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Abstract

Deceit. a distributed file system being developed at Cornell. focuses on flexbie

'ile semantics in relation to efficiency, scalability, and reliabilitv. Deceit servers are

intrchangeable and collectively provide the illusion of a single. large server maii1e

to any clients of the Deceit service. Non-volatile replicas of each file are stored ,n

a subset of the file servers. The user is able to set parameters on a file to achive

different levels of availability, performance, and one-copy serializability. Deceit alho

supports a file version control mechanism. In contrast with many recent DFS efforts.

Deceit can behave like a plain Sun Network File System server and can be used by any

NFS client without modifying any client software. The current Deceit prototype kises

the ISIS Distributed Programming Environment for all communication and process

group management, an approach that reduces system complexity and increases system
robustness.
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1 INTRODUCTION

1 Introduction

This paper discusses the Deceit Distributed File System which is being developed at Coiiwl

University. The research emphasis of the Deceit system is a more flexible file semantir,-

to address the problems of scalability, efficiency, ahd cliabilitv. Our premise is that it

is valuable for the user to be able to adjust system semantics on a per file basis. Needled

features may be employed without paying a penalty for unused fAf-.. The ,11,tlr
behavior is equivalent to NFS.

Users select atypical features by overriding the default selections established by Deceit.
Here are some of the choices that a user or system administrator might make:

* Availability- there are many techniques known for handling machine crashes and
communication loss. Different solutions offer varying levels and types of resilience
and cost. For example, data replication reduces the probability that the file will
become unavailable for reading, but file updates become more expensive.

* Update propagation-there is a delay between when a client issues an update and
when that update is apparent to other clients. Some applications may have con-

straints on this delay.

* Causality-constraints may exist between files to provide file consistency. By having

the file system enforce such constraints, the user may augment or reduce the concur-

rency of updates and the success of file caching. For example, a run-time debugger
may require that an executable file and its source file are consistent.

* Update stability-it may not be necessary for an update to be written to c-;clatie

storage or sent to all replicas immediately. Asynchronous update propagation can
produce dramatic i ,pi-,,ements in performance. Note that an update can be visible

to all clients before it ,as been delivered to all file replicas. The difference between

update propagation and stability is clarified below.

The user can dynamically set file parameters to select the method that Deceit uses to

provide the above properties. This paper describes the components of the Deceit file

system which provide these file parameters and also gives a less detailed description of the

'In this discussion scalability will refer to the total number of file servers rather than the nutiber of
clients.
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emtire architecture. Some a(lditional features that we plan to add in the iwar fiitiir, ;ii,
,Liccissed also.

There are nmany e.ist1*ig distributed file systems including RNFS. .Andrew. Si lp ,'
Amoeba. SWALLOW. DFS. and Cedar (see bibliography for an extensive list of rvfcrenc,1 ...
We are deeply indebted to these other distributed file systems for many of Deceits ,t ii
features. A full presentation of other distributed file systems is beyond the scope (f tlis
paper, and a partial presentation would inevitably be unfair, so we only conlpar. Detit
to NFS in this paper.

This organization of this paper is as follows. Section 2 gives a general description :f the,
architecture with the major assumptions underlying the Deceit design. Section 3 doscrih), ,

the file replication iiianagement -Protocols. Section 4 describes the parameters that a ii, ,i
can set on a file. Section .5 is a detailed description of the logical structure f Deeit.
Section 6 describes some example scenarios where Deceit might be used. and Section 7 i;
the conclusion.

2 General Architecture

2.1 Contrast between NFS and Deceit

One way to understand the Deceit architecture is to contrast it to the NFS architectine'47.
48.461. In a normal NFS implementation, each server machine maintains a set of files
disjoint from the sets maintained by all other servers. These sets are structured into
directory trees, and each server may provide more than one directory tree. The file name
space2 is built by linking together the directory trees provided by the servers into a single
tree. This linking is done separately at each client. Refer to Figure 1 for an example
directorv tree. Clients may communicate with any subset of the NFS servers, but servers
normallv never communicate with each other: of course, servers may act as normal clients
to each other.

Deceit and NFS use the same client/server communication protocol (i.e. the same transport
and RPC interface), so a Deceit service appears to be a NFS file service to a client. A.,
a result. Deceit provides a normal NFS name tree. All NFS operations are supported,

'The file name space for a file system is the mapping between full path names and logical or physical
lips.
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------------------------------ ----------

r ---- 7us-r ---- /bin

f---------Tsrhom-e 1 - usrh /bin /bin
2 ,usr hJ.1: /s/lib :/bin/csh /bin!sh

I J ~~--------------------- ---------------

/usr/home/siegel /usr/homne/foo
L----------------------------- ----------

Lerver
boundaries

Figure 1: Example NFS directory tree

with no change to any client software. The file handle is an important component of the
NFS protocol. A file handle is associated with each file or directory, and clients usually
refer to files or directories by file handle. This type of handle for files is common in the
file system literature[26,34,36]. Since Deceit uses the NFS protocol. Deceit provides file
handles. These file handles are guaranteed to be unique and usable as long as a replica of
the file exists.

