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We describe a preconditioned Krylov iterative algorithm based on domain decomposition for im-
plicit linear svstems arising from partial differential equation problems which require local mesh
refinement. In order to keep data structures as simple as possible for parallel computing applica-
tions. the fundamental computational unit in the algorithm is a subregion of the domain spanned by
a locally uniform tensor-product grid, suggestively called a tile. This is in contrast to local refine-
ment techniques whose fundamental computational unit is a grid at a given level of refinement. The
bookkeeping requirements of such algorithms are potentially substantial, since consistency of data
must be enforced at points of space which may belong several different grids, and furthermore. the
erids are not necessarily of tensor-product type, but more generally, unions thereof. The tile-based
domain decomposition approach condenses the number of levels in consideration at each point of
the domain to two: a global coarse grid defined by tile vertices only and a local fine grid. where the
degree of resolution of the fine grid can vary from tile to tile. Experimentally, it is shown borein
that one global level and one local tevel provide sufficient flexibility to handle a diverse collection of
two-dimensional problems which include irregular regions. non simply-connected regions. non-self-
adioint operators. mixed boundary conditions, non-smooth coefficients, or non-smooth solutions.
We emplov from 1 to 1024 tiles on problems containing up to 16K degrees of freedom. Though mo-
tivated by local refinement and parallel processing applications. benchmark serial implementations
of the tile-based algorithm on uniform grids produce iteration counts and execution times which

are competitive with those of traditional global preconditionings.
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1. Introduction

{he combination of domain decomposition with preconditioned iterative methods provides a
framework which extends the usefulness of numerical techniques for certain special partial diffor-
ential equation problems to those of more general structure. Non-smooth features. non-separable
geometries. or massive sizes of practical problems limit the application of many “standard™ nu-
merical technigues. Direct methods are rapidly defeated by problem size. “Fast” methods which
take advantage of special coeflicient and grid structure ofien do not apply globally. ITterative
methods often depend for efficient implementation on regular grids which. if global in extent. are
inconsistent with accurate and economical resclution of the physics of the problem. However.
the dowmains of problems with these features can often be decomposed into smaller subdomuin-
of simpler structure. increasing the utility of extant software libraries, particularly as components
oi preconditioners. Moreover. the domain decomposition can be made to produce 2 transparent
mapping of many problems onto medinm-scale parallel computers. Our primary focus in this paper
is the incorporation of spatially-varying mesh refinement requirements into a finite-difference-based
domain decomposition algorithm. We iilustrate the convergence behavior of the algorithm on a va-
ricty of two-dimensional elliptic PDE prot’»ms. including non-self-adjoint, non-separable geometry
cases. We also point out features of the method which are relevant to a parallel implementation
but defer the ccrresponding complexity analysis to a subsequent companion paper.

Many PDE problems which are “large” in the discrete sense are so because the continuous
problems from which they are generated require resolution of several different length scales for the
production of a neaningful solution. The value of compromising between the extremes of globally
nniform refinement, which ieads to simple and usually vectorizable algorithms but wastes time and
memory, and pomniwise adaptive refinement, which minimizes the discrete problem size for a given
accuracy requirement but leads to complicated data structures. has been recognized for some time
and described in contexts too numerous to acknowledge fairly. Locally Uniform Mesh Refirement
(LUMR) characterizes one such class of discretizations. based on composites of highly structured
subgrids. Many treatments of LUMR in the literature pertain to explicit methods for transient
problems. a class with its own advantages (see [3] and references therein) and limitations [39]
which is somewhat distinct from ours. Implicit treatments of locally regular refinement for elliptic
problems include approaches arising ont of classical multigrid {see [31] and references therein). a
nonconforming spectral technique [30], and methods rooted in iterative substructuring for finite
element problems [3].

Computationally practical locally uniform grids are usually expressible as the union of a coarse
nniform tensor-product grid covering the entire domain with one or more refined tensor-product
grids defined over subregions. including the possibilitv of multiple. nested levels. Generalizations
of this within the LUMR framework include allowing the grids at any particular level of refinement
to themselves be the union of tensor-product subgrids. and reinterpreting “uniform™ as “quasi-
nniform™ to aliow general curvilinear coordinates for custom body- or solution-fitting. We select
for consideration a rather restricted form of LUMR in which refinement occurs exclusively within
complete cells of a quasi-uniform coarse grid. as described in section 2 below.

The goal of the present contribution is an LUMR methodotogy with starkly simple data stric-
tures. for efficient portability to a variety of parallel machines. It borrows from the mesh refinement
and domain decomposition literature and from the authors” own experience in these areas and in
parallel computation [20, 22, 2%, In onr pursuit of convenience and overall parallel performance.
nowhithoeinelude both aheabite speedup and efficiency. we are ready. potentially, to compromise
“optimality”™ as defined by conventional serial computing measures. For example. by refining only
toanits of full coarse grid cells, we may impose a tendency towards refinement in regions where it
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Figure 1: The anatomy of a tile. Unies, clocod by a physicai
boundary. a tile is open along its high-z and high-y perimeter.

would be unnecessary from a truncation error point of view alone. As another example, our con-
vergence rate is dependent upon a coarse grid resolution which may be chosen with criteria bevond
convergence rate in view, such as the balance of work among multiple processors. Fortunately. the
methodology survives such compromises and is even sequentially advantageous in many problems.

The domain decomposition algorithms we employ (sertion 3) involve “nearly” parallel precoun-
ditioners in conjunction with generalized minimum residual (GMRFES) 1teration, a non-stationary
method not dependent upon operator symmetry. In two dimensions, the preconditioner involves
three separate phases: a global coarse grid solve, independent solves along interfaces between sub-
domains, and independent solves in the subdomain interiors. The global coarse grid solve. which
we do directly, is an essential feature as it provides the only global exchange of information in the
preconditioner itself. We will compare alternative formulations of the more negotiable interface
and subdomain sclves.

The main body of the paper is the collection of numerical experiments on two-dimensional ellip-
tic boundary value problems in section 4. The experiments include standard model prohlems. “L"-
shaped, *T”-shaped, and non-simply-connected regions, non-self-adjoint operators. mixed bound-
ary conditions, and problems with non-smooth coefficients or non-smooth solutions. We use from 1
to 1024 coarse grid elements on probiems containing up to 16K degrees of freedom. Among our find-
ings is that the interface probe preconditioning advocated in our earlier work on convective-diffusive
systems with stripwise decompositions [28] does not perform as well on decompositions with inter-
nal vertices as the much simpler tangential operator preconditioning. We also demonstrate that
incomplete factorizations are not ¢ ..-«Mctive subdomain interior preconditioners, relative to exaci
subdomain solves, once the subdon. pecome sufficiently narrow.

2. Mesh refinement by tiles

[n this section we describe a simple mesh refinement philosophy based on a regular tessellation
of the global domain into subdomains which we call “tiles™ in two dimensions. Mathematically.
a tile is the tensor-product of huif-open intervals in each coordinate direction. except that a tile
abutting a physical boundary along what would ordinarily be one of its open edges is closed along
that edge. Each tile possesses its own tensor-product discretized interior, at least two of its four
sides, and at least one of its four corners. Although the specific convention is arbitrary, we assume
for definiteness that in its own local right-handed coordinate system, each tile contains its origin
and its r and y axes (see Figure 1).

