y ' APPROVED FOR @
‘ _— PUBLIC DISTRIBUTION
I FILE Loy

¥ i

MASSACHUSETTS INTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 89-557

September 1989 AD—A216 779

Boolean Minimization and Algebraic Factorization Procedures for Fully

Testable Sequential Machines e
OTIC

SECTE e
AN 6 1990 8

p . :

Abstract @
4 In this paper we continue to investigate the impact of logic synthesis on the testability of
sequential circuits that can be modeled as finite state machines. Complete testability of a
. sequential circuit is ensured by guaranteeing that each invalid state has an unperturbable
distinguishing sequence. To accomplish this we present a novel Boolean minimization
procedure of prime implicant generation and contrained covering based on the Quine-
McCluskey algorithm that ensures that no single fault can both produce an invalid state
and corrupt the distinguishing sequence by which that invalid state can be identified. On
completion, it guarantees a prime and irredundant, fully testable Moore or Mealy finite state
machine. Given a two-level circuit with these properties we then use constrained algebraic
factorization techniques that retain the invariant that no single fault can both produce an
invalid state and corrupt the distinguishing sequence by which that invalid state is detected.

Srinivas Devadas and Kurt Keutzer

Besides offering a more detailed understanding of the sources of untestability in sequential
circuits than previous approaches, this approach offers significant practical advantages as
wcll. It is applicable to a wider range of circuits than optimal synthesis procedurcs whosc
utility is often limited by prohibitively high CPU requirements, and its less restrictive
synthesis constraints result in lower area overhead than other constrained synthesis
approaches. These observations are supported by experimental results.

TR s,

® 90 01 16 1 8%

Microsystems Massachusetts Cambridge Room 39-321
Technology Institute Massachusetts Telephone
Laboratories of Technology 02139 (617) 2530292

Accessicn For

NTIS GRARI
CDTIC Ti3
| Unoane 0

By
Dis‘trrirbtzt 1sn/

Avail: ™*1i1v Csdes

o - /or
lDiSt fosDoeotld
l I
| A.[{ |
Acknowledgements

To be presented at the International Conference of Computer Aided Design (ICCAD '89) in
November 1989. This work was supported in part by the Defense Advanced Research
Projects Agency under contract number N00014-87-K-0825.

Author Information

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.
Keutzer: AT & T Bell Laboratories, Murray Hill, NJ 07974. (201) 522-6332

Copyright© 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form “private
communication.” For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Technology Laboratories,
Room 39-321, MIT, Cambridge, MA 02139; (617) 253-0292.

Boolean Minimization and Algebraic Factorization Procedures for Fully Testable
Sequential Machines

Srinivas Devadas
Department of Electrical Engineering aud Computer Science
Massachusetts Institute of Techuology, Cambnidge

Kurt Keutzer

AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract

In this paper. we continue to investigate the impact of logic synthe-
sis on the testability of sequential circuits that can be modeled as finite
state machines. Complete testability of a sequential circuit is ensured by
guaranteeing that each invalid state has an unperturbable distinguishing
sequence. To accomplish this we present a novel Boolean minimization
procedure of prime implicant generation and consirained covering based
on the Quine-McCluskey algorithiu that ensures that no single fault can
both produce an invalid state and corrupt the distinguishing sequence
by which that invalid state can be identified. On completion, it guaran-
tees a prime and irredundani. fully testable Moore or Mealy finile state
machine. Given a two-level circuit with these properties we then use
constrnined algebraic factorization techniques that retain the invariant
that no singie fault can both produce an invalid state and corrupt the
distingnishing sequence by which that invalid state is detected.

Besides offering a more detailed understanding of the sources of
untestability in sequential circuits than previous approaches, this ap-
proach offers significant practical advantages as well. It is applicable to
a wider range of circuits than optimal synthesis procedures whose util-
ity is often limited by prohibitively high CPU requirements, and its less
restrictive syntliesis constraints result in lower area overhead than other
constrained synthesis approaches. These observations are supported by
experimental resul(s.

1 Introduction

Can a sequential citcuit be completely tested without adding scan logic?
This is perlaps tlie most open problem in the area of testing. One nat-
ural approach to solving this problem is to improve current sequential
test generation algorithms. The primary drawback to this approach
is that circuit sizes are increasing so quickly that even significant im-
provements in sequential test generation algorithms cannot keep up. A
radically different approach is synthesis for sequential testability. In
this approach it is the structure of the circuit itsell that is modified to
produce fully testable designs.

