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Abstract
-I/

The static response of a circular cylindrical open shell (curved

panel) constructed of an rthotropic graphite/epoxy laminate is

numerically investigated/ The shell is subjected to an inward point

load, centered on and normal to the shell surface, which maintains its

* original orientation through deformation (i.e. dead load). The shell

displacement response is seen to vary widely with shell geometry and

boundary conditions, not only in magnitude of deformation but also in

* the nature and progression of the collapse under critical load.

The finite element analysis is conducted with a quasi-two

dimensional thin shell element which incorporates parabolic

• transverse shear stress through the thickness. The element can be

formulated with either large displacement/ rotation kinematics or the

simpler Donnell relations.

* To enable tracking through critical load and displacement points

and investigation of the post-critical regime, a solution algorithm

other than the popular Newton-Raphson technique with displacement

* control or load control is required. The algorithm employed here uses

a modified Riks/Wempner technique. It allows continuous tracing of the

load - deflection response through critical load and critical

* displacement points. Step size is automatically scaled to follow the

solution path closely in the areas of large load or displacement

changes which surround critical points.

ix



Several parameters are independently varied in order to isolate

their affect on structural response. Two symmetric ply layups are

considered, [0/90]s and [0/-45/+45/90]s, in addition to an isotropic

panel. Shell thickness ranges from 0.040 inch (8 ply) to 0.480 inch

* (96 ply). Shallowness is altered by varying the arc length of the

panel. Values of (height)/(half chord) range from 0.063 to 0.255. The

panel is constrained only along the straight edges; both hinged and

* clamp,4 conditions are examined. Common to all cases is panel length

and radius of curvature, and ply material properties.

To assess the imprecision of the Donnell theory when undergoing

* large displacements and rotations, several cases are solved with both

formulations. Errors are seen to be negligible on the load up portion

of the analysis, but the Donnell solution becomes appreciably stiffer

during collapse when rotation of the shell middle surface exceeds 15

degrees.
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* FINITE ELEMENT INVESTIGATION OF A COMPOSITE CYLINDRICAL SHELL UNDER

TRANSVERSE LOAD WITH THROUGH THICKNESS SHEAR AND SNAPPING

I. INTRODUCTION

* Laminated composites offer numerous benefits over metals as

structural materials. The composite's high strength to weight ratio

and damage tolerance are especially valuable in aerospace applications.

* Despite the benefits, however, composites have been slow to gain

acceptance in the design and construction of primary load carrying

structures. A key cause of this reluctance is that the analytical and

* experimental investigations of the behavior of laminated composites

under the wide range of load and environmental conditions to which

structural members are subject is less than comprehensive. Another

* iportant consideration is that while laminated composites are

physically well suited for thin shell applications, structurally

optimizing a shell leaves it susceptible to buckling and collapse, and

* especially sensitive to transverse loads. The purpose of this research

is to investigate numerically the static structural response of a

laminated graphite/epoxy composite cylindrical shell (curved panel)

* subjected to a transverse normal point load.
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Analytical Method

The computer program SHELL was used exclusively in this research.

It was developed by Dennis (9) in order to incorporate the effects of

through thickness shear stress when analyzing isotropic or laminated

plates and cylindrical shells. While ignoring these particular

stresses yields acceptable accuracy when analyzing thin isotropic

structures, laminated material of like thickness may respond quite

differently due to the coupling of extensional, bending and shear

strains arising from ply angular orientation. Including transverse

shear in design analyses will allow greater exploitation of composite's

benefits through increased precision.

The most general type of analysis would incorporate both material

and geometric nonlinearity. In structural applications, materials are

normally restricted to the linear elastic region, so material linearity

has been assumed in this work. This implies that any fiber or ply

breakage during large transverse displacements and rotations is

ignored. Geometric nonlinearity is unavoidable in the analysis of a

three-dimensional curved structure, though.

SHELL offers two strain-displacement formulation options for the

cylindrical shell finite element. The exact equations relating

displacement to strain for a curved layered panel are quite complex and

create a cumbersome computer program, but they are available. If the

transverse displacement is small compared to the shell thickness, but

large compared to the in-plane deformations, several terms in the

strain - displacement equations can be neglected, resulting in a less

complex solution set. For flat plates, such a simplification yields

1-2



the von Karman plate equations; for cylindrical shells, the

corresponding relations are the Donnell equations. These constitute

the other solution method option available in SHELL.

In either solution option, a parabolic distribution of transverse

shear strain is included in the formulation via the displacement

equations. Love theory and its offshoots (17) effectively ignore

transverse shear effects.

The computational efficiency afforded by Donnell's simplifications

is attractive, so several comparisons of early runs were made between

the Donnell solution and the large displacement/rotation formulation

solution. As shown in Chapter 3, the Donnell simplifications did not

appreciably degrade accuracy until the shell collapsed, developing

large deformations and rotations. These findings were supported by

Hoff (14) who found those terms discarded by Donnell to be negligible

for this geometry as long as displacements are small.

To summarize, the class of problems studied in this work is one of

large displacements and rotations but small strains (so that linear

elastic material behavior is retained). The Donnell - based analysis

is used when possible (small rotations, as determined in Chapter 3).

Through thickness shear effects are incorporated.

Previous Work

Engineering analysis of general shell structures dates back not

more than a century. Although Simmonds (35) notes that A. E. Love in

1920 published a set of equations for circular cylindrical thin shell

midsurface displacement, credit is usually given to W. FlUgge for first
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presenting the relations in a 1932 paper, "Die Stabilitat der

Kreiszylinderschale" (Ingenieur-Archiv, 3, pp. 463-506).

Simplification and specialization of Flugge's equations to the

simpler cylindrical shell relations was accomplished in the following

year by L. H. Donnell (11). He determined (both analytically and

experimentally) that circumferentially trigonometric deformations with

small wavelengths allow one to discard several terms in the curvature

and twist equations. The complexity of the resulting expressions are

on the order of the von Karman plate equations, making them tractable

for engineering analysis. The primary restriction is that the

transverse deformation must have a small circumferential wavelength

compared to the cylinder radius, or accuracy suffers. The implication

of this is that rotations of the midsurface must be small for accurate

results, as is noted in the results in Chapter 3.

Several attempts have been made to improve on the accuracy and

utility of the Donnell equations without increasing complexity too

much. Morely (19), Knowles and Reissner (18) and others offered

improvements of the same order of accuracy by retaining various terms

neglected by Donnell. Some increase in applicability is gained, but,

as Koiter points out, any attempt to improve upon the order of accuracy

of Donnell's relations is doomed to failure since the order is set when

the Love approximations are first applied. Thus a truly higher order

theory must include features ignored in Love shell theory; namely, the

effect of the transverse normal and shear stresses (17).

Sanders (32) nearly does this in his development of a first-order

thin shell theory. His assumption that transverse shear strains are
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negligible enables him to solve for the corresponding transverse shear

stress resultants, partially incorporating transverse effects. One

significant improvement over the theories based on Love's approximation

is that by considering rotation of the shell normal, but neglecting

rotations about this normal, Sanders' relations allow for small

strain-free rigid body motion, which had long been an accepted

inconsistency in Love's theory. Sanders offers his theory in both

general form and reduced form for the circular cylindrical case;

Simmonds (35) offers an alternate formulation of the theory, in which

the governing equations are reduced to a single fourth order partial

difterential equation for the transverse normal displacement.

A variety of analytical solutions for first order isotropic

shallow cylindrical shell theory have been published. Flugge and

Elling (12) solved the case of normal surface loads. Their deformed

geometry is mirrored by the results in this research. Chernyshev (5)

also solved this case, and noted that the response was dominated by the

bending terms of the governing equations (demonstrated in Chapter 4).

Jahanshahi (15), Sanders (33) and Sanders and Simmonds (34) have all

provided solutions to the shallow isotropic shell subject to various

transverse loadings.

Isotropic cylindrical shell finite element analysis has been

widely done. Most applicable to the present research is the work done

by Sabir and Lock (31), which employed a solution algorithm capable of

tracing post-buckling behavior by incrementing either load or

displacement as required to avoid nnumerical singularity at critical

points. Features of snapping, and thickness effects are shown. Sabir
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and Lock used a two dimensional 20 DOF curved rectangular element in

* their analysis; Bergan et.al. compared very closely using a mesh of

flat triangular elements (3). Ahmad, Irons and Zienkiewicz (1)

developed a generally curved 20 DOF brick element which allowed for

* rotation of the normal to the shell surface. It could suffer from

shear locking as thickness decreases, though, and hence neccessitated

use of a shear correction factor.

* First-order theory has recently been extended to laminated

material. Chung and Widera's 1972 equations (6) reduce to those of

Donnell when isotropy is enforced; the applicability of the laminated

* theory has the same restrictions on magnitude of deformations as

Donnell. Chang and Kutlu (4) in 1989 used first-order finite element

modeling in developing a progressive delamination/ply failure model for

* line loaded cylinders. Moser and Schmid (20), also in 1989, used a 20

DOF Ahmad-type element to analyze point loaded cylinders made of [±45]

and (90/0/901 laminates. One conclusion was that the cross ply was

* stiffer than the angle ply shell; this is also discussed in Chapter 4.

All of the effort reported on up to this point was based on Love's

first approximation, which is an acceptable simplification in the case

* of a thin elastic isotropic shell. The development of a higher order

theory incorporating transverse effects was driven by the need to

accurately analyze laminated composite shells with their relatively

* more severe transverse stresses. Comparable higher order theories

incorporating first-order transverse effects have been presented for

laminated shells by Reddy and Liu (25) and Dennis (9,10). This theory

* allows for fully nonlinear in-plane strains, but only linear transverse
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shear strain - displacement relations. The acceptability of a linear

transverse strain field in a nonlinear theory is explained by noting

that transverse effects are small compared to the in-plane, so the even

smaller higher-order terms of the already small transverse terms are

negligible (9). With this theory, displacements due to shear stresses

vary linearly through each ply thickness and are continuous from ply to

ply in the laminate. Reddy also offers solutions to select cases of

layup and geometry, primarily cross ply spherical shells (24).

Higher order (than linear) transverse shear effects have also been

studied recently. Palazotto and Witt (22) maintained continuity of

displacement and slope of the midsurface normal at ply boundaries. A

trilinear element was formulated and shown to accurately model thick

plate bending displacements and stresses. This triangular element

could be readily applied to a general shell analysis. Hinrichsen and

Palazotto (13) formulated a flat rectangular element which maintains

continuity of the curvature of the deformed normal as well, by applying

a cubic spline interpolation through the thickness. As expected, it

also is very accurate for thick plates. Application to thin plates,

however, surfaced problems. The authors explain that the solution does

not converge to the elasticity solution for a thin plate since

transverse shear strain does not disappear as thickness decreases, but

transverse normal strain does (it is neglected from the outset) (21).

This imbalance of transverse effects was felt to be the source of

inaccuracy for thin plate. Application of either of the theories

discussed in these papers to a general thin shell element is possible.
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Analytical solutions of higher order theories is limited to very

few ply layups (select symmetric and antisymmetric cross ply

laminates), and load configurations. Ren (26,27) has obtained several

interesting results for a semi-infinite cylindrical shell. He showed

that for the case of cylindrical bending, the Donnell theory

underpredicts displacement. For values of R/h greater than 20, though,

the Donnell solution for transverse displacement is close and of

constant bias with respect to R/h. No explanation is offered for the

bias, but the increased bending stiffness is likely due to the missing

rotational terms in the Donnell formulation. A second finding which

illustrates conventional wisdom is the significant effect of ply

stacking sequence. The magnitude of bending displacement for a

[904/04] was several times that of a [902/04/902], although total

thickness and ply count were equal. These results, however, are not

easily generalized to the wide variety of problems which engineers

encounter. Hence, numerical solution is the preferred approach for

higher order composite analysis, due to the unmanageable mathematical

complexity involved in the ply orientations and geometries of a real

world structure.

