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THE EVAPORATION OF SESSILE DROPLETS
I. THEORETICAL FACTORS FOR A TWO-COMPONENT SYSTEM

1. INTRODUCTION

There are many situations in which evaporating sessile
dropleis concain more than one component (e.g., agricultural
spraying, forestry spraying, and chemical agent dissemination).
As a result, a model for the evaporation of sessile droplets
composed of two-component solutions is provided in this report.
The purpose of this report is to provide a model and computer
program that can be used for the evaporation of single-component
sessile droplets in an unclassified and easy-to-follow form. A
sample application to a single-component sessile droplet is
provided. Also, the model and computer program provided are
designed to be used to calculate the evaporation of sessile
droplets composed of a two-component solution. This model was
developed for solving numerous mission problems.

There are many reports that deal with related topics
(e.g., the evaporation of unitary droplets into an atmosphere
composed of mixtures of vapors and/or gases), but nothing has
been found that deals directly with the topic discussed in this
report. Walker and Penskil report a model for the evaporation
of mixtures in a suspended droplet. Coutant and Penski? have
published a report on the evaporation of neat sessile droplets
as a function of wind velocity and contact angle. Figure 1
defines the contact angle and illustrates how the Coutant and
Penski model regard 1c as a constant. Figure 2 illustrates a
decreasing contact angle similar to that considered in this
report. It is intended that this report's model will become a
module in large computerized models. These larger models will
consider additional situations including diffusion of the
droplet fluid into the surface as illustrated in Figure 3.

2. FUNDAMENTAL EQUATIONS

2.1 Hildebrand Parameter.

The Hildebrand Parameter,” §, is commonly called the
"solubility parameter" and less frequently the "total cohesion

parameter.” It is defined as follows:
5§ = [((AH, - RT)/v]'/? (1)
where
AH, = molar enthalpy of vaporization
R = 1deal gas law constant
T = temperature (Kelvin)
v = molar volume of liquid
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2.2 Activity Coefficients of Regular Two-Component
Solutions.

According to Hildebrand, Prausnitz, and Scott,3 the
equations for reqular solutions can be written as follows:

2

RT 1n y, = vi o, [(8, = 8,02 + 2 Ay, & 8,] (2)
2
RT 1in Yy, = V2 4 [(61 - 62) 2 A, 61 55) (3)
where
y, = activity coefficient of component i
v, = molar volume of component i

= volume fraction or volume of component 1 divided
by total volume of mixture

6, = Hildebrand parameter of component i

ALJ = binary coefficient of components i and j

If equations 2 and 3 are solved for the activity
coefficients, the following equations result:

2

vi oo, (08, - 8,07 + 2 Ay, 81 8,1/RT
y., = € (4)

2
va 1 (8, = 6,2 + 2 Ay, By 8,1/RT
y, = e (5)

2.3 Picknett and Bexon Equations.

The Picknett and Bexon equations4 were developed for the
evaporation of a sessile droplet in a static atmosphere. They
are as follows:

—
t

0.5 K ETp 1/° (6)
where

K = 41D (C-C,) (7)

11




D = diffusion cnefficient of vapor in atmosphere

C = concentration of vapor in equilibrium with droplet
fluid at surface of droplet

Co = concentrations c¢f vapor at a large distance from
droplet, usually very near to zero in practical cases.

P = droplet dinsity

n = 3.1416

4

w = n-H = ccntact angle,z' Brit. definition (8)
8 = contact angle of droplet with surface (Figure 1)
E = (n/3(1 - cos B)“(2 + cos §)]71/3 (9)

The term T is defined as follows:

For 0 < 8 < 0.175 radian,

T = 0.6366 U+ 0.09591 ti* - 0.06144 H° (10)
For 0.175 < # < 1 radian,

T = 8.957 10" +0.63330+0.11600° - 0.08878 0 +0.01033 11" (11)
2.4 Coutant and Penski kquation.

