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Abstract

The purpose of this document is to report the progress made in the first year of the grant
entided "Investigation of Neural Network Dynamics" (AFOSR-87-0354). The proposed period of
the work was September 1, 1987 to August 31, 1990. The proposed three year budget was

$126,200 with a first year budget of $40,000.

The grant was closed after a single year because the principal investigator moved from
the Applied Physics Laboratory, Johns Hopkins University to the Jet Propulsion Laboratory,

California Institute of Technology. Nevertheless, many of the initial objectives were met in the
single year that the grant was in force.

The major result of this investigation is a systematic approach for exploiting the dynamics

of a general class of neurodynamical systems for the purpose of neural computation. We have
interpreted the back-propagation formalism as an adaptive algorithm for a general class of

dynamical systems. The completely continuous formalism lends itself to implementation in analog

VLSI. This can be accomplished without external synchronization.
Four papers were published which acknowledged the grant. Three were published in

refereed Journals, the third in a refereed conference. One student was partially supported by the
grant. The work received wide recognition and acceptance from the scientific and technical

community.

901 04 1 33



1. Introduction

This document reports on progress made in the first year of the grant entitled

"Investigation of Neural Network Dynamics" (AFOSR-87-0354). The proposed period of the

work was September 1, 1987 to August 31, 1990. The proposed three year budget was $126,200

with a first year budget of $40,000. The term of the first year grant was extended until

January 31, 1989.

2.1 Research objectives/Statement of work

To achieve a substantial improvement in the understanding of neural network dynamics a

program based on numerical simulation and formal analysis was proposed. The investigation was

based on several broad issues which were address:

1) What are the formal relationships between the various neural network models? Models were

expected to fall into equivalence classes which displayed qualitatively similar behavior. It was of
interest to identify the minimal models in each class and to identify the most general models in each

class.

2) It was proposed to investigate the conjecture that the convergence of some networks was an

emergent property -- that is, the convergence of the system improved in the limit of very many

processing units.

3) It was proposed to investigate the storage capacity of various neural networks. A detailed

analysis of the information storage capacity of feedforward networks had been perfo'rmed by Baum

et al. [BMW87]. We were interested in extending these results to networks with feedback.

4) It was proposed to investigate how particular models map onto particular machines and what

models lend themselves to implementation in VLSI. Ideally, a model suitable for implementation in

VLSI would keep a maximal amount of silicon busy. This means that as many units as possible

must take an active role in the computation. A desirable property is for each node to be able to

process its information asynchronously. We were interested in investigating models which possess

this property.
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5) It was proposed to investigate the role of characteristic time scales in neural networks. There

are at least three time scales which play a role in neural networks. The existance of three time scales

can be inferred: 1) signal propagation time, Tp, in the brain this corresponds to the 1-10 mS which

is the time it takes signals to propagate across the cortex; 2) time of input fluctuations, tI, the brain

responds to inputs from the external environment which fluctuate with their own characteristic time

scales; 3) time scale of microscopic learning, T"L, in the brain the strength of a synaptic connection

changes with time.

6) It was proposed to investigate how algorithms scale in the limit of many pr ee-sors (large-N

limit). An important field of research at the present time is the development of faster learning

algorithms which can be scaled up to networks with millions of modifiable connections.

2.2 Personnel

The investigations were carried out by the following personnel: The principal investigator for

this program was Dr. Fernando J. Pineda. During the first year of the grant he was a member of

the Senior Professional Staff in the Space Department at JHU/APL. Currently he is a member of

the Technical Staff at the Jet propulsion Laboratory, California Institute of Technology. Dr. Pineda

received his Ph.D. in Theoretical Nuclear Physics from the University of Maryland in December

1986. Part-time support was provided for a very talented undergraduate student from Johns

Hopkins University: Mr. A. David Redish. In addition, the P.I. worked with two students: Mr.

Ben Yuhas of the Deptartment of Computer and Electrical Engineering at Johns Hopkins

University, and Mr. Etienne Duprit of the Naval Research Laboratories. Mr. Duprit published his

class project in the refere,-d journal Neural Networks[De89].

2.3 Status of work

This section addresses the progress made in the first year. Most of the progress was made in

the area of adaptive algorithms based on the Recurrent Backpropagation (RBP) algorithm. The

progress made during the first year was reported in the following three papers:

1) Generalization of back-propagation to recurrent neural networks,
F. J. Pineda, Physical Review Letters, 18, pp. 2229-2232, (1987)

2) Generalization of back-propagation to recurrent and higher-order neural networks,
F. J. Pineda, (to appear), Proceedings of IEEE Conference on Neural Information
Processing Systems, (Dana Z. Anderson, ed.), Denver Colorado, Nov. 8-12, (1987)
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3) Dynamics and Architecture in neural computation,
F. J. Pineda, (to appear), Journal of Complexity, Special Issue on Neural Networks,
September, (1988)

In addition to the above, some work was reported at the "Neural Networks for Computing"

conference held in Snowbird Utah, April 6-10, (1988). Finally, after the grant had expired, the

author wrote a mini-review article entitled "Recurrent Backpropagation and the Dynamical Approach

to Neural Computation" [Pi89]. It summarized the work performed to date and its significance. It

is included in the appendix.

Some of the key results of the investigation are now summarized. The reader may refer to

the articles in the appendices for detailed information.

1) Our investigtion into adapative algorithms was based on a formalism for constructing general

adaptive dynamical systems which obey nonlinear coupled differential equations. This formalism,

denoted Recurrent back-propagation (RBP) is a non-algorithmic continuous-time formalism for

adaptive recurrent and nonrecurrent networks in which the physical aspects of the computation are

stressed [Pi87a, Pi87b and Pi88]. The formalism is expressed in the language of differential

equations so that the connection to collective physical systems is more natural. RBP can be put into

an algorithmic form to optimize the performance of the network on digital machines, nevertheless,

as shall be discussed below, the intent of the formalism is to stay as close to collective physics and

dynamics as possible.

The class of neural network models which can be trained by RBP is very general, but most

of our work has focused on a simple system given by the following differential equations:

,txdxi/dt = -xi + 2; wij f(xj) + Ii  j-- 1, . . .,n.(1

The vector x represents the state vector of the network, I represents an external input vector and w

represents a matrix of coupling constants (weights) which represent the strengths of the interactions

between the various neurons. The relaxation time scale is tx. By hypothesis, the vector valued

function f(xi) is differentiable and chosen so as to give the system appropriate dynamical properties.

For example, biologically motivated choices are the logistic or hyperbolic tangent functions [Co68].

When the matrix w is symmetric this system corresponds to the Hopfield model with graded neurons

[Ho841.