The solution of geometrically nonlinear problems by the finite

element method requires recalculation of the structure's stiffness

matrix as it changes during deformation. The Newton-Raphson iteration

method is widely used for such computations. Once the structure has

reached a peak load, though, it has essentially zero stiffness, and

inverting the stiffness matrix as required for load-controlled

* Newton-Raphson iteration to converge to the equilibrium solution is

1-8



impossible. Sabir and Lock (31) and others circumvented this

difficulty by reformulating the equilibrium equations to step by

displacement rather than load when a peak load was encountered, and

using the usual load incrementing method to step through areas of zero

or reversing incremental displacement. A robust solution algorithm

without the need to swap between methods was developed by Riks (28,29)

and Wempner (39), and applied to isotropic geometrically nonlinear

structural problems by Crisfield (8). In it, a selected arc length of

the equilibrium path is incremented rather than load or displacement.

Since step size does not decrease to zero due to convergence to a peak

load or peak displacement point as the former methods do, this

technique steps past such singular areas and allows uninterrupted

tracing of the equilibrium path (23). Tsai and Palazotto (38) have

successfully applied this solution algorithm to the problem of snapping

through of composite shell structures; a version of the code developed

in that research is used in the present work.

Current Work

The subject of this research is the static response to a

transverse point load of a class of laminated cylindrical shells. The

layups studied here are a symmetric cross ply (0/901 and a symmetric

quasi-isotropic (0/-45/45/90] laminate. No experiment or comparable

numerical study could be found with which to compare results; hence,

trends and general conclusions will be compared with conclusions in

some of the studies referenced above. The computers used were a VAX

11/785 using the VMS operating system and an Elxsi 6400 running Unix.
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II. Theory

In order to understand the theoretical basis for the data

presented later, the details of the finite element formulation are now

presented. The development of the relations governing cylindrical

shell stress, strain and displacement is first presented. Employment

of these equations in the finite element method is then shown, followed

by the details of the 36 DOF element used for this work, and the

solution algorithm employed in solving the static load case. A

laminate failure criteria is also discussed, since very high load

levels are achieved in this study. The end product of this section

will be the finite element formulation for a laminated cylindrical

shell incorporating a parabolic distribution of shear stress through

the thickness.

Bathe and Ho (2) stated the following set of criteria for a

desirable shell element:

1.) No spurious zero-energy modes should exist, so that reliable

results can always be expected. No numerical fudge factors

should be necessary, either.

2.) The element should be applicable to general shell structures,

including those with beam stiffeners, cutouts, intersections,

etc.

3.) The element should be cost-effective for linear as well as

nonlinear static and dynamic analysis. This implies that the

degrees of freedom is held to a minimum. It should allow
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analysis of large displacement and large rotation problems,

and materially nonlinear situations.

Criterion 1 is achieved in this formulation. The code has not been

developed beyond the research stage, so application to other than plate

and cylindrical shell cases modeled with rectangular elements is not

yet possible. However, the underlying theory by which transverse shear

is incorporated is not restricted geometrically, so criterion 2 is

somewhat met. Material linearity is assumed in the formulation of the

element, so criterion 3 is only partially fulfilled. The incorporation

of through thickness shear effects in a shell structure, while

maintaining a two dimensional analysis, well satisfies the first part

of this criterion, however.

The following development applies specifically to cylindrical

geometry. Dennis (9) presents the general case of a doubly curved

shell.

Geometry and Assumptions

The curvilinear orthogonal coordiaate system and nomenclature used

in this formulation of the laminated cylindrical shell is shown in

Figure 2-1. The shell has a radius of R, with a central angle e. The

x-axis is linear and oriented longitudinally, the s-axis follows the

circumference, and the z-axis is everywhere normal to the shell middle

surface, positive toward the center of curvature. The surface formed

by the x and s axes lies in the center of the thickness of the panel,

so the thickness coordinate is negative on the outer surface and

positive on the inner surface. Displacements along the x, s and z axes
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Figure 2-I. Cylindrical Shell Geometry

are u, v and w respectively. In the early vectorial development, the

coordinate e is used instead of s for simplicity; s is used when

specializing to the cylindrical geometry. Since the structure

analysedhere is an open shell, the angle e is also useful for

describing shallowness. The angle 0 specifies the orientation of

fibers of each ply in a laminate construction. Total thickness is

denoted by h. Subscripts denoting stress and strain orientation are

explained in Table 2-1 and Figure 2-2.

Constitutive Development

This research is limited to material response in the most simple

linear regime, but complexity arises due to the directional response of
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Table 2-1. Contracted Notation

stress strain cylindrical

explicit contracted explicit contracted coordinates

U o £ C x-4l
11 1 11 1

22 2 22 2

* (7 ( 7 £ Z-43
33 3 33 3

shear
23 4 23 4 s-z 4
13 5 13 5

a a 2£ 2£6 x-s4 6
12 6 12 6

3

* 33 (3)
Ii 2 - 32(4)

13 -31 (5) -- 22 (2)

." ".............. " '_

11(1) 12 - 21 (6)

0 1

Figure 2-2. Fiber Reinforced Lamina Definitions

the oriented plies in the laminate. In this section the constitutive

relations between stress and strain for a laminate of arbitrarily

oriented transversely isotropic plies will be developed. The

fundamental departure from the isotropic relations is the summation

over the lamina thickness of the directional constitutive equation for

each ply, arriving at the total laminate's effective stress-strain
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relation. This section follows from the very readable references by

Jones (16) and Dennis (9).

From basic strength of material relations, for isotropic material,

stress a and strain c are related as

a = EC (2-1)

with E being Young's modulus. For a general anisotropic material,

Young's modulus can differ with different load orientations so this

equation expands to

a C1 C C C C Cs

I C 12 C13 14 15 16 1

2 C21 C22 C23 C24 C25 C26 2

a3 C31 C32 C33 C34 C35 C36 E3 (2-2)

4 C41 C42 C43 C44 C45 C46 4

a5 C51 C52 C53 C54 C55 C56 £5

y6 C61 C62 C63 C64 C65 C66 C6

where C is the stiffness matrix of 36 terms defining the stress -
ij

strain relationship for loading in the i-direction. When the area of

study is restricted to the energy conservative elastic regime, the

matrix is symmetric; i.e. C 1 = C and so forth, resulting in 21
12 21

independent terms. In the case of directional fiber-reinforced

composite media, as pictured in Figure 2-2, the three mutually

orthogonal planes of symmetry decouple shear strains from normal

stresses and vice versa, and shear stresses and strains from each
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other. This defines an orthotropic material, which has only nine

independent stiffnesses:

1 11 C12 C13 0 0 E0'C C 0 0 0 I
2 12 C22 C232

C C C 0 0 0 £
a"3 C 13 C23 C33 3 (2-3)

O 0 0 0 C 0 0 C4 44 4

5 0 0 0 0 C s 0 5

O6 0 0 0 0 0 C 6•6 66 .6,

Further, such a material responds equally to any direction of load

* in the plane perpendicular to the fiber longitudinal axis (the 2-3

plane in Figure 2-2), so the 2 and 3 subscripts on C are

interchangeable. This behavior is termed transverse isotropy, and it

* further reduces the number of indepondent stiffness terms to seven.

Thus the stiffness terms are, in the more familiar terms of engineering

constants E (Young's modulus) and u (Poisson's ratio),

1-u
2

C1 1 =E1  23

1-u u)

C =C E 112 V21
• 22 33 2 A

1+ u

C =C1 =C EA 23
12 11

C23 =E 2 1221 (2-4)

C44 G 23

C55 =G 31

* C6 6 =G 1 2
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02

where A = 1 - 21u - u2 - 2v U v2, E is Young's modulus for
12 21 23 12 21 23' 1

loads along the 1 axis, G12 is the shear modulus in the 1-2 plane, and

V12 denotes the ratio of strains 2 /cIfor stress applied in the 1

direction.

Due to the thinness of the plies of the laminate, the assumption

of plane stress (3 = = aS = 0) is usually made at this point.

However, in this development, nonzero through thickness shear stress is

allowed, so a modified state of plane stress is assumed, in which only

a73 = 0. Solving for E3 in Eq (2-3) after applying this assumption

yields

C C13 23C= - -C - (253 C13 I C33 2 (2-5)
33 33

Applying the modified plane stress assumption to Eq (2-3) and

using the relation of Eq (2-5) to eliminate E3 produces the lamina

constitutive relation

a. 011 'Q1 Q1 0 0 0 0 rE I
a2 Q12 Q22 0 0 0 0 C

a 6 0 0 Q66 0 0 0 6 6 (2-6)

(74 0 0 0 Q44 0 0 ,4

as L 0 0 0 0 Q s0 E 5

where the Q are reduced stiffness coefficients related to the C's byiJ

C c
Q = c - j (2-7)
ij ij C 3 3
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(The unusual renumbering in Eq (2-6) groups together the 1, 2 and 6

terms, since subsequent formulation will differ for these inplane terms

and the transverse 4 and 5 terms.) In terms of the engineering

coefficients again,

I E2  tziE2
LQ E2 Q 21 E2Q11 U - 22 W -Q12 6)-7 (2-8)

Q6 6 =G 12  Q4 4 
= G23  Q55 -G 13

where (= 1 - u12u21.

Finally, in order to analyze a stack of plies, they must all be

referenced to a global axis system and their effects summed:

{} =[T [ Q,. ]j T ]T {E}il (2-9)

where

T s c 2 2CS2 for Q12 Q22 0

cs -cs c - s 0 0 Q66

Tc - for Q s4

and c = cos(O), s = sin(O). With this transformation the constitutive

relations are
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{Or}k = i ] k {}ik (2-10)

with the transformed reduced stiffnesses

Q =Q1 Cos4 P + 2(Q + 2Q )sin 2 Cos2P + Q sin 4

11 11 12 66 22

Q12 = (Q11 + Q22 - 4Q 66)sin s2  2 + Q 12 ( s i n
4

4 + Cs4P)

Q22 = Q11 s n 4 + 2(Q12 + 2Q66 )sin Oc s P + Q 22 cos 4

Qs16 = (Q i + - Q12 - 2Q66 ) s i n Os 0 + (Q12 - Q22 + 2Qn66c) s i nc c s

Q26 = (Q11 - Q12 - 2Q 66)sin 3 cosO + (Q12 - Q22 + 2Q 66)sin cOs 3 p

2 2 4 4Q66 = (Q11 + Q22 - 2Q12 - 2Q 66)sin cos 20 + Q 66(sin 0 + cos4)
~ . 2

Q44 = Q4 4 cos 2 + Q 5 5sin

Q 4 = (Q4 4 - Q55 )cssinO
45

Q =Q cos2P + Q44sin 2 (2-11)

Kinematic Development

The geometric nonlinearity arising from the panel's curvature is

incorporated by the strain - displacement relations. It is also here

that the through thickness shear effects are incorporated into the

analysis. This development follows Dennis (9) who authored the

computer code which employs these relations; Reddy and Liu (25) also

published a similar higher order theory.

The incorporation of transverse shear is accomplished by assuming

a modified state of plane stress for the lamina in which a = 0 (and

hence c3 = 0) but a4 and a 5 are allowed to be small nonzero values.
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These transverse shear stresses are assumed to go to zero on the top

and bottom surfaces of each ply, and the associated strains will vary

parabolically through the ply thickness.

To proceed, keeping just the linear (first order) displacement

terms for the transverse shear strains E4 and 5, we see that (30)

1 (u + h2 u2 , - u2h2 ,)E4 = (h'3'2 '3 223)
2 (2-12)

E 1 u + h1u1, - u h 1
5 K I ( 3' 1 3 1 3)

where the hi are the coordinate system scale factors; for the

cylindrical geometry used in this work, hi = 1 and h2 = 1 - z/R.

