and extended), source positions (distant or nearby), surface geometry

(planar and quadratic) and irradiance models (general Lambertian and attenuated Lamber-

tian models). The minimization equations form a system of three or more vectorial nonlinear

equations in the motion and surface parameters. Several semilinear and globally nonlinear pro-

cedures are described and their relative performances discussed. Perfect results, in terms of

the accuracy, are obtained in the cases of ideal synthetic data for both textured and texture-

less surfaces. These results also demonstrate that the new CE performs substantially better

than implementations based on the classical CE, in cases where the classical CE is only an

approximation, and that the new method is able to recover the motion and structure param-

eters for textureless surfaces, a case that cannot he solved by implementations of the classical

CE. Very good results are obtained for quantized synthetic images from which the spatiotem-

poral gradients are estimated, and promising performance was achieved for real data, although

it was impossible to rigorously assess the accuracy of the results due to the uncertainty in

measurements of the experimental parameters.

The new results are not obtained at a trivial computational cost. The formulation is over an -

order of magnitude more complicated than the classical CE case and no closed-form solution

exists even in the planar case. The convergence is typically very slow, requiring as many as

16000 iterations for textureless surfaces, and the system does not automatically converge to

the correct solution given an arbitrary initial value. However, those characteristics are shared

with iterative implementations of the CE, although the tolerance is tighter in the FICE case

due to the high order of the nonlinearities. As a result, and as a consequence of the much

higher complexity of the implementation and much higher computational cost, the full FICE

implementation should only be used in cases where it is critical to determine the most accurate

estimate possible or when the surface markings are too weak for reliable use of a less expensive

method. In particular, this method is inappropriate in a feedback loop system, where only an

approximate solution is required, and the additional computational burden is not justified.

Secondly, the thesis discusses, qualitatively and quantitatively, the importance and relevance
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of the shading information in the case of an object moving with respect to a light source. In

particular, the CE is evaluated analytically to determine its validity and the error as the texture

scale and the magnitude of rigid motion vary. The approximation was found to worsen as the

rotational component of the motion increased, even when the surface markings are strong and

there is high contrast at high frequencies. The classical CE is a very good approximation

for highly textured surfaces in the passive navigation case, because the objects are fixed with

respect to the light sources and there is no motion induced shading. On the other hand, it is,

at best, only a fair approximation in cases where the object moves with respect to the camera,

especially for motion where the rotational motion is substantial.

Thirdly, the thesis proposes an efficient multiple-frame algorithm that allows the global esti-

mation of the motion and structure from a block of frames. The task is achieved by considering

a constraint equation which directly links a block of frames by stacking the unwarped frames

into a single spatiotemporal block of data and by globally minimizing the data. The method

assumes that the rigid motion is constant within the spatiotemporal block, but this assumption

can be relaxed to allow for situations where the motion is varying slowly. The DFU multiframe

implementation of the FICE is found to be very efficient, because a lot of the quantities required

to estimate the spatiotemporal gradients can be precomputed for each frame and the unwarping

operation simply amounts to temporally summing the offset frames of coefficients (the offset-

ting or unwarping operations are carried out directly on the arrays, by index calculations, at

the time of the summation). The experiments show that a substantial gain in performance is

obtained by the multiple-frame algorithm when dealing with noisy irradiance sequences and

further demonstrate that only a multiframe method is viable for estimating the motion and

structure parameters of real data. This highly overconstrained nature of the problem allows for

a much more robust solution and provides for the required noise reduction.

A key assumption in the multiframe algorithm is the assumption of constant motion within

the spatiotemporal analysis window. For all practical purposes, this assumption limits the

:iumber of frames to perhaps five or seven which may at times not be enough for very noisy

.Iquences in order to sufficiently neutralize the ill effects of the noise. An alternate and more

l esirable solution is to summarize the entire past of the sequence by state vectors that are

.:,,dated when a new frame is added to the sequence. The Kalman filtering approach provides
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such a framework and is under investigation -by other researchers.

One important issue that has not been addressed in this thesis is the problem of solution

uniqueness. It has been shown (Negahdaripour 1986, Negahdaripour 1987) that a motion

vision problem can have at most three solutions; only planar surfaces and quadratic surfaces

with negative or zero Gaussian curvature can give rise to ambiguity, and then only under very

special circumstances. The introduction of the shading component does not affect the multiple

solution findings and was therefore not discussed in this thesis.

