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A. BAYLISS, B.J. MATKOWSKY AND M. MINKOFF

Bifurcation and pattern formation in
combustion

1. INTRODUCTION

In our research program we employ a combination of analytical and numerical

methods to determine the behavior of solutions of combustion problems.

Specifically we consider highly nonlinear time-dependent systems of partial

differential equations which model the behavior of both solid and gaseous

fuel combustion. In gaseous fuel combustion we are particularly interested

in the transition from laminar to turbulent combustion, including a

description of the intermediate stages of this transition. These stages

often occur as a sequence of bifurcations, as critical parameters of the

problem are varied, with each successive step exhibiting more and more complex

spatial and temporal behavior, often leading to spatial and temporal pattern

formation. The solutions frequently exhibit very steep gradients, in both

time and space, thus naturally calling for adaptive gridding techniques. We

have developed an adaptive pseudo-spectral method which is both very accurate

and very efficient. Our algorithm allows us to describe the solution on

bifurcation branches, well beyond the region where analytical methods work

well. We have however taken advantage of the analytical results that we

first obtain, to aid us in choosing appropriate parameter values and initial

conditions for the numerical computations. In addition the analytical results

serve as benchmarks for our computations. The computations reveal new and

interesting behavior, not otherwise obtainable. Below we discuss two problems,

involving solid and gaseous fuel combustion respectively.

2. CONDENISED-PHASE COMBUSTION

We first consider a problem in gasless condensed-phase combustion. This type

of combustiu, is characterized by a highly exothermic reaction occurring in

This research was supported in part by the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38 and Grant DEFGO2-87ER25027, and N.S.F.
Grant DMS87-01543.



the solid fuel itself without the prior formation of a gaseous phase. Thus

the solid itself burns, and is transformed directly into a solid product.

Owing to the exothermic reaction a combustion wave propagates from the high-

temperature combustion products toward the cold unburned fuel. Typically

the activation energies of the reaction are large and the reaction is

significant only in a narrow region, called the reaction zone, whose width

is inversely proportional to the activation energy. In the limit of infinite

activation energy the reaction zone shrinks to a propagating surface, termed

a reaction front. It has been observed that this process is often accompanied

by the melting of the reactant [5], so that a melting front propagates ahead

of the reaction zone or front. Upon reacting, the heat of fusion is released,

and the product is in the solid phase.

This process is currently being employed as a method of effectively

synthesizing certain ceramic and metallic alloys. Rather than employing an

external source of energy, the process, referred to as SHS (for self-

propagating, high-temperature synthesis), employs the energy of the reaction

to convert reactants to products which are specially hard, are impervious

to extreme temperatures and have other desired characteristics [6, 14]. It

has been observed that the product is not always uniform in coriposition, but

rather there are zones of varying concentrations in the synthesized sample.

This is due to pulsations in the velocity of the reaction front. Planar

pulsating modes of propagation have been observed, which are sometimes

referred to as "auto-oscillatory" combustion, characterized by striations in

the synthesized product. Helical modes of propagation, referred to as spin

combustion, have also been observed, in which a spiraling motion of a non-

uniform front occurs (one or more luminous points, corresponding to hotspots,

are observed to move in a helical fashion on the surface of a cylindrical

sample) [9, 15].

Mathematically this process can be described by a reaction-diffusion system

for the temperature and concentration of a limiting component of the reaction.

The reaction is modeled by first-order irreversible Arrhenius kinetics.

Typically the mass diffusivity is assumed to be zero in both the solid and

liquid phase.

Analysis of a model in which melting was not accounted for, in the limit

of infinite activation energy, revealed that auto-oscillatory combustion was

due to a Hopf bifurcation when a parameter X exceeded a critical value Xc [13].

2



The bifurcation parameter is X = N(I -o)/2, where N is an appropriately non-

dimensionalized activation energy and a = Tu/Tb, where Tu (Tb) is the

temperature of the unburned (burned) solid. This model was extended in [10]

to account for melting of the fuel prior to the reaction. Again a similar

Hopf bifurcation was found when a parameter u = X/(1-i.) exceeded a critical

value uc. The parameter M accounts for the effect of melting and is defined

below. In [17], the model, without melting, in a cylindrical geometry, was

suggested as a description of spin combustion. However, in the absence of

melting, the resulting bifurcation is subcritical and unstable and therefore

may not be able to account for the phenomenon. In [11] it was found that

spin combustion could be explained as a supercritical, stable llopf bifurcation.
These analytical studies were based on the limit N - ', where the reaction

zone shrinks to a reaction front and the reaction term becomes asymptotically

a 6 function on the front, whose strength, as a function of T and of w, was

determined by the method of matched asymptotic expansions.

Bifurcation analysis is necessarily a loca. theory, valid only in a

neighborhood of the bifurcation point. The behavior of solutions far from

this neighborhood must be obtained numerically. A related model of gasless

condensed-phase combustion was studied numerically in [16]. Sinusoidal

oscillations were computed, which took on the character of relaxation

oscillations as the activation energy increased. As tie activation energy

increased further an additional spike in the temperature was observed and

the solution appeared to have doubled in period. Upon further increasing

the activation energy, additional spikes in the temperature were computed

and the pulsation became increasingly complex. In [1], another related model

was studied. Again a sinusoidal oscillation was found beyond a critical

value of a parameter related to the activation energy. As the parameter was

increased further, the authors exhibited oscillations with complex structure,

and claimed to have found two transitions, in each of which the period

approximately doubled, before the computations had to be stopped due to

computational difficulties.

In [3] the model of [10] for finite N was studied numerically. A sinusoidal

oscillation in the solution was found very close to the analytically predicted

Hopf bifurcation point. There followed a progressive sharpening of the peaks

leading to relaxation oscillations. A period-doubling transition was found,

and evidence clearly indicated that the transition was due to a period-

3



doubling secondary bifurcation. This model was studied further in [19). In

view of the results in [1, 16) it might have been expected that additional

period-doubling bifurcations would be found, with a possible transition to

chaos. However, we showed that this is not the case for the parameter range

studied. Our results are illustrated in figure la and can be summarized as

follows: There is a very rapid growth and sharpening of the pulsation along

the period-doubled solution branch. Beyond a certain value of P, stable

period-doubled solutions can no longer be computed. There is an interval of

bistability in which singly and doubly periodic solutions are both stable,

each with its own domain of attraction. No additional period doublings were

found along the period-doubled solution branch for the range of parameter

values considered, though they may occur for other parameter values.

We solve a model which is a generalization of the one employed in [13] in

that it accounts for melting [10]. The reaction term is governed by global,

one-step, irreversible Arrhenius kinetics, which is cut off at a certain

distance ahead of the melting front.

To describe the model we let a tilde (~) stand for a dimensional quantity,

assume the front propagates in the - direction and denote the location of

the melting front by = p(t). If T and C respectively denote the temperature

and concentration of a limiting component of the reactant, the model is

described by the reaction-diffusion system

~ ~ + ~ gACexp(-E/RT)
(2.1)

c..= ( )g Eexp(-E!RT),

where

(a) = a, < (t)
b

b, x > 4(t).

In (2.1) X is the thermal conductivity, A the rate constant, B the heat

of reaction, E the activation energy, and R the gas corstant. Because the

fuel melts, the rate constant is multiplied by a factor a > 1, due to the

increased surface-to-surface contact in the liquid phase. Upon melting, the
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heat of fusion is absorbed by the fuel, but is released during the reaction

so the product is in the solid phase. Thus behind the melting front we take

the heat released to be + y. The function g = g(X - (t)) cuts off the

reaction term at some point ahead of the melting front. This is employed

because the Arrhenius model for the reaction term does not vanish far ahead

of the front, while in practice no significant reaction occurs prior to

melting. In the computations we use

I I, - (t)> Zc

1, <() >zc

0- () =c(_t) < zc

where Zc = -3. tie have found that the behavior of the solution is not

sensitive to Zc in this range although the location of the period-doubled

bifurcation point varies slightly with Zc [3]. In addition, no significant

effect is found if a smoother functional form is used for the function g.

Across the melting front there is a jump in the heat flux, due to the

absorption of the heat of fusion necessary to cause melting. The velocity

4~ of the melting front satisfies
t

- ~- [ i~], (2.2)
m x

where C is the concentration at the melting surface and [T~] denotes them x
jump in T_ across this surface. The boundary conditions for the system are

x
given by

C C, T T T, as x -

C 0, T *b, as x - +

where the subscripts u and b refer to unburned and burned, respectively. We

observe that the burned temperature T is derivable from the time-independent

solution of the problem as Tb = Tu + K u .
tie nondimensionalize by introducing

5



C u t X

u b u

Tb RTb

The reference velocity U is the velocity of the uniformly propagating front

in the asymptotic limit N >> 1. We also introduce the moving coordinate

system

z = x - p(t), (2.3)

so that the position of the melting front is fixed at z = 0.

In terms of the nondimensionalized quantities, the system (2.1) becomes

0 t=t®z
+ zz +  gACexp (N( 1 - )(E - 1)

=(I + a +  GI -
(2.4)

1 =gACexp(N( - )(e - 1)
Ct  z - \ ) A + (1 1 )

subject to the boundary conditions

C - 1, G - 0 as z - - (2.5)

C - 0, ) -G 1 as z - + -.

Note that the boundary condition C 0 as z + follows from (2.4). At

the melting surface z = 0, the temperature 0 is fixed at ®m, and the velocity

of the surface is obtained from

[0 + yC()@ t = 0. (2.6)

The quantity A = \A/U2exp(-E/RTb ) is unknown and depends on the (unknown)

velocity U. It can be determined by finding the solution corresponding to

the steadily propagating front. An asymptotic (N - I) expression for A was

derived in [10].

The solution of our problem will be shown to exhibit bifurcation phenomena

as we vary the parameter P = A/2(1 - M), where 6 = N(I - a) and
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M = [1 - + ]exp[(o - - 1)].
m

In order to have a model which is amenable to numerical computation, it

is necessary to reduce the problem defined on an infinite domain to one on a

finite domain. We introduce finite boundary points ZL < 0, ZR > 0 and require

boundary conditions to impose at these points. Highly nonlinear waves are

generated near the melting front (z = 0) and it is not obvious how to obtain

a boundary condition which is absorbing with respect to these waves. We

therefore require that the boundaries be placed sufficiently far away so as

not to affect the dynamics of the solution. The numerical results were

obtained with ZR = ZL = 12 and we verified that the solution was insensitive

to further increases in these values.

At Z = ZL we imposed the boundary conditions

C(ZL) = 1, O(ZL) = 0. (2.7)

At Z = ZR only a boundary condition on 0 is required. lie tested two boundary

conditions. The first was

O(Zr) = 1. (2.8)

The second boundary condition was an absorbing boundary condition using the

dispersion relation at the analytically predicted Hopf bifurcation point.

The analysis in [10, 13] showed that the temperature in the burned region

had the form

0 = 1 + ce e iwt (2.9)

where Z = Z [I - (1 + 4iw)] and E is a measure of the deviation from the

bifurcation point. At the bifurcation point w0 = 1.029 and k = -0.30902

-0.63602i. Guided by (2.9) we can derive a boundary condition by assuming

the functional form

Ziz

0= 1+ - (e + k2z),

where f is an arbitrary function and k = 9i + i92. Differentiating this
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expression, we obtain

E EZ -  2 1- ). (2.10)

For the boundary location ZR = 12 we found that (2.7) and (2.10) gave virtually

identical results. Using (2.10) we found that e oscillated around unity at

Z = ZR but typically the oscillation was of the order ± 0.003. The

computations presented here were obtained using (2.10).

The numerical procedure is based on an adaptive pseudo-spectral method

introduced in [3]. For completeness we briefly describe this method. A

more complete description of the pseudo-spectral method can be found in [4].

Consider the model equation

ut = auxx + bu , -1 x 1. (2.11)

In the pseudo-spectral method the approximate solution u is expanded as a

finite sum of Chebyshev polynomials

u~ Ud(xt) = n an(t)Tn(x) (2.12)
n=0

where

T = cos(n cos-1x)

nn
is the nth Chebyshev polynomial. The expansion coefficients a n are obtained

by requiring (2.12) to solve (2.11) exactly at the collocation points

xj = cos (j7/J), j = 0,1,...,J. (2.13)

The implementation of the collocation procedure proceeds by observing that

a~j J Jaa 2T"i i

S n(t)Tn (x) = bn(t)T(X), (2.14)
ax n=O n=O

where the coefficients fbn } are related to the coefficients {an } by a well-

known recursion relation. Further details can be found in [4J.
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In the computations, the intervals [ZL,O] and [O,ZR] are each mapped onto

[-1, 1] and the solutions are updated in time within each interval. The

velocity of the melting front t is determined from (2.6). To determine 0,

C and %t' a semi-implicit time differencing scheme is used, which is

described in detail in [3].

The temperature field exhibits a very rapid variation in a small region

behind the melting front. This is the reaction zone in which the reaction

term is significant, and outside of which it is not. For the pulsations

considered here both the location and width of the reaction zone can vary

dynamically.