The displacement equations in the thickness variable z which

permit the incorporation of the desired through thickness feature are

u(x,e,z) = u0 + zIP+ 0 1 + z 3 7 + z401

v(x,ez) = V 1
-1 + Z 2 + Z2 2+ Z3 

2 + z 
4(2-13)

w(x,O) = w

* 0where u , v , w, i 0  1 i and 0. are functions of the coordinates x

and 8. The displacements u° and v° are of the shell middle surface;

transverse displacement w is the same throughout the thickness since

transverse normal strain is assumed negligible. The term ip . is a
I

rotation of the surface normal in the i plane. Summing the 1i with the

shear rotation of the normal to the shell due to transverse shear

stress (denoted a.), yields the slope of the elastic curve w, . The
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terms 0., 1, and 0. are to be solved for by applying the assumption

that transverse shear stresses a and a are zero on the shell
*4 5

surfaces. Substituting the equations for v and w into Eq (2-12) for E

yields

£4= + + 2z0 + 3z 2 + 4z1-lz/R ["2z(R 2 222

+ . -) + zip2 + z
2 02 + z 3 2 + z40 2}] (2-14)

For zero transverse shear stress at the surfaces, the associated

strain will also be zero. If one enforces this condition by

substituting ±h/2 (h being thickness) for z in Eq (2-14), setting both

resulting expressions to zero and hence equal to each other, and then

solving for the unknown variables, the following is produced:

0 =0 2
2 2 2R

(2-15)

h 12 7 (W2i + W, 221 -2 =  2 +w
R 3h2 2

It should be noted that an h/R value of 1/5 (quite high for

practical aerospace shell geometries) allows neglect of the h/R term in

the left side of Eq (2-15). By replacing 02 , 2 and 12 in Eq (2-14)

with the results in Eq (2-25), the transverse shear strain £4 in terms

of transverse displacement w and rotation qp2 becomes:
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(w, + ) i L 2 + 34 lz(-- , + thZP (2-16a)
£4 1-z/R '2 2 h 2 3h2 R,2-6a

(Note again that there are 1/R terms to be neglected.) A similar

analysis with c (simpler, since hi = 1) provides

ES = (w, + W ) (2-16b)1 1 - 1h~

Replacing 0 , 0. and I'. in Eq (2-13) with the expressions found in

Eq (2-15) yields the displacement equations:

u(x,e,z) = u° + zi1 - -h Z 3 + wIl3h

v(x,e,z) = vo°  - + zip - 2 Z3 + w) (2-17)

w(x,e) = w

At this point one can note that this formulation provides seven

degrees of freedom: u, v, w, w, w, 2, V and W2"

Now that we have displacement equations which incorporate a

parabolic through thickness shear stress distribution, the in-plane

kinematic equations are derived for the shell middle surface. The

fully general strain displacement relations are quite extensive; the

theoretical development incorporating them can be found in Dennis'

large displacement/rotation general shell development. For brevity

here, Donnell's assumptions for thin cylindrical shell analysis (11)
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will be applied immediately. For example, the circumferential strain

* 2 for a cylindrical geometry is

R(-zR 2dvz 2w' RJ 2+ 2 i + 1u2 (2-18)
2 = -z/R R - ) '2-2 u2

Applying Donnell's assumptions, the shell is considered thin such

that the z/R terms in the denominators can be neglected; the inplane

strains v, 2 and u,2 are small so that higher order (than linear) terms

are negligible; the transverse displacement w is small compared to the

radius of curvature so that higher order w/R terms can be neglected;

and the inplane displacement v is so small that v/R is negligible. A

physical description of such deformation is that the transverse

displacement w varies periodically and rapidly along the

circumferential direction with a small wavelength compared to R. The

remaining terms yield the Donnell relation:

Vw 1 2

2 2 R 2 2 (2-19)

If one neglects similar terms in the exact formulation for the

other inplane strain c and shear strain c6. the following set of

Donnell kinematic relations for a cylindrical shell is produced:

1 2

S 2 1 2 (2-20)

6 = U,2 + V, 1 + W, 1w, 2
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Substituting the displacement Eqs (2-17) into Eq (2-20) gives, for

* any position through the shell thickness,

I uI + z1ip + z(w, + T ) + 2

2 2 R + z3kw 2 12
=v, - -+ Z 2 + (w'2 '22 22 2 2

0
0 0 2) (2-21)'2C £6 u2 + v, I + z + - (2-21)

+ z 3k(2w, 12+ P + P2 ) + W 2

21

where k = -4/3h . The following equivalent representation of the

strains separates the midplane terms from the out-of-plane terms

(denoted by x .) and is conducive to the matrix operations of the* Ij

potential energy formulation in the next section:

C E+ P+X E 0 U, 1 2

ii lP I '1 +Z " 3 =kU, + W,
1 

1

13 k(w, 11 +1 I' I

X )P (p = 2,4,5,6,7) = 0'p

C 0 zp2 E w + 1 2

2 2 2 2 2 "2
V , 22

• 21 = W2'2 - R

X23 = k(w,22 + W 2, 2

X 2p(p = 2,4,5,6,7) = 0
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=E 0 -+ = U, + V, + W, W,
6 6 6p 6 2 1 1 2

V,

X =Wp + P
61 1 2 2 1 R
x = k(2w, + p + ip2

X63 12 1' 2 2' 1

6 (p = 2,4,5,6, 7) = 0

o zp o !)0 +P ; E = W, + W
4 4 4p 4 2 2

*42 3k(w'2 + 2

X (p = 1,3,4,5,6,7) = 04p

C 0 +z ; C = W, +ip
5 5 SP 5 1 1

X52 3k(w, Ip) (2-22)

X (p = 1,3,4,5,6,7) = 0
5p

This allows assembly of the strain displacement equations into a matrix

format:

I 1 11 13
E 0 + X 3

2 2 21 23

6)J L 61 6j {

(2-23)

E EJ 0 x z

In a general expression,

19[1 Is 0 ° + [X ]IE T (2-24)
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It is worth noting that these kinematics avoid the common pitfall

of shear locking, wherein the model becomes artificially stiff as the

shell thickness is decreased. This is a problem with finite element

formulations which incorporate constant or linearly distributed shear

strain through the thickness, and it neccessitates the use of a

correction factor. However, examination of the compatibility relations

associated with the strain displacement equations developed in this

section shows that the terms associated with transverse shear drop out

as thickness is reduced to zero. (9)

Once again, note that the kinematics developed in this section is

specifically for the cylindrical geometry with the Donnell

simplifications applied. The computer analyses done in this work used

both the Donnell and the LD/R formulations; the latter is detailed in

Dennis (9).

Potential Energy

The shell potential energy is the sum of the internal strain

energy and the work done by external forces:

9 = U + V (2-25)

where the internal strain energy is given by

U fj 1t dz dO (2-26)
Oh

where 0 represents the shell middle surface. The internal strain
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energy U is composed of in plane and normal terms (set U ), and

transverse shear terms (set U2). Expanding the expression for U by

inserting Eq (2-22) through (2-24) into Eq (2-26) gives

u P c+~ 2 * (& zx )2

0 2Q! 
(

E z 
p X >

(' 
+ 
zr (r) + z6(PY PXp

111 1 Ip 22 2 2p

+ 2Q (E + z X (E, + r ) + A (EO + z 2
12 1 Ip 2 2r 66 6666

+ 2Q (E0 + ZPY )(CO + rX)
16 1 Ip 6 6rS PX p) ,o+Z r)

+ 2Q o + z + )] dz d
26 2 2P 6 6 rj

(2-27)

U +cr (Oz 2 X 2 + (E0 + z2 X )2
2 2 h 44 4 42 55 5 52

+ 2Q45 (E°0 + z 2 X )(e + z212 )] dz dQ

45 4 42 5 52]

where p,r = 1,2,...,7. Integrating the z over + h/2 yields the

equation for strain energy as a function of the middle surface only,

which is the desired formulation for this shell problem. A further

simplification performed in the coding of the SHELL program is one of

symmetry in ply layup. This results in the cancellation of elasticity

arrays which are multiplied by odd powers of the transverse coordinate

z. Rearranging yields, for the Donnell application, the final forms of

=1 f {S OT(A]( oj dQ (1,2,6)

2 Tf( ( o T[A 1-0 1 + 2 1 o TD] (X ] (2-28)

+ PC ]T(F] ]Xi dO (4,5)
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0

where stiffness matrices i[A, D, F]i = J [Q11, z2 , z 4 Idz.
h

The 36 DOF Element

In this section the relationship between the continuum diplacements

* and the discrete nodal displacements for the shell element used in this

research (pictured in Figure 2-3) is defined. The seven degrees of

freedom at each corner node were found in the previous sections to be

• u, v, w, w, w, 2 1 and v2 . Thus, C° continuity is required of all

but the w, slope terms, which require CI continuity. Simple

Lagrangian shape (interpolating) functions will be used for the

* displacement DOF, then, and more complex Hermetian functions used only

where necessary.

0
• X,

W,~s TU

x
z

Figure 2-3. SHELL 36 Degree of Freedom Element
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The assumed transverse displacement equation for the cylindrical

shell element is

w(xs)=a+ a x + a3s + a x 2 + axs + a6s2 + a7 x 3

2 2 3 3 3 (2-29)
+ aax s + a9xs + a1S + a11x s + a12xs

This rectangular element may be isoparametrically scaled and

oriented such that the longitudinal coordinate x -E , circumferential

coordinate s - r7, and the side lengths are scaled by

x (2-30)

where a and b are the scaled element half dimensions in the E and Ti

directions, respectively. Now the element transverse displacement

equation can be written as:

w(x,s) = Z q 2-31)

q4j

Twhere IqJk = (w w,1 w, 2 for the kth corner node,and Z are Hermetian

shape functions (7):
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1 + 2 + 7 2(2 + + 2k -7

8c k c k k Ik I
ZT I= 4AE + 2 +r i

k3j + k)(ri1 - l)(l+ pr?)

(2-32)

The formulation for DOFs u, v, and Wp. is a simpler Lagrangian
I

form, and the midside nodes 5 - 8 are also now included:

(20fu 0 00 QOOOQ0 Qs

00 0 0 0 0

NO=00 N 4  
lid (2-33)

0 0 0 N0 0 0 N0 0 q
Ti

where ql = lu V 1 qI I for nodes 1 through 4 and Ju vi for nodes 5

through 8, and N and Q are linear and quadratic (respectively)

Lagrangian shape functions (7):

1NW  "(1+ k)i+ rl ri)

1
= (1 + l)(l + r1 Tl)( + TI qF - 1), k = 1,2,3,4

k 4c k k k01

1 a - 0 )( + r7 ri), k = 6,8 (2-34)1 2

= (1 - ri 2 )(1 + E E), k = 5,7

The overall equation defining the isoparametric discretization of

continuum displacements into nodal displacements is obtained by merging

the above relationships:
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ful = [] IqI
(2-35)

(7xl) (7x36)(36xl)

Finite Element Formulation

The solution of the static finite element problem involves finding

the equilibrium state between applied load and structural response.

This state can be determined by finding where the system potential

energy is stationary, i.e. where its variation is zero. Recall Eq

(2-25):

=u+ V (2-25)

where now internal strain energy can be represented by

• qT[K+1;] =q q
1 qT [ N 1T + N (2-36)u: = 2 + q -2q (-6

where q = column array of nodal displacements, K - constant stiffness

terms, N, = stiffness terms linear in displacement, and N2 = stiffness

terms quadratic in displacement. The external work can be represented

as

V- qT Xp (2-37)

where P is a column array of applied nodal loads and X is a multiplier

whose utility will be seen in the section on the solution algorithm.

Equilibrium is defined as the state at which internal strain energy and

external work balance; potential energy is at a relative minimum here.
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This point can be found by substituting Eqs (2-36) and (2-37) into Eq

(2-25) and taking the first variation:

6Rp = 6q T K q - XP] = 0 (2-38)

Since displacements 5q are nonzero for all but the tr .'.ial

solution, the bracketed expression must be zero for equilibrium. It is

a function (we'll call it g) of q and X:

R q - XP = 0 = g(q,x) (2-39)

Since K varies with load and displacement, a numerical iterative

solution is used to solve Equation (2-39) incorporating the Newton-

Raphson method as discussed next.

