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ABSTRACT

“ This report investigates the relative merits of a delay-Doppler imaging radar based on matched filter and
Wigner-Ville approaches. Both approaches are formally equivalent: the relative merits of each method are
based solely on implementation issues. Given the current state of optical delay-Doppler .adar and signal
processing capabilities, the matched filter approach provides significant advantages over a Wigner-Ville-
based approach. Additional applications of the Wigner-Ville distribution to laser radar measurements are

discussed. | -
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1. INTRODUCTION

Harper Whitehouse of NOSC proposed an aiternative delayv-Doppler imaging algorithm based on the
Wigner-Ville distribution (WVD1!. Bill Miceli of the Office of Naval Research (ONR) sponsored an
unconventional imaging prograim at Lincoeln Laboratory to evaluate this technique relative to more traditional
matched filter-based delay-Doppler imaging technigues. This report presents the results of this eftort.

The primiary purpose of this report is to evaluate the relative merits of a delay-Doppler imaging radu
based on matched filier and Wigner-Ville approaches. Both approaches are formally equivalent: the relutive
merits of each methed are based solely on implementation issues. Given an appropriate transmit waveform.
the output of a pracucal matched filter receiver can produce a delav-Doppler image directly. In contrast. a
WVD approach requires a deconvolution operation to obtain the desired delay-Doppler image. For nominal
operating conditions. the matched filter approach can process data over a relatively small delay-Doppler
window without sacrificing image resolution. This can significantly reduce the computationa! effort required
to obtain an image. To maintain image resolution. a WV D approach must process data over a time-frequency
window equal to the time-frequency extent of the received wavetform. This requirement becomes prohibitive
tor high time-bandwidth product wavetforms. Given the current state of optical range-Doppler radar and
signal processing capabilities. the matched filter approach is preferable to a Wigner-Ville-based approach.

While the Wiener-Ville approach does not appear to be the method of choice for delav-Doppler
imaging. it may be useful in other laser radar applications. Specificaliy. the WVD is a joint time-freguency
representation of a signal which may be applied to the analysis of time-varying heterodvne or awtodyne
Doppler-resolved measurements of vibrating and/or rotating targets.

This report is organized as follows. The motivation, definition. basic properties. and examples of the
WVD are discussed in Section 2. The relation between the Wigner-Ville and (symmetric) ambigunty function
1s given in Section 3. Section 4 is a discussion of the application of both the WVD and ambiguity function
to delay-Doppler imaging. Conclusions and alternative applications of the Wigner-Ville distribution 1o
optical delay-Doppler-resolved laser radar measurements are presented in Sections S and 6. respectively,
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2.  FORMULATION

2.1 BACKGROUND

Mixed time-frequency representations attempt {o simultaneously analyze the energy distribution of
nonstationary signals in both time and frequency. These techniques may therefore be interpreted as
generalizations of Fourier analvsis techniques which determine the spectral energy density of stationary
signals. A simple mixed time-frequency representation which is commonly emploved is the short-term
Fourier transform (STFT) or spectrogram. In this technique the signal is assumed stationary over some short
time interval. and standard Fourier transform techniques (e.g.. FFT) are used to obtain a frequency spectrum

of data within this interval. By computing spectra over successive time mtervals. a ume-frequency
representation of the signal is obtained. In the context of laser radar measurements. this technique has been

. used to obtain mixed time-frequency representations of heterodyne and autedyne Doppler-resolved mea-
surements of rotating targets. " In the laser radar terminology. this mixed time-frequency representation
has been referred to as a Doppler-time intensity (DTI) plot.] The principal shortcoming of STFT-based
methods is the trade-off between frequency and time resolution. In addition. the STFT does not reproduce
the energy density spectrum and the instantaneous power of a signal. A class of time-frequency represen-
tations which overcome these shortcomings has been developed.”” One such representation. the Wigner-
Ville distribution (WVD). was first introduced in the area of quantum mechanics by Wignerin 1932 and later
into the field of communications by Ville in 1948 (References 3 and 4).