In order to improve the effectiveness of the pseudo-spectral method behind

the melting front, an adaptive procedure was developed in [3]. In this method

we introduce a family of coordinate transformations

x = q(s,a) : [-1,1] - [-1,1], (2.15)

where a is a parameter vector chosen so that in the new coordinate system the
weighted second Sobolev norm

(2)= w(s) (A Ju ss 2 + e us2 + C juj 2 )ds (2.16)

2 -1/2
is minimized. Here w(s) = (1-s ) is the Chebyshev weight function and

for our specific computation we have taken A = B = 1, C = 0. The functional

(2.16) is minimized whenever t changes by more than a prescribed amount, and

the solution interpolated to the new coordinate system where the integration

proceeds. For the computations presented here the coordinate transformation
I

q(s,a) = tan'{cx tan [7T (s-1)]) + 1, (2.17)

with a > 0, is sufficient, although more general transformations can be used

(see [2]). For this problem, (2.16) was used as an indicator of the numerical

errors. A different functional, which appears to be more effective, was

developed and implemented in [2] for a problem of gaseous combustion. Finally

we note that adaptive finite difference methods for combustion problems are

presented in [7, 8, 181.
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We now describe the behavior of the solutions to the model (2.4)-(2.6),

obtained from our numerical computations. The computed pulsating solutions

were obtained by solving the time-dependent equations until a steady-state

solution was achieved. As a result only stable solutions can be computed.

The following parameters were fixed for all of the computations: N = 50,

= 1.7, y = 0.5 and o. = 0.8. The bifurcation parameter p was changed by

varying a. We have considered values of a in the range 0.8222 < a<0.8355.

This corresponds to a variation in p between 4.208 < p < 4.535. The

analytically predicted bifurcation, using a 6 function reaction term, occurs

at p = 4.236. For the Arrhenius reaction term with the above parameters,

sinusoidal oscillations first appear at a value of p between 4.270 and 4.281.

2T ,

T

T/

2000 4.2419 4.238 4.3257 4.3676 4.4095 4.4514 4.4933 4.5352
mu

Figure 1(a) Solution branches: 0max plotted against p.
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SOLUTION BRANCHES IN BISTABLE REGION

W N

w

I-4

SI1I I II

4.500 4.55 4.510 4.515 4.520 4.525 4.530 4.535 4.540

mu

Figure 1(b) The region is expanded to illustrate the bistable behavior

In the bifurcation diagram given in figure la, we summarize the different

solution branches that have been found. In this bifurcation diagram the

maximum value of 0 over one cycle is plotted against w. Three solution

branches are indicated. On the first branch, corresponding to p <

n = 1 and there is no pulsation. This branch corresponds to uniformly
propagating reaction waves. On the second branch, corresponding to

Hl < L2' the solution is oeriodic with period T(vi) and Orax increases
as indicated. On the third branch corresponding to P2 < 1 < '3 the solution

has become doubly periodic with period 2T. For ' > p3 solutions are again

T periodic. These solutions can be continued to values of w < 1. Thus

11
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there is a value i with 12 < '* < W3 such that p < P < 3 is an interval

of bistability in which the T periodic and 2T periodic solutions stably

coexist, each with its own domain of attraction. We conjecture that the

T periodic branch which exists for v* < -0 is a continuation of the T periodic

branch which exists for I < P < P2 and that the portion of this branch

(represented by the broken curve in figure la) which exists for vi2 < 
<

corresponds to unstable T periodic solutions. This is a conjecture since

our numerical method can only compute stable branches of solutions.

A detailed illustration of the various solution types is presented below.

lie first discuss the nature of the transitions between the different branches.

In general the solution near transition points is difficult to compute, since

the equilibration time, i.e, the time for transients to decay, becomes very

long. In addition numerical computations may not exhibit sharp bifurcation

points even though such points may be present in the underlying analytical

model. This is due to perturbations inherent in the numerical discretization

which lead to the effect of imperfect bifurcation [12]. Therefore we did

not attempt to determine the exact numerical values of the transition points.

Our results are based on solutions which were validated by increasing the

number of collocation points, i.e. increasing the resolution of the

calculation.

Our computational results lead to the following conclusions about the

nature of the transitions. The transition between the first two branches

corresponds to a Hopf bifurcation at a value I with 4.270 < I < 4.281.

Such a bifurcation was suggested by the linear stability analysis in [10]

with I = 4.236 for a model with a 6 function reaction term. For i close to

,I' with . > L1' the solution is nearly sinusoidal. As increases the

pulsations develop sharp and narrow spikes so that they take on the character

of relaxation oscillations.

The transitio - between the second and third branches appears to occur via

a supercritical period-doubling secondary bifurcation at L, = 2 with

4.456 < I2 < 4.459. We conclude this because the solutions appear to approach

the singly periodic solutions continuously as L - W2 from above. In addition

the equilibration times become very long as P -P2"

We now describe the return to the T periodic branch. Stable period-doubled

solutions are not found for > 'J3' with 4.521 < P3 < 4.523. Stable T

periodic solutions exist for v > I* with 4.515 < p* < 4.518 and they persist

12



for p > p3. As stated above, we conjecture that these solutions are part of

the same solution branch as the original T periodic solution for pI < W < 12'

and that the portion of this branch given by W2 <  < p* corresponds to

unstable solutions. We observe that there is a region of bistability for
p * < < p3 where both singly and doubly periodic solutions are stable, each

having its own domain of attraction. A blow-up of this region is shown in

figure lb. The T periodic branch has been followed up to p = 4.53516. No

additional period doublings or other transitions have been found in this

region, though they may occur for other parameter values.

We now give a detailed description of the solutions that have been computed.

We found sinusoidal oscillatory solutions near p = ,, which developed into

relaxation oscillations as p, increased. These relaxation oscillations were

characterized by a slow movement of the reaction zone followed by a very

rapid movement during which the temperature spiked over a very short time

interval. As , is increased further the spikes occur over progressively

shorter intervals in time during which the temperature at the spike increases

dramatically.

We illustrate this behavior in figures 2a-2g where we plot C) as a function

of t at a fixed value z(). For each vlaue of ,, z(p) is chosen to be close

to the point where the maximum temperature in both space and time occurs.

We note that, by evaluating the global Chebyshev expansion at the given

point, we can compute the solution at any given value of z, even though the

collocation points adaptively change in time. We observe that the reaction

zone moves closer to the melting surface (z = 0) as p increases.

In figure 2a we consider the case 1 = 4.2597. In this case there is no

pulsation and the solution is exhibited at the arbitrarily chosen point

z = 0.5 for 20 time units. In figures 2b and 2c we consider p = 4.294

(z 0.5) and = 4.454 (z = 0.2). These are singly periodic solutions.

The growth of the temperature spike is apparent as is the narrowing of its

duration.

In figures 2d and 2e we consider p = 4.466 (z = 0.123) and p = 4.51918

(z = 0.026). The figures illustrate the extremely rapid growth that occurs

along the doubly periodic solution branch. At p = 4.51918 there is

bistability and a stable singly periodic solution also exists. This solution

is shown in figure 2f (z = 0.026). Finally in figure 2g we illustrate the

case P = 4.5352 (z = 0.026) along the second stable part of the singly

periodic solution branch.
13



TEMPERATURE AT FIXED Z - STEADY BRANCH
mu = 4.25972

0

w

I-

w

I-

0.0 2. .0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
TIME

Figure 2(a) 0 at z = 0.25, = 4.260, steady branch.
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i .i .I t-

TEMPERATURE AT FIXED Z - SINGLY PERIODIC BRANCH
mu = 4.29416

w Cq-

w

UJ-:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

TIME

Figure 2(b) 0 at z = 0.5, = 4.294, singly periodic solution branch.
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TEMPERATURE AT FIXED Z - SINGLY PERIODIC BRANCH
mu =4.45402

W,

4

TI-

Figure 2(c) O at z = 0.20, i = 4.454, singly periodic solution branch.
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TEMPERATURE AT FIXED Z - DOUBLY PERIODIC BRANCH
mu - 4.46631

p
N

w
a.

"-

0.0 2.S 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

TIME

Figure 2(d) 0 at z = 0.12, p = 4.466, doubly periodic solution branch.
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TEMPERATURE AT FIXED Z - DOUBLY PERIODIC BRANCH
mu = 4.51918

o
In

ID

LU

I. -

rr
IL

W-

,I-

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

TIME

Figure 2(e) E at z = 0.026, i = 4.51918, doubly periodic solution branch.
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TEMPERATURE AT FIXED Z - SINGLY PERIODIC BRANCH
mu = 4.51918

C,'

w
Wa.
I-.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

TIME

Figure 2(f) 0 at z = 0.026, i 4.51918, singly periodic solution branch.
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TEMPERATURE AT FIXED Z - SINGLY PERIODIC BRANCH
mu =4.53516

0

4

w

O.o 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 4.0

TIME

Figure 2(g) O...at z = 0.026, i~=4.5352, singly periodic solution.
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The figures illustrate the rapid growth of the temperature spike as P

increases, and its extremely short duration. In figure 2g the temperature

rises from ® = 1.97 to 0 = 2.51 over a time interval of 1.6 x 10-5 . Very

high numerical accuracy was required to resolve these spikes and to verify

the periodicity of the pulsation.

The velocity = ot of the melting front undergoes a pulsation similar to

that of the temperature. lie illustrate this for p = 4.51918 for the doubly

periodic solution (figure 3a) and the singly periodic solution (figure 3b).

It can be seen that $ increases by more than two orders of magnitude over a
cycle. The temperature spike occurs slightly before the spike in p. After

the temperature spike, there is a rapid diffusion of heat into the colder

mterial. This surge of heat then results in a rapid movement of the

location of melting, as illustrated in figures 3a and 3b.

VELOCITY OF MELTING FRONT - SINGLY PERIODIC BRANCH
mu = 4.51918

Z.
0

LA-

0._
-

W

0

0!

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

TIME

Figure 3(a) ¢, u = 4.51918, doubly periodic solution branch.
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VELOCITY OF MELTING FRONT - DOUBLY PERIODIC BRANCH
mu = 4.51918

0

C-q

z

0
,L.

cJ
LL

u.

22

L-

>-j

o

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

TIME

Figure 3(b) ¢, :4.51918, singly periodic solution branch.
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In figures 4a-4d we plot spatial profiles of the temperature. In figure

4a, where there is no pulsation, the solution is shown at the final time of

the computation. In figures 4b-4d the solution is shown at the time that

spikes. The figures illustrate the localized nature of the reaction zone and

the extremely rapid spatial variation of the solution. There is a sharpening

of the temperature profiles, and a rapid growth of the maximum temperature,

as p increases along the bifurcation branches. We observe that the basic

structure of the solution persists for all the values of p considered. During

the slow part of the pulsation, the temperature varies much more gradually.

TEMPERATURE - STEADY BRANCH
mu = 4.25972

I~I
I-1Ctq

I-

12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

Z

Figure 4(a) Spatial profile of E), =4.260, no pulsation.
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TEMPERATURE - SINGLY PERIODIC BRANCH
mu 4.45402

C4

I-

2L.-

I-

U

-12.0 -10.0 -. o -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0
z

Figure 4(b) Spatial profile of 0 when H;I is maximum, vj = 4.454, singly

periodic solution branch.
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TEMPERATURE DOUBLY PERIODIC BRANCH
mu =4.51918

cld

LU

)

0r

c~1

w!

6.-

wi

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2'0 4.0 6.0 8.0 10.0 12.0
z

Figure 4(c) Spatial profile of 0 when j. is maximum, 4.51918, doubly

periodic solution branch.
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TEMPERATURE - SINGLY PERIODIC BRANCH
mu = 4.51918

N

(L

F-
w

I-

0 0Y
-12.0 -10.0 -8.o -6.o -4.0 -2.0 0.0 2'.0 4. 6.0 8.0 10.0 12.0

z

Figure 4(d) Spatial profile of 0 when I l is maximum, = 4.51918, singly

periodic solution branch.
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Figure 5 illustrates temperature profiles for a singly periodic solution at

four different times. In the figure, t3 is close to the time of the

temperature spike, t1 corresponds to the minimum of lJ , while t2 ard t

are points at which I 1. A corresponding graph for a doubly periodic

solution is similar.

TEMPERATURE PROFILES
mu = 4.51918

TIME = TI
TIME = T2
TIME = T3

TIME = T4

4T

CL

a-

0

I-

-12.0 -10.0 -8.0 -6. -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

Figure 5 Spatial profiles of 0 at four different timcs, 4.51918,

singly periodic solution branch.
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3. GASEOUS FUEL COMBUSTION

le now consider the behavior of cellular flames stablized by a line source

of fuel [20]. Experimental observation of laminar flames show that in

certain gaseous mixtures smooth flames often break up into cells [24].

Cellular flames, sometimes referred to as wrinkled flames, are characterized

by periodic pointed crests along the flame front pointing in the direction

of the combustion products. The pointed crests are connected by smooth

troughs that are convex toward the fresh fuel. The temperature is higher

at the troughs which therefore appear brighter and lower at the crests which

appear darker. It is believed that the development of cellular flames is a

stage in the transition from laminar to turbulent flame propagation.

In typical combustion problems the activation energies are large. As a

result the reaction terms in the governing equations are significant only in

a small region, termed the reaction zone. In this region the fuel is

consumed and the products of combustion are formed. Ahead of the reaction

zone the temperature is too low to sustain the reaction, while behind the

reaction zone the fuel is essentially depleted and no reaction can occur.

