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This study concerns the rroblem of tracking a target when the origin of the
sensor measurements is uncertain. The full Bayesian solution to this type of prob-
lem gives rise to Gaussian mixture distributions, which are composed of an ever
increasing number of components. To implement such a tracking filter, this growth
of components must be controlled by approximating the mixture distribution.

Two algorithms have been developed for approximating Gaussian mixture dis-
tributions. These techniques attempt to minimize the number of mixture components
without modifying the 'structure' of the distribution beyond a specified limit.
Also the final approximation is itself a Gaussian mixture.

The performance of the algorithms has been assessed by simulation for the
problem of tracking a single target in the presence of uniformly distributed false
measurements. This assessment indicates the significant range of problem para-
meters where the new algorithms give a substant’al performance improvement over the
well known Probabilistic Data Association Filter (which apprecximates the miniusz by
a single Gaussian component).

The tracking example is extended in the second part of this study to show how
the Bayesian approach may be applied to more complex uncertain tracking problems,
including that of fusing data from several independent sources. In particular a
computationally efficient filter is derived which improves the track estimate from
a primary sensor, by making sub—optimal use of measurements from an auxiliary
sensor. Finally, a general solution is derived for a tracking problem with multi-
ple measurement classes. This general solution is used to derive a filter for
. tracking a target in the presence of intermittent interfering megsurements, in

addition to uniformly distributed false measurements. ‘u
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. 1 INTRODUCTION
. 1.1 BackgrOund

':A tracking filter is an algorithm for estimating the state

(such as position and velocity) of an object from measurements
of a sensor such as a radar. Following the usual convention, an

“~ object being tracked willrge called a target. A basic assumption
of most tracking filters, such as the o= filter and other filters
derived from Kalman filter theory, is that only measurements from
the target of inierest are passed to the filter. However in
practice, sensors produce measurements as a result of random noise,
clutter, interference and other targets, in addition to those from the
required target. Usually it is not possible to distinguish with
certainty between the wanted and the unwanted measurements. Hence

there is a need for tracking filters which recognize that some of the

received measurements may not originate from the required target.

Measurement origin uncertainty is most commonly encountered in
the context of muliple target tracking, although in this study we shall
only be concerned with the single target case. A number of approaches
to the uncertain tracking problem, with the emphasis on multiple target
tracking, are reviewed in the recent books by Blackman1 and Bar-Shalom
and Fortmannz, and the survey papers3-5. There are essentially two

. types of approach to estimation in the presence of uncertainty: the
-decision~directed approach where decisions are taken and assumed to be

true, and Bayesian techniques which allow for the possibility that the

most likely opticn may be incorrect.

The simplest decision-directed technique is the 'nearest neighbour'

filter: the track is updated with the measurement which is in some sense

M




closest to the expected target position. This is likely to give a poor
result if several measurements occur in the vicinity of the expected
target position. In these circumstances a branching or track splitting
filter offers an improvement: a separate branch is propagated for each
possible measurement. The growth of tracks is controlled by merging
similar branches or by deleting branches if the likelihood function

(or the support) of that branch falls below a certain threshold (see
Smith and Buechler6). A more sophisticated approach is to choose the
most likely hypothesis from the set of feasible hypotheses on the
association of all measurements that have been received. This is a
batch processing task (see Morefie1d7) which should provide an optimal
solution in the maximum likelihood sense. Sequential versions of this
method have also been derived. The;e are computationally convenient

but sub-optimal (see Sittlers, and Stein and Blackmang).

For this present study, the Bayesian approach has been adopted.
As already indicated, this approach avoids the need to make 'hard'
decisions among quite probable hypotheses. Also an obvious implementation
is via a recursive filter which is convenient for real time processing.
However the full Bayesian solution is impractical and some approximation
is essential; promising results have been obtained by a number of

10-26 . . . . .

authors . Approximation of the optimal solution is one of the
main subjects of this study.

An approximate Bayesian filter for the problem of tracking a

. . ) . . 10

a single target in clutter was first formulated by Singer e al .
For the same problem, a very efficient approximation technique
known as the Probabilistic Data Association Filter (PDAF) was

1 . .
proposed by Bar-Shalom and Tse1 . Various extensions of the

. . . 12
basic PDAF for special cases including target maneouvres , random

M




. . 13 4
measurement arrival times and dual sensors1 have been developed by

Bar-Shalom and co-workers. An extension of the PDAF to the multiple target

ca~e was reported by Bar-Shalom'’ 18,19

and Fortmann et al (also see Refs 20
to 22). An important paper by Reid23 presents a Bayesian multiple

target filter which does not use the PDAF approximation. The branching
algorithm of Smith and Buechler6 may be viewed as a much simplified

version of this filter. More recent work on Bayesian multiple target

tracking is reported by Mori et a126.

1.2  The Bayesian approach

In the Bayesian approach to tracking, one attempts to construct
the probability density function (pdf) of the target state x , based
on all available information including the set Z of received measure-
ment527. The required conditional pdf of x may be written p(x!2) .
Since this pdf embodies all available statistical information, it may be
said to be the complete solution of the tracking problem. In principle,
an optimal estimate of x for any criterion may be obtained from
p(x|2) . A measure of the accuracy of the estimate may also be derived
from p(§!Z) . Clearly it is most desirable to obtain this conditicnal

pdf whenever an estimate of the target state is required.

For many tracking problems an estimate is required every time
that a set of sensor measurements is received. In this case a recursive
filter is a convenient solution. Such a filter consists of essentially
two stages: prediction and update. For prediction it is assumed that
an equation describing the evolution of the target state is available.
This can be used to predict the pdf ot state forwards from one measure-
ment time to the next. Since the target is usually subject to unknown

disturbances, prediction usually increases the covariance of the state

pdf. The update operation uses the latest set of measurements to
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modify the predicted pdf. This is conveniently achieved using Bayes

aeorem which is the mechanism for updating a pdf or probability in the

light of extra information from new data. .

For estimation problems where the origin of measurements is

28-32

known, Bayes theorem leads tc¢ the Kalman filter update relations
provided that the problem is linear and all random elements are Gaussian
(see Appendix A). This is the optimal tracking filter for this standard
tracking problem, and in this case p(§|Z) is a Gaussian pdf. This is
not so if the measurement origin is uncertain. To construct the
required pdf in this case it is necessary to take account of all
possible measurement associations. For each of these possibilities

or hypotheses, there is a corresponding Gaussian pdf of target state.

33,34
[o]

Thus the overall pdf of target state is a Gaussian mixture pdf f

the form:

N
p(>_5IZ) = Zsi pi(gg) , (1.1)

i=1

where pi(g) is the Gaussian pdf corresponding to hypothesis i ,
N is the total number of feasible hypotheses at this time and Bi is

the probability that hypothesis i 1is correct, such that:

8. > O and :E: B. = 1 .
1 i

When new measurements are received for the update of this pdf, the
number of feasible hypotheses from past measurements is compounded by
origin uncertainty in the latest set. Since the probability and the
pdf corresponding to each of these hypotheses have to be updated via

Bayes thenrem, it is clear that the computational requirements of the

S s



full Bayesian solution increase rapidly as tracking proceeds. This is
the major difficulty of the Bayesian approach to the uncertain tracking

problem.

1.3 4 practical sub-optimal filter

To implement a Bayesian filter it is essential to contain these
computitional requirements within acceptable bounds by making
approximations. Any approximation which changes p(g[Z) renders the
filter subp-optimal, so the aim should be to achieve the necessary
reduction in computation with minimal performance penalty. At each
measurement time, it is usual practice to subject the received measure-
ments to a coarse acceptance test. This rejects any data that are very
unlikely to originate from the target, so that very improbable hypotheses
are not considered. However origin uncertainty amongst the accepted
measurements may still cause the number of mixture components of
equation (1.1) to grow rapidly. [hus further direct approximation of
the mixture distribution may be necessary. Unlike the acceptance test
this approximation may result in a significant modification of the
complete solution, and so the choice of approximation should be

carefully considered.

As already mentioned, the PDAI-‘H is a popular and economical scheme
for approximating the mixture. This method reduces the complete mixture
to a single Gaussian component after processing each set of sensor measure-
ments. However this may destroy valuable information, especially if
several significant well spaced components are present. To provide a
better approximation to the mixture, two new algorithms (the Clustering
Algorithm and the Joining Algorithm) have been derived which allow

more than one component to be retained. These mixture reduction

algorithms operate by merging similar components together, and ther




are based on the requirement that reduction should proceed with
minimal modification to the 'structure' of the distribution (see

Chapter 3).

1.4 The baseline problem and simulation studies

A baseline problem has been chosen for this study to provide a
specific example of the growth in the number of measurement association
hypotheses, and to show how the reduction algorithms may be applied to
control this. The problem is to track a single target from sensor data
which includes spurious as well as useful measurements. A set of sensor
measurements is produced at discrete time intervals. Each set is com-
posed of at most one iriue measurement which originates from the target,
and a numcer of false measurements which are uniformly distributed over
the measurement space and cre independent of the target. The true
meesurement has a Gaussian distribution about the target position and
it cannot be distinguished from the false measurements. The target
moves according to a linear model driven by Gaussian noise. The
full Bayesian solution to this problem, which has been considered

by several authorsto’11

, is derived in Chapter 2. All of the

tracking examples considered in this study are variations of this
single target pro’ lem. The single target case suffices to investigate
the trade off between complexity and filter performance. Also the

techniques developed here could be adapted for the multiple target

problem.

For our purposes, the performance of the mixtuie reduction
algorithms depends on the performance of the tracking filters that
employ them. The primary measure of filter performance chosen for

this study 1is the average time for which the filter maintains track

on a target, Zc the average track lifetime. Since there is no tractable




analytical means of evaluating this performance measure, Monte Carlo
simulations have been carried out for a particular example of the
baseline problem. 1In this example, which is also used by Bar-Shalom
and Birmiwal15, the target moves in a plane, the target kinematics are
described by a second order model and sensor measurements consist of
Cartesian co-ordinate pairs. The 'difficulty’' of this tracking
problem may be easily controlled by adjusting several problem
parameters. In Chapter 4, the performance of tracking filters using
the new reduction algorithms is examined in detail for a single set of
problem parameters. In particular the effect of varying the maximum
number of mixture components retained by the reduction algorithms is
investigated. For this and other simulations in this study, the PDAF
provides the performance reference against which other filters are com-
pared. The results of Chapter 4 indicate that the Clustering Algorithm
is more computationally efficient than the Joining Algorithm, and so

from Chapter 5 onwards the former reduction technique is employed.

In Chapter 5, the performance of a filter using the Clustering
Algorithm is compared with the PDAF over a wide range of problem
parameters for the simulation example. The new filter should always
outperform the PDAF, since the Clustering Algorithm retains more inform-
ation. We have attempted to identify the approximate region of the
problem parameter space where the performance of the Clustering
Algorithm filter is significantly better than the PDAF, <e where it is

worth retaining more than one component.

A second 'sector scan' example of the baseline problem is considered
in Chapter 6. This example has been used to examine the effect of several
practical filtering difficulties. These include sensor measurements in
polar co-ordinates which are a non-linear function of the target state,
and target manoeuvres which are not correctly represented by the filter's

assumed target model.

e ————



As well as providing a tool for evaluating a performance measure,
simulation is a useful aid to understanding the operation of a filter. .
For this study the simulation programs have been designed so that
either multiple replications can be performed to generate performance
statistics, or single runs can be carried out to examine filter
operation in detail. For multiple runs, overall performance
measures are produced together with a summary of the results of
each individual replication, including its random number seeds.

Thus any replication may be rerun with the program in single
replication mode to produce detailed output files for a thorough
analysis of filter operation. All simulation programs were
written in Fortran 77, and use of the Cray 1S computer at RAE
Farnborough enabled an extensive range of simulation experiments

to be performed.

1.5 Extensions of the baseline problem

The final part of this study is concerned with extensions of the
baseline problem. In Chapter 7 we consider the problem of fusing
information from a number of sources. For many sensors it is possible
to obtain information on the origin of a measurement by analysing the
signal from which it is derived. For example, the shape of the return
from a pulse radar or the fluctuation over several returns may indicate
whether the measurement originates from clutter or from a true target.
Clearly the filter should make use of this signature information, and
Nagarajan et a135 show how it may easily be included in the Bayesian
formulation to modify p(E]Z) . Also in many tracking systems, measure-
ments are available from several independent sensors. Data from each of

these sensors may be incorporated sequentially because they are independent.

In Section 7.4 we consider the particular data fusion problem of combining




information from a primary sensor which produces range and bearing

position measurements with an independent auxiliary sensor. The
auxiliary sensor gives only bearing informatio; but it does include

an imperfect classification of each of its measurements. A new filter
has been derived for this problem which uses the auxiliary measurements
ir. a sub-cptimal but efficient way. The performance of the filter is

compared with the single sensor filter to show the value of sub-optimal

processing of the auxiliary measurements.

For Chapters 2 to 7 it is assumed that a measurement from a given
sensor is a sample from one of two distributions: true or false. 1In
Chapter 8 we extend this to allow for samples from more than twe
distributions, Ze more than two classes of measurement are allowed.

The general solution to this problem is derived. This general solution
is used to develop a practical filter for tracking a target in the

presence of intermittent interference, in addition to the usual false

measurements.




2 THE BASELINE PROBLEM: TRACKING A SINGLE TARGET IN THE PRESENCE
OF RANDOM UNIFORMLY DISTRIBUTED FALSE MEASUREMENTS

2.1 Introduction

In this chapter a formal statement of the baseline problem is
given and the optimal Bayesian solution of this problem is derived.
This problem, which is taken from Refs 10 and 11, provides a convenient
example which illustrates many of the difficulties of uncertain tracking,

and it is a suitable basis for extension to more complex problems.

A full account of the solution is presented here to facilitate
the description of extensions given in later chapters. The major result
is that the posterior pdf of target state at each time step is a
Gaussian mixture and that the number of components which comprise this
mixture increases with time. This is confirmed by induction. Assuming
that the prior pdf of the target state at time step k 1is a Gaussian
mixture, the posterior distribution, after updating with the measure-
ments received at this time step, is shown to be another Gaussian
mixture with an increased number of components (sections 2.3.1 and
2.3.2). VUsing the target model, this posterior pdf is projected
forwards to show that the prior pdf at the following time step k+1
is also a Gaussian mixture (section 2.3.3), so completing the proof.
The recurrence relations for updating and prediction are given, and
the solution is seen to be equivalent to a bank of parallel Kalman
filters whose number grows with time. The significance of an optimal

solution requiring propagation of an ever increasing number of

Gaussian components is discussed in section 2.4.




2.2 Problem statement

The problem is to provide an estimate of the state x of a single
target at discrete time steps, based on all the available information.
The state vector x typically consists of target position and velocity,
but other attributes of the target may alsq be included. It is assumed

that x evolves according to a linear recurrence relation of the form:

Kol = ng + ng , (2.1)

where X is the n-component state vector at time t s

o

is the n x n state transition matrix,
I' is an n x r matrix
and w, 1is an r-component vector of system driving noise which has

a Gaussian distribution with zero mean and covariance given by:

T
E[‘-’i‘i’k] = Wy -

Here Q 1is a positive definite r x r matrix and Siy is the Kronecker

delta. Equation (2.1) describes the kinematics of the target and is

known as the target model. Initially, at time t1 s, the state vector

is assumed to have a Gaussian distribution with known mean X and

X 1

1

covariance M1 (a positive definite n % n matrix).

At eva time step k , a single sensor scans a surveillance region
g

and passes a set Zk of o measurements to the tracking filter:

Zk = {Ekj: o= 1, i, mk} .

Each measurement Ekj is a u-component vector. It is assumed that the
target is well inside the surveillance region of the sensor, but that

the (known) probability P_ of detecting the target may be less than

D




unity. It is also assumed that at most one of the measurements may
originate freom the target. If measurement zkj does originate from the

target, then it is related to the state vector by the linear relationship:

By T OMAR T I o (2.2)

where H 1is the u x n measurement matrix
and Yk is a u-component vector of measurement noise which has a

Gaussian distribution with zero mean and covariance given by:

T
E[g.zk] = .Rdik .

Here R 1s a positive definite u x u matrix and Gik is the Kronecker
delta. A measurement which originates from the target is said to be

true, while all other measurements are false. A false measurement is
assumed to be independent of the state vector, to have a uniform
distribution over the surveillance region of the sensor and to be
independent of all other present and past measurements. False measurements
are assumed to occur at an average demsity of p per unit area.

Further it is assumed that before examining the values of the measure-

ments in the set Z, > there is no information on which, if any, of the

measurements are associated with the target.
The following information is available to the tracking filter:

(1) The distribution of the initial state vector including its

mean X, and covariance M1 .

(ii) The target model, equation (2.1), including ¢ and T .

(iid) The relationship between the state vector and the true

measurement, equation (2.2), including H .




(iv) Th. statistics of the false measurements, the true

measurement and “he model driving noise, including ¢ ,

R and Q .

(v) The detection probability PD of the sensor.

(vi) The measurement sets Zk for all past and current time
steps.

The tracking filter does not know:

(1) The values of the state vector X, s OF the noise vectors

v, and w_ at any time step.

-k k

(ii) The identity of the true measurement.

Note that if the identity of the true measurement were known, the
problem would reduce to that of the standard Kalman filter (see

Appendix A).

2.3 The Bayesian solution

2.3.1 The prior distribution of the state vector at time ty

The prior pdf of the state vector at time € is the pdf of X

given all available information up to time t, but excluding the set

k
of measurements received at time tk . This available prior information
at time € is denoted j?L , and this includes all measurements

received at the previous time steps:

2oy Zy s e s Ty

Since any one or none of the measurements of Zi could be true, there

are exactly m, o+ 1 exclusive hypotheses concerning the truth or
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falsehood of the members of Zi . Thus the total number of possible

hypotheses under £?L is:

Therefore, given L possible hvpotheses, the pdf of the state vector

X, may be written:

'
p(5 | %) = :E: (% | Fre-1 i'éﬁi)Pr{;?i-1 il57k} - 29
i=1

Here 5?1_1 denotes one of the possible hypotheses on the measurements
available under é?L, p<§ki;?%-1 i’ﬁyk) 1s the pdf of x, assuming

H,_y ; 1is correct and 5. is given, and Pr{;?;_1 i’gﬂk} is the

probability that 5?;_1 5 is correct given the information £?k . In
expression (2.4), the prior pdf of X is written as the weighted sum
over all possible hypotheses of the pdf of x, conditional on each

k

hypothesis. The weighting factors in the summation are the corresponding
prior probabilities of each hypothesis being true. Equation (2.4) is
intuitively reasonable and is sometimes known as the total probability

theorem.

Now suppose that the conditional pdfs in the RHS of equation (2.4)

are known to be Gaussian, e

(5| Fmr 10 A) = B M) 0 @9

where gki and Mki are known, and ,Vzg; E, C) denotes a Gaussian pdf

evaluated at a with mean b and covariance C. Also suppose that

the probabilities of the hypotheses are known and are denoted:
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Pr{}’{i_1 .igﬂk} =8 - (2.6)

1

In this case equation (2.4) is a fully specified Gaussian mixture pdf
where each Gaussian component corresponds to one of the possible
hypotheses. Note that the above suppositions are true for k =1,

in which case, from the problem statement,
p(’-‘1|§’1) - /(’-‘1 S M1) ’
which 1s a degenerate Gaussian mixture with a single component.

2.3.2 The posterior pdf of the state vector

The set Zk of m measurements received at time tk 1s to be
used to update the prior pdf of X specified by equations (2.4) to

(2.6). The resulting posterior pdf is denoted:

p(% ]2 » #)

In the following working we shall omit %% for ease of notaticm,

k
although the dependency should be understood for all conditional
nrobabilities and pdfs. Thus the posterior pdf of X will be

written:
(1 |%)

After updating with the latest set of measurements, the total number

of possible hypotheses is increased to:

“k-1(mk * 1)

This increase may be viewed as a branching process where each of the

}Qvﬁ prior hypotheses of equation (2.4) may be seen as a potential

;r-----nllllllIllllllllIlIlllIlIlIlIIlIIlIIIlIIIIlllllllllllllllllllllli
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track and each of these tracks then splits into a further mk+ 1 tracks

result.ng from the new set of measurements. Thus a posterior hypothesis .

including the latest set of measurements Z, may be written as a joint
hypothesis:

%!

kij = (%-1 i “’kj)

where ij is independent of é?;_, ; and indicates that the jth
measurement of set Zk is true (or that they are all false if j = 0).

The complete set of posterior hypotheses is:

t .,y o e 3 =
{( Kij’ i 1, cee n_¢3d 0, «.., mk}

Hence the posterior of pdf of X, may be written in the form:

mk

P(mln) - 12 Zp(’-‘kiyfiij ’ Zk)Pr{Yl'ciij} - (2.1

3=0

1

kij

-
.

First consider the posterior pdf of X conditioned by ¥
\]
p(x |#s; » Z)

is the probability density resulting from updating p(§|;?k_1 i) on
the assumption that the jth measurement from Zk is true (for
j #0). In this case 21 is the only useful measurement from 2

and the other members of Zk can be discarded since they contain no

k

relevant information. A true measurement Zp has a Gaussian

distribution:
~¢ (ET ; H§k ’ R) ,

and the prior density of X under ;?ki is also Gaussian, given by

equation (2.5). Hence the required posterior density is also Gaussian

e —~J--.Ill-lIlIlIlIlllllIIlIll.IIIlllllllIl..llllII.l.lll.lllllll.l.l.ll.lllll...l'l‘
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and is given by the standard Kalman filter (see Appendix A).
So for j #0 :
~
' = .o '
P(ﬁkLﬁzkij ., 2, A (= 245 Pkij)
-, _ = -
vhere S5 T Eat Ra(Eg T EEG)
s opr Tt
Kei = PR
> (2.8)
ot = .
kij i T Mol S By
and
S = HT + R
ki T R
~7

If j =0, none of the members of Z, are true and so the prior pdf

is not modified:

~ -

%io T %i
and (2.9)

1
Prio

o

Now turning to the second term in the summation of equation (2.7),
the posterior probability that 5?11j is correct may be evaluated
using Bayes theorem:

gl - B P

where p(Zk) is a normalizing constant given by:

-1 Tk
p(zk) ) :E: :E: p(zkljylij)Pr{ykj!5?£-1 i}Pr{5?;-1 i}
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k-

is modified by the observations at time tk . The posterior probability

can be found by evaluating the three factors in the numerator of the

The equation (2.10) indicates how the prior probability Pr{j?’ ' i}

RHS of equation (2.10).

. First consider p(zkléyiij) . This may be written:

p(zk|%1'<ij) B /p(Zk ’ ﬁ‘%ﬂij)g’-‘k = [p(zk"fk , %iij)%’.‘k!?fiij)é’fk .

veee (211
Since the elements of Zk are independent:
! =
p(zk"—ﬁc ’ykij) I l p(sz"—ﬁc ’ \ykj)
=1
A measurement 20 is false under ij if j # £ . False measurements

are uniformly distributed over the surveillance region of the sensor,

and so the pdf of a false measurement 1is Vk1 , where Vk is the

volume of the surveillance region. If j = £ , the measurement Zes

is true and so is a sample from the Gaussian distribution defined by

equation (2.2). The prior pdf of X

P(n|#iis) = P(5) et 1)

which is the Gaussian pdf (2.5). Hence on substituting into

equation (2.11) we obtain, for j # 0 : i

—m +1, i .
(% ¥iss) - Vkmk /”"‘(Ekj B KA S

(2.12)

_mk+1&’(z i Hx
Vk - \=kj -




(2]
(W3}

where Ski is defined in the relations (2.8) and the integral

is evaluated in Appendix A.2. Expression (2.12) is strictly correct
only for a surveillance region of infinite extent. However, the
truncation effect is negligible provided that, for each component of
Ekj » the distance from Hgki to the boundary of the surveillance
region is large compared with the standard deviation of the component.

If j =0 so all the measurements are false:

=
U =
(4 ]#0) = Y © - (2.13)
The second factor in the numerator of (2.10) is the prior

probability of ij :

pefvs % 1f 7 P

since the hypothesis on the current set of measurements 1is independent
of hypotheses on measurements from previous time steps. The only prior
information available is the probability PD of detecting the target
and the probability of the sensor receiving m false measurements. If
false measurements are uniformly distributed over the measurement space
with density o , then it can be shown that the probability of m false
measurements falling within the surveillance region of the sensor is
given by a Poisson distribution. If the volume of the surveillance
region 1is Vk , the probability of receiving m false measurements is

given by:

g(m) = e k(ovk)i/m! . (2.14)

The hvpothesis corresponds to the event of failing to detect the

K0

target and receiving m false measurements. The prior probability of

this occurrence 1S:

R e
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Priwko}

y

Any of the hypotheses ;3

(1 B PD)g(mk)

» J #0 , could correspond to the situation

of detecting the targec and rec:iving m - 1 false measurements.

A priori, each of these hypotheses is equally probable, and since

there are of them (for j #

Pr{wkj}

mk

0)

The third factor in the numerater of (2.10) is given

directly by equation (2.6):

Substituting (2.12) to (2.17) into (2.10) we obtain:

Pe{®ss ) - %

= PDg(mk - 1z/;k (2.16)
Pr{;{’k_1 i} = 8. (2.17)
f. -
8 . V(ﬁ . 3 Hx, . , S .)
k-1 1.7 \=kj -ki ki .
3 for j #0
Br-1 1(’ - 7p)e
P E for j =0
L D

where E

is the normalizing denominator,

cees (2.18)

This equation is of key imjportance

because it defines the weightings of the mixture distribution (2.7).

Yk

Also note that if

Mote that the volume
in (2.18).
density o

pdf.

Fp

of the surveillance region does not appedr

= 1 , knowledge of cne

of false measurements does not contribute to the posterior

e IR




Thus the posterior pdf of X given by equation (2.7) is a fully
specified Gaussian mixture. Equation (2.7) can be rewritten as a
single sum by defining:

k2 kij

~ P

e T %ij

P = p'

k2 Kkij
and
—_ \
B Pr{%kij ‘Zk}
where £ = (i - 1)(mk + 1) +3+ 1, for 1i=1, > m _; and
] =0, » o Thus:
"
p(x5l2) - zp(}-{k‘%kl , Zk)Pr{%kzizk} , (2.19)
2=

k
where n, = nk_1(mk + 1) = I_T (mi + 1) s

p(ﬁ‘%kz ’ Zk) B “yA(’-‘k SRS sz)
and Pr{;?kltzk} = 8.,

The Gaussian mixture (<.19) contains all the available
information on the state vector X after taking account of the latest
set of measurements Zk . Thus in principle, the optimal estimate based

on any desired criterion may be obtained from (2.19). This is

considered in section 2.4.
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2.3.3 The prior pdf of the state vector at time €he

To establish, by induction, the general property that the prior

pdf of X (equation (2.4)) is a fully specified Gaussian mixture, it

is necessary to derive the pdf of X from the result

5 . . .
(2.19). This pdf may be derived from p(gk!Zk , 5?k) (note £?k is
reinstated here) via the propagation equation (2.1). This information
together with Zk and ~91 1s denoted 5?%+1 , which is all the
prior information available at time tk+1 . The prior pdf of Xa

may be written:

p({'k”igzk”) ) /p()fk+1|’5t<)p(’—ﬁ<!§ak+1)é’fk . (2.20)

p(§k+1!§k) is defined by the state propagation equations, and the

second term:

p(}fk’éakﬂ) B p(’-‘k‘zk ’ gk)

to ¢t

since the extra information on state propagation from T K+

does not contribute to the pdf of state at tk . Substituting

equation (2.19) into equation (2.20) and performing the integrations

(see Appendix A.3) gives:

T

p(}-‘kﬂiﬂkﬂ) ) z Pr{%kzlgzkﬂ}p(’—‘kﬂ!%u ’ ﬂkﬂ) (2.21)
o=

where Pr{é?;g~£?k+1} = Bkz

and By [Fig » Prer) T (et Bt 10 M I

with

~

et o T P

R R EERIIEI=




and

_ T T
My g = 9B ,0 +TQr

The pdf (2.21) is of the same form as equation (2.4): it is
a fully specified Gaussian mixture. Hence the initial supposition of

section 2.3.1 is proved by induction.
2.4 Discussion

It has been shown that the posterior pdf of the target state,
just after incorporating the latest set of measurements, is a Gaussian
mixture given by equation (2.19). The recursive procedure required to
obtain this result is shown in the flow diagram, Fig 2.1. This
procedure constitutes the optimal tracking filter for the problem
stated in section 2.2. The Gaussian mixture (2.19) is a
complete description of the filter's knowledge of the target state at
time step k . Each component of the mixture represents a potential
target track and is a Kalman filter estimate of the state vector

based on a possible history of true and false measurements. At time

e the n, components represent all feasible track histories. The
weighting Bkl is the probability that track history & 1is the correct
one.