Joint time-frequency representations of a waveform have properties similar to those of joint prebability
density functions: these functions must be positive definite and satisfy certain zeroth-order moment or
marginal requirements. Physically. these representations estimate the time-frequency energy distribution of
nonstationary signals or random processes and must therefore satisty both positivity and energy conservation
constraints.®  For a signal x(1) with Fourier transform X(w). we require that the 2-D time-frequency
representation F(t.w) have the following properties:

F(t.w)20 .  positivity 2.1
IF((.(D)d(D = ‘x(l)]2 . instantaneous power (2.2)
JF(L(:))dl = X(m)]2 . spectral density 2.3
” F(t.w)dmdt = H)(H2 . total signal energy . (2.4)

Integrals go from -eo to oo unless otherwise noted. While the WVD satisfies conditions (2.2) through (2.4
and provides additional useful information concerning the energy distribution of the function in ime and




frequency. it does not. in general. satisty the positivity condition expressed in (2.1). Cohen et al have proven
the existence of a clas, of positive time-irequency representations which satisty conditions (2.1 through
(2.4).  This importaat class of positive time-frequency distributions is not discussed here.

2.2 DEFINITION OF THE WIGNER-VILLE DISTRIBUTION

The cross WVD of two ume signals x(t) and v(t) has the following bilinear form:

Wx‘_\,(t.(.l))=J’x(t+—:-]y*(t—-§]e_jwrdt . (2.5)

The auto WVD of the time function x(1) is

W, (¢ l-))=Wx.x(l.(x))zjx(t+—;—)x*([—§)e_jwtdt ) (2.6)

There is a functional similarity between the above equations and the (symmetric ;o of the) cross ambiguin
and auto ambiguity functions. The relation between the ambiguity function and WVD will be discussed in
Section 3.

The WVD of X{w) and Y(w). the Fourier transforms of x(t) and y(t). respectively.is

WX_Y((o.t)zJX(w+%)Y*(w—%je'j;‘d§ . (2.7)

It can easily be shown that
\VX.Y(O‘)‘[)=WX.)'(L0‘)) . (28)

In words. the cross WVD of the spectra of two signals can be computed directly from the WVD of the
respective time signals simply by exchanging the frequency and time variables.

2.3 PROPERTIES OF THE WIGNER-VILLE DISTRIBUTION

A partial list of the properties ot the WVD 1s provided below. Properties and proofs may be found
elsewhere (see. for example. References 7 and 8.

2.3.1 Symmetry

W, {to)= W_\f.x(t.m) = W, (Lo)= W (t.o) . (2.9)

The WVD of any real or complex function is real.




2.3.2  Time shifts

A time shift in both time stgnals results in an identical tme shift in the cross WVD.

) Modulation
Modulating each time signal by exp (JQ0 results in a frequency shift of the resultant cross WVD by ().
2.3.4 WVD for Time-Limited Signals

[t the time signals xtt) and y(t are restricted to a tinite time interval. then the cross-WV'D distribution
is restricted to the identical time interval for all frequencies.

2.3.5 WVD for Frequency-Limited Signals

If the spectra of signals x(b and y(1) are band-limited. then the cross-W VD distribution will be similarhy
band-limited.

2.3.6 Nonlinearity

The WVD iy a bilinear function of two signals: the WV D of the algebraic sum of two signals is not the
algebraic sum of the WVD ot each signal.

Wiy (L.0) = Wy(1.0)+ W(Lo)+ 2Re[W, ((te)] (2.10)

The third term in Equation (2.10) represents the cross or interference term and is the result of the (second
order) nonlinear form of the WVD. The interference term may pose a problem in the analysis of

. . .10 . . .- . . »
multicomponent sngnuls.“‘l By low-pass filtering the WVD. one may reduce the interference effects b,

sacrificing resolution. This issue is similar to the sidelobe-resolution trade-off in standard Fourier analysis.

2.3.7 Marginal Relations (Zeroth-Order Moments)
For the ¢cross WVD we have
1 . * R
ﬁij_y(t.w)dm—x(t)g (1) . (2.1
ij.).(t.w)m:xm)y*(m) ; (2.12)
which reduce to the following expressions for the auto WVD

1 2
z—iij(t.w)dwzlx(t)} . (2.13)




fwitoyd=x) (2.14)

Finally the total energy in x(t) is given by the integral of the auto WVD over the entire time-trequency plane

1 > R
- IWo)dido = flofa=p (2.15)

2.3.8 First-Order Moments

The marginal relations presented in Section 2.3.7 are zeroth-order moment expressions, Here, we
consider first-order moments of the WVD in both time and frequency. The WVD has the useful property that
the first-order moments in time and frequency are the signal instantaneous frequency and group delay.
respectively. -