A main difference between Deceit and NFS is that files are not statically bound to any
particular server; with Deceit, files may move freely between servers. If a client request
arrives for a file at a server which does not have that file, the request is automatically
forwarded to a server that has the file. The reply is propagated backwards along the same
path. All servers provide an identical file service to clients so that clients have to explicitly
connect to only one server in order to access the entire Deceit service. A comparison
between Deceit and normal NFS communications paths is provided in Figure 2. When
one machine fails, Deceit clients can connect to another machine and continue operation:
standard NFS client software does not provide this capability. Users may think of Deceit
as a single, highly reliable and responsive server.

• • • II I I I I l
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ServerServ r Server Sre! C
NFS Communication Paths

Client Client Client Client Client Client Client
A B C D E F G

Server Server Server Server
AB C D

Deceit Communication Paths

Figure 2: communication paths

A second difference is that Deceit allows replication of files. Files may have non-volatile

replicas on any subset of the servers. It is important for disk and communication efficiency

that files are not always replicated on every server, since such a high degree of replication

is unnecessary for most applications. To this end, the user can specify a desired replica-

tion level and can provide explicit control over the placement of file replicas, if desired.

Directories are handled similarly to files; they are stored on a subset of the available servers.

A third difference is that Deceit supports a file version control mechanism. A user may

explicitly produce, manipulate, and delete specific versions of a file. Also, a user can inquire

about the relationships between versions and ask Deceit to delete obsolete versions. This
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version control mechanism is -'blended" into NFS semantics so that its use is optional.

Deceit provides a superset of .NFS functionality. To allow the user to acces this ftii'ti,,-
ality. Deceit has additional commands and file operations beyond normal NFS op,'ratiii .
Clients access these features by using special RPCs and by reads and writes to iiiisilh
control files. Special commands are provided to list all versions of a file, locate all ripli,
of a file, modify file parameters, reconcile directory versions, and provide other fiit *t-, 11.i
These commands are discussed below.

2.2 Cells

In the above discussion, it was assumed that all clients could directly access .ii Dtr" rit
server, but this property is not necessarily true. Deceit servers can be subdivided into cell,
to prevent Deceit from being non-secure (and inefficient) in a very large implementation.
Each cell is an independent instantiation of Deceit with distinct files and processes. Each
cell maintains its own name space, and replication must be contained within a cell, A
cell provides security and administrative boundaries. In our present implementation. cells
correspond to ISIS site clusters. An example of Deceit cells is shown in Figure 3.

Access between cells is provided through a logical directory. There is a logical direc-
tory called the global root directory. It cannot be listed, as it implicitly contains the
full machine names of every accessible Deceit server. Instead, it is used indirectly as a
subdirectory of a normal directory. For exainple, if a user is in the Cornell comniuter sci-
ence cell and wants to access files in the MIT computer science cell, he picks a machlinc
*'foo.cs.mit.edu" at MIT where a Decet server is running. By executing the command "cd
/priv/global/foo.cs.mit.edu", a user can access the MIT cell with normal file operations.
The global root directory is a subdirectory of "/priv." The Cornell cell acts as a client to
the MIT cell Mount and access restrictions are applied as with any client.

2.3 Design Assumptions

A list of assumptions about the environment where a system will be used is fundamental to
any design. We will provide a short summary of our assumptions here. The assumptions
are grouped into three categories: network architecture, failure, and typical operational
behavior.
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CELL

CELL

CELL

D - single Deceit server

Figure 3: Example configuration of Deceit servers with cells

Network Assumptions

The target environment is a network of computers used in a client/server fashion. Sonic ,:If
the computers may be diskless, and some may be large dedicated file servers. We belie'e
that NFS offers an adequate file system interface for our purposes, and NFS is widely
accepted, h,-nc,- all file requests from the clients are via the standard NFS interface. Under
normal conditions, all machines can commuiicate diircJl; " h .. , thr,,gli an

n(lerlying network. Communication is symmetric: if a can send a mes-,ige to 1). then !,
can send a message to a. The servers are grouped into administrative subsets calhl t11,
such that each cell is managed by a single centralized administration. Cells are as sumi 'd to
be a small number of local area networks (e.g. 10-100 machines). Network coninuni:catlt)iI
is secure: messages are sent to the correct destination with a correct sources address. and
messages can not be examined by machines which are not the intended receiver. Since all
communication between servers is through the ISIS distributed system[2,3], all of the ISIS
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communication assumptions are present in Deceit.

Failure Assumptions

We assume that machines may crash without notification3 . messages may i. llii-
ing transmission: and the network may experience long term communicatioln lrrtiti,,1t

All machines have roughly independent failure probabilities. Network partitini ili;tv Iw
frequent. Within a cell. servers trust each other, but between cells there is minimil rI t vt

Operational Assumptions

Predictable file access patterns are central to the design and perfornman,', ,f D,,it _tI.
of Deceit's design decisions were based on results from studies which wr 1,, il All
academic environment [39.14,13,441.

Deceit's operational assumptions are as follows. Files tend to be written or read in thein
entirety with a stream of operations. Nearly simultaneous writes by two cient, tk, tht
same file are very rare. Files experience long periods of total inactivity punctuatel 1,v
high activity where they may be rewritten several times in a few minutes. File activitv
tends to cluster in a small number of directories. The vast majority of NFS pt)'ratil , ir
get attribute (get basic file attributes), lookup (find a file by name in a directoryl, ri. ,ii
write. Most files are small, i.e. less than 20 kilobytes.