The idea that logic synthesis and optimization can have a very pro-
found effect on the testability of a synthesized combinational or sequen-
tial circuit has been recognized. The relationship between testability
and Boolean minimization for two-level and muliti-level combinational
circuits has heeu thoroughly investigated [5) [1] [4).

Relationships hetween sequential logic synthesis and non-scan sequen-
tial circnit testability are equally intimate. Scan logic appears to be
less necessary for ensuring Lhe testability of datapath portions of cir-
cuits because datapath portions have less feedback. As a result, the
remaining challenges in synthesizing sequentially testable circuits are to
synthesize fully/easily testable control portious and to combine these
with datapath portions. Control portions are commonly modeled as
finite state machines (FSMs). Synthesis of fully/easily testable FSMs
is possible 1hrouglh constrained state assigniment and logic optimization
[3]. An optimal (sequentially prime and irredundant) synthesis proce-
dure. involving the use of don't care sets in an iterative logic mintmiza-
tion strategy. that produces an irredundant sequential machine with no
area/perforinance overhead was presented in [2].

Our approach representa a middle path between the CPU-intensive
optimal syuthesia procedure of (2] and the area-penalizing constrained
synthesis procedure of (3], combining the advantages of bo'.f\ approaches.
Unlike the approach of l]:!). complex don't care sets do not have to be ex-
ploited. nor is repeated logic minimization required. The procedure also
does not imolve the addition of extra edges or state assignment con-
straints as in [3]. The FSM is described at the State Transition Graph
(STG) level. The optimized logic-level implementation is guaranteed to
be fully testable for all single stuck-af faults in the combinational logic
without access to the memory elements,

The approach of this paper is to use synthesis to ensure the com-
plete testability of a sequential circuit implementing a FSM by ensuring

that each invalid state has an unperturbable distinguishing sequence.
To accomplish this we present a novel Boolcan minimizafion procedure
of prime implicant generation and constrained covering based on ihe
Quine-McCluskey algorithim that ensures that no single fault can hotl
produce an invalid state and corrupt the (Iislinguisfling sequence by
which that invalid state can be identified. On completion. it gnarantees
a prime and irredundant. fully 1estable Moore or Menly FSA. Given a
two-level circuit with these properties, we then define consirained alge-
braic factorization techniques that retain the invariant (hat no single
fault can both produce an invalid state and corrupt the distinguisling
sequence by which that invalid state is detected.

Besides offering a more detailed understanding of the sources of
untestability in sequential circuits than these previous approaches. this
approach offers significant practical advantages as well. 1t is applicahle
to a wider range of circuils than optimal synthesis procedures wlose
utility is often limited by prohibitively high CPU requirements. and its
less restrictive synthesiz constraiuts result in less area overlicad than
other constrained synthesis approaches. Tliese observations are sup-
ported by our preliminary experimental results.

Basic definitions and terminology are given in Section 2. Procedures
to synthesize fully testable FSMs implemented by two-level and multi-
level combinational networks are described in Sections 3 and 4. respec-
tively. The required modifications to the covering step in two-level
Boolean minimization are described in Section 5. Preliminary exper-
imental results are given in Section 6.

2 Preliminaries

A cubhe is writlen as a hil vector on a set of variables with each hit
position representing a distinet variable. The values taken by each bit
can he 1. 0 or 2 {or — or don’t care). signifying the true form. negated
form and nou-existence respectively of the variable corresponding to
that position. A minterm is a cube with only 0 and | entries.

A minterm my is said to dominate (1) 3 ;) if for each position
that mq has a], m,; also hasa |.

A finite state machine (FSM) is represented by its State Transition
Graph (STG). G(V.EAU(E)) where V' is the set of vertices corre-
sponding to the sel of states S. ||S|| = .V, is the cardinality of the set
of states of the FSM. An edge joius v, to v, if there is any vector of pri-
mary input values that causes the FSM (o evolve from state v, to state
vj. W(E) is a set of labels attached to cachi edge. For the purposes
of this paper, we defitie each label as an ordered 1-tuple < i.s.s'.a >
where ¢ is a minterm over the primary inputs. s and s are minteris
over {he stale variables aud o is a minterm over the primary onfpuis,
The pair < 5.0 > corresponds to the output plane of a truth table
representation of the FSM. The pair < 7. s > cotresponds (o a minterin
in the input plane of a truth-table representation of the FSA: for vach
edge we will reler to Lhe set of all such pairs as the input-labels of that
edge.

