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1. RESEARCH OBJECTIVE

The overall objective of the proposed research is to develop and verify
mathematical models of deformation and delamination of elastic and
viscoelastic fibrous composites with distributed damage. Emphasis of the
theoretical and experimental studies is on graphite/epoxy composites under

complex loadings which produce matrix damage and delamination.

2. ACCOMPLISHMENTS CoL

2.1 Overview ﬂ_l' i

Methods of deformation and fracture characterization are simplified when
strain energy-like potentials based on mechanical work can be used. Research
during the grant period has been primarily concerned with development of the
theoretical basis for the approach, and with experimental studies which
demonstrate its validity for rubber-toughened and untoughened granhite/epoxy
composites with growing or constant matrix damage and delamination.

In the following sections the research work and primary findings are
summarized by abstracting the papers and dissertations which detail the
studies. In Section 2.2 the general theory is covered; it allows for evolving
or constant damage. Viscoelastic effects in the matrix with constant damage
are considered in Section 2.3 in a study of tubes under axial and torsional
loading. Sect’~~ 2.4 discusses predictions of matrix damage due to thermal
stresses and an arimental program that supports the theory. An extensive
experimental study of bars under axial and torsional loading is described in
Section 2.5; path-indeperuence of work during periods of growing damage is
shown for composites with toughened and untoughened resins. Sections 2.6 and
2.7 cover predictions and experimental verification for in-plane loading of

laminates; the method of analysis, which is based on a work-potential and its




minimization, is compared in the former study to a method of analysis based on
plasticity theory. The work-potential provides the basis for the J-integral
in delamination fracture analysis. Investigations using this type of analysis
and experimental studies of the double cantilever beam with multidirectional
plys is summarized in Section 2.8. Two related studies of beam-width effects
and shear deformation effects are described in Sections 2.9 and 2.10,
respectively.

The Appendix contains the two papers which appeared after the annual

report was submitted in August 1988.

2.2 A Theory of Mechanical Behavior of Elastic Media with Growing Damage

and Other Changes in Structure [1]*

Strain energy-like potentials are used to model the mechanical behavior
of linear and nonlinear elastic media with changing structure, such as micro-
and macrocrack growth in monolithic and composite materials. Theory and
experiment show that the applied work for processes in which changes in
structure occur is in certain cases independent of some of the deformation
history. Consequences of this limited path-independence are investigated, and
various relationships for stable mechanical response are derived. For
example, it 1is shown that work is a minimum during stabie changes in
structure, which should be useful for developing approximate solutions by
variationil methods. Some final remarks indicate how the theory may be

extended to include thermal, viscoelastic, and fatigue effects.

2.3 A Method For Studying Composites with Changing Damage by Correcting

For the Effects of Matrix Viscoelasticity |2]

A technique 1is described for modifying stress-strain data on fibrous

composites so that effects of changing damage may be observed without the

*The number in brackets refers to the publication which is abstracted here;
the publication 1ist starts on page 6.




complicating effects of matrix viscoelasticity. The method, which is based on
micromechanical considerations, reduces the behavior to that of an equivalent
elastic composite with damage. The fibers are assumed to be continuous and
linearly elastic. The theoretical basis is developed and then the method is
illustrated using results from cyclic axial-torsional loading of tubular

specimens of graphite/epoxy laminates.

2.4 Thermally-Induced Fracture in Composites [3]

This work is an experimental and analytical investigation of thermally-
induced cracking 1in cross-ply graphite/epoxy composites. It is shown
experimentally that both rates and amplitiides of the thermal excursions & f-.ot
the extent and the form of damage. The analytical study shows that the early
stages of sufficiently slow thermal excursions result in crack patterns that
are analogous tc merhanical loading effects, and can be assessed by an
approximate, two-dimensional micro-cracking model. However, three-dimensional
aspects of the spatially non-uniform stress field may have to be included to
model crack formation under subsequent temperature excursions or rapid thermal
fluctuations. In the latter cases obligue and curved cracks develop and the

laminate is susceptibie to internal and free-edge delaminations.

2.5 Deformation and Delamination of Inelastic Laminates Under Tensile

and Torsional Loading [4,5]

This study is a fundamental examination of the theoretical hypothesis
that mechanical work is a (multivalued) potential function which characterizes
the deformation and fracture behavior of inelastic materials during damage
growth processes. Experimental data from fiber-reinforced plastic laminates
(with and without rubber particle toughening) subjected to axial and torsional

deformation are analyzed for the existence of the work potential. The work



potential is first employed to analyze data from proportional deformation

tests and make predictions of load response. Good agreement is obtained
between theory and experiment. Data frum nonproportional deformation tests
are then evaluated for displacement-path independence of work and 1load
response. Domains of path independence are found from specimens strained well
into the range of nonlinear inelastic behavior. Thus, the results of these
experimental studies support the existence of a work potertial. Although
viscoelastic effects are present, they are minimized by using isochronal data
in the characterization of mechanical work. Finally, work potential theory
and experimental results are used to determine ¢ritical energy release rates
for mixed mode delamination of laminates subjected to axial and torsional

deformations.

2.6 A Method for Mechanical State Characterization of Inelastic Composite

Laminates with Damage [6]

The method using a work potential, and its minimization, is described for
the characterization of mechanical behavior of inelastic composites witi
damage, but without significant time-dependent behavior. It is based on the
theoretically and experimentally motivated assumption of path-indepenuence of
mechanical work over limited ranges of stress or strain states. This method
and, for comparison, an approach employing plasticity theory are illustrated
with the special case of a unidirectional-fiber laminate or ply. Use of the
work-potential method for a multidirectional-fiber laminate is discussed in

the concluding remarks.

2.7 Mechanical Characterization and Analysis of Inelastic Composite

Laminates with Growing Damage [7]

A method of laminate characterization and analysis is described in which




growing damage and other inelastic phenomena are treated using the same
mathematical formalism, thus simplifying the description of mechanical
response. [t is based on the observation that the applied work is not
sensitive to many details of the deformation history. Following & brief
discussion of the thermodynamically-based theory, a special version is used
along with experimental data on graphite/epoxy composite to obtain an explicit
mathematical characterization of a unidirectional ply. Predictions of
mechanical response are then compared to experimental results for a variety of
layups, one of which delaminates from the edges. Good agreement between

theory and experiment is shown.

2.8 Determination of the Mode I Delamination Fracture Toughness of

Multidirectional Composite Laminates {8]

The objective of this study 1s to develop and verify a J-integral method
for characterizing mode ! delamination fracture of composite laminates with
distributed matrix damage. Attention focuses on the special problems
associated with delamination of composites with multidirectional (as opposed
to unidirectional) Tlayups. Nonlinear beam theory is used to analyze the
double cantilever beam specimen to derive an approximate expression for the J-
integral. A related test method is proposed. An experimental program and
results are described which explore the utility of the method and the

variables affecting delamination of multidirectional composites.

2.9 Effect of Finite Width on Deflection and Energy Releases Rate

of an Orthotropic Double Cantilever Specimen [9]

The problem of an orthotropic cantilevered plate subjected to a uniformly
distributed end luad is solved by the Rayleigh-Ritz energy method. The result

is appiied to laminated composite, double cantilevered specimens to estimate




the effect of crack tip constraint on the transverse curvature, deflection and

energy release rate. The solution is also utilized to determine finite width
correction factors for fracture energy characterization tests in which neither

plane stress nor plane strain conditions apply.

2.10 A Technique for Predicting Mode I Energy Release Rates using A

First Order Shear Deformable Plate Theory [10]

Utilizing a first order shear deformable plate theory, a technique is
described for predicting the distribution of the energy release rate along a
curved or straight mode I planar crack in the plane of a plate (such as a
delamination crack). Accuracy of the technique is assessed by comparing the
distributions of energy release rate with those predicted by two and three
dimensional finite element analyses of double cantilever beam specimens with

straight crack fronts.

3. LIST OF AFOSR SPONSORED PUBLICATIONS
[1]. R.A. Schapery, "A Theory of Mechanical Benaviur of Elastic Media with
Growing Damage and Other Changes in Structure," To be published in J.
Mechanics and Physics of Solids, 1989. Texas A&M Univ. Report MM 5762-
6v-1 (1300).
[2]. R.D. Tonda and R.A. Schapery, "A Method for Studying Composites with
Changing Damage by Correcting for the Effects of Matrix

Viscoelasticity," Damage Mechanizs in Composites. A S 0. Wang and G.K.

Haritos, Eds., AD-vol 12, American Society of Mechanical tngineers,
N.Y., 45-51 (1987).
[3]. G.P. Fang, R.A. Schapery and Y. Weitsman, "Thermally Induced Fracture

in Composites” £Engineering Fracture Mechanics, Vol. 33, 619-632

(1989). (A portion of this research was supported by an AFOSR grant




[4].