The extent of the reaction zone is 0(I/N) where N is an appropriately non-

dimensionalized activation energy. In the limit of infinite activation

energy the reaction zone shrinks to a surface called the flame front. Across

the flame front temperature and concentration are continuous but have dis-

continuous normal derivatives [26]. Thus cellular flames appear as a

wrinkling of the flame front.

Ile consider problems where the reaction is governed by a deficient

component which is consumed in the reaction zone. The specific problem

studied here is that of a flame stablized by a line source of fuel of strength

27K. This problem was analyzed in [25] where a time-independent, axisymmetric

solution valid in the limit of infinite activation energy was found. This

solution is referred to as the basic solution. The analysis revealed that

stationary cellular flames arose as bifurcations from the basic solution,

when the Lewis number L, the ratio of heat conductivity to diffusivity of

the limiting component of the reaction, was less than a critical value

Lc < 1. In that case there was a value K c(L) such that for K > K c(L) stable,

stationary cellular flaries existed.

Solutions on the cellular solution branches as K is increased further into

the more fully nonlinear regime are studied by numerical computations. The
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results of these computations, for a finite value of the activation energy,

are presented here. Numerical studies of this problem appear in [20,21,22].

In [21] the transition from an axisymnetric solution to a cellular solution

was illustrated as a bifurcation phenomenon as L was decreased with K fixed.

The nonlinear growth of these cells, as L was further decreased, was also

illustrated.

In [221 it was shown that for fixed L. as K increased, transitions could

occur between cellular flames of different mode number. A bistable region

was found where stable cellular flames of different mode number coexisted at

the same parameter values, each with its own domain of attraction. A more

complete numerical study of these transitions is presented in [20].

Our results can be best illustrated by referring to figures 6 and 7. In

these figures we plot the maximum difference between the temperature and

concentration of the cellular solution and the corresponding axisymmetric

solution. We find that as K is increased beyond the first bifurcation point

there is a transition to stable, stationary cellular flames of increasing

mode number. Ile have computed stationary cellular solutions with mode

numbers increasing from 3 to 6. Around each transition we find an interval

of bistability.

Our numerical method is based on integrating the time-dependent equations

of the model until a time-independent solution is obtained. As a result, we

generally compute stable solutions and cannot give a precise characterization

of the mechanism of the transition. In certain circuristances we can compute

unstable solutions and illuminate the nature of the transition.

Typically modal transitions occur when cells of one mode number become

unstable to angular perturbations of an adjacent mode number. Thus if the

original modal solution branch continues beyond the transition point, these

solutions can be computed using a time-dependent formulation, provided the

computational domain is restricted to exclude the unstable modes. By

restricting the angular domain to an angular sector we have been able to

compute unstable modal solutions. Based on these computations, we conjecture

that the transitions occur via subcritical bifurcations connecting the

different unimodal solution curves. In the parameter range considered here,

we do not find stable mixed rode solutions, although it is probable that

unstable mixed mode solutions exist. For the parameter range considered, we

have not found more than two stable cellular solutions coexisting at given
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parameter values.

To describe the mathematical model, we let a tilde () denote a dimensional

quantity. Ile consider the following dimensional quantities: Tu, Tb2 the

temperatures of the unburned mixture and the adiabatic flame temperature

respectively; tu, the concentration of the deficient component of the unburned

reactant (fuel); , the activation energy; R, the gas constant; A, the thermal

diffusivity; and X, the rate constant. Nondimensional temperature and

concentration are defined by

C =C/Cu

0 = (T - Tu)/(Tb - Tu) ,

where T is the temperature and C is the concentration of the deficient

component. The nondimensional activation energy is defined by

N = E/(RTb).

The spatial and temporal variables are nondimensionalized by

-2 xiv
t - V i  - -

where is the planar, adiabatic flame speed. Assuming an appropriately

nondimensionalized flow field U and one-step irreversible Arrhenius kinetics,

the equations of the diffusional thermal model of combustion are [26]

Ot = AO - U'V + AC exp , (I -a) (0-1)]

a + (1-a)o
(3.1)

Ct A -U.VC-AC exp[rWl
( - ) (0-I).
a + (1-0)0

Here L, the Lewis number, is the ratio of thermal conductivity to the

diffusivity of the deficient component. The quantity A is called the planar

flame speed eigenvalue and depends on the unknown reference velocity v. In

the limit M = N(1-a) large the asymptotic expansion of A is known [23]:
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A=M211+ 0 1. (3.2)

In our computations we use the leading order term in (3.2) to approxirmate A

in (3.1). A different value of A will alter the spatial and temporal scales

but will not change any patterns found for the solutions. The external flow

field U is taken as that of a line source of fuel of strength 27TK, i.e.

r, (3.3)

where r is a radial unit vector. The boundary conditions are

E ) 0(1), r * 0(-),

(3.4)

C 1 1(0), r - 0(-).

It is characteristic of combustion problems that the activation energies

are large and the reaction terms are important only in a narrow region called
the reaction zone. In the limit N >> 1, (1-a) << 1, M >> 1, the reaction zone

shrinks to a surface r = Y( ), where is the polar angle, called the flame

front, across which the normal derivatives of S and C are discontinuous with
derived jump conditions [26]. In this limit the axisynrvetric, stationary

sol ution

(L)+ r K
K

0 1, r K

(3.5)
C 1 - 0 + 0(1

exists. The effect of the fuel source is to stabilize the front location at

r = K. The solution (3.5) is called the basic solution.

The stability of (3.5) was analyzed in [25]. The basic solution is stable

for L near unity. There exists a critical value of L, Lc = 1 - 0(1/M), such
that if L < Lc the basic solution is unstable to angular perturbations for K
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sufficiently large, K > K (L). A weakly nonlinear analysis showed that small
C

disturbances evolved into stationary cellular flames.

The behavior of the model (3.1) as the parameters move into the more fully

nonlinear regime is the subject of this paper. The computations are for

finite activation energy. In the numerical computations the boundary

conditions (3.4) must be applied at artificial boundary points ri and r2.

Ile apply the boundary conditions

E(r2) = C(rI) = 1

(3.6)

O(r1) = C(r2) = 0.

In the computations presented here we chose r1 = 2.4, r2 = 30.4. The

reaction zone was sufficiently far from the boundaries so that no significant

sensitivity to the boundary location was observed.

The numerical method is based on an adaptive Chebyshev-Fourier pseudo-

spectral discretization. In our work the radial coordinate system is varied

adaptively to enhance resolution of the regions of rapid variation [2,3].

The interval [rl, r2J is first mapped into the interval [-1,13 by the

linear transformation

_2r (rI+r 2 )
r2-r I  r2-r I

We then introduce the collocation points

s. = cos (CTj/J) (i = 0 ....J)J
(3.7)

k = 2nk/K (k = 0,...,K - 1)

and approximate the solution by the Chebyshev-Fourier expansion

E = 1 0 Tj(s)ei  (3.8)j=0 I£ J K /2 J S

with a similar expansion for C. Here T.(s) is the jth Chebyshev polynomial
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Tj(S) : cos(j cos-1 s).

The coefficients j, in (3.8) are obtained by collocation, that is by

requiring equations (3.1) to be exactly satisfied at the

collocation points. In the pseudo-spectral method 8 j,k are the unknowns;

the expansion (3.8) is used only to compute derivatives at the collocation

points.

In order to improve the resolution of the regions of rapid variation near

the reaction zone, we adaptively transform the radial coordinate by a

coordinate transformation

s = q(s;a)

where a is a two-element vector. The specific form of the transformation is

q(s;a) = tan-[a1 tan((s'-1))] + 1

so 2- s= 2

where a = (Ca a 2); aI > 0 and -1 < a2 < 1. The two parameters aI and a2

provide the flexibility to move regions of rapid variation to the boundary

(a2 ) and then expand these regions (a1). Other choices of coordinate trans-

formation are possible.

The vector a (equivalently the radial coordinate system) is chosen

adaptively so as to minimize a functional of the solution which measures the

spectral interpolation error. This functional was introduced and described

in [2]. For a function f which is a weighted combination of 0 and C, we

have

(M 21T { l d I ds - [( 1s2 ) 2 21/2 (3.9)

The analysis and computations presented in [2] demonstrate that (3.9) is an

effective measure of the spectral interpolation error. Owing to the angular

dependence in the reaction zone, it would be more effective to choose a for
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each value of p. Such a oedure is currently under development.

The equations are integrated in time until a stationary solution is

achieved. The time marching procedure is a semi-implicit scheme using the

backward Euler scheme with approximate factorization. To describe the time

differencing we consider the model equation

Ut = Uxx + Uyy + r(U).

Using a superscript to denote the time levels and the symbols 0x, 0y to

denote the approximate second derivative operators in the x and y directions

respectively, we have

At - DxUn+1 + DyU n+1 + r(Un)

or if 6 = Un+l - Un,

[I -AtD x -AtDy]6 = At[D xUn + DyUn + r(Un)]. (3.10)

The matrix on the left-hand side of (3.10) can be approximately factored

(up to O(At2)) as

[I - AtDx - AtDy] [I - AtDx][I - AtDy] + O(At ) (3.11)

and the solution is updated in time by inverting the factored matrix on the

right-hand side of (3.11). Convergence to a steady state is monitored by

examining the maximum of the residual over the grid, i.e. maxIDxUn + D Un +
j,k y

r(Un)I. Typically we require the maximum residual to decrease by 6-9 orders

of magnitude. Convergence can be very delicate near a modal transition but

is fairly rapid away from transition points.

In all of the calculations presented here the following parameters were

held fixed:

N = 20, =0.615, L = 0.44, r1 = 2.4, r2 = 30.4.

Solution branches were computed with as the parameter that was varied.
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The first cellular transition was obtained by using as initial data the axi-

symmetric solution with an angular perturbation. Subsequent solutions were

obtained by varying K using cellular data with a nearby value of K as initial

data.

All of the computed results presented here were obtained with a grid of

141 radial collocation points and 128 angular collocation points. Clearly

the effective angular resolution is less for cells of higher mode numbers.

These computations were validated by computing solutions on coarser grids

and verifying that there was very little change as the grid was coarsened.

Generally the most difficult computations occur near transition points where

a cellular solution is very weakly unstable to perturbations of an adjacent

mode number. Near these points the amplitudes of all modes must be monitored

carefully to ensure that there is not a weak instability which could lead to

a modal transition if the solution was computed for a sufficiently long time.

We have concentrated on localizing the transition points to intervals out-

side of which we are confident that we have a stable cellular solution. Our

procedure is to follow a particular modal solution branch by varying K. All

other modes are monitored to ensure that they are not growing. When we come

to a value of K where another mode shows persistent growth, so that the given

modal solution can be judged unstable, we take that value of K as an upper

(or lower) bound on the stable region of the solution branch.

In discussing the solution branches we refer to figures 6 and 7. In these

figures we plot the maximum norm difference of the computed temperature

(figure 6) and concentration (figure 7) between the cellular and the axi-

symmetric solution. The computed values are indicated by full circles in

the figures. The unstable axisymmetric solution was computed using an

axisymmetric version of the computer program so that angular perturbations

were not present. The curves in the figure represent five solution branches,

the axisyrmetric branch and cellular solutions branches of mode numbers 3-G,

respectively.
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SOLUTION BRANCHES FOR CELLULAR FLAMES

z0 SIX-CELL

>0 FIVE-CELL
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W
FOUR-CELL

.
a:
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LU

THREE-CELL

8.00 9.25 10.50 11.75 13.00 14.25 15.50 16.75 18.00
kappa

Figure 6 Maximum norm difference of 0 between the computed cellular

solution and the axisyr,.,tric solution. Full circles represent

actual computed values. Open circles correspond to unstable

solutions.
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SOLUTION BRANCHES FOR CELLULAR FLAMES
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Figure 7 Maximum norm difference of C between the computed cellular

solution and the axisyrimetric solution. Full circles represent
actual computed values. Open circles correspond to unstable

solutions.
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The axisymmetric solution branch is stable for K < K I where 8.3 < K 1 < 8.4.
For < > K1 with K - K, small, the solution with arbitrary initial data
evolves to a stationary three-cell. This solution can be computed for

KI < K < K2 where 11.25 < K2  11.70. At K = 11.70 initial data from a
lower value of K evolved to a stationary four-cell. The four-cell solution

branch can be continued for the range K < K < K3 where 10.0 < K I < 10.4 and
14.8 < K3 < 15.2. Tile region K < K < K 1 is a region of bistability in
which both three- and four-mode cellular flames coexist, each with its own

domain of attraction.

For K > K 2 initial data from a nearby solution branch evolved to a five-

cell solution. The five-cell solution branch can be computed for K < K < K 3
2 3

where 12.2 < K < 12.7 and 17.1 < K 3 < 17.5. A six-cell solution branch

exists and has been computed in the range 15.6 < K < 17.6. An upper limit

for this branch has not been determined. It can be seen from the figures

that the graphs of these branches are similar. We have not found values of

K where more than two stable solutions coexist.