In general , the solutions of equation (1) exhibit oscillations, convergence onto isolated fixed

points and chaos. For our purposes, convergence onto isolated fixed points is the desired behavior,

because we use the value of the fixed point as the output of the system. When the network is loaded,
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the weights are adjusted so that the output of the network is the desired output. Recurrent
Back-propagation dynamics is based on gradient descent and exploits two tricks to reduce the amount

of computation. The first trick uses the fact that, for equations of the form (1), the gradient of an
objective function E(xO) can be written as an outer-product, i.e.

VW E = yOf (xO)T (2)

Where xo is the fixed point of eqn. (1) and where the "error vector" yO is given by

yO= (LT) -1j (3)
where LT is the transpose of the matrix n x n matrix whose components are

Lij = 8ij - wij f(x)

J is an external error signal which depends on the objective function and on xO. This trick reduces

the computational complexity of the gradient calculation by a factor of n because L- 1 can be calculated
by direct matrix inversion in O(n 3 ) operations and because xo can be calculated in only O(n 2 )

calculations. Thus the entire calculation scales like O(n3 ) or O(N 3/2 ). The second trick exploits the

fact that yo can be calculated by relaxation or equivalently it is the (stable) fixed point of the following

coupled set of linear differential equation:
,tydyi/dt = -yi +f(xi) wjiyj + Ji (4)

J
This equation was derived by [Pi87]. A discrete-time version was derived independently by Almeida

[A187].

2) The recurrent backpropagation formalism provides a single unified approach for feed-forward

type networks and recurrent networks. This approach is very powerful and can be applied to a
variety of dynamical systems. Another consequence of the unified approach is that it is possible to

build heirarchical architectures containing both associative memory and feed-forward components
from homogenous units. This was demonstrated in [Pi88].

3) The role of characteristic time scales in the adaptive algorithms was investigated. In many

paradigms of neural computation (e.g. conventional backpropagation) characteristic time scales do not
play a role. Therefore it is impossible to gauge how fast a "true" neural machine would perform the

same task. (For this purpose a "true" neural machine is one whose basic functional units implement
the appropriate neurodynamics directly --as typified by the analog VLSI approach taken by Mead

[Me89]. Constraints on various time scales were derived and published [Pi88].
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4) We have shown how the algorithm can be implemented as a continous-time dynamical system.
This is important because it permits the possibility of implementing the dynamical learning algorithms

in analog VLSI without the need for an internal or external clock Our formalism has allowed us to

estimate the performance of analog VLSI implementations of backpropagation networks. Preliminary

results were presented at the Snowbird conference [Pi88]. The performance of an electronic physical
system was estimated by using electronic time scales for the characteristic time scales. For a simple

example, it was estimated that learning could be accomplished in approximately 10 milliseconds. This
compared very well to a digital simulation that required several minutes to converge.

5) We proposed to investigate how particular models map onto particular machines and what

models lend themselves to implementation in VLSI. Mr. Etienne Duprit, a student taking a course

taught by the P.I. implemented the recurrent backpropagation algorithm on a Connection Machine
[De88]. Mr. Duprit, experimented with two different implementations of the algorithm One
implementation was based on a generalization of the implementation of Rosenberg and Blelloch

[RB88]. This implementation devoted CM processors to connections as well as neurons. The

second implementation was based on a routing algorithm developed by Tomboulian [To86] which
used processors for neurons only. Mr. Deprit concluded that the Tomboulian algorithm spends most
of it's time communicating whereas the Rosenberg and Blelloch algorithm spends most of its time

computing. Furthermore, for networks where the fan-in gets very large the the Tombolian algorithm
required processors with memory size proportional to fan-in. The most effective use is made of

hardware if the connections themselves can be made to perform computation rather than the
processors. In otherwords synapses must be "smart" memories.

6) We Investigated how the gradient calculation algorithm scales with the number of processors.
In gradient descent learning, the computational problem is to optimize an objective function whose

free parameters are the weights. Let the number of weights be denoted by "N" and let the number of
processing units be denoted by "n". Then, N is proportional to n2 if the fan-in/fan-out of the units is

proportional to n. In a neural network the evaluation of an objective function requires O(N) or 0(n2 )

operations. Accordingly, to calculate the gradient of the objective function by numerical

differentiation requires O(N2 ) or O(n4 ) calculations. For big problems, i.e. problems with lots of

connections this becomes intractable very rapidly.

To relax y (i.e. to integrate eqn. (4) until y reaches steady state) requires O(n2 ) operations per

time step. The number of time steps is independent of n. Therefore the calculation of yO is 0(n2) or

O(N). The method is computationally efficient provided the network is sufficiently large and sparse
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and provided that the fixed points are not marginally stable. These results are summarized in table 1.
Note that the two back-propagation algorithms scale like O(N), but this hides the constants of

proportionality which for feed-forward networks depends on the number of layers where as for

recurrent networks the constant of proportionality depends strongly on the eigenvalues of the L

matrix. Indeed, if the fixed points are marginally stable, the number of iterations required to converge

onto x° and yO may diverge. The relationship between various algorithms is shown in the table

below

numerical algorithm comlexity
Worst case (e.g. numerical differentiation) O(N )

matrix inversion (e.g. gaussian elimination) O(N3 2

matrix inversion by relaxation (e.g. RBP) O(N)
recursion (e.g. classical feed-forward back-propagation) O(N)

Table 1. Scaling of gradient calculation with the number of connections

The scaling referred to here should not be confused with the number of gradient evaluations

required for convergence to a solution. Indeed, for some problems, e.g. parity, the required number

of gradient evaluations may diverge at critical training set sizes [Te87].

The O(N) scaling of the gradient calculation is arguably the single most important reason that

back-propagation algorithms have made such an impact. The idea of using gradient descent is

certainly not new, but whereas it was previously tractable on small problems only, it is now tractable

on big problems to. It is interesting to observe that a similar situation arose after the development of

the FFT algorithm. The idea of numerical fourier transforms had been around for a long time before

the FF1, but the FF1 caused a computational revolution by reducing the complexity of an n-point

fourier transform, from O(n 2 ) to 0(n-log(n)).

3. Related funding actions

3.1 AFOSR

A proposal to continue the work in this grant has been submitted to the AFOSR through the

Jet Propulsion Laboratory, California Insititute of Technology. The new proposal is entitled:

"Adaptive Dynamics for Neural Computation.", JPL Task plan No. 80-3095
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3.2 Recognition of work by the community

Recurrent Back-propagation has proven to be a rich and useful computational tool. Qian and
Sejnowski [QS88] have demonstrated that a recurrent back-propagation network can be trained to
calculate stereo disparity. This results in a network similar to that of Marr and Poggio [MP76].
Barhen et al. [BGZ89] have used the method to train networks on inverse kinematics for robotic
applications. The formalism has also been fertile soil for theoretical developements. Pearlmutter
[Pe88] has extended the technique to time dependent trajectories while Simard and Ballard [SB88]
have investigated its convergence properties.

