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I. INTRODUCTION

It is well known that when a quantum system is interacting strongly

with resonant electromagnetic radiation, a rapid change in the amplitude or

wavelength of the radiation field will induce a transient response in the

quantum system's wave function.1 However, the dynamic response of a

quantum system to rapid field phase changes is not well understood, and

recently there has been an increasing interest in this question. Fur

example, Helisto et al., 2 Ikonen et al. 3 and Realo et al. 4,5 investigating

the consequences of rapid field phase changes in Mossbauer spectroscopy,

have found that short bursts of gamma ray photons are generated when a

resonant absorber is placed in the path of a "phase-switched" gamma-ray

field. In the optical regime several groups have initiateH detailed

studies of various coherent transients resulting from laser-field phase

switching.6-10 Of particular note is the work of Bai et al.,11 where Yb

atoms were prepared in specific dressed states. Taken together, these

individual results indicate the breadth of phenomena associated with rapid

electromagnatic field phase changes, and the new information to be gained

concerning the resonant interaction of radiation and matter.

Of considerable significance in this regard is the work of Cappeller

and Mueller, and their observation of so called "Rabi resonances."12 A

Rabi-resonance is an enhancement in the transient response of a quantum

system to a train of radiation-field phase changes (in the case of

Cappeller and Mueller this was observed as an increase in the amplitude of

quantum system population oscillations), when the rate of phase changing

satisfies a resonance-like condition with the Rabi frequency. Whereas

Cappeller and Mueller 12 varied the phase of their strong field smoothly

(sinusoidally), and observed only a single Rabi resonance for a given

radiation-field amplitude; in the present work we vary the field discretely

and find a Rabi-resonance spectrum. In the following sections of Litis

report it will be shown that the spectrum is a consequence of the discrete

nature of the phase change, and that it may be easily understood in the

framework of a harmonic oscillator driven by a periodic delta-function

force.
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I I. EXPERIMENT

The experimental arrangement and atomic energy le-els of interest are

shown in Figure 1. A Corning 7070 glass cell containing 10 torr of

nitrogen and a saturated vapor of Rb8 7 was contained within a microwave

cavity whose TE0 1 1 mode resonated at roughly 6835 MHz. The cell length was

7 cm, and the pool of liquid Rb was maintained at a constant temperature;

typically the cell temperatures ranged from 30 to 500 C. The microwave

cavity and cell were placed in a large solenoid, which provided a static

magnetic field of hundreds of milligauss in the direction of the

oscillating microwave magnetic field; the static field removed the

degeneracy of the hyperfine manifolds, and ensured that the microwave field

was only resonant with the ground state (mF:O) - (mF=O) hyperfine

transition. The microwave field was the strong field in these experiments,

and saturated the 0-0 transition. By observing the transmitted light of a

diude laser whose frequency vas resonant with the D2 , 5
2 P3 /2 - 52S1/2 ,

transition at 780.2 nm, the population in one of the hyperfine manifolds

was monitored. The transmitted light was detected with a silicon

photodiode and amplified, and the transients were averaged with a Nicolet

1140 Signal Averager. The bandwidth of the measurement system was roughly

300 kHz, much faster than any dynamic rate in the quantum system.

In order to create a population imbalance between the two hyperfine

levels coupled by the microwave field, the diode laser was employed for

optical pumping13 , 14 as well as detection. The diode laser, with a

linewidth of 70 MIHz and an output power of 1.8 mW, selectively excited

atoms out of the F=2 hyperfine manifold. The Doppler broadened linewidth

of the Rb8 7 D2 transition at 30
0C is 514 MHz, which allowed resolution of

the ground state, but not excited state, hyperfine splitting. Since atoms

in the 52 P3 /2 state can return to either of the ground-state hyperfine

manifolds, the consequence of several absorption and emission cycles was

the reduction of population in the F=2 hyperfine manifold. Oncc an optical

pumping equilibrium had been attained, the transmitted diode laser

9
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Figure 1. (a) Experimental arrangement used in the present study, and

described in the text. (b) Atoms optically pumped out of the

F=2 ground-state hyperfine manifold by the 780.2-nm diode

laser light; the transmission of this laser light also serves

to monitor the population in the F:2 manifold. A static

magnetic field splits the ground-state Zeeman sublevels, so

that the 6835-MHz microwaves only couple the mF=O states.