The pdf of target state contains all the available information so
that, in principle, an optimal estimate based on any desired criteriocn
may be obtained. For example tre minimum mean square error estimate is

the mean of the distribution (see Jazwinsk127). From equation (2.19)

the posterior mean of X is given by:
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which is a weighted sum of the mean state vecctors corresponding to
each possible track history. Also the covariance of this estimate may

be obtained from (2.19) (see Appendix B):

M
= n T o
Pk h Z Skl(Pkﬂ * }-ckg )‘ckl) - % I_C_k . (2.23)

The mean may not be the most useful estimate for the state véctor and
in any case, a single value of X is a somewhat inadequate summary of
a mixture distribution, especially if there are significant well spaced

components.

For most interesting cases, the number cf components n rapidly
becomes very large with increasing k (see equation (2.19)). This
rapid growth in the nurber of components may be viewed as a branching
process. For instance, suppose that at time step k-1 , the mixture
discribution comprises two components. So there are two feasible
tracks which are projected forwards to time step k . Suppose that at
this time two measurements 24 and Z,, are received. There are

three possibilities:

WkO P2y and z,, are false ,

Wk1 Pz, 1s true and Z, 1is false ,
or

Yio ¢ 2y 18 false and z., 1s true .

Thus the two feasible tracks from the previous time step may each be

updated three different ways, giving rise to six feasible tracks at time

step k (see Fig 2.2). Since every component must be propagated at
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each time step, implementation of the optimal filter is impractical,

and to proceed approximations must be imposed. This is the subject

of the next chapter.
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3 CONTROLLING THE GROWTH OF MIXTURE COMPONENTS

3.1 Introduction

To implement the tracking filter described in the previous
chapter, it is essential to control the growth of the number of
components in the Gaussian mixture (equation (2.19)) at every time step.
The maximum number of components that can be allowed, depends on the
computing power (in terms of storage and speed of operation) and the time
available to perform the calculations ot the filter recursions. The

maximum number of components allowed in the mixture after

N
YT
approximation should be chosen so that the prcbable increase in the
number of components from measurements received at the following time
step is within the capability of the processor. If the growth exceeds
this capability, the posterior pdf (2.19) may be truncated in

an arbitrary fashion, rather than be subject to a considered

approximation.

In this study, control of the growth of hypotheses is achieved in
two stages at each time step. Firstly a coarse acceptance test is
applied (see section 3.2), which rejects any hypothesis that appears
to be very unlikely, on the basis of prior information. This control
is applied at point A on the filter flow diagram, Fig 2.1. This test
is computationally inexpensive as the unlikely hypotheses are rejected
before their corresponding posterior mixture components need be
evaluated. Hopefully the effect of this acceptance test on the
posterior distribution will be insignificant. Since it is quite likely .
that the number of components left will still be excessive, further
reduction may be necessary. This is applied at point B on Fig 2.1,
which is after the posterior mixture distribution of the target state

has been compiled from all hypotheses that have passed the coarse

T TTRIRSIIIIIII——.
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acceptance test. The second stage is to approximate the mixture dis-
tribution and so reduce the number of its components from a posterior
point of view (Ze after filter update). To reduce the number of
components below the specified limit, NT , 1t may be necessary to
make significant modifications to the distribution, and so careful

consideration should be given to the design of this approximation

method as it will affect filter performance.

What we require from a mixture reduction algorithm is discussed
in section 3.3 and reported methods for such approximations are
reviewed in section 3.4. It is argued that these reported techniques
do not adequately fulfil our requirements and so two new approximation
algorithms have been developed (see sections 3.6 and 3.7). The
performance of these reduction algorithms for a tracking problem is

assessed by simulation in the following chapter.

3.2 Coarse acceptance test

Each component of the posterior pdf (2.19) of target state is
generated by updating a feasible track from the prior pdf with either
one of the received measurements or by prediction on the assumption that
all received measurements are false (see section 2.3). It is most con-
venient to generate equation (2.19) by considering each feasible prior
track in turn, and evaluating all the possible posterior tracks which
spring from that branch. Consider the prior track, or component i of
equation (2.4), that corresponds to hypothesis 5?;_1 i
of the true measurement under 5?;_1 ; 1s the Gaussian with mean Hgki

and covariance ski - From knowledge of this distribution, an acceptance or

The prior pdf

validation region in the measurement space can be defined, such that under

hypothesis ;Fk_1 ; » the probability of the true measurement (if it is

detected) falling outside the region is very small. (This type of acceptance

M
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test is commonly applied to measurement-track association problems

where ambiguities may exist - see Blackman1). If the validation region
is chosen so that the probability density of the true measurement at
any point within the region exceeds that at all points outside the
region, then since the distribution is Gaussian, the acceptance region
is the interior of a hyperellipsoid. Thus a measurement Ekj is

- accepted for updating hypothesis ;?1_1 i if and only if:

~ \T -1 -
.~ . . .- ] < . .
(Ekj HJEkl) Skl(EkJ HEkl) TA .1

Note that since the false measurements have a uniform distribution,

this is equivalent to subjecting each measurement to a likelihood ratio

test. For a true measurement Ekj , under hypothesis ;?1_1 i the
LHS of (3.1) is a sample from a xz distribution with number
of degrees of freedom equal to the dimension of Zy; - So once the

acceptable probability P, of missing the true measurement (if the

M

target is detected) under hypothesis & has been chosen, the

k-1

required value of the threshold TA may be obtained from tables of X

The acceptance test has been used in all the simulations of this
study. To avoid any significant performance degradation as a result

of the acceptance test, PM was set to the very small value of 0.001.

This correspunds to TA = 13.82 for two dimensional measurement space.

Also to take account of the possibility of rejecting the true measure-
ment, the detection probability PD should be replaced by PD(1-PM)

in equation (2.18). Thus, when the acceptance test is employed, even if
PD = 1 , a component is generated for the finite probability of missing

the true measurement.
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Requirements of a mixture reduction algorithm

-

The following criteria have been identified for the design of a

mixture reduction algorithm:

(1) The approximation should result in another Gaussian
mixture. This is necessary to allow the tracking filter

algorithm to be implemented as a bank of Kalman filters.

(ii) The algorithm should allow the maximum number NT of

components after approximation to be specified.

(i11) Whenever possible, reduction should be achieved without
modifying the 'structure' of the distribution beyond some
acceptable limit. Conversely, to avoid retaining unnecesSsary
components, reduction should continue until this limit is reached,

so that the approximation may contain less than N_ components.

T
Note that this criterion is in terms of mixture structure
modification because it is feasible to define and compute such a
measure. Also it is likely that the extent of modification is
related to practical performance measures, such as the probability

of losing track, which cannot be readily computed as a function

of mixture approximation.

(iv) Intuitively, the approximation should preserve the mean
and covariance of the original mixture. Unfortunately, after
propagation of the approximated mixture via the filter update and
prediction relations, the mean and covariance of the updated

mixture will not, in general, coincide with those of the optimal

solution.
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(v) The reduction algorithm should be computationally
efficient (reduction must be accomplished within the filter
update period), even when the original mixture consists of a
large number of components (for example over 100), each with a

different covariance matrix.

3.4 Review of mixture reduction techniques

A number of techniques for controlling the growth of the mixture
distribution have been reported, The simplest method is to reduce the
mixture to a single Gaussian component at each time step, and the
crudest means of achieving this is to choose that mixture component
corresponding to the most probable hypothesis. When the probability
of detection is unity, this corresponds to the nearest neighbour
approach, Ze¢ update the track by using the measurement 2z which

minimizes the expression:

(- o) -

However this technique takes no account of the possibility that the

wrong hypothesis may have been chosen and results in what is essentially

a decision-directed filter (see Bar—Shalom3). A considerable improve-

ment on this method is the Probabilistic Data Association Filter (PDAF)11,
or probabilistic editor37, in which the single Gaussian approximation

is chosen to match the mean and covariance of the full posterior -
mixture (see Appendix B, equations (B-5) and (B-6)). Thus the

hypotheses are effectively combined and the uncertainty is recognized

in the covariance of the approximating Gaussian. The PDAF has been

promoted principally by Bar-Shalom and it mayv be thought of as a

lower bound on the range of possible approximations meeting requirement

(iv) (the mean and covariance are preserved); the upper bound being




39

obtained when all components are retained. The PDAF does not mect
requirements (ii) or (iii). The filter performs well in a number of
cases (see Ref 15) and is computationally very economical. However
in many circumstances, che single Gaussian approximation will destroy
important structure in the mixture distribution, especially when a
number of well spaced components are present. In this case it should

be better to consider approximations which retain several components.

Singer et aZ1O have developed an N-scan filter in which
components of the mixture distribution a-e combined according to the
history of hypotheses. If several components result from updating by
the same measurements over the last N-scans, then the components are
combined., For a particular N , the performance of this method is
likely to depend on the responsiveness of the filter to incoming
measurements. This in turn depends on the covariances Q and R .

If the filter is very responsive, components with the same measurement
history over recent scans will be very similar and the consequent
performance penalty in combining these components should be small.

A disadvantage is that the number of components retained is not limited
(requirement (ii)). However provided N 1is small, the algorithm should
be computationally efficient: no measures of similarity need be
calculated, although the recent history of measurement acceptance must
be stored. For the simulation example reported in Ref 10, near

optimal performance is claimed for only a single scan memory.

Gaussian mixture distributions with an increasing number of
components also occur in system switching problems, where the parameters
of the system are subject to abrupt changes or jumps. Thus approximation

technigques have also been developed to implement filters for these

problems (see the survey by Pattipati and Sande1138). A technique
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known as the generalized pseudo Bayes algorithm (GPBA) has been
developed by Jaffer and Gucpa39, which is the equivalent of the N-scan
memory filter. In a similar vein, BlomAO has develored an interacting
multiple model (IMM) algorithm in which components of the prior
distribution are merged before measurement update. The special case
of the GPBA where only a single Gaussian is propagated is called the
pseudo Bayes method, and this is the equivalent of the PDAF. The
pseudo Bayes method was proposed by Ackerson and Fu41, although they
omitted the 'between components' contribution to the covariance of the

approximating Gaussian (see next section).

The remainder of the methods described in this section are

direct approximations of the posterior mixture distribution, without
reference to the measurement history, which allow more than one com-
ponent to te retained, All of these techniques involve merging or
discarding components of the mixture. The simplest of these schemes

is to retain only the N most probable components at each time step
(see Tugnaithz). A refinement of this method suggested in Ref 43 is to
combine components which are close in the sense of the Bhattacharyya
distance measure (see below) before rejecting components; but this does

not appear to have been implemencted.

Alspach25 and Lainiotis and Parkaa have suggested schemes in
which the mixture is approximated by merging and pruning operations,
none of which exceed a specified penalty measure. Alspach defines the
penalty of approximating the mixture p(x) by pA(g) as the

Kolmogorov variational distance between the two distributions:

. - /,p(>_<) - b, () ) dx
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Weiss, Upadhyay and Tenney ~ also analyse the penalty of merging com-
ponents in terms of «x . Lainiotis and Park use a penalty meas:re

based on the Bhattacharyya coefficient p , which is defined by:
p = /”PZES P, (x) dx .

p lies between zero and one, and p =1 if p(x) = pA(E) . Thus

T - p 1is a measure of the penalty of approximating p(x) by pA(E)

These distance measures are related by (see Kailath46):

d
)
pe)
A\
(17,3
%
-
1
O
.

Bounds on these penalty measures in terms of the mixture parameters
have been derived for deleting a component and for merging a pair of
components (see Refs 25 and 44). The authors suggest that fixed
acceptable penalty levels should be chosen and that the mixture should
be reduced by merging and pruning operations which do not exceed these
penalty levels. The method of Lainiotis and Park would require the
calculation of the Bhattacharyya coefficient between every pair of
mixture compcnents., This would be very time consuming and the method
does not appear to have been implemented. The method of Alspach
assumes that the covariance of all components is the same. This
situation is maintained as filtering proceeds by ignoring the between
component contribution to the covariance of the merged components, and

so overall covariance is not preserved with this method.

The mixture reduction techniques derived in the following
sections may be viewed as developments of these direct approximation

methods. The new algorithms, which are essentially merging operations,

cater for components with different covariances, and the maximum number




of components after approximation may be chosen as required. Also, at
®ach time step, the overall mean and covariance are preserved, save
for certain insignificant components which may be discarded. The
algorithms are based on the premise that changes to the 'structure' of
the mixture should be minimized. The measure of structure is derived

from a decomposition of the mixture covariance matrix.

3.5 Mixture structure: the covariance matrix

Consider any N-component mixtyre distribution with pdf:

N
p(x) = Zeipi(’f)
1=1
where pi(g) is a component pdf
and Bi is a probability associated with the ith component such
that:
g. > O
i
and
N
RS
i
i=1

The covariance matrix P of this mixture may be decomposed into two

contributicns, W and B (see Appendix B, equation (B-3)):

P = W+8B
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N
where W = ZB. P.
i1

2z

%
[}
®
™

is the mean of the distribution and gi and Pi are the mean and
covariance of the ith component. The matrix W may be interpreted as
the contribution from the covariance 'within' each component of the
mixture and it depends on the spread of each individual component.

B may be interpreted as the between component contribution which is
due to the separation between the mixture components. B and W are
both symmetric matrices, W being positive definite and B being

positive semidefinite.

Suppose that the mixture distribution is approximated by merging
several components together. If @ 1is the set of subscripts of
components to be merged, then the probability mass of the new component

is:

= .2)
B' :E: Bi . (3.2

ieC

To preserve the overall mean of the mixture (requirement (iv)):

()
[}
Mz
w0
I
150
[
i
[es]
1%
+
-
1
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so that the mean of the new component is given by:

Co_ 1
= ?Zsigi. (3.3)

i€

1%

Also to preserve the overall covariance, from equation (2.23):

so that the covariance of the new component is given by:
1 T T
1 = a— - ot [}
P = z sy(p, + 8, 27) -2 2" . (3.4)
ie¢

Although the overall covariance P 1is unchanged, this merging of
components results in a loss of between components covariance B which
is balanced by an increase in W . To see this, let W' and B' be
the within and between covariances of the approximated mixture. Since

overall covariance is preserved:
P = W+B = W +B' ., (3.5)

Thus the matrix L defined as:

=
]

B-B' ,

is given by:
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L]
[es)
’d.
1%
M
14>
e 3
]
w
1%
14>
]

< ) efE - E)(5 - 8)T (3.6)
ieg
which is a positive semi-definite matrix. This shift of covariance
from B to W is a'rough measure of the change in the structure of a
mixture distribution when components are combined. (Techniques have
been developed for Cluster Analysis using a similar decomposition of

the data scatter matrix (see Hand47).)

3.6 The Joining Algorithm

3.6.1 Derivation

Ideally the final partition of components into sets for merging,
should be such that the increase in some cost function is minimized.
However to reduce the mixture from N to M components, this could
involve the evaluation of the criterion for every possible partition
to identify the minimum. Such a procedure for a number of different
values of M would be far too time consuming and so a suboptimal
approach has been adapted from the agglomerative methods of Clustef
Analysis (see Handh7). In this approach, which we call the Joining
Algorithm, a pair of components are merged at every iteration of the
algorithm. The components for merging are chosen to minimize the

incease in the chosen criterion at each stage. Clearly there is no

M
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guarantee that the final partition from such a procedure will achieve

the smallest possible value of the cost function.

To implement the Joining Algorithm using a cost function based on -
an increase in the within component covariance, we require a suitable
scalar measure. Trom equations (3.3) and (3.6), if compoments 1 and
j are merged, the increase in W 1is given by:
L = i (3, - &,)(3, -2 )" . (3.7
AT S
One possible measu?e is the trace of Lij , whicn is the squared
Euclidean distance between the component means modified by the factor
B, Bj/(Bi + Bj) . However this has the disadvantage that it is
dependent on the scaling of the elements of the state vector and so

is problem dependent. This difficulty is avoided by using the

Mahalanobis distance (see Ref 47) to give:

where P 1is the covariance of the whole mixture. This distance

measure 1s related to Lij by:

This measure is invariant under all non-singular linear transformations
of the state vector. At each iteration of the Joining Algorithm, the
two components which are closest in the sense of the distance measure
equation (3.8) are combined to form a new component defined by

equations (3.2) to (3.4).

u
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The minimum value of the distance measure at each iteration is
an indicator of the change in distribution structure resulting from
the merging of the two closest components. It is shown in Appendix C
that this minimum distance increases monotonically as reduction proceeds,
and so each merging operation increases this measure of structural
modification. (Distance measures with this property are said to be
not subject to reversals - see Anderbergaa, page 141.) Thus if a
threshold defining the acceptable modification to the distribution is
specified, approximation should proceed until the minimum distance
exceeds this threshold. For convenience we compare the squared
distance dij with a threshold T . 1In choosing a value for the
threshold T , it is useful to note that the squared distance di. is

bounded. To see this (from equations (3.5) and (3.6)):

P = W+B = W+B'+B~-B'

i

(W+B") +L,. ,
1]

where P and' W are positive definite n x n matricies, and B' and

Lij are positive semi-definite. Multiply through by P-1 to give:

I = P+ +2 1.,
ij

Taking the trace gives:

n = tr[P~1(W + B'J + t:r[P—1 L..]
ij

Hence since P-1 and (W + B') are both positive definite,
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Note that for our tracking problem, n is the dimension of the
state space. Thus we have chosen T to be a constant fraction of

this upper bound n . Simulation studies indicate that a value of:
T = 0.001n

retains sufficient components to give, on visual inspection, a good

approximation to the mixture.

At each iteration, the algorithm determines the number Np of

remaining components, excluding the set of smallest components with
total probability mass (Ze the sum of their B8 weights) less than
BT . If dij exceeds T before NR has been reduced below the

specified maximum N then approximation continues beyond the

T L]
acceptable limit of modification. The purpose of BT , which has
been set to 0.01, is to avoid wasting effort on grouping insignificant

components. A flow diagram of the Joining Algorithm is given in

Fig 3.1.

3.6.2 An example of mixture reduction with the Joining Algorithm

The Joining Algorithm has been applied to a four-dimensional
Gaussian mixture distribution taken from the tracking simulatiom of
Chapter 4. For illustration, the distribution is only shown as a
function of two dimensions x and y , which are the Cartesian
co-ordinates of the target position. Fig 3.2 gives a perspective view
of the pdf of the original mixture, while in Fig 3.3 it is shown as a
contour plot with logarithmic contour spacing to bring out the shape

of the smaller components. The distribution is composed of 37

components.




The final partition of components produced by the Joining
Algorithm with NT = 10 1is shown in Fig 3.4. 1In this figure the means
of the original components are plotted as numbers which denote the
final component to which the original is assigned. The final components
are ordered according to decreasing probability mass, so component
number 1 has the largest B weight. The original components are colour
coded according to their B8 weights as indicated on the diagrams. The
actual position of the target is also shown; it is close to the means
of two of the larger original components. Note that after reduction
the maximum permitted number of components, Ze¢ ten, has been retained,
indicating that the minimum squared distance measure has exceeded the
acceptable modification threshold T . The grouping of components
shown in Fig 3.4 appears to be consistent with maintaining, as far as
possible, the structure of the distribution, although it should be noted
that the distribution is four-dimensional and only two of these
dimensions are shown here. The mixture approximation corresponding
to this partition is shown in Fig 3.5; it appears to be an excellent

approximation of the original (Fig 3.2).

If NT is reduced to four, the components are further merged to
produce the partition shown in Fig 3 6. Here the originalvcentral
concentration of components has been split into three groups, of which
number 3 includes one of the less significant remote concentrations.
The mixture approximation for NT = 4 is shown in Fig 3.7. Comparing

this with Fig 3.2, it can be seen that the original mixture has been

siaificantly modified.

The history of how components are merged together for this example

is illustrated by the tree diagram of Fig 3.8. The mean (x and vy

A

elements onlyv) and the 2 weight of each of the original mixture
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components are listed on the left hand side of this diagram. The tree

structure which grows from these components indicates which components
were merged together and at what joining distance* this occurred.

Since the joining distance always increases (as shown in Appendix C),
the sequence in which components were combined is the same as the
ordering of the merging from left to right in the diagram. For this
reason it is always possible to arrange the original components so that
none of the branches of the tree cross one another. Note that the
joining distance is plotted on a logarithmic scale and that all com~
ponents with B weights less than 0.001 have been merged at least

once before the joining distance has risen above d2 =5 x 10-4 , which

is only 0.01257 of the maximum possible joining distance d2 =4 .

In this example the mixture could be reduced to 17 components
without exceeding the joining distance threshold T = 0.004 ;| but to
achieve a reduction to 10 components, the final joining distance
was d2 = 0.028 . The numbering of the branches at this stage
on the diagram corresponds to the cluster numbers of Fig 3.4, so the
clusters are numbered according to decreasing probability mass. To
further reduce the mixture to only four components, the joining
distance increased to about 0.3, which is 75T. The branch numbers at
this stage corresponds to the cluster numbers of Fig 3.6. If merging
continues until only one component remains, the single Gaussian PDAF
approximation of the mixture is produced. The final merging is at a
distance d2 = 0.703 , within the theoretical limit of 4. (Further

examples of the final joining distance for NT = 10 and NT = 4 are

given in the next section.)

* We loosely refer to joining distance although this is actually the
squared measure d%j .

M




3.6.3 The control of mixture components for a tracking example

The Joining Algorithm (in conjunction with the coarse acceptance
test) has been used to control the growth of mixture components in a
simulation of target tracking using the filter described in Chapter 2.

The tracking problem is specified in Chapter 4.

In Fig 3.9 the number of mixture components before and after
reduction by the Joining Algorithm is shown for each time step during
the tracking operation. Between time steps, the number of components
increases according to the number of measurements passed by the coarse
acceptance test. Also shown is the final joining distance at each
time step. For this example the threshold T was exceeded on 427 of
the time steps to achieve an acceptable reduction specified by NT =10 .
Note that when the final joining d.stance is below T , the number of
components in the reduced mixture is usually less than NT . When NT
is reduced to 4 (Fig 3.10), the final joining distance is almost

always greater than T , and on average is about ten times larger than

the average final joining distance for NT =10 .

3.7 The Clustering Algorithm

3.7.1 Derivation

The second algorithm is based on the proposition that the mixture
components with the largest B8 weightings carry the most important
information. Thus starting with the largest component, this algorithm
gathers in all surrounding components that are in some sense close to
the principal component. Subsequently the largest component of the
remainder is selected and the process is repeated until all the com-

ponents have been clustered. This is called the Clustering Algorithm.

——— A




The distance measure chosen to represent the closeness of com-

ponent 1 to the cluster centre is defined by:
x. - % ) , (3.9)

where BC s %c and Pc are the probability mass, mean and covariance
of the principal component, and Bi and %i are the probability mass
and mean of the ith component. This is the same as the distance
measure dij of the Joining Algorithm, except that the distance is
normalized to the covariance of the cluster centre rather than the
complete mixture. Indeed equation (3.7) is the motivation for the
definition of Di . Note that Di is independent of the covariances
of components being tested for clustering and that the selection of
components for each cluster only involves the inversion of omne
symmetric matrix Pc . Any component 1 for which Di < T, |is

1

selected as a cluster member. The threshold T1 defines the

acceptable modification to the distribution.

In choosing T, » it is helpful to first consider the measure

Di2 defined by:

If the criterion for clustefing a component i were Diz < T; ,

then any component 1 whose mean were to fall within the hyperellipsoid
defined by T; would be clustered. This hyperellipsoid is a contour

of constant probability density of the prinicipal component and the
proportion of probability mass enclosed is a measure of the selectivity
of the clustering operation. If T; were chosen so that only a small

proportion, say 1%, of the probability mass of the cluster centre were
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enclosed, then the structure of the distribution should be little
altered by clustering. However Dlz is independent of the probability
mass Bi of the component, and intuitively, merging a large compcnent
would have a greater effect on the mixture than merging a small com-
ponent. The modifying factor Bi BC/(Bi + BC) biases this distance

so that small components are more easily clustered while large components

retain their individuality. It is suggested that the threshold for:

should be chosen so that small components with 8 weights less than
0.05 are more readily clustered, while components with £ weights
exceeding 0.05 are clustered less readily. Fig 3.11 shows that the
contour 8, SC/(Si + Bc) = 0.05 1is close to the line g, = 0.05 inside
the region of interest, except when Bi is nearly equal to BC . Thus
it is suggested that to give a good mixture approximation, the threshold

for Di saould be set to:

= '
T1 = O.OST1 R

where T; defines the hyperellipsoid containing only 17 of the
probability mass. (T; can be found from tables of xz with the

number of degrees of freedom equal to the dimension of the statespace.)

Each cluster of components (some clusters may consist of a single
component) is approximated by a single Gaussian defined by equations
(3.2) to (3.4). Clustering proceeds until the probability mass of the
unclustered components is less than By - As for the Joining Algorithm,

the purpose of B,r , which is set to 0.01, is to avoid wasting effort

on clustering insignificant components. If the number of clusters is

———————AERERAS R




34

less than or equal to NT » the unclustered components are deleted

and approximation is complete; otherwise further reduction is
necessary. This is achieved by repeating the clustering procedure on
the first approximation including the unclustered components, butr with
the clustering threshold incremented by AT , Ze¢ T = T1 + AT . This
clustering operation is iterated until the necessary reduction has been
effected. The choice of the increment AT 1is a compromise between

the number of iterations required and the possibility of clustering

more components than necessary. In this study, the value of AT 1is

fixed:
AT = 0.05 AT' ,

where T' + AT' defines the hyperellipsoid which contains 6% of the
probability mass of the principal component. Simulation work has shown
this to be a reasonable compromise. For the simulation examples of
this study, the statespace is four-dimensional, so from tables of x2

the algorithm thresholds have been set to:

0.01485

3
]

and

AT 0.02065

Although AT 1is normally fixed, an override is provided which may
increase the clustering threshold further to ensure that at least one
component 1s clustered on each iteration. This mechanism is shown in

the flow diagram of the algeorithm given in Fig 3.12.

3.7.2  An example of mixture reduction with the Clustering

Algorithm

The Clustering Algorithm has been applied to the same four-
dimensional Gaussian mixture distribution that was used to demonstrate

the operation of the Joining Algorithm (see Figs 3.2 and 3.3).
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For NT = 10 , the final partition is shown in Fig 3.13 and the
corresponding mixture approximation is shown in Fig 3.14. The

approximation consists of nine components, although several algorithm

iterations were required; Ze the acceptable modification limit was

exceeded. The composition of the final clusters is similar to the
grouping produced by the Joining Algorithm (see Fig 3.4), although
there are detailed differences. Also the mixture approximation 1is
very similar to that produced by the Joining Algorithm (see Fig 3.5),
and appears to be an excellent approximation of the original (see

Fig 3.2).

The partition of components and the mixture approximation
produced by the Clustering Algorithm with NT = 4 are shown in
Figs 3.15 and 3.16. The partition of the components is very similar
to that of the Joining Algorithm with N = 4 (see Fig 3.6), the
difference being the assignment of three components with B weights
below 0.001 and one component with 0.01 < B8 < 0.1 . It is chiefly
this one component which accounts for the obvious difference between
the Clustering Algorithm approximation and the Joining Algorithm

approximation (Fig 3.7) - also see the contour plot Fig 3.17. These

approximations are significantly different from the original (Fig 3.2).

3.7.3 The control of mixture components for a tracking example

The Clustering Algorithm has been applied to mixtures generated
by the same tracking example as used to exercise the Joining Algorithm in
. section 3.6.3. Fig 3.18 shows the number of components before and
after reduction, the maximum clustering distance* threshold, and the

number of algorithm iterations for each time step with NT =10 .

* We loosely refer to clustering distance although this is actually the
squared measure D;
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Adequate reduction to within ten components is achieved with a single

algorithm iteration (that is with the threshold T1) on 727 of the

time steps, and no more than five iterations are ever required. Also
comparing the plot of threshold value with the plot of the number of
iterations, it can be seen that the override mechanism for increasing
the threshold value by a jump in excess of AT has only been invoked
on three time steps. When adequate reduction cannot be achieved
without increasing the threshold above T, , the number of components

1
in the reduced mixture is never less than NT - 3 , showing that the
algorithm did not merge many more components chan necessary. Finally
note that the plot of the number of components before and after
reduction is similar to the corresponding plot for the Joining Algorithm

(see Fig 3.9). Also the plots of the maximum joining distance and the

clustering threshold show similarities.