The Coutant and Penski? eqguaticn relates the evaporation
of a sessile droplet to its mass, ', degree of ventilarion (as
measured by its Reynolds number), and drcplet height. 2 rumber
of addicional factors are included in I7,

~dm/dt = I'm*"7[1 + cRe' """ (a/n) ") (12)
where
-dm/dt = rate of droplet evaporation
m = drcola” mMass
t = time
¢ = constant ¢f Coutrant and Penski equation
Re = Reynclds number = 2 h W,/ u {13)

a = height of droplet

h = heiagbit of tunnel

Y o= wind veiscity o relative velocity 26 e
droplet Lo that f the atmosphere
v = kinematic viscosity £ the atmosphere




2.5 Height of Sessile Droplet.

The droplet height2 is given by the following equations:
A = 1+ 0.75 [2 sin 8/(1 - cos 8)]? (14)
a = (6 m/(uph))”’ (15)

The variable Ais introduced only to simplify the equation for
droplet height.

2.6 Concentration of Vapor.

The ccncentration of vapor from the evaporating droplet
can be determined fairly accurately near ambient temperatures
for the ideal gas law:>

P° V = nRT 1161

where

P vapor pressure of fluid
V = volume of vapor at P°
n = number of moles of vapor in V
At the low partial vapor pressures under consideration,

corrections for nonideality usually prove unnecessary. Equation

16 can easily be transformed to provide concentration as
follows:

C = nM/V = MP°/(RT) (17)
where M = molecular weight of vapor.

2.7 Partial Vapor Pressures.

The partial vapor pressure of component i of a mixture
is given by the following equation:®

P, =P, Y, % (18)
where

e
l

partial pressure of component i

ey
v
1

vapor pressure of component i

activity coefficient of component i

~
—
H

i

volume fraction or volume of component i divided
by total volume of mixture

13
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Volume fractions are morz widely used for nonelectro-
lytes than mole fractions because volume fractions deal more
adequately with molecular size effects.

3. MATHEMATICAL MODEL

3.1 Starting Conditions and Properties.

3.1.1 Atmospheric Conditions and Properties.

v = Kkinematic viscosity of the atmosphere

Y = wind velocity or relative velocity of the droplet
to that of the atmosphere

T = temperature in degrees Kelvin. 1In this case,
evaporation is assumed to be slow. Therefore,
atmospheric and droplet temperature are equal.

Coy = concentration of vapor at a large distance from
the droplet for each component, usually equal to
zero in practical cases.

h = height of tunnel

3.1.2 Droplets.

me = initial droplet mass
@1 = volume fraction of component 1
¢2 = volume fraction of component 2
B = contact angle of droplet with surface
3.1.3 Properties of Two Components.
DL = diffusion coefficient of component i vapor in
atmosphere
M1 = molecular weight of component i
(o]
P, = vapor pressure of component i
61 = Hildebrand parameter of component i
Alj = binary coefficient of components i and j
pI = density of component i
3.2 Computational System QOverview.

Calculate all the dependent variables by stepping from
Sections 3.2.1 through 3.2.9 in the order given.

14




3.2.1 Increment Time by a Small Number.

The calculation follows the procedure previously
described by Penskil

t = t. + 1 (19)
where

t

] time after previous increment

1 small increment in time

3.2.2 Activity Coefficients.

Calculate the activity coefficients (equations 4 and 5)
as follows:

2
v, ¢, ({8, - 8,7 + 2 A, 8 8,]/RT

Y, = ¢ (20)

2
v, ¢, [(8, - 62)2 + 2 A, 0 82]/RT
Yy, = € (21)

3.2.3 Drop Volume.

Q = ml/P1 + m2/92 . (22)
where

Q = volume of droplet

p, = density of component i

3.2.4 Reynolds Number.

Re = 2 h Wy (23)

3.2.5 Concentration of Vapor at Droplet Surface.

The partial vapor pressure of component i of a mixture
is given by the following equation:

L by (24)

o
p, =P Yz’b

Vi 2 (25)

2

and the concentration of vapor of the two components 1s as
follows:

15




C, = M p;/(RT) (26)
C, = M, p,/(RT) (27)
C, = concentration of vapor of compcnent i in

equilibrium with the fluid at surface of droplet.

M; = molecular weight of vapor of component i
3.2.6 Picknett and Bexon Equations.
r, = 0.5 K Tp " (28)
I, = 0.5 K,E Tp '/’ (29)
where
K, =4 0D (C, - Cwy) (30)
K, = 4 nDy(C, = C_,) (31
w=n-98 (32)
E = [n/3(1 - cos H)? (2 + cos B) 7172 (33)
For 0 < 68 < 0.175 radian,
T = 0.6366 6 + 0.09591 H° - 0.06144 8’ (34)

For 0.175 < B < t radian,

[S¥]
N
~J

5

T = 8.957 107° +0.6333 & + 0.1160 02- g.08878 TR 0.01033 u" {35)

Height of Sessile Droplet.