Solution Algorithm

The technique advanced by Riks (28,29) and Wempner (39) and

demonstrated by Crisfield (8) of incrementing a desired arc length

along the load-displacement curve, while solving iteratively via the

Newton-Raphson method, is the solution technique used in this work. The

modified Riks-Wempner algorithm, added to the SHELL program by Tsai and

Palazotto (38), allows for tracing of the load-displacement response

through both load reversing (snap through) and displacement reversing

(snap back) critical points, so the most complex behavior can be

continuously followed.
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The essence of the Riks/Wempner method is that neither load P nor

displacement q is independently controlled; rather, a selected "arc"

length As (actually the chord, as will be seen) of the load -

displacement curve is incremented. The equilibrium condition is found

which satisfies the relation:

Aq "q + AX2P'P = As2  (2-40)

where Aq i+ is the incremental displacement for step i+t, and AXi+1 is

the fraction of load P applied at step i+i. The effect of the

constraint equation (2-40) is that each subsequent step solution is

searched for on an arc of radius As from the current solution. The

initial value for the quantity AX is specified with the problem input

data; values of this parameter of 0.1 to 0.5 worked well in this work.

To apply the Newton-Raphson method, the first variation of

equation (2-39) is taken and applied at steps i:

KT6qi = U i P - g(q 1,X) (2-41)

where

6qi =  il + 6Xi (q12 (2-41a)

6q = -K-I g(q ,x ) (out-of-balance (2-41b)
ii T i term)

6q = K IP (linear term) (2-41c)
i2 T

and

KT = K + N 1 + N 2 ] (2-41d)
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In the following brief description of the operation of the

• algorithm on load step n, i denotes an iteration at step n along the

solution path, and Figure 2-4 depicts the quantities discussed.

a.) The tangent stiffness matrix KT at the current deformed

* geometry is determined.

b.) The linear incremental displacement 6qi2 is computed (Eq

2-41c).

* c.) (First iteration) Compute Aq1 = AX 5qi2, with W., = AXnl, or

a user - defined value if n = 1 (first increment). The

parameter AX indicates the fraction of total load to be

* applied at the first increment. A value of 0.25 for the first

increment worked well for cases which displayed near linear

response initially; complex nonlinear load up was better

followed with a smaller initial step of 0.1.

d.) The constraint equation (2-40) is solved for As. The load term

is often ignored in this relation, since the the load and

* displacement values typically differ by many orders of

magnitude, which can cause numerical difficulty. Convergence

to a solution is not hindered by ignoring load at this step.

* e.) KT is updated at q = qn + Aq i.

f.) The out-of-balance displacement 6qii is computed (Eq 2-41b).

g.) Equations (2-41a) in (2-40) are solved for U ., which willI

* have two roots 6X and 8 i2 due to the quadratic feature.

h.) 8Xiis selected from 8X iand 6%i2' by criteria detailed in

Crisfield (8), to ensure that the solution path does not

* return to equilibrium points previously found.
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P

/ I

I I

Figure 2-4. Riks Method Solution Step

i.) Displacement increment Aq A= A + 6qiand load factor

increment AX =A. + 6X. are updated.

j.,) When Aq, and AX. computed at successive iterations (steps e-i)

differ by less than a selected convergence tolerance (0.1% for

simple paths; as low as 0.0001% required for tightly curved

paths), the step n solution has been found:

Aq 4 Aq

(2-42)
AX 4 Ax

In
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At the completion of each step, cumulative displacement and load

factor are computed:

q n q n-+ Aqn (2-43)

X +x AX
n n-I n

This technique can follow an equilibrium path which progresses in

any direction, by solving for negative incremental displacement or

load, or both. This allows one to automatically solve for even the

most convoluted nonlinear equilibrium curve, without concern over the

singularities at critical load or displacement points.

The efficiency of the algorithm is improved by scaling the step

(n+l)'s target As length by the ratio of a user-selected desired number

of iterations (set to 4 iterations for this work) to the number of

iterations to converge at step n. Thus, in near-linear parts of the

load-displacement curve, wide spacing of solution points is allowed;

when the curve rounds corners (around limit points) the method has to

iterate more to converge and hence As is reduced until the curve

straightens out again.

The inability to solve for equilibrium at a limit load point is

circumvented due to the nature of the stepping method. The technique

shoots a tangent from the current equilibrium point, then searches an

arc about the tip for the next solution point, so the exact limit load

point is almost always skipped over. Auxiliary equations can be

programmed to enable determination of the critical point (28).
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Failure Criterion

The Tsai-Wu failure criterion, being tensor based, can incorporate

transverse shear effects. However, since in-plane stresses are much

larger than the transverse stresses, the two-dimensional theory will

give a valid indication as to the material limit load. Since the

stiffness of the panel would be altered after ply failure, and the

SHELL program does not allow this, the analysis would ideally be

terminated at this point. However, early in the research it was noted

that the ply failures occurred almost at the onset of loading, due to

the high stress gradient near the point of application. In practice,

the load would have to be distributed over a finite area to prevent

punch through. Therefore, stresses were not considered any closer to

the load point than the thickness dimension, to allow for distribution

through the thickness (and through at least two layers of elements in

the model).

Of the several laminate failure criteria available (16), the

Tsai-Wu is desirable because it accounts for the interaction of the

tensile, compressive and shear stresses developed along the load path

and off axis. It is, however, more complex and less intuitive than,

say, a maximum stress criterion, which simply looks for stresses which

exceed material limits. According to Tsai-Wu, first ply failure occurs

when the following inequality is violated:

Fa +Fo + r 2 + F22 2 + 2 + F <1 (2-44)
1 1 2 2 1 1 22 2 66 6 12 1 2
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where

F 1
F = -+ -2 XT  Xc

F 1

II T xCF 1

22 YTY

F = 
1

66 S2

F12 =- TCTC 37)

and XT is ultimate tensile stress in the principal direction of the

ply, Y is ultimate compressive stress in a direction perpendicular to

the fibers in the ply, and S is ultimate shear stress. In searching

for ply failure, the stresses computed at each ply's elemental Gauss

points are first transformed to align with the ply principal direction.

Then Equation (2-44) is computed and checked for failure.
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* III. ANALYTICAL MODEL PREPARATION

The geometric and material parameters studied are presented in

* this chapter. A discussion of the model preparation and validation

effort is then offered.

* Parameters and Ranges of Variation

Material. The analysis is performed on laminates constructed of

high strength/low modulus Hercules AS4-3501-6 graphite/epoxy with the

* following ply physical properties and dimensions (36,9):

ply thickness= 0.005 inch

* E = 18.844 x 106 psi

E = E3= 1.468 x 106 psi

G12  = 0.91 x 106 psi

SG 2 3= 0.45 x 106

0 12= 0.28

V21 U = 0.0218

•a ult = 285.6 ksi (00) / 9.12 ksi (900)

a = 141.7 ksi (00) / 37.2 ksi (900)

T t= 11.1 ksi

Panel Geometry. Common to all of the models is a radius of

curvature of 12 inches and a length of 18 inches. All combinations of

* the following parameters are studied:
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ends free 
P

edges re.3trained

-~ t

eR

Figure 3-1. Study Parameters

1.) ply layup:

(a.) (0/90] cross ply

(b.) [0/-45/+45/90] quasi-isotropics

2.) boundary conditions (straight edges only - curved

ends always free):

(a.) simple (hinged), u = v = w = w, = = 0

(b.) clamped, u = v = w = w, = w, W= = 0

3.) R/h (radius of curvature/thickness):

(a.) 300 - h = 0.04 inch 4 8 plies

(b.) 100 - h = 0.12 inch 4 24 plies

(c.) 50 - h = 0.24 inch - 48 plies

(d.) 25 - h = 0.48 inch - 96 plies
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4.) e (opening angle at center of curvature):

* (a.) 1 radian 6 6/b = 0.255 (nonshallow)

(b.) 1/2 radian - 6/b = 0.126 (borderline)

(c.) 1/4 radian 4 6/b = 0.063 (shallow)

A total of 12 geometries of each layup were analyzed at each of the

boundary conditions. The parameter 5/b noted with respect to e is

* called the "shallowness parameter," and is a non-angular measure of the

ratio of central rise to span.

Load. The applied load is a centered point load, acting normal to

* the panel surface at the onset. As the panel deforms, the load

maintains its original orientation; thus it can be likened to a dead

weight. Due to symmetry of the deformed panel being enforced by

* quarter panel modeling (see below), this will result in the load being

maintained normal to the local panel surface.

* Convergence Tests

Since no experimental work against which to compare results was

found, and all of the analytical solutions were either for isotropic

* panels or for different layups than the ones analyzed here,

considerable effort went into verifying convergence of the model

solution. Tests were run to assess the validity of quarter panel

* modeling for this geometry, to determine the degree of mesh refinement

required at the load application point for each of the panel widths, to

determine whether the Donnell simplifications would yield accurate

* results, and to determine the distance away from the load point that
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stress values could be used for ply failure determination. These tests

are now summarized.

Quarter Panel Modeling. The different arc lengths of inner and

outer plies in any curved laminated composite will set up asymmetric

inplane shear stresses about the laminate middle surface. The error

due to assuming symmetry about the x- and s- planes of the distortion

due to the significant in-plane shear stresses present in the angle-ply

layup was assessed. A hinged, 0 = 1 radian, R/h = 100 shell was

modeled with a uniform 12x8 mesh of 1.5 inch x 1.5 inch elements, and

also as a quarter shell by symmetry, with a 6x4 element mesh.

Cross-Ply Panel. Comparison of full- and quarter-panel model

load versus displacement performance shows exact agreement (Figure

3-2).

Angle-Ply Panel. Comparison of full- and quarter-panel model

runs indicate less than 5% variation in displacement at corresponding

loads (Figure 3-3). The panel end profile, however, indicates that the

angle-ply laminate develops a twist (Figure 3-4). Thus, mirroring the

solution for one side of the model to the missing parts will result in

a falsely symmetric depiction of the deformed shape, but the load

versus displacement data will be acceptable.

Mesh Refinement: Due to problem solution run times, using a

uniform mesh of elements fine enough to converge to a solution was not

possible. In the following series of runs, an accurate nonuniform mesh

for each size panel was determined by assessing the variation of the

solution by increasingly fine meshes. The models ranged from a uniform

mesh of 1.5 x 1.5 inch elements to graduated meshes with elements as
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Figure 3-2. Load vs w, Cross Ply Quarter Panel Test
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figure 3-3. Load vs w, Angle Ply Quarter Panel Test

3-5



0.2

* t *** full panel, 1319 lb
QaQ-QQ quarter panel, 1318 lbC

E 0.1

0.0

>
C

-0.1
0.0 5.0 10.0

Distance Along Panel Arc

Figure 3-4. Quarter Panel vs Full Panel End Profile

small as 0.125 x 0.125 inch. Element aspect ratios (AR) ranged from 1

to 8, with AR = 1 maintained for at least two layers around the load

point. The highest element density was concentrated in the

circumferential direction since this is the direction of highest stress

variance as the load is transferred from the shell center to the

restrained edges.

Wide Panel: (e - 1 radian, Figure 3-5) Convergence was

achieved with a 1146 DOF, 11 x 8 element mesh. This model has an

element range of 0.5 x 0.5 inch to 1.0 x 1.0 inch, with AR - 1 to 2.

Medium Panel: (9 a 1/2 radian, Figure 3-6) Convergence was

achieved with a 961 DOT, 12 x 6 mesh. This model has an element size

range of 0.375 x 0.375 inch to 1.0 x 0.75 inch, with AR - 1 to 2.7.
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Narrow Panel: (0 = 1/4 radian, Figure 3-7) Convergence was

achieved with a 1188 DOF, 13 x 7 element mesh. This model has an

element size range of 0.125 x 0.125 inch to 0.25 x 1.0 inch, with AR =

1, to 8 (longitudinally) or 2 (circumferentially).