intensity was at a maximum. When the vapor was then exposed to the

res( c microwave field, atoms returned to the F=2 hyperfine manifold, and

the t ansmitted light intensity decreased. The level of transmitted light

intensity was used as a measure of the population density in the F=2

hyperfine manifold, and transient effects in the population density were

easily observed when the phase of the microwave field changed rapidly.

A voltage-controlled crystal oscillator (VCXO) with a nominal

frequency of 107 MHz was the starting point for the generation of a phase-

switched microwave field. The VCXO output was multiplied to 6835 MHz and

split into two paths. One path went to the phase-switching mixer, and the

other went to the phase-detecting mixer. In the phase-switching mixer the

microwave signal was combined with a square wave, so that the output of the

mixer was a 6835-MHz signal whose phase jumped discretely by i radians at a

rate twice the square wave frequency. This phase-switched field was again

split into two paths, one path leading to the microwave cavity and the

experiment, and the other path leading to the phase-detecting mixer. In

the phase-detecting mixer, the phase-switched field was combined with the

original microwave field to produce an output signal whose voltage was

proportional to the phase difference between the two inputs. This signal

was then used to observe the phase changes, and to ensure that the rise

time for the phase change was much faster than any dynamic rate in the

quantum system. In the experiments of the present work the microwaves were

always resonant with the 0-0 hyperfine transition frequency.

The above experimental design has several characteristics that make

the arrangement well suited to the study of population transients following

rapid field phase changes:

1. The ground state 0-0 hyperfine transition is a good approximation

to a two-level quantum system.

2. Atomic dephasing and longitudinal relaxation can be manipulatd
experimentally by simply adjusting the optical pumping rate.

3. Inhomogeneous Doppler broadening ls 1removed by the Dicke
mechanism of motional narrowing.

11



III. RESULTS

Figure 2(a) shows an example of the experimental transmitted light

intensity oscillations that were observed when the phase of the strong

microwave field changed by r radians. Immediately following the abrupt

phase cnange there is an initial increase in the transmitted light

intensity, which corresponds to an initial decrease in the dtomic

population density in the optically absorbing hyperfine manifold. The

quantum system tends towards its unsaturated state (i.e., its state in the

absence of the saturating microwave field). This initial increase is

subsequently followed by a decrease in the transmitted light intensity,

yielding an eventual pattern of damped transmitted light intensity

oscillations. In the Appendix it is shown that the amplitudes of' the

transmitted light intensity oscillations are proportional to the amplitudes

of the corresponding population oscillations; thus, the light intensity

oscillations of Figure 2(a) imply a gross, coherent movement of atomic

population between the two hyperfine manifolds. As will be discussed in

Section IV, these effects are predicced by both a two-level and

nondegenerate multilevel numerical density-matrix calculation of the

transient effects. The figure also ,.iows that the oscillations following

the first full oscillation were sitting on some dying exponential; this is

not predicted by either set of density-matrix calculations, and at the

prese ,t time is not fully understood. This latter effect does not

sigificantly impact the results to be reported here, as our attention is

restricted to the relative amplitude of the population oscillations.

Figure 2(b) shows the response of the atomic population to a train of phase

changes with the phase-changing rate selected to yield maximum population

oscillations. Note the cusp-like shape of the lower portion of the

oscillations; the origin of this shape will be discussed subsequently.