An exprzssidn for (2\((). the average frequency of the WVD as a function of time. is given by the
following expression

o, ()= JoW(Le)do (2.16)
W (to)de
which simplifies 10"
Q1) = Im ";%) . (2.17)

Hereo Tm [#] 18 the tmaginary-part operation and the prime ') denotes differentiation. This expression is
idenucally zero for real valued tunctions. Let xtt) be a complex analytic signal which can be expressed as
follows

x(I)=a(l)e>'°m . (2.18)
with atp) and &t real functions of time. The average ‘requency of the WVD for such a function is given by
Q()=0(1) . (2.19)

The average frequency of the WY D ar tinie £y equal to the instantancous frequency of the compley analyii
signal.

An expression for T tw). the average time of the WVD as a tunction of frequency. is given by the
following expression

T (@)= M . 2.20 .
' ij(l.m)dl

6




which simplifies as follows®

[y
ﬂ(m):—lm{—&w—)
X(w)

Here, Xtw) is the Fourier transform of the time signal x(ty. Im [#] takes the imaginary part of the operand.
and the prime denotes difterentiation. This expression is identically zero for real valued tunctions. Let Xow
be a complex analvtic signal which can be expressed as tollows

X(w)=ofw)e®® (2.22)

with ctw) and 8w _al tunctions of trequency. The average trequency of the WVD tor such o tunction is

vivep h

3]
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T, (w)=-0'{w) . {

The time caverage of the WVD ar a given frequency is equal 1o the signal group delas.

2.3.9 Second-Order Moments

Local second-order moments in time and frequency (defined in the usuval wavy are a measure of the
spread of the WV D about mean time or frequency values. respectively. As the WVD is not positive detinite.
the local second-order moments of the WV D distribution may be negative. a result which is inconsistent with
a strict probability theory interpretation. However. these moments may still provide usetul information: as
second-order moments tend 1o characterize structural features in the WVD, they may be used to indicate the
structure of mutticomponent signals. e

2.4 ANALYTIC SIGNAL REQUIREMENT

For (complex) analyiic signals. the first-order moments of the WVD in time and frequency are the
nstantaneous frequency and group delay. respectivolv. Strictly speaking. these properties do not apply 1o
real valued signals. In particular. if we let the signal rit) represent the real part of an analvtic signal xcu. then

v l r
W (Lo)=—[W,(Lo)+W,(L-o)]+e(to) . (2.24)
"
where
W tw) = WVDof the real signal rin)
W (Lw) = WVD of the analytic signal x(t;
tw) = osciliatory {ringe pattern.

Tne WVD of a real signal. as depicted in Figure 1(b). is composed of three terms. the desired “image™ term
W {Lw). aconjugate image term W (1.—w). and a residual low-frequency fringe pattern gil.o. Analysis has
shown that the artifacts embodied in the git.w) term har e no physical meaning (see. tor example. Reter-
ence Yy, The analytic signal requirement must be take i into consideration when implementing the WVD,
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2.5 MULTICOMPONENT SIGNALS

Laser radar measurements of complex targets are generally characterized by complicated multicompo-
nent signals. The WVD of a multicomponent signal is complicated, however. by two factors: (1) negative
second-order moments. and (2) the presence of interference terms (which are manifest as oscillatory fringe
patterns in the WVD — sce Section 2.3.6). Both these effects may be reduced. at the expense of resolution.
by low-pass filtering the WV " Time-irequency distributions have been proposed which either eliminate

or suppress the undesirable properties of the WVD. R0

2.6 EXAMPLES

In this section we demonstraie the basic properties of the WVD by example. We begin by considering
the WVD of a simple up-chirp wavetorm, as shown in Figure 1(a). The WVD of the up chirp is shown in
Figure 2(a). The time-trequency characteristics of the up chirp are clearly manifest in the WVD. The firsi-
order moment in trequency. which is the instantancous frequency estimate. is shown in Figure 2(h). Note
that the spread or variance about the true instantancous frequency is varying but bounded. It is interesting
to note that the local variance of the WVD tends to increase at discontinuities in the underlying instantaneous
frequency of the signal.