The principal investigator has been invited to present talks based on this work at the
University of Chicago, (Depts.of Mathematics and Computer Science), The California Institute of
Technology, (Dept. of Electrical Engineering). Prof. Carver Mead at Caltech has expressed an

interest in applying these ideas to the construction of an actual analog VLSI learning chip. Most
recently, the P.I. has been invited to contribute a chapter to a book devoted to the backpropagation

algorithm ( edited by D. Rumelhart and E. Chauvin).

8



6. References

A187 Almeida, L. B. (1987). A Learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In: Proceedings of the IEEE First International Converence
on Neural Networks, (eds. M. Caudil and C. Butler), Vol. 2., pp. 609-618,
San Diego CA

BGZ89 Barhen, J., Gulati, S., Zak, M.(1989). Neural Learning of Constrained Nonlinear
Transformation, 22, 67-76

BMW87 Eric B. Baum, John Moody and Frank Wilczek, Internal Representations for Associative
Memory, ITP reprint, Institute for Theoretical Physics, University of California
Santa Barbara, CA (1987)

De89 Deprit, E. (1989). Implementing Recurrent Backpropagation on the Connection Machine,
Neural Networks, 2, 295-314

Ho84 J.J. Hopfield, Neurons with graded response have collective computational properties
like those of two-state neurons, Proc. Nat. Acad. Sci. USA, Bio. U,3088-3092, (1984)

Pe89 Pearlmutter,B.A., (1989), Learning State Space Trajectories in Recurrent Neural
Networks, Neural Computation

Pi87a Pineda, F. J. (1987a). Generalization of back-propagation to recurrent neural networks.
Phys. Rev. Lett. 18, pp. 2229-2232

Pi87b Pineda, F. J. (1987b). Generalization of back-propagation to recurrent and higher order
networks. In: Proceedings of IEEE Conference on Neural Information Processing
Systems (ed. D. Z. Anderson), Denver Colorado, Nov. 8-12

Pi88 Pineda, F. J. (1988). Dynamics and Architecture for Neural Computation. Journal of
Complexity. 4, pp. 216-245

Pi89 Pineda, F.J.,(1989). Recurrent-Backpropagation and the Dynamical approach to
Adaptive Neural Computation, Neural Computation, 1, 161-172

MP76 Marr, D. and Poggio, T. (1976). Cooperative Computation of Stereo Disparity,

Science, 194, 283-287

Me89 Mead, C. (1989), "Analog VI SI and Neural Systems", Addison-Wesley, Reading MA

Ro86 Rosenberg, C.R. and Bl-.lloch, G.E., (1986). An Implementation of Network Learning
on the Connection Machine, Technical Report, Thinking Machines Corporation,
Cambridge, MA

RHW86 D. E. Rumelhart, G. E. Hinton and R.J. Williams, Learning Internal Representations by
Error Propagation, in Parallel Distributed Processing, eds. D.E. Rumelhart and J.L.
McClelland, M.I.T. press, (1986)

9



SB88 Simard, P.Y., Ottaway, M. B. and Ballard, Dana, H. (1988). Analysis of Recurrent
Backpropagation, Proceedings of the 1988 Connectionist Models Summer School,
June 17-26, 1988, Carnegie Mellon Univ., Morgan Kaufman Publishers

Te87 Tesauro, Gerald, (1987). Scaling relationships in back-propagation learning: dependence
on training set size, Complex Systems, 1, pp. 367-372

To88 Tomboulian, S.J., (1988) A Brief Overview of a System for Routing Directed Graphs
on SIMD Architectures, Proceedings of 2nd Symposium on Frontiers of Massively
Parallel Computation, Fairfax, VA (1988)

10



Appendices

A.1 Generalization of Back-Propagation to Recurrent Neural Networks
Physical Review Letters, 52, pp.22 2 9-2232, (1987)

A.2 Generalization of Back-Propagation to Recurrent and Higher Order
Neural Networks, Neural Information Processing Systems, (Dana Z. Anderson, ed.)
American Institute of Physics, New York, (1988)

A.3 Dynamics and Architecture for Neural Computation, Journal of Complexity
4, 216-245, (1988)

A.4 Recurrent Back-Propagation and the Dynamical Approach to Adaptive
Neural Computation, Neural Computation, 1, 161-172, (1989)

11



VOLUME 59, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1987

Generalization of Back-Propagation to Recurrent Neural Networks

Fernando J. Pineda

Applied Physics Laboratory. Johns Hopkins University, Laurel, Maryland 20707
(Keceived 10 June 1987)

An adaptive neural network with asymmetric connections is introduced. This network is related to the
Hopfield network with graded neurons and uses a recurrent generalization of the 8 rule of Rumelhart,
Hinton, and Williams to modify adaptively the synaptic weights. The new network bears a resemblance
to the master/slave network of Lapedes and Farber, but it is architecturally simpler.

PACS numbers: 87.30.Gy

The neural network approach is a paradigm for corn- tern parameters. This general approach is reviewed by
putation in which the traditional paradigm of a finite- Amari 2 and forms the basis of many learning algorithms.
state machine performing sequential instructions in a The algorithm described here is a specific case of this
discrete state space is replaced with the paradigm of a general approach.
dynamical system, in a discrete or continuous state The dynamics of the network considered in this Letter
space, which evolves under the control of a certain class is based on the following system of coupled differential
of dynamics (neurodynamics). Although a precise equations:
definition of neurodynamics does not exist, it seems safe
to characterize it by at least three salient features. First, dx/dt -- ax, +ff, 1i w1 x J + (1)
the dynamical system has very many degrees of freedom.
At the present time, most simulations of these systems where x represents the activity of the ith neuron, whereare limited to less than 10' neurons. On the other hand, the matrix element w4 denotes the connection strength,
the human brain has at least 10 t neurons. The activity or coupling, from the jth to the ith neuron, and-whe. athe uma brin hs a lest 111 eurns. he ctiity and P are conveniently chosen positive constants. The
level and the time derivative of the activity of the neu-
rons are the coordinates in the phase space of the system. functions f, may have different forms for various popula-