9.4 Related Topics

The ISIS distributed system is used for crash and partition detection, communication
primitives, and process group management[33,22). Some features that ISIS provides are:
several group broadcast protocolb, dtomic group membership change, mechanisms for I,)-
cating group members by group name, light-weight processes with signals and seniaphor,.".
architecture independent communication, and process state transfer. As a detailed diseiC.-
sion of ISIS would be a digression, the reader is referred to [41 for more informatin.

3For a more detailed discussion of machine and commu.ication failure mcdels. please refer to3.
4Some readers may be aware that early versions of ISIS blocked during network partitions. s par r

our work on Deceit, and other ISIS applications, this issue was reexamined. 'We expect a version of PSI-
capable of surviving network partion to be available shortly.
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Tb ll n ut tis paper, the term ''user' wvill be usedI to refer to thIe pf rs, )II 1 1.
1, is .ii S tii fi vt emi operat ions. In 111rac tice. somle file s vs t emiI )IF;t t( ,~ xV ' 11
to 1w rf-strnct ei lox uio I normnal file seciirity. F(r examiple. a "Nvsttn Iiiiiit U

man ~late that iisers can i goner ate at mo-Ist three replicas )fta file. The 1:Ilr
lhetwteei users andl~',e a(InIIIniStrators is a fruitful area ('f rf."-archI. 111 !111 rip
,I ItI t 1 CtiIII. NViii no t he Iscrussed(.

3 Replication Management

j ih''1t 1(Il e of thle mo1st imlportant mnechanisins i Dece(it. If crit iclil~
onr sar tlist rut ei o)ver several machines. then it is miort. li Liv tli at f n , :,iv 1
ii~iaiaheat au% tile.'l Repl-icating , 01nP(JIit'lts IS aii1 ()hI~()11s ' 'uilitil'ii. I1 i-,

f. -x file ssems that allow files to h)e rephicat 0(1 anion g a se-t o)f (v.r1i :2's

N t, hi Avever. that caching is ain import ant formi of replicat ion S r : i11'

all file syt eiis, then they all must support somne form of replication. Tli, Ani F: LI>

Syste:,i 21' is a godexample. Andrew supports caching o)n a 'bent 11,k nii- ii
iiliiory. Deceit also supports client memory cachng

A 'I''(iralt property o)f any' replicated (lat a syst em is oT-((Vcp ~5 i; .z A till
exhiji jts necpvserlalizabili't v if thle results of rea&; and wmto( r i 1t t iIa

froiin thle ((lit couln ( )f performing the same operations in a set tilng wvler, thlo , ''ly ,,
replica of ' ne-copy serializability Is a ssfl )rpr IIce It IIII) t T I!-, t

"f to1Ilt iple replicas i' hidden at the user level,

3.1 Replica Generation

A s elated With each Deceit file is a nmim mt replica l'evel thIiat 'an 1)( (Ilefinml :l ;IIII C1ii' . ;

hr pugh a special command. If file f ha.,s a inimium replica le~vel l(f r. Oin Dc'cit viii
Insure that there are at least r non- volatile replicas of f as longi, as t-noogli ,,I~ Nr i
;tv;ul1ahle. To do so. new replicas may nee(l to be generated. Asso)ciated w ithI ~a~i

~du the tokon hioider of f. The token holder isresponsie for gliit-ratill -,Lll , tti1!
fil-' replicas. Toktii will he discussed inii nure etil 'in Se'tiu)n 3.3, Tlieie areii, f, U\i

thiat a i'ph'ca ''aut Ihe gieratedi:

rr.cpx etria ,iihif is (10t;-d a~s(I il~ aH terproCr'ss (~I'1ctII ~ r~~



3 fEPLICATI()N .MXANAGEAIE.X'T

1. The token hldder t may lose contact with a replica. t counts the number oif corr,,I
rephos to an update broadcast for f. If the number of replies drops below r. tli ,i

Nwill creat,' new replicas. If there are no updates, replicas may become 11navailal,,.
and later available without causing a new replica to be generated.

2 If the minimlm replica level is increased. t will create new replicas.

3 A user may request the token holder t to create or delete a replica on a 1p,-,Cifi.

with a special command. Users may inquire about the current location (,f ll ,.pi,1.

for a file with another special command.

4. A server may request that a replica be generated in order to improv, reladt lwrf,,1-
iliance.

Method 4 occurs as follows. If a client accesses file f through a server 4 which does hot

have a replica of f. then the operation is forwarded to a server which has a replica of ". A.:
a background activity, a local non-volatile replica is generated on s to speed! futuire retad

aid( help ensure availability. In this manner, file migration is achieved with thet rephcation
mechanism. Each client slowly gathers its working set of files to the server to whib1 it
has conected. In some cases, the user may prefer that a replica is not autoiiiaticallv
generated: this parameter may be set by the user.

Replicas are generated with a file transfer protocol from an existing replica. A r, )li,:
!holder feeds a copy of the file to the site Ahere the replica is being generated throu ~Ld ;i

TCP connection. Non-blocking I/O and careful buffer management allow the collniecti, n
to, run at high efficiency. The token holder delays updates during replica generation t,,

p "'vent inconsistency.