The amplitude of the first population oscillation after a phase change

exhibits a marked sensitivity to the microwave Rabi frequency as shown in

Figure 3. The two sets of experimontal data correspond to two different

13
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Figure 2. (a) Following a change in the phase of the microwave field

by i radians, the transmitted diode laser light intensity
shows decaying oscillatory behavior. In the limit of low
optical pumping oates or optically thin vapors, the
transmitted intensity oscillations are proportional to
changes in the population of the optically absorbing state.
For the experimert which led to the above oscillations The
temperature of the resonance cell was approximately 330C and
a neutral density of 2.3 was placed in the laser beam path.
(b) Response of the atomic population to a train of n radian
phase changes, with the phase changing rate selected to yield
maximuim population oscillations. The upper trace shows the
transmitted intensity variation, whereas the lower trace
shows the out~put from the phase-detection mixer. Note the
cusp-like appearance of the transmitted intensity
oscil lations.
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Figure 3. Amplitude of the first oscillation following a phase change
is a sensitive function of the Rabi frequency. Triangles
correspond to phase-changing rates where the quantum system
had time to reach equilibrium before the next phase change
occurred; open circles correspond to a phase-changing rate
that satisfied the Rabi-resonance condition as discussed in
the text. The solid line is the theoretical steady-state
coherence, which is given by Eq. (8), suitably normalized and
with r = r = r2 chosen to give a maximum at the appropriate
Rabi frequ ncy. For this experiment the resonance cell
temperature was approximately 50*C and a neutral density
filter of 1.0 was in the laser beam-path.
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values of the phase-changing rate. In the first data set the rate of phase

changing was very low, so that the quantum system reached equilibrium in

the time between successive phase changes. In the second data set the rate

of phase changing was chosen so as to satisfy a Rabi-resonance condition

leading to enhanced population oscillations. For both experimental

situations it is clear that there was an optimum Rabi frequency for

producing large population oscillations, and that tne value of this optimum

Rabi frequency was relatively insensitive to the rate of phase changing.

In Figure 4 we show the Rabi-resonance profile that was obtained in

the present experiment. Here, the amplitude of the first transmitted

intensity oscillation following a phase change was measured as a function

of the rate of phase changing, and it is clear that a "spectrum" of Rabi

resonances was found. The observation of a Rabi-resonance spectrum is in

marked contrast to the results of Cappeller and Mueller, 12 where only a

single Rabi resonance was obtained. For phase-changing rates much higher

than the Rabi frequency (which in these experiments was rzughly a

kilohertz) the amplitude of the population oscillations approaches zero

asymptotically. In Section IV these results will be discussed within a

harmonic-oscillator approximation of the coherent phenomenon.

16
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Figure 4. When examined as a function of the phase-changing rate the
amplitude of the population oscillations shows resonant
behavior producing a Rabi-resonance spectrum. The Rabi
frequency was determined by measuring the temporal duration
of the first osciilation. Experimental points are indicated
by squares; dots between data points are simply an aid to
guide the eye.



IV. ANALYSIS

A. NUMERICAL ANALYSIS

To verify that the physical mechanisms leading to the observed

phenomena are understood on a formal level, one can consider numerical

solutions of the density-matrix equations describing the experimental

system with optical pumping. In this regard the quantum system is

approximated as a two-level atom, since the field only interacts with the

mF = 0 states:

o11 - F1 a11 + 0 sin[8(t)] Im(o 12 )

+ Q cos[e(t)] Re(o 12 ) + 0.5 (y1  + B), (la)

Re(C 12) - r 2  Re(o 12) + 2 cos[e(t)] (1-2a11), (Ib)

Im(O 12 ) = - 2 m o12  + 01 sin[(t)] - 2 sin[e(t)], (1c)

with r. = tyi + B/2). Here, a11 is the density matrix element describing

the population in the lower energy state of the quantum system, 012 is the

coherence term of the density matrix, yI and Y2 are, respectively, the

longitudinal and transverse (dephasing) relaxation rates, B is the optical

photon absorption rate, il is the hyperfine transition Rabi frequency,

and O(t) is the phase angle of the strong field at the time t.