This phase space plays the role of the state space in a tions of neurons. A commonly used form is the logistic

conventional computing machine. The second feature of function,

neurodynamics is nonlinearity. Nonlinearity is essential f(4) - ( +e -4) -.
to create a universal computing machine. This follows
because a network composed of linear units can always The constant It represents an external input bias which
be reduced to an equivalent single-layer network which may be included inside or outside f(4). I chose the
performs the same input/output transformation. But, as latter case arbitrarily. The fixed points of (1), which I
pointed out by Minsky and Papert,' a universal comput- denote as x0, are solutions of the nonlinear algebraic
ing machine cannot be built from a single layer of finite- equations
order neurons. The third feature of neurodynamics is
that it is dissipative. A dissipative system is character- ax 9Mfi (1 wjjx jO +1, (2)
ized by the convergence of the phase-space volume onto
a manifold of lower dimensionality as time increases, and are implicit functions of the weight matrix w and in-
Systems whose flow exhibits the property of global itial state it.
asymptotic stability play a particularly important role in Suppose that w is lower triangular. Then it is clear
neural-network modeling. Global asymptotic stability that Eq. (2) can be solved recursively since to calculate
implies that the system will ultimately settle down to a xi one needs only x 1,... ,xi- 1 . Thus, when the units are
steady state for any choice of initial condition. Systems properly labeled, this is just the forward propagation
which minimize an energy function, such as the Hopfield which occurs in the widely used feedforward network of
model, are guaranteed to be globally asymptotically Rumelhart, Hinton, and Williams. 3 I conclude that the
stable. feedforward network simply provides a direct method of

The identification of stable fixed points with computa- calculating the fixed points of (1) when w is lower tri-
tional objects, e.g., memories, is one of the fundamental angular.
ideas of the paradigm. To implement this idea it is The 5 rule is a learning rule for feedforward networks.
necessary to control the locations of the fixed points of Strictly speaking, it is restricted to feedforward networks
the neural networks. A learning algorithm is a rule or only. Nevertheless it has been applied to recurrent net-
dynamical equation which changes the locations of fixed works by taking advantage of the fact that for every re-
points to encode information. One way of doing this is to current network there exists an equivalent feedforward
minimize, by gradient descent, some function of the sys- network (for a finite time). The cost for this strategy is

© 1987 The American Physical Society 2229
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the manyfold duplication of the hardware for the feed- i.e.,
forward version of the recurrent network.3 The algo-
rithm presented in this paper makes unnecessary the ar- hi- I if i E A,
tiface of unfolding a recurrent network into a feedfor- 0, otherwise,
ward network.

A necessary condition for the learning algorithm dis- where 4i is an external input.
cussed in this Letter to exist is that system (1) reach Our goal will be to find a local algorithm which ad-
steady state (I will not discuss limit cycles here). Except justs w so that a given fixed initial state x' and a given
for some theorems concerning collective quantities,' little set of input values j result in a fixed point, z°, whose
is known about the stability of system (1) for arbitrary components along the output units have a desired set of
w. However, there are special cases for which (1) can be values, rj (where j 6 fl). This will be accomplished by
proved to be globally asymptotically stable. The set of our minimizing a function which measures the error be-
equations (1) is stable if w is symmetric because (1) can tween the desired fixed point and the actual fixed point.
be transformed into the equations studied by Hopfield 5  Consider the positive definite function
under the coordinate transformation, N

E W) - T' 42,

Ui -Y, WilXk. im

Hopfield's equations are globally asymptotically stable if where
w is symmetric and has zeros along the diagonal. Stabil- Ti - x°, if i E(,
ity in this case is proved because there exists a Liapunov 11 0
function. A general theorem concerning stability of net- 0, otherwise.
works with symmetric weights is given by Cohen and It is an implicit function of the weight matrix w because

Grossberg. 6 The set of equations (1) is also globally the fixed point x0 is implicitly dependent on the weight
asymptotically stable if w is lower triangular because in matrix. E(x0 ) has a family of minima which exist on
such a case the network is a pure feedforward network. the hyperplanes which satisfy x)/ - '-, where i r a1.
In other words the nth unit can only receive input from A formal learning algorithm consists of an algorithm
the mth unit if n > m. The stability of the feedforward which drives the fixed point towards one of these hyper-
case follows from a recursive agreement which goes as planes. Dynamically, this is accomplished by our letting
follows. Suppose that the activations xi (where i- 1, the system evolve in the weight space along trajectories
....m) are constant. Then from the feedforward con- which are antiparallel to the gradient 8E/8wi,. In other
straint the nth unit (where n -m + I ) receives only con- words,
stant input. With constant input Eqs. (1) converge ex-
ponentially to a constant value, and hence x,+, becomes dwiidt - -rtSE/8wij, (3)
constant. Thus it is clear that if the inputs are constant, where q is a numerical constant which defines the (slow)
the activation of the entire network will ultimately be- whee s a n which deins te slow)
come constant. Equations (I) are also stable in the limiton which w changes. must be small so that
of infinite w since if w is infinite te function f(u) be- x is always essentially at steady state (i.e., xzax0). On

performing the differentiations in (3) one immediately
comes constant and the solutions to (1) simply decay ex- obtains
ponentially to constants.

Numerical simulations conducted by this author dw,,Idt - qk J, ak/w,,. (4)
strongly suggest that in practice the system is stable for
most w and initial it. Oscillatory solutions can occur The derivative of xg with respect to w, is obtained by

when there exists substantial self-excitation. It shall be our differentiating both sides of (2) with respect to w,

assumed, for the purpose of deriving the back-propaga- and solving for the derivatives. The result is

tion equations, that the system ultimately settles down to 8/Ow -#(L-),f;(u,) °, (5)
a stable state. With this caveat in mind I present the re-

current back-propagation (RBP) algorithm. where the matrix L is given by

Consider a system of neurons, or units, whose dynam-
ics is determined by Eqs. (I). Of all the units in the net- L1 -a5q - J(u 1 )wjj,

work we will arbitrarily define some subset of them, A, and where 8y is the Kronecker 8 symbol. On substitut-
as input units and some other subset of them, 1L, as out- ing (5) into (4) one immediately obtains
put units. Units which are neither members of A or fl
are denoted hidden units. A unit may be simultaneously dw,,/dt -r7y, x ,  (6)

an input unit and an output unit. If a unit is an input where
unit, the corresponding component of the vector I is
nonzero and represents an external input to the system, y, -Of;(u,)2k Jk (L - 1)k,. (7)
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Equations (6) and (7) specify a formal learning rule.
Equations (7) require a matrix inversion to calculate the 4
error signals, yk. Direct matrix inversions are necessari-
ly nonlocal calculations and therefore this learning algo-
rithm is not suitable for implementation as a neural net-
work. A local method for the calculation of y, is ob-
tained by the introduction of an associated dynamical
system. Consider the vector z whose components are 2
defined in terms of the components of y according to

y, " (u,)z,.. (8) FIG. 1. XOR network with recurrent connections.