In figures 8, 9 and 10 we present perspective plots of 0 along the
different solution branches. Each figure is for a value of K in a region of

bistability. In figure S we plot the three-cell and four-cell solution at

K = 11.0. In figure 9 we plot the four-cell and five-cell solution at

K = 14.8. In figure 10 we plot the five-cell and six-cell solution at

K = 15.7.
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Figure 10 Bistable cellular flames; K =15.7.
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The figures show a small region over which 0 drops rapidly from
unity to zero. In the limit of infinite activation energy this region would

shrink to the flame front. The subregion where the temperature begins to

drop is called the reaction zone and is the region where the reaction termIhas the greatest effect on the solution. It is apparent from the figures

that the primary effect of the cellular solution is to cause a wrinkling of

the reaction zone. The wrinkling increases in spatial complexity with

increasing mode number of the cell. In addition, the amplitudes of the

twrinkles increase with increasing K, consistent with the behavior shown in

figures 6 and 7 and the generally destabilizing effect of increasing K found

in the analysis of [25]. lie point out that as K increases the curvature of

the flame front decreases. Other examples of a destabilizing effect of

decreasing curvature have been found for other problems in combustion (for

example, [23]).

We next consider the spatial behavior of a specific cellular solution.

The analysis for the flame front model demonstrated that, along the flame

front, the harmonic would combine with the fundamental in a manner that
would produce a pattern of peaks and troughs. The peaks point in the

direction of the burned region, i.e. toward the products of combustion, while

the relatively flat troughs point toward the cold region, i.e. toward the

fuel. This hehavior is also present in experimentally observed cellular

flames [24].

The computations exhibit a similar behavior. In figures 11a-e we plot

temperature and concentration as a function of the pola angle for various

r locations. The results are for a six-cell with K = 15.6. The figures

show a large sinusoidal oscillation just ahead of the reaction zone. The

characteristic crests and troughs of cellular flames appear only in a

localized region where the overall oscillation is considerably reduced.

This is consistent with the analysis in [25] which predicted a faster decay

rate away from the front for the harmonics.
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Kappa = 15.60 Cellular Flame LEGEND
Lewis # 0.440 concen.
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Figure 11(b) 0and C as a function of p. Six-cell solution, K 15.6,
r =11.78.
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Figure I1I(c) 0 and C as a function of . Six-cell :,olution, K = 15.6,
r = 12.92.
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Figure 11 (d) 0 and C as a function of p. Six-cell solution, K = 15.6,
r = 13.88.
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Figure 11(e) E) and C as a function of 4. Six-cell solution, K = 15.6,

r = 14.63.
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Lastly we consider the conclusions that can be inferred about the nature

of the transitions. In view of the fact that the stationary cells are

computed from a time marching algorithm, only stable solutions can be computed.

The convergence to a stationary solution can be very deceptive. In figure 12

we plot the logarithm of the residual of the equation for 0 for the case of

a transition between a four-cell and a three-cell at K = 9.25. The initial

data were a four-cell at a larger value of K. The horizontal axis is the

MAXIMUM RESIDUAL

-1.0 I I I I I I I I

-2.0

S-3.0
Ma
v) -4.0
W

o-5.0
0

-- 6.0

-7.0

-8.0 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ITERATION FRACTION

Figure 12 Convergence history for the transition from a four-cell to

a three-cell at K = 9.25.

fraction of the number of time steps. The time step changed at several

times due to the adaptive procedure. The solution appears to converge (to

a four-cell) and then begins a slow divergence while the three-mode grows.

Finally, the rocidual decays as the solution converges to a stable,

stationary three-cell.

The nature of the transition is clarified by noting that modal solutions

can be computed beyond the transition points provided the computational

domain is restricted to exclude the unstable angular perturbation.

Specifically, we restricted the computation to the sector 0 27T/3 and
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enforced periodicity at : 0 and = 2Tr/3. In this way we were able to

compute three-cell solutions beyond the transition point K 2, at K = 11.70

and 11.85. These points are indicated on figures 6 and 7 and demonstrate

the continuous extension of the solution branch beyond the point at which

it loses stability. Similarly we were able to compute four-cell solutions

for values of K below the value K 1 where the four-cell loses stability.

Although we have not done this for the other solution branches, we believe

that the behavior is similar. Since the solution branches exist beyond the

points at which they lose stability, it appears that the modal transitions

occur via subcritical bifurcations connecting the different modal solution

branches.
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P.. BROWNE

Two-parameter eigencurve theory

This lecture presents a survey of some recent results in two-parameter

spectral theory developed by P.A. Binding and the author. Examples of

eigenvalue problems in ordinary differential equations with two spectral

parameters exist in the classical literature - the Mathieu equation is a

well-studied case which readily comes to mind. The first part of the lecture

contains an overview of properties of eigencurves in abstract problems, while

the second part shows the realization of these theories when applied to

second-order ordinary differential equations.

1. THE ABSTRACT PROBLEM

Let H be a separable Hilbert space and in it consider operators T, R, S as

follows:

(i) T:D(T) H - H : self-adjoint, bounded below and with compact resolvent,

(ii) R,S:H H : self-adjoint, bounded.

The eigenvalue problem under consideration is that of finding (x,1) ER 2

so that there is a nontrivial solution y C H of

(T - XS + vR)y = 0.

There is no a priori guarantee that eigenvalues (X,v) exist, so we assume R

(or some linear combination of R and S) to be strictly positive definite. It

then is possible to assume without loss of generality that R = I and so the

eigenvalue problem becomes that of finding (X,w) E R2 so that there is y 0

with

(T - AS + PI)y = 0.

Research supported in part by a grant from the NSERC of Canada.
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Equivalently, given A we seek p so that p E a(AS - T). For any X E R,

o(AS - T) is nonempty and consists of a sequence of eigenvalues pn(X) of

finite multiplicity accumulating only at - . ie index these eigenvalues

variationally and thus have

0 M W 2 (1)
MO(x) p'(A) Z v 2(A) ..

These are the so-called eigenourves we wish to study and this lecture details

some of their basic properties.

The pn(A) are piecewise analytic: According to Kato's analytic perturbation

theory, AS - T has, for varying A, a sequence pn(A) of analytic eigenvalues
a n,with a corresponding set of orthonormal eigenvectors y (A) also analytic in

X. These curves may not have the desired ordering (1) but if we take tile

pointwise maximum and then the maximum but one and so on, we generate our
Pn (A) with the desired ordering. The points where our pn(A) fail to be

n
analytic are the points where two or more of the via cross. At points of

analyticity

_d ~n Y(d (X) =(Syn(X), yn(X))

with corresponding formulae for right- and left-hand derivatives holding for

all values of X.

vOi(A) is convex: I.e., {(X,p) I A E R, i pO(W)} is convex.

DEFINITION: A is a critical point and (,i (A)) a critical pair for vi if

and is degenerate if (vi)' = 0 is some neighbourhood of A.

The nondegenerate critical points for vi have no finite accumulation.

DEFINITION: The form domain D(t) of T. Select a E R large enough so that

P = (T + a)I/ exists. Define D(t) = D(P) and, for x E D(t),
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t(x) = IIPxII 2

Alternatively, if T J sdE(s), where E is the resolution of the identity

for T, then

D(t) ={x i sJ(E(s)x,x) <

t(x) = j sd(E(s)x,x).

Note that t(x) is an extension of (Tx,x), x C D(T).

DEFINITION: D := N(S) n D(t), where N(S) is the null space of S.

Condition N is said to hold if D = (0}.

If N holds there are no degenerate critical points, and if y is real, the

number of critical points (X,ii) with p z y is finite.

ASYIPTOTIC PROPERTIES

DEFINITION: n has (1,a) E R2 as an asynptotic direction (1,a) as X -* if

a is an accumulation point of in(X)/X as X

If ,n has an asymptote of slope a, then (1,a) is the asymptotic direction

for n but n may have an asymptotic direction without having an asymptote.

DEFINITION: If E is the resolution of the identity for S (i.e. S = sdE(s)),

define

i = inf {y I dim E(y,o)H < il.

For example, if S has numerical range [a,b] and b is a point of continuous
ispectrum then a b for all i, while if b is an isolated eigenvalue of+i

multiplicity k, then a = b for i =

(i) WJ has (1,a') as its (unique) asymptotic direction as
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ii

Ile now investigate the problem of characterizing the case in which ni has

an asymptote as well as that of finding the equation of the asymptote.

It is convenient to use new (skew) coordinates (A,P) related to (A,w) via

[A 1 = [sec 0 0 [A
-tan I 

which corresponds to rotating the A-axis through an angle 0. Then

T - AS + I = T - AS(O) + 4I

where

S) = (cos )S - (sin a)1.

We intend using 0 = tan-I ( ) We then see that without loss of generality
we can return to the case

(T - ..S + Pl)y = 0, c = 0.

Thus the problem now is to find conditions under which

i, (A) -, constant as A - -

and to determine the constant.

With S = J sdE(s) we put N+(S) = E(O,-)H, N(S) =null space of S,

N (S) = E(--,O)H, D. = N+(S) n D(t), dim N+ = d+, D = N(S) n D(t). The

conditions we require are given in terms of the dimensions of these spaces.

M) If dim P+(S) i then l(X) as X -  (This is true for general

values of 0 but with u = 0 we have dim N+(S) i.)

(iii) If dim N+(S) i and dim (D N+) = i, then i (A) - as A -*

(iv) If dim N+(S) i and dim (D N+) > i then i( ( coistant as A

Thus result (iv) characterizes the case in which an asymptote exists.
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DEFINITION:

Tj = Min {Max {t(u) ul = 1, u E F} I F a D, dim F =j + 1)

= flax {fin {t(u) I juIj = 1, u E E n D} I dim E = j, Ei n D # {01.

These quantities are defined for j = 0,...,dim 0-1. They are "stationary"

values of t restricted to D.

If dim N+(S) < i and dim (C N) > i, then

W i-d'! ( ) + - as X -' 0

This gives the equation of the asymptote.

In terms of the original (Xp) coordinates we require S to have cc as an

eigenvalue with eigenspace Ei. The asymptote has equation
i -*T

I. i-d
Jl. ij = CL _ +(E').

t 2. ORDINARY DIFFERENTIAL EQUATIONS OF SECOND ORDER

Here we take H = L 2([a,b]),

D(T) = {y E H fY' E A.C., y" E H, and boundary conditions are satisfied)

Ty = -y" + qy,

where q E Lw([a,b]) is given. tie are also given S C LE([a,b]) and define

(Sy)(x) = s(x)y(x).

The eigenvalue problem is

-y" + qy - Asy + vAy = 0.
t

Various boundary conditions can be used:
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(S) y(a) cos c+ y'(a) sinc= 0, 0 a T

y(b) cos + y'(b) sin3= 0, 0 < B 7T

(P) y(a) = y(b), y'(a) y'(b),

(A-P) y(a) = -y(b), y'(a) = -y'(b).

With S defined as above we have

0 = a = ess sup s(x), vi.
+ x E[a,b]

iAll eigencurves ii-i have the same asymptotic direction (i,oj) and further,

either aZl P have asymptotes or none do.

p has an asymptote if, and only if, s achieves its essential supremum on

some interval(s). The key set is the "essential interior" of s'1 () given

by S? = {x I s(w) = a for almost all w in some neighbourhood of x1.

This set is open and can be written as a union of disjoint intervals

Q = U (ai,bi).
i

A characterization of the form domain D(t) for T has been given by Hinton

[3] as well as a formula for the quadratic form t(y), y E D(t). This

quadratic form consists of the usual Dirichlet integral plus a term arising

from the boundary conditions. ie use standard variational theory applied to

the minimax process for finding the quantities TJ. It turns out that to

calculate the TJ one solves the eigenvalue problem

-y" + qy = Ty

on the intervals (ai,bi) in 2 subject to boundary conditions as follows:

(a) We use a Dirichlet condition at any ai,b i  a,b, and in addition

(b) we retain (S) if T had been given via (S).

(c) Wie use y(a) = y(b) if T had been given via (P).
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(d) We use y(a) = -y(b) if T had been given via (A-P).

EXAMPLE: Consider Hill's equation

-y" - Xsy + y = 0 on [-1,11

with periodic boundary conditions y(-l) = y(l), y'(-1) = y'(1). lWe take

s(x) as

s(x) = 0 on [-l,-1/21 U [1/2,1]

s(x) = I on (-1/2,1/2).

Clearly t = 1 and S2 = (-1/2,1/2). Thus the eigencurves have asymptotes and

we calculate the t i by

-y" = Ty on E-1/2,1/2]

subject to Dirichlet conditions to give

= ( 0,1,2,. .

Thus the asymptotes for the eigencurves are

2 2
= + - (j+) .

Other examples can be given.

Details of these and further results can be found in [1,2].
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J. FLECKINGER-PELLE

On eigenvalue problems associated with
fractal domains

It has been known for more than two centuries (Euler, Lagrange) that the

vibrations of a membrane Q are described by the wave equation

32u(x,t) = cAu(x,t), (x,t) E Q x R

with some limit conditions. Therefore, the determination of the characteristic

frequencies of 2 leads to the following eigenvalue problem:

-Au = Xu in Q
(P0)

u = 0 on 32.

Problem (P0 ) arises also if we study the evolution of temperature in a medium,

described by the heat equation.