[5].

[6].

(71.

[8].

(91.

[10].

with Dr. Y. Weitsman as principal investigator.)

M.J. tambern, "Deformation and Oelamination of Inelastic Laminates
Under Tensile and Torsional! Loading," Ph.D. Dissertation, Texas A&M
Univ., Dec. 1989. Texas A&M Univ. Report No. MM 5762-89-15 (1989).

M.J. Lamborn and R.A. Schapery, "An Investigation of Deformation Path-
Independence of Mechanical Work in Fiber-Reinforced Plastics," Proc. 4th

Japan-U.S. Conference on Composite Materia's, 991-997 (1988).

R.A. Schapery, "A Method for Mechanical State C(haracterization of

Inetastic Compcsite Laminates with Damage", Advances 1in fracture

Research, Proc. Seventh Int. Conf. Fracture, Vol. 3, 2177-2189 (1989).
R.A. Schapery, "Mechanical Characterization and Analysis of Inelastic

Composite Laminates with Growing ODamage," Mechanics of Composite

Materials and Structures, ASME AMD-vol. 100, 1-9 (1989).

D.P. Goetz, “Determination of the Mode 1 Delamination Fracture
Toughness of Multidirectional Composite Laminates," Ph.D. Dissertation,
ODec. 1988. Texas A&M Univ. Report No. MM 5762-89-5 (1989). (A portion
of this research was supported by an AFOSR grant with Dr. W.L. Bradley
as principal investigator.)

B.D. Davidson, and R.A. Schapery, "Effect of Finite Width on Deflection
and Energy Release Rate of a Orthotropic Double Cantilever Specimen,” J.

Composite Materials, Vol. 22, 640-656 (1988). (Dr. Davidson's

contribution was sponsored by NASA).
B.D. Davidson and R.A. Schapery," A& Technique four Prediciing Mode |
Energy Release Rates Using a First-Order Shear Deformable Plate Theory,"

To be published in Engineering Fracture Mechanics, 1989. {Or.

Davidsun's contribution was sponscred by NASA).




4.

1

4.2

4. PROFESSIONAL PERSONNEL INFORMATION

List of Professional Personnel

Richi. . Schapery, Principal Investigator

bouglas Goetz, Graduate Research Assistant
Awarded Ph.D. in Mechanical Engineering, Dec. 1988.

Mark Lamborn, Graduate Research Assistant
Tc be Awarded Ph.D. in Civil Engineering, Dec. 1989.

Bob Harbert, Assistant Research Engineer
(Laboratory Staff Memher)

Carl Fredericksen, Electronics Technician
(Laboratory Staff Member)

Interactions (coupling activities) of the Principal Investigator

Spoken Papers and lLectures

1. Paper given at Engineering Science Conference, Univ. of Utah
(Sept. 1987): "Cn the Mechanics of Crack Closing and Bonding in

Viscoelastic Media".

2. Paper on overview of research on four AFOSR Grants to Texas A&M
at DOD/NASA Compcsites Review Meeting (Oct. 1987): "Some Damage

Models for Composites".

(A

Paper given at ASME  Annual MWinter Meeting, Boston

1987): "A Method for Studying Composites with Changing Damage by

Ccrrecting for the Effects of Matrix Viscoelasticity".

4. Lecture at Adnhesion Society Meeting, Charleston, S.C.

1988):  "Viscoelastic Effects and Fracture of Adhesive Joints”.

wn

Media."

6. Paper given at ASTM Symposium on Composite Materials,

(April 1988): "Constant Rate, Creep Behaviour and the Analysis of

Thermoplastic Composites”.

7. Lecture at RPI (May 1988): "Some Damage Models for Composite
Materials".
8. lecture at B.F. Goodrich (Nav. 15838): "Viscoeiastic Behavior

of Composite Materials".

9. Llecture at the University of Texas (March 1989): "Analysis of

Paper given at [UTAM  Conference on Nonlinear Fracture
Mechanics, Caltech (March 1988): "On Some Path-Independent
Integrals and Their Use in Fracture of Nonlinear Viscoelastic




10.

11.

12.

13.

14,

15.

Additional

Composite Laminates with Damage".

Paper given at the Seventh Internaticnal Conference on Fracture
(March 1989): "A Method for Mechanical State Characterizaticn of
Inelastic Composite Laminates With Damage".

Lecture at the University of 11linois, National Center for
Composite Materials Research (April 1989): "Mechanical C(harac-
terization and Analysis of Inelastic Composite Laminates With
Damage".

Paper given at the Third ASCE/ASME Joint Mechanics C(onference,
La Jolla (July, 198S): "Mechanical Characterization and Analysis
of Inelastic Composite Laminates with Growing Damage".

Lecture at Kirtland Air Force Base (August 1989): "Damage
Mechanics of Composite Materials”.

Paper given at I[UTAM Conference on Ice Mechanics, St. Jorrs,
Newfoundland (August 1989): "Models for [Deformation Behavior ¢f
Viscoelastic Media with Distributed Damage and Their Applicability
to Ice".

Lecture a. the Southwest Research Institute (Sept. 1889;j:
"Path Independent Integrals for Nonlinear Viscoelastic Megia".

Coupling Activities

1.

Member on National Academy of Sciences committee: "Energy
Conversion" (Nov. 1987).

Lecturer in short course at Israel Aircraft Industries, Te’
Aviv (Dec. 1987): "Damage Tolerance of Composite materials."
Member of NASA Advisory Panel on High-Altitude Balloons (19&8z-

present).

Session chairman at four conferences.




FarY

10

APPENDIX
A Metnod for Mechanical State Characterization of Inelastic Composite

Laminates With Damage.

Mechanical Characterization and Analysis of Inelastic Composite Laminates

with Growing Damage.




Tl I N N B I BN N B T B B B T N W S -

Report No. MM 5762-88-10
August, 1988 (Rev. 9-88)

A METHOD FOR MECHANICAL STATE CHARACTERIZATION
OF INELASTIC COMPOSITE LAMINATES WITH DAMAGE*

R. A. SCHAPERY

Department of Civil Engineering, Texas A&M University,
College Station, Texas 77843

ABSTRACT

A method using a work potential is described for the characterization of
mechanical behavior of inelastic composites with damage, but without
significant time-dependent behavior. It is based on the theoretically and
experimentally motivated assumpticn of path-independence of mechanical work
over limited ranges of stress or strain states. This method and, for
comparison, an approach employing plasticity theory are illustrated with
the special case of a unidirectional-fiber laminate or ply. Use of the
work-potential method for a multidirectional-fiber laminate is discussed in
the concluding remarks.

KEYWORDS
Composites, Laminates, Damage, Inelasticity, Plasticity
1. INTRODUCTION

Considerable progress has been made in recent years on the development of
high strength-to-weight, tough structural composites. This behavior is
achieved in-part by laminating individual plies of wunidirectional,
continuous fiber-reinforced plastic or metal. The laminates are resistant
to crack growth through the thickness if two or more fiber orientations are
used. Delamination and cracking within plies is reduced by using ductile
matrices. For organic polymer matrices, the ductility 1is obtained by
adding toughening agents, such as rubber particles, to normally brittle
crosslinked resins, or by using resins with Tittle or no crosslinking
(Johnston, 1987). These improvements in material performance place
increased demands on the structural designer and those concerned with the
micromechanics of composites if inelasticity is due to both plastic
deformation and damage or if it has to be considered under a wider range of
conditions than for the brittle matrix systems.

Traditionally, matrix ductility has been treated using incremental
plasticity theory (Christensen, 1979) while micro- and macrocracking of
composites have been analyzed using linear elasticity theory (Wang and

*Pyblished in Advances in Fracture Research, Proc. Seventh Int. Conf.

Fracture, Vol. 3, 2177-2189, 1989.




Haritos, 1987). In this paper we discuss an approach to characterizing
inelastic composite material behavior which is based on total rather
than incremental strains. Also, the approach uses the same mathematical
formalism for inelasticity due to plastic deformation as due to cracking on
various scales and other damage mechanisms; the term inelasticity, as used
here, refers to any stable behavior in which stress or load is not always a
single-valued function of strain or displacement. It is believed that this
unified approach simplifies the problem of understanding and predicting
mechanical behavior of composites with damage. Fatigue and time-dependent
behavior and thermal effects are not treated here, although approaches have
been proposed in the papers which motivated the present study (Schapery,
1987a, 1988).

Schapery (1987a) has shown theoretically that the stresses and mechanical
work of deformation are often independent of many details of the
deformation history when the inelasticity is due to micro- and
macrocracking. However, cracking is not the only mechanism that produces
this behavior. Indeed, it has been observed for a rubber-toughened,
graphite/epoxy composite in which there are probably significant effects of
shear banding in the matrix (possibly initiated or enhanced by cavitation
of rubber particles) (Yee, 1987). This limited path-independence was used
by Schapery (1988) to develop a constitutive theory that treats different
inelastic mechanisms within the same mathematical framework. Also, as
shown by Schapery (1987a), fracture analysis is simplified when this theory
is valid because of the applicability of certain equations for relating
changes in local and global energies.