We denote the primary input combination and present state corre-
sponding to an edge or set of edges is i @ s, where 1 and s are cubes
over the set of inputs and states respectively. The fanin of a state, ¢ is
a set of edges and is denoted fanin(q).

A starting or initial stale is assumed to exist for a machine. also
called the reset state. Given a logic-level finite state machine with
Ny latches. 2V ossible states exist in the machine. A state which
can he reached from the reset state via some input vector sequence is
called a valid state in the STG. The input vector sequence is called the
justification sequence for that state. A state for which no justification
sequence exists is called an invalid state. Given a fanlt F. the Siate
Transition Graph of the machine with the faull is denoted GF. Two
states in a State ‘Fransition Giraph G are equivalent if all possible
input sequences when the machine is initiaily in either of the two states
produce the sanme outpul response.

A State Trausition Graph ¢} it =aid to be isomorphic to another

oL PO oL PO
Pl ' NSL P L NSL
S NS PS NS
(a) (L)

Figure I: Sequential Machines

State Transition Graph G2 if and only if they are identical except for a
renaming of states.

A primitive gate in a network is prime if none of its inputs can be
removed without causiug the resuiting circuil tu be functionally differ-
ent. A gate is irredundant if its removal causes the resulting circuit to
be functionally different. A gate-level circuit is said to be prime if all
the gates are prinve and irredundant if all the gates are irredundant.
It can be shown that a gate-level circuit is prime and irredundant if and
only if it is 100%. testable for all single stuck-at faults [1].

We differentiate between two kinds of redundancies in a sequential
circuit. }f the effect of the fault cannot be olwerved at the primary
outputs or the next state lines. beginning from any state, with any
input vector. the fault is deemed combinationally redundant. A
sequentially redundant fault is a fault that cannot be detected by
auy input sequence and is not combinationally redundant.

An edge in a State Transition Graph {STG) of a machine is said to
be corrupted by a fault if either the fanout state or an output label
of this edge is changed hecause of the existence of the fault. A path in
a State Trausition Graph is said to be corrupted if at least one edge in
the path has heen corrupted.

Internal single stuck-at faultsin a logic network are faults ou internal
lines (not primary input or primary outputs) that are not eguivalent to
single or mmltiple prithary outpul stuck-at faults.

3 Fully Testable Machines with Two-level
Logic Implementations

3.1 Introduction

Models for Moore and Mealy machines are shown in Figure 1(a) and
(b). Variations of the results below were proven in (2] (¢. /. Lemma
4.1. Theorems 4.2 and 4.4).

Lemma 3.1 : Giren a veduced Moore or Mealy machine with N, < 27
stales. where nois the wumber of latches in the machine. all single stuck-
af faults on the primarg inpul (Pl)/present state (PS) lines and all
stngle and multiple stuck-at faulls on primary oulput (PO)/next state
tines (NS) are festable. if the combinafional logic of the machine is prime
and trredundant.

Theorem 3.1 : Given a reduced Moore or Mealy machine with 2"
states. where v is the number of latches in the machine, if the combina-
tional logie of the machine is prime and irvedundant and 13 implemented
in two-level form or algebraically factored maulti-level form, then the ma-
chine 15 fully testable for all single stuck-at fawlts in the combinational
logie.

In general, machines will have)V, < 27 states. whege n is the number
of latches in the machine. Many invalid states may exist that cannot be
reached from the reset state of the machine. Invaiid states pose a major
problem in testability-driven synthesis. A fault may be sequentially
redundant. if it requires an invalid state Lo be detected. In order that
no fanlt requires an invalid state to be detected. the invalid state codes
liave to be used as don’t cares in logic minimization. However, if these
states are, in fact, used as don't cares. then they may be equivalent.
10 sone valid state in G. Thus. we may have a situation where a fault
results in a corrupted edge(s) going Lo an invalid state that is equivalent
to the true valid next state, ’ﬁnis Fnull. is redundant. More complicated
redundancies can he envisioned which involve invalid states that are not
eq;_xi\nlem to valid states in G. beconiing equivalent to valid states in
(G

3.2 Fully Testable Moore Machines

The strategy used here modifies the logic minimization process using the
invalid atates as don’t cares. so for each invalid state iv the following
conditions are satisfied.