Fig 3.19 shows the management of mixture components for NT =4 .
The work load of the Cli'stering Algorithm is considerably increased for
this smaller value of NT . Adequate reduction with a single iteration
is achieved on only 227 of occassions, and a maximum of 11 iterations
were required for one time step. However the override facility for
increasing the threshold level was frequently employed, and without
this feature the maximum number of iterations would have been close
to 100, There is some similarity between the plot of number of com-
ponents before and after reduction and the corresponding plot for the

Joining Algorithm shown in Fig 3.10. However the match is not so good

as for N, = 10 , showing that for small N

T the number of components

T
is more sensitive to the reduction algorithm employed. This is probably

because significant components have to be merged to achieve the

necessary reduction.

s
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3.8 Conclusions

Two new mixture reduction algorithms have been developed to meet
a set of reqﬁirements for Bayesian tracking filters. These algorithms
have been derived from the principle that the increase in the within
component covariance should be minimized when components are merged.
When applied to a Gaussian mixture distribution ftom‘a tracking example,
excellent approximations can be achieved provided the number of NT
components allowed in the approximation does not force significant
distinct components to merge. For small values of NT » the approxi-

mations produced by the -two algorithms were clearly different and some

features of the original distribution were obviously blurred.

In Appendix D the computational requirements of the two reduction
algorithms are analysed., It is shown that if the number of components
before reduction is large compared with that after reduction, the
number of operations required by the Joining Algorithm lies between
the lower and upper bounds of the operation count for the Clustering
Algorithm. Also for the Joining Algorithm a large distance matrix
must be stored, while for the Clustering Algorithm storage requirements
over those necessary to hold the mixture components are negligible.

In the following chapter we compare the performance and the computation

time of the two algorithms and the PDAF for an example of the baseline

problem.
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Fig 3.3 Mixture pdf before approximation (37 components)
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4 PERFORMANCE COMPARISON OF THE JAF WITH THE CAF AND THE EFFECT OF
VARYING NT

4.1 Introduction

Simulgtion studies are essential for assessing the performance of
tracking filters employing the mixture reduction algorithms described in
the previous chapter. Since tracking is a statistical operation it is
necessary to carry out Monte Carlo simulation runs to obtain estimates
of filter performance. Performance has been assessed for an example of
the baseline problem: the tracking of a target moving in a plane. The
Bayesian solution of Chapter 2 has been proérammed éor the example, and
the arproximation techniques of Chapter 3 have been included to produce
a Joining Algorithm Filter (JAF) and a Clustering Algorithm Filter (CAF).
These filters both employ a coarse acceptance test (see section 3.2) and,
save for the reduction technique, they are identical. Also for com-

parison the single Gaussian approximation PDAF has been programmed.

The main objective of the simulations in this chapter is to compare
the performance of the filters and to examine the effect of varying the
maximum number NT of components allowed in the approximation. This
has been examined for a single set of problem parameters, chosen at a
point in the space where the JAF and the CAF outperform the PDAF. The
variation of performance over the problem parameter space for fixed
reduction algorithm parameters is assessed in Chapter 5. In all of these
simulations, the generated target‘trajectories and the statistics of the
simulated measurements are perfectly matched to the filter parameters.
Clearly in real life this is unlikely to be the case. In Chapter 6,

filter performance for data statistics mismatched .o filter parameters

is assessed for a similar tracking problem. Also tracking performance

against some 'realistic' trajectories is investigated.

e e ———
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4.2 The tracking problem

Target trajectories have been simulated using a second order model

which is the basis of the «-8 filterag’so.

This model has been widely
used in tracking problems as it is simple, while providing an adequate
trajectory representation for many practical cases. The trajectory
described by the model is a variation about a constant velocity course,
whose magnitude and direction are defined by initial conditions. The

deviation from this mean course is controlled by the variance gq of the

model driving noise. The second order model is defined by the following

equation:
2
1 at 0 O %— 0
4] 1 o 4] At 0
X = X+ 2 | % (4.1)
0 0 1 At 0 %—
0 0 0 1 0 At

where the state vector X, Trepresents the position and velocity of the

target at time kAt
. T
5 = %y, 9,

At 1is the time step between measurements, and Vi is a 2 x 1 vector

from a Gaussian random sequence with zero mean and constant covariance:
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Thus, to generate a trajectory x , Gaussian random numbers of

-k
variance q were fed throughsthe recurrence relation (4.1),

starting from some initial condition Xy - Note that the target

velocity described by equation (4.1) is a random walk.

At each time step k , a set of Cartesian position measurements
have been generated to simulate sensor measurements. This set consists
of at most one true measurement plus uniformly distributed false
measurements. The probability of a true measurement occurring is the
detection probability Py . A true measurement 2 is a Gaussian

perturbation about the target position and it is generated from the

state vector X, using the equation:

By T Yoo 4.2)

where v, is a 2 x 1 vector of Gaussian measurement noise with zero

mean and constant covariance:

The false measurements are independent of the target and are uniformly
distributed over the sensor surveillance region, with density o per
unit area. At each time step, the surveillance region of the sensor is
arranged to be sufficiently extensive to include the target position
and the acceptance regions of the filters, while track is maintained.

False measurements were simulated by generating Ako pairs of uniformly

*Jh---II-IIIl-I...-..........I.l.ll..lI...lI...l..'IIII.l.IlIlIIIIIIIIIIIlIIIIIIIlII
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distributed random numbers with appropriate scaling; Ak being the

area of the surveillance region at time step k .

At each time step, every simulated measurement is passed to the
tracking filters which attempt to estimate the current target state

vector. The following information is available to the filters:

(1) the value of the initial state vector X, » SO the

initial position :nd velocity of the target is kmown perfectly,
(i1) the model of target motiom, equation (4.1),

(iii) the relationship between the state vector and the true

measurement, equation (4.2),

(iv) the statistics of the false measurements (density o),
the true measurement noise (variance r), and the model

driving noise (variance ¢q),

(v) the detection probability PD of the sensor.

The tracking filters do not know:

(a) - the values of the state vector X, » OF the noise vectors

v, and w,_ at each time step,

=k k
(b) the identity of the true measurement.
Clearly this is an example of the tracking problem given in

section 2.2 and so the Bayesian solution of Chapter 2 may be directly

applied.




4.3 Parameters of the problem

To analyse this tracking problem it is convenient to normalize
the variables so that the unit of time is At and the unit of distance

is /r . Then the non-dimensional form of the state vector is:

oae\T
%3

= X

x e
R W=

R

k

1f the target model and measurement equations are written in the
normalized form, it can be shown that the statistics of the problem are

completely specified by three non-dimensional parameters:
gAt4
(1)

the ratio which determines the values of the filter gains for the
standard a-R filter, Ze in the absence of false mecasurements. As
this parameter increases the a-B filter becomes more responsive to

position measurements.

(ii) pr , the expected number of false measurements falling within

a square whose side is one standard deviation of the measurement error.

(iii) PD , the detection probability.

Since the initial state vector is assumed to be known perfectly, the
filter performarce in normalized co-ordinates should only depend on
these three parameters. (This is because the problem may be written as
the estimation of the deviation about the nominal constantly velocity

course defined by the initial state vector.)

e ————— R




The filter performance comparisons reported in the chapter are

for a single point in the parameter space:

S—A—ti = ]
r
pr = 0.012
and
PD = 1 .

These values have been chosen to illustrate the possible improvement in
tracking performance of the new reduction algorithms over the PDAF.

A full investigation of filter performance over the parameter space is
reported in Chapter 5. For the above parameters, the equivalent Kalman
filter (receiving only true measurements) rapidly reaches steady state
conditions, and the standard deviation of the pocition error on one of
the co-ordinates approaches within 17 of its final steady state value
after only four time steps. A&lso the expected numter of false measure-
ments that would be received by an acceptance gate with PM = 0.001
based on steady state Kalman filter covariances i3 2.084 (see saction
3.2). In the simulations, the initial target position was taken as the
origin, the initial speed was 10/r/aAt and the initial heading was
chosen randomly from a uniform distribution over [0,2n] for each
replication. As noted,initial target position and velocity do not

affect the filter performance.

4.4  Track loss criterion and simulation program

The performance of the filters was assessed by measuring how long

they were able to maintain track on the target, Ze the track lifetime.
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Each filter was allowed to continue tracking the target until track was
lost., A track was deemed to be lost if either of the following criteria

were satisfied:

(1) The true measurement is rejected by the acceptance test for

five consecutive time steps.

‘. . 5
(ii) ka xkl 10 ®xk
or

g = > 10c¢

19, = v, | gk
for five consecutive time steps, where (ﬁk ’ 9k) is the filter estimate
(the mean of the posterior distribution) of the target position a2t time
step k , (xk s yk) is the actual target position at time step k , and
Ik and Gyk are the standard deviations of the position estimates of

the equivalent Kalman filfer (Ze the optimal filter for the same problem

but with o =0 ).

These track loss criteria are testing for consistent rejection of

the true measurement, or a tracking error which is consistently large

in comparison with the expected error of the equivalent Kalman filter;
consistent peing defined as five time steps and large being defined as

ten standard deviations.

One hundred target trajectories with associated measurements were
generated, so that the mean track lifetime and the distribution of
lifetimes could be estimated. The same hundred trajectories and

measurement sets wJerz used for each filter at each setting of NT ,

which was varied between 1 and 30.
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In practice, to avoid storing and reading large amcunts of data,

the trajectory and measurements were generated as they were reqguired by
the filter at each time step; 7e¢ data generation and filtering were
performed within a single computer program. The track loss test and
other assessment operations were also performed within this program,
which was used for the CAF/JAF comparison of this chapter and to
produce results for Chapter 5. The program includes two tracking
filters: the Bayesian filter of Chapter 2 and the PDAF which provides

a useful baseline for comparison. The Bayesian filter may be run with
either the Joining Algorithm to give the JAF or with the Clustering

Algorithm to give the CAF.

All computer programs were written in Fortran 77 and the filter
similations were run on the Cray 1S at RAE Farnmborough. Thus where
cpu times are quoted, they are for this Cray computer. Due to the
structure of the algorithms, the 'vector' processing capabilities of

the Cray were hardly used.
4.5 Results

4.5.1 Average number of time steps to track loss

Fig 4.1 shows the average number NAVE of time steps until track

loss as a function of N for filters using the Clustering Algorithm

T b
and the Joining Algorithm with thresholds set to the values given in

-ections 3.6.1 and 3.7.1. NT = 1 corresponds to the special case of

the PDAF, and clearly the filters which retain more than ore mixture
component perform better than the PDAF for this example. The
Joining Algorithm filter gives slightly larger values of NAVE than

the Clustering Algorithm, possibly due to the setting of the thresholds

T and T1
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Also shown in Fig 4.1 is the filter performance for the JAF with
T = 0, Ze with the acceptable modification check switched off. Note
that the original setting of T for the JAF does not significantly

degrade the filter's performance, and the the performance for all three

cases shown in Fig 4.1 is similar. For N. < 10 , NAVE rises
approximately linearly with NT ,» while for NT > 10, NAVE is nearly
constant. Thus, for this example, NT = 10 appears to be about the

critical level below which tracking performance begins to degrade.
(The mechanism of track estimation is discussed in Chapter 5.) For

the JAF wirth T = 0 and NT very large, the mixture is not subject to

approximation, and so this constant level is the optimal value of

NAVE .

Fig 4.2 shows the average number of mixture components before
and after reduction for the three cases of Fig 4.1. Comparing Fig
4.2a&b with 4.2¢c, the effect of the acceptable modification check,

defined by T1 or T , in regulating the number of components fur the

large values of NT is obvious. For small values of NT s, the

approximation for all three cases is principally controlled by NT

itself. For this example, T1 and T become the main regulators of

the approximation at about NT = 10 , so the acceptable modification
check appears to select the minimum pu Jof components for near optimal
performance. Clearly this cannot be guaranteed for other tracking
problems, but since the thresholds were not specially tuned for this

simulation, the performance with other problems may not be far from

optimal.

4.5.2 Distribution of number of time steps to track loss

In the previous section, the average track lifetime was discussed.

In this section we consider the distribution of track lifetimes about
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this mean. To illustrate the distribution and to compare the performance

of the CAF and JAF fof individual replications, the track maintainance .
times have been plotted in Figs 4.3, 4.4 and 4.5 for NT =2, 4 and 30 e
respectively. 1In these diagrams each point corresponds to a single
replication, and the X and Y co-ordinates of the point are the

time steps at which the JAF and CAF (with original threshold settings)

lost track respectively. So points falling on the X =Y line indicate

that both filters lost track coincidently. For large values of NT

{eg N, =30, Fig 4.5), the performance of the two filters is

T

remarkably similar for the majority of replications. The few replications

biasing NAVE in favour of the JAF are obvious. For small values of
N, (eg N, = 2 , Fig 4.3), the points are scattered further from X =Y
although NAVE is almost identical for the two filters. These results

bear out the observation that the mixture approximations produced by the
two reduction algorithms are usually very similar for large NT , while

for small NT there are often clear differences.

Figs 4.6 and 4.7 show histograms of the data points from Figs 4.3

and 4.5; Ze for the track lifetimes for the JAF and CAF with NT = 2

and NT = 30 . It can be seen that those track lifetimes exceeding

20 time steps can be well fitted by an exponential distribution of

the form:

t-t .
~ min
) a
- for t > t .
a min
p(t) =<
0 otherwise
L
Yere (t_ . + a) is the average lifetime of tracks which survive fcr
min
. . . 2
at least tmin = 20 time steps. This is confirmed by a ¥ test:
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the exponential hypothesis is only once rejected at the 57 level of
significance for any of the 24 sets of replications. This exponential
distribution indicates that after 20 time steps, the probability of
losing track is independent of track lifetime, Ze after an initial
transient the filters reach steady state conditions. The value

trin = 20 was chosen by éxamining the transient behaviour of the
equivalent Kalman filter (see last paragraph of section 4.3) and by
inspection of the simulation results. The distribution parameter
may be interpreted as the average number of time steps that a track will
survive in steady state conditions. Estimates of o are shown in

Fig 4.8. These valugs are slightly greater than NA - 20 , as tracks

VE

surviving for less than 20 time steps are excluded.

It is important to establish the distribution of track lifetimes
as this allows one to specify confidence limits on the estimate of a .
For an exponential distribution, the 957 confidence limits are

approximately:

~2 =2
1+ 1.96 P 1.96 ,
2/N 2/N
where N 1s the number of replications used to estimate o . These

limits define a fixed interval when track lifetime is plotted om a
logarithmic scale. In the performance estimates of the following

chapters, these confidence limits are shown with NA » on the

VE

assumption that track survival times are also exponentially distributed

in these cases and thar tmin is small compared with N

AVE
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4.5.3 Computation time

Fig 4.9 shows the average cpu time TAVE for the filters to
perform a single time step. The time scale (which is logarithmic) is
normalized to the average cpu time for a single PDAF time step which,
for the data simulated here, was 1.12 ms on a Cray 1S computer. The’
computational effort is divided between the propagatior of mixture
components or tracks and mixture reduction. For the two filters with
the original threshold settings (Fig 4.9a&b), TAVE falls rapidly to
nearly constant values for NT > 10 . Also for low values of NT most
time is spent reducing the mixture, and as Np increases more time is
required for track propagation while the mixture reduction time decreases.
This is explained by Fig 4.2: the initial high values of TAVE are due
to time spent reducing large mixtures which result from inadequate
approximations at values of NT < 6 . Except for the case NT =6 , the
JAF was more time consuming then the CAF, usually by about 507, and as
expected, the execution times for the filters were in all cases
considerably greater than the PDAF. However for NT > 10 , the five

fold increase in :xecution time for the CAF may well be an acceptable

price for the pe:formance improvement offered by this filter.

The time tacen by the JAF with T = 0 1is shown in Fig 4.9c.
This clear'y shows the value of the acceptable modification check in
the reduction algorithms: for the insignificant improvement for
NT > 10 over the filter with the original threshold settings, there
is a large increase in computational overheadc. The extra processing
time is required for the propagation and reduction of the extra tracks
generated when the full NT components are retained for NT > 10 ,
(see Fig 4.2).




89

4.6 Conclusions

For the chosen simulation example, the JAF and CAF both give a
substantial performance~impr§vement over the PDAF. The penalty for
this is the increased computational requirements of the more complex
filters. Minimum computation time and near optimal performance were
obtained when satisfactory mixture approximation (defined by the
algorithm thresholds T and TI) was achieved within the maximum
number NT of mixture components allowed. Under these conditions the
track survival times for the JAF and CAF were identical on at least
85% of the replications. This suggests that filter performance is not
highly sensitive to the method of mixture reduction, provided that the
most important mixture components are retained. However, the comput-

ation time for the JAF was almost always greater than that for the

CAF, usually by about 507. Thus in the remainder of this study the

Clustering Algorithm is always used for mixture reduction.
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ION STUDIES Or THE CAF AND THE PDAF

5.1 Introduction

The performance of the tracking filters for the problem
described in saction 4.2 depends on only three problem parameters.
If the probability of detecting the true measurement is unity, the two
remaining parameters are pr , the normalized density of false measure-
ments, and tha/r , the normalized acceleration variance of the target.
The primary aim of this chapter is to examine the performance of the
CAF as a function of these twe parametzrs. The porflciwauce @asure is
the average track survival time NAVE , and the baseline for the
assessment is the performance of the PDAF. We shall attempt to
identify the region of the parameter space where the more complex CAF
gives a significant performance improvement over the PDAF. In the light
of the simulation example of the previous chapter, the maximum number
NT of components that may be retained by the Clustering Algorithm has

been set at 20. It is hoped that these simulation results will provide

an assessment and design aid for this type of tracking problem.

In the second part of this chapter (section 5.3), a single run of
the tracking filters is examined in detail. The purpose of this
demonst _ on is to give a physical insight into how the Bayesiau
filter e-. ate is produced. The example is of a situation where track
loss may be avoided by the retention of more than one mixture component

(using the Clustering Algorithm).
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5.2 The performance of the CAF over the problem parameter space

5.2.1 Presentation of results

The average track survival time NAVE for the CAF and the PDAF
4

is shown as a function of pr in Figs 5.1 to 5.5 for thA/r =10 °,
10-2, 1, 102 and 104 respectively., As in Chapter 4 the initial state
vector was known perfectly, and the filters were run until the track
loss criteria of section 4.4 were satisfied. NAVE is the average of
100 replications and 95% confidence limits are shown with each point
(assuming track lifetime is exponentially distributed). Also shown

is the average track lifetime NL for a constant velocity prediction
on tlic basis of the perfectly known initial state vector. For this
prediction measurements are ignored., so that the average track lifetime
NL of the prediction estimate is independent of opor . NL should
provide a lower limit on filter performance which may be approached

as the relative density pr of false measurements becomes large. Note
that NL increases as tha/r decreases, Z¢ as the normalized level of
target manoeuvre decreases. The average number of mixture components
before and after approximation is also shown in Figs 5.1 to 5.5. The
average cpu time required to perform a single time step for the CAF and
the PDAF is recorded in Table 5.1. For each pair of problem parameters,

this table also indicates whether all replications were halted by just

one of the two track loss criteria.

The parameter pr 1is the density of false measurements relative
to the true measurement error variance. However the difficulty of the .
tracking problem is likely to depend on the density of false measure-
ments from the 'point of view' of the filter. Consider a single

feasible track corresponding to a mixture component of the state pdf.

—
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For given pr , the numbcr of false measurements that are plausible
candidates for updating'this track increases with tha/r » te as the
variance of target manoeuverability relative to r increases. On this
basis a more appropriate measure of problem difficulty may be the
average number of false measurements passed by a filter acceptance test,
(see section 3.2). It is convenient to use the acceptance region based
on the equivalent steady state Kalman filter problem, as this is
independent of the values of individual measurements. The area A of

this acceptance region is given by:

where o 1is the steady state value of the position Kalman gain and
TA = 13.82 1is the acceptance threshold corresponding to a 99.97%

chance of accepting the true measurement. It can be shown (see

Bridgewater49 for example) that o 1is given by:

where a = % + 2/
4
_ qAt
and ¢ = = .

Thus the average number n_  of false measurements passed by this

acceptance test is:




T pT TA

n - ————————
© 1 ~-a ’

which for given T, depends only on Ar and thalr . In Figs 5.1
to 5.5, the corresponding value of n_ is given with or for each of

the results shown.

5.2.2 Discussion of results

The filters show similar performance trends in each of Figs 5.1
to 5.5. As would be expected, for given thA/r , track survival time
increases as pr and n_ decrease. Also the track survival time of
the CAF approaches that of the PDAF for both small and large values of
pr. (This convergence fof small pr 1is not shown in Figs 5.1 and 5.2
as track survival time is so long in these cases, that the computation
time for the simulation would be prohibitive.) Between these extremes,
the CAF outperforms the PDAF. The average track lifetime of the CAF
exceeds that of the PDAF by a factor of 10 in some cases, although an
improvement factor between 3 and 5 is more common. The region of the
or , tha/r space where the CAF gives a significant improvement over
the PDAF is sketched in Fig 5.6a. Although this diagram is only
approximate, the region clearly depends on tha/r . in Fig 5.6b
the region of improvement is sketched for the parameter space n_ o,
tha/r . In this space the dependency with tha/r is not so strong,
but is still quite evident. So perfofmance of the CAF with respect to

the PDAF is not solely determined by =n_ .

As the filters' performance deteriorates for increasing pr , so
the average number of mixture components before approximation increases.
This is the response of the filters to the increasing difficulty of the

tracking problem. Eventually the relative density pr of false
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messurements becomes so great that the received measurements are of
very little use to either filter; NAVE approaches NL , the average
track lifetime for a simple prediction. In these circumstances the
filters generate a large number of mixture components (often averaging
over 100 before approximation) and consequently the average computation
time for a single filter time step becomes very large, particularly for
the CAF (see Table 5.1). It is quite possible that in these cases,
performance of the CAF is being limited by NT (compare with

section 4.5.1). Table 5.1 also shows that for large pr every track is

lost to the excessive error check, Criterion (ii) (see section 4.4).

As pr is reduced, the average number of mixture components
retained by the Clustering Algorithm decreases towards the lower limit
of a single Gaussian. Thus the CAF approximation approaches that of
the PDAF, which explains the convergence of NAVE for the two filters.
Note, however, that in several cases where the average number of mixture
components after reduction for the CAF is only fractionally above unity,
the average track lifetime for the CAF is about three times that of the
PDAF. Also, in these cases, Table 5.1 shows that the average CAF
computation time per filter iCefation is only about twice that of the

PDAF. The convergence of N for the CAF and PDAF with decreasing

AVE
or can be clearly seen in Figs 5.3 to 5.5. The same effect may be
4 -2 ~4 .

expected for qAt /r = 10 and 10 , but as already explained the
computation time for the necessary simulations is prohibitive. As or
decreases, the average number of components before approximation tends
to 2 fcr both filters. One of these components corresponds to an
accepted measurement (nearly always the true measurement), while the

other corresponds to the prediction which allows for the possibility

that the true measurement has been rejected.

-




5.3

An example of filter operation

In this section, to gain an insight into the operation and
performance of the CAF and the PDAF, a single run of the tracking

filters is examined in detail. The chosen example has the following

parameters:
PD = 1
4
et _
r
and )
pr = 0.005 |,

which gives n_ = 0.8683 . Alsc the maximum number of components allowed
after approximation by the Clustering Algorithm was set at NT = 10 .
These parameters determine filter performance. To generate an
interesting target trajectory the initial speed was chosen to be

ug = i0vT/it , initial target ueading was chocen randomly and the

initial position was the origin. Fifty time steps of tracking have

been simulated.

5.3.1 Filter tracking performance

For this example, the target position at each timestep is showm
in Fig 5.7, together with the tracks or position estimates (Ze the mean
of the pdf of target position) of the CAF and the PDAF. The true
measurement generated at each time step is also shown, although the
false measurements have not been plotted. The units of the X and Y
axes are normalized with respect to uOAt , and the scale of the Y

axis 1s slightly stretched.
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The first few estimates of the filters are very accurate since
the inirial target state vector 1is given. The CAF position estimate
follows the target quite well throughout and the most noticeable errors
occur at target manoeuvres. The tracks of the two filters are verv
similar up to about time step 17, at which point the PDAF estimate
diverges from the trajectory. The PDAF apparently regains track
(probably fortuitously) at time step 24, but fails to follow the
subsequent sharp target maneOuvfe and soon finally diverges from the
target trajectory. The point at which the PDAF track fulfils the
second track loss criterion of section 4.4 is shown on the diagram.
As expected from the track plot, the CAF estimate does not alert

either of the track loss criteria.

To provide a precise reccrd of the tracking error history, plots
of the estimation error ir pnsition and velocity are shown in
Figs 5.8 and 5.9 for the CAF and PDAF respectively. The magnitude of

the actual position error at time step k 1is calculated from:

\/(*k 5 ) ()

where (ﬁk, 9k) is the estimate of the target position at time step Kk

and (x yk) is the actual target pesition at time step k . The

k!
calculation of the velocity error is similar. In addition to the
actual error, an indication of the filter's own view of its estimation
error is shown as a dashed iine. The measure of error (denoted the

predicted error in Figs 5.8 and 5.9) is derived from the overall

covariance matrix of target state. and at time step k it is given byv:



106

where P and P are the diagonal elements of the covariance

Tk
matrix corresponding to target position. The measure of the velocity
error is similar. Also shown for reference is the error measure (obtained
from the covariance matrix, as above) for the equivalent Kalman tilter,
7¢ for the optimal filter in the absence of false measurements. Note that

the sguare of the predicted error measure for the filters is the expected

value of the actual error magnitude squared.

While the Kalman filter predicted error measure rapidly reaches a
steady state, the predicted errors for the PDAF and the CAF vary through-
out the track and are always greater than or equal to the Kalman filter
reference. This is because the covariances for the PDAF and the CAF, which
must operate with uncertain measurement association, depend upon the values

of the received measurements. However, the covariance of the Kalman

filrer, which assumes that only true neasurements are received, 1is
independent of any measurement values. The predicted error measures
of the PDAF and the CAF cannot be better than that of the Kalman filter

since the latter is not corrupted by false measurements (see Ref 11).

The actual estimation errors of the CAF (Fig 5.8) show large
fluctuations, but there is no trend of increasing error through the
track. There are clear peaks in the position and velocity tracking
errors at time step 25, when the target executed a sharp turn. At each
of these maxima, the CAF's pr.licted error measurc 2lso peaks and closely
matches the actual error. Throughout the track, the CAF predicted error
is of the same order as the actual error and on several occassions

significant peaks coincide or are very close. C(Clearly, through




statistical fluctuation, a perfect match over the whole track is nut

expected.

For the PDAF, a sharp rise in position error following track
loss is clearly shown in Fig 5.9. The filter's predicted positiun
error also rises, but is much smaller than the actual error bwv

the end of the track.

5.3.2 Filter operation

The CAF estimate of target state at a given time step is the mean
of a Gaussian mixture distribution, each component of which corresponds
to a feasible target track. As explained in Chapter 2, if several
measurements passed by the course acceptance test, these tracks sub-
divide so producing a tree like pattern of potential tracks which are
controlled by the Clustering Algorithm. The growth of potential tracks
for the current example is illustrated in Fig 5.10. The overall CAF
estimate is shown as a dashed line, the PDAF estimate 1s shown as a
continuous black line and the actual course of the target is shown by
small circles. The potential tracks, after the clustering operation,
are shown as coloured lines, the colour of the line indicating the
weighting of the track (Ze the probability that this is the correct
track). To show the potential tracks in the vicinity of the target loop
(labelled f on the track in Fig 5.10) more clearly, this part of the
picture has been enlarged and slightly stretched in Fig 5.11,

approximately by a factor of 6.

The number of potential tracks varies considerably over the

history of the track. It appears that the number of tracks increases
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when the target executes a manoceuvre (see points ¢ and f on the

target trajectory in Fig 5.10). This is because the target model gives

the expected advance of the target as a =traight line, and so tentative .
tracks into false measurements are produced. These extra tracks are
eliminated when a stezdy course has been resumed (points b, d

and g in Fig 5.10), showing that the Clustering Algorithm is economical

in its management of potential tracks.

Th.oughout most of the track history, at least one of the potential
target tracks closely follows the path of the target, and so has probably
correctly selected the truemeasurements. Also note that when a tentative
track with B weight above 0.5 is produced (greem line), this track is
almost always close to the actual target path. At times when the filter
appears to have dif¢iculty in maintaining track, usually no potential

track with a larce B weight is produced (see Fig 5.11).

At point ¢ and in the vicinity of point f on the target path
(Fig 5.10), the PDAF estimate diverges from the actual trajectory. At
these points, the Clustering Algorithm has allowed the growth of
diverging potential tracks, each with a significant 8 weighting.
Fig 5.12 shows contours of the approximated position pdfs of both the CAF
and the PDAF at the 17th time step (the point after label ¢ 1in
Fig 5.10). The actual position of the target is also marked and it is
clearly associated with the dominant cluster component, which accouncs
for 857 of the total probability mass of the mixture. The second most
important cluster component has a 8 weight of 0.12. The PDAF single
Gaussian approximation appears to be stretched between these two major
compouents. The .DAF approximation is the result of a separate track
propagation and approximation sequence, although up to this

time, the PDAF and CAF tracks are similar and so it is likely that

w
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the PDAF generates a fairly similar posterior pdf before approximation

at this time step.