Figure 1 illustrates one type of path-independence we have found for the
rubber-toughened composite. Rectangular composite bars with an angle-ply
layup (alternating fiber angle, 6 = t 350, with respect to the axial
direction) were subjected to various axial and torsional deformations

‘:

STRAIN

1x
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TYPE HISTORY HISTORY
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. .02 .23
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Fig. 1. Shear stress-strain curves for proportional and nonpro-
portional straining of an angle-ply laminate; Hexcel T2C
145/F155 graphite/epoxy [+—35°]65; 0.15" thick X 0.5"
wide X 8.75" long. From Lamborn and Schapery (1988).
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through controlled movement of the end-grips. The different deformation
paths are identified in Fig. 1 by number; for example, the bottom line type
is used for axial history 1 during the first loading period and axial
history 6 during unloading, while the corresponding torsional histories are
2 and 5. The "nominal" shear stress and shear and axial strains are
quantities which are proportional to the torque, twist, and axial
displacement, respectively; the proportionality coefficients depend only on
the specimen dimensions, and are introduced to minimize the effect of
specimen-to-specimen size differences.

At the end of the first loading period, the five different strain paths
result in practically the same stress (Fig. 1) and total work. The same
behavior holds for the unloading and reloading. In contrast, unreinforced
aluminum bars exhibit significant path-dependence (Lamborn and Schapery,
1988); we do not know if fiber-reinforced aluminum would exhibit less path-
dependence.

Unloading and reloading behavior of the graphite/epoxy material under pure
axial or torsional straining is similar to that shown in Fig. 1l; there is
significant hysteresis and the average slope of the loop decreases with
increasing strain at the unloading point. The stress during loading does
not usually exhibit a maximum point prior to fracture, in contrast to that
in fig. 1. We are now investigating the damage state as a function of
deformation history using similar specimens; significant edge delaminations
have been found at the highest stresses for deformation histories like
those in Fig. 1.

The primary effects of deformation history on the composite appear to be
associated with the sign of (nominal) strain rate and the strain magnitude
when the sign last changed. Although a more precise definition of limited
path-independence was given by Schapery (1988) here we shall just refer to
differences between loading, unloading, and reloacing curves, and suppose
that for each case there is no effect of path (which is approximately true
for the data in Fig. 1).

The local stresses and strains (as opposed to the "nominal" quantities in
Fig. 1) are distributed very nonuniformly throughout the specimens used in
these axial-torsional tests, and thus the results cannot be used directly
in a basic material characterization of the composite. However, it is
unlikely that the specimens' overall behavior would exhibit limited path-
independence if the ply-level constitutive equations did not reflect this
type of behavior.

The discussion in Sections 2-4 is concerned primarily with the
characterization of the behavior of a wundirectional-fiber 1laminate
consisting of one or more plies under the assumption of this limited path-
independence. Special versions of the theory (Schapery, 1988) are used here
to illustrate it for composites. Specifically, Section 2 considers
nonlinear loading and unloading behavior, and expresses the inelasticity in
terms of one parameter S which represents the effect of microstructural
changes on the overall stress-strain behavior; such S-parameters provide
the inelasticity and, in the context of some thermodynamic formulations,
are called internal state variables. Section 3 contrasts the theory with a
plasticity model based on the normality rule, and uses the characterization
in Section 2 as an example. In Section 4 another illustration is given by
using a linear approximation for unloading behavior. Concluding remarks in
Section 5 discuss in-part the use of unidirectional ply characterization in
laminates with ply-level and larger scales of damage.




2. A CONSTITUTIVE EQUATION WITH NONLINEAR UNLOADING BEHAVIOR

Figure 2 shows a unidirectional 1laminate or ply and the coordinate
notation, in which the x| axis is parallel to the fibers; the x, axis is
normal to the ply piane.” The stresses o. and strains e¢. (i = 1,2,...6)
are mechanical variables referred to thé principal material coordinates
X;. In most of the discussion it will be convenient to use this single
index notation. As is customary, i = 4,5,6 are used for the shearing
variables; the relationship between single and double indexed variables for
plane stress is

O1s %2 T % 9127 %
2¢

o]
11 (1)
€11 ~ f1° f22 T f2¢ 12~ °6

A constitutive equation will be proposed which accounts for nonlinear
loading and unloading behavior and which is consistent with the path-
independence of work discussed in the Introduction as well as the nonlinear
behavior reported by Lou and Schapery (1971) and Sun and Chen (1987); the
reader is referred to these two papers for the experimental data, as space
does not permit its reproduction here. Specifically, a strain energy
density w = w(e., S) is assumed to exist, where the microstructure state is
defined by S; only one structure parameter S will be used here, although
more could be introduced, if necessary. By definition of w,

o5 = aW/3e, (2)

In both aforementioned references strains are expressed in terms of
stresses, and thus it is helpful to eliminate w in favor of a so-called
dual strain energy density W= wc(oi, S),

WO W - ooge; (3)

(Throughout this paper the summation convention is employed, in which a

repeated index 1implies summation over its range.) By wusing (2) and

introducing differential changes in (3), it follows in the usual way that
€;= - BWO/Bs,i (4)

A form of w_discussed by Schapery (1988, Eg. (A24)) 1is proposed now for
characterizing ply behavior,

xz\ | /‘s/:
o
7

Fig. 2. Unidirectional composite and coordinates.




W = w o+ P(oo, S) (5)

where w_ = (0.), o . and P are present1y arbitrary func-
tions. ?ne M%chanwcaP worQ dhr1ng processes in which S changes can be
shown to be independent of path if and only if S = S{o_ ). ; proof of this
statement may be made by the same method as used in a sfﬂdy of w (Schapery,
1988, Appendix A). The function S(o.) can be absorbed in the functional
dependence of P on S, and thus we may Use S = o_ whenever S changes without
any actual limitation in the model. Whether S~ varies or is constant, the
strains are obtained from (4) and (5),

30
e 3P o]
£, = g, - —m — (6)
1 1 800 aai
where, by definition,
e = -
E'i = awoo/aoi (7)

The ¢$ are defined through derivatives of a fully path-independent
potential, w and thus it is appropriate to call them "elastic strains”.
A1l stress- hqgtory effects are in the second term in (6), which gives the
"inelastic strains".

In order to obtain a constitutive equation that agrees with Sun and Chen's
experimental data we select for % the quadratic form,

L
30 = (a,ij Oi Oj)z (8)

where the a.. are constants; as the antisymmetric components of aij have no

effect on 9y s we may suppose a1J = 354- Now,
aao/aci = aij o5 /oO (9)
and thus from (6),
_ e _ 3P
€, = g5 - o aij o3 /oO (10)
During structure-change processes S = o, as noted previously, and

therefore the coefficient aP/aoO depends on-only Oq For such processes
we may thus write

e
€. = €; te_Aa,. 0. /o

j i o 13 7] 0 (11)
where

eo(oo) = -(aP/aao) evaluated at S = (12)

In the terminology of plasticity theory, (11) is for "loading" processes.

Without fiber fracture, the strain in the fiber direction is essentially
independent of stress history in most structural composites; thus, as
assumed by Sun and Chen, a = 0. We suppose further that the
composite is orthotropic, regd&h]esé of stress-history, where the axes X
are the principal mater1a1 axes; this condition implies the only a&;; which
do not vanish are a, 83, 344+855, 8ggs AS well as as ( a 3). There
are really only f1ve 1n epen ent cons ants because o may be norma11zed
with respect to a constant without limiting the geneﬁ%11ty of (5); this
normalization will be done by simply letting a,, = 1. If all stresses
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vanish except for o,, (8) reduces to o_ = |o,|; thus o_ becomes the
apptied stress for tge case of uniaxial Pensil loading normal to the
fibers.