1. Iv is not required to detect any fault F in the machine .

2. Iv is distinguishable from any valid state in a <pecified nuiber
(2 1) of state transitions or ir never appears aa a faulty nexi siate.
that is equivalent to the true next state.

The goal of the minimization procedure is to satisfy Conditions 1 and 2
and produce an area-minimal logic circuit. To this end. we modily the
prime implicait generation and covering steps that are basic to two-level
Boolean minimization.

Consider the Moore machine of Figure 1(a). We can state the [ollow-
ing result.

Lemma 3.2 : If a reduced Moore machine with N, stalcs s such that
the NSL and OL blocks arc prime and irrcdundant wnder the invalid
slate don't carc scl. and cach incalid state has an output distinct from
all valid states, then the machine is [ully testable,

Thus, a preliminary minimization strategy is as follows: While mini-
mizing the OL block with the invalid states as don't cares. during cor-
ering we select an irredundant set of primies such that all or a maximal
number of invalid states have distinct ontputs from all the valid states,
Il we obtain a cover where each imvalid stale asserts asserts diffecent
outputs from all the valid states, then the NSI block can he wncondi-
tionally minimized with the invalid states specified as don't cares and
the resulting machine will be fully testable by Theorem 3.2.

It may not always be possible to perforin such a selection. Requiring
privality and irredundancy for a cover may conflict with the output
vequirenient. The covering algorithin can instead he made to produce
a prime and irredundant cover with a marimal set of invalid states
asserting distinct outputs from all the valid stalec. Some invalid states
may assert. the same outpuis as a valid state. For (hese invalid states,
we need to modify the minimization procedure of the NSL block. so as
to produce a fully testable machine.

The paradigm followed liere is to ensure that the distinguishing se-
quences, for possible fanlty fault-Tree/state pairs produced due 1o a
fault, are uncorrupted by that fault. These sequences may. of course. he
corrupted by other fauits. This is accomplished by defining the notion
of fanlt-eflect-digjoint ness (FE-disjointness) between a pair of edges and
applying it to two-level combinational networks.

Definition 3.1 : Giren a FSM M. a STG G representing M oand o
logre-level tmplementation L of M. a fanlt [is sard to perfurh an input-
labelm of an edge ¢ in G if and only if the fault tn L canscs the mput.
label 1o be removed from ¢ (and mored to another edge).

Definition 3.2 : Giren a FSM M and a STG G representing M. a
logic-level implementation L of M. and two input-labels mr, and m, of
two edges ¢y and g in G, the two labels my and my arve sard 1o be FE-
disjoint over a set of faults F € L tf no fault in F pevturbs both my and
m,.

Definition 3.3 : A Distancc-k-prime-cube (D-k-prime-cubc) of a
prime cube ¢ is a cube that has cractly the variables of ¢ and a [(0) 0
exactly k positions where ¢ has a 0 (7). 1 any combination.

It is only meaningful to talk about a D-k-prime ctibe telative to a par-
ticular prime cube. but whenever the pritwe cube that is being referred
to is unambiguous we will use the termn D-k-prunc cube 10 abbreviate
D-k-prime cube rclative to a prime cube.

Lemma 3.3 : Given M. G and a twolevel implementation of T of M.
and a single intcrnal fawlt £ in T that perturbs an input-label m of an
cdge ¢ in G if [is a 5-a-0 fanlt on the outpul of an AND gate g, of T
then m 1s contained within the prime cube associaled with g, and of [1
a s-a-1 fault on the input of an AND gate g, of T then myas contamd
within a D-1-prime-cube relative to g, .

\We now state a theorrm regarding sufficient conditions for two edge
labels to be FE-disjoint over »-a-0 or s-a-1 internal faults in a (wo-level
network.