[n cortrast to physical boundary segments, we refer to the artificial decomposition-induced
boundaries of the tiles as “interfaces™. We refer to the points at the intersection of all boundaries.
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(a) (b)

Figure 2: Sample Tessellations. (a) is permissible, (b) is
not.

physical or artificial, as “cross-points™. We require that the cross-points be embeddable in a tensor-
product global quasi-uniform coarse grid. from which only points lving exterior to the (possibly
multiply connected) houndary »re missing. This rules out irregular tiling patterns such as in
Figure 2b. However, there is no requirement that the domain itself be of tensor-product type: the
decomposition in Figure 2a is permissible.

Associated with each tile is the data defined over a quasi-uniform grid covering its portien
of the domain and a set of operators for executing its block-row portions of the preconditioner
solve to be described later. In our object-oriented approach, these operators can potentially be of
different types for different tiles. For computational convenience, we assume throughout that the
grids covering individual tiles are derived from the coarse grid of cross-points through refinement in
ratios of powers of two. We can therefore indicate refinement levels using the graphical shorthand
of Figure 10 where the integer indicates the logarithm of the refinement ratio.

2.1. Tile-tile interfaces

In order to minimize restrictions on the structure of adjacent tiles (and to eliminate redundant
communication between tiles in a multiprocessor implementation, in which different tiles might be
assigned to different processors), each tilz stores and maintains. in addition to its own data. the
data associated with a buffer region of phantom points equal in width to one-half of that of its
associated finite difference stencil (see Figure 3). Excluding the redundant phantom points. each
point of the domain is uniquely associated with a single tile.

Data at the phantom points is supplied in a manner dependent upon the internal structure and
refinement ratios of the adjacent tiles in question. A finer tile obtains bi-quadratically interpolated
data from its coarser neighbor. Since the problems studied herein involve second-order operators.
this allows the use of conventional finite difference techniques in generating the difference equations
at the subdomain interfaces. Bi-linear interpolation alone would limit the potential accuracy of a
second-order differencing scheme, as observed in some preliminary experiments. We note that such
a difference scheme does not guarantee discrete flux conservation. Our focus herein is simply on
the solution of a consistent set of discrete equations. More careful attention to the discretization
has already been given in the context of locally reguiar refinement in [19].

All of our examples employ strictly uniform local grids. Although this is not a necessary
restriction of the method. this simplifies the exchange of data between adjacent tiles.

The coarse grid system obtains its data by simple (unweighted) injection. That is. the value
at the point in the finer neighboring tile that lies on the coarse grid stencil is used for the coarse
grid point. A weighted averaging could be employed to preserve operator symmetry. if that were
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Figure 3: Sample tile. showing the computational buffer
region required for the standard five-point stencil.

necessary for other reasecns, for instance, conjugate gradient iteration of a sen-adjoint problem.
A fnite element discretization with transition elerents along the intcrface would unamuig ot
deliver the appropriate weighting coefficients in this case.

The selection of refinement criteria is a much studied, yet still open problem; see [2] and
[26] for a sampling of work in this area. The refinement criteria, however, are orthogonal o the
equation-solving aspect considered herein. except to the extent that a part of the computational
work recuired by one of these tasks may be a by-product of the other. Some issues in refinement
criteria will be discussed in a subsequernt report [23]. For present purposes, w~ give one example
with a smooth solution but non-smooth coefficients 1nd others with smooth coefficients but a
non-smooth solution. In these examples, “good” refinement strategies can be done “by hand™.

In general, tile interfaces can be the site of changes in the discretization besides just the
refinement level. For instance, the discrete stencil can change order at interfaces. Even the form
of the operators or their number can change at interfaces while still preserving the rubdomain
uniformity required for efficient subdomain solution algorithms. As a motivational example. a
reacting flow problem frequently consists of large regions in which there is only transport of mass.
momentum, and thermai energy but no reaction among constituents of known composition. to all
adequate orders of approximation. "n other regions it is essential to retain composition variables.
because they diffuse differentially, and in a subset of these, reaction termnis must also be retained
in the equations. To accommodate such generality, the routines that pack the buffer regions are
responsible for providing the necessary mappings.

2.2. Physical boundaries

For generality, the equations for the physical boundaries are incorporated into the overall
system matrix, including Dirichlet conditions. Our implementation allows inhomogeneous Robin
boundary conditions at all boundary points, namely,

du
a{«r, y)(-,)—; +b(r,y)u=-clz.y).

Both first- and second-order one-sided difference approximations to the normal derivative term are
emploved. The second-order approximation is used in the actual operator. and the first-order is
used in the preconditioners (to preserve uniformity of the bandwidth of the matrices used in the
preconditioning). Though tempting in their simplicity. Dirichlet boundary conditions alone in the
preconditioner were found to perform poorly in practice, in accord with expectation from the theory
in [33) and references therein.




Figure 4: One-dimensional schematic of the tile basis func-
tions.

2.3. Comparison with other approaches

In contrast to multi-level approaches in which the fundamental computational unit is a grid
at a given level. our fundamental computational unit is a subregjon of the domain. The present
approach requires only one grid which possesses connectivity with arbitrarily distant regions of the
domain. namely the coarsest one. In the framework of the hierarchical basis function technique
[43]. we ha.e situply a iwo-level hierarchy. but the ite higher lovel may be different in different
subregions. Figure 4 gives a one-dimensional illustration. This admittedly represents a severe
condensation of the range of intermediate scales present in multi-level local uniform refinement.
on which much of the asymptotic convergence theory is based. Tiles are much closer to being the
software equivalent of the “geometry-defining processors” (GDPs) of Dewey and Patera [!1]

The tile approach is also similar to the additive Schwartz method [16. 41] and the techniques
of [6] in its reliance upon just a single domain-spanning grid. The main difference between these
techniques and the tile approach is in the treatment of the interfacial degrees of freedom. In the
additive Schwarz technique, interior problems are solved on extended overlapped subdomains. of
which the interfacia! degrees of freedom are interior points and thus demand no special consider-
ation. In [6], good preconditioners for the interfacial degrees of freedom are derived theoretically.
for self-adjoint operators. Optimal algebraic convergence (independent of degree of refinement)
has been proved for both classes of algorithms in [18] and [3], so there are, intuitively, grounds for
optimism about single global-grid algorithms even though we present no extensions of the theory
to the non-self-adjoint problems we consider. The main disadvantage in condensing out interme-
diate scales is that the coarse grid. on which all optimal approaches require an exact solve. cannot
necessarily become as coarse as one might like.

The field of locally uniform mesh refinement is spanned by a continuum of resolution strategies
governed by clustering rules which control the size and shape of the refined subregions. Global
refinement lies at cne extreme and pointwise adaptive refinement at the other. As soon as the
global tensor product mesh is abandoned a host of difficult practical decisions need to be made
about data structures and clustering algorithms. The logic required to handle the numerous types
of subgrid-subgrid interactions which can arise and to insure the consistency of the data structure

a

is a significant impediment to efficient parallelism. In contrast, “horizontal™ neighbor-neichbor
interactions are simple. The sufficiency of a two-level approach in obtaining reasonable convergence
is demonstrated in section 4. Compelling superiority of approaches with a greater richness of scales

has not vet been fullv established in production parallel software. although it may he ultimately.
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Experience on parailel computers gained from a two-level approach will be beneficial in any ovenr,

3. Iterative domain decompositicn algorithms

As mentioned in the intraduction. preconditioned iterative methods and domain decomposiiion
nrovide a framework suitable for the aescription of o wide class of algorithms. The four common
elements of this framework are: a global operator arising from the discretization of the PDI ror
svstemn of PDEs) an approximate inverse. or preconditioner. for the global operator: an iterative
method relving only on repeated application of the preconditioned operator: and a geomerry-
based partition of the discrete unknowns so that size. locality. and uniformity can be exploited
in apolving the preconditioned operator. Since the numerical analysis literature contains many
successiul discretization schemes and iterative methods specialized for different operator properties.
such as the presence or absence of definiteness and symmeiiv. the recent burgeoning efforr in
trerative domain decomposition algorithms has concentrated primarily (though not exclusively on
rhe interaction of the second and fourth of these elements. In the parallel context. this is a natira
preoccupation because the bottleneck to parallelism usually (though not exclusively) lies in the
requirement of the global transport of information in the preconditioner.

