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* My objective in writing this thesis was to employ

fractional order time derivatives to build a new model of

aeroelastic behavior. My approach allows an intuitive and

direct solution to the equations of aeroelastic instability.

S I have restricted my development to an airfoil section in

freestream flow, so it should provide a solid base for more

complex models incorporating additional equations for three

dimensional effects.

I wish to express my heartfelt thanks to LtCol Ronald

Bagley. Without his guidance and encouragement I could not

have begun this work.

I I would also like to thank Ted Fecke and the

propulsion lab for their support and interest in this basic

development. A word of thanks to the flight dynamics lab as

well for providing me with some insight regarding current

I applications of aeroelastic modeling.
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This thesis introduces a new model of aeroelastic

behavior. It simplifies the unsteady aerodynamic force

expressions by employing fractional order time derivatives

to create a compact fractional order polynomial that models

unsteady aerodynamic forces in the transform domain.

To solve the flutter and divergence problems, the

i equations of motion for a typical section are expressed in

fractional form. The resulting structural and aerodynamic

equations of motion can be combined into a single fractional

derivative eigenvalue problem. This approach allows a5 solution to the stability of a lifting surface which obtains

the system eigenvalues directly rather than relying on a

* separately defined stability parameter.
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I. Introduction

* The purpose of this study was to develop a closed form

approximate solution to the aeroelastic instability problem.

While the intended application is in turbine blade instabil-

ity, this study develops a basic model not limited to

internal flow. The concepts presented are equally appli-

cable to typical section approaches to wing instability and

* can be generalized to treat airfoils with control surfaces.

Aeroelasticity

* The typical section model of an airfoil has a long

history of use by aeroelasticians. Most methods of

* determining airfoil flutter characteristics have their roots

in the typical section model. Early work by Theodorsen and

others provided an exact solution for the two-dimensional

flow of an incompressible fluid around an infinitely thin

* flat plate with a wake composed of a plane vortex sheet

(smooth trailing edge flow) (17:6-7).

Theodorsen went on to develop a transcendental func-

tion which describes the variation in lift due to circu-

* lation resulting from the simple harmonic motion of an

oscillating plate. Theodorsen's function describes the

reduction and phase shift of lift with increasing "reduced

frequency" (k = wb/U or actual frequency multiplied by the

semi-chord and divided by the freestream velocity). The

difficulty with this approach is that, since Theodorsen's

I1I
I



i
I

function is difficult to pose as a time domain operator, it

has typically been applied only to aerodynamic forces resul-

ting from pure sinusoidal motion. This has helped various

"indirect" methods to retain their popularity (6:106).

Indirect approaches to the aeroelasticity problem rely

on the creation of a "stability boundary", with instability

presumed to occur when one of the limits of such a boundary

is exceeded. While such methods provide good estimates of

critical flutter speeds, it is difficult to interpret their

results in terms of stability margins. Since these methods

rely on the disappearance of a neutral stability solution,

they cannot give precise information about the actual

behavior of a system away from its critical points (3:564-

U 568), (4:235).

* One such approach to finding critical flutter speeds

is the "U-g" method. It employs an artificial structural

damping factor, g, which is allowed to vary with airspeed.

The "stability boundary" for this method is g < 0; when g is

negative, the structure "adds" energy to reach a neutrally

stable condition. The system becomes unstable when a

* positive g would be needed to produce a neutral stability

solution (3:561-568).

* A more straightforward approach of solving for the

eigenvalues of the system has received more attention in

recent years. The eigenvalue solution provides a natural

stability limit at the imaginary axis, a simple solution to

the instability (flutter or divergence) speeds, and a good

measure of the degree of stability at a given speed.

I2
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I Er a _tianal Calculus

I The power previously demonstrated by the fractional

calculus in modeling frequency dependent properties and

describing linear phenomena (2:741-742) indicated that a

fractional calculus based model might produce an accurate

approximation to the reduction in lift and shift in phase

angle following airfoil movement modeled by Theodorsen's

function. Existing approximations to Theodorsen's function,

such as the Pad6 polynomial and R. T. Jones approximations

I (8:215,344), (11:31-38), (16:6,7) use integer power

polynomials which are the Laplace transforms of exponential

functions and their integer derivatives. The fractional

derivative, as defined in equation (1), has a Laplace domain

* transformation which yields a fractional power of the

Laplace variable corresponding to the order of the

derivative as shown in equation (2).

Da<x(t)> 1 d1 ()

F(1-a) dt 0 (t-T)a

L{Da<x(t)>} = saL{x(t)) (2)

* A fractional calculus based "generalized polynomial"

would contain fractional powers of the Laplace variable.

Such a polynomial would be a Laplace transform of a

generalized exponential function.

I The model based on this concept and presented in this

work has the advantages of accurate modeling of Theodorsen's

function in a very compact form, consistent time-domain

representations of lift, and a direct eigenvalue solution.