To show how the position pdfs evolve, contours for the following
two time steps (18 and 19) are shown in Figs 5.13 and 5.14. At time
step 18 (Fig 5.13), after clustering there are now only two components.
The weak component of the previous time step has been eliminated.

The single Gaussian of the PDAF has been further stretched and flattened
so that its centre still lies between the two cluster components,

but has moved further away from the dominant component. At time step 19
(Fig 5.14) only a single Cluster Algorithm component is retained, which
is sharply concen:trated on the target path. The PDAF approximation is
now well removed from the true path but still retains the elongated
form as a legacy of time step 17, but which is no longer relevant. This
illustration shows the importance of retaining more than one component

at critical times during the tracking operation.

The situation six time steps later (time step 25) is shown in
Fig 5.15. This is close tc the label f in Fig 5.10 and here the CA<
is propagating two main clumps composed of eight components. The PDAl
has recovered from its poor pdf approximation at time step 19
(possibly through a fortuitous absence of false measurements in the
track vicinity) and again straddles the CAF mixture pdf. However, as
can be seen in Fig 5.10, subsequently the PDAF tails to follow the
target manoeuvre and the track is lost for gooed. The single Gaussian
approximation cannot cope with two diverging branches, each with

significant weighting.

Figs 5.16 and 5.17 show how the number of components of the
mixture distribution varies, and also the values of the most significant

8 weights at each time step for the CAF and the PDAF. For the CAF, the

| o
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values of the five largest B weightings after clustering are shown as
five time traces; whereas for the PDAF, the five largest B8 weightings
before approximation are shown. At each time step the B8 weights have
been ordered in decreasing magnitude, so the BETA1 trace always shows
the largest value. Together with these traces, the number of mixture

components before and after approximation has also been plotted.

Throughout most of the track, the Clustering Algorithm (Fig 5.16)
keeps the number of components after approximation well below the
allowed limit of NT = 10 . Comparing Fig 5.8 with Fig 5.16, it can
be seen that when the filter is tracking well, the number of components
is kept low. Only when tracking becomes difficult, such as during the
target loop in this example, does the number of components rise and
significant B8 weighting extend to more than three components after
clustering. In Fig 5.17 it can be seen :hat as the PDAF became lost,
the number of components before approximation rose greatly and eventually
reached a maximum of 1070. This increase is due to the expansion of
the filter's acceptance region, which accompanies an increase in the
tracking error as perceived by the filter. Before track loss, the
8 weighting traces show that there are usually only two or three
significant components, one of which is usually clearly dominant. As
the PDAF begins to lose track, the dominance of any one component
declines, and the BETA4 and BETAS traces show a temporary increase. As
the number of components rises well above five, all the BETA1 to BETAS
traces fall towards zero as the wéighting is shared amongest many
components. This indicatesthat at each time step the filter has

generated many hypotheses, each of which has a very small probability

of being correct.




Finally, as an illustration of how the CAF responds to losing
track, the potential tracks produced by a different example are shown
in Fig 5.18. The parameters of this example are the same as the
previous case, except the Jdensity of false measurements has been
&oubled. When the target manoeuvres, the filter's tracks split
into two diverging branches, one of which continues on the original
target heading while the other follows the target manceuvre. However
this latter branch eventually dies out. This is probably due to the
true measurements having a similar, unusually large error on several
consecutive time steps, while by chance false measurements fell close
to the predicted target positions on the other branch. Note that after
loss of track there is a tendency to produce diverging tracks with
small B8 weights, and tracks with B weights above 0.5 are omnly

produced on two time steps out of twenty-three.

5.4 Discussion and conclusions

In section 5.2, the performance of the CAF has been compared with
that of the PDAF for the standard example of the baseline problem (second
order target model with true and false Cartesian position measurements).
The results presented in Figs 5.1 to 5.6 should enable one to obtain an
initial assessment of filter performance for a variety of two-dimensional
tracking problems. Even if the required problem is not of exactly the same
form as the standard baseline case, it may be possible to derive a rough
correspondenge so that abproximate values for the equivalent baseline problem
parameters may be found. An indication of the average track lifetimes
for the CAF and the PDAF with the required parameter values may be
obtained by interpolation or extrapolation from the presented results.

This should show whether the performance of the PDAF is likely to be

adequate for the application, and if not, whether the CAF can provide

M
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the necessary improvement. Clearly a detailed simulation should be
carried ocut to confirm this initial assessment before any implentation

is at.empted.

The values of the average track lifetime given in section 5.2
depend on the definition of track loss (see section 4.4). A track is

counted as lost if, over five consecutive time steps, either

(1) the true measurement is rejected,

or (ii)  the tracking error is 'large'.

These criteria may not be appropriate for all applications. For
instance 1in Ref 11ltrack loss is only based on consistent rejection
of the true measurement, and it is independent of tracking error
(criterion (ii)). Under this reduced definition of track loss, the
average track lifetime would be much greater than that shown in our
results. This is especially so for the higher values of pr , as in
these cases track loss for all replications was due to eriterion (ii)

(see Table 5.1).




Table 5.1

PROCESSOR TIMINGS AND TRACK LOSS CRITERION

Computer cpu Criterion on
Problem parameters time for one which tracks
time step (ms) were lost
4

3%?— or n_ CAF PDAF CAF PDAF
1074 s x 1075 | 2.50 4.32 10.19 | i and ii | i and ii

107! 5.00 7.77 | 0.22 | ii only | ii only

2 x 107" | 10.00 17.14 ] 0.35 | ii only | ii only

5 x 107" | 26.01 646.11 | 1.23 | ii only | ii only

1 50.01 93.13 [ 4.15 | ii omnly ii only
1072 1072 0.68 1,50 | 0.19 | i and ii | i and ii
2% 1072 | 1.3 2.91 | 0.19 | i and ii | i and ii
5x 1072 | 3.39 10.41 {0.32 | i and ii | i and ii

107! 6.78 52.25 | 1.30 | ii only | ii only

2 x 107" [13.57 157.48 | 2.26 | ii only ii only
1 2 x 107 | 0.035 0.32 | 0.15 | i and ii | i and ii
s x 107 | 0.087 0.33 | 0.15 | i and ii | i and ii
1073 0.174 0.3 | 0.16 | i and ii | i and ii
5 x 102 | 0.868 1,08 |0.24 | i and ii | i and ii

1.2 x 1072 | 2.084 5.93 | 1.12 | i and ii | ii only

2% 1072 | 3,47 702.58 | 1.53 | ii only | ii only

4 x 1072 | 6.94 1267.19 | 3.27 | ii only | ii onmly
10° 107 0.02 0.31 | 0.15 | i and ii | i and ii
T 0.2 0.41 | 0.17 | i and ii | i and ii

5 x 10_4 1.02 1.34 | 0.54 | ii only ii only

1073 2.04 73.25 | 1.24 { ii only | ii only

2 x 1073 4.08 3012.38 | 2.77 | ii only ii only
T 1078 0.0012 0.30 | 0.15 | i and ii | i and ii
10’ 0.012 0.30 [ 0.15 |iand ii [ i and ii
107® 0.12 0.30 | 0.16 | i and ii | i and ii

5 x 107° | 0.59 0.88 | 0.27 | i and ii | ii only

107 1.17 2.21 | 0.52 | ii only | ii onmly

2« 107 | 2035 126.59 | 1.09 | ii only | ii only




qAth -4
10° - ¢ - - 10
& CAF
Nave % PDAF
104}
103 s
10%| i %
N=BB— =~ - — — = - — == = = — = —— — — ———m ———— ——— — ]
50 [ ] J ) |
5x107% _ _ _ __ 107 _ _ _ _ 2x0'_ _ P __ 5x100" _____1
5 E.0 10.0 Noo 25.0 50.0
2
5x10 [ » Before *
applying PDAF i
Before
l:applying CA
z After
S 102L applying C ( T
5
Q -
£
Q
Q
S
- T
0
€10 | I L i
. * L
< %
s .
>
<
1 ! 1 L | _J
5x 1072 10”1 2x107! or 5x107" 1

Fia 5.1 Performance of CAF and PDAF for q;td/r = 10-4




qAts _4a-2
2x10% 4 i 10
101, ¢ CAF
B % % PDAF
Nave @
103} *
102- * é
NL= INq-———_— e e e et e e - — — - §
10 | 1 i 1 ]
_____ 1072 _ _ _2x107% _pr_ _ 5x107% _ _ _ _107_ _ _ 2xi0"
0.68 1.36 Ng 339 578 1387
5x10% -
» Before 5[
applying PDAF
Before ¥
2102 [applying CA
g After
S applying CA
E
Q
S
2 : i
g 10 |-
3
[
Q
(@)}
© *
[+ ¥]
> *
<
1 [ | 1 ! |
1072 2x1072 pr 5x1072 107" 2x 10"
Tioo5 2 Portormance of CAF and PDAF for q‘.t4/r‘ = 10_2




qAtS _
15x10% & RS
10°F & & 4 CAF
$ ¥ PDAF
Nave %
*
103 —~ é
102 N *
* i
4
NL:13'61'6—J—_—-C_—__1__—_ A R T N B |
_ 20 5x107° _ 10% _ _ pr_ _ _5x107 _ 1.2x1072 2x107 4x10°
0.035% 0.087 0.174 No 0.868 2084  3.47 6.94
5x10° £
3 Before
applying PDAF I
2 Before
@102 applying CA
[
o After *
e applying CA
o
(&)
s
; -
L -
€ %*
<
L]
o
4]
Py
>
< ’
1 [ [: .[ 1 1 - i 1q
2x107%  sx10° 1073 pr 5x 1073 1.2x10722x10°2 4x1072

Fia 5.3 Performance of CAF and PDAF for qgtd/r = 1




Até 2
4 q i}
10”7~ - =10
& CAF
$ % PDAF
NAVE
10}k
10% 1
10 + *
NEB3m Jm mm = — - m e m e — e — - — * ?
5 | | | | ~ |
_ 0 __ 1074 _ P _ _ 5x10°° _ 07 _2x10°
0.02 0.2 Ngo 1.02 2.04 4.08
5x102-
-
3% Before ¥
applying PDAF
@ Before »*
c 102 B applying CA
§_ After CA
applyi
g pplying x
(8]
°
o
L
E - B
c
m {
o
1]
o
>
< f
1 I | | 1 |
10°° 1074 pr 5x10°4 1073 2x1073
Fi oLt Performance of CAF and PDAF for qtt4,”.~‘ = 302




A
~ qet -10%
¢ & CAF
$ %* PDAF .
2
-
*

n
x
—
(]
N

Average number of components

"1’8“""—_"’7 """""" T L1
0 107 T _ _ 107 _ _5x10° 107°2x10°
0.0012 0.012 Neo 0.12 059 117 235

¥ Before
applying PDAF
Before
L— applying CA *%
Afier
applying CA
*
r
V2
=

-
S

1078 1077 pr 1070 5x10°%  107°2x10°°

Fia 5.5 Performance of CAF and PDAF for qf.t4/r = 104




10 B
qatt
—
2 CAF and PDAF
107 little better
CAF than simple prediction
outperforms
PDAF
' CAF and PDAF \
both nearly optimal N\
\
\
1072} \
\
\
\
10 ! ] ! A\ ! 1 |
10”7 1078 1075 107 1073 10725 107! 1
a)
. CAF and PDAF
107 little better
qAtt than simple
- prediction
102
CAF
outperforms
PDAF
"I CAF and \
PDAF \
both nearly
q optimal
107° -
\
107 \ 1
1072 107! 1
b)




0.0

POAF TRACK DECLARED
LOST HERE

0.0 X
CLUSTER e —— .
PODAF

ACTUAL TARGET POSITION o

TRUE MEASUREMENTS +

FILTER TRACK ESTIMATES

Fig 5.7 Tracking history of Clustering Algorithm filter and PDAF




CLUSTER ALGORITHM -

::GNITUDE . /ﬁ\
POSTTION ,|
ERAOA , |
[
!
||
||l
.t
l
/

,1/- |' h \/A\/J/ \\

N SN Y
ACTUAL

PREDICTED BY FILTER W o

KALMAN FILTER REFERENCE

0.9 A
MAGNITUOE]
oF

VELOCITY
ERRORA

TIME STEP
0.0 28.0 850.0

Fig 5.8 Tracking errors of Clustering Algorithm filter

L e e e




r—_

122 FPDAF
240.4 7
MAGNITUDE
oF
FPOSITION
ERRAOR
0.0 T — T 1
TIME STEP
0.0 25. 850.0
ACTUAL
PREDICTED BY FILTER ———— —
KALMANFILTER REFERENCE
2.1 1
MAGNITUDE
OF
VELOCITY
ERAOCR

—// T
~ -
| <\ /7f<
L’\\ AM A S\
0.0 ‘Lf:“ —— ‘:;rﬁj\'// T v
' TIME STEP
23 80.0

Fig 5.9 Tracking errors of PDAF




5.0'}
y
72N
("7 Y
Y
\g‘:;/
3.5+
. Actual
target
position
2-0 L 1
7.0 8.5 X 10.0
Logarithmic contour spacing
Contour heights are:
0.010000 0.021544 0.046416 0.100000 0.215443
0.464159 1.000000 2.154435 4L.641589 10.000000

————————— Clustering Algorithm approximation
PDAF approximation

Fig 5.12 pdf of target position after approximation at the 17th time step




126

5-0‘ -
y
3.5+
Actual
4 target
posiiion
2.0 —
7.0 X 10.0
Logarithmic contour spacing
Contour heights are:
0.010000 0.021544 0.046416 0.100000 0.215443
0.464158 1.000000 2.154435 4.641589 10.000000

--------- Clustering Algorithm approximation
PDAF approximation

Fig 5.13 pdf of target position after approximation at the 18th time step

e




127

5.0 1
Y
Actual
3.5 target
position
2.0 - T ]
7.0 8.5 X 10.0

Logarithmic contour spacing

Contour heights are:
0.010000 0.021544 0.046416 0.100000 0.215443
0.464159 1.000000 2.154435 4L.641589 10.000000!

_________ Clustering Algorithm approximation
PDAF approximation

Fig 5.14 pdf of target position after approximation at the 19th time st_ep_




128

6.0 1

Actual
target
position

20 T -
1.5 13.5 X 15.5
Logarithmic contour spacing
Contour heights are:
0.004642 0.010000 0.021544 0.046416  0.100000
0.215443 0.464159 1.000000 2.154435 4.641589

———————— Clustering Algorithm

PDAF approximation

approximation

Fig 5.15 pdf of target position after approximation at the 25th time step




NUMBER
OF
COMPONENTS

(B)

——— 11—
| g S J_‘——h__ru_]_
T
4 m —

L

fllll'lllllll‘[ll‘llllTlll‘llllllllIl]lllll1llllf!l]

o 25 TIME STEP =0

HYPOTHESIS WEIGHTING AFTER APPROXIMATION

o

TT PP T T T T T T T P P e T 1 P T vy ryyrrrr e rrrrvoi
1‘7 25 TIME STEP 80

NUMBER OF COMPONENTS BEFORE AND AFTER

APPROXIMATION

Fig 5.16 Number of components and 8 weightings for Clustering Algorithm filter




130

1.0 b
BETA
=]
el —— e
0.0 —_—
1.0 9
BETA
4
0.0 . ;-J“_L.__,—J__‘—H—_\—
1.0 ~
BETA
3
T U S M
.0 ~
1.0 “
BETA
2 P‘J'LjJ—Lf1_____J_L1J—LriJ_—ri_-r‘iﬂ"‘“““t——
o
1.0 "
BETA
1
Q.0 -
rrrryr v r Ty rrys v e vy rtrrTrory oy rry vy vty T v v e nvoerut
[} TIME KTEP 850

(A) HYPOTHESIS WEIGHTING BEFORE APPROXIMATION

1070.0 -
NU“BEH
oF
COMPONENTS
l
0.0 B BB B B B e E S o S e e B B B e e A B S e B 2 B B e e
Q TIME STEP 80
(B) NUMBER OF COMPONENTS BEFORE AND AFTER
APPROXIMATION

Fig 5.17 Number of components and 8 weightings for PDAF




131

ACTUAL TARGET POSITION 8]

BETA TRACK WEIGHTINGS

.00 - 0.08 i e i e
0.08 - 0.10
0.10 - 0.80
0.80 - 1.00

FILTER TRACK ESTIMATES

rig 5.18 Feasible tracks produced by the Clustering Algorithm filter in

the event "qf track loss .—ﬂ

30.0




132

6 THE SEGTOR SCAN PROBLEM
6.1 Introduction

The tracking problem of section 4.2 has been constructed so that
performance depends on only a small number of non-dimensional parameters.
This facilitates the assessment of filter performance over a wide
variety tracking conditions (section 5.2). However this problem is
somewhat unrealistic, principally because practical sensors, such as
radars, usually produce measurements in polar co-ordinates rather than
Cartesians. To show how this complication can be managed, a 'sector
scan problem' has been devised. This example also serves to show how
the assessment of section 5.2 can be used to give a rough indication of

filter performance for a different tracking example.

The sector scan problem is to track a target passing through a
surveillance sector in the presence of false measurements. A sensor
at the origin produces position measurements in range and bearing, and
false measurements are uniformly distributed in polar co-ordinates.

On entering the sector, an initial estimate of the target position and
velocity is supplied to the filter. (Note that the question of
automatic track initiation is not considered in this study (see
conference proceedings of Ref 49).) Since the target could enter the
surveillénce section from any direction, it is convenient to employ
Cartesian state variables which allow the target kinematics to be
represented by a linear model, in this case the usual second order
model. This introduces a non-linear relationship between the state

vector and the measurements, which complicates the filtering problem.

The sector scan problem is also used to investigate the effect

on performance of target trajectories which are mismatched to the filter

RS
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model. This is another practical difficulty that must be considered in
filter design. Two different types of mismatched trajectory have been

examined:

(i) Trajectories simulated using the second order model with a
value for the acceleration variance q which is different from

that assumed by the filter.

(ii) Deterministic target paths consisting of periods of constant

velocity motion and deliberate manoeuvres.

6.2 Problem description and solution

The surveillance sector is defined as the region where X > 0 km ,

Y >0 km and:

2 km < X +Y < 20 km .

Every second, this region is scanned by a single sensor located at the
origin, and a set of position measurements is passed to the tracking
filter. These measurements are in polar co-ordinates. The prcbability
of detecting a target that is within the sector is Py, and‘the range
and bearing errors on the true measurement are independent and Gaussian
with zero mean. The variance of the range error is ci and the

. . . 2 .
variance of the bearing error is 9g - False measurements are uni-

formly distributed in polar co-ordinates. Thus the density of false
measurements per unit area decreases with distance from the origin (see

next section). Only one target is present within the sector.

When a target enters the surveillance region, the tracking filter

is initialized with an estimate of target position and velocity. This

PESEIIRSRIIRISRRRRFEIREREF SRR S R S e
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initial estimate has a Gaussian error of known covariance. The success
of the filter in tracking the target is assessed by examining the
position tracking error as the target is leaving the sector. Track is

said to be maintained if:

g - x| < 100
X
and (6.1)

lg -yl < 100

where (x, y) are the co-ordinates of the target on the last sensor scan
before the target leaves the sector, (X, §) is the corresponding filter
estimate, and Oy and Oy .are the standard deviations of the equivalent
Kalman filter estimate (see later). This definition of track loss is
derived from criterian (ii) of section 4.4. Clearly the tracking filter
is not penalized for poor performance within the sector, but in practice
it has been found that if the track deviates significantly from the
target path, the filter is unlikely to regain track before the target

leaves the sector.

The tracking filiers which have been applied to this problem
employ the usual second order target model (equation (4.1)) expressed
in Cartesian co-ordinates, as this avoids the need for a non-linear
model written in polar co-ordinates. However this does introduce a
non-linearity between the true mrasurement and the target state vector.
Thus equation (2.2) for the baseline problem statement should be

replaced by:

N
[}

hix) + v ' (6.2)
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where 2z 1is the true measurement, X 1is the state vector and v is

the Gausslan measurement noise at some time step. For the present

example:

h(x) = | (6.3)

and the covariance of vy 1is:

The use of r to denote range should not cause any confusion with the

measurement noise variance of the previous example.

If it is given that 2z 1is the true measurement and we attempt to
apply the Bayesian techniques of Chapter 2 to this problem, the
posterior pdf of x after updating with 2z will be non-Gaussian due
to the non-linear element h(x) . As tﬁe optimal Bayesian filter for
this problem cannot be written in a simple recursive form, the sub-
optimal extended Kalman filter (see Jazwinski27) has been employed.

This filter is derived by linearizing about the state vector prediction
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at each time step and then applying the standard Kalman filter

relations. Thus at a given time step:

h(x) = g(g) + v h(g) (x - g) + higher order terms , (6.4)

5

is the Jacobian matrix ,

where [2 b(g)]

hi is the ith element of h(x)
and xj is the jth element of x . For the present example,

from equation (6,3):

cos 6 0 sin 6 0
E ®| - 6.5)
_ 512 6 0 coi 8 0
r r
- P -
where T =./xX + y2
and 5 = tan_1(§/§) . To derive the extended Kalman filter, the

higher order terms in the Taylor expansion (6.4) are ignored.

It can be shown that the resulting filter recursions are the same as
those of the standard Kalman filter (equations (2.8)), but that the
innovation vector (z - Hx) is replaced by (z - h(x)) and elsewhere H
is replaced by [g h(gﬂ . In particular the covariance of the

innovation is given by:

s = [: t_1<g>]n[z h(i)]T +R . (6.6)




The output of the extended Kalman filter may be interpreted as
the mean and covariance of a Gaussian approximation to the true
posterior distribution. Thus when the false measurements are present,
the extended Kalman filter may be used to propagate feasible tracks
to make up a Gaussian mixture distribution for the target state. To
evaluate the mixture weights of this distribution, the prior pdf of the
true measurement for each track is required. This may be approximated

by a Gaussian in polar co-ordinates with mean:

and covariance S given by equation (6.6). Since the false meascurements
are uniformly distributed in polar co-ordinates, the mixture weights

are given by equation (2,18) with Hg replaced by h(g) and S given
by equation (6.6). Clearly it is also convenient to carry out an
acceptance test in polar co-ordinates, using this Gaussian as an
approximation to the prior pdf of the true measurement. The filter

may be implemented using the PDAF or the Clustering Algorithm approxi-

mation in the usual way.

6.3 Generation of target trajectories and measurements

Trajectories of targets passing through the surveillance sector
may be generated either from the second order model as in the previous
example, or deterministic trajectories consisting of constant velocity
paths interspersed by decliberate manoeuvres may be generated. If the
second order model is used, the variance q of the random numbers
driving the model (the acceleration noise) may be chosen to be different
from the model noise assumed by the filters. This allows the effect

of parameter mismatch to be examined. The initial target heading on

TR e e =
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entering the sector for each simulated trajectory is chosen at random
from a uniform distritution over [O, 2n] , and the initial target :
speed is selected from a Gaussian distribution. The initial position

is that point on the boundary of the sector for which the initial
velocity vector passes through the centre of the sector. At each time
step a true measurement may be simulated and false measurements of
required density are generated over the complete segtor. The simulation
of a trajectory ends when the target passes out of the sector. Two
separate random number sequences are employed. One of these is used

for generating the target trajectory and the true measurements, while
the other is used for generating false measurements. Thus the degsity
of false measurements can be changed without altering the trajectories

or the true measurements.

For this problem we shall not attempt to assess performance over
a wide range of parameters, but the performance about a principal set of
parameters will be investigated. For this principal problem, trajectories
are generated using the second order model with At = 1 second and the

standard deviation vq of the driving acceleration noise chosen to be:

Yqg = 0.05 km sec—2 ~ 5'g' .,

The initial target speed is drawn from a Gaussian with mean 0.3 km sec-1

and standard deviation 0.02 km sec_1. Fig 6.1 shows a sample of eight
trajectories generated with these parameters. For a sample of 100
trajectories, on average the target took 48 seconds to pass through the .
sector. True measurements produced by the sensor (a radar for example)

have range errors of standard deviation o, = 0.03 km and angular

errors of standard deviation g, = 0.01745 radians =~ 1° ., The density

V-----I--lIIlIlIlllllllllllIlIIlIlllIIIIIlllIIlIIIIIIIIIIIIIIIIIIIIIIIIJ
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of>false measurments is p = 10.0 kmn1 radians-1 , SO that on average
18 /2 p = 282.7 false measurements per scan are generated. The
sector is scanned every second and the probability of detecting the
target is Py=1. In Fig 6.2 the surveillance sector is divided into
54 cells of angular extent 100e and of radial extent 1000r , and the
average (over 100 scans) number of false measurements per scan falling
within each cell is shown. As expected the sample mean fluctuates

about 10000ro p = 5,236 . Initial estimates of target position and

0
velocity, which are available to the filters, are in Cartesian
co-ordinates. The standard deviation of the position error is 0.1 km on
each co-ordinate and the standard deviation of the velocity error is

0.03 km sec_1 for each co-ordinate. These principal problem parameters

are listed in Table 6.1.

No direct correspondence between the parameters of this problem
and the assessment example of section 5.2 (with Cartesian measurements) is
possible. ﬁowever the number of false measurements falling within a cell
defined by the standard deviation of the true measurement error is
p 0 0. =~ 0.0054 which corresponds to the parameter pr of the

r 8

assessment example. Also the non-dimensional parameter:

qAt
.0 * range

is analagous to thA/r of the assessment example. Hence taking the
standard range to be i1 km, Ze to the centre of the sector, the

equivalent parameters of the assessment example are approximately:
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and

The closest data point for which an estimate of track lifetime NAVE

is available for the assessment example is:

pr = 0.005
and
4
&ét_. = 1
T

(see Fig 5.3). For these parameters:

2
(]

AVE 78,03 _ for the PDAF

and

835.65 for the CAF .

A
[}

AVE

Assuming an exponential distribution for track lifetime, the probability

of a track surviving for at least t time steps is:

exp(~ t/NAvE)

As noted, the average time for a target to pass through the sector is
t = 48 seconds , therefore we can expect the PDAF to maintain track
on about 547 of targets and the CAF to maintain track on about 94.47

of targets.
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6.4 Simulation results

6.4.1 Correctly matched parameters

The CAF and the PDAF were applied to 100 replications of this
problem for the standard parameters given above. For the PDAF 727 of
the tracks were maintained while for the CAF 957% of the tracks were
maintained. Thus the performance prediction of the previous paragraph
was very accurate for the CAF but rather pessimistic for the PDAF. This
discrepancy is probably due to the imprecise correspondence between the
two problems and the neglect of any initial transient behaviour of the
filters. Fig 6.3 shows an example of the CAF and the PDAF tracking a
target across the sector. In this example the CAF successfully
maintained track although the PDAF track became lost. Fig 6.4 shows
an example of the extended Kalman filter tracking in the absence of
false measurements. This figure shows the true measurements produced
by the sensor; the increase in the measurement and tracking errors as

the range from the sensor to the target increases can be clearly seen.

Fig 6.5 shows how the tracking performance of the CAF and the PDAF
is affected by varying the density p of false measurements without
changing the target trajectories or the true measurements. Tracking
performance is shown for each of the 100 replications for p = 5, 10,
20, 30 and 40 km-1 raclians.-1 . For each of these values of p two
traces are shown, one corresponding to the PDAF and the other
corresponding to the CAF. Each trace has two levels H and L ,
according to whether a track was held or lost for each replication.

It can be seen that for each value of p , every track held by the PDAF
was also held by the CAF. One might expect that those tracks held by
one of the filters for large p would also be maintained by that

filter for smaller values of o . However this i. not always so,

eSS
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because the random false measurements for a particular replication
change completely as p 1is varied. Similarly, some tracks lost for .
small p are held for large p . As p 1is increased, the number of

tracks maintained by each filter decreases.

This can be seen more clearly in Fig 6.6 where the percentage
of tracks maintained by each filter is plotted against o . 957
confidence limites, derived from a binomial distribution since each
replication is an independent Bernoulli trial, are given with each
percentage. Also the average number of components before and after
reduction are shown for the held tracks. The results exhibit similar
trends as described in section 5.2 for the previous example. For
small p , the PDAF and CAF both hold nearly all of the tracks, but
for p > 5 km.1 1:'.9.d.-1 , the CAF becomes more successful at maintaining
track than the PDAF. The average number of mixture components
generated increases with p , as does the required processing time
recorded in Table 6.2 (part I). 1In this table the average computation
time per step is given for held tracks and lost tracks separately.
For small p , the computation time for held and lost tracks is similar
although for large p the average timings for lost tracks are much
greater, particularly for the CAF. This is due to the proliferation

of feasible tracks which occurs for large p when the target is lost.