When Q is a bounded open set in Rn, n > 1, (Pu) has an infinite number of

eigenvalues:

0 < A1 <  < 3 < "" < j A, ;j A A' ' Xj +

Here, each eigenvalue is repeated according to its (algebraic) rultiplicity.

An analogous result holds for the Neumann problem:

-Au = Xu in Q
(PI)

= 0 on 3Q.

Problems (P0 ) and (P1 ) are considered in their variational form; in other

words, we say that A is an eigenvalue of (P0) (resp. (PI)) if there exists a

nonzero u in H1 (1) (resp. Hi()) satisfying -Au = Xu in the distributional

sense.

Here HI(Q) is the usual Sobolev space of order 1, and 11 (Q) is the

completion of CO() with respect to the norm of H1(0).
0
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1, WEYL'S FORMULA

We are interested in the asymptotics of X. as j tends to + -, or what is

equivalent, in the asymptotics, as X tends to + -, of the "counting function"

N(X), also denoted more precisely by Ni(A,-A,2) (i = 0 or I according to the

boundary conditions), the number of eigenvalues of (Pi) less than A:

N() = Ni(X,-A,2) = #{jA X} .

This problem was introduced by Lorentz and Jeans in the study of electro-

magnetic radiation theory.

It was proved in Weyl (1911) that, for 30 smooth enough,

(2 )-nw An 2
1 n n , as A + (1)

where w n denotes the volume of the unit ball in Rn, and 1.1n stands for the

n-dimensional Lebesgue measure.

1.1 A COUNTEREXANPLE: Indeed, it was proved in l.6tivier (1976, 1977) that

(1) always holds for the Dirichlet problem (P0 ) when Q is bounded. For the

Neumann problem, (1) holds only when the boundary aS£ is not "too lonq"; it

holds in particular if Q satisfies the "strong cone property". Moreover,

the necessity of such a condition is established by the following counter-

example (Fleckinger and letivier, 1973):

For a given positive number s, let us define

Qs = {(x,y) ER 2 1 x E (0,1); 0 < y < I + I j-s I I(x)

where (Ij)jE}I is an infinite sequence of disjoint open intervals in (0,1)

and where I denotes the defining function of the set I.:

I if x E I.

= 0 if x f I

For this set, when 0 < s < 1/2, we have

N1 (A,-A,s ) Z I/2s as X +
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The symbol Z means that there exist two positive constants c' and c" such

that

c', /2s  NI (A,-A s  < cX
I/2s , for all X large enough.

Therefore, in this example, Weyl's formula does not hold and X- 1'i() + - as

X -*-+ W.

1.2. A RECTANGLE: When S2 is a rectangle (O,a) x (O,b), (1) is very easy to

establish, since, in this case, the positive eigenvalues of (Pi) are known:

2 p 2 -2  2 2-2X = p2T2 a + q 22 b , with (p,q) E N* x N*.P ,q

Hence, N (A,-A,?) is the number of pairs of integers which are inside a

quarter ellipse; it is an old result of number theory (Gauss, 1876)that this

number is proportional to the area of this quarter ellipse, and, therefore,
2

(1) holds when Q is a rectangle in R
n

This can be extended to a hyperrectangle in R

n
1.3. EXTENSIONS: When Q is a bounded open set in R , it is possible to

prove (1) by the "Weyl-Courant method" which consists of cutting Rn into cubes

and approximating Q by a union of cubes (see e.g. Courant and Hilbert (1953)

or Reed and Simon (1978)). Throughout the proof, the following two results

are used:

N > t 0 (,A,') if Q '. (2)

If 0 and Q2 are two disjoint open sets in Q, with u = 7 I2, then

N0 (X,-A,Q 1) + N0 (X,-A,0 2) 0 Nl0 (,-A,2) < NI(,-Al)

N I(A,-A,Q ) + NI (1,- , 2 ).

This formula is known as "Dirichlet-Neumann bracketing" by physicists.
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2. INJFLUENICE OF THE BOUNDARY AN4D APPLICATIONS INi INDUSTRY

When (1) is established, two questions arise naturally.

(i) Is it possible to estimate the "remainder term" Ni(x,-A,f2) - 4(Xf2)

where O(A,Q) denotes "Weyl's term":

= (27)'nnr jnAn2 ? (4)

(ii) Since the volume lQ'n can be deduced from the knowledge of the spectrum,

are other geometrical attributes available with this knowledge?

This was summarized in a famous paper (Kac, 1966) entitled: "Can one hear

the shape of a drum?" Indeed, it is impossible to determine 0 completely

just from knowledge of the eigenvalues since there exist isospectral drums in

Rn , n a 4, which are not isometric (Urakawa, 1982). Nevertheless, the

asymptotics of the eigenvalues determine the "length" of the boundary (or

more generally its measure, laIn-1 ), the number of angles, the nuriber of

"holes",... (see e.g. ficKean and Singer (1967) and Sleeran and Zayed (1983)).

Note that the asymptotics of the eigenvalues are derived from the asymptotics

of the counting function N(A) as well as from the asympotics of Z(t) as t - 0,

where

-x .t
Z(t) = e .

The estimates on Z(t) are derived from the estimates on the heat kernel

associated with our problems (P.).

If 3Q2 is smooth enough, the following estimate holds (Seeley, 1978; Ivrii,

1980; Hdrmander, 1985):

Ni(A,-A,2) = 4(A,£) + Yn la2ln- 1 (n-l)/2 + O(A(n-l)/2), as A - +

(5)

where yn is a number which depends only on n and i (i = 0 or 1). This result

is usually established by a Fourier transform of the spectrum and by use of

the Fourier-integral operators.

This result, which is of course very important from a mathematical point

of view, also has important applications in industry. It is obvious that a

"body" Q has the same volume 101n when it is cracked, but it then has a more

63



important boundary ao. Therefore, any variation in the vibratory response

of a body - e.g. the driving shaft of a power plant - indicates a variation

in the geometry of the body and hence, it is possible, just by sending

vibrations, to detect any crack.

Indeed, it is possible to guess, by use of the counterexample exhibited

above, that in sorme problems the boundary can play an important role, even

more important in the counting function than eyl's term. In the following

we will be concerned with "fractal boundaries", which are precisely such

that ias'n- = + -.

3. ASYMPTOTICS OF THE EIGENVALUES OF THE DIRICHLET LAPLACIAN ON AN OPEN SET

WITH FRACTAL BOUNDARY

In 1979, the British physicist M. Berry, studying the scattering of waves by

"fractals", suggested substituting in the second term of (5) the Hausdorff

measure and dirivnsion of the boundary 30 for its Lebesgue measure and for

(n-1) (Berry, 1979, 1980). This measure was introduced in 1919 by Hausdorff

in the following way.

For h ER and c > 0, we set

11H( ,hE) = inf rh
iEI

where the infimum is taken over the set of coverings of the boundary @Q by

balls (B i)i€ I with radii ri < E.

The function c - H(Q,h,c) decreases with E, and the Hausdorff h-dimension

of DE2 is

Hh(3Q) = lim H(3Q,h,c).
E-0

ioreover, h0 = h0(30) defined by

Hh( +) = if h <
0 if h > h0

is called the Hausdorff dimension of 2S.

This Hausdorff dimension has been widely studied since (t.andlebrot, 1982)

and it seems to be the most popular dimension among mathematicians. Neverthe-
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less, it was proved in Brossard and Carrona (196), with the help of a

counterexample consisting of a union of cubes, that Berry's conjecture may

fail with the Hausdorff dimension, and they suggested replacing it by

Minkowski's one.

This Minkowski dimension has been introduced in different ways by riany

authors, and therefore it has different names such as "Cantor-Minkowski

dimension", "ordre dimensionnel" (by Bouligand), "Bouligand dimension",

"logarithmic density", "box counting dimension", "Kolmogorov entropy",....

These definitions are equivalent (Bouligand, 1928; Tricot, 1981). lie give

here some of them.

For a given positive number c, we set

= {x E Rn I d(x,a) < c} (6)

where d(x,Q) denotes the Euclidian distance of x to the boundary @Q. We

then consider the positive numbers d such that

lim E (n-d) EIn = O,

and we define 6:= 6(3Q), the 1inkowski dimension of 2, as

5 = sup(d E R+ lim E- (n-d),, I = 0). (7)

'Je also have (Bouligand, 1928)

6 = inf{d > 0 1 lim sup c dn(e,aQ) = 0},
C-0

where n(EXQ) denotes the minimal number cf balls with radius c which are

necessary to cover M. Therefore 6 can also be introduced as an "entropy":

6 = lim sup ln n(£,MQ)
C- 0 -ln £

Let us consider a "grid" in R n where the cubes (QC)CEZn , fora given integer

N, are such that
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n11: (Vk/4, (Ck-t)/t1), with k E 14.
Sk=1

A "maille utile" for Bouligand is a cube Q which intersects the boundary ai,
-1Cand, if m(N-, x) denotes the number of "railles utiles", we have

6= lim In m(rf1 ,x)N-+- I nTT

Equivalently, in computer science, the "pixels" are defined by
AC = ( k/N)k=l ...,n E Rn, when the associate cubes QC intersect the boundary.

Other definitions of the Minkowski dimension are possible (see e.g. Tricot,
1981). We also mention the following inequality which was used in Brossard

and Carmona (1986); with the above notations, we have

ho (Q) : 6C3).

In Lapidus and Fleckinger-Pel]6 (1987, 1988), the following result is

establ i shed:

THEOREM 1: If 0l is bounded and if 30 is fractal, with ftinkowski dimension

6 E (n-1,n), we have

NO(X,-A,Q) = (2 ) -nwn Enn/2 + O( A/2), as X - +

This result has been extended in Lapidus (1988) to rore general elliptic

operators and to Neumann boundary value problems.
Here we shall prove:

THEOREM 2: If Q is bounded and if aS2 is 6-Mirkowski measurable, with 6-
Ainkowski measure P satisfying

lim E (n 6 ) I.n n
E-O

then there exist two positive numbers X0 and c(n,6) such 4hat

IN(X,-A,2) - (XQ)j c(n,6)viX 612, for all X X 0" (9)
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In the following we will introduce a positive number co such that, for

all F E (0,c0),

E(n-6)IQEn : 21. (10)

Then, we choose pO E IN such that

2- PO 0 " (11)

4. PROOF

We proceed as in t14tivier (1976, pp. 36-37), Mdtivier (1977, pp. 197-199) or

Lapidus and Fleckinger (1987).

For each integer p, we consider as in Courant and Hilbert (1953) a

tessalation of Rn into congruent and non-overlapping cubes (Q p n-(p+po) ~ ~
with side np = 2 . We define by induction

A = { 0 E Zn I QC zQ} and = Q oEA0 0 O

A1 = I E Z  I e1 and = U =

Ap = E Zn I= u ( U ); la" =

p CpEA p P p

We also define for each integer p

Bp {Cp EZn I QC n Q 0; Q n 2' = 01 and Rp = BU Q
P p pp E p C p

We first make some simple observations.

wi h p v ~ q p V -(p + p O)

REMARK 1 Q"--Q with =V- =4F2 ;thesetQ has been
p EP ; h

defined by (6). Moreover

R p P

6p
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REMARK 2: Sincc- )' e 0 for all integer p, we deduce from (10) and (11)

and from Remark I that

(# A ),,n < IQ. I p 21 n (n-6)/2 (rp-)n-6

p p P 1  < I n

Hence

(# Ap) - YI Py (12)

with

Y 2 (2v )(n-6) (13)

An analogous calculation shows that

(# B p) p_ ¥1 n (14)

REMARK 3: Since the positive eigenvalues of (P.) on a cube Q with side

2 -2 2 2 2 pnp are 7T .p(q 1  + + ... + qn ), with qj € 1N, for any integer

p > P := max{q E 11 2 n-2 < X) = max{q E 11 1 2(q+pO) < I-1 1/2,
q

we have

Ni(X,-A,Q p) = 0.

During the proof, we also make use of the following estimate (Courant

and Hilbert, 1953, Section VI.4, or Reed and Simon, 1978, Proposition 2,

pp. 266-267).

PROPOSITION 1: There exists a positive constant c', depending only on n,

such that, for al' cubes Q c Rn, with side I, and for all X > 0

INi(x,-A,Q - qb(X,Q) I c'[1 + (Xq2 )(n-1)/2]
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It follows from (2), (3) and Remark 3 that

P . _ _
kN (kAk (,-L 1 Q) < N (,-,, u Rp

P
1 7I>,ZQk N1 (A,-A,Q~p)

k=O kCAk k pEBp P

Then, by subtracting "the Weyl's term" (,), we obtain

P
(# Ak)[NO(X,_A,QCk) - (X,Qck)] - [(x,2) - W(,)]

k=Ok k

SN0(X,-A,l) - x

P
Y (# Ak)[Ni(.,-A Q ) - (,Q )] + (# Bp)LNI(X,-A,Q p)- (>,Q p)]

k=O k 'k

+ ( _, ) + (# Bp ) (% ,Q p ) - ( (15)

We first examine the "interior term

P
T, = Y (# Ak ) [NI(\,-A,Q k) - ( ,Q )).

k=O k k

By use of Proposition 1, we obtain
P I, 2 (n-l)/2

2T1 0(#  A k)[1 + t, k .

k=

Then, by Remarks 2 and 3, we have

T 1 +.1(n-1)/2 (n-i) _II_ )6/2.7 l1 "k[-k k'_i2(1
k=0 7-1

(16)

An arogou3 calculation for the "boundary term"

T 2  = (# Bp [P I L Q ) pi .( .,Q-)]

'P
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gives a similar estimate:

T21 6/2 2(pn+1)

I2, i / 2 (17)

We consider now

T 3 = PC ?) - O(AJ4) = (Xpj).