Numerical solutions for the transient response of the lower level's

ss sspopulation (actually o11 - o , where o is the steady state value) and

the real part of the system's coherence (Re(o 2)) are displayed in Figure

5. These results are essentially the same as those produced by an eight-

level density matrix analysis, 18 rigorously correct for the ground state of

Rb87 . The similarity of the solutions is due to the fact that on the time

scales of interest the various Zeeman sublevels are not strongly

coupled.19 Note that the results do not predict an exponerLial decay in

19
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Figure 5. Theoretigil oscillations of the quantum system's population

(a11 - a ) and the real part of its coherence following
a i -radian phase change for a two-level atom. Results were
computed by numerically solving Eqs. (la) to (1c), and are
plotted as functions of time normalized to the Rabi period.
For this calculation y 1 / y 0.025 and B/ = 0.05.
Points A and B are disussed Yn the text.
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the transient response as was observed in the experiment. Consequently, it

may be inferred that the experimental decay is not a simple consequence of

phase switching in either a two- or eight-level quantum system. However,

as evidenced by the similarity between Figure (6a), which shows the two-

level density-matrix prediction of the Rabi resonance spectrum, and Figure

4, the presence of the exponential has relatively little impact on the

spectrum's appearance.

Comparing the theoretical Rabi-resonance spectrum with the

experimental spectrum, it is clear that the numerical two-level density-

matrix calculations do well in predicting the quantum system's observed

behavior: (a) the four largest resonances occur within a decade change of

the Rabi frequency, (b) the amplitude of the resonances is an increasing

function of Rabi frequency, and (c) for phase changing rates higher than

roughly twice the Rabi frequency, the quantum system response

asymptotically approaches zero. However, if in the calculations we allow

the phase angle in Eqs. (la) to (Ic) to vary sinusoidally, rather than

discretely, then the Rabi resonance spectrum collapses to a single

resonance as shown in Figure 6(b). This result indicates that it is the

discrete r-radian nature of the phase change that leads to the appearance

of a Rabi-resonance spectrum. Unfortunately, the interplay between the

discrete phase changes and the quantum system's response that results in

the Rabi-resonance spectrum is not elucidated by the numerical results;

consequently, in Section IVB we consider an approximate, but analytic,

solution to the equations describing the quantum system's dynamic behavior.

B. ANALYTIC SOLUTION

To develop the desired physical insight we first note that the

response of the atomic population to a single phase change (Figures 2 and

5) is suggestive of the response of a damped harmonic oscillator, when it

is subjected to an impulse excitation. Similarly, the Rabi-resonance

spectrum brings to mind the response of a sequentially excited harmonic

system. This leads us to investigate a "harmonic approximation" to the

atomic density-matrix equations.

21
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Figure 6. (a) Numerical solutions to the two-level atom density matrix
equations showing the predicted Rabi-resonance spectrum. As
discussed in the text the appearance of this spectrum is in
good agreement with experimental observations. (b) Same
calculation as in (a) except that the phase is allowed to
vary sinusoidally between 0 and 27 radians at the phase-
changing frequency.

22



When e(t) changes discretely from 0 to n and vice versa, Eqs. (la to

1c) take the form

11 r 1 a 11 + Qh Re(o 12 ) + 0.5 (Y1 
+ B) (2a)

Re(O 12) = - r2 Re(c 12 ) - 0.5 0 h (1-2a11) (2b)

Im(o12) - r2 Im(a 12 ), (2c)

with h equal to +1 for e(t) = 0 and -1 for 8(t) = n. Introducing o as the

displacement of the lower level's population from its steady state value

(a = Oll - a ss), and noting that Im(a 12 ) does not interact with the other

two density matrix components, results in the pertinent density matrix

equations becoming

; = - (a + o) *+ Qh Re(o 12) + 0.5 (yI + B), (3a)

Re(; 12 ) = - r2 Re (a12 ) + 0.5 Qh [1-2(o+a ss)]. (3b)

Differentiation of Eq. (3a) with respect to time, use of Eq. (3b) to

replace Re(o 12 ) in the result, and noting that h
2 = 1 yields,

2 -. 2T

a 11 a + Q2o 0 Re(a 12 ) h - h r 2 Re(a 12 ) + Q 2(0.5 - . (4)