Many of the numerical examples described in section 1 rule out the use of iterative meth-
nds based on symmetry. but permit the assumptions ot definiteness and diagonal-deminance. in
partienlar. full or incomplete factorizations of subdomain matrices can be undertaken wiruon
pivoting. Because of its robustness. we join many recent users [13. 32, 38, 42] in adoptine the
paramerer-free generalized minimnum residual (GMRES) method [37] as the outer iteration. The
main disadvantages of GMRES. is linear and quadratic (in iteration index) memory and execution
iime requirements, respectively. must be mitigated by scaling and preconditioning. For other ac-
seloraticn schemes. such as Chebyshev, the memory and execution time requirements may be only
constant and linear. respectively, but GMRES dispenses with the difficulty of estimating param-
eters. The primary tvpe of decomposition used herein involves roughly unit aspect ratio tiles. as
opposed .o thin strips. Ordering the interior points (and the physical boundary points other than
cross-points) first. the cross-points last. and the interfaces connecting the cross-points in between,
gives a nested-dissection-like “arrow™ matrix appearance to the global discrete operator. which we
denote 4. The tasic structure of our preconditioner B is the block-upper triangular portion or
the arrow matrix. The application of B! thus begins with a cross-point solve, which updates rhe
richt-hand sides of a set of independent interface solves. These. in turn. update the richt-hand
sides of a set of interior solves. Far a nine-point stencil, the cross-point result would also updare
the interior right-hand sides. However. there is no dependence. within a single iteration. of 'fe
interface solution upon the result of the interior solution. or of the cross-point solution upon »i-
ther. (In 711!, structurally svmmetric arrow matrix preconditioners were compared against the
corresponding triangular forms on a variety of strip-wise decomposed problems. It is found therein
that retaining the interior-to-interface coupling in the preconditioner generally reduces the rofil
anmber of iterations required to attain a fixed convergence criterion. but that the execution rime of
the struernrally symmetric algorithm is greater. because of the cost of the extra set of subdomain
solves in each iteration. The first and second sets of subdomain solves are inherently sequential.:

The derivation of the coeflicients of the preconditioner blocks is as follows. The cross-poin
sauations are simply a ~caled coarse grid discretization of the continuous PDE. Physical boundar:
points lving at tile caorners are retained in the crass-point svstem in order to accommodate first.order
Newmann or mixed conditions in this coarse arid discretization. Weighted averaging possibilines for
the derivation of the coarse grid operator arse from the pessewsion of the coefficients and right-nand
side o fner grids snrrounding each eross-point, but these are not currently exploited. The cnrrent
ruplementation sapports LU -based Ganssian elimination on the coarse-grid svstem. This soive s
“he chinel parallel horttleneck in the preconditioner and ean be performed in either of two was s
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redundantly on vach nroceszor after broadeasting the required coeflicient data for small sverens,

orina fully disteibnted fashion for faree systems. Determination of the most efficient techinigue i-
generally domain and network dependent. If strip decompositions are used. there is no cross-point
svstem. and the lower-right block of the preconditioner is simply the interface svstem deseribed
below,

The tile interior equations consist of fine grid discretizations of the PDE over local rogion-.
with physically appropriate boundary conditions along any trne boundary segments and Diricli-
let boundary conditions at artificial interfaces. Only first-order differences are accommodated in
the physical boundary conditions of the preconditioner. even if higher-order are emploved in the
operator A, The current implementation svpports full LU Gaussian elimination. incomplete LT
decomposition. or modified incomplete LU decomposition. Each tile performs its interior -oive
completely independently,

Unlike the coarse grid and tile interior equations, which bear the physical dimension of the
nnderlving PDE and have natural preconditionings. the lower-dimensional interfacial equations are
properly derived from a related pseudo-differential operator, a theoretically well-developed approuc
we do not pursue here becanse of the difficulty in applyving it to arbitrary problems. Instead. w.
have compared three approaches referred to below as (a) tangential. (b) truncated. and (c¢i intertuce
probe. The tangential interface preconditioner is the one-dimensional discretization of the 1ermi-
of the underlying operator which remain when the derivatives rormal to the interface are ~et o
zero. The trancated interface preconditioner is a discretization of the full underlving operator,
with the coefficients associated with non-interfacial unknowns set to zero. The interface probe
preconditioner has been described elsewhere {9, 29] as a low-bandwidth approximation 1o the e
capacitance matrix of the interfacial nnknowns in the ambient matrix corresponding to the degrees
of freedom of the interface itself and the two subdomain interiors an either side.

The differetices between these three iechniques are perhaps most easily visnalized by consider-
ing the example of Laplace’s equation on a uniformly discretized square partitioned by an interface
parallel to one pair of edges into subdomains 1 and 2. the interfacial unknowns being subscripted 3.
Let Ay and 4,2 be the subdomain operators. let A5 and A3 translate the values on the interface
into the respective snbdomain boundary condition right-hand side vectors. and vice versa for .t
amd s, The tangential preconditioner is the tridiagonal matrix with diagonal elements =2 aud
snb- and super-diagonal elements 1. The truncated preconditioner is the same except for —t'~ on
the dragonar. 1 e interface prooe piccouciviond is the truncetcd preconditioner minus a diavonal
matrix whaose elements are these of the vector [:131.11_11 A+ ,4_52.“.._72‘ Azzle. where ¢ is the vector
of all 1's. The probe preconditioner has the same row sum as the actual Schur complement matrix
for the interface. namely gy — ;131.41“1' Apn - Ag-;xl.;zl A3, These three preconditioner matrix tvpes
differ onlv along the diagonal. with the elements of the probe diagonal lving between the first two.

4. Numerical experiments

The numerical experiments of this section serve to illustrate the effectiveness of the domain
decomposition methods emploved in terms of the convergence of the iterations and also the etfec-
tiveness of the locally uniform mesh refinement in terms of the convergence of the discretization.

4.1. Model problems

We present twelve model problem:, each containing a single dependent variable and two inde-
pendent variables, Theso restrictions on the number of variables beg generalization. so we comment
brieflv ar the onteet Alultiple dependent variable cases have been examined for stripwise decom-
poitions i 290 and will be presented for the enrrent cross-point of the algorithm in a subsequent
paper orientad towards applications, The extension of onr eurrent techniques to three-dimensional
problems i straightforward, but not necessarily offective, Optimal or near optimal algorithms for
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Figure 5: The four Jomains considered in this paper.

three-dimensional problems are known which require a more implicit lower-right corner block o the
preconditioner, containing more than cross-points alone [15. 17]. W¢ have not yet examined these
so-called “wire-basket™ forms of the preconditioner. From a parallel perspective. they introduee
additional sequential overhead. and a careful consideration of the trade-orts between convergenee
rate and cost per iterations will be required in a future study.