Theorem 3.2 : Giren M. G and T an above. tiwo inpwt-labels w and
my are FE.disjoint aver infernal s-a-0 (s-a-1) fanlis in a two-lcrel net-
work. f one of the following condutians is satisficd:

1. my and iy are not both contained in any preme (nol both contawncd
in any D-1-prime.cube) in T.
2. my and my arc doth contaned m a prove py (or moa Do fprone.

cube of a prime pa). and g or my 1s contfamed v some other
prime py thal asseris the same onlputs as the prime py (or py).

We are now in a position to define a procedure that produces a [udiy
testable Moore machine.

1. The OL block is minimized with the invalid states used as don’l
cares. attempling to make sure that a maxinal number of invalid
states produce different. ontpmt commbinations from all or a maximal
number of valid states. If all invalid states produce different outputs
from each of the valid states. unconditionally minimize the NSL
block and exit. (Two invalid states are allowed to produce the
same oufput).

2. For each imalid state iri. find the set of valid states
Qv = q1v .. gen, thal assert the same output §o|||b||1at10|| as
the invalid state, and such that ivy J qi, or qi; I 1y

3. Porform a two-level Boolean iinimization on the logic of the NSL
block. ineeting the following conditions:

{a) Use the invalid stales as dou’t cares lor all primary input val-
ues.

(b) For each invalid state irg, ensure that there exists a Pl vector
ity that distinguishes iy and qr; € Qi | £ j < Ni. That
is. i1, produces different. next states for vy and g, . such that
the next states assert diflerent output combinations. via an
appropriate selection of primes. Also, the vector pairs corre-
sponding to v € fanin(gi;) and g, & ivx are constrained Lo
be FE-disjoint over (each individual fault in) the s-a-0 (s-a-1)
internal faults in the network corresponding to the cover if
gy Jire {(iry 3 quy). via an appropriate selection of primes
that satisfy the conditions of Tlheorem 3.2.

Theorem 3.3 : If the procedure abore compleics successfully, it pro-
duces a fully testablc Moore machine.

3.3 Fully Testable Mealy Machines

The procedure is easily extended to the Mealy machine case (Figure
I(b)). The Mealy machine case offers additional flexibility in the choice
of distinguishing vectors for any pair of states. We can stale the follow-
ing result.

Lemma 3.4 : If a reduccd Mealy machine with N, states is such that
the NSL and OL blocks ave prime and irredundant under the invalid
state don't care sct and cach invalid statc is distinguishable in a single
state transition from all valid stales. then the machine is fully testable.

The procedure to produce a fully testable Mealy machine is similar
to the Moore machine procedure. except that during the minimization
of the OL block. we can make choices as to what vectors can be used
to distinguish the invalid and valid states. while maintaining primality
and irredundancy of the OL block cover. During the minimization of
the NSL block. we effectively ensure for state pairs that do not have a
distinguishing vector that a two-vector distinguishing sequence for the
pair is uncorrnupted. if the two states are produced as a faulty /{ault-free
pair.

4 Fully Testable Machines with Multi-
level Logic Implementations

4.1 Introduction

In this section. we extend the results of the previous section to alge-
braically factored muiti-level implementations. Algebraically factored
networks are discussed in [4] where it is shown that each single internal
fault in an mufti-level implementation that was algebraicaily factored
from a pritne and irredundant (wo-level network is equivalent to a mul-
tiple internal fault in the two-level network. We therefore begin with
perturbation conditions for input-iabels under a multiple fault in two-
level networks. and then apply these results to algebraically factored
networks.

4.2 S-a-0 Faults in a Multi-Level Network

Lemma 4.1 : Giren M. G and T as in Definition 3.1 and a multiple s-
a-0 mtcrnal fault f in T, if [periurbs an inpui-label m in G then every
prime m which m is contaimed is affected by the faull. Farthermore,
thal perturbation resulls in some nerl stale variable that formerly was
110 become 0.

Theorem 4.1 : Giren Al. G and T as above. let A be an algebraic
Jactorization of T. Let my and my be two input labels of G and let Py
be the aet of all primes of T that cover my and let Py be the set of all
primes of T that cover my. If both my and my are nof contained in any
single prime cube in T, and no factor extracted in the factorization of
A containa a sef of cubes C auch that for cvery prime in p in Py, some
cin C is a subcube of p. and for every prime in q in Py, some d in C
is a aubcabe of q. then my and my are FE-disjoint over internal 3-a-0
Janlta in A.