FIRST- AND SECOND-ORDER

WIGNER-VILLE DISTRIBUTION MOMENTS IN FREQUENCY

1.0 1.0 T —T T T
0.8
>
[8)
> 2 0.6
: -
3 S oaf
g £
& 02f-
OM‘I..'Q‘.‘AOQOQO.\G‘QG_Q,.O-.
0.2 1 1 | L
(0] . 0 0.2 0.4 0.6 0.8 10
TIME TIME
(a) (b)

Fivwre 2 The WY D and local moments of a singie np chivp. The WA D Gf thie canalvie s up chorp is showarin cay Normahized time-
pequency aves are used The frrse- and second-order moments of the WV D are shown inehy as the solid and dashed linesrespectively.
The mean represents a reasenable extimate of the istantancons frequency of the analvue up-chirp waveform. The variance is
reasonably uniforne and small . indieatng that the “knife-edee’” videe detinmg the arprin car s well defined.
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The WVDs for different multicomponent up-down chirp signals are shown in Figures 3 through 5. The
undesirable oscillatory fringe pattern in these figures is the result of the bilinear form of the WVD: the WVD
of the composite up-down chirp is not equal to the sum of the WVD of cach constituent chirp. Due 1o the
oscillatory nature of the cross-term component. this term may be reduced by low-pass filtering the WVD,

2.7 IMPLEMENTATION

Although computational complexity s inherent in an algorithm which generates a 2-D distribution from
1-D data. implementation issues are not addressed in this report. Efticient numerical algorithms may be found

in the Inerature.”' Optical implementation of the WVD is also a current topic ot investigation. Pte
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3. RELATION BETWEEN THE WIGNER-VILLE DISTRIBUTION
AND THE AMBIGUITY FUNCTION

Both the WVD and the ambiguity function (AF) are mixed 2-D representations of a 1-D signal. The
utility of the WVD as a time-frequency analyvsis tool. along with a partial list of applications to optical radar.
has been discussed. In the contexe of optical radar. the AF is a usetul tcol to evaluate the performance of a
2-Dd-layv-Doppler matched filter receiver. In this case. the magnitude squared of the ambiguity function muy
be interpreted as the point spread response of a delav-Doppler imaging system.

For a given signal x(1). the WVD W (t.w) and the ambiguity wunction A (£.7) are defined as follows:

Wx(t.m)=Jx(t+§]x*(t—§Je'jt°’dt . (3.1)

5]
19

Ax(§,1)=jx(t+§)x*(t—§)e_ﬁ;dl . (

These equations imply that the AF and WVD form a Fourier-transform pair b

AL T)=FW,(Lw) . (3.3)

Wx(t.(x))=F-le(C.T) . (3.4)

where F and F! are the Fourier-transtorm operations defined as follows

_L —j(Cl-wT) v 35
F—zn”e drdg (3.5)

Fl= ”ej“-““’”dzdw . (3.6)

The Wigner-Ville distribution and ambiguiry function are rtwo different represeniations of the same data. A
comparison of the effect of certain signal operations on the WVD and AF are listed in Table 1. Note that time
and frequency shifts of the original signai are preserved in the WVD representation. but are mapped into a
complex oscillation in the AF representation. Assuming that both the WVD and AF have similar hardware
(or software) implementations. the decision to use one method over another depends entirely on which
method provides the most satistactory data representation for a given application.

Figure 6 illustrates the ambiguity diagram and WVD for an up-down chirp waveform. The forward
Fourier transform of the product x(t + 7/2) x"(1 — 7/2) with respect to delay 7 results in the WVD. while the
forward Fourier tausform of the product x(t + 7/2) x"(t = 7/2) with respect to time produces the AF. (The
ambiguity diagram shown is the magnitude of the AF.) The 2-D Fourier relation is clear: the inverse Fourier
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transform of the WVD with respect to delay followed by a forward Fourier transform with respect to time
produces the AF. Note that time-frequency characteristics of the original up-down chirp waveform are
clearly evident in the WVD. The fringe patterns evident in the WVD are the so-called cross-terms or
interterence terms. and are the consequence of the bilinear form ot the WVD kernel. The ambiguity diagram
of the up-down chirp is characterized by a central peak plus relatively high sidelobes which represent the
“ambiguity” of each chirp. Due to the Fourier relation between the AF and WVD. the AF becomes more
localized in the delay-Doppler plane and the corresponding WVD becomes increasingly distributed through-
out the time-frequency plane. This is an important result in the context of delay-Doppler imaging.