Some o ihe problems below are self-adjoint and could be discretized in a svmmetric manner
and perhaps solved more cheaply with conjugate gradients than with GMRES. Cuar main interest,
however. is in the more extensible formulation. In all the examples to follow except for the last.
an exact solntion of the continuons problem Lu = f is specified. From this u. all of the following
source terms f and houndary condition mmhomoygeueities ¢ may ha cxleulated. In cases where the
expressions for f and g are sufficiently simple. theyv are written out along with the solution. The
twelve problems inclnde four different domains. pictured in Figure 5.

The first two examples. with constant coefficients and an exact solution quadratic in each
independent variable. are extremely simple and possess truncation-error-free second-order hinire
difforence representations. They are identical except for the type of boundary cenditions along one
side of their square domain. These problems ave not candidates for mesh refinement: rather. they
are choxen to show the deterioration in convergence rate caused when Dirichlet boundary conditions
are replaced with Neumann, and to allow controlled experimentation on the effect of inacenrate
honndary conditions in the preconditioner. The poer eonvergence of #2 using the preconditioner
of #1 led to the decision to expand the cross-point system 1o include physical boundary pomts

the general case,
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dder o maanitude ratio between the diffusion coefficients in the r and y directions is mathenia
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Fhe fonrth example is a prototype convection-diffusion problem: a passive scalar ina phie o
which iy iy developed at the ontflow. It is a companion problem to #2 in the sense of posses-ing

s sniooth solntion with one Neumann boundary, but asvimmetry due to the convection. In that s
dnsotropy comes from a tirst-order operator, it is also an interesting complement to 23,
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['he next two examples 1 the first two from the standard “population™ of olliptic probies-

350367 bring in non-constaut coetficients. the latter in a non-self-adjoint wayv with Robin bonnan
conditions.

Frablem #5: Selt-adjoint. non-constant coefficient. Dirichlet boundaries.

] Uu) i < B i)u) i
ey L S eIl o 2 o
ar dr Jdy dy L+r+y

u(r,y) = e sin(rr)sin(Ty)
=9 on JN
Q = Unit sqnare
Problem =

#6: Non-self-adjoint. non-constant coeflicient. Robin boundaries.

b , du Ju 1+ 20 + ,)du
+ = : S (42— =
ar: dy (\ ' ()y ( T T

Jdr Jy
n(r.y) = 0,135 + (0 = 1)’ log(1 + y?))
))
—: =g on dQ
Jn

Q = Unit sqnare

I'he derivative s the ountward normal.

The seventh example, from [1, 27], has a smooth solution. but rapidly varyving coeflicients anne
an internal layver. Here, the solution itsell gives no hint of the requirement of mesh refinement.
[nterestingly. the locations of maximum error in a uniformly refined discretization of the PDL
not evew ocenr at the internal laver itsell, but towards the interiors of the two subdomains it div

el
> 2 & N . $IN ‘ : Vhoides

RYIS

23

Problem #7: Internal laver.

CaVu=f
] |
alr.y) =1+ barctan T — 5| +earctan d vy
wlr.y)=16x(1 - iyl = y)

h =065 ¢c=0.35 d=
w =0 on J8)

Q = Unit square

Fhe next three exampies are obtained by taking three different valiues of the copvecon,
spectivelv e = e =~ 1)

cand e = 1o the convertion-difhision problem helow.
Problems #x 100 Cyvlindricaliv separable reentrant corner convection-dithision probiem

fThe more widely
o #e

wealable reference 1200 cantuns anddentical hetmg o problem # 7

Coaned sl boar v b ab e
A tspographieal crror i the Latter renders or o posed
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ulr.y)=r"sin —( —-n'))
3 2

where r = \/(:— 1)+ (y — 1‘,2‘
and § = arg, |« ~ 1)+ i(y—1)})), 0<8 < 27

Dirichlet data on o2

1 = L-shaped region

Lhe first of these corresponds to pure diffusion. and the second and third to convection in 1towird:
rhe reentrant corner. and away from it respectively, at a rate inversely nroportional to radin-.

- . . . . ¥ . N
The respective values of *he radial eigenfunction exponent a are £, l} and approximately 10.0 112,
- | I - ay . . .
from the Euler equation formula a = |¢ + \/«;3 + 1—;} /2. The first two solutions of this trio [ack !

derivatives at the reentrant corner. The last is evervwhere rwice-differentiable. but the solution
is characterized by steep variation in the three non-reentrant corner regions. where r > 1. Local
meosh refinement is critical to impro/ing the accuracy of a finite-difference solution. In addition 1o
refinement. a simple change 1o th» finite difference scheme in the vicinity of the reentrant corner is
made that substantially improves the accuracy of the sol:don: this is described in more derail in
21

The eleventh example. from [4, 27], illustrates now an irregularly-shaped domain may force
minimum granularity 1pon a tessellation comprised of congruent tiles. For the problem at hand.
the minimum granularty is near the ideal one.

Problem #11: T-shaped domain.

V=4 —2cos(y).”
w(z.y) = 2° + y* — re¥ cosly)
Dirichlet data on 9Q
{: = T-shaped region
The last example. from [7], is provided to illustrate the accommodation of poa-simply-conae 1
domains. Again. the zcometry imposes a minimum granularity on congruent tiles.

Problem #12: Two-hole domain.

J ORI du J _oTr . Tyy Jdu R ,
T (1*5'”“— - |~ 5 (l+>‘|n—:1n~—)7— =" 4y
dr 10/ dr dy 10 10/ dy

u = 0 on outer boundary of J9Q
A : ]
—{r. ) = 0 on hole bonndary of 9%
Ay )

2 = Two-hole region
Perspective surface plots of the solutions to these twelve problem= are given in Figures 6 and 7,
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Figure 6: Surface plots of the test problem solutions: (a)
#1-3. (b) #4. (c) #5. (d) #6. (e) #7.(f) #11. (Note that
the solution to #11 is smooth: the apparent fronts are due to
zeroing the surface over the undefined regions of the T-shaped
domain.)

4.2. Parameters studied

Several categories of experiments are reported. First. a two-dimensional parameter space con-
<istineg of coarse grid resohition and overall (uniform) resolution is exp'ored by numerical experiment
on probiems #1 10, A non-testarted GMRES algorithm is used. block-triangularly preconditioned
with exact <olves on the subdomain interiors and on the coarse grid. and with tangential inter
face solves. Hereo as thronghout this studv, we nse exclusively right preconditioning and an initial
iterate of zero, The goal of these experiments is the evaluation of the alg »rithm over a range of rex-
oliution-. in terms of iteration count and execution time, for comparison with back-of-the-envijope

complexity analyses.
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Figure 7: Surface plots of the test problem solutions: (a)

#3.(b) #9. () #10, (d) #12.