Donnell versus Large Deformation/Rotation Solution. Comparison of

solutions of the same model with the Donnell-based element versus the

large displacement/rotation (large d&r) element indicate imperceptible

difference on the loading up portion of the load - displacement curve

(Figure 3-8). The curves deviate after the maximum load, when the

shell is collapsing to a locally inverted shape and transverse

displacements far exceed the magnitude of the shell thickness. The

rotation of the middle surface of the shell, the elastic curve, was

between 15 and 20 degrees when solution divergence occurred just after

4000 -

2000

0

0

-2000
***** Donnell element
oocoo large d&r element

- 4 0 0 0 I f 1 I I I I I I I I I I i I T -, I I I

0.0 1.0 2.0 3.0
Transverse Displacement w (inches)

Figure 3-8. Donnell vs Exact, 1 Radian [0 /90 1 Panel
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Figure 3-9. Deformed Geometry, Laminated, Donnell Element

Figure 3-10. Deformed Geometry, Laminated, Large D&R Element

3-11



peak load for the three cases compared. Since the only difference

* between the two solutions is the element formulation, the source of the

difference was suspected to be the Donnell simplifications. Neither

small displacement relative to thickness, nor large wavelength relative

* to radius of curvature, can be assumed here, as assumed by Donnell

(11). The Donnell solution, which ignores the higher order rotational

terms, was stiffer than the large displacement/rotation solution after

* collapse.

Comparison of the deformed geometry after snapping as predicted by

the Donnell formulation (Figure 3-9) and the exact formulation (Figure

* 3-10) shows agreement in the general nature of the deformation, even

though the load-displacement solutions have diverged.

To examine this divergence further, an isotropic panel of the same

* thickness was analyzed, to eliminate any effect of interply stresses.

Aluminum, with average physical properties of E = 10.3 x 106 psi, V =

0.33, and G = 3.85 x 106psi was selected for comparison. The

* load-displacement curves (Figure 3-11) and the displaced geometries

(Figures 3-12, 3-13) indicate it responds generally like the laminated

panel, with the same solution divergence after peak load. Maximum

* rotation at the peak is 21 degrees. Thus, the Donnell simplifications,

and not interply effects, seem to be the cause of the solution

divergence at large displacement and rotation. A full comparison of

* isotropic versus laminated composite performance is in the next

chapter.

This set of tests led to the selection of different elements for

* various models. The computationally efficient Donnell-based element
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Figure 3-11. Donnell vs Exact, 1 Radian Isotropic Panel

was used only for the cases which undergo small rotations (less than 15

degrees measured at the elastic curve). The shallow (8 - 1/4 radian)

shells fall into this category, regardless of boundary conditions,

thickness or ply layup. The large displacement/rotation element was

used for the remaining analyses due to the large rotations experienced

as the center of the arc is driven down relative to the upward slope of

the restrained edges.

Stress Computation. Since displacement features were of most

interest in this work, ply failure was not rigorously determined. It

was used only to gauge when to terminate load incrementing in the

shallow clamped cases since they snapped weakly (if at all). However,

due to the mathematical singularity of stress at the point of

application in this finite element model, computed stresses near that
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Figure 3-12. Deformed Geometry, Isotropic, Donnell Element

,< >~->
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Figure 3-13. Deformed Geometry, Isotropic, Large DOR Element
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point falsely predicted very early ply failure. A stress study sought

to determine where more accurate stresses could be obtained.

The distribution of shear stress in a pre-snapped loaded shell was

plotted. The stress values at the laminate middle surface were seen to

vary widely and change sign until after two layers of elements away

from the load point. Thus, stresses for ply failure determination were

obtained from the third layer and beyond.

Summary. Quarter panel modeling by symmetry was used in all cases

in this work. The graded mesh selected for each geometry was fine in

the vicinity of the load application point, and was denser in the

circumferential direction than longitudinally. There are at least six

elements between the load and the boundary in each model. The shallow

(9 = 1/4 rad) configuration was solved with the Donnell-based element

due to the small rotations experienced. The deeper configurations were

modeled with the large displacement/rotation element, with the goal of

each run to proceed through snap and reassumption of load.
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IV. Results/Discussion

In this chapter the effect of changing ostensibly one parameter at

a time is investigated. It is not truly possible to vary certain

geometric parameters independently with a cylindrical shell. The

primary violator of this attempt to isolate the variances is the

shallowness parameter (6/b). The key determinants of load capacity

controlled by shallowness are the angle at which the ends of the middle

surface curve meet the chord (the same angle as the opening angle 0),

the radius of curvature - to - thickness ratio R/h and the span. Either

R or e can be changed independently to adjust shallowness, but each

adjustment will affect the other dimensions differently. For this

study R is held fixed and only e is varied, so the effect of

shallowness is combined with the effect of varying the inplane distance

from the load point to the restrained edges. In addition, another

important geometric feature which is affected is the aspect ratio, a

plate parameter that has meaning here when defined as (longitudinal

length)/(arc length). By holding the longitudinal dimension constant

while varying e, the aspect ratios in this study range from 6 for the

shallow shell to 1.5 for the nonshallow shell. The load path to the

free ends is longer compared to the path to the restrained edges for

larger aspect ratio. Thus, changing shallowness also changes the load

path in two directions, which will affect the shell's static response.

However, the effects of these other variables often becomes apparent in

the following data presentations.

4-1



Generalization of the results pertaining to shallowness to a

closed or deeper shell would require redefinition of the shallowness

parameter 6/b. Since the deflection under a transverse point load of

this class of shells always entails simply three half sine waves in the

circumferential direction, b is a valid parameter to characterize the

circumferential dimension of the deformation. In a closed or deeper

shell, however, more half sine waves could form. In such a case, the

arc segment over which each half sine wave forms is the proper

dimension for characterizing shallowness.

The Initial Snap Through

This section addresses in qualitative terms the phenomenon of snap

through observed with this shell. In later sections dealing with

geometric and material effects the post-critical behavior will be

correlated to specific parameters.

Snap through is a dynamic process for which analytical prediction

and physical reality have yet to be fully reconciled. In a dead load

situation as is considered in this study, the problem shifts from a

purely static one to a dynamic one once the load peaks and begins to

drop off. The equilibrium path obtained beyond the critical point may

only be of interest inasmuch as it enables the analyst to determine the

displaced configuration at which the structure can resume the applied

load. Even then, the true state may differ from the predicted static

state due to the inertia developed during the dynamics of the snap

through.
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Since this study considers only the static equilibrium states, the

focus of interest will be on the load response leading up to the

critical load point. Beyond that, the discussions of "snapping" are

concerned with equilibrium states which may or may not occur as the

shell dynamically seeks another configuration at which it can resume

supporting the critical load. It must be stressed that the equilibrium

curves presented do not reflect any dynamic response nor do they

reflect material failure or other such nonlinearity. The response is

purely geometry dependent, and represents various equilibrium energy

states.

For the equilibrium curves which do eventually return to (and

surpass) the critical load value, the shell will be assumed to have

snapped and be supporting the load again. It is acknowledged that this

is an oversimplification due to neglect of the dynamic nature of the

response.

In this study the shell is seen to collapse in two distinct ways.

The term "local" collapse or snap will be used to denote inversion of a

circumferential section of the shell around the point of load

application, while the free ends of the shell maintain their original

downward concavity. "Full" collapse or snap is said to occur when the

free ends also have turned under. The difference between local snap and

full length snap can be readily seen in Figures C-2 and C-5. In either

case, the load curve reaches zero slope as the snap initiates, with

diminishing load capacity as the inversion progresses. Snap can be

just barely critical (Figure C-3) or severe (Figure C-5), but if zero

slope does not occur, the shell does not snap.
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During a full-length collapse, the load-displacement curve becomes

near-vertical in several of the cases, exhibiting load change with no

displacement of the load point. Figure C-5 illustrates the shell

response during this unloading phase. At peak load, the shell has

stored strain energy due to the transverse deflection of the central

load point. Further displacement results in this stored energy

developing moments which drive the free ends down to an inverted shape.

If the shell is clamped or otherwise geometrically stable, it will

recover after the ends collapse, and resume the load (Figure A-li,

clamped cases). A geometrically unstable shell, though, has an

increasingly negative equilibrium path (Figure A-11, hinged cases),

possibly indicating total geometric failure.

Whether a shell will snap locally or fully is determined by a

combination of its stiffness (thickness, ply orientation) and geometric

parameters (shallowness, aspect ratio). With either type of snap, the

deformation progression starts the same. The deformation histories in

Figures C-2 and C-5 illustrate this progression. In both, the center

of the shell under the load point is seen to initially invert, or

"dimple;" in the thinner and deeper shells an inflection point in the

curve becomes apparent at the onset of dimpling (Figure C-6). After

this initial dimpling, the inverted area "grows" circumferentially and

longitudinally as the load is increased. Critical load is reached when

the dimple has reached an edge. In local snapping, the dimple reaches

the constrained edges before the free ends, and only a central section

of the shell inverts as the load drops off (Figure C-2). In a full

snap case, the dimple travels more longitudinally than
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circumferentially, and the load capacity drops off as the free ends

* invert (Figure C-5).

The type of snap to which a shell is susceptible would be of

interest to designers looking for some degree of failsafety. Full

* snaps are generally more severe, and often result in negative load

values. Negative loads mean that in order to maintain the shell at

such a deformed state of equilibrium the center load would have to be

* pulling up. Local snap, on the other hand, was never seen to result in

negative loads over the range of parameters tested. When both local

and full snap points are reached nearly simultaneously, the equilibrium

• path is complex and twisting, as seen by the partial trace shown in

Figure C-7. (Experimentally, such a load-deformation response may not

be realizable, as this may be just a numerical artifact.)

* An interesting feature which is included in this finite element is

the deformation of the shell normal due to transverse shear stress.

The linear transverse shear strain-displacement approximation in this

* code results in the transverse shear stress showing up as a rotation of

the shell normal separate from the rotation due to bending of the shell

middle surface. These two rotations combine to yield the total

* rotation (strain) of the shell normal. The proportion of strain which

is due to transverse shear effects will be noted in the comparisons in

the remainder of this chapter, in an effort to determine the importance

* of i--:luding such effects in the analysis of transversely loaded shell

structures.

0

4-5



Comparison to Isotropic

To allow comparison of laminated shell load - displacement

performance to an isotropic shell of equal thickness, the response data

was normalized. In his analysis of isotropic shells, Chernyshev (5)

determined that the response of such a transversely loaded shell is

dominated by bending features, so normalization was based on the

bending stiffness parameter. Shell thickness with both materials was

identical (0.12 inch, corresponding to a 24 ply laminate) to allow for

the generation of comparable through thickness shear stresses. The

normalization, for comparison with shells of identical thickness and

geometry but different material, is:

wD22
Laminated: w = 2 Isotropic: = pwD

P= P/D22  P= P/D

where

barred values are normalized
Eh3

D = 2= 1664 lb-in (0.12 in thick Al)
12(1-u

=z 2 + hk J, k = 1,2,...,n pliesD22 = Q22)kk kk 1-

Figure 4-1 defines the geometry for determining the laminated

bending stiffness parameter D 22. Tables 4-1 and 4-2 list this and the

rest of the inplane and bending stiffnesses of all of the laminates.

(The graphite/epoxy lamina, and aluminum, material properties are given

in Chapter 3.) Although these normalized values are not fully

nondimensionalized (w and P have units of in2 and in- ), they allow for

valid comparison between identically dimensioned shells.

4-6



!

0

0 f1

T2

I middte

surface

centroidao surface z k z

* of kth p y k -_

N

Figure 4-1. Laminate Definitions

Figure 4-2 shows that the isotropic and the laminated shells

deflect very similarly overall with respect to bending stiffness in the

circumferential direction. There is a point of inflection upon load up

on only the laminated curves however, which corresponds to the load at

which the area around the load point dimples in. Prior to dimpling,

the load is supported through the membrane by inplane compression. The

composite shells are relatively stiffer at this point; the cross ply

and angle ply layups deflect only 76% and 60% of the value of w for the

isotropic shell at the same P. After dimpling, when significant

bending develops, the deformation is proportional to the bending

stiffness as with the isotropic shell. This illustrates the importance

of designing a thin shell composite structure to take advantage of its

superiority of membrane over bending stiffness.