Also shown in Table 6.2 (part I) is an indication of the accuracy
of the filters' own assessment of their tracking error in both position
and velocity. This consistency measure, denoted E , is derived as

follows. At each time step, the quadratic form:

x-0TP -8 (6.7)

e ———————————
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is evaluated, where x 1is the true value of the state vector, X is
the filter's estimate of the state vecor (Ze the mean of the mixture
distribution) and P 1is the overall covariance matrix of the mixture.
If the filter's internal covariance P 1is compatible with the actual
tracking error x - £ , then the expected value of the quadratic form
(6.7) is 4, because for this tracking problem the state vector:

is four-dimensional. The statistic E given in Table 6.2 is calculated
by averaging (6.7) over all time steps for held and lost tracks
separately. Since the tracking error x - % may be correlated over
several time steps and it may not be a Guassian variable, we cannot
expect the distribution of the sum of (6.7) over all time

steps to have a x2 distribution. However since E is usually the
result of an average over many hundreds of time steps, if E deviates
from 4 by as much as one unit, it is reasonable to conclude that the
filter's internal covariance P 1is incompatible with the actual
tracking error. Table 6.2 shows that for both filters the value of

E for maintained tracks is usually slightly less than 4, but within
10%2 of this figure. This indicates that the achieved tracking error

is a little better than the filters' assessment, and this is possibly
because the maintained tracks are a biased sample in favour of the more
accurate tracks. For lost tracks, E is usually very much larger than 4,
showing that the filters seriously underestimate the tracking error.

The CAF is worse than the PDAF in this respect.

The actual mean square position tracking errors achieved by the
filters for the first 20 time steps are shown in Fig 6.7 for p =5, 10
20 and 40 km-1 rad_1 . These results are obtained by averaging the
square of the position error at a particular time step over all
replications. The mean square error is also shown for the maintained

tracks only. As a reference level the tracking error for the

L———-———--u------n4i--iI-IIll--llIIlIIII.IIlI.llI........l.-..l...-.....l...-
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extended Kalman filter, which 1is supplied only with true measurements,
has been plotted. The results shown in Fig 6.7 are intuitively
reasonable. The Kalman filter tracking errors are smaller than those
for the filters which have to cope with false measurements, and the
errors averaged over all tracks are greater than those for held tracks
only. Errors for the CAf tend to be smaller than those of the PDAF,
although for p = 20 km_1 x'ad-1 the 13 tracks held by the PDAF have

a smaller mean square position error than the 86 tracks held by the
CAF. Thus it appears that PDAF tracks are only able to survive in this

case if they are able to achieve a relatively small position error in

the early stages of the track (average track length being 48 time steps).

6.4.2 Mismatched model noise

One would expect performance to degrade if the assumed values of
the filter parameters p, q, 9. 4 and PD differ from their correct
values. Here we examine the effect of a mismatch in the parameter q ,
the variance of the model noise, which describes the manoeuvrability of
the target. If the values of q assumed by the filters is less than
the correct value, the filters may judge actual target manoeuvres to
be highly improbable, in which case true measurements may be rejected
or given a very low probability weighting. If the value of q is
too high, the filters may give too much weighting to false measurements
which could only be true if the target had performed a large manoeuvre
incompatible with the correct value of q . An adaptive version of the
PDAF which learns an unknown value of q from a set of possible

. .. 51
candidates has been proposed by Gauvrlt5 . However for the present

study only the fixed parameter filter has been considered.

The 100 trajectories simulated for the standard problem parameters

(see Table 6.1) were used to investigate the effect of supplying the
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filters with the incorrect value of q . The CAF and the PDAF have been
applied with Vq set t9 0.01, 0.025, 0.1 and 0.25 km sec_z, as well as
the correct value of 0.05 km sec-z. 'The percentage of tracks maintained
for these values are given in Fig 6.8 together with the average number
of components generated for the maintained tracks. (The error reference
far the track loss criterion ic obtained from the Kalman filter using
the correct value of /E .) 1t appears that the CAF performance is less
sensitive to parameter mismatch than the PDAF. This extra flexibility
of the CAF is due to the filter's ability to retain several feasible
trécks. Indeed there is a slight (probably insignificant)pérformance
improvement for the CAF when vYq is doubled, although the percentage

of tracks held by the PDAF is reduced from 727 to 16%. When Vq is
increased to five times its correct value, the number of tracks held by
the CAF is reduced by about one third, although the PDAF now loses all
of the tracks. As /E is decreased from its correct value, the
performance of both filters degrades at a similar rate. Also note that
the number of components generated by the filter increases with /q .
This is because with increasing vq , the filters believe the target to
be capable of larger manoeuvres and so are more ready to accept false

measurements.

Average computation time per step and the error statistic E
are given in part II of Table 6.2. CAF processing time increases with
Vq due to the increasing number of components generated. The reasonable
CAF track maintainance performance obtained when vq is five times its
correct value is at the expense of a 60 fold increase in computation
time for held tracks. The PDAF incurs only a small increase in
processing time although performance falls off rapidly for gq too

large.

et
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The use of an incorrect value for ¢ .has a noticeable effect on
the error statistic E . When q is too large, E 1is significantly
less than four for both held and lost tracks, showing that the filters
are overestimating their tracking errors, so that the fiiicr rains are
set too high. When q is too small, E is much greater than four
chowing thai the [ilters are overoptimistic about their tracking
performance. In this case the filter gains are too small so that the
filters are insufficiently responsive to received measurements. Thez
actual mean square position errors for maintained CAF tracks with
mismatched q are shown in Fig 6.9 for the first twenty time steps.
After the first few time steps, there is a clear trend for tracking
error to increase as the assumed value of q deviates further from its
correct value. When vq is five times or ome fifth of its correct
value, the mean square position error after the tenth time step is

approximately ten times that obtained with the correct value of q .

6.4.3 Trajectories with deliberate manoeuvres

In this section we investigate the tracking performance of the
filters when the target executes deterministic manoeuvres which do not
obey the filter model. This is a further degree of mismatch between
the assumed and the actual target behaviour. Two types of trajectory
have been simulated, both of which start with a constant velocity
course. The initial position and velocity of the target on entering
the sector is chosen as described in section 6.3. For the first type
of trajectory, the target proceeds on the constant velocity cour:- for
12 seconds after entering the sector, then performs a sinusoidal weave
with half amplitude 1 km and frequency 0.05 Hz, and finally returns to
a constant velocity course after 35 seconds of weaving. For this weave

the maximum target acceleration is about 10'g' at the extremities of
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the sinusoid. An example of this type of trajectory is shown in

Fig 6.10., For the second type of trajectory, after having travelled
in a straight line for 25 seconds, the target turns in a circular arc
for 15 seconds and then resumes a constant velocity course. The
radius of the arc is.1 km, so that for the mean target speed, the
acceleration whilst turning is abort 9'g'. An example of this tvpe of

trajectory is shown in Fig 6.11.

For thzse trajectories, the motion of the target switches between
periods of constant velocity motion and periods of high 'g' manoceuvres.
In these circumstances, one would ideal:iy cmpioy different target models
for the two phases of the trajectory. For example, if the second order
model were used, q = 0 would be correct for constant velocity motion while
a value of vq c¢loss to the maximum acceleration that can be achiev=d by
the target might be appropriate (but not ideal) for periods of
manoeuvre. Usually the filter does not know when the target is going
to execute a manoeuvre and so adaptive tracking schemes have been
suggested. For instance the Interacting Multiple Model (IMM) algorithm

of Blomao’52

assumes that the target motion may be described by one of
a set of possible models, and that the motion changes abruptly between
these models with some assumed switching probability. This introduces
a further degree of uncertainty into the tracking problem which gives
rise to a large increase in the number of components making up the
mixture distribution of the target state. Houl@s and Bar-ShalomM

have applied the IMM algorithm with the PDAF to an example which is
very similar to the sector scan problem. Hdwever for the present study

a single target model with fixed parameters has been employed to avoid

the added complication of a multiple model filter.
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One hundred replications of each of the two types of trajectory
have been generated together with measurements with the standard
parameters (see Table 6.1). Figs 6.12 and 6.13 show the percenta~e
of these tracks maintained by the CAF and the PDAF for different values
of the assumed model noise standard deviation /E . The correct
measurement parameters O 06 and o were éupplied to the filters
and as usual the reference error for the track loss criterion was
obtained from the Kalman filter with Vq = 0.05 km sec_2 . For both
types of trajectory the performance of the PDAF is poor, with the
percentage of held tracks rising above 107 only for vq = 0.05 km sec-z
For the CAF the best performance is achieved at the higher value of
/q = 0.1 km sec-2 , for which 977 of weaving tracks and 997 of circling
tracks were held. Note that this value of Vq 1is close to the
maximum acceleration of the targets when they are performing their
manceuvres. As in the case of second order model trajectories with
mismatched q , the performance of the CAF appears to be less sensitive
than the PDAF to variation of q ; reasonable CAF pertcormance being
obtained with vq = 0.25 and 0.05 km sec_2 . It woulu be interesting

to see if use of the IMM algorithm would improve the PDAF performance.

As already indicated, a single value of q 1is a compromise for
this problem. This is highlighted in Figs 6.14 and 6.15 which show
the mean square position error as a function of the time step for vq
set to 0.025, 0.05, 0.1 and 0.25 km sec-z. For maintained tracks, the
minimum error for the initial constant velocity path is obtained for the
smallest value of q , although the minimum tracking error during the
manoeuvre is obtained for vq = 0.1 km sec.2 . Generally for fixed q

the tracking error is greatest during the target manoeuvre, and this is

when tracks are usually lost, as can be seen from the traces showing




error averaged over all tracks. However for the high value of

Yq = 0.25 km secn2 , the error for maintained tracks is fairly
constant over the whole trajectory after the initial transient. For
the weaving trajectories with vq = 0.1 km sec‘-2 (for which the CAF
performs best), it can be seen from Fig 6.14 that the largest CAF
tracking errors occur just after the turning points of the weave, when
the target is pulling maximum 'g'. This is also clear in the tracking

example shown in Fig 6.10.

The average processing time per step and the error statistic E
for these simulations are recorded in Table 6.3. These values are
averaged over all time steps of thé trajectories, including periods of
manoeuvre and constant velocity motion. As for the case of mismatched
q with second order model trajectories, the processing time for the
CAF rises with q , at first gently and then steeply for Yq > 0.1 km
sec-2 . This is reflected in the number of mixture components generated
(see Figs 6.12 and 6.13). PDAF computation time also rises with q ,
but does not show the sharp rise of the CAF for vq > 0.1 km sec:-2 .

For vq ¢ 0.1 km sec:-2 , average CAF processing time is three to four

times greater than that of the PDAF.

Since the generated trajectories do not match the filter's target
model and the level of manoceuvre changes in mid-course, we cannot
expect E to be very close to four. However for /E = 0.1 km sec-2 ,
when the CAF performs best, the values of E for weaving and circular
manoeuving targets are within an order of magnitude of four, which
suggests that this value of q 1s a reasonable compromise for these

trajectories.
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6.5 Conclusions

The sector scan problem presented in this chapter provides a more
realistic demonstration of the baseline problem. The extended Kalman
filter has been employed to manage the non-linear relationship between
*the measurements in polar co-ordinates and the target model in
Cartesian co-ordinates. Essentially the measurement association and
evaluation of the probability weights of the mixture pdf are performed
in polar co-ordinates, while the calculation of the mean and
covariance of each mixture compoﬁent (the filtering operation) is

performed in Cartesian co-ordinates.

The effect on filter performance of a mismatch between the statistics
of the actual target trajectory and the assumed filter model has been
studied. For trajectories generated by the second order model, CAF
performance is less sensitive to mismatch than the PDAF. Also for the
deterministic manoeuvres, the CAF achieves acceptable performance over
a wider range of filter model parameters than the PDAF. This extra
flexibility of the CAF is due to the filter's ability to retain several
feasible tracks. As might be expected, statistical anlaysis shows that
the filters' internal assessment of tracking error is unreliable if the
filter model is incorrect. Filter assessment is optimistic when the
manoeuvre parameter ¢q is too small and it is pessimistic when q is

too large.




Table 6.1

PRINCIPAL PROBLEM PARAMETERS FOR THE SECTOR SCAN PROBLEM

Surveillance sector is the region:

X > Okm, Y > O0knm

and

2 km < X +Y < 20 km

Second order target model:

Standard deviation of acceleration noise for each co-ordinate is:
S =2 1t
vyq = 0.05 km sec ~ S5'g

Initial target speed (on entering the sector) is drawn from a Gaussian
. . . . -1 .o
distribution with mean 0.3 km sec and standard deviat ' m

0.02 km sec-1.

Initial estimate of target state supplied to filters is a Gaussian
perturbation about the true state. For each Cartesian co-
. . . . -1
ordinate, standard deviation of velocity error is 0.03 km sec

and standard deviation of position error is 0.1 km.

True measurements have a Gaussian range error with standard deviation

o, = 0.03 km and a Gaussian bearing error with Oy = 0.01745

o

radians ~ 1

Probability of detection PD = 1

False measurements are uniformly distributed over the surveillance

. : . . - .=
sector in polar co-ordinates with density p = 10.0 km 1 radian

B e e
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Table 6.3

PROCESSOR TIMINGS AND ERROR STATISTIC E SECTOR SCAN .
PROBLEM WITH DETERMINISTIC TRAJECTORIES

Assumed Aver
filter rage cpu Error statistics
time for
model Tracks inel ¢ _
noise held single step E
(ms)
or
/a lost
-2 .
(km sec 7) CAF PDAF CAF PDAF
0.010 H 1.31%} 0.435% 989.8%* 505.6%*
L 1.22 0.429 5922.0 7371.0
0.025 H 1.69 0.514 328.0 184 .00
L 1.36 0.469 6110.0 5821.70
0.050 H 1.77 0.478 17.95 65.7C
L 1.78 0.645 4075.00 1825.00
Weave
Manoeuvre | ¢ g9 i 2.57 | 0.512% 2.366 2.752%
L 1.87*%| 1.140 2372.0% 3.312
0.250 B 113.00 - 0.9630 -
L 221.00 1.580 1.0800 2.430
0.300 H 507.00 - 0.6860 -
L 744 .00 1.620 1.4750 2.386
0.025 H 1.48%) 0.463% 130.6% 41.9%
L 1.38 0.478 19720.0 15230.0
0.050 H 1.70 0.487 56.87 626.7
L 3.73 0.534 7369.00 4899.0
Circular 0.100 H 2.43 | 0.495% |  25.05 15.06%
Arc L 2.11%[ 1,150 | s528.2% 12.39 .
Manoeuvre
0.250 H 101.50 - 4,922 -
L 305.40 1.610 2.932 3.807 ¢
0.300 H 307.00 - 2.701 -
L 834.00 1.640 2.554 3.713

* Indicates a small sample (less than five replications)

‘_J---l-ll!I-l-lllll.-llll-llllIIllllIllllIIlllIlllllllllllllllll.llllli
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20.0 1
]

Y (km)

2.0

0 2.0 ' X (km) 20.0

Initial target speed : mean 0.3km s~

standard deviation 0.02km s~!

Acceleration noise standard deviation:
VG =0.05km s72 4 §°g'

Fig 6.1 A sample of eight target trajectories from the sector scan problem
(note that targets pass through the sector one at a time)
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False measurement density p = 10km~' radian™!

Fig 6.2 Average number of false measurements falling within cells

o ———————
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Y(km)

0 X {km) 20.0

car  —e———

PDAF
Actual target position o0

Fig 6.3 An example of CAF and PDAF tracking for the sector scan problem
{parameters of Table 6.1)
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Y{km)

X{km) 20.0
\
Actual target position o .
True measurements +
Kalman filter ——— .

Fig 6.4 An example of tracking with the extended Kalman filter
(parameters of Table 6.1, but o = 0)
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Fig 6.5 Filter performance at each replication for increasing density o of

false measurements
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Fig 6.7 Achieved mean square position error
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Fig 6.9 Mean square position error for maintained CAF tracks with mismatched g
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Fig 6.10 An exampie of tracking a weaving target
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Fig 6.11 An example of tracking a target which executes a turning manoeuvre
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7 THE DATA FUSION PROBLEM

7.1 Introduction

In this chapter the problem of fusing information from a number
of sources 1s considered. tor che bpaseline p.ooblem, the only available
data are the position measurements receive& from a single sensor at
each time step. In many practical cases an imperfect classification of
these position measurements (into true or false categories) may be
available. A simple extension of the baseline filter enables this
classification information to be incorporated into the posterior pdf
of target state-(section 7.2). 1t is also possible that several
independent sensors may be available to supply position measurements at
each time step. Data from each sensor may be incorporated sequentially
(section 7.3), although this may be time consuming. In section 7.4 we
derive a computationally efficient suboptimal filter for combining
information from a primary sensor with measurements from an auxiliary
sensor. In the example considered, the auxiliary sensor gives only
bearing information but does include an imperfect classification of
these measurements. The sub~optimal filter uses the auxiliary measure-
ments to modify only the probability weights of the mixture distribution

after updating from the primary sensor.

7.2 Incorporation of classification data

7.2.1 Problem formulation and solution

The problem here is the same as the baseline case except that with
every measurement an imperfect classification feature d is available.
Thus at some time step k , it 1s assumed that a set of data (Z, D) is

received, where:
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and

(For convenience we shall omit the subscript k throughout this
ctapter.) Each classification feature éj is independent of the
values of x and Z , although it is known to correspond to measure-
ment j . The value of gj depends only on whether measurement j 1is
true or false. It is assumed that the pdf of éj conditional on
measurement j being true is known, and it is denoted p(ngT)
Similar'y the pdf of Qj conditional on measurement j being false is
known, and it is denoted p(gle) . With this knowledge, it is clear
that the data set D may provide useful information as to which, if
any, of the m measurements is the true one. We shall now derive the

Bayesian filter which makes use of the classification features.

Following the reasoning of section 2.3.2, the posterior pdf of x

after incorporation of the latest sensor data (Z, D), may be written:
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As in section 2.3.2, the explicit dependency on past data 4 has been
omitted. First consider the pdf of x conditional on ;r?j . Since
the truth or falsehood of each measurement is specified by :%”ij , the

classification data does not contribute any extra information (it is

independent of x), so:
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which is given as usual by equation (2.8). Thus the classification
data only affects the weighting probabilities of the mixture

distribution. By direct analogy with equation (2.10):

p(Z,DI%ij) Pr{“!j ];{’i} Pr{%i}
p(Z,D) ’

prgﬁ"{jlz,ns =

where ;?1 is a prior hypothesis and Wj is the hypothesis that
measurement j is true. Now since D 1is independent of Z, and D

depends only on Wj ’

t = ' v
p(z,nfﬁ”ij> p<21%ij) p(vl.j>
Hence, comparing with equation (2.10) it can be seen that:
] e ' ! .
Pr{%ijlz,n} p(D(\FJ.) Pr{%ijlz} ’ (7.3)

where Pr{j?ljlz} is the usual probability weighting for the baseline

problem given by equation (2.18), and:

p(4;17)] | »(4,17) for ioF O

p(Dl‘é’j) - 4 (7.4)

p(dAJF) for i = 0 ,
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since the elements of D are independent. Thus dividing through b

p(D[WO) , from (7.3) we obtain:

~

L(gj) Pr{jylj!Z}/E if j # 0

Pr{5f1j|Z,D} = ﬁ

. . oo
Pr{ iolz}/E if j 0

\

where L(d) = p(d{T)/p(d|F) 1is a likelihood ratio and:

oo ) [t - Y, sle) e

i=1 2=1

From equation (7.5) it is clear how the classification data may modify
the original probability weightings of the baseline problem through the
likelihood ratio L(d) . As usual, an estimate of x may be obtained
from equation (7.1), and prediction forwards to obtain the prior pdf

at the following time step follows from the state propagation equation

as indicated in section 2.3.3.

A sub-optimal version of the filter described above may be
implemented using the coarse acceptance test and one of the mixture
reduction techniques of Chapter 3. The filter was first reported by
Nagarajan et a135 in 1984 and was implemented using the PDAF
approximation. Note that minimal extra computation over that required
for the baseline problem is necessary to incorporate the classification

information.
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The classification feature may also be of the discrete (0, 1)

type, such that:

PT if d = 1
Pr{le} =
1 - PT if d = 0 ,
and
PF if d = 0
Pr{dlr} =
1 - PF if d = 1

Thus d = 1 indicates that the measurement is likely to be true and
the probability PT of correctly recognizing a true measurement is
known. Similarly d = 0 indicates that the measurement is likely to
be false and the probability Pp of recognizing a false measurement is

known. For this discrete case, the likelihood ratio in equation (7.5)

should be replaced by:

prid|T! _ T T

L(d) Pr(dif] ~ \T-¢ P

(7.6)

Note that if Pp =P = i , then L(d) = 1 and in this case, as

F

expected, the classification feature is ignored and the posterior

probabilities are unaltered. If:
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and

0 < P < 1,
then

L(0) = 0
and

L(1) = 1/(1 - PF) .

In this case the classifier always recognizes a true measurement but
sometimes mistakes false for true. So any hypothesis for which dj =0
(j #0) 1is given a zero probability weighting via the likelihood ratio.
1f PF =1 and O < PT < 1 , then the classifier always recognizes a
false measurement but sometimes mistakes true for false. In this case
the likelihood ratio defined by equation (7.6) is not defined when

d =1 and so ic is not valid to divide through by Pr{DiWO} in
equation (7.3) if any element of D 1is unity. However each probability

weighting Pr{%’ij‘Z,D> contains the factor:

Pr{ole} = I_I Pr{dzle} s

=1

and if there exists an element of D such that d2 = { , then
Pr{D\Wj} is non-zero only for j = 2 . Thus the true measurement is
identified. Since the classifier always recognizes false measurements
and there is at most one true measurement, only one element of D can
be unity. However if PT is less than one, the true measurement may
not be recognized, so that all elements of D may be zero. In this
case Pr{D!Vj} is constant for j # O . Note that if PF =1, the

classifier will pick out the correct hypothesis Wj on 100 PT % of

occasions when the true measurement is present. Thus in a high density

s
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of false measurements, a perfect false measurement discriminator may
well be more useful than a perfect true measurement discriminator. If -

PF = PT = 1 , the correct hypothesis is always identified.

7.2.2 Simulation

To demonstrate the possible improvement in tracking performance
when classification data is available, the baseline example of
section 4.2 has been extended to include a discrete (0, 1) type

discriminator. The problem parameters used in Chapter 4 are retained:

and the performance of the classifier is defined by PT and PF as

indicated above. Mixture reduction is carried out using either the

PDAF or the Clustering Algorithm with NT = 20 .

Fig 7.1 shows the track survival time NAVE and the average number

of mixture components generated as a function of PT when PF = PT .

Also the average computation time per step is recorded in Table 7.1.

As expected, NAVE increases with the probability of correct

classification and useful performance improvement may be obtained even

with a mediocre discriminator. For example'with P, = PF = 0.7 , track

T
lifetime of the CAF is increased by a factor of 2.5, although for the
PDAF substantial improvement is not obtained until P_ = PF = 0.8 ,
when the improvement factor for both filters is about 3.4. Also the
average processing time per step (Table 7.1) and the number of mixture

components generated decrease as the performance of the discriminator

improves. This 1s because the discriminator tends to suppress incorrect

_f3-----—---hlllIlIlllll.llIIIIIIlIIIIIllIIIIIIlIIlIllIlIII.I...I.III.I...I..III‘




hypothesis, and this helps to keep the acceptance regiorn small so t

fewer components are generated.

Fig 7.2 shows the effect of varying PT with P_ fixed at O.

F

and Fig 7.3 shows results for varying PF with PT = 0.99 . The
corresponding results for the CAF are similar in these two cases,
although the PDAF performs significantly better for small values of
PT with PF = 0.99 than for small values of Pn with PT = 0.99

(see previous section).

In each of Figs 7.1 to 7.3, the CAF track lifetime is always
several times longer than that of the PDAF. However as PF and P

increase, the difference in performance between the two filters

decreases {¢f section 5.2).

7.3 Multiple sensors without classificaticn data

7.3.1 Problem statement

In this section the baseline problem is extended to multiple
sensors. Each of these has similar characteristics to the sensor
described in Chapter 2 and no classification data is available. It
assumed that there are NS independent sensors and that at each

time step k , each sensor u produces m, measurements:

For each s2nsor u

177

99,

T

is

(1) At most one true measurement is produced with probability

PDU . This true measurement is an indpendent sample from the

Gaussian pdf ¢+ (z; H x, " )
AT !
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(ii) False measurements are uniformly distributed over the
surveillance region of the sensor. The density of false

measurements is G

Since each sensor is independent, data from each sensor may be
incorporated sequentially using the update relations of section 2.3.2.
This is convenient since the computer code for the single sensor
problem may be employed with only minor modifications. This recursive
solution is quite straightforward but for completeness it is included

in Appendix E.

In any implementation of the filter it is necessary to control
the proliferation of hypotheses. Depending on the density of false
measurements, it may be feasible to apply a mixture reduction algorithm
only once per time sren. after measurements from all sensors have been
processed (Fig 7.4b). 1In this case the order in which sensors are
processed is irrelevant. Alternatively it may be desirable to carry
out reduction afier processing measurements from each sensor (Fig 7.4a).
In this case the order in which sensors are processed ﬁay affect the
performance of the filter. 1n the following section, these points are

investigated by simulation for a two sensor filter.

7.3.2 Simulation example: a two sensor filter

To demonstrate the performance benefits that may be obtained with
multiple sensors, the operation of a two sensor filter has been
simulated for the tracking problem of section 4.2, The first sensor

has parameters:




so that without sensor 2, the tracking problem would be identical to
the example of Chapter 4. The second sensor is of the same type but

and P . To

may have different values for the parameters Tyy Py D2

facilitate comparison with the single sensor filter, the track loss
criteria are identical to those given in section 4.3 and are based
solely on sensor 1. Thus track loss through rejection of true
measurements 1s only tested for sensor 1 and the tracking error
reference is derived from the equivalent Kalman filter based on

sensor 1 only (with oy = 0.

As indicated above, data sets from each sensor are incorporated
sequentially. The two schemes for mixture reduction shown in Fig 7.4
have both been investigated using the Clustering Algorithm (CA) with
the usual thresholds and NT = 20 . Also performance with the PDAF
approximaticn has been studied. The PDAF must be applied directlwy
after processing each sensor as retention of more than one compoaent

is not possible with this algorithm. This technique for incorporating

multiple sensors using the PDAF has been implemented by Houlé&s and
14

Bar-Shalom

In the tracking simulation the parameters of sensor 2 were
nominally chosen to have the same values as those of sensor 1 and then
each of the parameters Ty 0, and PD2 were varied in turn. For
reduction via the Clustering Algorithm, the average track survival
times NAVE (for 100 replications) with 957 confidence limits are
shown in Figs 7.5 to 7.7. For each set of parameters, NAVE is shown
for the two sensor filter with reducti-n after processing both sensors
(labelled TB) and with reduction after processing eacrn sensor

(labelled T12 when sensor ! is processed first and labelled T21 when

sensor 1 is processed first). Also results for the single sensor
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filter using only sensocs 1 (labelled S1) and using only sensor 2
(labelled S2) are shown for comparison. To maintain consistencv, the
tracking error reference of the frack loss criterion for S2 is derived
from the equivalent Kalman filter based on sensor 1 (with £y = 0).
The average number of mixture components before and after application
of the Clustering Algorithm is also shown in the figures. When the
Clustering Algoithm is applied twice on each time step (for T12 and T21),
both of these applications are included in the averages. Figs 7.8

to 7.10 show similar results for the PDAF approximation, except TB
using the Clustering Algorithm has been included for comparison.
Average cpu time per time step is given in Table 7.2 for all of these

results.

In many cases, employing two sensors gives an increase in track
lifetime NAVE with respect to a filter using measurements from only
one of the two sensors. The greatest improvement facior is obtained
when the two sensors are identical, for which NAVE from TB exceeds

NAVE from the single sensor CAF by a factor of about 8.5. When there
is a large discrepancy between the quality of the two sensors, the
performance of the two sensor filters does not usually differ
significantly from the best of the single sensor filt:rs. However

in two cases where the track lifetime of S2 is greater than 15 times
that of S1 (¢, = O.OO?/q;t4 and 6, = 0.002/q$t4 in Figs 7.6 and 7.9),
the two sensor filter T12 is outperformed by S2 for both the CAF and

the PDAF. In each of these twn cases, TB using the Clustering
Algorithm Is stil]l better than the CAF using sensor 2 aione. Thus

It apprars that when the quality of the two sensors is veryv dissimilar,

it 15 1mportant to retain the detailed structure of the mixture petween

processing data from the sensors.  Presumably this allows the good




181

sensor to selectively reinforce or suppress componants generated by the

poor sensor.