4. DELAY-DOPPLER IMAGING

4.1 CONVENTIONAL MATCHED FILTER APPROACH

Inthe conventional analysis of delay-Doppler imaging. the output of a 2-D delay-Doppler matched filter
represents the convolution of an underlying target distribution in delay-Doppler space. denoied by at{.7)
convolved with the magnitude tquared of the ambiguity function or point spread response (PSR of the filter.
Unlike conventional spatial imaging systems whose PSR depends on a spatial aperture. the PSR of the delay -
Doppler imaging system is determined by the time-frequency properties of the transmitted wavetorm. If. for
example, one could generate a thumbtack-like PSR, the output of the 2-D matched filter would represent the
2-D defay-Doppler image of the target. The relation between the output of a 2-D matched filter and the
underlying delay-Doppler distribution of the target is given by the following expression:™"

(aseof )= [folc ofafe-(e -t (e favar i)

where

X(t) = transmitted wavetorm
vty = received wavetform

o({.7) = target cross-section distribution in delay and Doppler

A ({1) = auto ambiguity function of transmitted waveform
A (L) = cross ambiguity function of received and transmitted waveforms
' 7, = filter mismaich in delay (tracking error)
{, = filter mismatch in Doppler (tracking error).

Here. the operator <> indicates an ensemble average (e.g.. an average over different speckle realizationsy.
The basic assumptions used to derive Equation (4.1) may be found in Rihaczek.*" The output of the 2-D
matched filter is the cross ambiguity function between the transmitted and received waveforms. Asthe filter
output <IAU(§.7)13> represents the convolution between the d‘esired target cross-section distribution (f(c:.‘.'l
with the magnitude squared auto ambiguity function IAX(Q. 7)1~ of the transmitted wavetorm. 1A (LT3 may
be interpreted as the PSR of a delay-Doppler imaging system.

Given flexibility in waveform generation and reception. one could select a waveform with a thumbtack-
like ambignity function resulting in a matched filter output which approximates the underlying target cross-
section distribution: there is no need to invert Equation (4.1) for a({.7).

4.2 WIGNER-VILLE APPROACH
|

Harper Whitehouse derived a delay-Doppler imaging technigue based on the WVD.*
point is Equation (4.1). Substituting the following two relations

FlA (G0 = ALGTA(C) (4.2)

The starting




and

F7'A,(L.1)= W, (L.o) (4.3)

into Equation (4.1) gives the following result
<Wy(t.u))>:Uc(t'.w')wx((—t'.w—w')dw'dt' . (4.4)

This expression is the basis for delay-Doppler imaging with the WVD. It states that the expectation of the
WVD of the received waveform is equal to the convolution of the underlyving delay-Doppler target cross
section with the WVD of the transmitted signal. Note that (1) a cross-WVD computation is not required. (2)
the WVD of the transmit signal may be interpreted as the PSR of the WVD-based imaging svstem. and (3)
the matched filter and Wigner-Ville imaging systems [as defined by Equations (4.1) and (4.4). respectively]
are different representations of the same underlying process: from an information theoretic point of view. the
methods are identical.

4.3 COMPARISON OF THE MATCHED FILTER AND WIGNER-VILLE APPROACHES

As previously stated. the matched filter and Wigner-Ville approaches are equivalent from a theoretical
viewpoint. Imaging with the two approaches is. however, very ditfferent. The comparison of the matched
filter and Wigner-Ville-based delay-Doppler imaging svstems will begin with an evaluation of the point
spread response (PSR). The PSR 1s a fundamental property of an imaging system. The computational
requirements for each system will then be discussed. Bistatic issues will be addressed.  As will become
evident, S/N issues are secondary and will not be discussed here. A preliminary S/N analysis of the WVD
may be found in References 23 and 24.

4.3.1 Point Spread Response

Thumbtack-like ambiguity responses for the matched fifter receiver were discussed briefly in Sec-
tion 4.1, Inthe case of waveforms which have thumbtack-like ambiguity functions (in the region of interesti.
delay (range) resolution is inversely proportional to the frequency bandwidth. and Doppler resolution is
inversely proportional to the temporal duration of the waveform. Increasing the time-bandwidth product of
these waveforms allows one to extract an increasing amount of information from the target. The time-
bandwidth product of a signal may be increased by phase or frequency-modulation technigues. These
techniques generally lead to simple implementations relative to those obtained using amplitude-modulation
techniques. The main point is that 1t is possible to simultaneously obtain high resolution in both delay and
Doppler by choosing a waveform with a thumbiack-like ambiguity function.