Eventually, there may exist several unneeded replicas of a file. The token holer t will
,elete t';,se extra replicas when an update occurs instead of updating them. They a it
deleted in least-recently-used order. The user may ask t to delete a replica with a sp ial
command.

Some existing DFSs allow files to be divided into segments for caching or replication. Tfil
option allows finer grain control over data movement and more efficient access to very larv,'

files. Unfortunately. it does not work well with the NFS protocol, and it greatly in,'ral,,
tie cornplexitv of the system. Ve have decided not to provide this option at thi, pr,,,t

tin e.
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3.2 File Groups

For any file. f. there is an explicit process qroup of servers that need current informatiom
about f, which we will call the file. group of f. A process group is a set of ina'iin
or processes: there must be a mechanism for broadcasting messages to all member, aiil
sending messages to individual members. Deceit represents each file group with im ISIS
process group.

The file group for f contains all servers that have a replica of the file or hav. ,aih,.,I
information about the file. This set is a superset of the replica holders. and it inchit,
those servers which cache only timestamps or mode bits. The fundamental operatini
within a file group is update distribution. An update to f originates from a client anl is
given to its server. That server then broadcasts the update to all members of f's file group:
no other servers receive this update for f. Refer to Figure 4 for a schematic description
of update distribution. The concept of a file group is fundamental to the scalability of the
entire system, since only the size of f's file group affects the speed of updates to f.

In Deceit. a server needs to join a file group before it is allowed to broadcast aii update
to. or have a replica of. that file. Joining a file group is an expensive operation an(l may
require a global search to find a member of the group. This operation is one of the main
obstacles to scaling Deceit to an arbitrary size. Deceit limits global search to within :1
Deceit cell to ameliorate this problem. As a result, file groups must stay within a single
cell.

We believe that much of the complexity of distributed file systems arise in problems analo-
gous to those found in group management. For example, a read/write quorum protocol can
be viewed as a protocol for atomically broadcasting data updates to a group of replica..
The problem of locating a file replica by file handle is similar to the problem of locating
a group member by group name. It would be interesting, but beyond the scope of o)ur

present discussion, to compare file systems in these terms.

3.3 Write-tokens

To coordinate access to replicated data, we use a write-token protocol. This protocol is
based on one presented in [33,421. A write-token[27,28] is associated with each file group.
Only a server that holds the token is allowed to distribute updates to the correspondin
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Server

Server

Server Server Client

Server

Server

X - Replica holder D- File group member

Figure 4: Update Distribution

file group. An update requires only one communication round 6 if the token is held. A
write-token protocol works well when update streams tend to originate from one source foi
long periods of time as in a file system; under those conditions most updates will require
only one broadcast.

The token holder synchronously collects only the first s correct replies, where s is the write
safety level of the file. After these s replies have been collected, the original client RPC
that requested the update will return.

A server that lacks a token must acquire it before distributing an update for that file.
Token acquisiticn requires one round, but it is only done for the first in a series of updates.

'A communcalton round is the distribution of a message to a set of processes. The collection of - ,,
chronous replies is included in the round.
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To acquire a token. a server broadcasts a token request to that file group. The serivr that

holds the token broadcasts a token pass in response. It is necessary for correctus, tlhtt
the updates arrive in identical order at all servers regardless of token movement.

There are several optimizations to this protocol. One optimization is to broadcast an
jpdate in the same message with a token request. replica holders execute those liplat,.

upon receiving the corresponding token pass. Another optimization is to pass ali,
to the current token holder instead of requesting the token if it is likly That th,,r, will
be only one update: for example. a small file that is overwritten in a single update Nvili
probably not be updated again soon. Deceit currently uses neither of these ptimizatioi,.

3.4 Global One-copy Serializability

The write-token scheme described in Section 3.3 is sufficient to achieve one-copy Crializ-
ability in a file system containing only one file, but a real file system will require a stronger
mmechanism. Global on e-copy serializability is defined as the )roperty that clients shoull
observe one-copy seriaizability on the whole file system rather than simply )it individual
files. A related property is real-time consistency; if one user writes a file and calls a frie,,l
on the phone. the friend should be able to observe the update within a bounded delay.

Global one-copy serializability is stronger than simple one-copy serializability as is shown

in Figure 5. In this example. files x and y are initially empty. Client ci appends to j- and
then appends to yj. Concurrently. client c2 successfully reads from y and then observe,,
that x is empty. This result is impossible if there is only one replica of x and y. Yet x an(
ij separately exhibit one-copy serializability.

An obvious solution is to wait for the update to complete at every member of the file
group before allowing a wr'te call to return to a client. Unfortunately. this can lead to bal
performance, particularly in the case where a replicated file is being written with a stream
of ,mall updates. A more efficient mechanism that allow updates to complete concurrently
is called for.

Deceit provides global one-copy serializability with a stability notification mechanism. Be-

fore a file can be modified, all members of the file group are notified that the file is lnstabie.