Another issue that was left aside is the image segmentation problem. In many situations,

the scene consists of both stationary and independently moving objects and it is necessary to

segment the image into regions of similar velocity before attempting to recover the motion and

structure parameters. The segmentation and motion estimation processes can be simultaneous,

as in the procedure adopted by Adiv (1985), or it can be two separate stages in which the

segmentation and motion and structure parameters processes are independent. This issue is

totally independent of the shading problem and is found, in exactly the same terms, in tra-

ditional motion estimation that does rely on the classical CE. Since this thesis concentrates

on developing a new class of algorithms, problems common with earlier approaches were not

examined in detail.

In conclusion, we develop a new generalized multiframe constraint equation that combines

shading and motion and provides implementation for various cases. The solutions that are

obtained are more accurate than the solutions based on the use of the classical CE and the

new algorithms allow the computation of the motion and structure parameters for textured and

textureless surfaces. The study made apparent the complexity of formulations that use both

the shading and motion cues and that lead to systems of vectorial nonlinear equations which are

difficult to implement. This complexity is the price of more general and more accurate solutions.

In addition to new algorithms, the thesis carefully examines the classical CE approximation and

improves the understanding of the tradeoffs in its use. The practical choice might be to stay

with less expensive, less accurate methods, but it is important to be able to pick the best

algorithms given a desired accuracy and computational complexity.



Appendix A

Finite Motion and Instantaneous

Motion Optical Flow Equations

This appendix derives the optical flow equations for the finite motion equation and compares

them to the instantaneous optical flow equations shown in section 2.2.2.

Let R? denote a rotation matrix i.e. 7lZZT = 13 and T a translation vector. The finite motion

of a point R of rigid body is defined by the equation

R! = ZR + T (A.1)

Let r and r' represent the perspective projections of the points R and R' onto the image plane,

then

6r=r'-r P,

= i -13 r+ FT

but
V ((IZr + T).1) y (Z(lar. - )+ FT,)

hence
6r Z r- + FT . ( Z rF) 3' +  - )

or

6r-Z(7?. )/f+T/Z (I3-- )TRr + -(FT - rT.)). (A.2)

169



170 APPENDIX A. FINITE MOTION AND INSTANTANEOUS MOTION

Equation A.2 represents the finite optical flow equation derived from the finite rigid motion

equation A.I. The instantaneous optical flow equation can be inferred from the finite motion

optical flow equation A.2 by assuming that the rotation matrix has small rotation angles i.e.

R - 13 + fl6t (assuming a constant rate of rotation) and by assuming that the component of

the translation along the optical axis is small relative to the distance of the object from the

camera i.e. (T. < 1). Under these assumptions

(7Rr.- ) + L' ;t 1 - 1(ZWJ + y,.)St
F Z

and

(13 - rT) lZr ; (13 - nT)rt

With these approximations, the finite motion optical flow equation A.2 becomes

S..r = 13 -- T ) nr+ (FV - rV,)

where V represents the translational velocity (T = V~t for a constant velocity V). As 8t
6r

decreases. to zero, - tends to i, the optical flow, and equations A.2 and 2.9 are identical.



Appendix B

Gradients and Hessians at

Neighboring Points

In this section, we will derive the relationship between the spatial gradients (and Hessian) of two

corresponding points in two frames. In particular, we show that the gradients (and Hessians)

are approximately equal in the two fields under some conditions.

Lets us denote by d(x, t) = (u(t) , V(t))T the displacement field at the point x between the

irradiance field E(x, tL) = Ei(x) at time tL and the irradiance field E(x, t 2) = E 2(x) at time

t2. The displacement field between the two irradiance frames over the domain D is defined by

the equation:

E(x + d(x,ti), t) = E(x,t2 ) for Vx ED (B.1)

If the displacement field is constant over a neighborhood N of x, we have the relationships

VxE 1(x+ d) = VxE 2(x) (B.2)

VVxE 1 (x+ d) = VVxE 2 (x)

for all x in the neighborhood N and we can expect a similar approximate relationship for a

"nearly" constant or slowly varying displacement field in the neighborhood N.

Proposition B.1 Let EIL(x) and E 2(x) be two vector fields, twice differentiable, and d(x) a

vectorial disparity field, also twice differentiable, defined by the relation El(x + d(x)) = E 2 (x).
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172 APPENDIX B. GRADIENTS AND HESSIANS AT NEIGHBORING POINTS

The spatial gradients and Hessian are given by

V1E2(x) = VxEi(x) + (ad(X, ))VxEl(x) (B.3)

and

VVxE 2 (x) = VVxBEI(x) + (88(X / TxE,(x) + V~x OE1 (x) + Vv J E,(x) (B.4).