The droplet height2? is given by the following equations:
A

1+ 0.75 [2 sin B/(1 - cos 8)17 (36)

a [6 m/(nph)]t/3 (37)

Mass of Droplet and Mass of Each Component.

The Coutant and Penski equation relates the evapcration

of a sessile droplet to its mass, ['j, and degree of ventilation
as measured by its Reynolds number:

m =my; - T, m!/3(1 + c Re® 3 (a/h)? %] 1 (38)

16




m, = m,; - T, m!/3[1 + ¢ Re®'%3 (a/h)% %] ¢ (39)
m = ml + m2

where mj; = mass of component i for last iteration.

3.2.9 Volume Fraction.
¢, = m/(p, Q) (41)
@, = mg//(pz Q) (42)

3.2.10 Contact Angle Decay.

Pro.ision for contact angle decay is provided in the
model. The following equation is used.

B = 6,(A, - A} m/my) (43)

where 6, is the initial contact angle, and A, and A; are
constants.

At this point, calculation returns to Section 3.2.1 and
starts over providing all the variables as a function of time
through multiple repetitions.

4. RESULTS

The definitions of the terms used in the program and
their units are provided in Appendix A. Appendix B provides the
computer program developed in this effort. Figure 4 compares
data collected by experimental methodology by the authors® with
calculations performed with the model and computer program
described in this report. The data used was for a sessile water
droplet on an aluminum surface in a small wind tunnel with a low
air flow. Details of the calculations are provided in Appendix
C.

5. DISCUSSION

To keep this report unclassified and relatively simple,
only water data is inciuded. By taking the concentrations of
the second component as zero, the model may be applied to neat
liquids.

If equations are introduced to vary the properties of
the components, the model may be used for conditions other than
isothermal. For example, the Antoine equation’ may be used to

(o]
vary p, and AH,; (vapor pressures and enthalpy of vaporization
for each component).

17




Weight (mg)

This model implicitly assumes complete mixing inside the
droplet which is, in fact, the actual case for most low viscos-
ity liquid droplets in a moving air stream. High viscosity
mixtures may not mix well, resulting in concentration gradients
existing inside the droplet. The volatile liquid would be
expected to have a higher concentration near the center of the
droplet rather than near the edges. Comparing this model with
data for thickened droplets will determine when the sessile
droplet starts to develop concentration gradients.

30 % Experimental

« Calculated

N
n

—
n

S
ILIll[llllllllllllllllJ_ll[J_Lll

i'
|

—
o

an

10 20 30 40 50 60 70 80 i

o

Time C(minutes)

Figure 4. Evapcration of a Sessile Droplet of Distilled Water
at 18 °C, 0% Relative Humidity, 0.63 cm/s Air
Velocity from an Aluminum Surface Compared to
Calculations.
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6. CONCLUS10NS

This report provides a model and computer program that
can be used to calculate evaporation of single-component sessile
droplets.

A model and computer program are provided that can be
used to .alculate the evaporation of sessile droplets composed
of two-component solutions.

Data for the evaporation of a sessile water droplet on
an aluminum surface in a small wind tunnel with a low air flow

compares favorably with calculations using the model and
computer program.

19
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GLOSSARY

Height of droplet

Concentration of vapor of component i in equilibrium
with the fluid at surface of droplet

Concentration of vapor at a large distance from
droplet for each component, usually equal to zero in
practical cases

constant of Coutant and Penski equation

molar enthalpy of vaporization

diffusion coefficient of vapor in atmcsphere
defined by equation 9

height of tunnel

defined by equation 7

molecular weight of component 1

droplet mass

initial droplet mass

mass of component 1 in droplet

mass of component i for last iteration

number of moles of wvapor

vapor pressure of component i
partial pressure of component i
ideal gas law constant

Reynolds number = 2 h W/u
temperature in Kelvin

time

time after last increment

23




molar vclume of component i
volume of vapor

TEKMS

= Hildebrand parameter of component i

-

~

S0

volume fraction or volume ©f compunent 1 divided by
total volume of mixture

defined by equation 6

activity coefficient cf component i

contact angle of droplet with surface

initial contact angle of droplet with surface
binary coefficient of components I and j
defined by equation 14

kinematic viscosity of the atmocphere

3.1416

wind velocity or relative velocity of the droplet to
that of the atmosphere

density of component 1
small increment in time
volume of droplet

defined by equations 10 and 11
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DEFINITIONS OF COMPUTER TERMS
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Al
Cl
c2

Cc4

C5

Cé
D1l
D2
D5

D8

DS

E8
E9
Fl
F2
F3
F4
G3
G4
H1
12
I3

17

Height of droplet, cm
Concentration of component 1 in vapor, g/cm?
Concentration of component 2 in vapor, g/cm’

Concentration of component 1 in atmosphere leaving
tunnel, ug/cm?