For plane stress, 93 = 94 = 0p = 0, so that (8) reduces to
- 2 2\h
From (11),
e
Cl = Cl (14)
e
€y = €5 ¥ cooz/oo (15)
_ e
€ = g + 666 5006/00 (16)

For uniaxial tension normal to the fibers, 0y = Ops @S noted previousiy.
Equation (15) then shows that e¢_ reduces to "the “inelastic component of

€,. For general stress states e_ is at most a function of o_, according
t0?(12). 0 0

By 1ntrodu8ﬁng some additional specializations, including the assumption
that the ¢; are linear in the o,, we will finally arrive at Sun and Chen's
findings fbr uniaxial loading of unidirectional, rectangular specimens.
Namely, for loading in the x direction (cf. Fig. 2),
2. . 2. - X
oy = C0s'é 5, o, =5iN"6 o, og = -sins COSHo, (17)

where o_ is the applied force/area. The axial strain e_ may be expressed
in term§ of the strains in (14)-(16) wusing the seCond-order tensor
transformation rule,

e, = cosza et sinze €y - sing cose €6 (18)

Substitution of (14)-(17) into (18) yields

e, = Ei + hzco CX/OO (19)

where ci is the elastic axial strain, and
2.5

h = (sinae *+ 3¢ sinze cos“g) (20)
Observe also from (13) and (17) that
o = ho (21)

0 X

We can obtain the function h(e) used by Sun and Chen by multiplying (20) by
/3/2. Equation (19) is the same as derived by them from a plasticity
model for loading behavior; this model will be discussed in Section 3.

Experimental information on ¢ - o  behavior for two fiber angles & may be
used with (19) to evalfate * agg and the function ¢ = e (o ) .
(Alternatively, one may use data from several fiber angles to d8termfne’the
aceg which minimizes the data spread in the ¢ _(o.) plot.) Results from
tests at other fiber angles then serve to check (f@)f’ A simple power law

n

€ = A % (22)

where A and n are positive constants, was reported by Sun and Chen to fit
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the data out to specimen failure (¢ = 1%); for a boron/aluminum composite
n = 5.8 and agg = 4, whereas for grﬁbhite/epoxy n = 3.7 and agg = 2.5. (The
constant agg used by Sun and Chen is one-half of the a g used here.)
Values of a = 4 and n = 2.4 have been obtained recent1y€£y Mignery and
Schapery (]& 8) from studies of unidirectional and angle-ply laminates of
the same rubber-toughened graphite/epoxy material used to develop the
curves in Fig. 1. Although the latter exponent (n = 2.4) is smaller than
that reported by Sun and Chen for an wuntoughened unidirectional
graphite/epoxy material (n = 3.7), the angle-ply stress-strain curves
(Mignery and Schapery, 1988) exhibit a larger degree of nonlinearity
because the ictal axial strain range is approximately 5%, as compared to 1%
in the former stuay.

In the much earlier work of Lou and Schapery (1971) it was found that the
parameter o_ in (13) accounted for the effect of stress state on the
functions wusea to characterize nonliinear viscoelastic behavior of a
glass/epoxy composite. The motivation for the use of this parameter came
in part from the observation that the octahedral shear stress = can
normally be used to correlate multiaxial yielding of plastics (just°§§ for
metals). As a simplification, the matrix was viewed as a uniformly
stressed Jlayer of material sandwiched between layers of rigid fiber
material; i.e., the lines in Fig. 2 at the angle & were imagined to define
layers rather than fibers., Using the principal material axes, Fig. 2, this
shear stress is

H(sy- 3 3., -3 - - -2, -2, - 2%
“oct = 3l(oy- °2)Z+ (e '33)2 + (og - 01)2 + 6o, 7+ 052+ og )1 (23)

where the ;i in this equation are the stresses in a matrix layer.

For a matrix in plane stress o, and o, are the same as the stresses
o, and o, acting on a composite gonsistﬁng of parallel layers of matrix
ané rein#%rcement material. A factor v_ was also introduced, as defined
by the relationship o, = v Sy For a Qinear elastic, isotropic matrix
v_ is the Poisson's Lati&i and for an incompressible elastic or rigid-

plsstic matrix Vo = 0.5. Use of these idealizations in (23) yields

= (2/3c) (24a)

Toct

where

c = 3/(1 - Ve * Ve ) (24b)

As reported by Lou and Schapery (1971) a finite element analysis of a
linear elastic composite with a square array of fibers was made to predict
the average octahedral shear stress in the matrix. Apart from a numerical
factor, (24) was found to be a fairly good approximation to this average.
Considering c to be the arbitrary constant agg, it is seen that (24a) and
(13) are equivalent parameters for characterizing nonlinear behavior. It
is also of interest to find from (24b) that ¢ = 4 when v_ =% and ¢ = 3.88
when v_ = 0.35; the former value is the same as found experimentally by
Sun and® Chen (1987) for the boron/aluminum composite ard by Mignery and
Schapery (1988) for the rubber-toughened graphite/epoxy composite; the
latter value of c was reported by Lou and Schapery (1971) for glass/epoxy
material.

Most of the experimental work reported above is for proportional loading,
(17). However, that of Mignery and Schapery (1988) involves
nonproportional loading of the plies in an angle-ply layup. Tic.e stucics
provide limited experimental support for (1l1). We are currently making
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additional studies of angle-ply and unidirectional laminates under loading,
unloading and reloading to address the applicability of (108) and (42) for
toughened and untoughened graphite/epoxy composites.

It should be observed that the difference between loading and unloading
curves in the model (6) 1is characterized by one scalar factor
aP/3c,_, where P = P(c_, S). The loading curves, do_/dt>0 ,are predicted by
using % -5 . For unfbading, do_/dt<0 , the therm8dynamic requirement of
positive ent?opy production and f%e path-independence of the unloading work
are violated unless S 1is constant Schapery (1988). Consequently, iur
arbitrary stress histories, S is always the largest value of o, UP to the
current time.

This representation does not account for the difference between unloading
and reloading curves. Tonda and Schapery (1987) were able to account for
this difference for an untoughened graphite/epoxy composites using linear
viscoelasticity theory; the approach to combining the effects of
viscoelasticity and structure changes was developed earlier (Schapery,
1981). Whether or not this approach is able to account for all of the
hysteresis 1is not presently known. It may be necessary to introduce
another S-parameter which is activated at the start of reioaaing.

3. THE NORMALITY RULE FOR INELASTIC STRAINS

Let us now compare the normality rule employed in plasticity theory to
predict plastic strain increments with the type of normality contained in
(4). Following Sun and Chen (1987), we take o = k as the yield condition,
whara k 95 a scalar that varies with the ahount of plastic straining.
Plastic strains are introduced in the same way as is commonly done for
metals,

e
de? = d€1 - de,-I (25)

where deP, de., and de€ are infinitesmal changes in plastic, total, and
elastic slrainl, respeétive]y. The elastic strains are assumed to be
linear in the stresses,

€y = Sijcj
where Si' are the constant compliances. The associated flow rule for
plastic skrain incremen&s is

a0
dep = 0
1 80i

(26)

dx (27)

where dx is a& scalar. This equation shows that deP is a vector which is
normal to the surface o = constant. From (8) and (27),

P
del = 2a; 50,00 (28)

For proportional stressing o5 = kio (where the k; are constants) (28) may
be integrated to obtainzthe total pfﬁstic strains,

30
P _ 0
€5 = 3, (foodx)/oo (29)
which is also a vector normal to the surface o_ = constant. The total

strain is °

e, =S+ oP (30)
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which may be compared to the strain (6) derived from a dual strain energy
density. The "inelastic strain" vector in (6),

ef
R (31)
1 800 801
is normal to tqg surface o = constanf. Jjust as e? in (29). However, in

contrast to e., the norma?ity of e, exists for 'broportiona1 and non-
proportional st}essing. Observe also that this normality is preserved
during unloading and reloading; recall that the coefficient 3aP/30_ depends
on both o¢_and S, and that S = o_ only when o_ is equal to itd largest
value (conSQdering all values up to %he Current t?me).

Consider next for further comparison a type of normality discussed by Rice
(1971) for incremental inelastic strains. He developed (4) from
thermodynamics with internal variables and used it in a study of inelastic
behavior of metals; S is one of possibly many internal variables. A change
in strain due to 1nfini§esima1 changes in both ¥ and S is, from (4),
3w
de, = - — 2 do, + —24S (32)

] aciaoj J doi

where
G = -awo/aS (33)

Rice observed that when elastic and inelastic strains are defined through
increments, as expressed by the first and second terms in (32),
respectively, the incremental inelastic strain,
I oG
dei = —Esjds (34)

is normal to the"yield" surface G = constant. In fracture mechanics G (33)
is called the "energy release rate". When there are two or more Structure
parameters Sm (m=1, 2, ...),

3G
dc¥ = m

1 Boi Sm (35)

where
Gm z —awo/aSm (36)

Thus, the mth component of de¥ is normal to the respective surface, Sm =
constant, as noted by Rice.