The WVD-based receiver has significantly difterent behavior. As shown in Equation (4.4, the PSR of
a WVD-based receiver is given by the WVD of the transmit waveform. A thumbtack-like WVD requires the
transmit signal to be (1) nonzero over a time interval small compared with the target extent in time. and (2)
nonzero over a frequency interval small compared with the frequency extent of the target. These two

conditions are generaily mutually exclusive: a thumbtack-like WVD may be unrealizable for many targets




of interest.  To obtain a high-resolution delayv-Doppler image directly. the WVD approach reguires
narrowband short-duration wavetorms. while the matched filter approach requires wideband long-duration
waveforms. As wideband long-duration wavetorms are physically realizable. the matched filter approach
has a sigmticant advantage over the WVD approach. This property is consistent with the Fourier-transtorm
relation between the two methods: an AF which is highly localized transforms into a WVD which is highls
distributed. This 1s demonstrated for an up-down chirp in Figure 6.

4.3.2 Computational Requirements

We begin by assuming the existence of wavetorms with thumbtack-like ambiguity functions. While
the computations involved in computing the full matched filter output and WVD output are identical. the
output of the matched filter gives the desired image directly whereas the WVD-based method requires a
deconvolution to obtain the image o({.7). This is generally an ill-posed and computationally intensive
operation.

If we turther assume that both the delay-Doppler tracking errors and the target cross-section delay-
Doppler distribution are both small compared with the delay-Doppler extents of the waveform. then the
computational requirements of the matched filter approach can be reduced significantly by limiting data
processing to a relatively small delay-Doppler window. This can be done without loss of image resolution.
From a practical standpoint. the time-bandwidth capacity of the signal processor may be reduced without
sacrificing image resolution. In order to maintain image resoltution using the WVD approach. data must be
processed over ime-frequency extents defined by the received waveform. As a wavetorm with a time-
bandwidth product equal to TB has a 2-D WVD with (TB ) independent resolution cells. large TB product
waveforms could prohibit real-time computation of the WVD.

4.3.3 Bistatic Considerations

It has been suggested that the WVD approach may have some advantages in a bistatic situation as the
WVD receiver produces the auto WVD of the received waveform: the image is obtained after deconvolving
the auro WV D of the received waveform with the (stored) auto WVD of the transmit wavetorm. In this case.
a reference waveform generator is not required. This reasoning i1s somewhat misleading: the transmit
wavetorm could be stored™ in a programmable matched filter or. if the receive and transmit waveforms could
be digitized. a completely flexible matched filter could be implemented digitally. While these issues are
technology driven. it does not appear that the WVD approach would provide significant advantages over a
matched filter approach in the case of bistatic measurements.




S.  CONCLUSIONS

The primary purpose of this report is to evaluate the relative merits of a delay-Doppler imaging rudar
based on matched filter and Wigner-Ville approaches. Both approaches are formally equivalent: the relative
merits of each method are based solely on implementation issues. Given an appropriate transmit wavetorm,
the output of a practical matched filter receiver can produce a delay-Doppler image directiyv. In cortrast. a
WVD approach requires a deconvolution operation to obtain the desired delay-Doppler image. For nominal
operating conditions. the matched filter approach can process data over a relatively small delay-Doppler
window without sacrificing image resolution. This cansignificantly reduce the computational etfort required
to obtain an image. To maintain image resolution. a WVD approach must process data over a ime-freguency
window equal to the time-frequency extent of the recetved wavetform. This requirement becomes prohibitive
for high time-bandwidth product waveforms. Given the current state of optical range-Doppler radar and
signal processing capabilities. the matched filter approach is preterable to a Wigner-Ville-bused approach.
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6. FUTURE WORK

Inoptical radar applications, time-frequency representations have been used to process both heterody ne
and autodyne Doppler-resolved cross-section measurements of rotating and/or vibrating targets.  In
particular. the short-term Fourier transform (STFT) has been used to analy ze the time-trequency distribution
of both autodyne and heterodyne laser radar measurements of rotating targets.  Standard frequency
discrimination techniques have been applied to the analysis of aser radar Doppler-resolved data of vibrating
targets. An investigation into the relative merits of standard time-frequency analysis techniques (e.g.. STFT.

tfrequency discriminator. etc.) vs signal analysts using ume-trequency distribution techniques (e.g., the
WVD) may prove useful in these applications.
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