I3
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I The first step in development of a fractional

derivative model of aeroelasticity is the accurate modeling

of the Theodorsen function. The Theodorsen's function model

can then be used to develop the time domain responses of the

system. The common aeroelastic functions which describe

such time responses are Wagner's and KUssner's functions.I
TEbledorsen's FunctionI

Theodorsen's function is a transcendental function of

reduced frequency (k = wb/U) and is an exact expression used

to construct the circulatory aerodynamic forces resulting

from the haimonic oscillation of a flat plate in an

incompressible flow (8:212-215). Various expressions are

available depending on the desired argument. Equation (3)

is an exact expression of the Theodorsen function on the

imaginary axis. (This function will operate throughout the

complex plane if ik is replaced by a complex variable, 9.)

I C(ik) = Kl(ik)/[KO(ik)+Kl(ik)] (3)

I Kn(ik) is a modified Bessel function of the third kind

of order n with an argument on the imaginary axis. The real

part of the Theodorsen function varies from 1.0 to 0.5 as

its argument varies from zero to infinity, so modeling this

function using a polynomial requires that the ratio of coef-

ficients of the lowest order term must be 1.0 while the

ratio of coefficients of the highest order term must be 0.5.

Adding parameters to improve the fit of integer power

I4
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polynomials means adding higher powers of the argument. By

3 introducing a fractional power as a parameter, the function

fit may be manipulated by reducing the order of the poly-

3 nomial to a fractional value as shown in equation (4).

C(9) = (I + Fg13 )/(1 + 2F a) (4)

Optimizations of a fractional order polynomial model

of the Theodorsen function over several decades of reduced

frequency result in a fractional exponent near 0.82. Since

the optimum is not too sensitive to this exponent, a ratio-

nal exponent of 8 = 5/6 was chosen to simplify the treatment

of the resulting equations. The fractional term coefficient

F was then optimized for a wide frequency range resulting in

3 a value of F = 2.19. The fractional calculus model shown in

equation (4) will be shown to have good accuracy over all

* reduced frequencies and a wide range of complex arguments.

3 Figures I through 3 show the relative accuracy of

various approximations to the Theodorsen function. The

accuracy of fit is compared to the Theodorsen's real and

imaginary parts over four decades of reduced frequency using

3 a root mean square error measure.

Figure I shows the Theodorsen function compared with

3 the polynomial model developed by R.T. Jones and used by the

aeroelasticity module of NASTRAN (16:7) given in equation

3 (5). The root mean square error for this model is 0.047.

N bn n = 0 1 2
C(g) Z Z bn = 1 -. 165 -. 335 (5)

n=O 1+Bn/9 an = 0 .0455 .300

I
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Figure 2 shows the Theodorsen function vs a third

3 order Padd Polynomial Model given by equation (6). The root

mean square error for this model is 0.134.

I (g)3 + 3.5(g)2 + 2.7125(i,) + .46875
C(g) _Z (6)

3 2(9) 3 + 6.5(g) 2 + 4.25(g) + .46875

3 Figure 3 shows the Theodorsen function compared with

the fractional calculus model given by equation (4). The

3 root mean square error for this model is 0.031.

In addition to providing an accurate model of the

function for a wide range of imaginary frequencies, the

model should be accurate for complex arguments. Since

3 Theodorsen's function is composed of transcendental

functions (Bessel or Hankel functions) it has typically been

* approximated by truncated series expansions or rational

polynomials. Many of the approximations for these functions

3 are useful only over a limited range of arguments or cannot

be used for complex arguments.

H Early work by Luke and Dengler (14:478-483) attempted

3 to expand Theodorsen's function to treat the generalized

oscillations associated with complex arguments. While the

tables they generated were submitted without proof and were

rejected in a series of papers (18:209), (13:212), (12:213)

much of their work was useful. They introduced the use of

R.T. Jones' approximation as a model of the generalized

Theodorsen's function. Recent work by Edwards (7:18-24) has

provided a rigorous proof of the existence of a generalized

Theodorsen's function in the form of equation (7) and shown

3 9I
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that generalized aerodynamic loads resulting from arbitrary

3 airfoil motions can be adequately treated using this

function.

I C(9) = Kj(9)/[K0 (§)+Kj(9)] (7)

3 Kn(9) is a modified Bessel function of the third kind

of order n with a complex argument. This indicates that an

approximation to Theodorsen's function should be able to

treat fully complex, rather than only imaginary, arguments

over a wide range of reduced frequency. This will allow

treatment of the stable behavior of an airfoil as well as

3 divergence and flutter predictions.

3 Since the generalized Theodorsen function operates

throughout the complex plane, it is more difficult to

3 approximate than the function restricted to the imaginary

axis. Figure 4 shows the generalized Theodorsen function

3 C(9) = F(9) - iG(§) of argument 9 = rei O  for several values

of e as calculated by Edwards (7:22). Figure 5 shows the

3 generalized Theodorsen function calculated using the NASTRAN

model. Note that the NASTRAN approximation loses accuracy

as it approaches the negative real axis where its poles

occur. The imaginary portion actually collapses back to

zero when the argument lies on the negative real axis.