All ava.lable7 replicas must be so notified before any updates can occur (the failure of the

7A replica at. server b is available to a if a can communicate with b. ISIS provide, a clean notion )i
availability sin o failure dete-ction is coordinated with communication.
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C2 reads x

TimeHistry o c1 time

ci appends x C2 reads y

Time istoy ofOperations with Files x andy

cc appends x c2 reads time

c2 reads x cl appends y

Separate Time Histories of x and y

Figure 5: Illustration of One-copy Serializability Example

token holder during stability notification is discussed in Section 3.5). After stability no-
tification, all file reads and inquiries are forwarded to the token holder. Only the token
holder's replica needs to be updated before a write can return to a client. One-copy
serializability is guaranteed because, in effect, the token holder's replica is now the "pri-
mary" replica. After a short period of no write activity, the token holder notifies all other
members of the group that the file is stable again. Table 1 gives a short summary of the
sequence of events required in a normal update. Stability notification is normally invisible
to applications, and its main effect is on performance and update visibility to clients.

The main benefit of stability notification is that updates become visible to all clients
simultaneously.8 On the other hand, an overhead is incurred at the beginning and end

'in a distributed system, simultaneous events may not appear to happen at the same physical time silCe
communication delay introduces uncertainty.
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Precondition Action
1 token is not held acquire token
2 replicas are not marked as unstable mark replicas as unstabi:
3 true distributed update
I failure detected count update replies
5 insufficient replicas generate new replicas
6 period of no write activity mark replicas as ,tablc

Table 1: Typical Sequence of Events in an Update

of a stream of updates. This overhead can be expensive if updates are short and rare.
Also, reads that are concurrent with updates are more expensive. By default. Deceit uses
stability notification. but the client can specify that stability notification is not used.

3.5 Crash and Partition Failures

The algorithm presented in Sections 3.1 to 3.4 must be resilient to failure. The Iiecltxiaill*,1ii
that Deceit uses for this purpose are presented below.

Histories and Version Pairs

Associated implicitly with each replica of file f is an update history f.h. An update history
is a List of all updates to the file and which server issued these updates. History f.1i is an
ancestor of history f.h' if f.h is a prefix of f.h'. The histories that all replicas of a file pas,
through form a tree under the ancestor relation: this tree is called the histortl trte. Tw(
histories are incomparable if neither is an ancestor of the other.

Deceit does not explicitly store the full history of a replica. Instead, Deceit maintains a
one-to-one mapping from histories to integer pairs (vj, v2) where v, is the major versur2
number, and v2 is the subversion number-. v2 is incremented on every update, and c , is
changed to a new unique number every time there is a potential branch in the historv
tree. These branch points are recorded with a replica so that version number pairs can 1)"

9In the literature, this value is often called an update counter.
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compared as if the histories that they represent were available. For example. the tlati,,ii
A v" < v') => (f.h is an ancestor of f.h') always holds.

A version pair is stored with each write token. The token version pair can be compared
to a replica version pair to quickly decide if a replica has received every update through
that token. This version pair is available to the user through a special command so that
the user can determine if a file has been modified.

Token Generation

If a client wishes to update a file, and no write token is available for the specified verhii.
a new token will be generated. Assume that the file being updated has major versiol
number ul, and a replica is available with version pair (v 1,v 2 ). Server s can generate a
new token by picking a globally unique major version number vi and building a token with
version pair (vi, t'2), then s stores v, with the new token. Replicas corresponding to the
new token are generated by copying the original replica.

Generating a new token is more than simply generating a new version pair. Every file
replica is associated with only one token. The new token represents a distinct new file
with a distinct set of replicas. After the new token is generated. enough replicas air

generated to satisfy the minimum replica level constraint. File data is drawn from the
existing available replica.

It may be necessary to constrain when a token can be generated. Deceit provides file
parameters settings that provide this capability. There are three options. The first option
is to totally inhibit the generation of new write-tokens. This option has the advantage that
a server can always write to a file after it has acquired the write-token, but it is easy t,,
suffer long term loss of file availability. The second option is to allow a server to generatf,

or use a token only if the majority of the replicas are available. A token becomes (lisal)I(h
if the majority of the replicas becomes unavailable. This option provides relatively hig h

availability, and multiple versions can be generated only during transitional periods. On
the other hand, it is more difficult to implement, and write availability may be lost. in the

middle of a stream of updates. The third option is to not restrict token generation at all.

Deceit uses this second option as the default.

Restricting updates to the majority partition requires a mechanism for counting the number
of available replicas. Replicas are normally counted by counting the correct replies to an
update broadcast. All replica generation must be accomplished through the token holdcr.
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so that the token holder always has an upper bound on the total number of replicas. F,,
purposes of computing a majority, the total number of replicas is taken to be the ma,'mu*
of the rnznrnimtm replica level and the upper bound on the number of replicas. For a servei
without access to the token, the total number of replicas is assumed to be the minimn
replica level: the number of available replicas is determined by broadcasting an inquirv to

the file group.

Version Control System

During a partition event, multiple file versions can be generated. It follows that D,,,,it
must be capable of maintaining distinct versions which are distinguished only by diff'erl'mt
values for the major version number, ul. The facility by which this is accomplished may als,,
be accessed directly at the user level as a normal file versioning system, such as in a sourc,.
Code management system. Deceit uses a simple mechanism: file names can be qualified
with version numbers using a special syntax. For example, major version 3 of "'foo" can be
referred to as "'foo:3." By using this form of file name. specific versions can be created"').
modified. and deleted. By using an unqualified filename, the user automatically requests
the most recent available version. A directory entry actually uses the unqualified filename.
so creating a new file version does require an update to a directory. The system behav(.,
similarly to the VAX/VNIS''[11] version control system, except that VMS produces ai new
version on every file update. while Deceit produces new versions only during partitions 0r
when explicitly requested.