Observing the transverse shear strain in each of the shells allows

evaluation of the relative importance of including this feature in the
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Table 4-1. (0/90] Stiffness Parameters8

Plies, Thickness (inches):

8, 0.04 J 24, 0.12 48, 0.24 96, 0.48
! |

Extensional terms (lb/in):

A (x106) 0.4087 1.226 2.452 4.905

A2  (xl06) 0.4087 1.226 2.452 4.905

A12 (xl03) 16.543 49.628 99.256 198.512
12
A12 0 0 0 0
A 16 0 0 0 0

A66 (xO 3) 36.4 109.2 218.4 436.8

Coupling terms:

B all are zero due to symmetry

Bending terms (lb-in):

D*I 89.4637 2415.52 19324.2 154593.

D22  19.5325 527.378 4219.03 33752.2

D12 2.2057 59.5535 476.428 3811.42

D12 0 0 0 0

D16  0 0 0 0

D66 4.8533 131.04 1048.32 8386.56
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Table 4-2. (0/T45/90] Stiffness Parameters8

Plies, Thickness (inches):

8, 0.04 1 24, 0.12 48, 0.24 96, 0.48

Extensional terms (lb/in):

A11 (x106 ) 0.3289 .9867 1.9733 3.9467

A22 (x106) 0.3289 .9867 1.9733 3.9467

A12 (xl0 3) 96.391 289.174 578.348 1156.70

A 0 0 0 012

A16 0 0 0 0

A66 (x103) 116.248 348.744 697.488 1394.98

Coupling terms:

B . all are zero due to symmetry

Bending terms (lb-in):

D11 72.0721 1945.95 15567.6 124541.

D22  19.6237 529.841. 4238.73 33909.8

D12 10.8560 293.111 2344.89 18759.1
D16 -4.3707 -118.009 -944.071 -7552.57

D26  -4.3707 -118.009 -944.071 -7552.57

D66 13.5035 364.595 2916.76 23334.1
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Figure 4-2. Response Normalized to Bending Stiffness

analysis of laminated and isotropic structures. Table 4-3 lists the

maximum transverse shear strain developed circumferentially (9) in

each type of shell at roughly equal load. The location of maximum .

is given in terms of (x,s) coordinates, in inches, away from the

centered load point. The magnitude of P' relative to the rotation of

the shell normal due to bending of the middle surface in the

circumferential plane is also noted, as a percentage P /w, x 100.

At low initial load, when the support mechanism is membrane

compression, we see that all shells develop very little transverse

shear strain. The in the laminated shells are 1.5 to 1.6 times the
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Table 4-3. Shell Material Effect on Transverse Shear

shell applied Ilocation a %ofW
construction load, lbs (x,s) in 'ra %of,

Onset of loading; no bending yet:

isotropic 512 0, 1 .337xl10 1.2

[0 6/90 61] 611 0, 1 .520xl10 0.4

0(0 3 /T45 3 /90 3 526 0, 1 .530x10- 0.6

Dimple has formed around load point:

isotropic 1146 0, 1 .852xl10 1.1

0 [6 /90 6]a 960 0, 1 .114xl10 0.7

(0 3/T45 3/903 Is 1015 0, 1 .144x10 - 1.7

Continuing to apply load:
isotropic 1699 0, 1 .125x10- 0.9

[0 6/90 6]I 1415 0, 1 .168x10- 0.9
(0 3/T-45 3 /90 3 1407 0, 4.5 .228x10 -2 39.6

Laminates reach peak load; isotropic is 29% of way to peak.

isotropic 2550 0, 1 .162xl10 1.0

(0 6/906] js 2733 .5, 1 .220x10- 0.9

[0 3 /T45 3 /90 ] 2514 0, 4.5 .414x10 - 7.9

Isotropic at peak load:

8762 0, 1 .272x10- 2 1.0
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value of P developed at comparable load in the isotropic shell, but
U

* because the isotropic shell has deflected less at this load, its 0 is
S

larger compared to its w,

After the atea around the load point forms a dimple the cross ply

* shell is developing 1.3 times the transverse shear strain compared to

the isotropic shell, but P maintains a proportion of 1% of w, , as

does the isotropic shell. These relations stay fairly constant

* throughout the remainder of the load up of the isotropic and cross ply

shells.

Significant differences appear when bending comes into play with

* the angle ply shell, though. After the center of the shell dimples,

the P. in the angle ply has grown to 1.7 times the isotropic P . ByS a

the time the angle ply shell has reached 56% of its peak load (the

* third load case in Table 4-3), the factor has grown to over 1.8. Also

at this load, the transverse shear strain rotation is 40% as large as

the slope of the elastic curve on the center arc at a point 2/3 of the

* way from the center to the constrained edge. This points out the

nonnegligible effect of transverse shear strain on the structural

response in the bending regime with angle ply laminated structures.

* Continuing on to peak load with the angle ply shell, the

transverse shear strain increases to a value of P. which is 2.6 times

that of the isotropic shell, and nearly 2 times that of the cross ply

* laminated shell, at comparable load. Now, though, transverse shear

strain is back down to 8% compared to w, , since the middle surface

slope has increased relatively more than P has grown over the same

* load increase.
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The magnitude of the transverse shear strain corresponds to the

relative magnitudes of inplane shear stiffness A66 and the transverse

shear stiffnesses A44 and As5. Since isotropic material exhibits

identical material properties in all directions, these three terms are

* equal in the isotropic shell. Accordingly, Table 4-3 shows it to

develop less transverse shear strain than either of the laminated

shells. The values of A44 and A in the laminated shells are the same

* for both ply layups examined, at 81.6 x 103 lb/in. This is 75% of the

value of A66 for the cross ply laminate (Table 4-1), and we see from

Table 4-3 that it develops a bit more transverse shear strain than the

* isotropic shell. The transverse shear stiffness is only 23% of the

value of A66 for the quasi-isotropic laminate (Table 4-2), though, and

we see that it develops the greatest magnitude of transverse shear

* strain at all loads.

The relative load capacities of the two types of shells correspond

roughly to the relative bending stiffnesses. The isotropic shell

* supports 3.13 and 3.51 times the load before collapse than do the cross

and angle ply laminates respectively; the isotropic shell's bending

stiffness D is 3.16 and 3.14 times the value of D22 for the cross and

* angle ply shells. This correlation is expected because the transverse

response of this thin shell is primarily bending. The relative

inferiority of laminates in bending compared to isotropic materials as

* seen here is the reason why designs which are optimized for thin

composite materials place the composite members in membrane loading,

which exploits the superior in-plane properties of thin composites.

* The laminate can also be rearranged to place plies which will best
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support anticipated bending the furthest away from the neutral axis.

A popular technique of estimating laminate material properties is

to compute effective engineering properties which are then used as if

the material were orthotropic. In the load case studied here, where

the dominant response is bending, use of these effective engineering

values would lead to overprediction of strength, as will be shown next.

The effective Young's modulus in the circumferential direction,

E , and Poisson's ratio P' , are computed from the extensionaly xy

stiffnesses:

AA2  _ -A 2

E A1122 12 A12
E Z) =- (4-2)

y h Ali xy A22

Using the values for A in Tables 4-1 and 4-2 to obtain E andii y

v y, and then computing the bending stiffness D as for an isotropic

material in Equation 4-1, bending stiffnesses of 1471 lb-in for the

[06/90 6] and 1184 lb-in for the [0 3/T-45 3/903]a are predicted.

Considering that the bending stiffness is 1664 lb-in for the aluminum

shell of equal thickness, this would lead to the mistaken conclusion

that the laminated shell's peak load would be at least 70% of that for

the isotropic shell. In fact, the laminates collapse at less than 1/3

the load at which the isotropic shell does. This illustrates that

application of laminated effective engineering properties to

configurations which undergo significant bending in support of a load

is not advisable.

4-14



0

Variation of the Parameters

* The next discussion covers the effect of independently varying

each of the four parameters in this study. Rather than scatter the

graphs throughout this chapter, they have been grouped into three

* appendices. Appendix A contains the load versus displacement curves

for the 48 cases analyzed. Appendix B contains plots where load has

been normalized to facilitate comparison of shells of the same geometry

* but different thicknesses. Appendix C shows graphically the

progression of deformation for a sample of each type of load -

displacement curve seen in this study.

• Due to the way the Riks algorithm steps past critical load points,

the critical load values for the highly peaked curves such as in

Figures A-9 and A-1O are not as credible as the critical loads found on

* the curves with less slope change at the critical point. Therefore, no

conclusions are drawn concerning the pre-collapse load capacity of the

thin deep shells, which all display sharply peaked critical load

* points.

Effect of Ply Layup. Direct comparison of the two layups is

possible using the plots in Appendix A. Not surprisingly, the angle

* ply laminate is stiffer in response to a transverse load. It deforms

less at the same load and collapses earlier (and unloads less when it

does) than a cross ply laminate of the same geometry. Figure A-8 give

* the best illustration of this.

The curves of the two layups do not diverge until significant

bending has taken place. The only difference of any magnitude in the

• physical properties is the much higher shear (A66), twisting (D66) and
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coupling (A12 and D 12) stiffnesses of the angle ply laminate (Tables

4-1, 4-2), plus the fact that the angle ply layup has nonzero twisting

stiffnesses D16 and D26. Because of these higher twisting and biaxial

coupling properties, the angle ply better resists the twisting which

accompanies the bending as the geometrically nonlinear shell undergoes

three dimensional transverse deformation.

Neither orientation is independently superior with regards to load

capacity. In Figure A-6, the angle ply shell is seen to reach critical

load at 11% less deformation than the cross ply, at which point it is

carrying 6% more load than the cross ply shell at collapse. In Figure

A-5, though, the angle ply collapses at 15% less deformation, but this

time at 2% less load than the cross ply. This graph also shows that

while both layups exhibit critical load points, the cross ply collapses

through critical displacement points as well. This highlights the

effect of ply orientation on predominantly displacement behavior. No

consistent pattern of effect on load capacity was seen with the two

layups tested, though.

The transverse shear strain on load up generally is greater with

the angle ply laminate than for the cross ply. A comparison of the 24

* ply 1 radian hinged shell was presented in the previous section. How

much greater depends on thickness and shallowness, from the thin

shallow shells of either layup showing about equal P at peak load to
8

* the clamped 24 ply 1/4 radian shell showing 2.4 times more 0 in the
8

quasi-isotropic layup than in the cross ply layup. The one exception

to this observation is the 8 ply 1 radian shell, in which the cross ply
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developed about 10% greater throughout the equilibrium path, with

• either boundary condition studied.

In general, it can be said that the ply orientation affects the

deformation prior to critical load such that a layup with comparable

* direct stiffnesses but higher shear and inplane coupling stiffnesses

(due to the presence of angle plies) will collapse at less transverse

displacement. Load capacity at collapse, which is more directly

• controlled by other geometric factors, may be higher or lower. The

angle ply layup can generate more transverse shear stress which would

tend to reduce its stiffness, but this effect is obscured by the

• increased shear and twisting stiffness of the angle plies.

Effect of Boundary Condition. Clamping prevents snapping of the

shallow e = 1/4 radian shell and the thicker 1/2 radian cases. For the

* 8 ply 1/2 radian shell and the 1 radian shells, clamping caused

collapse to occur at less transverse displacement, although it supports

more load than the hinged shell at corresponding displacement on the

* initial load up curve. In any case where geometric failure occurred

(negative loads with no load recovery), clamping stabilized the

response to a simple snap (Figures A-5, 11, 12). Clamping also

* eliminates the possibility of local snap, since no portion of the bound

edge is allowed to rotate - a feature required for local snapping. Any

snapping of a clamped shell is one of free end inversion and must occur

• after the dimple has traversed the longitudinal length.