Figure 6 shows the generalized Theodorsen function

3 calculated using the fractional calculus model.

I
I
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For complex arguments near the negative real axis, the

3 fractional calculus model is an excellent approximation of

Theodorsen's function. The fractional calculus model follows

* the trends of Edwards' values throughout the complex plane.

Even in the areas approaching the negative real axis,

however, the fractional calculus model is more accurate than

other representations. Other models have negative real

3 poles in the primary Laplace plane which cause more distor-

tion near the negative real axis. This overall accuracy

3 allows the fractional calculus model to simultaneously

predict the critical speed at which an airfoil begins either

unbounded oscillations (flutter) or a monotonic increase in

position (divergence).

3 Given that a model of Theodorsen's function is

sufficiently accurate, it should be possible to model the

forces arising from an unsteady flow. The next step in

modeling Theodorsen's function is to compare the model to

3 existing data.

3 Experimental Data

3 The forces on an airfoil oscillating harmonically in a

steady flow are described by the Theodorsen function. NASA

3 Ames has published an extensive set of experimental data for

oscillating airfoils in subsonic flow. The data in this

3 section represent a 64A010 airfoil oscillating in pitch in a

high Reynolds number subsonic flow (5:40).

* The fundamental frequency component of the varying

i dynamic pressure at each point along a thin airfoil can be

I14
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U
interpreted as a complex number which indicates its magni-

tude and phase shift with respect to an input motion (5:11).

This complex pressure can be modeled using Theodorsen's

function. The magnitude of the contribution of each point

to the overall lift coefficient varies along the airfoil,

* but the pressure at each location can be modeled using a

fractional calculus form of Theodorsen's function plus a

scaled contribution to phase lag as shown in equation (8).

The scaling factors A and d vary with chord location (x).

I p = A(x)C(ik) + d(x)(ik) (8)

* Figure 7 shows the variation in frequency dependent

pressure coefficient at a typical chord location (x=.033c).

Figure 8 shows the variation of the phase lag scaling fac-

tor, d, along the airfoil chord. Other pressure coefficient

plots for other chord positions are given in Appendix A.

I The theoretical expression for the lift coefficient,

equation (9) (17:12), depends on the Theodorsen function and

* varies with reduced frequency.

C1 = A(C(ik) + 0.Sik] (9)I
This form should result from the integration of the

pressure coefficients over the entire airfoil. Equation (9)

indicates that the net contribution of the phase lag scaling

* factor to the overall lift coefficient should be 0.5.

Figure 9 shows the actual data from the NASA test compared

to a fractional calculus model of equation (9).

I
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The fractional calculus model of the Theodorsen

function serves as a sound foundation for modeling

experimental data. It captures the theoretical behavior of

the function and so provides a good model of the physical

behavior of an airfoil in simple harmonic unsteady flow.

1

I
i
I
I
I
I
I
I
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I
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I III. Time Domain Functions

One approach to applying Theodorsen's function to more

generalized unsteady flow is to find the time domain

I response of a typical section to a prescribed flow

condition. Wagner's function and KUssner's function are

3 common time domain representations of the response of a

typical section to unsteady flows. Both are dimensionless

scaling functions which modify the lift which would act on a

typical section if the flow were "steady" at the new values.

As a result of this, both functions approach unity for large

arguments as the lift builds to its steady state value.

I Wagner's function is the time domain response of the

Theodorsen function to a unit step change in circulation.

* It represents the effect of a sudden change in angle of

incidence or vertical gust velocity on unsteady circulatory

3 lift. It may be found by solving the convolution of the

time domain transform of Theodorsen's function with the unit

I step function (3:284).

The convolution which produces KUssner's function is

somewhat more complex. KUssner's function is the time

I domain response of Theodorsen's function to a sharp-edged

change in vertical gust velocity as it is entered by a

I typical section. This results in a convolution of the time

domain transform of Theodorsen's function with a travelling

I wave. Both of these convolutions are performed in the

Laplace domain and transformed to provide time domain

I expressions.

20I
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I Wagner's Function

I Wagner's function, kl(O), describes the time dependent

circulatory lift of an airfoil in incompressible flow

resulting from a step change in circulation. As a result,

Wagner's function is a convolution of Theodorsen's function

with the unit step function. While this approach is

conceptually simple, it is not possible to evaluate the

exact convolution integral in terms of simple functions.

* Wagner's function has been approximated by convolution

of small argument expansions of the Bessel functions (17:32-

36), and has various polynomial and exponential

approximations (8:207). The fractional calculus model of

Theodorsen's function, however, leads to a simple and

accurate representation of Wagner's function through an

inverse Laplace transform. In order to find this

approximation of Wagner's function, it is necessary to

3 employ a binomial expansion on the Theodorsen function's

fractional calculus model. Equation (10) shows the

3 fractional calculus model written in a familiar form to

allow a binomial expansion.