When we use the special form for W in (5), Rice's in<remental elastic and

inelastic strains become
azw 32w 2
de : - —2—do, = - —22 4, - —i—g———-dc. (37)
1 aoiaoj J aoiacj J Boiaoj J
2 2 3o
I 3G _ 3"P S = 3°P 0
de; = ao.ds - - 3530, S =- aSao0 ds 3o, (38)

Notice that de¥ is normal to the surface o_ = constant and that an
increment in the elastic strain defined in (7) fs equal to only the first
term in (37). Observe also that the tangent -elastic compliance
matrix -aw /f3oc.3c. used in defining the incremental! elastic strains in
(32) is a ¥unction of the structure parameter S as well as stresses, while
that based on the elastic strain in (7), -3°w /aoiac., depends only on the
stresses. o0 J
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4. A CONSTITUTIVE EQUATION WITH LINEAR UNLOADING BEHAVIOR

In characterizing the effect of damage on composite material behavior, it
is commonly assumed that the material is linearly elastic when damage is
constant. This linearity assumption is equivalent to using a dual strain
energy density in which stress dependence is limited to first and second
order terms,

_ 1
Mo = Bo Byoy - 3 By5o405 (39)
where bo, bi and b:: may be functions of one or more structure parameters
Sp- In'this case thd strains (4) are

€; = by + bijoj (40)

The residual strains b; and compliances bij may vary with stress history
through changes in Sp; only one § will be“used here. The strain energy

density is related to W, through (3),and may be written =g

WECo Y Cyeg g Gy ey ey (41)
which provides the stresses
0. = C, + C.. €. (42)

The relationship between the b's and c's may of course be obtained by
comparing (40) and (42). These second-order energies may be sufficiently
general to predict ply stress-strain behavior if the unloading and
reloading curves can be approximated by the same straight line whose
position (c;) and slope (Cij) vary with S (as shown in Fig. 3).

The  work (jo de;) and  dual work (- fe.do,) during structure-change
proces~es are 1raependent of path or hwsto¥y if and only if (Schapery,
1988),

aw

J _ W _
A (43)
o | ¢s
e 4
at >0
CU(S)
dsS _
a? o)
0
/ €
C,(s) /
X _}

Fig. 3. Stress-strain behavior according to (42), showing
loading, unloading and reloading.
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where g is at most a function of S; the quantity g is the specific fracture
energy if S is the fracture surface area of a crack. (Equation (43) is not
limited to the second-order energies (39) and (41).) As shown by Schapery
(1988) S can always be chosen so that (43) reduces to

IwW

3s

O=‘1 OY‘-——3'=1 (44)

Observe that the term o (= - bo) can be omitted as it can be absorbed in
g in (43).

It should be added that the derivatives awﬁ/aS and sw/sS are always equal
which may be easily shown by taking the differential of (3). Equation (44)
provides the relationship for predicting S as a function of stress or
strain. Thermodynamic theory requires dS/dt > O (Schapery, 1988); thus,if
(44) predicts dS/dt < 0, S 1is actually constant and (44) is to be
disregarded.

For the second order energy (39) with by = 0, the equation ‘or § is
dbi 1 dbi'
1 .= 4
45 i T 2 7dS %Y 1 (45)

Although (39) s only of second order in the stresses, it s still
sufficiently general to mathematically represent Sun and Chen's data
discussed in Section 2. Indeed, this may be done by assuming the b; are
constants and then using

bij = Sij + B S'aij (46a)

where

AT,

re—1, B=A (n) (46b)

-1
+ 1
Also, Si‘ are the constant elastic compliances, and 8y A, and n are the
constantg appearing in (8) and (22); observe that 0 < r <« 1., Equations
(45) and (46) yield

)(n+1)/20 (n+1)

S = (Br/2 o

(47)
During loading, do_/dt > 0, (47) is used in (46a) to predict instantaneous
values of by;. or unloading, do_/dt < 0, the coefficients b;; are
constant becadse S has a constant vavtue equal to that at the sta¢t of
unloading. Upon reloading, S again changes in accordance with (47) when
o reaches its largest past value. Unloading and reloading data are not
reBorted by Sun and Chen (1987), and thus the range of applicability of
this particular model cannot be assessed at this time. It is important to
notice that this phenomenological characterization is not necessarily
limited to brittle or to ductile composites, as Sun and Chen's results are
for both types.

Finally, we should mention that the theory based on path-independence of
work has been successfully employed in 1limited studies of particle-
reinforced rubber (Schapery, 1987b), and a thermoplastic composite ([Can
Jumbo et al., 1987). In the former case nearly all nonlinear behavior was
expressed in terms of S-dependence of bj;s in the latter case the residual
strains b;, instead of b;j. were used t& account for most nonlinearities.
The small amount of non11n%ar1ty that was not adequately represented by the
second-order energy functions was apparently due to the large strains
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(= 60%) in the filled rubber specimens and fiber or microfibril alignment
(causing an increase in modulus for loading in the fiber direction) in the
thermoplastic composite.

5. CONCLUDING REMARKS

A possible approach to predicting multidirectional-fiber laminate behavior
would consist of using a unidirectional ply energy density, such as given
by (5) or (41), with the wusual displacement assumptions of lamination
theory (Christensen, 1979). Delaminations and their growth could be
accounted for essentially in the same way as done for linear and nonlinear
elastic laminates, but with additional bookkeeping when there 1is any
appreciable difference between loading and wunloading stress-strain
behavior. The work of deformation (which is equal to wy = w + S if the
second equation in (44) is used to predict S) is treated just like strain
energy in nonlinear elastic fracture mechanics (Schapery,l987a); in
particular, w; is used in strain energy release rate and J integral
calculations.

With brittle-matrix composites, a significant number of transverse ply-
levei cracks may develop prior to structural failure (Johnston, 1987).
These cracks are snmewhat planar with the plane parallel to the fibers and
perpendicular to the lamination plane. Typically, after rapid growth, they
are arrested at the ply boundaries. If more than one fiber orientation is
used, @ laminate usually is capable of supporting loads well above that at
crack initiaticn. Whother or not one S-parameter is sufficient to account
for a general type of inelasticity which includes transverse cracks
requires further study. It should be observed that even with only cne
parameter, an appreciable effect of these cracks on the laminate behavior
may be taken into account through the way w or w depends on S; for
example, b.. may have the form in (46a) at small §, and then a considerably
different rm at large S when transverse cracks develop. Physically, S
may reflect micro-damage (e.g. rubber particle cavitation) and plastic
deformation until transverse cracks develop, and then at larger S-values
account for these mechanisms as wel! as transverse crack density. If the
ef fects of crack density and its growth are not sensitive to properties of
ad jacent plies with different fiber angles, an experimental program could
use the simple angle-ply layup. Similar observations can be made for
distributed interior delaminations (Harris et al., 1987); however, at least
two plies would comprise the basic element of a laminate.

We are presently wusing these ideas to characterize and predict the
mechanical response of untoughened and toughened graphite/epoxy laminates,
recognizing that the proposed method has to be considered as tentative
until a significant amount of additional experimental and analytical
studies are made. Such studies should help to establish the range of
validity of the work-potential method as well as define the experimental
program needed for a complete characterization. Micromechanical models of
damage in Jlinear elastic composites (Wang and Haritos, 1987) should be
helpful in analytically modeling the effect of distributions of cracks on
moduli or compliances, and thus reduce the experimental effort. Schapery
(1987b) used this approach in an elementary model to relate the orthotropic
elastic properties of a particulate composite to a statistical distribution
function which characterized the damage, and employed an evolution equation
like (44) to predict the change in properties through an S-parameter which
is an overall measure of the damage. A similar procedure should be
applicable to laminates.
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ABSTRACT

A method of laminate characterization and analysis
is described in which growing damage and other inelastic
phenomena are treated wusing the same mathematical
formalism, thus simplifying the description of
mechanical response. [t is based on the observation
that the applied work is not sensitive to many details
of the deformation history. Following a brief
cdiscussion of the thermodynamically-based theory, we use
a special version along with experimental data on a
graphite/epoxy composite to obtain an explicit
mathematical characterization of a unidirectional ply.
Predictions of mechanical response are then compared to
experimentzl results for a variety of layups, one of
which delaminates from the edges.

NOMENCLATURE
a Delamination depth
b, ¢c, r Coefficients in strain energy
E,. E;. £, Young's Modulus GPa (ib/in?x10%)
fm Thermodynamic force
fi, fo, f Strain-dependent coefficients
1» "2 12 2 6
Gy, Shear modulus GPa (1b/1n“x107)
01_] Reduced modutus
S, Sis Spy Structural parameter
S, wg Work needed for structural changes/vol
Sp Cube root of S
wo W Strain energy/vol
wi Total work input/vol
Wi Tota)l work input
X, Cartesian coordinate.
€, c; Strain
Vy Vigs N Poisson's ratio
12 X 2 3
0, 0y Stress (1b/inx107)

1. INTRODUCTION

The nonlinear behavior of unidirectional and
multidirectional fiber composites traditionally has been
modeled using elasticity theory (1) er plasticity thecry
in which the unloading mcduli are constant (2,3).
iiowever, resin matrix composites often exhibit nonlinear
behavior which 1is due at least in-part to inelastic
mechanisms that alter the wunloading moduli. As
illustrated in Fig. 1 for

AX1Am, STRESS - (XSI)

—iz T2

AXIAL STRAIN

Fig. 1 Stress-strain behavior of Hercules AS4/3502
argle-ply laminate [£30]3¢ showing inelastic
behavior.

the brittle-resin composite studied later in this paper,
the inelasticity (i.e. strain history-dependence) is
neither small enough to neglect nor large enough to use
classical plasticity theories in which unloading follows
the initial modulus €,. for several unidirectional and
angle-ply layups of this graphite/epoxy material we have
found that the residual strain upon 1load removal is
typically 20-40% of that for unloading along the E,-
line. There is also a small amount of rate or time-
dependence even in the room environment.