By definition of #(A,Q) (equation 4)), by definition of P (Remark 3) and by

Remark 1, it follows easily that

IT31 = (2,) n ,n/ I I nX  (18)

For the same reason, we still have

T4 = (# B p)(X,Qcp) n (19)

Hence, by combining (15) to (19), we obtain Theorem 2. 0
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R. LEIS

Initial-boundary value problems in
elasticity

During the last decade much work has been done in elasticity and especially

in thermoelasticity. One wants to solve initial-boundary value problems

first, and afterwards one tries to get more specific knowledge of the

solutions obtained. For instance, one enquires about their regularity, or

about their asymptotic behaviour for large times. Meanwhile linear problems

are fairly well understood whereas many nonlinear problems are still open.

Initial-boundary value problems play an important role in mathematical

physics. We only remind the reader of the wave equation, the Maxwell

equations, the Scrh6dinger equation, or the system of equations of elasticity.

In the linear case all these problems lead to a self-adjoint operator such

that the asymptotic behaviour of the solutions and the existence of wave

operators can be obtained by means of spectral theory. In linear thermo-

elasticity, however, the underlying operator is not self-adjoint owing to

the coupling of a hyperbolic with a parabolic equation. Although solutions

can be obtained with the aid of semigroup theory, it is more difficult - and

presumably more interesting - to derive their asymptotic behaviour.

The lecture is organized as follows. We start by treating initial-boundary

value problems of linear elasticity, and indicate the existence of wave

operators. The main part of the lecture (section 2) is concerned with linear

thermoelasticity. We solve initial-boundary value problems, give some

asymptotic expansions as t - -, and especially describe the asymptotic

behaviour of solutions of the free-space problem. In the third section,

finally, we deal with some nonlinear questions. We are particularly

interested in obtaining solutions global in t for small smooth data.

1. LINEAR ELASTICITY

We start by presenting a brief survey of results obtained in linear elasticity.

The underlying equation of state is Hooke's law (stress-strain relation)

3
Tik= L Cjkmn U mn, j,k = 1,2,3. (1.1)

m,n =
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Tik is the stress tensor, Umn m UC n + a nU m)/2 the strain tensor, and

U := (U1 ,U2 ,U3 ) the elastic displacement vector. It is defined in an open

and connected domain 0 in R . The elastic moduli Cijkmn are real-valued,

bounded and measurable functions on S1. From physical considerations they

display the following symmetry relations

Cjkmn Cmnjk= Ckjmnx

Furthermore

3CI1 > 0 V~ij E T, C ij = Cji Vx E 0 jk Cjkmn ( x ) Cmn  c 1 1 cjkl 2

ilk

holds. For exterior domains Q (domains with bounded complement) we assume

the existence of a sufficiently large constant e such that the C. are

constants in Qe := {x E Q I jxi > e}.

I prefer rewriting Hooke's law using Sommerfeld's terminology. Let

a = T11 a2 = T 22 O3 = T33 X4 = T23 a5 = T31 C6 
= 

T12

S1 = U11 £2 = U22  C3 
= U33  £4 = 2U23 £5 = 2U3 1 £6 

= 2U12"

Using the generalized gradient symbol

a 1 0 0

0 a2 0

0 0 3

0 a3 2

a3 0

'2 '1

Hooke's law then reads

= S.DU (1.2)
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where S is a positive definite six-row matrix containing the elastic moduli,

and DU represents the strain tensor.

The elastic medium may show certain symmetries. Special anisotropic media

are monoclinic media (one axis of symmetry), rhombic media (two axes), or

cubic media (three axes). For details compare Sommerfeld (1949, p. 278f) or

Leis (1906, p. 201f). The isotropic medium is given by

V K K 0 0 0

K N) K 0 0 0

K K ) 0 0 0
S=0 0 0 P 0 0

0 0 0 0 P 0

L0 0 0 0 0 I

where p and K are the Lamd constants, i > 0, 2i + 3K > 0,and v := 2P + K > 0.

Using this notation potential and kinetic energy are given by

(DUa) and (Ut, HUt) L2 (Q) (1.3)

where MI is the positive definite density matrix, and for short we write L
2

instead of (L2) 6 or (L2)3 respectively. Thus the equations of linear

elasticity read

MUtt - D'SDU = 0. (1.4)

U0 := U(0) and U1 := Ut(0) are the initial values.

When Q is equipped with a boundary 30, we may set boundary value problems.

For simplicity we take H = id and formulate the Dirichlet problem. Let

E: D(E) C L2 (Q) L ( )

U - -D'SDU

where

D(E) := {U E H I(Q) j D'SDU E L 2(MI.
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(DU, SDU) 2 pjU 1 with p > 0 then easily follows, and E is a self-adjoint

operator (in the case of the Neumann problem one has to use the second Korn's

inequality). Thus we can define E with D(E =) H Assuming U E D(0 ) and

U E L2 we obtain a "weak solution with finite energy", U E C(R+,D(E) n

C (R+,L 2), of

Utt + EU = O (1.5)

through

U(t) := cos(Eit)U0 + E-i sin(Eit)U1, (1.6)

which has to be interpreted by the spectral formula for self-adjoint operators.

Then

,kE0U12 + ilUtll = const

is the energy.

Let P be bounded. Using Rellich's selection theorem one can then easily

prove the existence of a countable number of eigenvalues of E, and one obtains

a representation of U in terms of standing waves, which is typical for such

equations.

More interesting is the case of exterior domains. So let Q be an exterior

domain now. For simplicity we also assume the medium to be isotropic. Only

a few anisotropic media have so far been dealt with. In this case a solution

U of (E-x)U = 0 can be decomposed in Q e into a solenoidal and a potential

component. Both components solve Helmholtz equations with different wave-

numbers. Applying Rellich's estimate and the principle of unique continuation

(Meck 1969), one can conclude that E has no point eigenvalues. Here we have

to assume that the coefficients Cijkm are differentiable. The spectrum of E
+

is continuous, and o(E) = RO. It is also possible to formulate radiation

conditions for each component of U, and to solve exterior boundary value

problems

(E-X)U = F, A E R+
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for F with finite support (F H f). For details compare Leis (1970), or Leis

(1986, p. 217). Thus one can prove the limiting absorption principle, which

says that one obtains an outgoing or incoming solution (U+ or U-) of the

exterior boundary value problem by taking the limit in lop (HI with weight

p(x) := 1/{0 + Ixl})

U = lim [E - (x ± i 1) F.

Stone's formula then provides the spectral family of E

(P(X) U, V)= lim 1 CE - ( + i)]- 1 U - [E - (c - 1U, V)dp,
F4O 2 f 0

and one concludes that the spectrum of E is absolutely continuous saying that

(P(X)U, U) is absolutely continuous for all U E L2 .

This result is strong enough to yield asymptotic statements for U(t) as

t -. Using the Riemann-Lebesgue lemma we can easily show "local energy

decay" saying that for all r and Q r := (x E Q I ]xl < r}

lim { EOUI 2 +  ut l2} = 0. (1.7)

t- oo r

Thus one expects that, for large t, U behaves like a free-space solution.

Let CO,ijkl := Cijkll e and E0 be the corresponding operator defined in R
3 .2

It is relatively easy then to discuss the solutions of atU0 + E0U0 = 0 using

the Fourier transform. Knowing that the spectrum of E is absolutely

continuous we can apply perturbation methods originated by Kato (1976),

Belopolskii and Birman (1968), Pearson (1978) and others. Assuming

U1 C V(E- i) and using complex notation, H := U0 + iE-iU 1 C 12(Q), we can

show that wave operators

W±  L2 (0) L 2(R 3), unitary
W±  ~eiE~t -it
: s-lim J eE t

t-o

exist. J L 2(Q) - L 2(R 3 ) is defined by
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j(x)g(x) for x E 0

J 0 otherwise,

where j E C_(R 3 ) with jI{x I lxi e} = 0 and jl{x I Ixl e + 1} = 1. Because

of local energy decay the W do not depend on the special choice of j. Let

J0 : L2(R 3) - L2() be the adjoint of J, namely

(Jog)(x) = j(x)g(x) for x E Q.

The crucial part of the existence proof for the wave operators is to show

(EJ0 - J0E0 )P0 (M) E B1 (L 2(R 3), L2 (Q)), (1.8)

a nuclear map from L2 (R3 ) to L2( ). P0 is the spectral family of E0, Nz -R

a bounded interval, and D := EJ0 - J0E0 is a linear first-order differential

operator with C_ coefficients supported in K - {xle < IxI < e + 1}. Equation

(1.8) follows either from explicit representation of P0 (M)U by means of the

Fourier transform, or by exploiting the fact that, for all n, V := P0 (M)U

belongs to D(E0 )n), and that

II(Eo ) n VlI c(n) LIVII

holds. Using standard regularity theorems it then follows that V E H5(K),

and that

DPo(M) : L2 ( 3 ) 4(K)

is a bounded operator. The inclusion map

i : A4 (K) - L2 (K)

is nuclear (cf. Yosida 1974, p. 279). So

(Ej0 - J0E0 )P0(M) L2( 3) L

(EJ0 - J0E0)P0 (M) iDP0(M) E B (L
2(R3 ),L2 ()).
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Therefore we obtain

lim flU(t) - Uo(t)I= 0.

The U (t) are free-space solutions with initial values := WH. S := W+(W-) *

is the scattering operator. Figure 1 illustrates this. For more details

compare Leis (1986, p. 112f).

-E t H eF%.t H-

-iE-j - H+

H W

Figure 1

Finally let us remark that we could have put the elasticity equations into

a system first-order in t, namely

[tj - r. I D 0. (1.9)

We shall use this notation in the next section to be able to apply semigroup

theory.

2. LINEAR THERMOELASTICITY

We use the notation of section 1. In addition to that let T be the tempera-

ture, 0 = T-T0 the temperature difference, c the specific heat, L = (1 ij) the
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heat conductivity tensor, and G =(gij) the stress-temperature tensor. The

latter describes the coupling between elasticity and thermodynamics.

For the coefficients we make the usual assumptions. Let them be real-

valued, bounded and measurable functions on the domain , 1ij = 1ji'gij = gji'

and

311 0 vC €R 3  Vx E Q Cil ij(x) j 2,

3C 1 0 vx E Q c(x) c .

For exterior domains in addition to this we assume the existence of positive

constants loc 0 E R
+ and go E R such that

Vx E Q e lij(x) = 1 06i g iJ(x) = go6ij ' c(x) = co.

For simplicity we assume T0 = 1.

The difference between linear elasticity and thermoelasticity is that we

have to replace Hooke's law by the law of Duhamel-rleumann saying

Tjk = Cjkmn Umn - gjk®' (2.1)

and that we have to add a heat equation. Let us denote r:= (YIY2,...,Y6)Y

where

l 1 
:= gl1 Y2 

:= g22 y3 
:= g33 Y4 := g2  := g31 y6 := g12 "

The linear system of thermoelasticity then reads

MUtt - D'.DU + D'FO = 0

cOt  - V'LVO + F'DU t =0. (2.2)

For T = 0 these equations decouple into the equations of linear elasticity

and the heat equation.

Ile are looking for solutions with finite total energy (for its definition
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compare the papers of Carlson (1972) and Biot (1956))

EN := (DU, SDU) + (Ut, MUt) + (E, co).

For that reason and because we want to put the equations into a first-order

system, we set

V V 2 = Ut v := UI 1
V 0 V0

-D' 0 D'

0 0 c0 Ir'D -v'LV

and choose the Hilbert space H( 2) to become (L2C(0)) 10 with scalar product

(V, W)If := (V, Q1) (L2  ) 10

We then get E = IIvIj . To formulate the Dirichlet problem let

A :(A) c H - H

V - Q-1N V

where

v(A) := {V E H IV2 E H1 A V3 C f I A NV E H}

Then we are looking for a V E C(RO,H) which is a weak solution of

0

Vt + AV = 0 with V(O) = V. (2.3)

This means that for all 4 E C(R,V(A)) n C1 (R, 11)

JR+ (V, -Dt + A*)H = ( Vo l 0 (O))
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shall hold. A* is the adjoint operator, A* = Q'1IW, where

D':= ' 0 -D'r
0 -r'D -V'L V

and V(A*) D(A).

To derive some properties of A we start with

(AV, V) = (VV3, LVV3) + 2i Im{(V I, DV2) + (F'DV2, V3)}

yielding

Re(AV, V) = (7V3, LVV3) 1 1 2V3l > 0.

Furthermore

N(A) = x 0 x 0

where V6:= (U E (L2(M))6 1 D'U = 0} and N(A*) = N(A). A is a closed

operator and

H = RFA) N(A*) R(A) @ N(A)

_ 2 23 2
R(A) = SDH 1 @ (L ) @ L

RTA) and (A) reduce A. Thus it is possible to restrict ourselves to T-)
when dealing with (2.3).