Concentration of component 2 in atmosphere leaving
tunnel, pg/cm3

Constant of Coutant and Penski equation
Density of component 1, g/cm3

Density of component 2, g/cm’

Density of atmosphere, g/cm?

Digfufion coefficient of component 1 in atmosphere,
cm‘s”

Diffusion coefficient of component 2 in atmosphere,
2g-1
Cm?és

T, see equations 10 and 11

E, see equation 9

[,, see equation 28

I',, see equation 29

Right most two factors in eguation 12

VAT

Activity coefficient of component 1, unitless
Activity coefficient of component 2, unitless
Height of tunnel, cm

Number of points per data set

Point counter

Data set number

273.16
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K1l
K2
K5

Ké

M1
M2
M4
M5
M7

M8

04

05

Pl
P2
P3
P4
P5
P7

P9

R2

Temperature of droplet, Kelvin
Atmospheric temperature, Kelvin

Ky, equation 30, g/(cm s)

K,, equation 31, g/{cm sS)

Binary coefficient, unitless

Droplet mass, experimental, mg as input converted to g
Mass of component 1, calculated, g
Mass of component 2, calculated, g
Molecular weight of component 1, g
Initial droplet mass, g

Droplet mass for previous iteration, g
Molecular weight ¢« component 2, g

Viscosity of atmosphere, poise

Tnitial volume of droplet minus volume of impurities,
cm

Initial volume of component 1, cm?’

Initial volume of component 5, cm’

Total of component partial vapor pressures, Torr
Partial vapor pressure of component 1, Torr
Partial vapor pressure of component 2, Torr
Pressure of atmosphere, Torr

Purity of component 1 in weight fraction, unitless
Purity of component 2 in weight fraction, unitless
vVapor pressure of component 1, Torr

Vapor pressure of component 2, Torr

3

Ideal gas law constant, cm” Torr/(Kelvin mole,

Ideal gas law constant, cal/(Kelvin mole)

APPENDIX A 28




R3
S8

S9

T1
T2
4
T7
T8

T9

vl
V9
V4
VS
Wl
W2
W3
X1
X2

X4

Reynolds number, unitless

Hildebrand parameter of component 1, (cal/cm3)“2

Hildebrand parameter of component 2, (cal/cm3)1/2
Measured time, input as min, ccaverted and used as s
Droplet temperature, C

Atmospheric temperature, C

Cunicact anglie, inscially ia deg then ccnverted to rad
Initial contact angle, deg

Calculated time, s

Increment in time, s

Kinematic viscosity of atmosphere, cm?/s

Atmospheric velocity, cm/s

Droplet volume, cm’

Volume of component 1, cm?
Volume of component 2, cm’
Increment of mass of component 1, g
Increment of mass of component 2, g
Droplet mass, g

Volume fraction of component 1, g

Volume fraction of component 2, g

Weight of component 1 divided by initial mass of
droplet, unitless

Weight of component 2 divided by initial mass of
droplet, unitless

Concentration of vapor component in atmosphere leaving
tunnel per gram of component leaving droplet, mg/cm->/g
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APPENDIX B

COMPUTER PROGRAM
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2.2

Activity Coefficients of Reqular Two-Component
Solutions.

According to Hildebrand, Prausnitz, and Scott,3 the

equations for regular solutions can be written as follows:

where

2
RT 1In y, = vig, [(8, = 8,02+ 2 A,38 &, (2)

2 2
RT 1n y v2 ¢, [(81 -8, +2 A, 05 8] (3)

Y, ~ activity coefficient of component i
v, = molar volume of component i
9, = volume fraction or vqlume of component i divided
by total volume of mixture
6, = H:ldebrand parameter of component i
ALJ = binary coefficient of components i and j

If equations 2 and 3 are solved for the activity

coefficients, the following equations result:

2.3

2
vi o, [(8, = 8,)° + 2 A, 8 8,]/RT

Yy T € (4)

2
va o, [(8, - 8,)2 + 2 A}, 8, 8,]/RT
v, = e (5)

Picknett and Bexon Equations.