In this paper we discuss a way of characterizing
nonlinear 1inelastic behavior that may arise from a
variety of mechanisms, including  microcracking,
delamination, void growth, shear yielding, and
crystalline slip, and therefore is not limited to resin-
matrix or metal-matrix composites. It is based on the
theory in (4), which uses Rice's (5) thermodynamic
description of inelastic behavior. Some motivation for
the theory has come from our experimental studies of
rubber-toughened and untoughened graphite/epoxy (6,7)
under axial-torsional loading, which show that the
stresses and mechanical work are practically independent
of deformation history for suitably limited paths. This
limited path-independence leads to a mathematical
description of mechanical behavior which is analogous to
that used for predicting stable crack growth and its
effect on global structural response.

In Section 2 the theory for a unidirectional ply or
laminate is outlined, and the plane-stress case used in
later sections 1is described; the theory allows for
elastic nonlinearity (such as that due to fiber-
straightening) and inelastic nonlinearity during
loading. Sections 3-5 discuss the experimental program
and both linear and nonlinear behavior; after the basic
ply characterization is accomplished, response of
several laminates is predicted and shown to be in good
agreement with the experimental findings.

*Published in Mechanics of Composite Materials

and Structures, ASME AMD-vol. 100, 1-9, 1989.




2. CONSTITUTIVE EQUATIONS FOR A UNIDIRECTIONAL PLY

Basic theory
The coordinate notation for a unidirectional

laminate or ply is shown in Fig. 2; the x) axis is
parallel to the fibers while the x3 axis is ‘normal to
the ply plane. The stresses oj and strains

Y

)

N

\
\

AN
7Z
77

Fig, 2 Unidirectional composite and coordinates

\
§

¢, (i=1,2,...6) are referred to the principal material
céordinates x, (k=1,2,3). We also employ the standard
notatfon in which i=4,5,6 refer to the shearing stresses
and strains, where these shearing strains are twice the
tensor components.

The stresses are related to strains through the
strain energy density (per unit initial volume} w =

N(Li. Sm)

oy = aw/asi (1)
where the Sm are so-called “structural parameters".
Temperature and other parameter; (such as moisture) may
enter; but for simplicity we assume they are constant,
and thus do not explicitly show them as arguments. As
many Sm as needed are used to account for the
microstructural :hanges which produce the inelastic
behavior.

It will be helpful to also use the dual strain
energy density W= “a(°1' Sm),

wo I W - 0_i £i (2)
which is seen to be the negative of the complementary
strain energy density. The summation convention is
employed wherein a repeated index implies summation over
its range. By using Eq. (1) with the differential of
Eq. (2) for constant Spe we find

€ = -awolaoi (3)
Changes in S_ may be related to stresses or strains
by using a const?tut1ve equation for the thermodynamic
forces f,; these forces are, by definition,
fo = -3W/3S, (4)

The differential of Eq. (2), for {independent changes
dS,. ylelds

o = 3w /38, (5)
The second law of thermodynamics allows only those

changes for which

fm Sp2 0 (6)

2
“

where the overdot denotes a derivative with respect to
time. As the constitutive equation for fms we specify
that for each active parameter, i.e. Sm s 0,

fm = awS/aSm (7)
where we = w.(S,} is a constitutive function of Sais
also, for those m in which f_ s aw /35 then & = O
Each f. is viewed as the fofte aviilaBie to Broduce
changes in the associated Sp, while aw_/aS is the force
required for these changes. The soluti of Eq. (7)
yields §=5 (c.) or S =8 {(v.) for each active
moTmti m Tm i

parameter.

The total work input per unit initial volume during
actual elastic or inelastic processes is

WT H é Jidci (8)
It is always possible to select €y and Sp Such that they
vanish in the initia) or reference state, and therefore
we use such a choice throughout this paper. Given fq.
(7), one may easily show that wr 15 a potential function
of the state (ci, Sm) and, in particular, that

Wp =Wt We s 9y awT(cj,Sm(:J))/a:1 (9)

(Without loss in generality we specify that w = w_ = 0
in the initial state.) According to £q. (9), the iota)
work consists of the work of straining w plus the work
of structural change W Moreover, from Egs.(6) and

(7,
wg 2 0 (10)
Quadratic strain energy functions

Consider now as a candidate dual strain energy the
quadratic form

, 1 1
Mo T "Bg B0y - g Byyoqoy + 3 Ty(Sy- 9 ) (S5 o) (1D

The last term allows for up to six independent
structural parameters, while all coefficients may depend
on these as well as other parameters; unless this
dependency is restricted in some way the last term is

redundant. The strain £q. (3) becomes

€ = b+ b1joj* rij(sj- oJ) (12)
Both by ana ry; contribute to the residual strains (i.e.
the strains when o. = 0). As a further specialization
of the theory, we assume that the bi are independent of
Spm and S; and that the remaining coefficients bi; and
rijj depend on only one parameter, S, which we take {o be
Wt The term b, affects only Eq. (7), and can be
agsorbed into Wes although the inequality (10) would
still apply only to Wg.  When the S, define only the
state of damage in the form of cracks and voids, b, is
the surface free energy, and thus may be viewed as the
energy available for healing; here we assume bo : 0 so
that g » 0.

With these restrictions on the coefficients, Egs.
(5) and (7) yield

awo .

350 = -1 if §$:0 (13)
and

ryj(S5m 9y =0 if S0 (14)

If all Si + 0 and if r;

ij is positive definite, then fq.




(14) implies

5, = 9 (15)

and £q. {12) reduces to
v, = b, + b, o, (16)
while £g. (13) becomes

do. .
3 oy0y = 1 (17)

We may now give a physical interpretation for the
three sets of coefficients in Eqs.(}1) and (12). The
by; are compliances that in general vary with the work
dofle in changing the microstructure, S. Since S= w,
Egq. (10) implies > 0. If we know the functions
b-j(S). then Eq. (17) may be used to predict S in terms
ofJstress history; if the equation predicts § < 0, then
we set § = S, where S_ is the largest value of S up to
the current time. If Eq. ()7) is subsequently
satisfied, then again it is used to predict S.

Whenever S. s 0., then instead of Eq. (16) we have
from £q. (12), J

1§73 Dij ri_j):’j
It is seen that by means of ry; we may simulate the
effect of interna! surface ¥0ughness and other
irregularities in .resisting crack closing and sliding
and void collapse during unloading; whenever all
S. = o, these coefficients have no effect on the strain,
Ed. (l%). Had we allowed for dependence of b; on S,
then these coefficients would produce the type of
residual strains usually associated with plastic
deformation mechanisms, such as crystalline slip.

The strain energy density w corresponding to Eq.
(11) may be obtained from Eq. (2) after stresses are
expressed in terms of strains. Whether or not the r;

vio= b r..S.+ (

i (18)

enter, it is of the form 1
- .1
WoE Cot Cyrgt g Cyeieg (19)
from £Eq. (1),
ci = Ci* Cijtj (20)

By comparing Eq. (20) to (16) or (18), we may obtain the
coefficients in £q. (20) in terms of those in the
former equations. Figure 3 illustrates the loading

o d8
p—
a1 >0
CijtS)
as _
d-T—O
0
/ €
ci(§i]:: %

Fig. 3 Stress-strain behavior according to £q. (20},
showing loading, unloading and reloading.

3

and unloading behavior in terms of the coefficients in

£q. (20), where S represents all structural parameters.
In a)l of the subsequent work we shall be concerned

with only loading processes, defined here as those for

which § > 0 as well as S{=ojor else ryy = 0.
Moreover, we shall assume by = ¢y= 0, except in"a brief
discussion on thermal res*dua) strains. With these
simplifications
21

w = 3 Cijuitj (21)
and

oy = Cij"-j (22)
Also not ing that Eqs. (4) and (5) imply

aw/3S = awo/ss, then from Eq. (13),

W o .

35 © 1 (23)
From Eq. (9)

S = Wpo- oW (24)

which shows that the instantaneous value of § is the
shaded area in fig. 3.