Local Non-volatile Storage

Several types of information must be kept in non-volatile storage to allow recovery from
a crash. Each server stores all file data for its replicas. This data includes: the actual
data of the file, the replica state, and the version pair. Additionally, eacht server stom,
all state information relating to each token that is held. Also, each server stores a mon-
volatile copy of the map between file handles and local file names. Some of a serve's
non-volatile storage is updated immediately when values change, and some of it is written
asynchronously, depending on safety.

iODeceit selects major version numbers carefully to insure global uniqueness. Users must be careful when

creating new versions during a partition to preserve uniqueness.
iiVAX/VMS is a Trademark of Digital Equipment Corporation
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3.6 Crash Scenarios

In order to clarify the usage of the crash resilience mechanisms, several example scenari),

are presented.

Non-token Replica Crash

When a server s recovers from a crash, it contacts the token holder for each file J" si,,'
that s has a replica but no token for f. Each token carries the version pair that repica
should have if they are up to date. If s finds that it has an obsolete replica of f..,destroy.
it. Since the history for the replica of s is a prefix of the history associated with the token.
no update will be lost.

Token Crash

Token loss is detected when a server attempts to contact a token holder during the course
of normal read or npdate operations. Let us assume that server s needs to distribtut,
an update for a file, but it can not contact the current token holder. Subject to token
generation constraints, s can generate a new token. Since s now holds the token for a
version of the file, s can complete the original operation.

Assume that s could not contact the old token holder s' because s' had crashed. When
s' recovers, it will be notified about the creation of the new version during its recoverN
protocol. s' will note that the new version is a direct descendent of the old version and
destroy the old version and all of its replicas.

Partition

Now consider the scenario where there was a network partition, but no updates were issued
to the file in the partition with the token. Read access on the token holder side continiles
normally, since it is difficult distinguish between this scenario and the case where the other
replicas simply crashed. Write access in the partition which does not contain the old token
may cause a new token to be generated. When the partition is resolved, the old token
holder will be notified. It will appear to the clients as if the token had actually been
moved, and the updates were propagated very slowly to some servers.
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The hard case is when a partition occurs and updates are issued to the file on borh side.,
concurrently. In this case both of the incomparable versions of the file are ko'pt. aii(I a
notificatioii is logged into a well known file. It is the responsibility of the user to resolvw
such conflicts. By allowing the user to iesolve incomparable versions, the semantics of the.
file may be used for resolution [5,52,20]. Both versions are made available to the user an,
may be edited, modified, or deleted independently. Since concurrent updates are assuiiel-
to be rare, this case should occur very rarely.

Stability Notification in the Presence of Failure

If the token holder t fnr a file f loses contact with some of f's replicas during ai update
distribution, those replicas might be left in an inconsistent state. Stability notification is

used to detect this case. Before an update is distributed, all available replicas are marked
as unstable. Therefore, if replica states are inconsistent, then all inconsistent replicas will
1 . ak -- _ unstable.

Inconsistency is detected when a read is given to a server s which has an urnstable replica
of f, and s is unable to contact t. In ordei to respond to a read, s must locate a stab,-
replica. s produces a stable replica by broadcasting to f's file group to determine the stafte
of all available replicas. If there is a stable replica at server s', the operation is forwared
to s'. If no replica is marked as stable, s forces the most up to date replica to be ,tablf.
and all obsolete replicas are destroyed.

Disastrous Failure

Despite all of these precautions, with a suitably pathological sequence of crashes and
recoveries, it is still possible to produce non-one-copy serializability. For example, if an
obsolete file replica recovers and all other replicas simultaneously crash, the file will appeal
to go back in time. We could solve this problem by inhibiting token generation and Iby
consulting the token holder during every operation, but this solution would destrov n11o.mt
of the benefit of replication.
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4 File Semantics

Deceit associates the following semantic parameters with each file:

1. Minimum Replica Level - the minimum number of valid replicas that must be main-
tained. For example, a minimum replica level of 3 would force Deceit to maintain a
valid replica on at least 3 separate servers. By default, the value is 1.

2. Write Safety Level - the number of replica servers that must reply to an update
before a write RPC returns to a client. A value of 0 produces asynchronous unsafe
writes; a value greater than or equal to the number of available replicas produces
slow and f-.0 1: synchronous writes. By default, the value is 1.

3. Stability notification - specifies whether stability notification is to be used. Stability
notification guarantees global one-copy serializability and real-time update propaga-
tion, but there is a performance cost. The default is to use stability notification.

4. File migration - should Deceit automatically attempt to create a non-volatile replica
of file f on a server that receives requests from a client for f. For some applications.
it may be bad to automatically generate local replicas. For example, for a very large
data file, generating a local replica may consume too much disk space. The default
is that file migration not be used.

3. Write Availability Level - determine when Deceit can generate a new write-token if
a token has been lost. If this flag is set to "high", then a token may be generated
whenever one is needed. A high availability means it is likely that multiple file

versions will result due to a partition. A value of "medium" allows a new token to be
generated by server s only when s can contact a majority of the replicas, and a token
is disabled if fewer than the majority is available. As a result, some replicas may
occasionally be "read only," but multiple file versions will occur less frequently. A
value of "low" prevents the production of additional tokens. Loss of file write access
may be frequent and long term, but there is no chance of generation of multiple
versions. The default value is "medium."