Eq. (4) has the form of a driven, damped harmonic oscillator, where the

driving term is dependent on Re(o12). For the moment though consider the

right-hand side of Eq. (4) as a time-dependent forcing function f(t). The

temporal response of a is then given by a convolution expression,

t rt

(t) = f(t-T e- sin (WT) dT, (5)
w 2

0

23



with

2 2 12
W = (/a r r1/4)1

Treating each term on the right-hand side of Eq. (4) separately we

first note that

h 2 (-1) 6(t-iAt). (6)
i=O

is a stream of delta-function, impulse excitations with a positive

amplitude occurring whenever h changes from -1 to +1. Thus, the amplitude

of the first term is instantaneously large and proportional to the value of

Re(o 12 ) at the instant of the phase change. The third term in f(t) is

constant for a given set of experimental parameters. It will lead to a

constant offset in a, and from a dynamical point of view its effect may be

neglected. The second term in f(t) is dependent on the full temporal

evolution of Re( 1 2 ), as an initial approximation we will also neglect this

term. It must be noted though that, a priori, neglecting this term lacks

rigorous justifictaion, and the resulting harmonic approximation must be

closely scrutinized. This approximation then only takes into account the

impulsive nature of the driving term, which is associated with the system's

coherence at the instant of the phase change. As we proceed with the

analysis, the physical insight and limitations assocated with this

approximation will become more apparent.

Within the harmonic approximation the response of the system's

population to a single phase change at t = 0 has the form,

r't
2n ass(12) e 2 sin(w't) t 0, (7)o(t) - si ,) t 7

where os(12) is the steady-state value of Re(o 12 ), W' = [Q
2 - (r1) 2 /4 1/2

and r' = r The response is of the same general form as the experimental

24



response shown in Figure 2, a damped sinusoidal oscillation. Note that the

amplitude of the driving term and the quantum system's response is pro-

portional to the steady-state value of the real part of the quantum

system's coherence, given by

ss( -0.25 DhB
212) = (8)rlr 2 + 12

Thus, the amplitude of population oscillations are expected to depend on

the Rabi frequency in the fashion of a ss(12). This is demonstrated in

Figure 3, where the solid curve is a plot of a ss(12) suitably normalized.

The accuracy of the harmonic approximation can be further investigated

by comparing it to an analytical solution of Eqs. (2a and 2b). As the equa-

tions have constant coefficients between phase changes, Laplace transform

techniques may be applied to find the dynamic behavior of a11 and

Re(o 1 2 ) in these time intervals. To include the effect of multiple phase

changes, 011 and Re(a 12 ) are evaluated at the instant before a phase

change, and these values become the initial conditions for the Laplace

transform solutions in the time interval after the phase change. While

this procedure allows accurate evaluation of the density-matrix elements,

it pr.ides very little physical insight into how phase changes influence

population dynamics, as all of the phase change dynamics are contained

within the numerical values of the two initial conditions. Surprisingly,

if r = 2 ; z the exact population response to a single phase change is

given by Eq. (7), except that now w' = Q and r' = 2F . Comparison with

the harmonic approximation shows that the oscillation frequencies are quite

similiar whien 2 , F, but that the real oscillations decay twice as rapidly

as those predicted by the harmonic approximation. Nonetheless, the compar-

ison indicates that Eq. (7) has semi-quantitative validity, and we find it

supplies physical insight into the origin of the Rabi-resonance spectrum.