Equations (7) and (8) imply that z, satisfies

J,Lz,- J. (9) tude. In practice I made the magnitude of the loop

Now observe that the solutions of Eqs. (9) are the merely large and was able to reproduce the behavior of

steady-state solutions of the Rumelhart network.
The network with the backward connection performed

dzildt - - ,z, +LJi. only modestly faster than the network without this con-

In terms of the explicit variables in the problem, these nection. a The main difference in the networks was in the
equations ae edistribution of final weights. Both networks had similar
equations are attractors which could be characterized by the final root

dz/dt- -azi+, {f, (u,)w,jz,} +J. (10) mean square weight per connection (w,.). The attrac-
tor which I denote by A had w. -3.4, while the attrac-

This leads to a learning rule of the form tor denoted by B had wr. - 10.7. The network without

dw,,/dt- f '(u, )z,0. (11) the backward connection converged onto attractors Aand B approximately 85% and 15% of the trials, respec-
Equations (1), (10), and (11) completely specify the tively, whereas the network with the backward connec-

dynamics for an adaptive neural network, provided that tion converged onto attractors, A and B approximately
(1) and (10) are convergent. It is known that the con- 52% and 48% of the trials, respectively. Only in one trial
vergence of (1) is a sufficient condition for the conver- out of 480 did the recurrent network fail to converge
gence of (10). 7 This follows from the observation that onto a global minimum. Each pattern was presented to
the back-propagation network is obtained from the the recurrent network approximately 200 times. The
forward-propagation network (linearized about a fixed final solutions were insensitive to the initial value of x
point) and that a linear network is stable in both direc- which indicates that the attractors of Eqs. (1) have large
tions if it is stable in either direction. It is quite easy for basins of convergence.
one to obtain the 5 rule from the RBP algorithm by ex- It is worthwhile to compare the RBP network with the
pressing Eqs. (1), (10), and (11) as difference equations master/slave network of Lapedes and Farber.' The slave
with At - I and with w lower triangular, network corresponds to my forward-propagation net-

I have conducted preliminary numerical experiments work. If we suppose it has N nodes then the master net-
with exclusive OR (XOR) networks to verify the work determines the weights of the slave network by in-
correctness of the algorithm. These were performed by tegrating N 2 equations, each of which has a form similar
my approximating the differential equations with first- to Eqs. (1), but with slave weight matrix elements as
order finite-difference equations and requiring that Eqs. dynamical variables and a rank-4 matrix as the master's
(1) and (10) converge before taking an integration step weight matrix. The weight matrix of the master network
in Eq. (11). The XOR network is shown in Fig. 1. Each has a simple symmetric form with at most N(N + 1)/2
input unit receives one digit of a two-digit binary num- nonvanishing independent components. These com-
ber. The target x for the output unit is I if the number ponents require additional storage beyond the N 2 com-
of I's in the input is odd and 0 otherwise. Unit 5 is a ponents of the slave's weight matrix. The RBP network,
threshold unit, i.e., it biases the total input to units 3 and on the other hand, requires the integration of N 2 +2N
4 so as to provide a threshold which must be exceeded if equations and no additional storage. 2N of these equa-
these units are to turn on. Unit 5 feeds back on itself so tions correspond to Eqs. (1) and (10). The remaining
as to stay turned on always. The feedforward exclusive N 2 equations have a simple outer product form [cf. Eq.
OR network used by Rumelhart, -inton, and Williams (11)] and are quite trivial to implement. The conclusion
is completely equivalent to this network if the backward is that the RBP network is an architecturally simpler
connection from unit 4 to unit 3 is omitted and if the network than the master/slave network and requires less
feedback loop in unit 5 has an infinite positive magni- memory.
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The master/slave network directly minimizes the aver- the U.S. Air Force Office of Scientific Research.
age of E over all input/output associations. This average
is denoted by (E). The master equations are guaranteed
to converge to at least a local minimum of (E) because IM. Minsky and S. Papert, Pe>'ceptron (M.I.T. Press, Cam-
(E) is a Liapunov function for the equations. 'o On the bridge, MA, 1969).
other hand, E is a Liapunov function for Eq. (3) of the 2Shun-Ichi Amari, in Systems Neuroscience. edited by
RBP network only in the case of a single input/output Jacqueline Metzler (Academic, New York, 1977).3D. E. Rumelhart, G. E. Hinton, and IL J. Williams, in
association. For multiple associations the RBP network Parallel Distributed Processing, edited by D. E. Rumethart
is guaranteed to converge only in a probabilistic sense and J. L. McClelland (M.I.T. Press, Cambridge, MA, 1986).
and under certain technical conditions. It was noted by "Shun-lchi Amari, IEEE Trans. Systems Man Cybernet. 2,
Amari 2 that gradient-descent algorithms, such as RBP, 643-657 (1972).
converge to a minimum point of (E) to within a small 5J. J. Hopfield, Proc. Natl Acad. Sci. U.S.A. Bio. 81,
fluctuating term provided that the input/output sequence 3080-3092 (1984).
is an ergodic random sequence and provided that (E) has 6Michael A. Cohen and Stephen Grossberg, IEEE Trans.
a unique minimum. Experimentally it is found that Systems Man Cybernet. 13, 815-826, 1983.
RBP, like standard back-propagation, converges robustly 7After this Letter was submitted, the author learned of the.
albeit after very many iterations. A detailed computa- independent work of Luis B. Almeida, who derived a discrete
tional comparison of RBP and master/slave has yet to be version of the RBP algorithm to appear in the Proceedings of

performed. the IEEE First Annual International Conference on Neural
The RBP algorithm is better suited for hardware i- Networks, San Diego, California, June 1987, edited by

M. Caudil and C. Butler (to be published).
plementation than the 8 rule for two reasons. First, the SThe parameters used were a- 1, a -1, -1, and 1i-0.5.
algorithm is expressed completely in differential equa- The integration was terminated when the Z2 summed over all
tions and therefore can be implemented in analog very four patterns reached 0.1. A new pattern was presented on
large-scale integration. This eliminates the timing and each iteration of Eq. (11). The difference equation corre-
synchronization problems which appear in digital im- sponding to (11) was modified by the inclusion of a momentum
plementations of the standard 8 rule. Second, the RBP term to accelerate the convergence.
algorithm vectorizes naturally. This is because the units 9Alan Lapedes and Robert Farber, Physica (Amsterdam)

are homogeneous, i.e., the input, hidden, and output D22 247-259, 1986, and in Neural Networks for Comput-
units all obey the same differential (difference) equa- ing- 1986, edited by J. S. Denker, AIP Conference Proceed-ua ings No. 151 (American Institute of Physics, New York,
tions- only the components of the constant vectors I and 1986), pp. 283-298.
J serve to distinguish the roles of the units. 'rihe master/slave Liapunov function actually contains an

The author wishes to acknowledge very fruitful discus- extra term which adds a passive decay term to the learning
sions with Robert Jenkins and Ben Yuhas. Liam Healy equations. Our function E could be modified to include such a
also contributed in the early discussions. This work was term, but the inclusion of such a term is not essential to the
supported in part by Grant No. AFOSR-87-0354 from discussion.
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Recurrent back-propagation
and

the dynamical approach to adaptive neural computation

Fernando J. Pineda

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

March 13, 1989

Abstract

"back-propagation" is the name given to a family of numerical techiques and adaptive models
which have had a significant impact on neural computation and optimization. The classical
numerical algorithm applies to discrete feedforward networks only. The extension of these ideas to
recurrent networks leads naturally to a continuous-time formalism which may map onto collective

physical systems.