4.3 S-a-1 Faults in a Multi-Level Network

FSMs implemented by multi-fevel networks are snore sensitive to infer-
nal s-a-1 faults than to s-a-0 faults. In the case of s-a-0 faulis. each
input-label ni that is a meniber of the ON-set is covered by =ome set of
primes and for m to be perturbed all of thore primes must be aifected
by some s-a-0 fault. If an input-label m is a member of thie OF F-se
then for each prime pin T there exists a k such that m is contained in
& D-k-primie with respect to p, and a multiple s-a- | fault alfecting any
of the prines in T may perturh m.

Lemma 4.2 : Given M. G and T as abore. and a multiple s-a-1 inler.
nal fawlt [in T.if [perturbs au inpud-label m in G then v is contamed
within a D-k-prime relative to an affccied prime of T and m is not con.
tained in any othcr prime of T'. Furthcrvmor, that pevturbation iesalts
in some nerl state variable that formerly was 0 to become I,

Theorem 4.2 : Girew M. G and T as abare. let A be an algchraic
Jactorizahon of T. Let my and my be fwo input-labels of G. Let f.
confaining a sel of cubes . be an arbitrary factor in A. If when cach
literal of cach cube of C' is erpanded in cach prime in T in which it
appears, there does not erist an crpanded prime p in T that covers
and an erpanded prime q in T thal covers g, then wmy and) are
FE-disjoint over internal s-a-1 faults in A.

These theoreiis give us constraints sufficient to ensure that o factor
extracted from the network results in a network structure in which a
single fanlt perturbs both input {abels.

5 The Covering Step

In Section 3. we qualitatively deseribed the requirements to be et
during the prime implicant selection or covering step in order 1o pro-
duce fully testable sequential circuits. In this section. we describe the
covering algorithm in detail.

One goal of the covering algorithin is to attempt (o produce a prinwe
and irredundant cover unr}!r the invalid state dan’t care sct which has a
maximal number of invalid states asserting different outputs from all the
valid states. This is achieved via the procedure below, whicl receivec
as inpul the prime implicant table. 1. corresponding 1o the OL bluck
specification.

1. Find all essential prime implicants (EPIs) in T
2. Pick a (new) invalid stale. ir.

3. Find all EPIs in T that contain the immalid state, Let the set of PO«
that are asserted by any of these EPls, be PO’ . We know that the
outputs asserted by the invalid state in any prime and irredundant
cover has to be 2 PO'™. Pick a {new) ¢ 2 PO for /v (the set of
outputs to be asserted by ie) such that:

(a) Primes that contain 7r and asserl outputs in ¢ — PO exist
inT.

(b) cisdifferent from all or a maximal waniber of valid states thal
dowminate ir or are dominated by rv.

4. Find all prities in 7" that contain i and assert outputs 10t in ¢,
i.e. € Scquentially delete the rows corresponding 1o these primes
from T checking after each deletion as 1o whether the next prime
to be deleted has become essential due to the previous deletions.
Il a prime, that is 1o be deleted, hecomes essential, then it means
that we cannot find a prine and irtedundant cover. shere i asserts
e. Go 1o Step 3 and select a new ¢. If all chaices for ¢ Lave beey
exhausied, go to Step 2.

5. Add the invalid states with the chiosen vutpuis as columus to 7.
This is to ensure that a selection of prines will be made that results
in the invalid states asserting the ontputs picked at Step 3. {Don’t
cares are nol added as columns 1o the prime implicant table in
standard minimization).

6. Solve the covering problemy un the modified T using standard
lieuristic or exact coverine algorithine. In order to ensure full testa-
bility. when a prime is elected at any stage in the covering. the
nunber of 15 in 1he onipnt part of the prime is reduced maximally
V. Also. we do not add a prinie to the selected set. unless at least
one required vertex is outzide the invalid state 1)C-set and the out.
put part of the priive is reduced taking nto account thie DC-set.

The procedure described above was for Moore machines. The corre-
sponding Mea'y machine procedure is only different in that at Step 3,
we choose a srimary inpot vector that can distinguish all or a maximal
number of vajid states }rom ir.