In this regard we now consider the effect of a second phase change on

the quantum system's population. In the harmonic approximation the driving

term acquires maximum and minimum amplitudes at the oscillating coherence's



extreme values; these times are indicated as A and B in Figure 5. The

effects of a second phase change at these times are displayed in Figure

7. In this figure B/O = 0.05 and y = y/ = 0.025. The oscilla-

tion amplitudes (the exact solutions are plotted) are quite dependent on

the time of application of the second phase change. At time A the magni-

tude of the coherence has its maximum value, resulting in an intense driv-

ing term that induces large population oscillations. The sign of the co-

herence and that of the delta-function produce a driving term with the same

sign as that produced at the first phase change. However, the oscillations

induced by the second phase change have a phase opposite to the oscilla-

tions already in progress. The new oscillations overwhelm the existing

oscillations generated by the first phase change, resulting in an abrupt

change in the sense of the oscillations and a cusp-like feature in the

population evolution. This is shown in Figure 7(a). The enhanced oscil-

lation amplitude is thus not due to a population resonance effect, but

rather to the enhanced magnitude of the coherence-dominated driving term.

At time B the signs of the delta-function and coherence again would lead to

oscillations with the opposite phase of those already in progress. The

coherence, though, has a small magnitude, insufficient to induce large out-

of-phase oscillations, but sufficient to dampen the existing oscilla-

tions. This effect is seen in Figure 7(b).

As the temporal spacing between the two n -radian phase changes is

varied, the magnitude of the first population extremum following the second

phase change is correspondingly altered, producing a Rabi-resonance spec-

trum. In Figure 8 the theoret.ically generated, two-phase change, Rabi-

resonance spectrum is presented (B/Q = 0.05 and y/f = 0.025). The solid

line is obtained from the exact solution, whereas the dotted line comes

from the harmonic approximation. As the period of time between phase

changes goes to zero, the effect of the two-phase changes also disappears,

and the population essentially remains in a steady state (a = 0). The har-

monic approximation provides a clear illustration of this situation. For
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sequential phase changes the delta-function contributions from h have

alternating signs. If the phase changes are closely spaccJ in time, the

system's coherence has not changed significantly between the first and

second phase changes. Consequently, the atomic system is subjected to two

essentially equal and opposite impulse excitations. Any population

oscillation induceu by the first phase change is immediately cancelled by

the second. As the spacing between the two phase changes becomes large,

both solutions approach asymptotically a constant value given by the

quantum system's response to isolated phase changes. The harmonic

approximation spectrum approaches asymptotically the isolated phase-change

value more slowly than does the exact solution as a result of the differing

decay rates, r'.

The Rabi-resonance spectrum just discussed results from two sequential

phase changes. In our experiments, however, a continuous train of phase

changes was employed, and oscillation amplitudes were extracted after the

system had reached a "dynamical steady state." The theoretically generated

growth of population and coherence oscillations for a sequence of phase

changes, with the time between phase changes selected to maximize the

growth, is shown in Figure 9. As experimentally observed [(Figure 2b)] tne

population oscillations display a peculiar functional form with sharp cusps

at each phase change. This effect is due to the driving term, which always

changes the phase of the population oscillation by 180 degrees. We also

note that the coherence oscillation amplitude appears to resonantly grow

with succeeding phase changes, and this in turn results in the increasing

amplitude of the population oscillations.

The reason the coherence grows in the observed manner becomes apparent

when Eq. (3b) is differentiated and Eq. (3a) substituted for 0. A second

harmonic equation results, and neglecting all driving terms not associated

with a delta-function yields

2 ossl

Re(o 12 ) + r2 Re(J 12 ) + a Re(o 12) : - f h (0 + 0 -1/2). (9)
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At the instant in time when the phase changes occur, for the case of Figure

9, sigma is approximately zero, and the driving term for the coherence is

simply a series of delta-functions multiplied by a single constant with

alternating sign. The delta-functions occur at the extremes of the

coherence oscillations with the signs appropriate to increasing the

oscillation amplitude. The growth of population oscillations is driven by

the coherence, and in this case the coherence oscillations are resonantly

enhanced by the phase changes.