,5 SYSTEM COMPONENTS

5 System Components

The Deceit server consists of two components as shown in Figure 6. The first coipuwiit
is a distributed reliable segment server. The segment server provides a simple, flat. reliabI,
distributed file service with no user level security or user specified names. There is no
notion of directories or links in the segment server. The segment server implements all of
the update, replication, and versioning protocols, and it is the layer where file paraiettr
eXist. On top of the segment server is a full NFS file service which uses the segment ,r'vI
for storage and communication, called the NFS file service envelope.

Clients ...

client/server/

V protocol

File Service File Service File Service
Envelope Envelope Envelope

3e .orm l

procedure
call

S erver 

S erver 

e ere .

U N IX ' 
eceitit

file .protocoloperatm teDiskver i sk

Machine
Boundary

Figure 6: Expanded view of Deceit architecture

Deceit does not directly address most security issues. It is assumed that communication
between instances of the segment server is secure (e.g. encrypted or physically secure).
Also, the local files used for storage by the segment server are inaccessible to unauthorized
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rpica of every version of a directory referring to the file is counted once. Rcfcr tf,i1,
for an example of this type of link count. The bnk count is stored in the seginunr ;i; i,1,.,,

hita. To mnUntain safety. it would be impossible to add a link to a file, uni, tl,. ,- il, -
write available. Unfortunatelv. it would also be unsafe to create new replica, r v,.I,
Of directories unless each file in the directory was also write available. At,,th,r v
,lisadlvantage is that when the link count becomes corrupted. it is extremely , x,.i,-
uiipo,. ib le) to recalculate.

Directorv 1 Directorv 2
ersu'n 1 Version Ie p t , 1 l P e p F. 2 RF p l . 3 _ R e p l . 1 R e .2 R -e p .3 -

~~x / w. xt i w
,ersion 2 ersion 2

7 ]pl ! ] 7 ]pl 2p 1e 3 Rp. 1 ! ].21!et

\eTrsion 3e.Repi.2 X hard link to file

The total link count is 9.

Figure 7. Example of Link Count Comiplitati,,u

rht, -oltition we chose is more complex. An uplink list of directory file hiantl,. i, -! ,
with each file. The NFS envelope attempts to maintain the property that if fil, , ii
directory d. then d is ir. the uplink list of some version of f. When a hard link i- iu:t 1. t,

f in (irectorv d, d is added to the uplink list of all versions of f which can he il,,at,,;
that time. Deceit also keeps a standard hard link count with f, but it is only ,, 11,i. ,I!
to be a hint. When the link count goes to zero, the NFS envelope checks ev,,ryv:±lli.1.
version of every directory in the uplink list. If none have a link to the file' th, ,,,i1,'t-
deallocated; otherwise, the link count is corrected.

Our solution has several drawbacks. A file f may neither be moved nor al~lit, iltl k-
miiade unless the uplink list of some vei ,ion of f can be safely modified. Als,. a ,,,
may add an uplink to f. but another server s' may never see that uplink if ' Iill',
contact a disjoint set of versions. As a result, s' may prematurely attempt to ,tfla,,:t'
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Another drawback is that if the link count of f is corrupted so that it is too large, f 'ii%
never be garbage collected. Finally, when a file is moved, two directories, a link count. In,
all uplink list must be modified in some safe order. Garbage collection Is liscus ,d a:L111

briefly in Section 7.

5.3 Client Agents

The agent is a simple but important component of Deceit. The agent is the client ,'oftwal,.
which interfaces between the user process and the NFS protocol. Currently, the agent rin-i
in the kernel, but the agent can be in several possible locations. Refer to Figure S. The,,,
different configurations provide widely differing performance.

User
program

normal procedure call,
interprocess communication,
kernel call,

or remote procedure call

user loadable library,

Agent kernel procedure,
or auxiLiary user process

local interprocess communication,
or remote procedure call (NFS)

Server

Figure 8: Example Agent/Server Configurations

The agent satisfies two primary functions. First, the agent provides caching. The agewt
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('achI(s file and directory data as well as information specific to the client/server prot,,I
such as NFS file handles and server information. Another agent function in D,,,it i.
fzo'er. When one server fails, the agent must select another to continue operation. Ti,

second capability requires an extension to the NFS protocol.

A third optional agent function is using an access shortcatt. Normally, a server forwgtnrlk

a requests for which the server does not have a replica. It is more efficient for the ag"1.t

to cache file locations and directly communicate with the correct servers. This capallilitv

requires an extension to the NFS protocol.

Deceit currently uses the standard NFS client software provided in the Sun operatin.

svstem. This software does not provide failover or shortcuts. A new agent is being writti'i

which will run as an auxiliary user process, and it will provide full functionality. An agent

which can be loaded as a user library and directly issues NFS RPCs is planned, and tlhi.s

agent should greatly improve file performance.

A user library that acts as an agent is not easily implemented for vt ral reasons. First.

since the NFS protocol requires file handles and there is no way to easily extract file handle,

from the SunOS kernel, each user process will have to go through the full mount protocol

to get file handles. Also, since files will be cached in the user process virtual memory spatc.

processes will have to use some type of coordination protocol to share cached files.