The Picknett and Bexon equations4 were developed for the

evaporacion of a sessile droplet in a static atmosphere. They
are as follows:

where

=3
1]

0.5 K ETp~1/3 (6)

=
]

4 n D (C - Cq (7)

1"




D = diffusion coefficient of vapor in atmosphere

C = concentration of vapor in equilibrium with droplet
fluid at surface of droplet

Ceo = concentrations of vapor at a large distance from
droplet, usually very near to zero in practical cases.

P = droplet density

n = 3.1416

w = n-0 = contact angle,z'4 British definition (8)
@ = contact angle oFf drcoplet with surface (Figuosz 1)

E = [n/3(1 - cos 8)2(2 + cos 8)] /3 (9)

The term T is defined as follows:
For 0 < 8 < 0.175 radian,

T=0.6366 6+ 0.09591 67 -~ 0.06144 6° (10)
For 0.175 < 8 < m radian,

T = 8.957 10°5+0.63336+0.116002-0.08878 8° + 0.01033 8° (11)

2.4 Coutant and Penski Equation.

The Coutant and Penski? equation relates the evapcration
of a sessile droplet to its mass, [', degree of ventilation (as
measured by its Reynolds number), and droplet height. A number
of additional factors are included in T.

-dm/dt = Tm!’3[1 + cre® %3 (a/h)?" 7] (12)
where
-dm/dt = - ate of droplet evaporation
m = uroplet mass
t = time

¢ = constant of Coutant and Penski equation

Re = Reynolds number = 2 h W/u (13)
a = height of droplet
h = height of tunnel

W = wind velocity or relative velocity of the
droplet to that of the atmosphere

v = kinematic viscosity of the atmosphere

12




3.2.1 Increment Time by a Small Number.

The calculation follows the procedure previously
described by Penskil

t=¢t +t (19)

where

tJ time after previous increment

T small increment in time

3.2.2 Activity Coefficients.

Calculate the activity coefficients (equations 4 and 5)
as follows:

v, 0, [(8, - 8,)7 + 2 A, 8, 8,]/RT
vy =€ (20)

2
v, ¢, (8, - 8,0 + 2 A, 8, 8,]/RT

Yy, = ¢ (21)

3.2.3 Drop Volume.

Q=m/p, +m/p, (22)
where

Q

volume of droplet
p, = density of component i

3.2.4 Reynolds Number.

Re = 2 h Wy (23)

3.2.5 Concentration of Vapor at Droplet Surface.

The partial vapor pressure of component i of a mixture
is given by the following equation:

(o]
P, =P, 7 ¢, (24)
= p° ; 25
P, =P, 7,0, (25)

and the concentration of vapor of the two components is as
follows:

15




C, = M, p,/(RT) (26)
C, = M, p,/(RT) (27)
C, = concentration of vapor of component i in
equilibrium with the fluid at surface of droplet.
M; = molecular weight of vapor of component i
3.2.6 Picknett and Bexon Equations.
r, = 0.5 KE Tp~ "’ (28)
r, = 0.5 K,g Tp '”’ (29)
where
K, = 4 1D (C; — Coy) (30)
K, = 4 nD,{(C, - C_,) (31)
w=n-6 (32)
E = [n/3(1 - cos 8)? (2 + cos B)]°1/3 (33)

For 0 < 8 < 0.175 radian,
T = 0.6366 6 + 0.09591 62 - 0.06144 8° (34)
For 0.175 < 8 < 1t radian,

b

T = 8.957 1072+ 0.6333 8+ 0.1160 8° - 0.08878 6° + 0.01033 8% (35)

3.2.7 Height of Sessile Droplet.

The droplet height? is given by the following equations:
A

1 +0.75 [2 sin 8/(1 - cos 8))? (36)
[6 m/(np))]*/>3 (37)

a

3.2.8 Mass of Droplet and Mass of Each Component.

The Coutant and Penski equation relates the evaporation
of a sessile droplet to its mass, I'j, and degree of ventilation
as measured by its Reynolds number:

m =m, - m/3[1 + cRrRe®® (a/h)?%] ¢ (38)

1
J
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