1 This mmay mean that the selected cubie i 1t a prime in the atrict sense

Once the OL block lias been miuimized. the NSL block has to mini-
mized obeying coustraints similar to those above for the invalid states
that assert the same outputs as some valid state(s) (they have to be
distinguishable from the valid state(s)). e also have Lo ensure that
the distingnishing vectors detect disjoint sets of faults. The covering
procedure is simﬁnr to the procedure described above; however, since
the NSL block receives inputs from both Lhe primary inputs as well Lhe
present states. we have guite some flexibility in choosing distinguishing
vectors and the next states produced by the distinguishing vectors.

1. Find all essential prime implicants (EPIs) in T.
2. Pick a (new) invalid state. v,
3. Pick a (new) inpul combination pi.

4. Find all EPls in T that contain pi @ iv. Let the set of NS lines that
are asserted by any of these EPIs, be NS7 @3¢ We know that the
NS lines asserted by the invalid state, for this primary input. in any
prime and irreduncant cover has to be J NS ® i Pick a (new)
¢ NS ¥ for ir (the set of NS lines asserted by pi @ iv) so:

(a) Primes that contain pi ¢ rv and assert outputs in c— NS™ @i
exist in T

(b) The output of c is different from the output of the next state
of all or a maximal number of valid states, V', (that are not
already distinguished and which dominate ir or are dominated
by ir) on receiving pi.

5. Find all primes in T that contain pi @ ir and assert NS lines not
in e, i.e. 7 Also. find all primes which contain both pi @ iv
and ¢ € fanin(V') or whose D-1-pritie-cubes contain both pr @ iv
aud v € fanin(1). Sequentially delete the rows corresponding to
these pritves from T'. checking after each deletion as to whether the
next prime to be deleted has becone essential due to the previous
deletions. 1f a printe. that is to be deleted. hecoines essential, then
it means that we cannot find a prime and irredundant cover, where
pi @ ir asserts . (o to Step { and select a new ¢. If all choices for
c have been exhausted. go to Step 3.

6. If. at Step 4(b). not all the valid states have different next slates
“from ic on receiving pi. go to Step 3 and attempt to distinguish
the remaining valid states from rr.

. Add the primary input veclors and invalid states with the chosen
outputs as colutmns to T.

8. Solve the covering problem on the modified T using standard
heuristic or exact covering algorithms.

At Step 4(b). we only deal at any given pass with valid states that have
the same outputs as i or those thal have not as yet been distinguished
frotn ir.

6 Results

lu this section, we present preliminary experimental results using the
syvnthesis algorithms presented in Sections 3 and 4.

A standard unconstrained synthesis procedure was first adopled. Af-
ter svithesis. lests were generated for Lhe circuit using a sequential
test generator. Next. we used the synfhesis procedure described. Af-
ter state inimization and uncoustrained stalte assignment. two-level
Boolean minimization with constrained covering was carried out. Ifeach
imalid state asserted different outputs from all the valid states, then an
uniconstrained nmlti-level logic optimization step was performed. Else.
two different options of coustrained algebraic {actorization and uncon-
strained algebraic/Boolean optimization were exercised. Note that in
the latter case, we cannot. guarantee 100% testability. The propagation
step in sequential test generation is avoided, since we already know all
the uncorrupted distinguishing sequences for each possible faulty/fault-
free state pair.

We chose soie benchimark examples from the MCNC ic Synthesis
Worksliop as test cases. The examples had between 24 and 130 siates.
Resuits obtained by running the standard synthesis procedure and the
two options in the new procedure are summarized in Table 1 under
the columns STANDARD. COVER-A and COVER-B. The number of
literals in the combinational logic (lit). fault coverage obtained (fcov)
and the CPU time for test generation (tpg time) are indicated in the
three cases. All the CPU tines are on a VAX 11/8800.

COVER-A resultz in 100% {estable designx with small area overheads,
that require less CPU time for test generation than the STANDARD
procedure. \We cannot guarantee full testability via COVER-B, but it
allows for the use of more powerful Boolean operations and hence the
area overhead is smaller than via COVER-A. Highly (> 99%) testabie
realizations are obtained in all cases via COVER-B.