Another set of experiments is performed on problems #7-10 with the goal of evaluating the
cconomy of the local refinement technique. We show thai local uniform mesh refinement is capable
of significant CPU and memory savings with no sacrifice of accuracy relative to uniform refinement,
but that improving the discretization in simple ways can be more effective than considerable refine-
ment. Inoa third set, we evaluate the effect of decomposition orientation for non-unit-aspect ratio
tiles. using problems #1 1. The limiting cases are the stripwise decompositions previously consid-
cred by us in (2900 In another, brief proof-of-concept section. we present resiuts for the complex
domain problems. #1171 and #12. We then evaluate different preconditioner options than the exact
interior <olves and tangential interface solves used in all of the examples above. With exact interior
~olves. we compare three different interfacial preconditioners, and for tangential interface solves, we
cotnpare three different interior preconditioners, Finallv, we compare our preferred options in this
o1 1o global incomplete factorizations for all of the problems which are posed on square domains.
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RN EERETEE S #6 | #7 #3 #9 #10 |
R 1 2 5 1 NA NA NA
Lo 64 7 15 3 [ 22 22 | 20 | 20 12 1 ¥ j
Py 32 11 21 IR 2% 37 35 35 17 16 12
LR 16 13 23 24 30 39 32 32 23 22 1% !
R 8 10 17 22 27 31 25 23 16 19 16
k> 1 T 13 16 20 24 17 15 11 12 10 |
| 6 2 - - - - - - - - - -

1R 1 1 L 1 1 1 1 1 1 1 L 1 l

Table 1: Iteration count as a function of number of tiles
per side of circumscribing square. t. and number of mesh
points along a tile side. m, at constant refinement parameter.
h=1 = 128, for a reduction in the initial residual of 10=5. The
last two lines of the table are not available experimentally due
to minimum discrete subdomain size conventions in the code:
however, the last line consists of all 1's by definition. when
t =h"1

The timings given below are from a Multiflow Trace 14/200 computer using 64-bit reals. All of
the code (primarily in C but with FORTRAN computational kernals) was compiled with the default
(-03) optimization and with version 2.1.3 of the compilers. Because of the varying performance of
hardware (vector, parallel. superscalar) on different problem sizes (due to different startup costs
and data dependency limitations), execution times are difficult to compare directly. The reader
should keep in mind while studying the results that different organizations of the code and different
compiler capabilities can account for large variations in times across architectures and software
releases. We have run the same experiments (to the extent supported by memory) on two other
Unix machines and find that the proportion of time spent in factorization and solution phases
varies widely between machines even though the relative rankings of total timings remain mostly
the same. In addition. replacing the nonsymmetric bandsolver in LINPACK used to solve the linear
systems with a custom nonpivoting routine produces a large benefit on one computer (a factor of
three reduction in time}, but has little effect on another.

4.3. Convergence as a function of coarse grid granularity

In order to test coarse grid granularity over a large range, we fix the finest mesh spacing at
h=! = 128 (relative to the length of the domain, whether that be 1 in the first seven problems. or
2 in the next three) and investigate the tradeoff between numbers of tiles and points per tile. as
shown in Tables 1 and 2 and plotted in Figure 3. The mesh is identical and uniform for all runs
in these tables (with the obvious exception that one quadrant of it is not present in the L-shaped
domain problems. #3-10, which therefore lack single-tile entries). The convergence criterion is a
relative reduction in residual of five orders of magnitude. Table I shows that the iteration count
peaks in the middle of the granularity range, at either 4 or R tiles per side. The bottom row of
all 1's can be supplied without benefit of actual experiments. since it represents a direct solve on
a single grid. The top row entries differ from 1 in problems where the preconditioner has differen
(lower order) boundary conditions than the operator A.

Tabhle 2 shows the deceptiveness of iteration count alone as a measure of overall performance.
In execution time. the extreme runs. representing single-domain limiting cases. snffer due to rhe
ligh cost per iteration. even though the number of iterations required is very small. This table is a
profoind illustration of the title of [10]: Domain Decomposition Bene ficial Even Sequentially. The
most favorable total sequential execution times are found for multi-domain cases near the iteration

11




tT om | #1 | #2 #3 | #1 | #5 #6 ‘ AT H9 | #10
I 128 | 406 49 | 416 | als | 421 | 432 | 425 | NA | NA | A
2 6y l 108 \ 15 0 13 | o120 | o120 foue | 7o | ose |8 s
I I 1) 38 34 11 13 16 45 | 25 | 25 | o3
sl ‘ 12 1 19 20 25 34 27 23 14 14 12
6 x : (3 23 23 12 27 23 9 14 2
32 0 4 . 17 t 32 41 55 70 47 35 36 21 Y

Table 2: Execution time (sec) as a function of number of
tiles per unit length, t. and number of mesh points along a
tile side. m. at constant A~! = 128, for a reduction in the
initial residual of 107°.

No. of [:ierations Tctal Execution Time [sec.!
40 [ T ~ L T —T
W 400 4
20 — |
200 F -
1
AL 4 1 L i i
93 2 1 G %3 2 1 E
Log of No. of Tiles on o stce Log of No. of Tiles on o slce

Figure 8: Plots of Tables 1 and 2 (problems #1-10 super-
posed). illustrating that the minimum execution time serial
algorithm occurs near t = 16 tiles on a side, despite the large
iteration count at this granularity.

coinnt maxima. in particular at 16 tiles per side.

The factorization of the banded matrix in the single subdomain case is the dominant contri-
bution to the overall time. In problems #1-7, over 410 seconds are spent doing the factorization
alone. Of course. one might not ordinarily employ exact solves on the single domain cases. althoneh
many structural analysis codes do this very thing. A comparable penalty will accrue in an attempt
to do exact solves on a very fine “coarse” grid, in which each tile contains just one point. However.
the table of execution times is truncated beyond tile sizes of m = 4.

The behavior in Table 2 can be understood with reference to back-of-the-envelope complexity
estimates for the solution and factorization operators of the preconditioner. We observe that there
are O(t*) cross-point. interfaces. and interiors. Naturally ordered banded direct factorizations and
solves require O( Nb?) and O( N'b) operators respectively. where .V is the number of unknowns and b
the bandwidth. For the cross-point system. .V = t? and b = t: for the interfaces. N = mand b = 11
and for the subdomain interiors. .V = m? and b = m. Thus, the interface operation counts are
alwavs asvmptoticallv subdominant and can be omitted in the following. From choosing the lareer of
the cross-point and interior complexities, we see that factorization costs max,m){O(¢"). O(t* ')}
and solves cost max,, {O(2).O(t2n™)}. Since m = 128/t in these experiments. the first term
grows with t and the second decavs with it. Quick calculations reveal that (to the resolution
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Lt h—1 E#l #2 #3 #1 #5 #6 #7 #R #9 #10 |
i 2 16 i 6 10 10 12 12 15 10 6 5 3
] ! 32 I ! 19 16 17 24 31 21 12 11 T
LS 6.4 12 20 22 25 29 28 23 17 14 16
L6 s a0 oar f o2 foor b o2 o2 | e | o3 | 16|

Table 3: Iteration count as a function of number of tiles per
side of circumscribing square, ¢, and refinement parameter.
h~'. at constant number of mesh points along a tile side.
m = R, for a reduction in the initial residual of 1073,

of the table) the minima for both factorization and solve costs occur at or between ¢ = 16 and
32 when A=! = 123, The tendency of bufler overhead. neglected in the estimates. is to favor a
slightlv smaller number of tiles t than thus estimated. [t is important to note that the memory
requirements follow the solve complexities above. Thus. for a fixed memory size. an intermediate
coarse grid granularity accommodates the largest problem in core. Of course, all of these per
iteration complexity estimates need to be redone when the preconditioner blocks are other than
exact solves, for instance. incomplete factorizations. However. incomplete and exact factorizations
differ little in actual cost per iteration when the grid is narrow enough in the rapidly ordered
direction. which includes the case of small, square tiles.

4.4, Convergence as a function of tile refinement

In contrast to the previous section. we here investigate iteration count as a function of overall
resolution, for a fixed number of subintervals per tile. The results are shown in Table 3. The global
mesh grows in refinement from 16 to 128 as the number of points per tile remains constant at 2. In
spite of the fact that the truncation error improves with at least h~!, we use the same convergence
tolerance of 1073 as in the earlier tables. The fine grid in the last line of Table 3 corresponds to
the t = 16 case of the earlier tables.