I 1+ Fa1 1
C(i) I + - - (10)

1 + 2FiS 2 4F9 I- [2FOIJ

The binomial expansion leads to a series in the form of
equation (11).

-~) I - I FF ,]- n]-(11)I - ~~2 n= LL2Fg]J(1n=0

I
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Each term in the series representation of C(9)19 in

equation (11) has a known inverse Laplace transform, so the

convolution integral may be evaluated by multiplication in

the Laplace domain. Wagner's function can be defined as

kl(a) = L-I(C(9)/)} where a = tU/b is dimensionless time as

shown in equation (12). Equation (13) gives the transformed

equivalent in the time domain.

kl(a) = L-1 { 2 [L +i1 (12)
Ln= 0

- u 1(o) - I [[_n_ J J (13)
n=O r(l+nB)

I The series in equation (13) is a special case of a

generalized exponential function called the Mittag-Leffler

function Ea(x) (15:102). The definition of the beta order

Mittag-Leffler function is given in equation (14)

I n (14)

n=L r(l+nB)

k (a) = u-l(o) - I Ea (15)
2 (2F)1 /8

3 Figure 10 shows the Mittag-Leffler (order 3=5/6)

approximation to Wagner's function from equation (15)

plotted against values calculated by Sears (17:38) using

several Bessel function expansion equations. Several

I equations were necessary to approximate Wagner's function

I
I 22
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since tile Bessel functions Sears used
Iapply only tolmtdranges ofthe argument.

I 's

I F uner's functionre cW

i Figurse 10 Waguner' Funtio

i Kiissner's function is more complex than Wagner's. It

is a time domain representation of the response of an

airfoil section to a change in circulation resulting from a

sharp-edged change in vertical gust velocity. It describes

the change in circulatory lift on an airfoil in initially

steady flow as it penetrates a step change in vertical gust

velocity (3:286-289). As with Wagner's function, there is

no way to evaluate the exact integral in terms of simple

functions. The exact definition of KUssner's function is

I giv'en in equation (16).

3 k2 (o) = L-{e-'[(I 0 (9) - I1 ( ))C(9) + I1 (9)]} (16)

I23
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By introducing the fractional calculus model of the

Theodorsen function, this can be rewritten as shown in

equation (17). The inverse Laplace transform results in the

integral approximation given in equation (18).

k2 (o) = L-l(e-SI 0 (9)C(s) + esIl()(i-C(9)]} (17)

0 d [-e(G-T)] T [u_I(T) - u_1 (T-2)]
k 2 (o) = do dT

0 'WT(2-T)]

+ (1-°)[u-i(o) - u-I(c-2)] (18)

S[o( 2-o)]II
KUssner's function can not be readily simplified from

this form. Various other integral forms of this function

are available for numerical calculations, but the most

common representation used are exponential approximations

(3:285-288), (8:344-348).

I
I
I
I
I
I
I
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IV. Flutter Prediction

In order to predict system instability, we need to

determine the system's eigenvalues. The eigenvalues can be

found by solving the eigenvalue problem for a typical

airfoil section. Figure 11 shows a typical airfoil section

with its characteristic parameters.

Figure 11. Typical Section Geometry

I x

I

U XaU

I For a two degree of freedom model of an airfoil, the

Laplace domain equations of motion are written in matrix

form in equation (19). (7:7-8,165-167)

([Mls 2 + [K]){xs) = [LI~xs)/msb2  (19)

Here

U M] I [ x ra [K] 'O~h: ] (xs [c
The mass/inertia matrix [M] contains terms which

I describe the nondimensionalized structural mass properties

of the system. The lift and moment on the section are

* 25
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coupled by xa which represents the static imbalance between

the center of lift and center of mass for the section. The

ra term is the nondimensionalized section radius of gyration

which represents the rotational inertia of the system.

The stiffness matrix [K] contains terms which

represent the linear and torsional stiffness associated with

the airfoil. These stiffnesses are nondimensionalized to

produce the system's natural frequencies Wa and Wh"

The lift matrix [L] is more complex. It contains

terms which describe both the circulatory and non-

circulatory lift acting on an oscillating airfoil. The

circulatory terms are described by Theodorsen's function.

The nun-circulatory terms arise from the "apparent mass"

lift which results from the displacement of fluid by the

oscillating airfoil (8:446-447).

[L] = {[Mnc]s 2 + ([Bnc] + C(g)[Bc]}(U/b)s

+ C(9)[Kc](U/b)21/WM (20)

Here

U [fnd _W F ir a a)1 [BncI a 0 _ 1
nwa -i(1/8 + a) 0 W(a- )

(Bca+ (a+)(-a) c = 2w 0 (a+ )

These equations can be reduced to the eigenvalue

problem by eliminating the Laplace domain state vector

associated with the matrices. This results in what would be

a standard eigenvalue problem form if the matrix [L] shown

I

I
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in equation (21) were not a function of the Laplace

variable, 9.