As a final, somewhat parenthetical, point we note that for very high

phase-changing rates, the time-averaged value of the lower level's

population asymptotically increases from its steady-state value a to its

unsaturated value; this is in addition the amplitude of the population

oscillations asymptotically approaching zero. To explain the effect we

note that the adiabatic requirement on temporal variations of the

electromagnetic perturbation is set by the Rabi frequency. 19 ,2 0 Con-

sequently, for phase-changing rates much higher than the Rabi frequency,

one should expect the quantum system to perform some "averaging" of the

field, whereas for phase-changing rates less than the Rabi frequency, one

would expect the quantum system to respond to the instantaneous values of

the field. Since the average field amplitude is zero for R-radian phase

changes, one would thus expect sigma approach its unsaturated value and the

oscillation amplitude to asymptotically approach zero in the limit of very

rapid phase changing. What is perhaps surprising, is that the harmonic

approximation appears to be valid in the regime of rapid phase changing,

since the theoretical Rabi-resonance spectrum shown in Figure 8 also

asymptotically approaches zero. It would therefore appear that there is an

initimate relationship between the proposition that the dynamical effects

of sequential impulse excitations not cancel (which was discussed

previously in regard to the behavior of the Rabi-resonance spectrum when

the time between phase changes becomes very small) and the concept of

adiabaticity.
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V. SUMMARY

Expanding on the work of Cappeller and Mueller, we have investigated

the Rabi-resonance phenomena (enhancements in the dynamic response of a

quantum system to a train of radiation field phase changes) when the

field's phase changes discretely rather than continuously. In distinction

to their results, we have observed a Rabi-resonance spectrum, and have

shown that the spectrum arises as a result of the discrete nature

of w- radian phase changes. This spectrum is consistent with the density

matrix equations describing the resonant interaction of matter with a phase

changing field, and can also be understood from the perspective of a

damped, driven, harmonic oscillator. In the harmonic-oscillator

approximation it was shown that the enhanced population oscillations are

not due to a resonance between the rate of phase changing and the

population dynamics, but rather to constructively interferring impulsive

force terms associated with the atomic coherence.
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APPENDIX

Although the vapor may be optically thick for the temperatures

employed in the present set of experiments, it can be shown that in the

limit of small population oscillations (i.e., low optical pumping rates)

the amplitude of the transmitted intensity oscillations is proportional to

the amplitude of the population oscillations. Defining A as the amplitude

of the first transmitted light intensity oscillation following the phase

change, we have from Figure 2 that

A = Ih - Il, (A.1)

where I is the level of transmitted light intensity. Now, employing the

Bouger-Lambert law and taking N as the corresponding population density in

the absorbing hyperfine manifold, we have that

A = I ° exp(-Nh L)[1-exp((Nh-N1)oL)], (A.2)

where L is the absorbing medium's length and sigma is the absorption cross-

section. If Nh t NJ, then the second exponential can be expanded, and we

have the final result that

A - (Nl-Nh). (A.3)

For the experiments described in the text, care was taken to ensure that

the condition on low optical pumping rates was satisfied.
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LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for

national security projects, specializing in advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat

transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;

spacecraft structural mechanics, contamination, thermal and structural

control; high temperature thermomechanics, gas kinetics and radiation; cw and

pulsed chemical and excimer laser development inciudikg chesical kineLi ,
spectroscopy, optical resonators, beam control, atmospheric propagation, laser

effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,

atmospheric optics, light scattering, state-specific chemical reactions and

radiative signatures of missile plumes, sensor out-of-field-of-view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell

physics, battery electrochemistry, space vacuum and radiation effects on
materials, lubrication and surface phenomena, thermionic emission, photo-
sensitive materials and detectors, atomic frequency standards, and

environmental chemistry.

Computer Science Laboratory: Program verification, program translation,

performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-

electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device

physics, compound semiconductors, radiation hardening; electro-optics, quantum

electronics, solid-state lasers, optical propagation and communications;

microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;

atomic time and frequency standards; antennas, rf systems, electromagnetic

propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,

alloys, ceramics, polymers and their composites, and new forms of carbon; non-

destructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at

cryogenic and elevated temperatures as well as in space and enemy-induced

environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray

physics, wave-particle interactions, magnetospheric plasma waves; atmospheric

and ionospheric physics, density and composition of the upper atmosphere,

remote sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space

instrumentation.