Proof: Taking the partial derivatives of equation B.1 and applying the chain rule yields

OE 2  OI .( 1  OE1I
Oz _ W O y (B.5)OE2 OEI OE,

where u. and uy denote the partial derivative of the scalar u with respect to z and y, and

similarly for v. Rearranging the terms and using the gradient vector gives, i.e.

VxE 2 = VxE + VxE,

u( vU J
that can be rewritten in full matrix notation as equation B.3.

Differentiating equation B.5 with respect to m and y we get

0 2E2  02E +1  O 1  82E,+ OE
8- - (1+u 2 ) + -.)-u- + -- v2  + xv

Ozy oy (.682E2  a 2E +1 u) ORu E2E 1  + E1 ,

2E2  - 2E1  + , + 8 + (B.6)022 0 ,OR E 2 E*1  O E1

-a -mj-uy + (1 + v) + y02E2  _ 
2E1  8E1  82E* 1  OR1

-y2  + UY- + - +v,) + v

Equation B.6 can be written in vector form,

VVxE2 +u VVxE + VVxu- + VVcv- (B.7)
uy 1 + v a

which is equivalent to equation B.4.

If we assume that IIVxuII and IIVxvI are small, i.e. 1u1, IJu, 1v.1, Ivyl < 1, then equa-

tion B.3 simplifies to VxEi(x) - V1 E2(x). If, in addition, if we assume that IIVVxull and

IIVVxvII are small, i.e. all the second-order components of the disparity field are small, then

equation B.4 simplies to VVxEI(x) - VVxE 2 (x). The previous conditions on the disparity

field d(x) are met when d(x) is locally constant, translational or slowly varying.



Appendix C

Matrix A and Stencil Computation

This appendix symbolically computes the matrix A in terms of the orthogonal basis functions for

a general spatiotemporal window, and presents simplified expressions in the cases of symmetric

spatial windows and symmetric spatiotemporal windows.

The symmetric matrix A is defined by A = Z WWT where W is the vector of orthogonal
w

basis functions, *pT = (1 z y t zt Yt Zy z2 Y2) and W represents the spatio-temporal

analysis window. The explicit summation indices will be omitted in the following development

in order to simplify the equations.

For a general window W, the symmetric matrix A is given by

1 y t X2 Y2 ZY zt Yt

t Ft Z~t Eyt Et2

2 EZ2 F y E E Z4 '

z , 3EZz ~

Y 2 E yl = E Zy2 E yl E t E y~tEy2 E y4 t

yt Eyt E Zyt Ey~t E yt2 F y y~t , =y Zyt2 Ey2t2

Since most windows are spatially symmetric around the central point, the matrix A is sparse
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and is given by

1 Z y t Z2 Y2 ZY " Yt

2 0 'Z2

31 o o y 2

t Et 0 0 Et 2

:2 z 2  0 0 z2t

,2 2 o o y2t E 2y2 Ey4

231 0 0 0 0 0 0 2 Y 2

- t 0 EZ 2t 0 0 0 0 0 E 2t2

lt 0 0 Ey 2t 0 0 0 0 0 Ey 2 t2

If the three windows (horizontal, vertical and temporal) are symmetric around the central point,

and the spatial extend of the two spatial windows is equal to N and the length of the temporal

window is T, the representation of the matrix A can be further simplified to

1 Z 31 Z2 y2 23 zt Yt

1 N 2 T

z 0 N' 2

Y 0 0 N' 2

t Fjt 0 0 Et 2

Z2 N'F, Z 2  0 0 N' , 2 t N'E Z 4

Y2 N',: 2  0 0 N'Ez2t M Ej 4 N'EZ'

my 0 0 0 0 0 0 M Z'

Zt 0 N'E Z2t 0 0 0 0 0 N' jZ 2t 2

yt 0 0 N' F,:2 t 0 0 0 0 0 N' J Z 2t2

(0.1)

where N' = 4N and M = 4(N/2+ 1). It should be noted that the summations in equation C.1

are one-dimensional aummations along the horizontal or temporal axis, as appropriate, unlike

the summations in the previous equations that were three-dimensional. These sparse symmetric

matrices have also sparse symmetric inverses that can be computed easily.

Equation C.1 can be used to compute the matrices for different symmetric windows. The
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numerical values of the A and A-1 are given below for the 3 x 3 x 2 and 5 x 5 x 2 symmetric

windows cases.