{[M]s 2 + [K] - [L]/msb 2 ){xs) = {0} (21)

The circulatory lift terms in this equation are

described by Theodorsen's function, and the Bessel functions

which define Theodorsen's function are transcendental. This

means that the equation in exact form cannot be cast as an

algebraic eigenvalue problem having constant matrices

multiplied by integer powers of the Laplace variable, s.

To overcome this obstacle, Edwards employs an

iterative "gradient search" method which begins with an

initial guess for each eigenvalue and iterates toward a

solution based on a series expansion of the Bessel functions

in Theodorsen's function. By using the fractional calculus

model of Theodorsen's function, constant coefficient

* matrices can be separated from the frequency dependent terms

in the equation. This produces a set of differential

equations of fractional order. It would be possible to use

this approach with a polynomial approximation, but the poor

* accuracy of such functions for complex arguments (as shown

previously) would color any results.

I
I
I
I

I



Fractional Approach

To construct the fractional order eigenvalue problem,

it is convenient to multiply equation (21) by the

denominator of the Theodorsen function model as shown in

equation (22).

I (1+2F95/ 6 )([M]s 2 + [K) - [L]/msb 2 }{x s} = (01 (22)

I Note that the Theodorsen function operates on a non-

dimensional Laplace variable s = sb/U. It is necessary to

I extract these nondimensionalizing factors from the

Theodorsen function to solve the characteristic equation.

* There is no simple way to factor a constant out of the

argument of the exact representation. The fractional

3 calculus model however, allows the dimensional terms to

appear explicitly as shown in equation (23).

([M](s 2+2FsI 7 /6 (U/b) 5 /6 )

+ (1+2Fs 5 /6 (U/b)-5/6 ){[K] - [L]/msb 2){x S = (01 (23)

Using the definitions of these matrices given earlier,

this expression can be expanded to the form given in

equation (24). (A more complete development of this

equation is provided in Appendix B.)

3 {s17/6 2F(U/b)-5 /6([M] - [Mnc]/w}

+ s2 ([M] - [Mnc]/WO}3+ si1/6 (U/b)F{2[Bnc] + [Bc]1/rp

- s (U/b)([Bc] + [Bnc]}/wp

+ s5/6 F(2[K](U/b)-5 /6 - (U/b)7 /6 [Kc]/wp}

+ [K] - (U/b)2 [Kc]/1.L1{Xs1 - (01 (24)

I

I
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For simplification, the matrices associated with each

fractional power of s will be given the distinct notation of

equations (25) through (30).

I [ml] = 2F(U/b)- 5 /6{[M] - [Mnc]/wP) (25)

[m2] = {[M] - [Mnc]/wlL) (26)

I [m3] = (U/b)F(2[Bnc] + [Bc]1/np (27)

[m4] = (U/b){[Bc] + [Bnc]l/ffI (28)

I [m5] = Ff2[K](U/b)-5 /6 - (U/b)7 /6 [Kc]/n}I1 (29)

[k] = [K] - (U/b)2 [Kc]lI (30)

Given these matrix definitions, equation (24) is rewritten

{[ml]s 1 7/6 + [m2]s 2 + [m3]sll/ 6

+ [m4]s + [m5]s 5 /6 + [k]}{Xs = {0) (31)

The system eigenvalues and the general solution to

equation (31) can now be obtained directly. Fractional

order differential equations can be solved numerically and

several evaluation techniques, such as the spectrum shift

and modified matrix iteration techniques, have been

developed for numerical analysis (9:6-18). These methods

can be used to solve the eigenvalue problem.

3 Rather than introduce these techniques, this thesis

will present an eigenvalue solution using a simpler

Salgebraic technique. This solution to the fractional order

state equation has been published (1:488-489) with an

example for 1/2 order fractional powers. The penalty for

constructing the equations using this technique is a higher

order equation. The solution for the 1/6 order state

equation yields a pair of real, symmetric matrices of order

I
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34. These "pseudomass" [M] and "pseudostiffness" [A]

I matrices now form the equation of motion for an airfoil.

The fractional order equations of motion are shown in

3 equation (32) where {X} is a state vector containing all the

fractional derivatives of the heave and pitch coordinates of

3 order 0 to 16/6 in increments of 1/6.

s'/ 6 [M (X) + [K]{X) = (0) (32)

Here [M] =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ml
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ml 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ml 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ml 0 0 00 0 0 0 0 0 0 0 0 0 0 0 ml 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ml 0 0 0 0 m2
0 0 0 0 0 0 0 0 0 0 ml 0 0 0 0 m2 m3
0 0 0 0 0 0 0 0 0 ml 0 0 0 0 m2 m3 03 0 0 0 0 0 0 0 ml 0 0 0 0 m2 m3 0 0
0 0 0 0 0 0 0 ml 0 0 0 0 m2 m3 0 0 0
0 0 0 0 0 0 ml 0 0 0 0 m2 m3 0 0 0 0
0 0 0 0 0 ml 0 0 0 0 m2 m3 0 0 0 0 m4I 0 0 0 0 ml 0 0 0 0 m2 m3 0 0 0 0 m4 m5
0 0 0 ml 0 0 0 0 m2 m3 0 0 0 0 m4 m5 0
0 0 ml 0 0 0 0 m2 m3 0 0 0 0 m4 m5 0 0
0 ml 0 0 0 0 m2 m3 0 0 0 0 m4 m5 0 0 0Iml 0 0 0 0 m2 m3 0 0 0 0 m4 m5 0 0 0 0