Let X E T with Re X < 0 and (A-X)V = 0. Then we get

(VV3, LVV3) - Re 11V11 = 0

and thus V = 0. By the same argument N(A* - X) = 0. ThereFore (A-X)-I exists

and H = R-A-7). Let (A-X)V = F. Then again
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(VV3, LVV 3 ) - Re X lvii 2 < I (V, F)l

or

iI(A-X)-'I1 -1/Re ,.

Thus we have proved

T" : ={X E C I Re X < 0} cp(A),

and from semigroup theory we get the existence of a family H(t), t 0 0, of

bounded linear operators such that:

1. H(O) id, H(s+t) = H(s)H(t);

2. 11 H(t)l I I;

3. H(t)A AH(t);

4. VV E H, t - H(t)V is continuous;

5. VV E D(A), t - H(t)V is differentiable;

6. VV0 E V(A), V(t) := H(t)V0 E C(RO, D(A)) n C (R+, f) is the unique

solution of Vt + AV = 0 with V(O) = V .

Thus we have solved the Dirichlet problem. Other initial-boundary value

problems can be treated similarly. Some immediate conclusions are possible

Vt 1lv (t)l I I: 1v 0 1

is obvious. ljVV3(t)11- 0 as t also holds. Let

I := {V E D(A) I Vt > 0 IIH(t)VII = IIH*(t)VII = IVII}

where H*(t) is the semigroup generated by A*. It is the adjoint of H(t). I

is a closed subspace of D(A) with respect to 11 := (11 112 + IIA'i 2) so

that

D (A) = I I - . (2.4)

83



I and I are invariant under H(t) and H*(t). Let V0 E (A), V(t) H(t)V 0

and

V0 0 0
V = V I + V2

according to (2.4). Then

(i) Vt a 0 iiH(t)V 1 1 =  IIH*(t)V il = V1I

(ii) Vr > 0 lim IiV(t) - H(t)V0II r_ = 0.
t- r

For details compare Racke (1987). These results describe the asymptotic

behaviour of Vt) for bounded domains Q. The problem remains to characterize

1. It can be shown that I is the ii.iiA-closure of the span of eigenfields

belonging to purely imaginary eigenvalues. These eigenvalues give rise to

undamped vibrations. It is interesting to note that they exist iff

MIDISDU + XU = 0 with r'DU = 0

has nontrivial solutions U E H " An example for the existence of such

eigenfunctions has been given wlere Q is the unit circle (in R2).

In the following let Q be an exterior domain. In that case from (ii) we

get local energy decay

Vr > 0 lim LlV(t)lIIr = 0.t- r

To obtain further results we first discuss the corresponding free-space

problem assuming an isotropic medium. Thus let M = id, L = id, c = 1,

gij = Y6ii y E R, and

D'SD = - P rot rot + j grad div, D'r = y grad

where p,\ are positive constants. Furthermore let H0 := (L2(R 3))Io and A0

be defined in analogy to A. We already know

H = R(Ao0) W N(Ao) 0 (SDHI1 x (L2 )3 x L2 ) W (6 x 0 x 0).
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Both subspaces reduce A0. To get a further reduction we define

Hs :z S -R-' --- ) xD X 0

H0  1UW7V (0 0

HP := SD(H n R0 ) xR0 x L
2

where

(L 2(R3)) 3 = V0  R0

R0 = {U E (L 2(R 3))
3  rot U = 0) = V71H

DO = {U E (L
2 (R3 )) 3  div U = 0).

We then obtain a decomposition into solenoidal and potential fields,

precisely

H H @ H N(A0) ,  (2.5)

0 0

all subspaces reducing A0 * Therefore our equations (2.2) decompose into

U + V rot rot Us = 0 (2.6)

and

UP - v grad div Up + -( grad 0 = 0

(2.7)
(t - AG + Y div Up z 0.(27

Equations (2.6) are the Maxwell equations. Their solutions are undamped

vibrations and may be discussed in analogy to section 1. For details compare

Leis (1986, p. 146f). The coupling constant y only appears in (2.7), which

are the more interesting equations.

To discuss the spectrum of A0 and the asymptotic behaviour of the solutions

of Vt + A0V = 0 one can use the Fourier transform, and after straightforward

but lengthy calculations obtains detailed results. Let A1 := iR and
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R+. Then we get for the spectrum A of A0

A = As U Ap(y) U {0}

where X = 0 is the point eigenvalue originating from N(A0). AS = A1 due to

(2.6). For Ap we obtain

AP(y) {X E T I 3q E R3 A(X,q,v,y) = 0)

= A2 U A3 (y)

where A3 (0) = A1 and

A(X,q,v,y) X - jqj 2 _ (v + y2 )jq 2X + vjql4

The characteristic polynomial of A0, the Fourier transform of A0, reads

0 = A +(A2  2 q2"(A0qjy). (2.8)

It is interesting to give the analogous polynomials for the corresponding
2 1problems in R and R . They read

2 1q2  iP 2 (2)
0 = A0.(A 0 q .A(A0,q,v,y)in R (2.9)

0 = A(A0,q,vy) in R1 . (2.10)

Thus in R we neither get a null space nor a vibrating component.

Figure 2 shows some A3 (v) for v = I in the upper half-plane. The curves

are symmetric with. respect to Y;e x-axis. For more details compare Leis

(1980, 1981, 1986, p. 231f). .also remark that Racke (1986) introduced

generalized eigenfunctions and that he gave an eigenfunction expansion.

Knowing the spectrum of A0 we can also calculate the asymptotic behaviour

of the solutions of Vt + A0V = 0. Let

V0 =V Os + V0 P + V
00
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according to (2.5). Then

V(t) = H(t)V
Os + H(t)V

Op + VO0

where

(i) V = H(t)VO0 is stationary;

(ii) H(t)V Os is an undamped vibration of Maxwell type - the asymptotic

behaviour is similar to that given in section 1;

(iii) let y = 0 - then the first two components of H(t)V Op are undamped

vibrations also and the third component is a solution of the heat

equation and thus vanishes as t - -;

(iv) let y # 0 - then lim IIH(t)V0 PI = 0.
t- o

The asymptotic behaviour of the solutions of only a few boundary value

problems has been given so far. Assuming an isotropic medium these are

boundary conditions which are compatible with the decomposition into
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solenoidal and potential fields. In that case we obtain results similar to

those we got for the free-space problem. Such boundary conditions are

(n x U)Ia- = 0 A (div U)l 0 A = U

or

(n.U)I, = 0 A (n x rot u)ja3 ,=O A aO/3nI3Q = 0,

where U is the elastic displacement vector again.

3. SOME NONLINEAR PROBLEMS

In this last section I want to indicate some results on the existence of

solutions of nonlinear problems global in t for sufficiently small and smooth

data. Let us start with the free-space problem of elasticity (homogeneous

isotropic medium in R3), and write the linear system as a first-order system,

cf. (1.9); symbolically

Vt + AV = 0 with "(0) = V0. (3.1)

Let the nonlinear problem be given by

Vt + AV = F(V,VV) with V(O) = V
0, (3.2)

0
and let P be the projector on N(A). Then naturally we assume PV = 0 and

PF(V,VV) = 0 for all V, VV.

lie consider (3.2) to be a perturbation of (3.1) and assume

IF(V,VV)I c()VJ + IVVI) 3  (3.3)

for IVI + IVVI small. Then Klainerman (1982) and Klainerman and Ponce (1983)

proved that for sufficiently small and smooth V0 a solution of (3.2) global

in t exists, and that asymptotically it behaves like a solution of the linear

system (3.1). In this case, therefore, wave operators can be introduced

again (cf. (3.14)).

The idea of the proof is to combine the usual local existence theorem with
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an a priori estimate of the solution. One starts by deriving sharp L
P -

q

estimates concerning the asymptotic behaviour of solutions of the linear

equation (3.1). Let

V(t) := e-At V
0

be the solution of (3.1). Then

II V(t)11L2 = 1v I 2

imediately follows. From explicit knowledge of the fundamental solution of

(3.1) one also obtains

11VM1 cW(I + 0) - 1 I1V°0 11 (3.4)
llV~ lllL,3

(derivatives up to the third order have to be taken on the right-hand side).

The general LP -
q estimate then is a consequence of the usual interpolation

inequalities between these extreme cases. It reads

IIV(t)ILq cq (1 + t)- 1+2/ q II VI LPN (3.5)

-2 q

where q 2, 1/p + 1/q = 1 and 3(2-p)/p ! Np 3.

Next a local existence theorem is used to ubtain a solution V E C([O,T],H )

n CI([O,T],Hs _ ) of the nonlinear equation (3.2) in an interval [O,T], T > 1.

Then

Vt E [O,T] JIV(t)i[ L + IvV(t)II < 1

follows, and llV°I 1s is assumed to be small (11-11s denotes the L2-norm of all

derivatives up to the order s, s 3). To prove the local existence theorem

one first estimates the solutions of the linearized problem, and their

derivatives, and then applies the contraction principle. Details can be

found in Klainerman (1980, p. 94f).
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In the third step "high-energy estimates" are derived by elementary but

tricky partial integration and applying Gronwall's lemma. This means that

one can estimate high derivatives of the local solution (3 represents any

derivative, 3t,at,'2, or 33)

IV(t)ll s < c s V011 s exp(c s  [JIV(r) 2, + V(r)II 2 ]dr ). (3.6)
0 L L

The fourth step is essential. Defining with T := 7 + N6/ 5, p = T + N6/ 5,

and a := 2 + p

MT(T) sup (I + t)2/3 IjV(t)j 6

tE[0,T] L T

one shows that a constant M0, not depending on T, exists such that

M T(T) < H 0  (3.7)

0 2 6/holds for small V E Lto n L6 5 . To derive this estimate one starts fromS'

V(t) = e-AtVO + t e-A(t-r) F(V,VV)(r)dr. (3.8)
0

Using the calculus inequality (cf. Klainerman 1980, 1982)

IF(V,.VV)I[ 6/5 c~lVj 2 .1ViL 26 (3.9)
L L6T

' P ,,

and

11V11 + 113VIl c llV11 6 (3.10)

which follows from Sobolev's inequality and the differential equation, one

obtains from (3.8) and (3.5) with q = 6, p = 6/5, and (3.6)

x c(1 + x2e CX2) (3.11)

where x M H (T) and IV 0II 2 + 11V 0 16/5 <  is small. This yields (3.7).L,o , p
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Estimate (3.7) then leads to the a prior-i estimate for the local solution

V(t), we wanted to prove, namely

3 K. independent of T Vt E [O,T] iIV(t)ll 0 - KoIllV 0 , (3.12)

assuming 1V0112  + V110 11L6/5  to be sufficiently small.

Thus we can reapply the local existence theorem to obtain the desired

global solution V E C([O,°),I(,) n C ([0, ),H,_ I ) for

I~Ol2 + IvOIH/ < S
l~v llL 2 "V l'L 61 5

sufficiently small. From (3.7) and (3.10)

V+ V(t)I + 3V(t)Ii - O(t- 2 / 3) (3.13)
L L L

as t follows. Defining

V+ (t) := V(t) + e-A(t-r)F(V,VV)(r)dr,

V+ is a solution of the linear equation Vt + AV 0, and the previous results

immediately lead to

lim iIV(t) - V+(t(0 = lim IV(t) - V+(t)l6 = 0. (3.14)
L t-KO LvT

It should be remarked that similar statements hold in pn, n => 2. When

n > 6 quadratic terms on the right-hand side of (3.3) are allowed. In the

case of the wave eauation n a 4 suffices to obtain that result. This has

been shown by Klainerman (1985) who improved the ebLiiatt k3.4)' U 'placing

the L-norm on the right-hand side by L -norms of FVO . F consists of

differential operators which leave solutions of the wave equation invariant

(cf. also Christodoulou 1986, John 1987). In R3, ana with quadratic behaviour

in (3.3), global smooth solutions of the wave equation may exist when a "null

condition" is fulfilled (Klainerman 1986); an example can be found in

Klainerman (1980, p. 45). John (1981) has shown, however, that generally
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they blow. Plane waves and radial solutions also blow. In R1 solutions

always blow (John 1974, 1976).

The next problem is to treat initial-boundary value problems. So far this

has only been done by Shibata and Tsutsumi (1986) for the wave equation with

constant coefficients and "nontrapping" domains with Dirichlet boundaty

condition. Here also the asymptotic behaviour of the solutions of tie

linear equation has to be given first, and therefnre the "nontrapping"

condition is used.

Let us now switch to thermoelasticity. We again write the underlying

equations (cf. (2.2)-(2.3)) in the form

Vt + AV = F(W) with V(O) = V. (3.15)

W is a vector composed of V and certain derivatives cr V; F := (O,f2 ,f3',

where f, = f2(BV1,VBV1,V3 'VV3 ) and f3 = f3 (BV1,VBV1,V2'V 3'VV3 'V
2V3 ). The

medium again is assumed to be homogeneous and isotropic, and

277 2B :SDL L , bounded

U - -.(SD) U.