In all cases track lifetime for TB is greater than or not

significantly different from N for T12 or T21, for the Clustering

AVE
Algorithm. Also TB which uses the Clustering Algoriiiw, aiways gilves
a track lifetime at least five times longer than that of T12 or T21
using the PDAF. TFor both the CAF and the PDAF, NAVE from T2 1is

usually similar to NAVE from T21. When a significant difference
does occur, the longer track survival time is usually obtained wheu the

better sensor is processed first. The one exception to this is for the

CAF with r, = 0.01 th4 (Fig 7.5).

For the Clustering Algorithm, the average cpu time per step for
the two sensor filters is almost always much less than that of the CAF
employing cnly the poor semnsor, and greater than the CAF camploying only
the good sensor (see Table 7.2). For identical sensors, the cpu time
per step for TB is 167 greater than that of the single sensor CAF,
while T12 and T21 give a 257 saving in cpu time. These computation
times are closely related to the average number of mixture components
generated by the filters. The effect on cpu time of incorporating a
second sensor is broadly similar for the PDAF approximation, except
that for P < 1, the two sensor filters are slower than the PT'F

D2

using sensor 2 alone (which performs very poorly).

It should be remembered that the above observations only apply
to the example simulated here. However it 1is quite likely that the
broad conclusions applv to a wide range of examples. Detailed resulrts,
such as the percentage of cpu time saved by emploving two identical

sensors rather than one of them, are likely to be problem dependent.

A.—-——-M




7.4 Incorporation of data from an auxiliary sensor with a
classification capability

7.4.1 Problem statement

This data fusion example has been chosen to show how data from a
secondary or auxiliary sensor may be used to assist a primary sensor
with modest changes to the tracking filter. This example is an
extension of the sector surveillance problem of Chapter 6, and as
already described it is assumed that the primary sensor produces
measurements in polar co-ordinates. The auxiliary sensor produces
bearing only measurements, but a classification flag is associated with
each of these. Since the auxiliary sensor does not supply range, on its
own it would give poor tracking performance. The auxiliary sensor is
co-located with the primary sensor at the origin and measurement sets
are produced coincidently by both sensors. It can be seen that this

problem includes elements from e2ach of the previous sections.

The auxiliary sensor produces false measurements which are
uniformly distributed in bearing over the surveillance sector with a

density ¢, per radian. A true measurement has a Gaussian distribution
about the actual target bearing with a standard deviation of <,

radians, and the probability cf detecting the target is PD2 . The

classification flag associated with each measurement is of the discrete
(0, 1) type. A value of one indicaterc that the measurement has been
classified true, while zero indicates that it has been classified false.

The probability of correctly recognizing a true measurement 1is PT R

and PF i1s the probability of correctly recognizing a false measuremen..

AS in section 7.2, the classification flag is indenendent of the value

Si the measurement.
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7.4.2 A sub-optimal filter

The main idea® behind the design of this fil:ter is to use data
from tre auxiliary sensor to modify only the probability weights of the
mixture distribution resulting from the primary sensor measurements.

So the auxiliary sensor data is to be used either to reinforce cor tc
weaken the weightings of the mixture components. The mixture components
themselves are not changed. This approach avoids the usual splitting

of components when measurements from the second sensor are incorporated.

After processing the measurements Z1 from the primary sensor at
some time step, the posterior pdf of x 1is given by (following

section 2.3.2):

cenees (7.7

where is a hypothesis on the measurements from the primary sensor

‘f1j
(see Appendix E). Since the sensor measurements are in polar co-
ordinates, the extended Kalman filter approximation is used to evaluate

the components and .pility weights of this Gaussian mixture (see

section 6.1). The data from the auxiliary sensor is denoted:

(22’ Dz) ,

, 1is the set of (0, 1) t;pe classification features:
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After incorporating data from the auxiliary sensor, the posterior pdf

of X becomes:

n 1 2
p(’5121’22’1)2) - Z z z p(§|w1j,w22,%’§_,21,22)
i=1 j=0 2=0
f. } -
X Pr\‘i/1j,w2£!% 21) 2’ 2 ’ (/.8)

where sz is a hypothesis on the measurements from the auxiliary

sensor. (Note that D2 is not required in first term on the RHS of

equation (7.8) - see section 7.2.1.) We now impose the simplifying
assumption that the effect of the auxiliary sensor measurements 22
on the components of the mixture (7.7) can be ignored, ze:
p(}—{w1j’w2£’%’z1’z2) = p(§|w1j,%’21)
In this case equation (7.8) may be written:
n ™
(xl2,.2,D,) Z z p(xlv,, %2, prfo, ., #12,,2,,0,}
i=1 =0
...... (7.9)




)

where Priy, o #12,,2,0, - z Prfosavgg 8 2002500, |
270

After applying Bayes theorem and deleting redundant dependencies it can

be shown that:

)

P‘{"Hj’%i‘zvzz’l’z} - Pr{‘”u'?f”il%} ZFijz . (7.10)
2=0 ‘

Pr{Dz\wzn}p(Zz‘w1j’wzz’5?3’21)Pr{wzzIw1j’5?1’21}
where Fijz = 3 ,

and E 1is the normalizing denominator chosen so that the summation of
the RHS of equation (7.10) over i and j 1is unity. (Note that D,
is independent of the past, so Pr{D2|w22} does not include a
dependency on 2?? .)  Thus the resulting filter is the same as the

usual single sensor filter except that each probability weighting is

modified by the factor:
) Fiss
2=0 '

For the problem of section 7.4.1, the auxiliary sensor data

consists of bearing measurements, each with an associated classification

1—-——-—;“-_
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flag. Thus using an amalgam of results from sections 2.3.2, 6.1, 7.2.1

and Appendix E it can be shown that equation (7.11) is given by:

(‘
P 420 - p =42
T T 4/‘ e g 2
1 - P P 287 713771;
Al if L # 0
Fii =<
(1 - P )o .
Eve =0
D2

ceees (7.12)

where E' 1s the normalizing denominator, chosen so that:

n 1 2
53 e P
i=1 3=0 2=0

Also 6,0 is the auxiliary bearing measurement Z£. ei. is the
expected value of the true auxiliary measurement under hypothesis

(w1j, 5?;), and it is given by:

where (iij, 9ij) is the mean target position of the mixture component
. . . 2 .

of equation (7.7) corresponding to hypothesis (wlj’ 5?1). oij is the

varianze o. the innovation (9

-3 is (u 9
22 uij) under hypothesis (V1j’ ;yi), and

from equations (6.5) and (5.6) it is given by:
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02 = sin2 6.. + c052 6.. - sin 26 . &2
ij =2z \P11 ij * P33 ij ~ P13 “Fi3) T %2
rij
=2 a2 A2
where r.,. = X.. + §,
1] 1] 1]

and Pyy» P33 and P,y are elements of the symmetric matrix Pij
which is the covariance of the mixture component of (7.7)

corresponding to hypothesis (w1j, ;?1). If o0.. 1s large, then there

1]
is likely to be a large uncertainty in the association of auxiliary
measurement to mixture component, and the extra data is unlikely to be
informative. However Lf cij is small so that the Gaussian factor in

equation (7.12) is selective, the auxiliary data may provide useful

extra information.

From above it can be seen that certain elements of the mean gij
and the covariance Pij of each component of equation (7.7) are

required for the evaluation of F. These terms are already

je’
available for an implementation using the Clustering Algorithm, so

that incorporating the auxiliary sensor data 1s a small computational
overhead. However, for the standard PDAF, gij and Pi' are not

explicitly evaluated and so for this filter the extra computation requirement
is significant. To reduce the processor load for the PDAF it is

suggested that components with very low probability weights are

discarded before calcuiating the modifying factor:
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In the simulation of the following section, compcnents with
probability weights below 0.001 are ignored for the PDAF, Also for
botﬂ the CAF and the PDAF, an acceptance test is applied to the
auxiliary measurements for each component of equation (7.7). Mixture
reduction is applied after modifying the probability weights, and
prediction forwards to the next time step follows as usual from the

state propagation equation.
7.4.3 Simulation

Sim.lation studies have been carried out to demonstrate the
possible improvement in tracking performance through sub-optimal
processing of auxiliary sensor measurements. The standard parameters
of Table 6.1 have been assumed for the target trajectory and for the
primary sensor, except that the density of false measurements for the
primary sensor has been increased to p = 30 km-1 rad-1 . The

performance of the auxiliary sensor is described by five parameters:

(1) the standard deviation of the true measurement bearing
error o, (radians),

.. . . =1
(i1) the density of false measurements 0y (radians ),

(ii1) the probability of correctly recognizing a true

measurement PT ,

(1v) the probability ~f correctly recognizing a false

measurement PF .

(v) the probability of detecting the target PD2

For this simulation we have set PT = PF , and the following standard

set of parameters for the auxiliary sensor has been chcsen:
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0, = 0.01745 rad
£y = 45 racl-1

Pp = PF = 0.9
PD2 = 1

Thus the standard deviation of the true measurement o, is the same
as 0o, for the primary sensor, and Py is related to the density of

primary sensor talse measurements by:

1
P2~ Tz"(rz r1) ’
where I, -1, = 18 km 1is the range extent of the surveillance sector.
Each of the parameters Oy Py and PT has been varied in turn while

keeping the parameters of the primary sensor fixed. Figs 7.11 to 7.13
show the percentage of tracks maintained by the Auxiliary Sensor filter
out of 100 replications for each set of parameters tested. For the
track maintenance criteriomn of (6.1), 9, and cy are

obtained from the equivalent Kalman filter based on the primary sensor
only. The average processing time for a single step and the error

statistic E (see section 6.3.1) are given in Table 7.3.

Figs 7.11 to 7.13 clearly show that the Auxiliary Sensor filter
can give a significant performance improvement over the primary sensor
alone. This is most apparent for the PDAF which can only retain 17 of
the tracks without the auxiliary sensor. As would be expected,
performance deteriorates with increasing <, and Py » SO as these
parameters becoue large, performance approaches the primary sensor alone
case (Figs 7.11 and 7.12). Also filter performance improves as P

increases (Fig 7.13). For the case PT =Pp = 0.5 , the classifier

A ———
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supplies no useful information. However for PT = PF = 1, the true

auxiliary measurement is always identified so that the presence of false

-

auxiliary measurements is irrelevant (¢f filter performance for

Py = 0.36 rad-1 in Fig 7.12 for which false measurements are sparse).

Table 7.3 shows that if the performance of the auxiliary sensor
is good (o2 or o, low, or PT high), the incorporation of the extra
data reduces the average computacion time for the CAF: the extra
information enables the filter to reduce the number of retained
components {see Figs 7.11 to 7.13). Processing time is always greater
for the Auxiliary Sensor PDAF than for the standard single sensor PDAF.

This is because the mean and covariance of each mixture component must

be explicity calculated for the Auxiliary Sensor PDAF implementation

(see previous section). When the density 0y of the auxiliary false
measurements is large, the processing times for the Auxiliary Sensor

filters are several times greater than those of the standar filters.

Examination of the error stztistic [ in Table 6.3 shows that
for lost tracks, the filters significantly underestimate their tracking
error (as is also the case for the standard filters, see section 6.3.1),.
For CAF held tracks, with the exception of the cases €, = 0.005 rad
and 0y = 0.04 rad , E is always within 507 of the 'correct' value
of four. However for the PDAF, the values of E show a much greater

spread about four, with a tendency for E to increase with the

pesformance of the auxiliary sensor.
7.5 Conclusions

In this chapter we have shown how Bayesian filters may be applied
to the data fusion problem. Incorporating data from an extra sensor or

an imperfect measurement classifier may significantly improve tracking

L——-———-—————-“_’_
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performance and reduce processing time. However if the performance of
the additional sensor is very infericr to the original sensor, a large

processing overhead may result in only a minor performance improvement.




Table 7.1

PROCESSOR TIMINGS FOR FILTERS
WITH CLASSIFICATION FLAG

Average cpu
Classification time for
parameters single step
(ms)

PT PF CAF PDAF
0.50( 0.50 5.930 [ 1.120
0.601 0.60 5.420 | 1.140
0.70§ 0.70 3.710 | 0.659
0.80§ 0.80 2.210 ] 0.460
0.90{ 0.90 1.070 | 0.206
0.95] 0.95 0.675 | 0.199
0.99| 0.99 0.519 | 0.195
0.30] 0.99 3.240 | 0.379
0.50] 0.99 1.920 | 0.236
0.90] 0.99 0.679 | 0.199
0.95] 0.99 1,594 | 0.196
0.99] 0.30 3.240 | 0.813
0.991] 0.50 2.010 | 0.6"3
0.991 0.90 0.677 0.198
0.39 [0.95 0.581 | 0.197
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tavle 7.3

PROCESSOR TIMINGS AND ERROR STATISTIC E FCR AUXILIARY SENSOR FILTER

Parameters of Average cpu .
auxiliary sensor T;zizs time for single Error SéatlSth
) o5 or step (ms)
(rad) | (raa=h)| Pr = Fp| 19%% | cup PDAF CAF PDAF
. H 15.00 1.13% 3.660 3.142%
Primary sensor only L 52.80 | 2.72 | 2081.000 6.694
0.005 45.00] 0.9 H 9.11 2.93 22.930 16.490
L 9.33 | 3.66 | 2779.000 | 566.600
0.01 " " H 10.00 | 2.94 4,262 71.080
L 9.57 3.95 | 2419.000 | 444.100
0.01745 " " H 11.50 | 3.85 3.691 27.560
L 11.50 |  4.96 | 1713.000 | 258.400
0.04 " " H 14.50 | 5.73 | 435.420 5.581
L 14.60 | 7.37 | 1742.000 | 88.180
0.07 " " H 16.90 | 8.32 3.558 4.346
L 22.80 [ 9.61 | 3069.000 | 128.300
0.1 " " H 18.60 | 5.93 3.601 4,204
L 22.70 | 12.60 |2784.000 { 69.230
0.2 " " H 21.25 | 10.37%* 3.643 3.339%
L 64.22 | 19.22 | 2159.000 | 71.820
0.01745 0.36 0.9 H 8.54 1.95 6.106 17.490
L 7.72 2.34 ] 1377.000 | 39.65C
0.01745 1.80 " H 8.64 1.97 3.718 18.240
L 8.27 | 2.41 |1344.000 | 199.300
0.01745 9.00 " H 9.20 | 2.23 3.707 10.650
L 9.52 2.67 | 6627.000 422.200}
0 01745|  45.00 " H 11.50 | 3.85 3.691 27.560 !
L 11.50 | 4.96 | 1713.000 | 258.400
i
0.01745| 180.00 " H 19.00 | 10.30 3.590 2.711
L 20.90 | 18.60 | 2362.000 | 95.980
1
0.01745| 720.00 " H 44.40 | 23.90 3.927 2.67
L 126.00 | 74.00 | 2522.000 | 96.390
0.01745 | 1440.00 " H 76.20 | 68.50 3.749 21.140
L 79.40 | 145.00 | 2495.000 | 155.400

M
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Table 7.3 (concluded)

Pafaggters cf Tracks Average cpu Error statistic
auxilliary sensor held time for single z

53 55 or step (ms)
(rad) | (rad~1) T Pp| lost | cap PDAF CAF PDAF
0.01745 45.0 0.5 H 15.00 NN 4.437 2,408
L 21.60 9.19 9.188 | 41.770
" 0.6 H 16.70 4.41 3.585 2.383
L 18.10 9.08 3012.000 | 23.730
" " 0.7 H 14.20 .69 3.607 3.677
L 15.00 8.10 6104 .000 41,760
" " 0.8 H 12.90 4.09 3.585 2.761
L 14.70 6.79 2896.000 | 190.900
" " 0.9 H 11.50 3.35 3.691 27.560
L 11.50 4.96 1713.000 | 258.400
" " 0.95 H 10.70 3.17 3.745 31.050
L 10,50 4.22 2183.000 | 201.500
" " 0.9¢ H 9.87 2.89 3.711 16.210
L 9.55 3.70 1622.000 ] 204.000
" " 1.0 H 9.48 2.76 3.836 20.030
L 9.92 3.31 3709.000 | 388.300

* Indicates a small sample (less than five repiications)




197
10°- $
P=P
Nave 4 CAF *
] % PDAF i
3
. 10 - é
10°F *
Without
* * * measurements
NL=13.6-’ ———————————————————————————————————
10 1 ) ) ] A ! 1l
O'S 0.6 0.7 0.8 B - 08 095 099
No useful F=T
classifier
data
2 »*
10 * % Before
applying PDAF
% Be‘ore
) [applying CA
o " After
S ) applying CA
Q. r-
£ _
o
o -
S 10
3 |
= _ +
c
g i ¥
. o
[ 3]
>
2 L
1L 1 1 1 ] | i -
0.5 0.8 0.7 0.8 09 0.95 099
b R=P
No useful
classifier
data
Fig 7.1 Filter pertormance with ciassiiication il1ag (PF = PT)




10

NL= 13.6—

10

10

10

Average number of components

i R = 0.99 $
T ¢
X PDAF
Lt
I ]
I
i ¢
| *
é '
i
B |
Lk
|
i
bl
_______ N
] | i 1 11
Without !~ 0.3 05 P 0.9 0.95
classifier ! T
B * »% Before

applying PDAF

Before
l:applying CA

|
|
i
|
|
i
] After
: applying CA
_ i x
| -
|
l po
= f
|
L ¥
|
| b
|
I -
{
|
{
|
|
1 | 1 1 L1
Without | 0.3 0.5 P 09 095
classifier ! T

sis 7.2 Filter performance with classification flag (P. = 0.99)

F

IS A s




5x10°
> P, = 0.99 ¢
Nave 9 CAF é
% PDAF +
10°

|
|
1
|
|
|
|
|
|
107 :
|
|
|
]
|
|
!

NL=13.6— —————————————————————————————————
10 | ' ] | I |
Without !~ 03 0.5 P 09 095
classifier ! F
2 I
107 * | x Before
I % applying PDAF
l Before
“ : * applying CA
o ! After
S ' applying CA
a - ]
£ I
) | -
° |
kS |
- 10 |- ! F
3 o
£ [
2 ' L i
W } ¥ a[
m e
m |
o !
> |
< |
|
| - L
1 1 i 1 ] 1 |
Without | 0.3 05 n 0.9 095
classifier | £

in 7.3 Filter performance with classification fiag (PT = 0.99)

e




\/

Update
mixture
/N

Reduce
Mixture

Msasurements
from sensor A

A\ 4

Predict forwards
\ to next time step
(using targst modal)

Measursments
from sensor B

Update
mixture

YV

% AN

Reduce
mixture

a) Reduction applied after processing each sensor

\V4
Msasuremenis N Updata /N
from sensor A 7 mixture
Predict forwards
NV lo next time step
(using targe! modsl)
Measurements N Update
from ssnsor B < mixture
YV /N
Reduce _
mixture

b) Reduction applied after processing both sensors

Fig 7.4 Mixture reduction schemes for two sensor filter

W




AVE

Average number of components

S2
'E s2
NL=13.61—O—- --\—--:---/—-—--\——-l--_-/—--_\..-_.-__/_-__K_ .l---,¢_ __\-:L .‘ J
1072 10°"! : 10 4 102
’ I'z /(QAt )
=0
8
10°- «Before -
[ applying CA
s2
l_ After s2
¢ applying CA B T%zrgz
- [
10
8 2!
12
S1 s4 s1s2 sS4 51
:] T2 724
10 - [
e 112
s2 | [ i - Lt
- 1[2121 [ [
1 ; ‘—\'/—’ %',—/ H'/_/ Hﬁ,_/
-2 -1 )
10 10 } 10 rz/(th/') 10
r1 = I’2
Fig 7.5 Two sensor CAF performance (pz and PDZ constant, r, varies)

1077

107

Sensor !

Sensor 2

r1=th‘
_0.012
p1 ‘thL

PD1=1

r, varies
_0.012

Py = qAte

PDZ :]

201

S
S2 Sensor 2 alone (CAF)
TB CA applied after

Key
Sensor 1 alone (CAF)

processing both
Sensors

Tij CA applied after

processing each
Sensor — sensor |
is processed first at
each time step

S



202 Key
Sensor 1|Sensor 2 SY Sensor 1 alone (CAF)
ry=qlt |ra=gats S2 Sensor 2 alone (CAF)
8 _ 0.012 < .
R S R X B
+ I é 0!~ 02~ sensors
N T2 Tij CA applied after
AVE é T2 processing each
s2 é sensor — sensor i
2 -l- is processed first at
é T2 T; each time step
3
1074 é 142 T2 18
$ $ 12
T4
1B 112
s1 s4 8182 s4 s4 é é T2
I | # booe
10"+
52
+ s2
NL:13-160'-‘F_—K____'_'_'——__7‘ L—__‘_ ;7‘ ------ _— ; ——— 2" iy T _2" - -\i— - ,____/1
-3 S <2, - \A- A
10 2x10 1071.2x10 3x10 pz(thA) 10
«Before 52
103, [ " applyingCA :
52 18
" After [
e €applyingCA
e
2 2 124
£ 107 -
S M2
5 T i
S St st S182 St an S1
Fa) T_B
€
g : | Ti2 T4 L ! L L
o 10 A 9"2 142
= T2 24
I =L aai
s [
, N [\/ AN (S Jz N K__VT_/
1-3 1n-3 2y - yA-2 -
1 107¢1.2x10 3x10 10
10 2x 0 X X p2 (th[')
p1 = p2

Fig 7.6 Two sensor CAF performance (r2 and PD2 constant, 05 varies)




Key

S1 Sensor1alone (CAF) Sensorg SenSOsz Te-‘u
S2 Sensor 2 alone (CAF) r]:iﬁ;zrzzqééu
3 TB CA - ~lied after p"qAT pZ:qA:‘- +
10° prc  ,sing both Foi =1 {Fopvaries T2 T2
ser. ..rs
Tij CA applied after +
processing each 8
NAVE sensor — sensor L -
is processed first at N2 o
each time step + +
St g { 51 TBYRTN st 5482
47 ? i T
112
10%4 ++
52
s2 52 _£
N:13.6---——i--——- ——————————— C i""? ______ . NN
L N —
10 T t 1 T L4
0.05 0.1 0.2 P 0.6 1
02 }
Po:= P,
5x10% sz
52
Before F
¢ applying s2
\ R
$ 102
c T8 18
< c
5 8 After ] 18
S «applying r
o CA
- sS4 S T2 S! T'ZJ s182
= . 112 112
3 T2 T2
S 10 A L. L
c L L
3]
L
E? i L
Q
>
g
1 ) L / N “ /. \ /
005 0 02 P 0.6 i
D2 f
B = 2

Fig 7.7 Two sensor CAF performance (r, and 0, constant, Pp, varies)




Sensor !

Sensor 2

r,:thT rpvaries
0.012(5 _0.012
g =

Key
S1 Sensor 1 alone (PDAF)

104 8 p1=th7 qAte S2 Sensor2 alone {PDAF)
® For=1 R, =l TB CA applied after
149 processing both
N, 5ensors
AVE Tij PDAF applied after
b} % Processing each
é 18 sensor — sSensor i
T2t is processed first at
1034 + é each time step
T2
142
. * Y;’ 18
y ¢
Ti2194 8
2 .
10%1 12 +4 ¢
12724
s1 sS4 5182 s4 ++ St 14274
s2
} - H i bott
N8P es=r ~m ==~ e = T e ““*—#‘/——
107¢ 107! } 0 /qat) 10?
o=
»x Before 18
102 applying PDAF
Before
applying CA
v After
c applying CA -
S ¥ [ ia?z
2 3 3 $152 S1 st W,
g 1074 s ¢
S 112
- 8
o =
- 53
@
L
E 8
€ 10 - [ R
@
o T8 L
v L
5 W L
<>I uz,ﬁl BZEI
1 -0 T 1 T v 2
-2 -1
10 10 '; 10 [, /(thl‘) 10
I'1 = r2
Fig 7.8 Two sen;or PDAF performance (:

2

and PDZ constant, ry varies)




NL=13-?6—-——-\—'{/——/-t—\-'-/——/——————\————7‘- = ———/-——\:‘k /

Average number of components

.102- _ ++

208

Key
rsinqu:,.‘ ;Se-nquZLZ S1 Sensor 1 alone (PDAF)
p‘ oon2 pz varies S2 Sensor 2 alone (PDAF)
. 1 VT qAté|"2 TB CA applied after
10 - é " For=1 R, | 9 processing both
Sensors
. é Tij PDAF applied after
AVE % Processing each
Sensor — sensor i
52 1y ‘ is processed first at
+ + 1B each time step

18

Pl Tw :

T2qny

S1 St S182 + TieTes

P e fett

3 3 N 2 -2 v -1
10 2x10 107°1.2x10 3x10 o) (qAts) 10
Py =Py
3 | xBefore
107 - applying PDAF
Before 32
[applying CA 18
After 2 5213‘ -
applying CA
2 ¥ s W3 ¥ ¥
107 1 Her
8 P
8
2
10 1 8 wg -
142 4 -
?4 Bl izu El L )
e R N el
10 2x10 i0 1*.2x10 3x10 pz(thb)IO

Fin 7.9 Two sensor PDAF performance (r2 and PD2 constant, cp varies)

N S




_
206
Key Sensor 1|Sensor 2
S1 Sensor 1 alone (PDAF) fy=qAte |rp=gatt 8
S2 Sensor 2 alone (PDAF) p1=q9£t‘_z P, ,O_AQ;_Z- +
3 TB CA applied after i a
1079 € processing both Foi=1 |Fopvaries
Sensors
Tij PDAF applied after 8
NavE x Processing each
sensor — sensor i +
is processed first at
| each time step
18
8
+ 2.,
104 ++
112
T2
54 T2py 51 12T st + s182
fet futt I
Nz13f-tFf-F-—m—f———— — — — —‘—i———L————-q-—‘l'—————-
10 A= . , N
. . . . )
0.05 01 0.2 Py, 0.6 ?
b1 = Py,
5x102W
x Before
applying
P 52 PDAF .
c S1 28 Before st 1 182
S 2] ¥ W €applying | |[* W ¥ W
o CA 8 8
[« T8 - aT2t .y
g [ Qv 8
O After (
s €applying
. CA
a
E W2
5 10 A L
c L L
L'}
U’ -
3
[}
>
<
1 \‘__5%4"—4/ . \-_—\vf__—/ \_—f§¥”_-_/\\__“>/'"_J)
0.05 0. 0.2 P 0.6 1
D2 }
A= 2

Fig 7

10 Two sensor PDAF performance (r2 and P constant, PDZ varies)




Average number of components

100 - 1
|
|
|
| o)
B 75+ o
g (o) l ° [w}
£ |
z ' -
‘© I
£ 1 »*
n 504 |-
X . »
(&) |
© ]
- "
- {
54 i
= 25- ' oCAF
| »*
| *PDAF ]
! *
]
. J ]
OJ—_J'—' T T T T T T ) T -
Primary, 0.005 0.01 001745  0.04 0.07 0.1 0.2 05
sensor o. (rad)
only 2
200+ ! »x Before
i applying PDAF
| Before
100+ | [applying CA
»* »
' After *
. applying CA
(%)) : [vs
X |
(8]
4 | %
<= |
© )
£ 104 '
5 .
e |
f
1 T ; — T T T T T ) LN —
Primary , 0.005 0.01 0.01745 0.04 0.07 04 0.2 05
senso! o, (rad)

Fig 7.11 Auxiliary Sensor filter: o, = 45 rad”, Py = Pe = 0.9 and o, varies




208

1001 ;
' L]
Ll
[ [ ° o © r
}
| [ .
o 75- o
[ §] |
£ o °
3] 1
= |
£ |
15 |
; 50 ) »* *
Q I »*
3
o f »
- i
I
< oCAF
= 2 : %PDAF
t
' *}
: ] ]
OJF—l : T T Y T T > T T T
Primary, 0.36 1.8 9.0 45.0 180.0 720.0 1440.0
Sensor -1
only pz (rad™)
2004 ! » Before
l applying PDAF
] Before
) 1001 : l:applying CA
S | After
< i applying CA »* *
a | " ‘
g Y |
o]
o | T
e I
52 |
et -
E“: 10 L |
25 | %
(7] ] -
o
© |
o |
>
< ! }
i
[
]
1 T ' T T T T T > T T T 1
Primary, 0.36 1.8 3.0 45.0 180.0  720.0 1440.0
SaNSOor -1
only pz(rad )

Fig 7.12 Auxiliary Se

= 0.01745 radians, P. = P_ = 0.9 and P varies

nsor filter: Sy T F




100+ :
i
|
: (o} o IVO °© L
T 754 ! ~
€ o] |
(3] | !
= |
© 1
£ : »*
12} 501 ' »*
b 4 t
(S
o :
. | oCAF *
° \ | *PDAF
= 254 I
! »
1 .
' »* "
OJ'——__J_ : U T T 1 > T T 1
Primary ! 05 0.6 0.7 0.8 08 095 7
sensor P:p 089 1.0
only F T
x Before
200+ : applying PDAF
) Before c
1OOJ : [applymg A'
) | After
E | applying CA >
c |
a U * * »*
£ | .
o |
o~ |
52 !
W !
E'C 10+ :
25 ~
v |
on
@ !
o |
>
5 4 I
]
!
1 T ! T - T T \ﬁ T M o 1
Primary ; 05 0.6 0.7 0.8 09 085/ N\
sensor . P =P 08910
only FoT

Fig 7.13 Auxiliary Sensor filter: o, = 0.01745 rad, o, = 45 rad™! and Py varies
-




210

8 MULTIPLE MEASUREMENT CLASSES: THE PROBLEM OF INTERFERING
MEASUREMENTS

8.1 Introduction

In the preceding chapters it has been assumed that measurements
are either true or false, and that at most one of the measurements from
a single sensor may be true at any time step. The problem is now
extended to allow further classes of measurement which may or may not

be associated with the target. The formal Bayesian solution to this

new problem, which is given in the following section, is a straightforward

extension of the baseline filter. However, except for simple cases,
it is not easy to apply this general solution to derive practical
filters for specific tracking examples. Thus to arrive at useful
recursive filters it may be necessary to impose rather crude approxi-

mations.