Constitutive equations for plane stress

Constitutive £Eq. (22) has the same form as that for
a linear elastic material. If we assume the material 1s
orthotropic, with principal material directions x,, then
we may use standard linear elastic equations 1o

characterize ply behavior in terms of principal
moduli. From (8),
op = Qpyey * Up2% (25e)
°0p = Qpey * pt2 (250)
12 * %612 (25¢)
whare
Qup = E;/0 v Qpp = E,/0 (2€3)
Q= v+ D= l-vpvp (260)
vo1 = vi2fa B e Uge = Oz (26¢)

Only the Young's modulus for loading normal to the
fibers E2 and the shear modulus G are assumed to vary
as a result of inelastic mechanisms. The remaining two
principal properties, i.e. Young's modulus in the fiber
direction El and Poisson‘s ratio v,,, are assumed to be
independent "of S, which is reasonaﬁ%e if the fiters do
not break. indeed, our experimental results from
loading and unloading tests parallel to the fibers show
negligible hysteresis in axial and transverse strains,
even when the maximum strain is close to the ultimate
value. However, there 1is some elastic nonlinearity
which is not negligible for our purposes; El increases
and £, and v.., decrease with increasing strain.

%n ord to account simultaneously for inelastic
effects in E, and Gy, and nonlinear elastic effects in
£y, Ep and v, we propose the following modified form of
ehe (8s), 12

op = Qp ey * v0pf2l; (272)

0y = vQpofoly * Qofars (27b)




Y12 = Govyp (27¢)
where
IEl J‘C2
v 2 v (0}, I, = fiode, , I, - f,dc (28)
12 A R A At
and
e, oot o 1% fegley) 29)
A N A P A A () I (

The strain-dependent functions fl and f12 are the ratios
of the secant modulus E_ = o,/¢, and tangent Poisson's
ratio at a given axial Strath tb those at

S = € = 0 (for o, =0, o t,, = 0}). Allowance has
been “made for egastic A%n]ing%rity under transverse
loading (o0, : O, 0y = 1y, = 0) through f,: the quantity
£ 0 in £q.7(29) is the lgcant modulus for S = 0 from the
98 specimen. Observe that I} = - ¢,(v,)/v, where this
v, is the transverse strain in a ugiaiial test with
o) ¢ 0, o, = 1 > = 0.

The ?dcto} D in Eq. (26b) is practically unity, and
although it is not constant we may use its initial
linear elastic value in al) work without any significant
error. A1l strain dependence of the moduli is now
accounted for through f;, f,, and f12: and therefore Q,
and Q,, in fq. (27) are those in £q. (26a); viz., £, an
Q) are constants, while Q,, varies with S throug P
E, and Gyo now vary only wigg S.

The form of Eq. (27a) and Eq. (27b) is such that

3:1 302
= (30)

3, v
which is a necessary and sufficient condition for
construction of the strain energy function in Eq. (1).
We find that

W Qpptry t Qpls;
2
* Qpplply # Bypnya/? (31

where
e [ L [ 2 fd,  (32)
SO U N A e o

When the elastic behavior is linear £q. (31) reduces to
. 2 2 ) 2
o Qg v Qg+ 2u0pp0yep * Gppryp)/2 (33)

An alternative characterization in terms of
stresses using the dual energy was also developed. For
linear elastic behavior it is equivalent to the strain
formulation. The elastic nonlinearity was not
introduced by using Eq. (31) in Egq. (2); instead, for
simplicity w_was constructed to be similar in form to
€q. (31), bft with stress-dependent functions as found
from the uniaxial stress tests. Al}l predictions made
with this stress formulation were virtually the same as
found from the strain formulation, E£q. (31). As the
strain formulation is far more convenient for predicting
response of multi-directional fiber laminates, we use
only this formulation here.

3. EXPERIMENTAL PROGRAM

The composite material used In all experimental
work was a graphite fiber-reinforced epoxy, Hercules'
AS4/3502 with a 64.2% fiber volume fraction. It was

4

supplied in unidirectional prepreg form and cured in our
air-cavity press using the supplier's specification for
the cure cycle. The specimens were cut from 12"x12"
plates and stored in a dessicant until they were strain-
gaged and tested under uniaxial loading in an ambient
environment of about 75°F and at a tensile strain rate
of 0.005/min.

A1l unidirectional and angle-ply layups consisted
of 12 plies. Most specimens were 0.5 inch wide, with a
length of 7.5 inches between the glass-epoxy end-tabs.
Some 1x10 inch specimens were also tested for comparison
purposes; no significant differences between the 0.5 ang
1.0 inch wide specimens were found. By screening out
all samples whose thicknesses differed by more than 57,
very little specimen-to-specimen differences in
mechanical behavior were observed. In most cases the
results presented are for an average of two specimens.
The off-axis, unidirectional specimens exhibited the
greatest variability, but we have not attempted to
quantify the scatter. Two pairs of axial and transverse
foil strain gages were used on front and back surfaces
in order to average out any through-thickness bending.
A1l readings were corrected for gage transverse
sensitivity and strain nonlinearity using the
manufacturer's data. Several specimens were tested
using two cycles of tensile loading, wunloading, and
reloading at successively higher maximum strains.

The specific layups used for the chracterization
phase and the theoretical-experimental comparisons are
identified in subsequent sections,

4. LINEAR ELASTIC BEHAVIOR

Elastic constants
The principal properties are

E1= 125.5(18.2), v = 0.334,
E2= 9.38(1.36), GlZ= 5.22(0.757) (34)

where the moduli are in GPa(Msi). Chebyschev
polynomials were fit to all stress-strain curves and the
first-order coefficients provided the results in £q.
(34). Unidirectional 0- and 90" layups provided

(E,, v) and Ez, respectively, while the angle-ply
lamlnate [145135 provided Gy, from
G12 = Ex/2(1¢Nx) (35)

where £ and N_are the Young's modulus and Poisson's
ratio o? the f%minate; although this equation is the
same as for an isotropic material, it really comes from
lamination theory.

Predictions for unidirectional and angle-ply laminates

Predictions based on Eq. (34) and standard linear
theory are shown by the continuous lines in Figs. 4 and
5.
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Fig. 4 Modulus and Poisson's ratio of the angle-ply
laminate versus fiber angle




Fig. § Modulus and Poisson's ratio
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Agreement between theory and experiment 1is excellent
except for the off-axis unidirectional Poisson's ratio.

Sensitivity study

The very 1low failure strain of the 390" specimen

precludes its use for determi

ning E, as

a function of

S. In order to identify good layups for finding £, as
well as Gyp, the sensitivity of Young's modulus E, " and

Poisson's ratio

and G

wds calculated.

Figures 6 and 7 s§0w the reSults zbr angle-ply
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(£8) and unidirectional (¢) laminates, where & is Lhe
angle between the loading and fiber directions. The
sensitivitites are logarithmic derivatives; for example
E By is the plot of

alog Ex i EZ EEl (36)
alog Ez Ex aEz

Thus, an ordinate value of 0.75 implies a 1% change in
EZ produces a 0.75% change in Ex. The modulus and
Poisson's ratio of the ($45°) layup are practically
independent of E,, and therefore some other layup is
needed to obtain E,. Although the sensitivity to £, i$
good at large angles, the failure strain is quite %o
The ($30°) layup provides adequate sensitivity and a
relatively high failure strain, and therefore it was
selected to obtain E,. Sensitivities in Fig. 7 are
quite good for most ‘unidirectional layups. The hign
failure strain we found for the 15° layup seems to make
this a good choice; however, as discussed later, there
appears to be some difference between the intrins‘c
nonlinear behavior of unidirectional and angle-ply
laminates.

5. NONLINEAR BEHAVIOR

Material characterization
figures 8 and 9 show the experimenta) mechanical
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ans

behavior (out to the ultimate strain) for the 0° any 5C
specimens, respectively. Both modulus and Poisson's
ratio are seen to vary somewhat with strain. Data from
load-unload-reload tests showed negligible departures
from the single-load 0° curves, as noted previously.
Roughly 75% of the nonlinear behavior in the 90° curve
was retraced, and thus we used for E in Eq. (29) a
secant modulus with 25% less non]?gea 1ty than found
directly from the 90° test data. Second order
Chebyschev polynomials were found to represent the 0°
and 90° data very accurately; the uncorrected data for
Poisson's ratio in Fig. 9 were adjusted by a constant
factor so that the initial value of v,, agreed with the
first expression in Eq. (26c); %pparently, the
manufacturer's transverse sensitivity correction factor
for the transverse strain gage is not sufficient to
fully account for this sensitivity when the Poisson's
ratio is very small, Tne polynomials were used to
evaluate the secant moduli and tangent Poisson's ratio
in Eq. (29). The top dashed line in Fig. 9 1is the
predicted Poisson's ratio from £q. (27) when all
nonlinearity is elastic.