The characteristic features of the formalism are presented without going too deeply into obscure

mathematical details. The distinctions between the physical approach and the algorithmic approach

are emphasized.

Recent developments in learning time-dependent states are discussed and finally, physical and

biological plausibility concerns are discussed.



Introduction
The problem of loading neural networks with a nonlinear map can be likened to the problem

of finding the parameters in a multidimensional nonlinear curve fit. The traditional way of

accomplishing this is to minimize a measure of the error between the actual output and the "target"
output. Many useful techniques exist, but the most common methods are methods which make use

of gradient information. In general, if there are N free parameters in the objective function, the

number of operations required to calculate the gradient numerically, is at best proportional to N2 .

Neural networks are special because their mathematical form permits two tricks (to be discussed

below) which reduce the complexity of the gradient calculation. When these two tricks are

implemented, the gradient calculation scales linearly with the number of parameters (weights),

rather than quadratically. The resulting algorithm is known as a back-propagation algorithm.

Classical back-propagation was introduced to the neural network community by Rumelhart,

Hinton and Williams (1986). Essentially the same algorithm was developed independently by

Werbos (1974) and Parker (1982) in different contexts. le Cun (1988) has provided a brief

overview of back-propagation pre-history and stresses that the independent discovery of the

technique and its interpretation in the context of connectionist systems is a recent and important

development. He points out that within the framework of optimal control the essential features of

the algorithm were known as early as 1969 (Bryson and Ho, 1969).
In this paper, the term "back-propagation" will be used generically to refer to any algorithm or

dynamical system which calculates the gradient by exploiting the two tricks. Furthermore, since

one can write a back-propagation routine for evaluating the gradient and then use this routine in any

prepackaged numerical optimization package, it is reasonable to take the position that the term

"back-propagation" should be attached to the way the gradient is calculated rather than to the

particular algorithm for using the gradient (e.g. conjugate gradient, line search, etc.).

If neural networks were merely clever numerical algorithms it would be difficult to completely

account for the frenzy now associated with the field. To my mind, much of the excitement is due to

the work of Hopfield (1982) who made explicit the profound relationship between information

storage and dynamically stable configurations of collective physical systems. Hopfield nets consist

of interacting spins which together form a system known as a spin glass. Spin glasses are the

classic example of a collective physical system. The relevent physical property of spin glasses

which make them useful for computation is that the collective interactions between all the spins can

result in stable patterns which can be identified with stored memories. Although it may not be

particularly useful for practical computing, the Hopfield net serves as an explicit example of the

principle of collective computation. Digital computers, on the other hand, can compute because they
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are physical realizations of finite state machines. In digital computers collective dynamics does not
play a role at the algorithm level, although it certainly plays a role at the implementation level since

the physics of transistors is collective physics. Collective computation is the idea that collective

dynamics plays an important role at the algorithm level as well as at the implementation level. The

observation that collective dynamics can play a role at both levels suggests that an efficient

approach would be to use the same collective dynamics at both levels. This is what one might call

a physical approach to computation. Therefore, rather than have machine independent algorithms,
one would have just the opposite extreme, in which the implementation medium would necessarily

influence the design of algorithms. The physical approach constrains neural network models to be

plausible as collective physical dynamical systems. The resulting "dynamical algorithms" could

then fully exploit the collective behavior of physical hardware.

Recurrent back-propagation (RBP) is a non-algorithmic continuous-time formalism for

adaptive recurrent and nonrecurrent networks in which the physical aspects of the computation are
stressed (Pineda,1987a, 1987b,1988). The formalism is expressed in the language of differential

equations so that the connection to collective physical systems is more natural. RBP can be put into

an algorithmic form to optimize the performance of the network on digital machines, nevertheless,

as shall be discussed below, the intent of the formalism is to stay as close to collective physics and

dynamics as possible.

RBP has proven to be a rich and useful computational tool. Qian and Sejnowski (1988) have

demonstrated that a recurrent back-propagation network can be trained to calculate stereo disparity.
This results in a network similar to that of Marr and Poggio (1976). Barhen et al. (1989a) have

used the method to train networks on inverse kinematics for robotic applications. The formalism

has also been fertile soil for theoretical developements. Pearlmutter (1988) has extended the
technique to time dependent trajectories while Simard and Ballard (1988) have investigated its

convergence properties.

Overview of the Formalism
The class of neural network models which can be trained by RBP is very general, but it is

useful to pick a definite system as an example, therefore consider a neural network model based on

differential equations of the form

zxdxi/dt = -xi + Z wij f(xj) + Ii  (1)
J

The vector x represents the state vector of the network, I represents an external input vector and w

represents a matrix of coupling constants (weights) which represent the strengths of the interactions

between the various neurons. The relaxation time scale is x. By hypothesis, the vector valued

function f(xi) is differentiable and chosen so as to give the system appropriate dynamical properties.
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For example, biologically motivated choices are the logistic or hyperbolic tangent functions

(Cowan, 1968). When the matrix w is symmetric this system corresponds to the Hopfield model
with graded neurons (1984).

In general , the solutions of equation (1) exhibit oscillations, convergence onto isolated fixed
points and chaos. For our purposes, convergence onto isolated fixed points is the desired behavior,

because we use the value of the fixed point as the output of the system. When the network is

loaded, the weights are adjusted so that the output of the network is the desired output.

There are several ways to guarantee convergence. One way is to impose structure on the

connectivity of the networks, e.g. a lower triangular weight matrix or a symmetric weight matrix.

Symmetry, although mathematically elegant, is quite stringent because it constrains microscopic

connectivity by requiring pairs of neurons to be symmetrically connected. A less stringent
constraint is that of Guez et al. (1988) who used Gersgorin's eigenvalue localization theorem to

show that asymptotic stability can be obtained by imposing constraints on the row norm of the

matrix

Lij = Bij - wij f(x) (2)
where 8ij are the elements of the identity matrix and f(xj) is the derivative of f(xj).