In section 8.3 a tracking problem with three measurement classes
is described. Two of these classes are the usual true and false
measurements, while the third class consists of interfering measurements
associated with the target position. As an extra complication this
interference is intermittent and its switching on and off may be
modelled by a Markov process. A practical sub-optimal tracking filter
has been derived from the general solution of section 8.2 by making

several approximations.

8.2 Problem formulation and general solutiom

At each time step a set of measurements Z 1is received:




Each measurement z of Z may belong to any one of Nc classes, and
the class membership of 2z may be unknown. However if 2z does belong

to class Cj , then 2z 1is an independent sample from the pdf:
p(g]g . Cj) , (8.1)

which is assumed to be available. It is also assumed that the

probability distribution of the number of received measurements from

each class is given. Thus the probability of receiving mj measure-

ments belonging to class j is known and is denoted gj(mg) . DNote
'

however that mj is in general not known and that the membership of

each class may only be hypothesized. C(Clearly:

As usual the state propagation equation is given by equation (2.1) and

the problem is to obtain the posterior pdf of x at each time step.

To solve this problem, following section 2.3.2, it is necessary !
to construct all feasible measurement association hypotheses &#' and

so to evaluate the posterior pdf of x:

p(xi2) = Z p(x|#',2) Pr{ﬂ%"lz} . (8.2)
ALLF'

(The time step subscript k and explicit dependency on j?L are omitted

in the chapter, although the conditioning should be understood throughout.)




This equatiin is similar to equation (2.19) and as usual:
F' o= (F v,

is a joint hypothesis, where  1is a hypothesis on the class member-
ship of data received up to and including the previous time step, and
¥ is an association hypothesis on the current measurement set Z
Also we assume that Pr{j?? and p(glj?ﬁ are available from the

previous recursion.

First consider p(x|#"',Z) . From Bayes theorem:

p(Zix,#") pxIF")
p(ZlF")

p()_{;%',Z) . (8-3)

Suppose that Y assigns the ith member of Z to class Cf(i) y then
since the members of Z are independent:
m
1 t =
p(Zix,#") l ' p(Ei!§’Cf(i)) . (8.4)
i=1

Also

px|l#) = p&xl#

which is available from the previous recursion. The denominator of the

RHS of equation (8.3) is given by:
/pczlg.%w Pl dx (8.5)

Thus in principle p(§ij?",2) can be found. In practice it is likely

to be difficult to find a simple analytical expression unless the

e — e e



underlying distributions are Gaussian or the measurements are

independent of x for many classes (as in the baseline problem).

Now consider the posterior probability:
el iz} = er{aviz)
This is given by equation (2.10):

Pr{ﬁ’/'[z} _ pzl#") P;{(g)j%}Pr{%} ) (8.6)

Since the members of Z are independent, following equation (2.11) we

have:

)

[P<Z|§,W) p(xl#) dx

v

p(Z|F")

m
= fﬁp(zilgc.cf(i))p(giﬁ/) dx . (8.7)

1=1

The factor Pr{WEQ?”} is the prior probability of V¥ , and since this

is independent of hypotheses on data from previous time steps:
Pr{vl;‘{"} = priyf

The evaluation of this probability depends on what prior information is
available on the class membership of the measurements Z . However it
is known that the probability of receiving mj measurements belonging
1

to class Cj is gj(mj) . Thus the joint prior probability that mj

measurements belong to class Cj for 3 =1, ..., NC is:

et
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N
c
where ij = m .

If there are no prior restrictions on the class membership of measure-
ments, then the number of hypotheses V¥ that could have caused this

distribution of measurements is:

So, since g priori each of these hypotheses is equally probable:

m;! mé cee
priv} = —; =

. I_T gj(mj) R (8.8)

: v Ne
i=

where mj is the number of measurements assigned to class Cj under

hypothesis V¥ . If the class membership of the measurements is restricted,
there may be fewer hypotheses corresponding to this distribution of
measurements, in which case equation (8.8) must be amended. The final
factor Pr{jf} is available from the previous recursion, and the

denominator of equation (8.6) 1is given by:
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p(2) = p(zl97¥) priv} Pr{j?} . (8.9)

>
—

NE)

Thus again all the required functions are available and in principle
the required solution may be obtained by substituting into equation (8.6).
The prediction forwards to obtain the prior pdf at the following time
step follows from the propagation equation of the state vector,‘as

indicated in section 2.3.3.

To show that this general solution may be reduced to the baseline
problem, suppose that there are only two classes of measurements, true
and false. At most one of the measurements may be true (class C1) and

the probability distribution of the number of true measurements is given

by:

m1 1 -m
P (1 - PD) for m! = 0 or 1

g1(m;) = ﬁ

0 otherwise

ceed.. (8.10)

Also from equation (2.2), a true measurement is a Gaussian distribution

about Hx :

p(glz,c1) = _#(z;Hx,R) . (8.11)

False measurements (class C,) are uniformly distributed and are

independent of x :
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p(§l§,62) = v, (8.12)

where V 1is the volume of the sensor surveillance region. The
probability of receiving mé false measurements is given by a
Poisson distribution:

m'

gz(m') = PV (V) z/mé! for m

W
o

2 (8.13)

As described in section 2.3.2, the hypothesis Wj , for j # 0, indicates

that m; =1 and m! =m1 . So from equation (8.8), for j # 0 :

' - '
Pr{vj} = l4£957—124 g1(1)g2(m -1
1
= = g1(1)g2(m 1 . (8.14)
If j =0, then m; = 0 and mé =m , so from equation (8.8):

Olm!
Tar &0

s
L]
——
<
o
S
]

gT(O)gz(m) . (8.15)

By substituting equations (8.10) to (8.15) into the general solution
given above, the solution of the baseline problem given in Chapter 2

may be obtained.




8.3 The sector scan problem with intermittent interference

8.3.1 Problem statement

In this extension of the sector scan problem (see section 6.2
interfering measurements may occur behind the target, when viewed from
the sensor position at the origin. If the target position is (r, %),

then interfering measurements may occur in the region (see Fig 8.1):

r < range < r +1r

(8.16)

6 - 91 < bearing < 8 + 8 .

These measurements are uniformly distributed in polar co-ordinates at a
density of o1 km—1 radians-1 , however they only occur within the
surveillance sector. The switching on and off of the interference is a
Markov process. Thus if the interference were present at time step k ,
the probability that it would be present at time step k + 1 is Pyy s
and the probability that it would not be present is Pig = 1 - Pyq -
Likewise the probability that there is no interference at time step

k + 1 given there is none at time step k 1is Png s while the

probability of a transition from off to on is Pgq -

In this example it is assumed that the parameters T1, SI, Prs Pyy
and Pyo are all known and that interference is not present as the
target enters the surveillance sector. Only one sensor is present at
the origin and no classification information is available to distinguish

between the true measurement, the interfering measurements and the

usual false measurements.
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The problem of estimating the state of abruptly changing systems

. . . L 42
has received considerable attention (see, for example, Tugnait

. 43 . 45 52 .
Tugnait and Haddad =, Welss et al and Bolm™ 7). As noted in

b4

section 6.4.3, abrupt target manoeuvres have been represented by
allowing the equations of target motion to switch between different
models. In this interference switching problem the target model is
fixed, but the measurement environment may change suddenly according

to the switching probabilities Pyo and Poq - It is quite straight-
forward to incorporate this possible switching within the usual

Bayesian framework, and this part of the solution (section 8.3.2.1) is
similar to the development in the above references. However the upda:ting
of probabilities and pdfs on the assumption that interference is present
is a new problem. We shall introduce approximations which allow a

practical sub-optimal filter to be derived from the optimal solution.

8.3.2 Problem solution

8.3.2.1 Representation of intermittency

For this problem we have the measurement - class association
hvpothesis ¥ to consider as described in section 8.2, but in addition
there 1s the uncertainty of whether or not interference is present. We
introduce a variable vy which takes the value 1 if interference is
present and O if it is not. This indicator only applies to the current
set of measurements, previous hypotheses on the presence of interference
being included in # . Equation (8.2) which gives the posterior pdf

of x should be extended to:

]

plx 2) = Z

v=0 Al
*

1
p(‘_( ‘y,'}’"’,z) Pr{\‘,z/"‘z} N (8.]7)

.
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where #' = (¥,#°) . From Bayes rule, the corresponding version of

equation (8.6) is:

pZiv.FY) privly, #| peiyvig| pela!

Pr{y,jk”iz} =

p(Z)

(8.18)

In this expression the factor Pr{ylé?} is given by the switching

probabilities pij

So for instance, if under ¥ interference were

present at the previous time step and if y = 0 , then:

PI{Y {Z/}

P10

The other factors in expressions (8.17) and (8.18) are given by other

equations in section 8.2.

8.3.2.2 The likelihood of a set of measurements: p(Zix,y,¥)

A key step in the solution of this problem is the eviluation of the

likelihood p(Z|x,v,¥) . The hypothesis

Y assigns each member of Z

to one of three classes. We define class 1 to be true measurements,

class 2 to be the interfering measurements and class 3 to be the usual

false measurements. If v = 0 , none of the measurements belong to

class 2. For classes 1 and 3, we have as usual:

and

where V is the volume of the surveillance region. For class 2:

p(zgg,C1) = 4 '(z;h(x),R)

n
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p(zj,j,cz) - LH(rm - r) - H(rm,- (r . r1)>

x H(em - (e - 61)) - H(em - (e + eI)) /28,

L.

where H(.) 1is the Heavyside functiom,

(r,8) 1is the target position in polar co-ordinates, and:

N
]

The pdf takes this form because class 2 measurements cannot lie outside
the interference region (which is assumed to be within the surveillance

region for this expression).

Suppose that under hypothesis Y for the measurements received at
a particular time step, measurement t belongs to class 1, mé measure-
ments with subscripts from the set CZ belong to class 2 and the mé

remaining measurement belong to class 3. 1In this case the likelihood

of the recieved measurements Z 1is given by (from equation (8.4)):

-m '
| 3 "
p(Z'x.v.¥) =V vﬁ'(gt;§(§),R) T_( P(Ei?§,C2)
iamz
If none of the measurements is true, the factor v&”(gt;b(g),R) is

omitted. By considering the factors in the product of the class 2 terms it

it can be seen that:




0, if vy = Ty > r, or eMX - GMN > 2%1
l I p(z; £:6y) =< [H(r -t ) (- rMN)]
iemz
m)
: 2
X [H(G - eMX + GI) - H(@ - eMN 81)] e
) I1
otherwise
-
ceeen. (8.19)
where Ty and 1y are the maximum and minimum range

measurements in class 2, and 6 and

MX

minimum bearing measurements in class 2.
is sensible because if two measurements

r

I or

separated in range by more than

8 are the maximum and

MN

Note that expression (8.19)

allocated to class 2 by Y are

28,

in bearing by more than I

the hypothesis must be false. If this is not so, the extreme class 2

measurements restrict the possible target position under ¥ to the

rectangle in r,® space shown in Fig 8.2. This is equivalent to a
region A 1in x,y space, and for convenience we shall define the
function:
(—O, if m! > 0 and %x + y2 > r2
2 MN
or x2 + y2 < (rMX - rI)2 or tan—1(y/x) > Ot 8.
-1
U, (0 = <i or tan (y/x) < b = 01 }
0, if A does not exist but mé > 0
Lj’ otherwise (including the case mé = 0)

4_———-—-—-—-—“
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Thus the required likelihood of the measurements Z 1is given by:

d*ﬂ(gtsﬁ(g),R) if o' = 1

2
x 3 1
P(Z x,v,¥) =V 75 UA(>_<)< \_

ceene. (8.20)

8.3.2.3 First approximation: the prior pdf p(x|¥') is

Gaussian

Having found this likelihood we may proceed with the solution via
equations (8.3) and (8.18). However to arrive at a practical filter
it will be necessary to make a number of simplifying assumptions so
that the resulting filter is sub-optimal. The first approximation is

that the prior pdf p(g];?") in equation (8.3) is Gaussian:
plx|l#") = ,f(g;i.,MJ ,

where i refers to the hypothesis # . As will be seen from

equation (8.22) below, this is incorrect, but it allows us to write:

p()jlzt,;{/') « p(ztlﬁ,%') p(x|#")

= ¢ (z ,h(x),R)j/(x,x ,Ml)
o J"()_c,glt,Plt) f(gt;h(gl),S) . (8.21)
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where we have made use of the extended Kalman filter approximation
(see section 6.2). Thus, using the above result with (8.20)

in equation (8.3), we obtain:

-
~r ) Co
UA(§X4 (}j,git,Pit)/F1 if m 1

p(xly,#",2) =T

o_ 1 ' =
UA(EXA/(§,§i,Mi)/F2 if m o ,

-

ceen.. (8.22)

= fad . b . - 3 -
where F1 /LA(§)j/(§,git,Pit)g§ and F, 1is similar. The function

UA(g) effectively truncates the Gaussian in (8.22), so that the

uncertainty in the vzlue of x is reduced by the information from the
class 2 measurements. Unfortunately the integrals F1 and F2 of the
aussian over the region A cannot be evaluated analytically.
However.if (iit, ?it) were well inside A and the corresponding
standard deviations from Pit were small compared with the dimensions

of A, the effect of UA(§) in equation (8.22) could be ignored.

Now consider the posterior probability of hypothesis (y,¥"),

¥

2 interfering

given by equation (8.18). The probability of receiving m
class 2 measurements is given by a Poisson distribution with mean

pIVI » where VI = 26TrI is the volume of the interference region.
1)

3 false measurements is given

Similarly the probability of receiving m
by a Poisson distribution with mean pV , where V 1is the volume of the

surveillance region. Thus from equation (8.8):
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11 2 .
e (oIvI) L if y

1 , 1f v

Also using (8.20) and (8.21) with equation (8.7), we have:

-P(Z]Y,%') =ﬁ

-m
v 3

-m'

2
VI

V(Et ’h(;—‘i> ’si),[UA'(’-‘lV(’f;git ’Pit)
if m; =
/UA()_c)_,/(g;:Ei,Mi) dx
if m! =

------

Inserting (8.23) and (8.24) into (8.18) we obtain:

,
PD e eV

~
=P
e

«2

P

IVI

°1

m'

mé/(éﬁb(ii)’si) PevI#} oei )

3

i’ it)‘-h—" if v

2 .
/UA()_C)JV(g,g

, 1f v

]
—

dx

.24)

/E
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v "
ee{e, iz =< (1- 7)) @00 mefyia) ref)
" -p_V. m! N
' ™ - .
e 0; /ﬁA(Elﬁ’(§,§i,Mi)g§, if vy = 1
Xﬁ r/g
1 » 1f v = 0
L )
. vl
_ if m1 0
...... (8.25)

where E 1is the normalizing denominator which is chosen so that:

)

y=0

XEMM]
g,
2
S
3
~
——
[}

Thus in principle, the posterior pdf of x may be obtained by
substituting (8.22) and (8.25) into (8.17) and summing over all
feasible hypotheses. The main difficulties here are that an integral

of the form:
/UA(>_<>/(>5;3it,Pit) dx

must be evaluated for every hypothesis with y = 1 and that thers are

a very large number of feasible hypotheses. In fact, if m measurements
are received and if y = 1 , the number of feasible hypotheses Y con-
cerning the class membership of ﬁeasurements is (2 + m)Zm_1 . This
figure is very largc even for modest values of m : for m = 20 there
are over 107 measurement association hypotheses. So, to derive a

practical filter further simplifying approximations must be introduced.

I IRIRRm————
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8.3.2.4 TFurther approximations to derive a practical filter

Firstly we shall ignore the contribution of the class 2 measure-
ments in the expression for p(gﬁy,5Y",Z) . Thus equation (8.22

becomes:

Aetr) o m
p(xly,#',2) =

“’ﬁ(g;gi’Mi) if m; = 0

(This is the same sort of approximation as made in the deviation of the
Auxiliary Sensor filter (see section 7.4.2).) Thus information from the
class 2 measurements is only taken into account via the probabilities
Pr{y,;?"|2f . Clearly some potentially valuable information is being
discarded here, however it does allow a useful simplification of

equation (8.17) (and it ensures that the prior pdf p(x|#') is
Gaussian). Let us write the measurement association hypothesis ¥ as

the pair:
y o= (a,N)

where & indicates the choice of true measurement (class 1) and A
specifies the partition of the remaining measurements between
classes 2 and 3. From(8.26) it can be seen that p(x|y,#",Z) is

independent of A , so that equation (8.17) may be written:




p(x]2)

F~/]d

Z z p(x!ly,2, #2) Pr{y Q Z/Z} (8.27)
0 Al

1
P )

—
>
—

where p(§[Y,Q,;?1Z) is given by equation (8.26)

and

Pr{y,n,ﬁ’ﬂz} = z Pr{y,g,/\,%lz} ) (8.28)

All
A

The usual acceptance test may be employed to make a short list of Q

hypotheses for each hypothesis & .

We now introduce the last approximation which allows us to perform
the summation over all A in equation (8.28). It is assumed, only for

the integrals in equatiom (8.25), that:

- 8it)

and (8.29)

1)

3
—
"

%
.
[nd
-
o~
H
t
SN
i}
(o3
——~
[

N
"
wt
=

[T
p
(]
[=d
~
1"
!
[EN]

Thus the uncertainty in the value of x represented by Pit or Mi
under the hypothesis (9, #) is ignored. It is recognized that this
contradicts the first assumption given by equation (8.26), and although

this is unsatisfactory, it does enable a practical filter to be derived.

Consider the probability Pr{y,Q,A,é?ﬂZ} given by equatior. (8.25)
in the light of assumption (8.29). With this assumption, for y =1,

the interference region is known precisely under hypothesis (9,%#).




PI{Y,Q,A,%E Z}

hypothesis is zero.

Thus if all of the measurements associated with class 2 by hypothesis
A are in this region, then the integral in (8.25) is unity, .
Otherwise the integral is zero, so that the probability of this

So, from (8.25):

R A I 11012 Pr{y)%}m{%}
~ i _ -
. ; [
PDJ”<Et’b(§i)’Si)’ if m 1
x{ ?/E
- ; v -
1 PD ’ if m‘I 0
_ -
if vy = 1 and if under A , all of the m!

2

class 2 measurements are within the interference
region defined by @ .

ml

PV, 3 Pr{Yl%} Pr{%}

- = ) Voo
PD-V(Et’E(Ei)’Si)’ if m, 1
X >‘/E
- : v -
1 PD , 1f m, 0
-
if vy = 0. 4

0, otherwise.




ro
o
O

Now if y = 0 , then all measurements apart from the true
measurement belong to class 3, Ze if y = 0 , for each (Q,%) there is
only one hypothesis A . So if y = 0 , there is only one term in the
summation of equation (8.28) and Pr{y,Q,;?ﬂZ} is given directly by
equation (8.30). However if y = 1 , then for each (Q,¥), the number
of feasible hypotheses A 1is equal to the number of ways of partitioning
the measurements in the interference region between classes 2 and 3.

Suppose that with y = 1 , under hypothesis (Q2,#), m. measurements

I
fall within the interference region. If mé of these measurements belong
m
to class 2, then there are exactly o' ways of partitioning the o
2

measurements between classes 2 and 3. Since the measurements outside

the interference region all belong to class 3 (excluding the true
m

measurement), there are exactly o' feasible hypotheses A for
2
which mé measurements belong to class 2. The probability of each of

these hypotheses is the same and it is given by (8.30). Also

since mé may take any value between O and m for vy =1 the

I H

summation (8.28) may be evaluated using equation (8.30) and the

identity:

m
I
' m_-m} m

"ty M2 1 . .\ I
N (o oI)
m}=0 2
2

Thus the probability Pr{y,Q,éVWZ} may be written (absorbing some

common factors into the normalizing denominator):
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PD/(gt;}_x(?_ci),si), if m o=
xﬁ /E

- v ! =
(1 PD)o , if m} 0

Pr{y,g,%\z} =<

he : v -
PD/(gt,l_m(:_ci),si), if n} 1

X /E
(1 - PD)p , if m, = 0
if v = 0
-
creene (8.31)

where the normalizing denominator E 1is chosen so that:

By applying these approximations, the number of hypotheses that
must be explicitly considered has been reduced to a feasible number,

provided that the usual acceptance test and mixture reduction algorithm

— ]




231

are employed. The posterior probabilities for the feasible hypotheses
are simple modifications to those of the baseline problem given by
equation (2.18). To evaluate the main modifying factor for y =1

it is only necessary to count the number @ of measurements falling
within the interference region defined by the hypothesis (2, #); the
awkward integrals of expression (8.25) are avoided. Due to the
incorrect assumption (8.29) that the state vector is perfectly known
under (Q,#), this modifying factor may be overselective, so
occassionally an undue weighting is given to the wrong component. To

compensate for this, in the evaluation of m_ a heuristic adjustment

I
has been made to the boundaries of the interference region as defined
by (Q,#). Each azimuth boundary has been increased by one standard

deviation of the true measurement bearing error o, , and each range

0
boundary has been increased by o, (see Fig 8.3). This has the effect
of 'softening' the selectivity of the modifying factor (1 + pI/o)mI

in (8.31). Further details of the filter implementat’ ‘mn are

described in the following section.

8.3.3 Implementation of the filter

The implementation of the tracking filter derived in the previous
sections is based on equations (8.26), (8.27) and (8.31). The
formation and control of hypotheses is shown schematically in Fig 8.4.
Each hypothesis # from the previous time step is predicted forwards
and the usual acceptance test is applied to identify a set of probable
true measurements for each # . Together with the possibility that
the true measurement has been missed, these sets make up the
hypotheses. For each (Q,#) hypothesis, the posterior pdf of x is
evaluated from equation (8.26) (from our approximation this 1s

independent of vy ). Each (Q,#) hypothesis is then split to allow

s —————— S S




for the possibilities of interference absent or present (y = 0 or 1),
and the posterior probability of each (v,2,#) hypothesis is calculated

from equation (8.31),

The mixture components and probability weights of the posterior
pdf of x for the current time step are now availabie (see equation
(8.27)). The required estimate may now be extracted, the usual

minimum mean square estimate being given by:

where git and x, are the means of the mixture components (see
equation (8.26)), subscript i corresponds to # , and t 1is the
choice of true measurement defined by Q . Also the probability that
interference is present, based on the filter's processing of the

received measurements, is given by:

P, = ZPr{Y = 1,9,%[2} . (8.33)
All All
H Q

For implementation using the Clustering Algorithm, before mixture
reduction the hypotheses are divided into two groups for vy = 0 and
v = 1 . The Clustering Algorithm is then applied separately to the
mixture distribution corresponding to each group. This ensures that

even after reduction, each mixture component is associated with




vy =0 or y =1 . The reduced mixture can the. be predicted forwards

in the usual way, ready for the next set of measurements.

An implementation using a PDAF type of approximation is shown
schematically in Flz 8.5. This is slightly different from the usual
PDAF philosophy in that two mixture components are allowed to survive
at each time step. These two components correspoud to interference
present or interference absent. When a set of measurements is received,
each of these components is split according to Yy = 1,0 , and the PDAF
is applied to each branch. Thus four branches are created with
B B8

probability weights § and Byy (see Fig 8.5). The two

00’ "01* "10

y = 0 branches and the two vy = 1 branches are then merged separately

to form a two component mixture distribution with probability weights:

and

These components are predicted forwards to the next time step.

Note that the standard PDAF avoids the célculation of the mean
of each mixture component before reduction. However for this problem,
as for the Auxiliary Sensor filter (section 7.4.2), to evaluate the
required probability weights,.the means must be available. They are
required to identify the interference region so that m; can be found

(see (8.31)). Tnus much of the efficiency of the standard

PDAF is lost in this implemenation.
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8.3.4 Simulation example

Target trajectories and measurements have been simulated for the
problem defined in section 8.3.1. The standard sector scan parame‘ers
shown in Table 6.1 have been used with the following interference

parameters:

" 5
rI = km
Interference
Tegion ﬁ
GI = 0.04 radians
-
F
Pyy = 0.9, P10 = 0.1
Switching
probabilities 9
Poo 0.9, Poy 0.1

One hundred replications of trajectories and measurements have been
generated for each of the following values of interfering measurement

density p.: 10, 20, 40, 100, 200 and 400 km 'rad”' . (Note that the

.
density of the usual false measurements is p = 10 km-Irad-1.) The
standard sector scan filter, which assumes there is no- interference,
and the Interference filter described in the previous section have both
been applied to the simulated data. In each case results have been
obtained for both PDAF and Clustering Algorithm reduction techniques.
The percentage of maintained tracks for each of these filters is shown
in Fig 8.6 as a function of oy -

. . . . . . -1
The introduction of intermittent interference with OI = 10 km

rad ! has negligible effect on the performance of the standard CAF

J'"'''"'"'-"-''-----l..-IlllIlIIlIIIIlIIlIlIIIIIllIIllllIIIIIIIIIIIIIIIIIIIIIIIIII.IJ




and PDAF. Also the performance of the Interference CAF is very similar
to that of the standard CAF, and likewise the performance of both PDAFs

is similar. (For this low level of » with interference switched on,

°1
the average number of interfering measurements generated per scan is

only four.) With increasing » the percentage of maintained tracks

1
for the standard filters tends to decrease, as would be expected.

However the performance of the Interference PDAF improves with Py

and tends towards the performance of the Interference CAF. This
improvement is because the Interference PDAF is making use of inform-

ation from the interfering measurements. As p increases, more

I

measurements fill out the interference region, so that the boundaries
of the region become more well defined (see Fig 8.2). Thus the
probability weight for the correct { hypothesis is more strongly

reinforced as increases. The percentage of tracks held by the

Pr

Interference CAF remains roughly constant at about 957 as oy

increases; by modelling the intermittent interference, the performance

degradation of the standard CAF is avoided.

As expected, the average number of mixture components generated

increases with p for both standard and Interference filters (see

I

Fig 8.6). For £ 40 kmn1rad_1 , the standard filters generate less

o1

. . - -1
components than the Interference filters, while for p_. > 100 km 1rad .

I

the standard filters generate more components. This may be explained

as follows. When o is small, the standard filters are only likely

I

to encounter a few interfering measurements, especially if track is
maintained. If the Interference filters encounter a similar measurement
density, they will generate more components since allowance is made for

the possibilities y =0 and y =1 . When o is large, even if the

I

standard filters maintain track, they are likely to have been attracted

j-----lIll.illl-lIllllllIlIlIIIIIIllIIIIIIlll..llll.ll.'..l.lll..i
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into an interference region (and so encountered a high density of
measurements) during their traversal of the sector. However the -
Interference filters recognize that interference may be present, and

make use of their knowledge of the distribution of these measurements
relative to the target position, to lead the track beside the inter-

ference region. Thus these filters avoid regions of high measurement

density and so for large Py » On average they generate less components

than the standard filters, even though the possibilities y =0

and y =1 are included.

The variation with o in the number of components generated by

I
the CAF is reflected in the average cpu time to perform a single
iteration (see Table 8.1). However the processing time for the standard
PDAF is always less than the Interferemce PDAF, which requires explicit
calculation of the mean of each mixture component (see section 8.3.3).
The error statistic E 1is also given in Table 8.1. This shows that
even for held tracks, both the standard and the Interference filters
tend to underestimate their tracking error, particularly for large

values of o This is probably due to the rather sweeping

I
approximations made in the deviation of the Interference filters and
the omission of any interference model for the standard filters. The
error underestimate is worst for the standard PDAF. As for the

standard sector scan problem, for lost tracks the filters often

seriously underestimate the tracking error.

Fig 8.7 shows the filter's achieved mean square position error

over the first forty time steps for OI = 40 and 400 km_1rad_1. For

maintained tracks, the accuracy of the Interference filters is superior

to the standard filters. The improvement is most evident for

-1 . .
ep s 400 km rad 1 . For the standard filter, tracking error for the

R R e




ro
[¥S
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held tracks increases with p while for the Interference filters the

I bl

CAF is little changed and the PDAF shows some improvement.