I [K] =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -ml 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -ml 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -ml 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -ml 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -ml 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -ml 0 0 0 0 -m2 0
0 0 0 0 0 0 0 0 0 -ml 0 0 0 0 -m2-m3 0
0 0 0 0 0 0 0 0 -ml 0 0 0 0 -m2-m3 0 0
0 0 0 0 0 0 0 -ml 0 0 0 0 -m2-m3 0 0 0
0 0 0 0 0 0 -ml 0 0 0 0 -m2-m3 0 0 0 0
0 0 0 0 0 -ml 0 0 0 0 -m2-m3 0 0 0 0 0
0 0 0 0 -ml 0 0 0 0 -m2-m3 0 0 0 -m4 0
0 0 0 -ml 0 0 0 0 -m2-m3 0 0 0 0 -m4-m5 0
0 0 -ml 0 0 0 0 -m2-m3 0 0 0 0 -m4-m5 0 0

00 -ml 0 0 0 0 -m2-m3 0 0 0 0 -m4-m5 0 0 0
-ml 0 0 0 0 -m2-m3 0 0 0 0 -m4-m5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k

I 30
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The eigenvalues of the equation in this form can be

3 found using most common matrix manipulation programs without

using the specialized solvers mentioned earlier. Appendix C

3 contains a simple MATLAB algorithm implementation of this

solution. This solution yields 34 eigenvalues in the

3 Laplace sl/6 plane. Only two pairs of these eigenvalues

(those on the primary branch) will map into the primary

3 Laplace s plane. These eigenvalues correspond to the pitch

and plunge degrees of freedom of the typical section. The

3 remaining eigenvalues fall on other Riemann sheets when

mapped under the z6 transformation from the sl/6 plane to

the s plane.

Figure 12 shows a typical distribution of eigenvalues

3 in the sl/6 plane produced by a MATLAB matrix solution for

U/b=300. Each primary branch eigenvalue in the sl/6 plane

* can be raised to the sixth power to map it onto the standard

Laplace plane. Figure 13 shows the standard Laplace plane

3 with the primary branch eigenvalues from Figure 12 mapped

into their proper locations.

I The stability of the system is easily determined since

the system eigenvalues are known. A complete root-locus

plot of the system eigenvalues can be generated by varying

the airspeed factor U/b. The flutter speed occurs when one

of the system eigenvalues crosses the imaginary axis into

the right half s-plane. Divergence occurs when one of a

pair of eigenvalues which have reached the negative real

i axis crosses onto the positive real axis.

I

I
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3 Comparison With Existing Methods

I Few methods exist for determining aeroelastic system

stability by actual extraction of system eigenvalues. The

3 value of such methods has been known for some time. Goland

and Luke presented an early attempt at finding flutter speed

3 by iterative calculation to find aerodynamic damping

(10:389-395). More recently, Edwards has presented a modern

3 gradient search method of iteration for section eigenvalues

(7:45-51). In the same paper, he introduces a Padd

approximate and augmented states solution for system

eigenvalues. This method produces a state equation of

3 higher order and requires considerable manipulation of the

original equation to reach a solvable form (7:63-72).

I Figure 14 shows the root locus plot generated by Ed-

wards using his iterative solution (7:51). Figure 15 shows

the root locus plot generated by the fractional order state

* equation solution.

The fractional solution models the behavior and

3 magnitude of Edwards' solution quite well. The actual

flutter speed of the models varies slightly because Edwards'

3 model includes the effect of an unbalanced trailing edge

flap.

[
[
[

I
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I VI. Summary and Conclusions

I The fractional calculus eigenvalue problem formulation

has a number of advantages over existing techniques. It

provides a graphic and accurate analytic description of sys-

tem stability, a measure of the rate of approach to insta-

bility, and a form ideal for stability and control analysis.

3 The fractional order state equation method provides

several advantages over the series expansion approximations

3 of the Theodorsen function. The fractional calculus model

is accurate over many decades of reduced frequency; the

series expansions require either large numbers of terms or

more than one series to provide accuracy for both large and

3 small arguments. The fractional calculus model captures the

complete behavior of the function, but does not produce

3 transcendental characteristic equations. This makes the

model easier to manipulate mathematically and allows the

3 nondimensionalizing constants in its argument to be easily

factored out. The model has a known inverse transform, so

3 it yields consistent approximations to time domain

functions. These advantages over the series approximation

3 to the Theodorsen function allow the development of an equa-

tion of motion with constant coefficient matrices.