The boundary condition's role in hastening the onset of collapse

(when the clamped shell does collapse) can be understood from Figures

* C-4 and C-5. In the hinged case (Figure C-5), the load dimple travels
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in two directions - longitudinal and circumferential. With the edges

clamped (Figure C-4), the dimple cannot progress as far

circumferentially due to the increased stiffness from the clamped edge,

so all of the deformation is concentrated in the lengthwise direction.

This results in the dimple consistently reaching the free ends at A

lower value of central displacement compared to the hinged shell.

The maximum transverse shear strain rotation developed in the 8

angle ply shells at each boundary condition are noted in Table 4-4,

along with the x and s distances from the center where this maximum

occurs. The 1/2 and 1/4 radian clamped shells generate slightly

greater transverse shear strain compared to bending rotation than do

the hinged shells, due to localization of the deformation. The hinged

boundary as applied in this study allows both midsurface rotation

(bending) and rotation of the normal (transverse shear strain), in the

Table 4-4. Boundary Effect on Transverse Shear

boundary applied location rad % of w,
condition load, lbs (xs) in __,_rad o

[0/T45/90] , e = 1/4 radian

hinged 46 2, .5 .667xi0 "3  7.3

clamped 44 0, .25 .122xi0 "2  2.0

[0/-45/90J , 0 = 1/2 radian

hinged 148 0, 2 .120xi0 2 1.0

clamped 150 0, 2 .180x10- 2 1.9

[0/ 45/90] e = 1 radian

hinged 95 .5, 1 .155x10"2  0.9

clamped 113 0, 3.5 .146xi0 "2  1.5
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circumferential direction, at the otherwise bound edges. Thus the

* rotations of the shell normal due to transverse shear strain can extend

all the way to the hinged edge. The clamped boundary condition

restricts to zero rotation of any kind of the shell normal along the

* bound edge, so the transverse shear strain rotations are restricted to

lie between the center plane of symmetry and the clamped edges. This

results in the transverse shear strains being concentrated over less of

* the shell, causing higher values locally for the clamped cases. The

deep 1 radian shells did not follow this trend, but the cause for this

may rplate to the length of the load path to the constrained edges.

* The effect of other parameters is highlighted with the hinged

boundary condition. Clamping the edges stabilizes the shell since the

bending loads are supported by a rigid boundary, leaving only the

* central ridge portion free to invert under load. Freeing up the edges

to rotate means that the shell alone must resist the bending loads.

Figures A-4, A-6 and A-8 are examples which show how the hinged curves

* emphasize layup differences. In upcoming sections examining thickness

and shallowness, the variation in displacement at the onset of collapse

is studied. The hinged cases are used for those studies both because

• they reach a critical load point more often and also because the effect

of the other geometric variables is greater than when the boundary is

clamped.

• Effect of Shallowness. The effect of varying the opening angle e

ties together several parameters which directly affect the static

response of the shell, as discussed in the opening paragraph of this

* chapter. Length of the load path to the restrained edges, "aspect

4-19



ratio" and central rise are key determinants of load capacity and

* displacement at collapse, and are all changed by varying e. Realizing

this, we are not able to conclusively attribute the trends discussed in

this section to depth only. These conclusions are valid, then, for

direct application only to a family of cylindrical shells which holds

the same parameters (R, h and length) constant while varying only e,

unless otherwise stated.

* The one parameter which appears to apply universally to all hinged

shells is one that compares the thickness h to the central rise 6. The

value of (h/2)/6 gives a qualitative indication of the severity of

* collapse. A value of tW4 parameter of a 1 means that some portion of

the cross sectional thickness of the shell extends below the chordline

of the arch over the entire span; the shell is either very shallow,

• very thick, or both. The values of this parameter for the range of

qeometries in this study are listed in Table 4-5.

Table 4-5. Thickness/Central Rise Parameter (h/2)/6

Opening angle e rad (central rise, inch):
No. plies, 1/4 (0.094) ' 1/2 (0.373) 1 (1.469)
h (inch) II
8 (0.04) 0.214 0.054 0.014

* 24 (0.12) 0.641 0.161 0.041

48 (0.24) 1.282 0.322 0.0F2

96 (0.48) 2.564 0.643 0.163

No critical point is observed when (h/2)/6 > 1; the shell just

loads up without interruption. When (h/2)/6 < 1, the shell exhibits a

load iak and an increasingly sharp unloading as the parameter
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decreases. A critical range exists between 0.054 - 0.163, where

geometric failure as indicated by a near vertical negative curve

occurs. At values of (h/2)/6 < 1 but outside the range 0.054-0.163,

the structure snaps through and reassumes the critical load in an

inverted and stiffer state.

The relationship between shallowness and maximum displacement

prior to collapse is observed by plotting (w at load peak)/(6/b) versus

(6/b). Figure 4-3 shows this data for the twelve hinged [0/90] cases,

with a trend suggested by investigation of the post-unloading deformed

contours. To the left of each curve peak, on the upslope, the shell

inverts locally. To the right, on the down slope, full length

inversion occurs. Since the 48 (R/h = 50) and 96 (R/h = 25) ply cases

offer only 2 data points (the 1/4 radian shells of those thicknesses

did not collapse), extrapolation of the trend to the thicker shells

warrants further study.

A side effect of the selection of controlled variables in this

study is that the "aspect ratios" of these shells correlate to their

shallowness factors such that the horizontal axis in Figure 4-3 could

just as well be "(longitudinal length)/(arc length)." Further study is

required to isolate the true determinant of this trend.

A comparison of pre-collapse load capacity versus shallowness did

not indicate any consistent relation, partly due to inaccuracy in using

the fitted curve peak as the peak load. Riks acknowledged that peak

values will be stepped past with this solution algorithm and thus are

not accurate (28); he suggested employing auxiliary algorithms to

determine critical load. The large step size used on the sharply
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peaked curves (Figure A-10, for example) prohibits even approximating.

the peak load in this study. Another effect clouding load comparison

is that the shallowness parameter is a characteristic of the middle

surface of a thin shell, which for thicker shells ignores the

contribution to load support due to increased cross section.

The shallow shells develop higher transverse shear strain in

comparison to the bending rotation of the elastic curve. Table 4-6

shows the maximum transverse shear strain rotation developed in a

sample of the shells. The expected effect was for P to decrease as
8

depth increase, but this trend only held when going from the 1/4 radian

to the 1/2 radian shell. Then, the value of P is larger in the 1

Table 4-6. Shallowness Effect on Transverse Shear

opening angle applied location rad % of W,
e (radians) load, lbs (x,s) in ,

(06/906]1, hinged

1/4 825 .125, .25 .407xi0 -2 5.7

1/2 825 .75, .75 .998xi0 1.2

1 960 0, 1 .114x10 2 0.

(0/;45/90] , hinged

1/4 65 2, .5 .125x10-2 5.4

1/2 63 0, 2 .728xi0 -3  1.6

1 62 .5, 1 .124xi0 2 0.9

[0/45/90]., clamped

1/4 87 3, .75 .212xi0 18.8

1/2 89 0, 2 .107x10 4.5

1 113 0, 3.5 .146xi0 1.5
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radian shell than in the 1/z radian snell. However, since the I radian

shell is much wider and bends more, the relative value of 9 in
S

comparison to the slope w, is less than the relative value for the

shallower shell, so the trend is continued. This trend is clearly seen

in figure 4-4.

Shallowness is seen therefore to affect primarily the displacement

at critical load. Varying 0 while holding R, L and h constant produces

a (w peak)/(6/b) vs (6/b) curve in which the peak corresponds to both

maximum pre-collapse transverse displacement and the separation between

local and full inversion. Increasing the shell thickness moves the

curve peak up and right, which increases the maximum displacement prior

20

hinged 8 ply 0/-+45/90s
o _e* clamped 8 ply 0/-+45/90s
4--ee.a hinged 24 ply 0/90sC

CL

S10-<U

0 -

0

T 10

C _

01 1 1 I I 1 1 I I

0.0 0.1 0.2 0.3
(central rise)/(half chord)

Figure 4-4. Transverse Shear Strain vs Shallowness
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to the onset of full length inversion, as well as upping the shell

depth at which the inversion goes full length. Note that the 24 ply

(R/h = 100) 1/2 radian shell sits on the peak separating the two types

of response. The deformed contour history in Figure C-7 indicates that

the collapse of this geometry is a mixed mode of local and full

inversion. Figure 4-3 indicates that this depth yields the maximum

normalized pre-collapse displacement for the R/h = 100 shell. Finally,

while the magnitude of transverse shear rotation may increase or

decrease with increasing depth, the relative magnitude compared to the

bending rotation decreases as depth increases.

Effect of Thickness. In order to compare plots of different

thickness, the load data must be normalized. The comparison to

isotropic done earlier in this chapter confirmed that in general, the

response of this class of shells is dominated by the bending stiffness

D22. As indicated by the plots in Appendix B, though, such a

normalization ignores the increased membrane capacity due to the

increase in the cross section as h increases and depresses the

bending-normalized load values for the thicker shells.

An attempt to determine a more accurate normalization factor was

not conclusive. For this effort, the bending stiffness D22 and the

membrane stiffness A11 were assumed to be the only significant

contributions to the shell's load suppo't. Thus, the difference in the

load AP supported at equal displacement for two shells of different

thickness but otherwise identical geometry is a combined effect of Zhe

bending and membrane stiffness differences:
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fA P + f DAP = AP (4-3)

where

fA = proportion of load difference due to membrane stiffness,

which scales as thickness h

fD = proportion of load difference due to bending stiffness,

which scales as thickness cubed h
3

Since these two effects are assumed to be the only determinants of

load capacity, f A + f D = 1. To provide a second equation to allow for

* solution of these two unknowns, the loads supported by the two shells

are compared to the relative stiffnesses:

* (load on shell ) f All + f
(load on shell y) Isame w f= A 1 Jl + fD D22Y ]

* By balancing the two equations (f + fD = 1, and 4-4), one obtains

an approximation of the relative contributions to the load capacity of

the bending and membrane stiffnesses (assuming those are the only

* effects at work). The combined thickness scaling factor obtained is

h (fA + 3fD) (4-5)

1.3 2The combined scaling factor ranged from h to h , 0 pending on

the magnitude of the thickness difference of the shells under

comparison, as well as the degree of shallowness. Thus, the geometric
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nonlinearity as well must be incorporated into such a scaling factor.

The conclusion drawn with respect to load capacity is that the absolute

pre-snap load is of course greater for the thicker shell, and the

3scaling is somewhere between h and h , depending on the shell geometry

and the magnitude of the thickness change.

The plots in Appendix B, being normalized by h , have removed the

effect of bending stiffness variation as thickness varies. Since

transverse shear stress is a by-product of bending, its effects are

also removed. Appendix B, then, highlights the transition of the shell

from a thin membrane to a thick structure carrying an increasingly

larger proportion of the load in bending and proportionally less in the

membrane as thickness is increased.

The response effects of increasing the thickness of a shallow

shell can be observed in Figure B-2. Compared to the 8 ply shell, the

24 ply shell reaches critical load at less displacement and unloads

less when it does snap through. At 48 ply thickness, the shell does

not snap but begins to respond like a plate.

Figure B-6 illustrates the thickness effect on a nonshallow shell.

The deep (9 = 1 radian) thin (R/h = 300) shell peaks at the lowest

transverse displacement, but the load capacity stays positive and the

shell eventually surpasses the critical load in the snapped

confi, ation. Increasing the thickness and stiffening the shell now

has the effect of increasing the severity of the collapse, driving the

curve into the negative load regime of geometric failure. Notice also

that for a shell of this shallowness and thickness range the transverse

displacement at critical load increases with thickness.
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A combination of the effects discussed for the 1/4 and 1 radian

shells above can be seen in Figure B-4, which pertains to the hinged

1/2 radian shell. The 8 ply shell collapses fully. Increasing the

thickness to 24 plies both increases the displacement at critical load

and complicates the equilibrium curve with loops and cutbacks.