.

Finally, Figs 8.8 to 8.10 show three examples of target tracking

for = 10, 40 and 400 k_m_1rad-1 . Each of these figures shows

°1
trajectory estimates produced by the CAF and the PDAF for both the
standard filter and the Int..ferecnce filter. The points at which
interference switches on and off are indicated on the actual target
paths. Also for each example a plot of interference switching against
time is presented. This may be compared with the Interference filters'
internal assessment of the probability PI that interference is
present (obtained by summing over the appropriate mixture weights -

see equation (8.33)). For Py = 400 km_1rad-l , the plots of PI are

essentially identical to the actual switching waveform, showing that

the filters are very certain as to the presence or absence of inter-
ference. With this high density it is easy for the filters to detect
the large number of extra measurements behind the target when inter-
ference is present. (A sample plot of the measurements received on a

single scan for = 400 km_11:ad—1 is shown in Fig 8.11.) As o

°1 1

is reduced the presence or absence of interference becomes more

difficult to detect, and for the sparse interference = 10 km-1rad-1 ,

P1

the traces of P, are quite different from the actual switching

signal (see Fig 8.8). At the higher densities of = 40 and

1
400 km-1rad-1 , the effect on the standard filter tracks of interference
appearing behind the target is obvious, and the value of modelling the

interference is clearly demonstrated.
8.4 Couclusions

It is fairly straightforward to derive the formal Bayesian

solution to the extension of the baseline problem to multiple

e
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measurement classes. However the interference example shows that very
complex filters may result when this general solution is applied to
specific problems. By making several approximations a practical
filter has been derived for the interference problem. In spite of
these approximations, simulations show the performance benefit of
modelling the intermittent interference. Especially for high levels
of interference, the performance of the multiple measurement class
filter is clearly superior to the standard filter which takes no

account of possible interference.
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{(km)
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Fig 8.11 Sample plot of all measurements received on a single scan
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9 CONCLUSIONS AND FURTHER WORK

In this thesis we have shown how Bayesian techniques may be
applied to tracking problems where the origin of the measurement is
uncertain. A mixture reduction technique has been developed to con-
tain the ever growing computational requirements of the optimal
Bayesian filter. The performance of this Clustering Algorithm has
been assessed by simulation for a straightforward baseline tracking
problem, and it has been compared with the PDAF method. Filters have
also been developed for extensions of the baseline case including data

fusion and measurement interference problems.

+ The detailed conclusions and discussions for this study are given

at the end of each chapter. Some overall observations are given below:

(i) The performance of the CAF is always better than or

similar to that of the PDAF. This improvement is at the expense of

of increased computational memory and processing requirements.

The processing time for the CAF is usually within an order of

magnitude of the PDAF processing time, although for very difficult
" cases, where performance is in any case poor, the excess may be

several orders of magnitude.

(ii) Bayes theorem provides a convenient recursive mechanism
for incorporating information from various sources, and for many
interesting tracking problems a filter based on the optimal
solution may be derived. However, even for minor extensions of
the baseline problem, the optimal filter may be very complex so
that a number of significant approximations must be imposed to

obtain a practical filter.
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S (iil) Simulation has proved to be a useful tool, both for
performance assessment and as an aid to understanding the

operation of the filters.

This study has been concerned with estimating the current state
of a single target based on past measurements. We propose to extend

this work to include trajectory estimation and multiple target tracking.

For some applications it is necessary to estimate the past
trajectory of a target as well as its current position. Each new
measurement that is received provides information on the past values of
the state vector via the target model, and clearly this information
should be used for trajectory estimation. A filter which refines past
estimates in the light of subsequent measurements is called a smoothing
filter. 1In terms of the pdf of target state, for a smoothing filter

we require:

p(§k|Z1, ceey Zn) s

where k ¢ n . For standard filtering problems without measurement
uncertainty, efficient optimal smoothing algorithms have been derived
(see Jazwinski27). For trajectory estimation, it has been shown that
these filters can provide an imp;essive improvement over the standard
Kalman filter (see Refs 53 and 54). The smoothing problem for uncertain
measurement association is more complex. Mahalanabis and Zhou55 have
suggested smoothing back one or two time steps to improve a PDAF
estimate. Also we have obtained some encouraging preliminary results
for full trajectory estimation using a PDAF based smoothing algorithm.
We hope to extend this study to investigate the merrits of retaining

more than one component for the smoothing operation.

—————————— L e
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The problem of tracking multiple targets is more complicated than
the single target case. This is due to the range of extra measurement
association hypotheses that must be taken into account. The coarse
acceptance tést is most valuable here in eliminating improbable
associations between measurements and remote tracks. Blackman1
presents a branching algorithm for generating the appropriate hypotheses
which is based on techniques developed by Reid23 and Mori et a126. As
for the single target case, the number of feasible hypotheses'grows
rapidly, and we intend to investigate the application of the Clustering
Algorithm to control this growth. Also we propose to study the multiple

target data fusion problem.
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Appendix A

THE KALMAN FILTER RELATIONS

A.1 The Kalman filter problem

The Kalman filter problem is similar to the problem statement of
section 2.2 of the main text, except that only a single true measure-
ment is available at each time step. A simple form of the Kalman

filter problem is stated below.

The state vector x 1is assumed to obey a linear system model:

T (a-1)

where X is the n~-dimensional state vector at time tk ,

¢ 1is the n x n state transition matrix,
I' is the n x r distribution matrix,

and W is the r-dimensional system driving noise which has a

Gaussian distribution with zero mean and covariance given by:

T
E[y2 Yk] = Qéﬁk .

Here Q 1is a positive definite r x r matrix and le is the

Kronecker delta. At each time step tk , @ u—dimensional measurement

vector z, is available, which is linearly related to the state vector:

z, = Hg vy, (A-2)

where H 1is the u x n measurement matrix

and Y is the u-dimensional measurement noise which has a Gaussian

distribution with zero mean and covariance given by:

Il---I-lll-llIIl-IlIlIIllllllIlIIlIIIIIlIIIIIIIIII.ll.llll.lllllll.llllllll‘
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Appendix A

T
E[!l !k] = R, -

Here R 1is a positive definite u x u matrix and sz is the

Kronecker delta. Also it is assumed that initially at time ty s the

state vector X is known to have a Gaussian distribution with mean

1

X, and covariance M1 . In a more general formulation, the covariance
matrices and system matrices may depend on k . However the resulting
filter is similar and so for simplicity of notation, this dependence

is not included.

Using this information, the problem is to determine the pdf of

the state vector at each time step t conditional on all the measure-

ments received up to and including ty From this pdf an optimal

estimate according to any desired criterion may be obtained.

Since all relationships are linear and all distributions
Gaussian, the required pdf of the state vector at each time step is
also Gaussian (as is shown in what follows). This is why a particularly
neat and elegant recursive solution may be obtained. The Kalman filter
recursion at each time step is essentially a two stage process. In
the first stage, the prior pdf at ¢t is updated with the measurement

k

z, to obtain the required posterior pdf. In the second stage, this

k
posterior pdf is predicted forwards to obtain the prior pdf for the
following time step sy The recursions for these two stages will
be obtained using Bayesian techniques in- the following two sections.

(Dif ferent methods and optimization criteria which also lead to the

Kalman filter relations are detailed in Refs 27 to 31.)
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A.2 Update of the prior pdf

Suppose that the prior pdf at time t,

measurements up toand including z _, ) is given by:

K
P(§klzk-1) A CRE M)

where the mean X and covariance Mk are known and Zz = {51,
This is true for k = 1

all k .

(conditioned on all
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and by induction, it will be established for

The required posterior pdf may be obtained directly from Bayes

theorem:

p(5k|§k > Zy) p(fk}zk—1)
p(fklzk-1)

p(x]a) -

(A-4

2

)

.

where p(Ek‘Zk_1) =_/;(Ekl§k , Zk—1) p(§k‘Zk_1) d§k is the normalizing

constant. Now:

P(Ek‘Ek s Zk—1) P(§k|§k) R

Z contributes no extra information and from

since giver
g k-1

)-(k ’

equation (A-2):
p(ik\§k) = “4P(Ek s R R)

Hence the numerator of equation (A-4) is given by:




258 Appendix A
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]

[(21r)n+mlRl ‘Mk‘]_i exp%‘ 5(’—% - gk)T P;’(:_ck - gk) + r'g (a-5)

on combining the quadratic forms (see section A.4), where

F = Ml: + HR H (A-6)

g = x ¢+ PkHTR_1(Ek - H}:ck) (A-7)

and

vo- - us T T )—1 _

r f(z, - ) (g« (2 Hx, )
which is independent of X

The denominator of equation (A-4) is the integral of equation (A-5)

with respect to X ¢

P2 %) = [<2ﬂ>m+“lR||Mk|]~£e"'[(zTr)“lPk.]i . (a8)

Dividing equation (A-5) by equation (A-8) gives:

p(’ﬁklzk) ) «M(’-‘k A Pk) . (A-9)

So the posterior pdf of x is Gaussian with mean gk and covariance

Pk . The expression for Pk may be written in a more convenient form

using the matrix inversion theorem (see Ref 27 page 262) to obtain,

‘1------u---llllllllllIllllllllllIlllIlIlIlIllIlIIIIIIIIIIIIIIIIIIIIIIII‘
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with equation (A-7), the update recursions in the forms that are

usually quoted for the Kalman filter:

S A (419
where Vie T " Hgk is known as the innovatioﬁ,
and Kk =P ' R-1 is the Kalman gain. The covariance P which

is required for the evaluation of the gain matrix is given by:

(from equation (A-6))

= - T_1 -
Pk—M.k M.kH sk HMk (a-11)
h S, = H HT+R
where k= Mk .

We can now verify that Sk is the prior covariance of z -

The prior pdf of Z is given by equation (A-8), from which:

m ST bt - - -
ol = [ ] ol (e ) 5 (e )|
Also

i

R[] = IR ] 1

lHMkHT+R| = ‘sk‘ .

. . .o . 36
using standard identities for determinants (see, for example Soremnson™ ).

Hence:
= ¥ s Hx -12
p(gk!zk_o /(gk P oHx sk) . (a-12)
Note also, that since v, = z -~ H%k , the prior distribution of the

innovation 1is Gaussian with zero mean and covariance Sk .

-ﬂ----n----llllllIlIIIIlIIllIl-lIIIllllllllll.llIll..ll.ll.lll...l.lll..ll.'.l.
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A.3 Prediction
To complete the recursion, it is necessary to predict forwards from the

posterior pdf at t, to obtain the prior pdf at time Bl 1e

P(x 120

Now, by definition,

P17 = ‘[p(§k+l’§k[zk>d§k

= ~/p(gkﬂlzk,zk)p(gcklzk)d}_ck . (A-13)

p(§k+ll§k’zk) = p(§k+1|§k) , slnce given X Zk contributes no useful infor-

mation, and from (A-1)
p<§k+1’§k> =./VY§R+1]®§R,FQFT) . (A-14)

Hence, from (A-9) and (A-~14)

n

_% _
Pl px 2y = [en®iratlie ] e {— b, = 0w arD T g, - o)

S 3k)TP;1(§k ) 3k)}
20 ...T -4 T -1
= [<2n> |rQr HPkl] exp{- b, - DD (¥ - d)

~ T -1 -
TG T M) M (e T “’fk)}

on rearranging the quadratic forms (using the result of section A.4),
where d is independent of x ,

D-l - ¢T(FQI‘T)-1® + P;I

T T
N = 3 *® r
and .11(*] ka + TQ

e
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The expression (A-15) mcy be integrated with respect to X to give

ST
_£ _ R
) lmikzﬂn“ijPU am+.“ﬁﬁ]-¢%ga&h(ﬁ&l_¢ﬁg}

Also
4

! T -} -1 T -
[DI*clrarife, - (Ip "Tirar-fie, |

-1 T T -1
(e [irer® + ep o7 [ [P, D)

-4

I, |

18
using standard identities for determinants (see Ref 36).

Therefore,

P 180 = A 8 M) (A-16)

where %k+l = 0%

T T
and Mk+l @Pk¢ + IqQr

These expressions for the mean gk+l and covariance Mk+1 , complete the Kalman
filter recursions.

A.4 Combination of quadratic forms

Lemma If B and C are symmetric and positive definite, then

a-a0B a-a0+@-07c'o-0 = G-plE-pre . @I
where y =b + DA'B '(a - Ab) ,

p! - alg A+ ¢!
and ' = (a- aD)T(B + acah) '(a - ab)

Note that r does not depend on X .

----------l-lIIllIllIIlllIlllIIIIllIIlIIIIIlllllllllllllll.lllll.'
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Proof Consider the left-hand side of (A~17):

T -1 - - -
(a - Ax)'B (a - Ax) + (b - >_<)TC ](13 - x) = :_(T(ATB s e c 1)5
~xTTs s v ¢l - aTE T
AR R
= ¥ '
- x7(a”8" (@~ ap) +D " 'p)

((5"A§)TB-]A + b7

+ a B-la +b°C b

where r

]
|
<
(W)
<
+
o
o=]
(1]
+
(o
@]
to’

1 T -1

ADA'B~ T

- (a2 - a8 (a - AB) - 2a'B 'Ab + b'ATB'ab

- bTa"8 2 + pTATE A - b B A + ¢chb + 2T e + b7y

(a - Ag)T[é" cp T s s DT e - aw)

and from the matrix inversion lemma (see Ref 27, p 262), the term in square
brackets is equal to

(8 + acaty”!

which completes the proof.
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MEAN AND COVARIANCE OF A MIXTURE DISTRIBUTION
AND THE PDAF ALGORITHM

Consider any mixture distribution with pdf

) .
p(x) = z 6, p; (x)

1=1
where pi(§) is a component pdf
and Bi is a probability associated with the ith component
such that:
B. > O
i
and
N
i=1

Also let the mean of the 1ith component be 31 and let the covariance

of the 1ith component be Pi

The mean of the mixture is defined by:

/>_<P(>_<)d§

(Ed
[}

(B-1)

n
w
e
14
o
e
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14
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[a N
1
!
[\./]2
™
-
1%
-

The covariance of the mixture is defined by:




264 Appendix B
T
P = /(:j'ﬁ)(:f-)_c) p(x) dx
- /EETNz)dz-%%T
N
= ZBi/ggng(x)dx—ggT
i=1
But
s &7
P. = j[x x p.(x) d&x - %. %, ,
1 - -1 -1
S0
N .
A T 5 of
Po- Zsi(Pi+§igi) iz (B-2)
i=1

Another form for this covariance may be obtained by observing that:
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Therefore P = z B, P, + Z Bi(’-‘i g)(gi }_() . (B-3)

B.2 For the PDAF, the posterior mixture distribution is approximated
by a single Gaussian at every time step. The Gaussian approximation
is chosen to have the same mean and covariance as the mixture. The
PDAF is an efficient algorithm because for this approximation, explicit

calculation of the mean and covariance of each individual mixture

component may be avoided.
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Due to the single Gaussian approximation, the prior pdf at any

time step is approximated by:
p(xl?) = #xsx,m .

After update by a set Z of m measurements, the posterior pdf is:

m
p(x|z) = z BJLJ/(’_‘ 3 Ry P;L) > (B-4)
2=0
X + Ky, if 2 #0
where 32 = _
X if L =0
Vg T Zp < Hg
and
P! if L#0
1 -
PZ =
M if L=0 |,

where P' and K are obtained from the usual Kalman filter update
relations. equation (2.8). For the PDAF approximation we only require
the mean & and covariance P of equation (B-4). From equaﬁion (B-1),

the mean 1s given by:

(B-5)

1=
f
r\/jg
w
Py
10
x
"
1%
+
=
1<

where Vv = 5222 .

m
2=1

Therefore we have:

-M
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K(gz - g) if v # 0
R -8 = '
-£ -
- Kv if g2 = 0

Substituting this into equation {(B3-3) gives the required covariance

P of (B-4):
m
= '
=1
m
+ K|B va + B {v,v, + vv - 2vv |k
0~- g\ e T 22 22
=1
m
_ - ' T _ T]. T _
= s+ (1-8 )P + K z Bvyyy = W KT . (B~6)
=1

Note that the computational effort necessary to evaluate equations /B-5)
and (B-6) is modest in comparison with the full Bayesian filter (see

Ref 11).




Appendix C

THE JOINING ALGORITHM WITH MEASURE dij
IS NOT SUBJECT TO REVERSALS

Suppose that at some stage during mixture reduction, the closest
components according to the distance measure given by (3.8) of
section 3.6.1 have means x and y and weights B, and By . The

distance between these components is dmin » Where:

2 2
.= f(Bx , By)||§ - yll
where |[x - xll2 = (x - X)T P_1(§ -y

and £(8_ ,8) =828 /(B +8)
X y Xy X y

As they are closest, these two components are merged to produce

a new component with mean:
+
U RETE Y
- B+ 8
X y

and weight B8 =8_+ 8 .
w X v
Now consider any other component with mean 2z and weight 52

The distance between this component and either of the two which have

been merged must be greater than or equal to dmin s SO
2 2 2
dpin € dxz - f(Sx i Bz)||§ z|| ’ (c-n
and
2 2 2
= 2 - | -9
dain € 4y, f(ﬂy , 8, )1y - 2l (c-2)

To confirm that the minimum distance increases monotonically as

reduction proceeds ({2 it is not subject to reversals), we must prove

that:

e
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T
zw min
Now:
2 2
- f(Bw,Bz)Hz-wH
B x+8B ¥
= f(s ,B)HZ--L—-—L—IIZ
w z B,
= (s, . 8 )(z - - (x - g)
- w '’ z) (E Z) Bw(§ X)
32
2
- f(BW,BZ)%Hg-zH + =5 lx -yl
B
B
+B—x[liz'>_:.‘12—llz-yl!2-H}_t-zi
W
f{ig , 8B B8 )
2 | 2
- (“’8 z)gsyilz-zll o iz = xll? - 2T 1y - yi1?)
w W
Since
f(sw,sz) &, ) 8,
B, Bw(sw + 82) Bw + 82

2 2
dzw T B _+ 8 g(gy * 8z)dyz * (Bx * Bz)dxz Bz dming
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Hence from (C-1) and (C-2):

This completes the proof.

2

min
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Appendix D

COMPUTATIONAL REQUIREMENTS OF THE REDUCTION ALGORITHMS

D.1 The Joining Algorithm (Fig 3.1)

As explained in section 3.6.1 the operation of the Joining
. . . . . 2 .
Algcrithm is centred around a symmetric distance matrix (dij) with

dii = 0. Thus it is necessary to store the upper triangular part of
2

. . . NT - . .
the matrix which occupies ~—7T_§ storage locations, where N 1s the

original number of components in the mixture.

The most time-consuming operations are the evaluation and com-
parison of the distance measures. The calculation of each distance
involves the evaluation of a quadratic form which requires of the order

2 . . 2 - . . .
of n~ multiplications and n~ additions, where =n 1s the dimension
of the state space. Note however that the matrix P in the distance
formula equation (3.8) is constant, since the merging of components
preserves the overall mixture covariance. Thus only one matrix

inversion suffices for all distance evaluations.

To reduce a mixture from N to M components, the number of

distance calculations required is

N-M+1
N2 - N .
NDJ = (N - 1)
i=2
M
= N(N -2) - ?(M -3) . (D-1)
The identification of

min di'

i,] ]

where 1 < j , requires
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%(m - 1) -1

comparisons at each iteration, where m 1is the number of remaining
components. Thus the total number of comparisons required during the

reduction of a mixture from N to M components is

CJ

2
|
—
[(STR=]
—~
=]

t
Z
|
o

Iov- s 1>{N2+N<M- Do+ M- D2 - 7} . (D-2)

There are N - M + 1 terms in the summation because one extra evaluation
of @ig di' is required for the algorithm stopping criterion. Note that
the ;ééuired number of comparisons is of order N3 and the number of
distance calculations is of order N2 . The number of these operations
is shown in Fig D.1 as a function of M , for the cases N = 100 and

N = 15. The value of N clearly dominates the number of operations,

and although this decreases with M , the decrease is small while

M < % . Note that the number of comparisons required to find the com-

ponents with the lowest B weights (see Fig 3.1) has not been included

in the above total as their number is relatively insignificant.

D.2 The Clustering Algorithm (Fig 3.12)

Unlike the Joining Algorithm whose computational cost can be pre-
dicted quite accurately, the cost of the Clustering Algorithm is very
dependent on how quickly the mixture components are clustered and on
how many iterations are required to adequately reduce the mixture. The
most time-consuming operations for the algorithm are distance evaluations
and comparisons; the merging of selected components into a single Gaussian

is relatively inexpensive.

T S S AR
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In the formation of a single cluster, the distance from the

cluster centre to every unclustered component must be evaluated. The

- total number of distance calculations required for an iteration of the

algorithm is

NI')C = M'(N" - 1) - z ' - i)mi (D-3)

where N' 1i5 the number of components at the start of the iteration,

M' 1is the total number of clusters formed during the iteration and m,
is the number of components combined into the ith cluster. For given
N' and M' , bounds on Néc may be obtained by considering the most and
least favourable values for m . The lower bound is obtained when

N' - (M' - 1) components are combined into the first cluster so that all

further clusters only contain one element, <e

N - - 1) if i=1
m. =
i
1 otherwise . (D-4)
Thus the lower bound on Néc is given by, from equation (D-3),
L. = N' + b—'IL(M' -3) . (D-5)
DC 2
The upper buuud is cbtained if the first M' - 1 clusters only contain
one component, SO
m, = 1 for 1€M -1
and
P m, < N'" - (M" - 1) . (D-6)
Thus the upper bound on Néc 1s given by, from equation (D-3),
' ' L
‘pc = M (N' -3 (M"*')) . (D-7)

, . - ES———
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Also, since the distance measure for each cluster is normalized by the
covariance of the cluster centre (see equation (3.9)), M' matrix

inversions are required. 1In Fig D.2, Uﬁc and LBC are shown as a

function of M' for N' = 100 and N' = 15,

To select the components for clustering, each of the Néc
distances must be compared with the clustering theshold. Also com-
parisons are required to identify those components which are closest
together so that they can be merged if no components are clustered.

However if components are clustered the minimum distance is no longer

required, and so the search for the closest components is abandoned at

this stage. Thus the minimum number Lec

of comparisons required for
an iteration occurs when m, is given by equation (D-4) and when the

first component to be e<amined is clustered, so

i - t -
Lic Lyc - (D-8)
The maximum number Uéc of comparisons required for an iteration occurs
when every cluster contains only one component (no components are
clustered), Ze
m. = 1 for all 1
In this case
' - ' v (Mo
UCC = UDC + ( DC 1) . (D-9)

Clearly for mixtures with a large number of components, such c3
N' = 100, the first iteration of the Clustering Algorithm could involve
a very large number of distance evaluations and comparisons (see Fig D.2).
However, in practice it has been found that the number cof operations is

usually well below the upper bounds Usc and UéC , and that mixtures

eSS et e
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with a large number of components are usually significantly reduced
after the first iteration (fe M' <« N'). Thus if further iterations are

necessary, the number of components involved is usually fairly modest.

The Clustering Algorithm would be most expensive in the unlikely
circumstance of no component ever being clustered. In this case the
closest two components would be combined at each iteration, so the
mixture would only be reduced by one component per iteration. This
provides an upper bound on the total number of operations. For this
worst case we also assume that BT = 0, so that every one of the N'
components at the start of an iteration is considered as a possible
cluster centre. Thus the number of distance evaluatiors and comparisons

' and U' ., with M' = N'. Also N'

for each iteration is given by UDC ce

matrix inversions are required for each iteration. Thus an upper bound
on the total number of matrix inversions required to reduce a mixture

from N to M components is given by

zz: N' = %(N -MN+M+ 1), (D-10)

The total number of distance calculations is bounded by

N
U = e - = tov- M)(N2 e+ M-
DC 2 6
N'=M+1
[
eo. (D-11)
and the total number of comparisons is bounded by *
U = 22U, - (N-M) . (0-12)

cC ple
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These upper Eounds on the number of operations are shown in Fig D.3 as

a function of M, for N = 100 and N = 15. In the best possible case all

components that are clustered are combined into the first cluster on the

first iteration. Thus M 1is a lower bound on the total number of matrix
inversions and equation (D-5), with N' = N and M' = M, gives a lower

bound on the total number of distance calculations and comparisons.

D.3 Comparison of operation counts for the two algorithms

If the original number N of components in the mixture is large
compared with the number M of components after reduction, the number
of operations required by the Joining Algorithm lies between the upper
and lower bounds of the number of operations for the Clustering Algorithm.
This is shown in Table D.1. For the simulation example repcrted in
Chapter 4, the Clustering Algorithm was consistently more efficient than
the Joining Algorithm. Also it should be noted that for the Joining
Algorithm a large distance matrix must be stored. For the Clustering
Algorithm, storage requirements over those necessary to hold the mixture

components are negligible.,

Table D.1

Operation counts for the Joining Algorithm and the
Clustering Algorithm when N 1s large
compared with M

Joinin Upper bound Lower bound
Operation Al oLitgn for Clustering | for Clustering
& ) Algorithm Algorithm
- - N o) | u_. = ot - 0w
Distance calculations oJ - N e N LDC =
. 3 ) ~ B .
Comparisons Nej = 0(N7) Uee 2 ZNCJ Lee o)
. 2,
LMater invers'ons 1 O(N M
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RECURSIVE SOLUTION OF MULTIPLE SENSOR FILTER OF SECTION 7.3

Since only one measurement from each of the N, sensors may be
true, a measurement associlation hypothesis on the data at a particular
time step may be denoted

¥ =<w.,w.,...,w.,...,w.),
2 1Ji 232 uj NsJN

u
S

. . th .
‘where wu. indicates that the i, measurement from sensor u 1is
Ju
true if ju = 0 and ¢uo indicates that all measurements from sensor

u _are false. . Since each sensor.is .independent,information. from each -
sensor may be incorporated sequentially using the update relations of
Chapter 2. Suppose that data from the first u-1 of the NS sensors

*
have been incorporated and let j?h_l denote a hypothesis on the

i
measurements from the u-1 sensors and from all previous time steps
(the subscript k and the conditioning on 9 have been omitted). The

subscript 1 , which enumerates all these hypotheses, runs from 1 to

*

N To incorporate measurements from sensor u , the set of feasible

hypotheses must be widened to include

* *
P = P ]
hﬁful é%[u-1 i’ wu_j)
for
*
i o= 1, » 0y and j = 0, s my
and

o
1}

(1 - D(m + 1) + 3+ ll
u

cove. (E-1)
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Thus the posterior pdf of x after the inclusion of measurements from

sensor u is given by .
m n*
u u-=1 ’

[}
/.'U\
(K]
<
[+
.
X,
|
[ 1
N
e *
SN
+g
a1
A st
-
c
o
c *
|
[N
co*

p(ElZ:)

*
where Z
u

750 i=i

1l
.,
™

N
-
3]
(%]
-
-
™3
[=
~——

-
/ * * ak *
. . = Ax ; . .
P (EleJ ? 5?1-1 i? %J) £ §u11 ’ PulJ
‘ * —* - >- . '
K ( - Hx .) 1f j =0
ui \ =uj u=ui
~k -*
where X .. = X . +
—uij =ui
0 if j =0
* * -
K. = P..H R for i %0
ui uij "u u u
*e *
M. =ML H s E M if j %0
ui ui u ui  u ul
*
wij
* .
M. if 3 =0
ui
and
*
S = H M. HT + R J
ui u ul u u
E-2)

_* * .
In the above relations §u1 and Mui are the wean and covariance

*
of the Gaussian distribution of x under hypothesis s%”u_1 and so

are available from th2 processing of data from sensor u-1 Note that

with a minor change of notation, equation (E-2) is identical to

Likewise, bv analogyv with section 2.3.

)

equations (2.8) and (1.9).
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(~ x /i _* * ‘
Buet i (Euj o BEy o Sui ) for j#0
E
pr | * 2t - ‘
T Yuj s Ximr i) % _ﬁ
*
Bu~1 1 (1 - PDu) pu for j=0
_ EPDu
..... (E-3)
* * *
where B8 . = Pr {2?” .IZ . 5?} , which is available from
u-1 1 u-1 1{ u-t

processing of sensor u-1 , and E 1is the normalizing denominator.
Again with a minor change of notation equation (E-3) is identical to
~equation (2.18), and so measurements from extra sensors can be processed

using the same computer code as for the single semsor case.

After updating from sensor u 1is complete, quantities may be

re-labelled ready for processing sensor u+]!

_x K
Zoset ¢ §uij
* *
Mu+1 [ Puij
S R T 2 e
uf, | Tuj ? u-1 1i| u ’
* *
n = n (m + 1)
u u-1\"u

*

and g and L%”uL are given by equation (E-1). When data from all the
NS sensors have been processed, the pdf of x 1is projected forwards to
the next time step as described in section 2.3.3. Thus the solution 1is

complete.
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