18 0 0 9 12 12 0 0 0

0 12 0 0 0 0 0 6 0

0 0 12 0 0 0 0 0 6

9 0 09 6 6000

A 3x3x 2 - 12 0 0 6 12 8 0 0 0

12 0 0 6 8 12 0 0 0

0 0 00 0 0800

0 6 00 0 0060

0 0 60 0 0006

1/3 0 0 -1/9 1/6 -1/6 0 0 0

0 1/6 0 0 0 0 0 -1/6 0

0 0 1/6 0 0 0 0 0 -1/6

-1/9 0 0 2/9 0 0 0 0 0

A-' -1/6 0 0 0 1/4 0 0 0 0

-1/6 0 0 0 0 1/4 0 0 0

0 0 0 0 0 0 1/8 0 0

o -1/6 0 0 0 0 0 1/3 0

0 0 -1/6 0 0 0 0 0 1/3

50 0 0 25 100 100 0 0 0

0 100 0 0 0 0 0 50 0

0 0 100 0 0 0 0 0 50

25 0 0 25 50 50 0 0 0

Asxsx 2 = 100 0 0 50 340 200 0 0 0

100 0 0 50 200 340 0 0 0

0 0 0 0 0 0 200 0 0

0 50 0 0 0 0 0 50 01
0 0 50 0 0 0 0 0 50)
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17/175 0 0 -1/25 1/70 -1/70 0 0 0

0 1/50 0 0 0 0 0 -1/50 0

0 0 1/50 0 0 0 0 0 -1/50

-1/25 0 0 2/50 0 0 0 0 0

Ax 5 x2- -1/70 0 0 0 1/140 0 0 0 0

-1/70 0 0 0 0 1/140 0 0 0

0 0 e 0 0 0 1/200 0 0

0 -1/50 0 0 0 0 0 1/25 0

0 0 -1/50 0 0 0 0 0 1/25



Appendix D

Temporal Derivative of Shading

Models

D.A Temporal Derivative of General Lambertian Model

This section derives equation 3.2, the temporal derivative of the general Lambertian shading

model described by equation 3.1. Let us consider a constant light source of intensity L0 and

position 1. Denote by L the light source as seen by the patch at point R

L TI-R
JILIJ I- R

were L = I - R is the illumination vector from the surface to the source (see figure D.1)

The irradiance E(r, t) is proportional to (f,. ii) (K constant of proportionality) i.e.

E(r,t) = K(,- ii) -#. E(r,t) I - R[[ = K((I - R). (D.1)

If we assume that I is fixed and differentiate equation D.1 with respect to time, we obtain

III - RII- E((III- R A) = K - ft.i+ ((I - R).- A))
HIi- Ri

P =K7 +E(.(t +7w x R))

= = [[K- [(-fi. (t + . w× R)) + (L. (w x ft)) + (L. )(t . (t + w x R))]
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L

Figure D.1: Light source, ca-hera and patch geometry

Replacing L by its value, we obtain

K

E-- fi -(-' i)+ B +t)
_K ([I, wft + (t . i) [, w,11R] -((t -( ~)-f)

D.2 First-Order Approximation of Lambertian Model

This section derives equation 3.3, the first-orde., approximation of the temporal shading varia-

tion., .f the general Lambertian model described by equation 3.2.

The square of the norm of the light source-patch vector L = 1 - R is given by

JIL 112  = 111112 - 2(1. ft) JR11 11111 + IIR112

= ,l12 (1 2(1. ft)" "  + (!"R"')

The first-order Taylor series of the reciprocal of the norm of L is directly computed from the

previous equation and is expressed by

IILI'' = 11111  1 + (I. f) +1(11 (D.2)

The first-order expansion of the unit vector L is inferred from equation D.2 and can be

written, after regrouping the zeroth- and first-order terms, as

t I_ (L -(I. A)) 1 + ( R11 (D.3)
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The L-orthogonal translation vector tt = t - (t. L) can similarly be approximated by a

first-order expression. If we denote by t. = t - (t. I)1 the I-orthogonal translation vector and

use the equation D.3, the first-order Taylor series of tt is given by

tt- = i+(t, ( t -, Ai - 2(t -I AI)i) R11+0("R1(A

The first-order approximation of the term .f,)[,t ,R] is determined similarly by using

equation D.3, multiplying out the terms and gathering the zeroth- and first-order terms-

(t. fi)[tw,R] = [1,w,R](I. - ft .-- 2(.r)( 5ft)) JR 1i + v (i1i) (D.5)

The first-order Taylor series (equation 3.3) is finally determined by plugging back the equa-

tions D.2, D.3, D.4 and D.5 into the original equation 3.2, multiplying out all the terms and

collating the zeroth- and first order terms to yield

E=px(a,/3)Lo (19WI 1]+ (I. i)iw, fIJ41 1 1
1

-(t-,f))
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Appendix E

Quadratic Case Shading Equation

This appendix presents the derivations of the expressions of the generic normal n and unit

normal ft in terms of the unit normal fo and curvatures at Zo, the point of expansion of the

Taylor series expressing the reciprocal of the depth in terms of the image coordinates.