The experiments suggest that the iteration count is bounded nearly independently of /. and
thus that the two-level algorithm is nearly optimal asymptotically in the constant m limit. In
fact. some of the finest mesh results are even relatively better than preceding coarser ones. This
should not be regarded as surprising, since there is a steep price for this favorable iteration count
when m is held constant and A™! is increased. namely, a larger cross-point system. We have not
pursued any theoretical justification for this bound. but the theory for conjugate gradient iteration
for self-adjoint problems. see, e.4., [6. 40], contains similar results, namely. constant upper bounds
on the iteration count for constant m.

As representative convergence histories, we present Figure 9 which follows the residual reduc-
tion over five orders of magnitude, and the time versus iteration count history for problems #1
and #2. The latter plots reveal the quadratic term in the GMRES work estimate that comes
from the need to orthogonalize each iterate over a subspace whose size grows linearly in iteration
connt. This pair of figures also illustrates the poorer conditioning of Neumann problems. since the
initial iterates and the solutions converged to are identical. and so are the operators except for one
Neumann boundary segment.

4.5. Economies of local mesh refinement

Examples #7 through #10 allow us to display the well-known benefits of local uniform mesh
refinement in elliptic problems: comparable accuracy in considerably fewer aperations, compared
with global nniform refinement. We solve these problems at refinement levels of A7 = 320 61, 12X,
and 256, based on the global grid, but perform both global and lecal refinements for comparison.
where possible. (The finest global refinement does not fit into the memory available, which is. of
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Figure 9: Convergence histories for problems #1 and #2, for
t =16, m = 8, h~! = 128. (a) and (b) show the normalized
Euclidean norm of the residual versus iteration count. and
(c) and {d) show time versus iteration count.

course. another of the main motivations for LUMR. along with execution time savings.) All of
these computations were made with a reduction in the residual of 10=8, so that the measure of the
error would not be contaminated by the residual. In all cases, the choice of where to refine is made
by hand. In a forthcoming paper [23] we will show that the local error is not always adequate as
an indicator of the optimal refinement location. Since we are interested in studing how dowain
decomposition and mesh refinement interact. given a good refinement strategy. we eliminate the
latter question from this study.

‘Tables 4 throngh 7 compare global refinement results on the left, and local on the right. Lach
set of columns lists the number of unknowns. the sup-norm of the error. the number of iterations to
reduce the discrete residual by 3 orders of magnitude. and the total execution time thus required.
The right-most column gives the execution time ratios for each refinement level, Memory use ratios
can also be estimated from the tile structure of the discrete problem, but the present code records no
explicit allocation measurements. All entries share a constant value of ¢ = R in order to fix regious
of enhanced refinement that do not shrink as h does. Therefore, the “global™ iteration columns
of Tables 1 through 7 comprise a convergence study which is complementary to both Table 1 (in
which b is constant) and Table 3 (in which m is constant).
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Figure 10: Refinement levels. The maximum (third level)
loca! uniform roﬁnements (a) Problem #7. (b) Problems
#R and #9. (c) Problem #10. In second level tests, all tiles
showing =37 are set to 2", In first level tests, these are
further reduced to “17. In zeroth level refinement, all tiles
are set to 0", which here corresponds to m = 8.

r ! | Global Local Ratio !
C AT m Vg G Ig e N €L IL TL Ie/T |
( 321 1089 1.58(-4) 26 3.9 1089 1.58(-4) | 26 3.9 1.00 {
ICEEN . 4225 3.95(-5) | 37 10.9 26:41 4.15(-5) | 46 12.2 OIS
D128 ] 16 | 16641 | 9.89(-6) 53 51.1 5729 206(-5) | 65 | 315 162 |
Lous6 | 32 NA NA | NA | 18049 | 1.70(-3) | 80 | 99.1 Ny

Table 4: Number of unknowns V. sup-norm of the error
€. iteration count [. and execution time T (sec) for problem
#7 (internal layer). globally and locallv refined. along with
execution time ratios. for a reduction in the initial residual
of 1073,

The behavior of iteration count with each doubling of global refinement in the self-adjoint
problems in Tables 4 and 5 is consistent with the logarithmic growth in conditioniig with 47!

proved for self-adjoint problems in [6]. The locally refined examples also worsen in conditioning

with /=1 when t is held conutant, but the CPU time advantage of local refremont inerenses with
h=1. overall.
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! ) Global | Local M Ratio
BT NG o |l | o |V €L I, | Ty | 1aT
, 3200 b s i 1.30(-2) 21 | 2T R34 1.30(-2; | 24 2.7 i 1.00
G R L3202 | R30(-3) 32 \ 6.8 | INIR | R30(-3) | 35 6.2 | 110
CoI2s P16 T 1Rs16 [ 5.25(-3) 41127 2410 5.26(-3) 37 7.6 { 3.57
) SN I NA NA } NA 4746 | 3.33(-3) 41 1644 ] NA
Table 5: Number of unknowns .V, sup-norm of the error
¢. iteration count [. and execution time T (sec) for problem
#X (reentrant corner, pure diffusion), globally and locally
refined. along with execution time ratios, for a reduction in
the initial residual of 1075,
i ! Globai I Local [ Ruatio
Al e Ne €e; I Te l \'¥3 i eL Tli[[ [ T T, T
32 0 4 <3t | 697(-2) | 23 26 | s34 1 697(2) | 23 [ 26 100
64N 3202 5.65(-2) 37 R2 | 1818 | 5.66(-2) | 34 5.7 It
N0 06 12008 1 4532y | 400 260 | 2410 | 453(-2) | 3T 7.6 313
26 a2 N } Nao | NA ¢ oame | 367(2) | 41| 165 NA
Table 6: Number of unknowns .V, sup-norm of the error
c. iteration count /. and execution time T (sec) for problem
#9 (reentrant corner. convective inflow), globally and locally
refined. along with execution time ratios. for a reduction in
the initial residual of 107%.
\ f ? Global Local Ratio
T m N T e Is | Tg AY e, | L | Ti I;/Tr
32 41 R34 | T35(-1) | o2 2.4 834 735(-1) | 2 24 | 1.00
61N I 3202 4.15(-1) 23 5.7 1610 4.30(-1) 25 3.6 9N
2% 016 112546 | 2.19(-1) 34 215 4693 2.40(-1) | 29 8.5 2.53
256 ( 32 J NA NA | ONA | 17018 | L98(-1) | 35 | 516 | NA

Table 7: Number of unknowns .V, sup-norm of the error e.
iteration count I. and execution time T (sec) for problem #10
(reentrant corner, convective outflow), globally and locally
refined, along with execution time ratios. for a reduction in
the initial residual of 107%. The error values here appear
large. but are in fact small relative to the size of the solution.

The sup-norm of the error shows sublincar improvement in h in problems #3 and #9. as one
expects with non-differentiable solutions. The second-order accuracy of the discretization is readily
apparent (the ratio of errors is almost exactly § with each reduction of A by 2) in problem #7. and
the first-order accurate treatment of convection in problem #10 leaves its signature as well.