If the feedforward, symmetry or Guez stabilty conditions are imposed as initial conditions on

a network, gradient descent dynamics will typically converge onto a network which violates the
conditions. Nevertheless, this author has never observed an initially stable network becoming

unstable while undergoing simple gradient descent dynamics. This fact points out that the stability
conditions are merely sufficient conditions -- they are not necessary. This fact also motivates the

stability conjecture upon which recurrent back-propagation is based: that if the initial network is

stable, then the gradient descent dynamics will not change the stability of the network. The reader

should note the following caveat: that this conjecture is a statement about the kinds of problems
attacked by this author rather than a statement about rigourous mathematics.

In gradient descent learning, the computational problem is to optimize an objective function

whose free parameters are the weights. Let the number of weights be denoted by "N" and let the

number of processing units be denoted by "n". Then, N is proportional to n2 if the fan-in/fan-out

of the units is proportional to n. In a neural network the evaluation of an objective function requires

O(N) or O(n2 ) operations(l). Accordingly, to calculate the gradient of the objective function by
numerical differentiation requires O(N2 ) or O(n 4 ) calculations. For big problems, i.e. problems

with lots of connections this becomes intractable very rapidly. This notion of big should not be

confused with the difficulty of a problem in the sense of whether a problem is NP complete or not.

(1) The notation O(n2 ) means that in the large n limit the number of operations is bounded by Cn2

where C is a constant.
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Furthermore, the scaling referred to here should not be confused with the number of gradient

evaluations required for convergence to a solution. Indeed, for some problems, e.g. parity, the
required number of gradient evaluations may diverge at critical training set sizes (Tesauro, 1987).

Now, as already mentioned, back-propagation adaptive dynamics is based on gradient descent
and exploits two tricks to reduce the amount of computation. The first trick uses the fact that, for

equations of the form (1), the gradient of an objective function E(x ° ) can be written as an

outer-product, i.e.

Vw E = yOf(Xo)T (3)

Where x0 is the fixed point of eqn. (1) and where the "error vector" yo is given by

yo= (LT) -Ij (4)
where LT is the transpose of the matrix defined eqn. (2) n x n matrix and J is an external error
signal which depends on the objective function and on xO. This trick reduces the computational

complexity of the gradient calculation by a factor of n because L- 1 can be calculated by direct matrix

inversion in O(n3 ) operations and because xO can be calculated in only O(n 2 ) calculations. Thus
the entire calculation scales like O(n3 ) or O(N 3 /2). The second trick exploits the fact that yo can be
calculated by relaxation or equivalently it is the (stable) fixed point of the following couple set of
linear differential equation: lydyi/dt = -yi +f (xi) wjiyj + Ji (5)

J

A form of this equation was derived by Pineda, (1987a). A discrete-time version was derived

independently by Almeida (1987). To relax y (i.e. to integrate eqn. (5) until y reaches steady state)
requires O(n 2 ) operations per time step. The number of time steps is independent of n. Therefore

the calculation of yO is O(n2 ) or O(N). The method is computationally efficient provided the
network is sufficiently large and sparse and provided that the fixed points are not marginally stable.

These results are summarized in table 1. Note that the two back-propagation algorithms scale like
O(N), but this hides the constants of proportionality which for feed-forward networks depends on
the number of layers where as for recurrent networks the constant of proportionality depends

strongly on the eigenvalues of the L matrix. Indeed, if the fixed points are marginally stable, the
number of iterations required to converge onto x° and yO may diverge.

numerical algorithm comilexity
Worst case (e.g. numerical differentiation) O(N
matrix inversion (e.g. gaussian elimination) O(N 3 )
matrix inversion by relaxation (e.g. RBP) O(N)
recursion (e.g. classical feed-forward back-propagation) O(N)

Table 1. Scaling of various algorithms with the number of connections
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For all its faults, back-propagation has permitted optimization to be applied to problems which

were previously considered numerically intractable. The O(N) scaling of the gradient calculation is

arguably the single most important reason that back-propagation algorithms have made such an

impact. The idea of using gradient descent is certainly not new, but whereas it was previously
tractable on small problems only, it is now tractable on big problems to. It is interesting to observe

that a similar situation arose after the development of the FFT algorithm. The idea of numerical

fourier transforms had been around for a long time before the FFT, but the FFT cau . d a
computational revolution by reducing the complexity of an n-point fourier transform, from O(n2 )

to O(n-log(n) ).

Dynamical vs Algorithmic approaches
Back-propagation algorithms are usually viewed from an algorithmic viewpoint. For example,

the gradient descent version of the algorithm is expressed in the following pseudo-code:

while(E > e)
f

initialize weight change Aw = 0
repeat for each pattern

r
relax eqn. (1) to obtain xo
relax eqn. (4) to obtain yO
calculate gradient VE = yo f(xo )T
accumulate gradients Aw = Aw + VE)

update weights w = w + Aw

Note that all the patterns are presented before a weight update. On the other hand, a "dynamical

algorithm" can be obtained by replacing the weight update step with a differential equation, i.e.

,twdwij/dt = yif(xj). (6)

and integrating it simultaneously with the forward-propagation and backward-propagation

equations. A constant pattern is presented through the input pattern vector I and the error signal is

presented through the error vector J. The dynamics of this system is capable of learning a single
pattern so long as the relaxation time of the forward and backward propagations ( tx and ry) is

much slower than the relaxation time of the weights, rw . Since the forward and backward

equations settle rapidly after a presentation, the outer product yf(x)T is a very good approximation

for the gradient during most of the integration. To learn multiple patterns, the patterns must be

switched slowly compared to the settling time of the forward and backward equations, but rapidly

compared to tw, the time scale over which the weights change.
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The conceptual advantage of this approach is that one now has a dynamical system which can

be studied and perhaps used as a basis for models of actual physical or biological systems. This is
not to say that merely converting an algorithm into a dynamical form makes it biologically or

physically plausible. It simply provides a starting point for further development and investigation.
Intuition and formal results concerning algorithmic models do not necessarily apply to the

corresponding dynamical models. For example, consider the well known "fact" that gradient

descent is a poor algorithm compared to conjugate gradient. In fact this conventional wisdom is

incorrect when it comes to physical dynamical systems. The reason is that the disease which makes

gradient descent inefficient is a consequence of discretization. The difficulty occurs when
descending down a long narrow valley. Gradient descent can wind up taking many tiny steps
crossing and re-crossing the actual gradient direction. This is inefficient because the gradient must

be recomputed for each step and because the amount of computation required to recalculate the

gradient from one step to the next is approximately constant. Conjugate gradient is a technique
which assures that the new direction is conjugate to the previous direction and therefore avoids the

problem. Accordingly larger steps may be taken and less gradient evaluations are required.
On the other hand gradient descent is quite satisfactory in physical dynamical systems simply

because time is continuous. The "steps" are by definition infinitely small and the gradient is

evaluated continuously. No repeated crossing of the gradient direction occurs. For the same
reason, the ultimate performance of hysical neural networks cannot be determined from how

quickly or how slowly a "neural" simulation runs on a digital machine. Instead one must integrate
the simultaneous equations and measure how long it takes to learn, in multiples of the fundamental

time scales of the equations. As an example, consider the following illustrative problem. Chose

input and output vectors to be randomly selected 5 digit binary vectors scaled between 0. 1 and 0.9.