A quadratic patch is expressed by

Z(XY) = Zo + ZxX + ZyY + 1ZxxX 2 + ZxyXy + ZyyY2

or

Zo=R.no+Q d

where no = (-Zx - Zy I)T represents the normal at the point Zo, Q = (IX 2 XY 1y2)T

is a quadratic world coordinates vector and d = (-Zxx - Zyy -- ZXy )T is the "curvature"

vector at the point Zo. The reciprocal of the depth can immediately be computed in terms of

the image coordinates by a second-order Taylor series of l/Z,
1 1

= -(r " fio) + q -d + O(lIIr11) (E.1)

where q = 2  ) is a quadratic image coordinate vector.

The generic normal n is defined by

aZ(XY)

On a= OZ Y) = ZY + -ZXYX - zrr

1 0
1
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and can be rewritten, in vectorial form,

n =no + HR = no + ZHr (E.2)

where the matrix H is defined by

H = -Zxy -Zyy 0

0 0 0

The depth Z can be computed in terms of the image coordinates by a second-order Taylor

series; from equation E.1 we get

Z = Zo(ri.no+Zo(q.d)) - 1

= Zo(1+i.no+Zo(q.d)) - 1  (E.3)

= Zo(i -it. no) - Zo(q. d) + (. no)2 + O(11r112).

Plugging the value of the depth Z, defined by equation E.3, into equation E.2, and collecting

the terms up to the second order yields

n = no + Zo(1 - i- no)Hr + 0(0112). (E.4)

In order to compute the unit normal, we need to determine the value of IIniI-1 The square

of the norm of n is given by

Ijnl2 = Ilno 112 + 2Zo(1 - i. no)(no • Hr) + Z2rTH 2r + O(Irl 2)
1 12 2  TH2r12) (E.5)

lnol 1 + 2-1o (1 - i . no) (fio • Hr) + -1 r r) + (lr). (--Ilnoll" 1+ II1o2

From equation E.5 we can compute a second-order Taylor series of 111l-1:

1 1 / - i - fio)(fi0 .Hr) 1 Zo rT r.+

= 1 II-[( 4Z T 1 Hr)

83 4 0-~z)2 rHiozHr) + O(11r1128 (11 )i0112 1 Z T ) 
) 12)

H' oH1~~~~~~ I o(1 f0(o.Hr 1 _ r(H r - 3HflfgH)r + 0(lirll'
1n l I1ioll 2 I1 ( H

(E.6)
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The second-order Taylor series of ft is obtained by multiplying out the Taylor series of n

(equation E.4) and IjnIj - 1 (equation E.6) and collating all the terms up to the second order to

finally obtain

f, = h o :- (1 - i- n)(,- tiqHr-1 Z 2 (rT~rk° + 2(ho0 Hr)Hr) + O(jjrj 12)

-- o- ll oo s) 2 l o

where H = H 2 - 3HfiTH.
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Appendix F

Implementation Issues

In the following expressions, we will use the summation convention of tensor calculus, i.e. there

is an implicit summation over any index that appears twice in an expression.

M1ij= Jvivjdr + (If vidr) {fi x k}j + (/fvjdr) {fi x kjj

C(2-3) )(C(3) 3)

+ (f dr){ft x k}{f x k},

{M2}j= ( visjrdr) nk + {ixk} (fj sirkdr) nk

e4(271-.2T)C'9

IM4}ij = (If stjsrkrdr) nknj

4(81-.36)

{e}i = (JJEtvidr) + {ft x k}(f Edr)

ty(3.-.3) C(1.-.)

Je2 ji =(J Etsirkdr)nk

In the previous expressions, (i(j --4 k) represents the ith precomputed term has j elements from

which only k are distinct (symmetry).. All the C,, i.e. 95 numbers, depend only on r, Er and

Et, and represent all the image information required to solve the problem.
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