EX STANDATD COVER-A COVER.T
| teov tpg nht | feov pg It | Irov Thg
Lime Line tine
[dhilc TTrT J9.8] 5.6m |2 TO0T JTin [ID1] 100 3.0
plan [532 | 1 T [532 | J00] 2T | 582] 100 | 2T

scl 91] R2.2m | VO] IO T 43} 701 TO0 T Tin

1s] 3T ISR T I5Rm [451 | 100 [IT. 3w | 330 AT TT2m

Is2 552 | 949 | 33T [5eR | 100 [19.Toe | 561 | 99.6 | 22.Tm

EA COVER CONSTHRATN OPTSVN

il syn. pg 0 |vn, pg LI sVI. Tpg
time | time time | lime titne | i

le T194 | 1.4 [3.9m [2347 T 13m0 e L 165 | R.2u0 T 5.5m

plan THIT T26m TIToin T 568 [.hin DAs [3I2T T6m | 2T

scl’ QI FT4haf J | 8T Lim Rls 1799 LRI R

fsi 451 [3. 5m] Tl [5447 T 28m | 39s [423 130 [26

s2 518 [5.0m | 19m [667 [39m | 5ls -1 > 2 -

! Tnvolves the addition of an extra input and ontput.
2 The synthesis procedure was terminated aficr 2 hours.

We next compare thic approach with previonsiy proposed synthesis
approaches to achieve full testability. The comparisons are presented in
Table 2. Under the colunm COVER. we give the result corresponding 1o
COVER-B. if (he resulting design was (ullv (estable, Flse, we give the
result of COVER-A. The coluinn CONSTRAIN has the results obtained
by using the constrained state assignment and logic optimization pro-
cedure of [3]. The colwun OPTSYN has the resuits using the optimal
synthesis procedure of [2]. The nsimber of literals in the combinational
logic (lit). the CPU time for synthesis (syn. timme) and the CPU time
required for test generation (1pg time) are indicated. All the designs
via each of the procedures are 100% testable.

From the table it is clear that onr new approacl represents an at-
tractive allernative to either a CPU.intensive optimal synthesis proce-
dure or an area-penalizing constrained synthesis procedure. From the
standpoint of CPU usage for minimization aud test pattern generation
the CONSTRAIN procedure used the least time, but required modil -
ing the original design. ‘The COVER procedure compleied all examples
with modest to reasonable CPU requirements. The OPTSYN procedure
required the grealest amounts of CPU" and was prohibitisely expensive
on one example. Overall, these results indicate that the COVER pro-
cedure improves over the previous procedures from the standpoint of
quality of result versus CPU time requireinents, and more importantly
is able to handle designs that the previous procedures could not (with-
out modilication).

7 Acknowledgements

The interesting discussions with Pranav Ashar. Tony Ma. Richard New-
ton, Robert Brayton. Tine Cheng and Alberto Sangiovanni-Vincentelli
on sequential circuit optimization and testability are acknowledgedl.
This work was supported in part by the Defense Advanced Research
Projects Agency under contract NOOOI4-R7T-K-0R25.

References

{1} K. Bartlett, R. K. Brayton. ;. D. Hachtel. R. M. Jacoby. (. R.
Morrison. R. L. Rudell. A, Sangiovanni-Vincentelli. and A R. Wang,
Multi-level Logic Minimization Using lmplicit Dou't Cares. lu /LD
Transactions on CAD. pages 723-710. June 1988.

[2] S. Devadas. H-K. T. Ma. A. R. Newton. and A. Sangiovauni.
Vincentelli. lIrredundant Sequential Machines Via Optimal Logic
Syuthesis. In IEEE Transactions on C.AD. 1989, to appear.

S. Devadas, H-K. T. Ma, A. R. Newton. and A. Sangiovanui-
Vincentelli. A Synthesis and Optintization Procedure for Fuily
and FEasily Testable Sequential Machines. lu ILELE Trnsachions
on CAD. October 1989. to apprar.

{4] G. D. Hachtel, R. M. Jacohy. K. Kentzer. and (. R. Morricon. On
the Relationship Between Area Optimization and Maltifanlt ‘Testa.
bilty of Multilevel Logic. In Procecdings of the Infernational Work.
shop on Logic Synthcsis. June 1989,

[5] E. J. McCluskey. Minimization of Boolean Functions. In fell Lab.
Technical Jawrnal, pages 1417-1444. Bell Lab.. November 1956,

[3