In order to complete the characterization needed
for £q. (27), E (S) and GlZ Gy,(S) were obtained
from the (+30~) and +45°) data in Figs. 10 and 11.
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In €q. (27), Q) = E (o)/D and O £,(S)/D, where, as

an excellent approxvmation ave used the linear
elastic constants from Eq. (34) to find 0 = 0.992.
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After completing the characterization, we predicted
the inelastic behavior (S:0) of the (245) specimen using
the linear elastic (f} = fy = fl = 1} and nnnlinear
elastic representations. No significant difference was
found. Consequently, one may use Eq. (35) to obtain Gy,
from the data in Fig. 11.

To find EZ' Eq. (27) was rewritten in terms of
specimen coordinates (x,y) using second order tensor
transformations for the stresses and strains. Tnen, Dy
using the condition that «y_ =0 for an angle-ply
laminate, the axial modulus f{ and Poisson's ratio

N were expressed as functions of Gy, and Ep. This
refult enabled us to find Gy, and E, as a functicn of
the axijal strain. Although ghe (230 % specimen provides
both Gy, and E,, we found that the higher ultimate
strain “of the ~ ($45°) specimen enabled to be
determined out to a 17% larger value of S, and %hus only
the latter G o was used subsequently. The modulus £2
was predicted out to the same maximum S using the
polynomial.

The procedure discussed thus far provides E, and
612 as a function of axial strain from each of the
spécimens. It remains to relate these strains to the
structure-change work S, as given by Eq. (24). Wnen the
elastic nonlinearity is neglected, then w = o ¢ /2, 50
that this work for unidirectional and &ndle-ply
laminates at any given axial strain ¢_ is the shaded
area illustrated in Fig. 3. With elasfic nonlinearity
then Egq. (31), expressed f{n specimen coordinates,
provides w. In the n81ghb0rh00d of tne Epwt1a1 state
(e =S =0), both wy and vary as ¢_, and their
dwfference, S, varies as « Moreover, both G12 and [2
have non-zero first v‘der coefficients in ¢
Therefore, 1n order 50 fit G and E2 with Cheb,>~5e.
polynomials, v rather than S, was used as the
expansion paraé% er

The continuous lines in Fig. 12 for Gy, and £, were
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Fig. 12 Transverse and shear moduli versus cube root of
the structure-change work

plotted using a sixth-order polynomial fit in SR to the
data from (t45°) and (+30) specimens; the units used
for S are Msi. The data points show moduli found from
15+, 30*, and 45° unidirectional specimens, neglecting
the elastic nonliinearity. The effect of this
nonlinearity was estimated as befing too small to account
for the differences shown for Ez.

Predictions

A1 material functions (fy, 2) and (G;,, E;)
have been expressed as polynomials %n s%ra1n and S5p,

y




respectively. In order to predict the instantaneous
value of S in each ply of a laminate we may use (23).
This expression is a nonlinear algebraic equation for S,
given the strains. The strain energy function is in fq.
(31) or (33). Prediction of ply strains, for each S,
wads done using lamination theory (8). The numerical
method employed consisted of solving simultaneously for
the unknown ply strains and S, given the axial strain,
using the Newton-Raphson method; wusually only a few
iterations (2 to 5) gere needed for convergence to a
relative error of 107". We should add that since Sp was
used as the polynomial expansion parameter, we changed
Eq. (23) to the form
!‘;—R (%R +35.%) = 0 (37)

and then used the Newton-Raphson method to drive the
left side to zero; the indicated division by SR
increased the rate of convergence.

A1l predictions that follow are based on the 612
and E, in Fig. 12 found from the angle-ply specimens;
the nonlinear elastic behavior was accounted for. When
both Gy, and E, were found from the ($30°) data in Fig.
10, diggerences between theory and experiment {n Fig. 10

could not be discerned whether nonlinear elasticity
("nonlinear fibers") or 1linear elasticity ("linear
fibers") was wused, as expected. However, for the

results reported here only one function was used from

each of the two laminates. Thus, the predictions in

Figs. 10 and 11 provide a partial check on the theory.
Figures 13-19 show additional predictions
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laminate

for angle-ply, unidirectional, and tridirectional
laminates. In most cases there was little difference
between the nonlinear fiber and linear fiber (flz f2=
fAZ = 1) predictions, and so only the nonlinear case 1S

. Inclusion of the elastic nonlinearity always
shown nclusion o e y y
improved the prediction. The “linear variation" in Fig.
18 uses the initial modulus; it emphasizes the softening
effect of S in the 45" n»nlies. The axial stress
prediction using nonlinear fibers is essentially the
same as the measured stress.

figure 19 shows results from three replicate tests
of a laminate that was selected for its susceptibility
to edge delamination. Indeed, delamination was observed
to gradually develop at the edge and then grow inward,
beginning at a strain of atout C.008. Full delamination
and specimen failure occurred at approximately twice
this strain. Transverse cracking (TC) in the 90" plies
initiated Just before edge  delaminations  were
observed. The Poisson's ratio was not affected by the
delamination until it reached the centrally located
strain gages.

For the laminate in Fig. 18 the 0° plies are under
a compressive transverse stress, while the 90° pliec for
that in Fig. 19 have a compressive stress parallel to
their fibers. In both cases, this compression is due to
the relatively high Poisson's ratio of the (45) ply-
pair (cf. Fig. 11). No adjustment was made to the
nonlinear elastic coefficients fl' fz, and f12 to
account for this compression, even though they were
determined under tensile loading; as these coefiicients
turned out to be linear in strain, a stiffening
nonlinearity in tension becomes a softening nonlinearity
in compression and vice-versa. When elastic
nonlinearity was neglected, the agreement with
experimental data was not quite as good as when it was
used.

Delamination analysis

Prediction of the delamination in the laminate of
Fig. 19 may be accomplished using the same method as for
an elastic material, except the work potential density
wy replaces strain energy density w (4,6). The two
lowest dotted curves in Fig. 19 are strain energy
release rates x 10 (referred to the left axis) for an
edge delamination in the outer interface between the -45
and 90 plies. They were found by adapting O'Brien's
method (9) to the present formulation, as noted above.
B?i’ca11y. one first adds the work potential density
w of the central, undelaminated ction t%a hose of
the two separated laminates, w and  w , after
multiplying them by their respecgive volumes, The
delaminatior work is then added to obtain the total work

potential,

NT= 2{w$1)(B-a)h(l)+ [w%z)h(2)¢ Wy
where B is the specimen half-width, a 1is the
delamination depth, k, is the (assumed) constant
delamination length, h ) are the section thicknesses
and G. is the delamination fracture energy/area. The
growth condition is aHT/aa = 0, which may be written as

(InGjaj + 26,00 (38)

6 =G, (39)

where G is the energy release rate,
6 = w{DnlD) _ (20(2) _ (31(3) (40)

This expression was evaluated for two cases 9%H$d by
the data: (i) the 90° plies are included in w (for
the inner ply-group) and (ii) the 93¢ plIes are
omitted. The second case intersects the horizontal GC
line (G_. = 1 1b/in from double cantilever beam tests) at
¢. = 0.507, while the first one does so at ¢ = 0.013,

a¥ shown in Fig. 19. Due to transverse cradks and the
axial fiber compression, the 90° plies may lose their
ability to resist transverse contraction (possibly due
to fiber buckling) thus resulting in early
delamination. Figure 19 shows that most of the observed
delamination takes place between these predicted values.

Thermal strains and Fig. 12

Thermal strains due to cool-down from the cure at
350F have been neglected. We may introduce them through
the b;, Eg. (16), which can be interpreted as free
therma\ expansion strains., (learly, by using €4- b. in
place of ¢, in Egs. (25) - (33), the effect of thetmal
strains may be taken into account. It should be noted
that the omission of them probably does not explain the
differences in E2 in Fig. 12; these differences may
really be due to the effect of the constraint from
adjacent plies in reducing microdamage in the angle-ply
laminate. It is expected that residual thermal strains
in the angle-ply laminate would lead to a lower f,,
rather than a higher value, compared to that for tﬁe
unidirectional laminates.

CONCLUSIONS

in the simplest form of the theory used here, the
unidirectional ply was modeled as a linear elastic
material with principal shear and transverse moduli that
vary with one scalar parameter (which is equal to the
applied work less the strain energy for a unit
volume). A modified form of this theory was introduced
to account for elastic nonlinearity arising from
straining parallel and perpendicular to the fibers
(possibly due to initial fiber waviness). Predicted and
experimental laminate results for various layups were
found to be in good agreement, In order to predict
delamination, it was observed that conventional energy
release rate analysis may be used, but the work density
function replaces strain energy density. Although
predictions of unloading and reloading response were not
made, a possible approach was described. Viscoelastic
behavior was neglected; relatively simple approaches
have been proposed elsewhere to account for this
behavior at crack tips (4) and in the continuum (10).
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