In Table X we show the henefit of rediscretization of the tiles surrounding the reentrant corner
in problems #X and #9 to fit the discrete solition to the known power-law radial dependence of
the singnlar exact solution (see the problem statements above). Rather than making the customary
Tavlor series assnmptions. we take u(r) = g+ arP +hr?P where pis derivable from a local analysis

3

{see [211). Figure 11 displavs u(r) along the rav # = 22 which is the symmetry axis of the three
. I s A \ g A Kl . .
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Figure 11: Cross-section of u(r) along the svmmetry axis.
(a) Problem #8. pure diffusion. non-differentiable at r = 0.
(h) Problem #9. ccavective inflow, strengthening the singu-
larity. (¢} Problem #10. convective outflow. eliminating the

. e,
u...,:‘,‘uxaut'\’.

L _ L Problem #"« Problem #9

A ’ m €. {4 Ty eafer €4 14 Ty eafer |
EY: ‘ 1 1.63(-3) | 23 2.5 13 2.16(-2) | 21 2.2 31|
j 61 1 = 1.04(-3) | 61 13.5 13 1.88(-2) | 35 5.8 33
EREE 1 16 | 6.66(-1) | 64 16.5 13 1.61{-2) | 36 7.0 35
236 | 32 | 426(-4) | 6T | 285 13 t 133(-2) | 39 | 151 | 36

Table 8: Sup-norm of the error e. iteration count [, and
execution time T (sec) for problems #8 and #9 locally refined
with asymptotic fitting, along with the ratio of the error to
the corresponding local entries withcur asvmpiotic fitting in
Tables 5 and 6.

L-shaped problems.

4.6. Numerical compromises associated with domain geometry

The domains of problems #11 and #12 provide an interesting test of the tile decompositions
advocated herein because they can be more simply described with less restrictive decompositions.
Forinstance. if the only restriction on the decomposition was that all subdomains had to be rectan-
gular, the first has a two-subdomain. and the second a five-subdomain decomposition. In contrast.
our uniform-size decompositions require a minimum of 48 and 23 tiles respectively. However. he-
cause the Nenmann boundary conditions of #12 require a minimum stencil width for the coarse
arid solve in the preconditioner, we must further bisect (in each coordinate direction) obtaining a
92-tile decomposition. Convergence results for some constant A discretizations are given in Tables 9
and 10.

Though domain geometry prohibits much exploration of granularity parameter space. we note
that: (a) the practical grannlarities are in the range found most useful for provlems #1 0 in
Tables 1 and 2: (b) the number of processors available in a typical medium-scale parallel computer
(sav 2% through 2%) is appropriate for tessellating shapes such as these, which., when allowed 1o
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Table 9:
tiles per unit length, f. and number of mesh points along a
tile side. m. at constant h=! = 128, for a reduction in the
initial residual of 107> on problem #11 (T-shaped domain).
There are 12516 unknowns.

Execution time (sec) as a function of number of

[ t | m I T [
10 16 99 176 l
20 X 82 239

EREEE Rt

Table 10: Execution time {sec) as 2 function of number of
tiles on a side. t. and number of mesh points along a tile
at constant h=! = 160 subintervals on a side. for
a reduction in the initial residual of 107% on problem #12.
{Note that the two-hole domain of this example is in ;0. 10] x
{0, 10]). There are 21001 unknowns.

stde, m.

Sih Int | #I 4 #3 41 #5 #6 #7 #N #9 =10
Foxaet Tang. | 13 23 2. 30 39 32 32 23 22 A
Exact [P0 [ = 90 92 | 85 93 293 | N6 | 55 1 55 e
Fxact Trun. 92 165 171 b 96 157 — 1 136 7 66 66 1
LU Tang. — - - - R 213
LU Tang. — — — — - — - 290 2T 198
MILU0) Tang. | 3% | — 61 - | 63 — ™ a2 o

Table 11: Iteration count for different preconditioner block
combinations at constant refinement parameter. h=1 = 128,
and tessellation. t = X, m =
tial residual of 1077,

16, for a reduction in the ini-
GMRES was restarted after every 100
iterations. — indicates that the iteration had not converged
after 500 steps.

underego quasi-uniform distortion. are sufliciently general for a targe class of tvpical two-dimensional
eneineering applications: and (e the quasi-nniform tiles represent quasi-uniform quanta of work
for a convenienee in load-balancing that the less restrictive minimum tessellations do not have.

It <hould be noted that these problems are alternatively solved very successfully by embedding
imto the cirenmseribing sqnares. and using preconditioners based on fast solves on the squares. in
what is known as the capacitance matrix method (see. e.9.. [31]). Complex domains are often hetter
candidates for embedding preconditioners than for decomposition preconditioners in terms of the
<], We note that either approach can lead to effective
paralleli-m. sinee readily parallelized fast solvers exist [12].

size of the capacitance svstem (see, ¢.g.,

4.7. Tests of algorithmic combinations
Tables 11 and 12 explore different algorithmic combinations for the preconditioner hlocks
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Table 12: Execution time {sec; for different preconditioner
hlock combinations at constant refinement parameter, /= =
1250 and tessellation. 4 = S0 = 160 for a reduction i the
mmitial residinal of 107 GMRES was restarted after every 100
prerations. indicares that the iteration had not convereed
after 500 steps.
Foae subdornain precondinioners cexacts TRUT0 TEUCT aned MILE G0 aad three intertin e
aeditioners TP truncated, and tancentiali, as deseribed inosection 3. are tested onoa atan
Soesellation for problems #1160 Many combinations did not converoe after 100 Deration- o
veosturted GMRES 370 was emploved, in which an intermediate solution was computed. and oo

heonn every 100 iterations. Up to five restart eveles were attempted.  None 2t

Krvlov subspace
probiom= 21T contain 1664 nnknowns, and #3010 contain 12716, 50 a anion of <nbspaces oo
sistine o g paxinonn of 500 search directions represents only 3 to 1 pereent of the dimensions.
of the proboems even so 18 1s bevond the rance of artractive performance for <uch methods,
Fuidentlv the interface probe teclinigne IP100 does not work as well s the taneenial procos
tioner on these problems, thongh it is alwavs hetter thau the truncation preconditioner. A po-<inie
explananion for the poor performance of the TPV interface handling is that probing near the onoes
points i~ atcinaccirate characterization of the matnal influence of points on fwrersecting interfaon
hongh IP001 05 a0 cood technique for adapting interface preconditioning to coetficiont varia o
the tables illustrate that the straightforward version for stripwize decompositions is ineffocrive oo

cross-point problemn with “short™ interior interfaces. Suitable seneralizations of the interface proa
technigae are liportant to applications becanse the information regnired to construct TP w0

bedded directlv inro the matrix elements of the linear syvstem to he solved, whereas constre o o

the raneential preconditioner requires information abont the original ditferential operator, and
relevant collection of terms is not defined for cource-sink operators,

We note that the non-exact subdomain solves perform very poorly for these problemsvelutin
to the exact solves. The exception is MILU (0L which performs well on the Dirictder problons
Fronre 1205 o nseful diagnostic for the poor performance of many of the combinations. Show i
the st panels is a surface plot of the elements of the vector B0 f for problem # 1. decompaosed o
an s <sarrvol Ta L6 tiles. A good preconditioner # will vield a plot resembling the actual ~oiatnon
of the provlem.w = 574 y? (eoe Figure 6(a ). Thisis reasonably well approximated by conhipasion-
of tancential interface preconditioning and exact or MILTU subdomain preconditionine. T he otie
combinations with tancential interface preconditioning <how that the “wire-hasket™ purt of “he
solution is well-defined, hat that the subdomain preconditioning is poor. FLUCT s <liehtly <aperiog
to TLUV O as expected, and as more bands of fll-in are permitvted, TLU A oventnally converees
tooan exact solve iwhen A = ap — 1 for the five-point operatoric The combinations with o
and traneated tnrerface precaonditionines show thar the quality of the precondinioning i Tost ar the
“wire hasketT staceindependent of the subdaomain ~olves,
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Table 13: Irevation connt as o function of nonber of 1iles

ver horizontal and verrical sides o5 clrenmsenhine squares

constant refinement paraneter, A0 = 108 for woredaction

in the initiad residual of 10770 GMRES was rosturtod aiter

cvery 100 iterations,

~ e o the narrower handwidths of the <orip subdonin bandsolverss aud - an oo

e e '

weatid be coss pronounced had we nsed Tast FUTmplementables sharsesar tyecmypene - b