5.4 ISIS

We made the decision to use ISIS after some consideration; an early version of Deceit diI
not use ISIS at all. When we used ISIS, several issues arose:

* ISIS requires a separate configuration and installation phase in addition to the on,

required for Deceit. This requirement was an inconvenience during development, and
it will continue to be a problem in the future. A stand-alone package requiring little

or no additional configuration information would be preferable.

* Deceit exposed several performance and development problems in ISIS. Group miiei-

bership change, high volume state transfer, as well as other operations were too)

expensive. Some ISIS features, such as partition tolerance, were underdeveloped

when Deceit began development. These issues are being addressed. Future version,

of ISIS should allow Deceit to have satisfactory performance.
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* One particular problenI was the huge number of process groups that could lw gui-

('rated bv Deceit. In the current implementation of ISIS. process g t )1i), ar. ,;M
expensive res ource. More specifically, ISIS does not efficiently support iiitr,, than
100-1000 process groups. Future versions of ISIS should support larg-r iiiil,, ,f
process groups. Future versions of Deceit will be more careful with g euiralihA) ;t1
deleting process groups.

e ISIS saved a large amount of development time. We started to use ISIS after r ,.i-
izing that we were reimplernenting much of the ISIS functionality in Doccit. ISIS
also provides useful debugging primitives. We estimate that at least 6 miotli, f
development was saved.

6 Scenarios

The previous sections provided a great deal of detail about Deceit without much discussion
about applications. To show how Deceit could be used to solve real problems, two iunpor-
tant application scenarios are listed below. For each scenario, there is a short descriptiOn
of the scenario, followed by a description of how Deceit could be used efficiently in tlhi
application.

6.1 Academic Public Workstation Environment

This environment is characterized by a large number of small, inexpensive, and unreliable
machines. Administrative control is often poor. Users spend the bulk of their time editing
or compiling. Files tend to be small, and their physical location is relatively unimportant.
but high availability is valuable.

This scenario is the easiest to solve since Deceit is being developed and tuned in this
environment. All of the semantic parameter defaults should be adequate. Users will
typically want to set the replication level to 2 or 3 on important source and text files: othetr
files can be regenerated if necessary. The system administrator should set the replicatioln
level to be 2 or 3 on all important system directories, binaries, and libraries. Adding new
servers is simply a matter of configuring ISIS to run on the server, and executing the Deceit
server daemon. Files can be moved transparently from one server to another by the svstn
administrator at any time to provide better disk balancing.
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6.2 Data Collection and Dispersion

A large class of applications requires bulk data movement and manipulation. For example.
NASA collects huge amounts of data at several remote stations which is processed in a
central computing facility. A product development team uses large detailed specificatiOii.'
to drive simulations which can be at a distant location. This environment is characteriz(,d1
by a small number of large machines with large numbers of peripheral niachines artaclwd
to them. Extremely large files are common. Users collect large quantities of data on 11,.

machines and analyze it at other machines. Since file sizes often are at the limits of disk
space, controlling the location of the data is necessary. There may be large geographical
distances within the system.

For a very large data file, the user can turn off automatic localization to prevent uncoin-
trolled generation of file replicas. Also the minimum replica level should be 1 until the file

has reached its final destination, and then it may be set to 2 to provide a single backuip.
Since data versioning may lead to version conflicts, the write availability level will probably
need to be "medium" or even "low." Data files can be quickly copied from one server to
another using the blast file transfer mechanism in Deceit by manually forcing the creation
of a replica on the target server and then deleting the replica on the source server. At any
time during the manipulation of the data location, the file data is available for reading al
writing via any server.

7 Conclusions

We believe Deceit provides enough flexibility so that most applications can have acceptable
performance and availability. All the basic features necessary for a full distributed file
system with replication have been provided. Deceit performance is not understood if the
environment does not satisfy the operational assumptions in Section 2.3. In such cases, we

may be required to add new operational modts be added to Deceit.

A version of Deceit exists and is used at Cornell, although it is not yet in general use.

Except for inter-cell communication, all of the features described above are implemented.
Development is still at an early stage, and we expect fundamental architectural changes
as our experience continues. Performance measures would be premature at this stage of
our effort.
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Two serious problems still need to be addressed. The first is file contention bottlenec,..
Certain files and directories such as the root directory will be accessed very frequently by
all servers. It is fortunate that these files tend to have read only access. It may be valuable
to have special file modes which are optimized for this combination of properties[38.241 .

Another problem is the use of links and directories as discussed in Section 5.2. The current
solution is unsatisfactory, so we are looking for other solutions. Hopefully. a solution to ThiII
problem may also offer a solution to the root directory contention problem. One pos.,ilhlity
that we are investigating is the use of file uplinks to allow non-volatile directories to hL.
discarded.

There are some performance problems with the process group management protocol.
Group joins are expensive, and broadcasts are more expensive than need to be. Also.
using a huge number of ISIS groups has a unacceptable effect of ISIS performance. Since
Deceit uses process groups in a restricted and well defined way, it is inefficient to use gen-
eral ISIS groups for each file group. Several methods to improve performance are being
investigated.
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