U The fractional order state equation method also

provides several advantages over the integer polynomial

approximations of the Theodorsen function. The polynomial

models can be used to develop equations of motion with

constant coefficient matrices, but problems arise. The poor

accuracy of polynomial models for fully complex arguments

37I
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make it difficult to apply them to decaying unsteady

motions. The negative real poles of integer polynomial

models make them difficult to apply to divergence instabi-

* lity. These poles must be shifted away from the axis to

produce a divergence model in addition to a flutter model.

3 The fractional calculus model avoids this problem since it

does not have poles on the principal branch of the s plane.

U The fractional calculus model has fewer parameters

than any other available approximation. It reproduces the

trends of the Theodorsen function with good accuracy for all

arguments, and so can be employed in a wide raig e )f

* unsteady motions.

3 The advantages of the fractional order state equation

model make it an ideal tool for modeling unsteady aeroelas-

ticity. It is a simple concept which can be generalized to

more complex models. The necessary equations for including

3 the effects of control surfaces are given by Edwards (7:7-

8,165-166). It could be adapted for use in existing models

3 of three-dimensional aeroelastic behavior, such as turbine

blade dynamics or helicopter rotor dynamics, which rely on

3 eigenstructure determination.

In summary, the fractional order state equation model

3 has been shown to be an effective tool for aeroelastic anal-

ysis. Its form is compatible with existing control theory

3 analysis techniques and will integrate easily with them. It

gives a compact, accurate and flexible approximation to the

m effects of unsteady flow and allows direct solution of the

forces on an airfoil.

m
*m3
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Appendix A: Come Pressure Coefficient Data

I This appendix compares fractional approximations of

unsteady aerodynamic pressures to data on an airfoil (NACA

64A010) oscillating in pitch about 1/4 chord at Mach 0.5 and

Reynolds ;P = 9.9E6 (5:15). The real and imaginary parts of

the complex pressure are modeled using equation (8).

C = A(x)C(ik) + d(x)(ik) (8)

Data Model

Upper Surface Complex Pressure Coefficient

Real Imaginary

A(x=.033) = -12
d(x=.033) = 4

-16

Re C Im C

p pI
4 -. -4--

0 k 0.35 0 k 0.35

A(x=.091) = -8.2
d(x=.091) = 0

-16 -1I
Re C Im C

i pP

I4 4
0 k 0.35 0 k 0.35

I

I



I
Upper Surface Complex Pressure Coefficient

Real Imaginary

A(x=.243) = -5.2

d(x=.243) = -2.5

3 -16 -1

Re C Im C

p pI
4 ....4 0 k 0.35 0 k 0.35

A(x=.402) = -3.7d(x=.402) = -3.5

3 -16 -1

I Re C Im C
p pI

4.. . . .. 4 . .. . . .
0 k 0.35 0 k 0.35

A(x=.440) = -2.9
d(x=.440) = -2.9

-16 ..- 1

Re -C Im CI p P.

I 4.4

0 k 0.35 0 k 0.35

I
I

I



I Upper Surface Complex Pressure Coefficient

Real Imaginary

I A(x=.584) = -1.7
d(x=.584) = -3.5

--16 -

IRe C IM C
p p.

I4
30 k 0.35 0 k 0.35

A(x=.733) = -1
d(x=.733) = -3 -

-16

Re C IM C

*p p

0 k 0.35 0 k 0.35
A(x=.941) = -.15
d(x=.941) = -1.6

-16 -

Re C IM C

p p.

I 4 -- 4 .---- ---.-

0 k 0.35 0 k0.33
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I Lower Surface Complex Pressure Coefficient

Real Imaginary

I A(x=.034) = 13.5
d(x=.034) = -.

161

I Re C IM C:
p p

-4 - -4

0 k 0.35 0 k 0.35

A(x=.094) = 8.3
d(x=.094) = -1. 1

16

Re C Im C

Ip p

I0 k 0.35 0 k 0.35

A(x=.243) = 5
d(x=.243) = 2.5. 1

16

Re C Im C
p -,p.

0 k 0.35 0 k 0.35
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* Lower Surface Complex Pressure Coefficient

Real Imaginary

I A(x=.341) = 3.9
d(x=.341) = 3.5

16.

Re C Im.G
p p.

-4 .~-4

0 k 0.35 0 k 0.35

A(x=.394) = 3.2
d(x=.394) = 3.5

Re C Im C

I p

0k0. 35 0 k 0 .35

A(x=.582) = 1.7
d(x=.582) = 4

161

Re C Im CIp p.

I -4 - -4
0 k 0.35 0 k0.35
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Lower Surface Complex Pressure Coefficient

Real ImaginaryI A(x=.733) = .9
d(x=.733) = 3

16

Re C JIM C
p p

-4 -4
0 k 0.35 0 k 0.35

A(x=.923) = .15
d(x=.923) = 1.3

161

Re C JIm C

I-4 -4
0 k 0.35 0 k 0.35
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Appendix B: Fractional Order State Equation

Given the system elgenvalue problem (B.1), we must

first multiply all terms by the denominator of the

3 Theodorsen function model (1+2F93/6). This produces

equation (B.2).