~opverss Fonallss we note that stripwise decompositions can expiolt anisinyopies, ot
nstaee keopine the sabdomains nubroken alono the strapely conpled direcnon i P

rodireetion s loads o bettor tteration connts and execation thnes than otherai-o
- L

pornt decompositions are a cood cotmpromise between the “eood™ and the “had T oarrpoor
Lvoprobiems i which the optimal sivip orientation either vares Som locarion o Toons
SnRnown @ prioric a cross-point decomposition emploving the oo oimher of bl
coodd alternative 1o STPIps.
4.9, Comparison with undecomposed alternatives

Tabues 15 and 16 pravide 4 more realistic compari-on heraen elobal and e oo
appreaches to preconditionine than Tables Toaad 20 Recadl thog reguinime eceet oo -
arhedirnains pt\xm'ii/v\ }u"‘.'nn(i reason the pl‘l"fhl‘iil(n!u T IR FURTERNE decnnipee o cr
secnse o standard precondiniorers D NMITEU O and LU i plaoe of evaet oo o
certon of problems 4] 7

Vi cases tnvolving anoanscaled Nenmann o or Robin boredary coanditnoae b e
;)T'rl,»l' i~ e f“] Lo converge e 500 ~T“;)~ H\ili‘_‘\ T}I" L‘Iti.lm‘. ‘IH I ARRIEIAETT r . and o
ar=oc condonnds the TR preconditionine. The tilechised procondinionine . intern e '
scaane converced Tea relatively modest mnnbher of teraons SO prabierne e U
Ao leads to the hest execntion e~ an the vaeos Dop w0 e e
Dirteboer probiemss More oportantte Tor Datare geed o he vie Buced ange o
Lerrer prospec s for parallel oxecntion . and e e coanpetit e wirh e e s
averall naradbe D etfirenen s relative to the best serial algordfon of ey disted won e e
[hre il Be tene vven on Laree s divtribnted temiors tachines sl robatne v o .

Cornnog e ation, i ot of comtinieation regred T dorioaan e e s T

24




. o Tangentwd iP0) o
AP S B R R RS S 1{ HU| o l an ol g ]
v o * I U } N S VT A FCI I I S T R DR
L L R R R I L L L |
U A b } 109 10~ } 109 110 Loy 113
AR LRI R RE A A T R SR SR I R L L6
i | ‘ | ‘ N 3 2N 27 30 30 249 33
AT R R Rt R 2N 130 30 3 b |
I B B TR S 1 0 op a7 a7
1 ‘1 N 10) \ 14 i 9 9 12 11 10 i 15 |
S ] i Ly o 20 9 12 14 20 | 12 ‘\
SN R R O S VI BT R R oo o i |
o , K N LT A 15 [ 23 4 ! 200
I N U B R Y 5 15w | 12
AU TY T2 2| T ; i |
Table 14: xecntion time (sec) as a function of number
of tiles per horizontal and vertical sides of circumseribing
square. at constant refinement parameter, h=! = 1230 for
a reduction in the initial residual of 107° GMRES was
restarted after every 106 itcrations.  indicates that the it
eration had not converged after 500 steps.
[ Method | #1 F2 | H3 | #U] #5 ] #6 [ #7 ]
L Global/AHLU [ w2 19 39 * 39 t
{ Global/ILT 115 TG0 6T Y O
P Te/Exacr 013 3 2 0 300 )39 32 82
Table 15: Iteration count for problems #1 7 for a glchal
MILU(0)-preconditioned GNRES, 4 elobal TLU(D-precond-
toned GAMRES. and an tite exact /tangential preconditioned
GMRES (for t = S_m = 6], at refinement parametor h=! =
12x for a rednction in the initial residual of 1077,
T Method T HL T g2 [Ew T AL # T He T R
T Global/MTLC | R B «;"'H’QWW T
CoGibal/ILU L bt 0 s s | |
S LT NN N U < I L 0

Table 16: Fxecution time (secd for problems #1 7 for a
elobal MILUD) - preconditioned GMRES, a elobal TI1LU(1)-
preconditioned GARES and an tile exact /tangential precon-
dittoned GMRES (for t = =0 = 16}, at refinement parame-
tor =l pes s for acreduction in the initial residuai of 1077
sl particnlarly cosnpared 1o elobal technignes,

5. Conelusions and future directions

xpertments ona diverse aroup of problems demaonstrare dhat o twadevel domain decompos

torcateorithur with o single alobal conre erid can provide “nearlv™ optimal converaence and allow
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a wrear deal of flexibility in refinement strategy, while also permitting a data structure amenable
to parallel and vector implementations. ax summarized in closing below. Although often moti-
vared by parallelization, domain decomposition may also vield runtime and memory use benefirs
as a sequential programming paradigm. Furthermore, the simple structure of individual blocks of
the domain-decomposed preconditioner means that new applications are found for the “standard
solvers" in conventional software libraries.

The traditional economies of local uniform mesh refinement can be straightforwardly incorpo-
rated into the domain decomposition framework at the price of interface handlers with conditionals
for refinement differences between adjacent subdomains. Because of the highly modular nature of
a standardized tile-oriented domain decomposition code. custom discretizations for certain classes
of singularities may be archived into applications libraries for reuse,

The tile algorithm demonstrated herein in a superscalar mode on a Multiflow computer is
amenable to vectorization in either of two ways. The regular operation sequences on the tensor-
prodiet subgrid arrayvs are precisely the tvpe for which vectorizing compilers were conceived. The
vector lengths depend on the precise form of solvers nsed in the preconditioner. but would fend to
be ratlier small for the rows of individual 8 x 3 or 16 x 16 tiles found best in the two-dimensional
applications above. An alternative form of vectorization can be realized by grouping together all
tiles of a given (discrete) size and shape and operating in lock step on corresponding elements in
each tile, assuming an identical solver is applied to each. A vector in this approach consists of the
7% element from each of the subdomains. Our 8 x 8 arrays of tiles would be thus be optimal for
machines with a vector length of 64.

Parallelization requires careful attention to the load balaucer/mapper and also to the coarse
erid =olve in the preconditioner. Some complexity estimates pertaining to alternative forms of
the latter may be fonund in [24]. The main disadvantage of the two-level algorithm in the parallel
context is that the choice of coarse grid granularity is even more of an “over-determined”™ problem
than in serial. Commuuication cost per iteration and convergence properties potentially inveigh
acainst the lower bounds imposed by domain geometry. solution and coeflicient smoothnress. and
parallel load balance. The key determination for future applications of the tile methodology will
be whether this over-determination is consistent in practice. Inasmuch as the examples herein are
represer ative of single-independent variable problems, and paralldl communication costs generally
comprise a relatively smaller proportion of the total work in coupled multi-component problens.
there are substantial erounds for optimism that this will he the case.
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