Use a network with two layers of five units each with connections going in both directions
(50 weights). For dimensionless time scales chose rx = ty = 1.0, ,w =32 tx and select a new

pattern at random every 4t x . The equations may be integrated crudely, e.g. use the Euler method

with (At = 0.02 ' x ). One finds that the error reaches E = 0.1 in approximately 4x10 3 rx or

after 103 presentations. Figure 1. shows the error as a function of time.

//INSERT FIG. 1 HERE/
To estimate the performance of an electronic physical system we can replace these time scales

with electronic time scales. Therefore, suppose patterns are presented every 10-5 sec (100 kHz).

This is the performance bottleneck of the system, since the relaxation time of the circuit, Tx is then

approximately 2.SxlO-6 sec, which is slow compared with what can be achieved in analog VLSI.

Hence in this case the patterns would be learned in approximately 10 milliseconds.
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Unlike simple feedforward networks, recurrent networks exhibit dynamical phenomena. For
example, a peculiar phenomenon can occur if a recurrent network is trained as an associative
memory to store multiple memories: it is found that the objective function can be reduced to some
very small value, yet when the network is tested for recall, the supposedly stored memory is

missing! This is due to a fundamental limitation of gradient descent. Gradient descent is capable of
moving existing fixed points only. It cannot create new fixed points. To create new fixed points
requires a technique whereby some degrees of freedom in the network are clamped during the
loading phase and released during recall phase. The analogous technique in feed-forward networks

is called teacher forcing. It can be shown that this technique causes the creation of new fixed
points. Unfortunately, after the suppressed degrees of freedom are released, there is no guarantee
that the system is stable with respect to the suppressed degrees of freedom. Therefore the fixed
points sometimes turn out to be repeilors instead of attractors. In feed-forward nets teacher forcing
causes no such difficulties because there is no dynamics in feed-forward networks and hence no
attractors or repellors.

Recent Developments

Zak, (1988) has suggested the use of fixed points with infinite stability in recurrent networks.
These fixed points, denoted "terminal attractors", have two properties which follow from their

infinite stability. First, their stability is always gauranteed, hence the repellor problem never
occurs, and second trajectories converge onto them in a finite amount of time, rather than an infinite
amount of time. In particular, if a terminal attractor is used in the weight update equation, a
remarkable speedup in learning time occurs, see e.g. Barhen (1989a). These interesting properties

are a consequence of the fact that the attractors violate the Lipschitz condition.
Pearlmutter, (1989) has extended the recurrent formalism to include time-dependent trajectories

(time-dependent recurrent back-propagation or TDRBP). In this approach the objective function of
the fixed point is replaced with an objective fucinal of the trajectory. The technique is the
continous time generalization of the sequence generating network discussed by Rumelhart et al.
(1986). Like all back-propagation algorithms the amount of calculation scales like O(N) for each

gradient evaluation. However, like the Rumelhart network, it requires that the network be unfolded

in time during training. Hence the storage during training scales like O(mN) where m is the
number of unfolded time steps. Furthermore, the technique is acausal in that the back-propagation

equation must be integrated backwards in time. This merely reflects the fact that one is solving a
two-point boundary problem of the kind familiar from control theory. For problems where the
target trajectories are known apriori and on-line learning is not required, this is the technique of

choice.
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On the other hand a causal algorithm has been suggested by Williams and Zipser (1989). This

algorithm does not take advantage of the back-propagation tricks and therefore the complexity

scales like O(N 2 ) for each gradient evaluation. Nevertheless, for small problems where on-line

learning is required it is the technique of choice.

Both techniques seek to minimize a measure of the error between a target trajectory and an

actual trajectory by performing gradient descent. Only the method used for the gradient evaluatinon

differs. Therefore one expects that, to the extent that on-line training is not an issue and to the

extent that complexity is not an issue, one could use the two techniques interchangably to create

networks.

Both techniques can suffer from the repellor problem if an attempt is made to introduce

multiple attractors. As before, this problem could be solved by introducing a time dependent

terminal attractor.

Discussion

Biologically and physically plausible adaptive systems should satisfy certain constraints. 1)

They should scale well with connectivity, e.g. linearly 2) they should require no global

synchronization 3) they should use low precision components and 4) they should not impose

unreasonable structural contraints, e.g. symmetric weights or bi-directional signal propagation.

Back-propagation algorithms in general and RBP and TDRBP in particular can be considered in the

light of each of these constraints.

Linear scaling of the gradient calculation in back-propagaton algorithms is a consequence of the

local nature of the computation, i.e. that each unit only requires information from the units to which

it is connected. This notion of locality, which arises from the analysis of the numerical algorithm is

distinct from the notion of spatial locality, which is a constraint imposed by physical space on

physical networks. Spatial locality is how one avoids the 0(n2 ) growth of wires in networks.

Both locality constraints could be satisfied by physical back-propagation networks.

Global synchronization requires global connections, therefore it is undesirable if the network is

to scale up. In one sense, the problem of synchronization has been eliminated in RBP because there

is no longer any need for separate forward , backward and update steps, indeed equations (1), (5)

and (6) are "integrated" simultaneously by the dynamical system as it evolves. There is another

sense in which synchronization causes difficulties. In physical systems and in massively parallel

digital simulations,time delays and asynchronous updates, can give rise to chaotic or exponential

stochastic behavior (Barhen, 1989b). Barhen et al. have shown that this "emergent chaos" can be

suppressed easily by the appropriate choice of dynamical parameters.
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It is still an open question as to whether back-propagation algorithms require low precision or

high precision components. Formal results suggest that some problems, like parity in single layer

nets (Minsky, 1969), may lead to exponential growth of weights. In practice it appears that 16 bits

of precision for the weights and 8 bits of precision for the activations and error signals are sufficient

for many useful problems (Durbin, 1987).

Structurally, RBP and TDRBP impose no constraints on the weight matrix. Furthermore, in

RBP networks there appears to be no need to take special measures to insure the stability of the

network while undergoing training. This would help the biological plausiblity of the model were it

not for the requirement that the connections be bi-directional. Bi-directionality is arguably the

biggest plausibility problem with the algorithms based on backpropagation. Biologically, this

requires bi-directional synapses or separate, but equal and opposite, paths for error and activation

signals. There is no evidence for either structure in biological systems. The same difficulties arise

in electronic implementations where engineering solutions to this problem have been developed

(Furman and Abidi, 1988), but one would hope that a better adaptive dynamics would eliminate the

problem altogether.
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