I {t[M~s2 + [K] - [L]/(msb2 )}{xs1 ) (B. 1)

3 { [M](s2+2Fs 2 g5/6 )

+(l+2Fg 5 /6 ){[K]-[L]/(msb2 )} ){xs) = {O} (B.2)

USince only the terms in [LI contain C(s) as shown in

3 equation (B.3), we can reform equation (B.2) as (B.4).

[LI = ([MncIs 2 + f[BncI + C(s) [Bc]D(U/b)s

+ C(s)[Kc](U/b)21/ 4 L (B.3)

3~ ~ I MIks 2+2Fs2 g5 /6) + (1+MF5/6)[K]

- (1+2Fg3/6 )t[M ncls 2 + [Bncls )/(fPh))

3 + (1+Fg5 /6 ){[B0 ]s + [Kc]/(wp)) ){xs) = (0) (B.4)

The nondimensionalizing constants in s = sb/U can be

factored out to provide a consistent function of a single

3 Laplace variable s. This results in equation (B.5)

{[MI(s2+2Fs 2(bIU)51 6s5/6 ) + (l+2F(b/U)5 /6 s5 /6 ) [K]

-(l+2F(b/U)
5/6 s5 /6){[M ncls 2 + [Bncls )/(WPi))

3+ (1+F(b/U)5 /6 s5 /6 ){[B0Js + [KC]1 )(xs1 = {O (.3

* 45
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Carrying out the multiplication and grouping like

order terms reduces the equation to constant matrices and

fractional powers of s as shown in equation (B.6).

I { s17/6 2F(U/b)- 5 /6{[M] - (Mnc ] / w }

+ s2 {[M] - [Mnc]/wil}

+ sll/ 6 (U/b)F2[Bnc] + [BcI}/wp

- s(U/b){[Bc] + [Bncl)/i

+ s5 /6 F{2[K](U/b)-5 /6 - (U/b)7 /6 [Kc]/p}

+ [K] - (U/b)2 [Kc]/rfL ){x s} = (0) (B.6)

In this form, the state equation can be solved

directly using the spectrum shift or modified matrix

iteration techniques or by the matrix expansion method

3 (1:488-489). The "pseudomass" and "pseudostiffness"

matrices generated by the matrix expansion method are given

in equation (32). Appendix C is a MATLAB routine for

solution using this method.

I
I
I
I
I
I
I
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Appendix C: MATLAD Matrix Construction, and Solution

% Input routine for development of Pseudomass and
% Pseudostiffness matrices

mu=input('Enter mass ratio mu '
xa=input('Enter x-alpha ')I a=input('Enter cg-rotation axis measure a '
ra2=input('Enter r sub alpha squared '
wh=input('Enter omega sub h ')
wa=input('Enter omega sub alpha '

Ub=input('Enter nondirnensional velocity U/b '

%, Pseudomass and pseudostiffness matrix generation

F=2.19; %Theodorsen function coefficient 'F'3alpha=5/6; % C(s) nondimensionalizing exponent

A=[l+l/mu xa-a/mu;xa-a/mu ra2+(.l25+a^2)/mu];

C=2*pi*rO-l a.;a0 5(+5)(5

D=[wh^2 0;0 wa^2*ra2];

m2=A; %12/6 term (st s)
m3=-(Ub^(1-alpha)/(pi*mu))*(2*F*B+F*C); %11/6 term
m4=-(Ub/(pi*mu))*(B.C); % 6/6 term (s)
m52FU^-lh)D(*b(-lh)(im)*; 5/6 term

k=D-Ub^2/(pi*mu) *E; %L 0/6 term (1)
% Construction of Pseudomass and Pseudostiffness matrices
bl=zeros(8);I bm=zeros(2);
eml=[bm bm bin ml;bm bin ml bm;bm ml bin bm;inl bin bin bin];
em2=[bm bin bin bi;bm bin bm m2;bm bin m2 m3;bm m2 m3 bmni;
em3=[m2 m3 bm bm;m3 bm bin bm;bm bin bm bm;bn bin bin m4];

ein4=[bm bm m4 in5;bm m4 inS bm;m4 inS bin bm;ni5 bin bin bin;
H=[bl bl bi eml;bl bl eini ein2;bl eini em2 em3;einl ein2 em3 em4);3 bn=zeros(32,2);

M=[bn H;ml bm bin bin bm m2 m3 bin bin bm bin m4 m5 bm bm bin bin);
K=[-H bn;bm bin bin b bin bin bin bin bm bin bin bin bin b bm bm k];3 clear ml m2 m3 m4 m5 emi em2 em3 ein4 bi bin bn k H

% IATLAB eiaenvalue solver

v=eig(-inv(M)*K)
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