Increasing the thickness further to 48 plies settles out the response

so that it snaps through and no longer goes negative, but the

displacement at critical load has decreased. The 96 ply curve

continues the trends seen with the 48 ply case.

Insight into this reversing trend can be gained by considering the

type of deformation occurring in each case. Figure 4-5 is a plot of

the displacement at which load peaks for each shell geometry, plotted

against the thickness parameter R/h. An effect very similar to the one

in Figure 4-3 is suggested when the type of inversion occuring with

each geometry is noted. The data points which fall on an upsloped

curve again correspond to shells which invert locally; those on a curve

downslope correspond to full length-inverting shells (this includes the

peak point on the 1/2 radian curve).

As before in the shallowness comparison, we see in Figure 4-5 that

the 24 ply (R/h = 100) 1/2 radian shell sits at the critical point of

the curve, indicating that the normalized transverse displacement of

the 1/2 radian shell is maximized at this thickness. The observed

trend suggests that the 1 radian shell would have to be thicker (R/h <

25) to invert only locally, and that the 1/4 radian shell will not

invert fuil length until it is thinner (R/h > 300). Common sense tells

us that these curves are shifted in the horizontal direction by the
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shell's "aspect ratio," though, so drawing such conclusions before

* studying the effect of that parameter would not be wise.

Rotation of the shell normal due to transverse shear stress

increases with increasing thickness of the 1/4 radian angle ply shell

* (Table 4-7). Compared to the bending rotation w, , though, the

relative transverse shear strain is minimized with the 24 ply laminate,

and inrreases when thickness is reduced to 8 plies.

Table 4-7. Thickness Effect on Transverse Shear

shell thickness displ w, in location rad % of(#plies, inch) /load, Ibs (x,s) in ,ra %ofw

(/T45/901], 9 = 1/4 radian, clamped

8, 0.04 .137/ 87 3, .75 .212xi0 - 18.8
-2

24, 0.12 .079/ 934 0, .25 .911xlO 15.4

0 48, 0.24 .073/ 4893 0, .25 .208x10-1 38.1

96, 0.48 .091/27041 0, .25 .540xi0 - 69.8

[O/;45/90] , 0 = 1/4 radian, hinged

* 8, 0.04 .120/ 77 3, .5 .169xi0 -2 13.4

24, 0.12 .111/ 846 0, .5 .543x10 2 6.6

48, 0.24 .086/ 3836 0, .25 .172xi0 -1 36.2

* 96, 0.48 .121/25056 0, .25 .511x10 -1 63.5

[0/90], 0 = I radian, hinged

8, 0.04 .437/ 54 0, 1 .139xi0-2  1.0

* 24, 0.12 .460/ 960 0, 1 .114xi0-2  0.7

48, 0.24 .469/ 6560 1, 1 .262xi0 "1 1.7

96, 0.48 .380/35863 .5, 1 .115xI0 1 8.6
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This dip in relative magnitude seen in all of the cases may

correlate to the same geometric effect which causes the peaked curve of

w Pmax vs 6/b and thickness. The deep cross ply shell, though, develops

the lowest absolute magnitude of transverse shear rotation in the 24

ply case. The cause of this unexpected result is unknown, but is not

considered significant because the transverse effects in this pair of

cross ply cases are less than 1% of the bending deformation.

The overall trend of the effect of thickness on transverse shear

strain is depicted in Figure 4-6.

The effect due to thickness is therefore seen to be much like the

effect due to shallowness in the area of maximum presnap displacement,

0.06

clamped 1/4 radian 0/-+45/90s
*3eeee, hinged 1/4 radian 0/-445/90s

-ee hinged 1 radian 0/90s

0.04
0

0

0.02

0 , 0i- I I i I I i I 1 1i i 1 I I I I I I I I I I 1 I I I 1 I I I I

0 100 200 300 400
R/h

Figure 4-6. Transverse Shear Strain vs Thickness
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where a given shell geometry will achieve maximum presnap transverse

displacement at a state which separates snapping behaviors. When a

shell snaps locally, increasing the thickness reduces the pre-snap

deflection. When the shell snaps full length, increasing the thickness

will result in more deformation prior to snap through. The load

capacity scales as a factor of h somewhere between the inplane (h 3) and

bending (h) stiffness effects, and is also affected by geometric

variations. Transverse shear effects decrease with decreasing

thickness, until a critical thinness is reached beyond which the

transverse effects increase again.

Laminate Failure

It has been assumed that ply failure or delamination does not

occur in solving for these equilibrium curves. Since this may not

actually be the case, a study was done to determine when material

failure would be predicted by the stresses developed in the deformed

shell.

The two-dimensional Tsai-Wu failure criterion outlined in Chapter

3 predicts very early failure for this geometry and load configuration.

The onset of ply failure corresponded with the initial dimpling of the

shell, with the attendant large rotations. Extensive ply failure was

predicted for rotations above 2.5 degrees. In the thicker shells, the

laminate was seen to fail even before significant bending occurs, as a

result of the compressive membrane stresses generated by the large

applied load.
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Attributing these ply failures solely to rotation is suspected to

* be inaccurate. Laminated panels have been observed under rotations at

least as large as these, yet the panels did not fail in the gross

manner predicted. The more likely cause for the failure is that such

* rotations in an edge-constrained shell result in deformations with

small radius of curvature near the boundary, which is not taken into

account when computing the magnitude of rotation of the shell middle

• surfdce.

The failure predicted when rotation has not become significant

appears reasonable given the magnitude of the load applied to the

* thicker shells for which this occurs. For example, the 96 ply 1/2

radian shell is predicted to fail by the time the load reaches 10,000

lbs, at which time it will only have deformed 1.6 degrees in bending.

* To study the effect of parametric variations on the snapping

behavior in this thesis, such early material failures had to be

ignored.

4
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V. Conclusions/Recommendations

Conclusions

* This study has pointed out several features of the response of

laminated cylindrical shells to transverse loading, which bear

consideration in the design and analysis of such structures:

1. Between the two layups investigated, the [0/T45/90] was

stiffer for this geometry and load configuration than the [0/90] S

* This conclusion cannot be generalized to say that angle ply laminates

are preferred for transversely loaded cylindrical shells, though,

because these results may have been very different if the [0/T45/901
S

* layup had been compared to a (90/0] which places the cross plies

further from the middle surface to better resist the bending of the

shell.

* 2. Clamping the longit 1inal boundary prevents the snapping of

thicker and more shallow shells. When a thin or deep shell is clamped,

the collapse occurs at less displacement, but displays a simpler

* equilibrium path to second load up than the hinged case. This may

translate to a less violent snap through.

3. A shell with a ratio of thickness to depth (h/2)/6 greater

* than 1 does not appear to snap through or reach any critical points on

its equilibrium curve.

4. The pre-collapse displacement of a hinged shell of given

* thickness, ply orientation, radius of curvature, and length, divided by
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the shallowness factor (6/b), will be maximized at some value of the

* shallowness factor. This peak value of shallowness divides the

response regime between full length and localized collapse.

5. The pre-collapse displacement of a hinged shell of given

• shallowness, ply orientation, radius of curvature, and length, divided

by the shallowness factor (6/b), will be maximized at some thickness.

This peak value of thickness, as with the shallowness in item 5,

• divides the response regime between full length and localized collapse.

6. Transverse shear is a significant effect in the response of a

laminated shell to a transverse point load. While an isotropic shell

* analysis can ignore transverse shear stress, a laminated orthotropic

shell develops nonnegligible transverse effects as bending occurs. The

deformations of the normal to the middle surface of a composite shell

* can be of the same order of magnitude as the bending rotation of the

shell middle surface, which surely qualifies as a significant effect.

7. The angle ply laminate was seen to develop more transverse

* shear strain than the cross ply laminate. Transverse effects were

greater with increased thickness, reduced depth and more rigid boundary

conditions. One exception to all of these trends is the deep thin 1

* radian 8 ply shell, which developed more shear rotation compared to the

24 ply shell, developed more shear rotation in the cross ply layup, and

developed more shear rotation with a hinged boundary.

• 8. The Donnell equations develop significant inaccuracy when

rotations of the middle surface exceed 15 degrees.
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While significant transverse shear stress and strain are developed

in the laminated shells, it appears that the difference in response

seen with the two layups tested here, and in the comparison with the

isotropic shell, is more a result of the difference in shear

stiffnesses. When the geometry of the shell is varied, the transverse

shear strain is seen to vary also, but the nature of the response is

more readily correlated to the geometric parameters than to the

transverse shear. Thus one could conclude that transverse shear

effects have less impact on structural response than geometric effects,

but such a conclusion would be unsupported until comparison with an

analysis which neglects transverse shear strain is performed.

Recommendations

These results were obtained by varying the parameters over very

few values. The effect of thickness, having been investigated at four

values, was the easiest for which to determine trends. The effect of

ply layup and boundary condition, while only assuming two values each,

were still quite readily determined due to the simplicity of their

effect. That is, these effects are not complicated by the geometric

nonlinearity of the structure, as are the thickness and the last

parameter, shallowness.

The effect of shallowness requires further study, since it is

inextricably tied to load path length and panel aspect ratio. Varying

radius of curvature is one option for another study, as is varying

opening angle and panel length together to fix aspect ratio. Each of
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these tests, though, would introduce its own peculiarities due to the

* combination of parameters varied.

The location of the maximum transverse shear rotation was

different with different ply orientation. If the transverse shear

distribution is desired, contour plots of would be of value.

Assessing the impact of transverse shear effects on the response

of a shell could be accomplished by analyzing a similar set of shells

* with a finite element which neglects transverse shear strain.
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Appendix A: Load/Displacement Data

The following pages contain the load versus center transverse

displacement data for the 48 cases analyzed. Each plot applies to one

thickness and opening angle 9, with four curves covering the two ply

layups and two boundary conditions.

* Not all of the curves progress through snap to second load up,

although it is possible with this solution algorithm to trace the full

equilibrium path. Several factors led to considering only the first

• load up and relief for the more convoluted curves:

1. In practical applications, a curved shell structure should be

designed so as not to dynamically snap. The full length

* inversions seen at the onset of the severely snapping

equilibrium curves (i.e., the 0 = 1/2 radian, 24 ply hinged

case) would therefore indicate structural failure, beyond

* which analysis is not too useful.

2. Once snap through begins, the problem becomes a dynamic one,

and static analysis may lose its utility.

* 3. The computer time required to trace the full path is

prohibitive with these meshes with 250-plus nodes. Each path

increment step required an average of 50 minutes of CPU time

* for solution. Further, the actual path traversed to the

snapped state may be very different than the mathematical one

solved for numerically here.
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* Appendix B: Plots of Thickness Variance

The response of each of the geometries at the four thicknesses

* analyzed is presented. The load values have been normalized by

dividing by (thickness) 3xlO 6 , equivalent to normalizing to bending

stiffness. This normalization is most appropriate to the least shallow

* geometry, which exhibits the most bending, but it allows comparison of

the features of the shallower shells as well.
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Appendix C. Deformation Histories

This appendix contains the deformed contours at key points ofthe

load - displacement curves of selected cases. Each type of response is

represented here, to give a physical understanding of the shell

deformation corresponding to each type of load curve. Contours for

both layups are included for a couple of the cases to allow for

qualitative comparison of the responses.
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Block 19 Abstract

The static response of a laminated graphite/epoxy circular
cylindrical open shell subjected to an inward point load is
numerically investigated. The analysis uses a quasi two-
dimensional thin shell finite element which incorporates
parabolic transverse shear stress through the thickness, and
uses either large displacement/rotation kinematics or a simpler
Donnell formulation. A Riks solution algorithm enables
tracking through critical load and displacement points during
snap through. Ply layup, thickness, central angle and
boundary conditions are independently varied. A ccraparison
Of Donnell and exact solutions is included.