Let us first deal with the corresponding problem in R . From (2.10) we

know that in the linear case we do not get vibrations. The coupling terr.n

appears isolated so that a study in R 1 should help to understand the general

situation in R3. Since there are no vibrations in R1 we expect that heat

dissipation is strong enough to prevent a solution from1 blowing up at least

for small and smooth data. This was proved by Zheng and Shen (1987). On

the other hand Dafermos and Hsiao (1986) gave an example with blow-up for

large and smooth data.

For bounded domains in RI Slemrod (1981) showed the existence of global

soluLiors for small and swooth 6dta and special boundary conditions, namely

UxIP = 0 and OI,, = 0 or UI,, = 0 and ox0 2 = 0 (here again U denotes the
elastic displacement vector). The Dirichlet initial-boundary value problem

was treated by Racke (1988a,b). He is able to show lccal existence for

bounded and exterior domains. High-energy estimates, however, are still

missing, and hence the question whether global solutions exist is still open.

An exterior initial-boundary value problem in RI , again UxLj2 = 0 and
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= , has been treated by Jiang (1988). He uses the Fourier sine and

cosine transform to obtain LP - L estimaces for the linear problem. He also

proves high-energy estimates, and he is able to show the existence of

solutions alobal in t for small and smooth data. Jiang is also capable of

treating the boundary condition U1 a = 0 and oxla2 = 0.

In R3 the situation is more difficult since we anticipate vibrations (cf.

(2.8)-(2.10)). On the other hand we already know that global solutions exist

for the hyperbolic part. So we again expect the existence of solutions

global in t. Local existence follows from a result of Kawashima (1983),

whereas Racke (1988c) showed the existence of global solutions for small and

smooth data essentially assuming

F(W) FI W) + F2 (BVI,V 3 )

where

EI(W) = O(iW 3 ) and F2 (BVI,V 3) = C( 1 3 , 131 2

for small W . The term F, only appears in the heat equation. To do so he

also derived LP - Lq estimates for the linear equation and gave high-energy

estimates. Initial-boundary value problems have not been dealt with as yet.

Let me end up by indicating some open problems. So far we have assumed a

homogeneous and isotropic medium. Little is known for inhomogeneous or

anisotropic media. In any case it would be most important to prove global

existence and possible uniqueness of weak solutions for large data.

In R , as we know, the parabolic component dominates. Systems of conver-

sation laws in R1 have been studied and solved using Glirim's difference

scheme (Glimm 1965; cf. Smoller 1983). It should be looked aL whether this

method works in thermoelasticity also.

In R3 , however, we meet with a parabolic and a hyperbolic component. The

existence of certain weak solutions for parabolic equations has been proved

(cf. von Wahl 1985). Solutions of hyperbolic equations with large data,

however, generally develop singularities at a time t = Tu, the life span,

which was proved by John (1981); cf. 11ajda (1984). To depends on the large-

ness of the initial data; T0 = - for small dnd srooth data and cubic non-

linearity, as we have seen before. Generally the existence of global weak

93



solutions has not yet been shown, and so far one does not have a clear idea

of what happens in nonlinear thermoelasticity.
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H.A. LEVINE

The long-time behaviour of solutions of
reaction-diffusion equations in unbounded
domains: a survey
1. INTRODUCTION

Let D - R be a domain with a piecewise smooth boundary, or else D = RN

There has been, it is fair to say, more than a passing interest in positive

solutions of the problem:

ut = Au + u
P  in D x (O,T), (p > 1)

(P) u(xt) = 0 (x,t) E aD x (0,T)

u(xO) = U0 (x) xE D.

It is known that when D is a bounded domain, not all solutions are global,

a result due to Kaplan [11] and, as a consequence of more general consider-

ations, to Levine [13], who showed that if

Eu) VU 2 dx - I J+ uo+dx < 0, (1.1)JD I JD u

then the solutions (P) cannot be global.t (D need not be bounded.) rore

recently several authors have examined the precise nature of how the solution

fails to be global. Beginning with Ball [2], several authors [4,5,8,19,20,

21], to cite just a few, have studied the pointwise blow-up of solutions of

(P) for large initial data.

In the study of pointwise blow-up, these authors restricted p to satisfy

* This research was supported by the Air Force Office of Scientific Research

under Grant No. AFOSR 88-0031. The United States Government is authorized

to reproduce and distribute reprints for governmental purposes not with-

standing any copyright notation therein.

t That is, the solution cannot remain in H1(D) n LP+I(D) for all time.

0
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(4+2)/(N-2) if N > 2

if N = 1,2,

whereas the (weaker) global nonexistence results of [13] do not require this

restriction. (In some cases p = (11 + 2)/(N - 2) is included in the study of

single point blow-up [8].)

On the other hand, for any p > 1, when D is bounded, (P) can have non-

trivial global solutions for any initial values u0 for which Au0 + U < O.

These global solutions will decay to zero if the set

S = {f E H1(D) I Af + fP = 0 in D, f = 0 on DD, f z 0)

is either (0} or if

u0 (x) infff(x) I f E S} x E D

with strict inequality on an open subset of D. If (1.2) holds, it can be

shown that S is not trivial. See [18J for example.

Fujita [6] was perhaps the first to examine (P) on all of RN. He proved

the following interesting result.

THEOREM 1 [6]: (a) If 1 < p < 1 + 2/N, then (P) does not possess nontrivial

global solutions. (b) If p > 1 + 2/N, then there are global positive

solutions of (P).

Case (a) is often called the blow-up case while (b) is called the global

existence case. (In [1,10,12] and later in [20], it was established that

p = 1 + 2/N belonged to the blow-up case.) Such a result may be called a

"Fujita-type" blow-up theorem. It is the purpose of this talk to discuss

other such Fujita-type results for parabolic equations.

It should perhaps be remarked that John, Glassey and others [26-34] have

obtained partial "Fujita-type" results for hyperbolic problems such as
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utt A tu + JuI p  (x,t) E RN x (O,T)

(H) u(xO) = uo(X) x C RN

ut(xO) = Vo(X) x E RN,

although the results are not as complete as they are for (P) (as is to be

expected). For example, in [31] it was shown that if 1 < p < po(N) where

P0(N) is the larger root of (N - 1)p2 _ (N + Op - 2 = 0 then (H) has no

nontrivial global solutions. On the other hand, Glassey [26,27] (when N = 2)

and John [28] (when N = 3) have shown that for p > po(N) small data, non-

trivial, global solutions exist. Schaeffer [30] showed that both po( 2 ) and

Po(3) belong to the blow-up case. More recently, in [32,33] it is shown

that if N = 2,3,4,...

p > p1 (N) := (N
2 + 3N - 2)/N(N - 1),

then small data, nontrivial global solutions of (H) do exist. Thus, to our

knowledge, there remains a gap for (H) when N > 3.

lie turn now to a discussion of (P) in other unbounded domains.

2. THE FIRST RESULTS OF HEIER

In [16], Meier considered (P) when, for fixed k E [1,N], k an integer,

Dk = {x IxI > 0 .... xk > 0).

The results of leier are somewhat more general than we present here in that

he considers the equation

ut = Au + tqu p in Dk x [0,-)

where q 0 0, p > 1. However, we shall state them here only in the case of

q = 0 for purposes of comparison with the results of Fujita et al. for (P).

Let p(k,N) = 1 + 2/(N + k).

THEOREM 2 [16]: (a) If I < p < p(k,N), (P) has no nontrivial global solutions

t I am told that Sideras has closed this gap but the work is unpublished.
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(b) If p > p(k,N) there are global, bounded solutions of (P) which decay

uniformly to zero on Dk as t + w.

It is not known whether or not p(k,N) falls into the blow-up case for

k > 0. ( 1 )

The Fujita-type results of Fujita, Neier, Weissler and others depend

heavily on specific properties of the Green's function for the heat equation

in R or Dk. For example, if H(x,t) denotes the Green's function, then

H(O,t) = (2Tt)-N/2  (D = N )

and

((.,t)1 LI (RN) = 1 (D = RN/,

properties which played an important role in the arguments of [16] and [20].

It is the second property, which fails if D = Dk, that prevented leier from

extending Weissler's argument to this case.(1)

Because, for most geometries, the Green's function is not readily found,

it is desirable to have alternate methods available for investigating

asymptotic properties of solutions. For example, the argument of Kaplan [11]

for proving blow-up (global nonexistence) depended on the positivity of the

first Dirichlet eigenfunction for A on bounded domains. Such an argument,

which works also for hyperbolic problems on bounded domains, fails on

unbounded domains.

Recently, however, Bandle and Levine [3] have modified Kaplan's argument

to obtain blow-up results of Fujita type for other unbounded domains. They

have also obtained Fujita-type global existence results for "large" p. More

recently Levine and i leier [14] have improved upon some of these large p

results. The arguments of [3, 14] for large p also avoid the use of the

Green's function for the heat equation. Wle recently learned of some related

results of Kavian and others which are obtained by different methods. Ile

turn next to a discussion of these results.

(1) But see Section 6 and the note added in pruof.
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3. THE RESULTS OF BANiDLE AiD LEVINE

We consider the case for which D is a cone in R N with vertex at the origin

(for convenience). That is, we write, for x E RN, x = (r,e) where r E (0,-)

and e E Q where Q c SN-I is a submanifold of the unit sphere with boundary,

32,smooth enough to permit integration by parts. Wie assurme also that ;Q has

positive (N - 2)-dimensional measure.

Let w, be the smallest Dirichlet eigenvalue for the Laplace-Beltrami

operator on P. Let y+ denote the positive and negative roots respectively of

y + y(N - 2) - w, 0.

Explicitly,

y, = (1/2) {2 - N + [(N - 2)2 + 4wi]I/2

The following result is given in [33 as Theorem 2.3 and Theorem 7.5.

THEOREM 3 [3]: (a) If

1 < p < I + 2/(2 - y_) = p (3.1)

then no nontrivial, nonnegative, almost regular solution of (P) can be global

in time. (b) Let

p min(1 + 2/N, 1 + 2/(-y)). (3.2)

If

P > P (3.3)

then (P) has nontrivial global, almost regular solutions.

REMARK: In [3], a generalization of (a) in which up is replaced by f(u) is

also given. See also [35].

A solution of (P) is almost regular on QT = D x [O,T) if
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(i) u E C2(QT) n c 0(QT - D x {T}),

(ii) for all k > 0 and t E [0,T), lim inf e-kr { (lul + Iurl)dS0 = 0,

(iii) there is a sequence {rn}n r - 0 such that
n=1n n

Lrn n N1lUrrn t) + rN2 lu(rn'e,t)l]dS6 "

Let us write out the conditions (3.1), (3.3). Ue see that we always have

p < I + 2/N unless w, = 0 in which case p = 1 + 2/N.
Moreover, p = 1 + 2/N if and only if w, a 2N, i.e. if and only if Q is

"small". Thus, for fixed p > 1, in accordance with what is known for bounded

domains, small cones are more stable than large ones. In the case N = 2 and

= (0,Yi) we have

p = 1 + 2Y/(I + 2y)

= riin(2,1 + 2y),

so that if y < 1/2, the statement (b) is an improvement in the range of p

for which we have global solutions over what we would obtain if we apply the

Fujita result.

The idea behind the proof of (a) is the following: Since we cannot apply

the argument of Kaplan directly, we let jp(e) be the first Dirichlet eigen-

function of the Laplace-Beltrami operator, A., with y > 0 on Q and

f p()dSe = 1.Q I.

lie then let, for m,k > 0,

O(r,e) = C-1 rme'kr( ),

where C - k (m+N)F(m + N) so that

I dx = 1.
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If

(k2 + X)[m 2 + (N - 2)m - wi] > [m + (1/2)(N - 1)]2k2  (3.4)

then it is easy to show that

A + X > 0

and that

F(t) =f uO dx

satisfies

F'(t) >-xF(t) + (F(t)) p  
(3.5)

in view of the almost regularity of u. Consequently u will not be global in

time it

F(O) > x1/ ( p- 1 )  
(3.6)

flow (3.4), (3.5) and (3.6) will simultaneously hold provided

M2 + (N - 2)m - wI > 0 (3.7)

-A m + !+ (I/4)(N - 1)2

2 W (3.8)k m + (N -2)m - w,

and

k-[2/(p-1)-(m+N)] rm+N-le-kr (f O(M)UO(re)dS,)dr > F(m+N)a1/(P-I)

(3.9)
Thus, if

2 -N - y = y+ < m < 2/(p - 1) - N
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and is fixed, we can choose k (and hence X) so small that (3.7), (3.8) and

(3.9) hold.

Concerning (b), if I = + 2/N, the result follows from the Fujita result

by comparison.

If 5 = 1 + 2/(-y_), the argument is more subtle and depends upon the

following sequence of lemmas. (If p > (N + 1)/(N - 3), the result again

follows from the Fujita result by comparison since I + 21N < (N + I)/(N - 3).)

Thus, it suffices to consider only the case I + 2/(-y_) < p < (N + 1)/(N1 - 3).

The lemmas are of interest in their own right. (They are Theorems 3.2, 7.4,

6.1, 4.6 of [32.)

THEOREM 4 [3]: If

r (N+1)/(N-3) N > 3

N = 2,3,

then there is a singular stationary solution of the form

us (r,e) = r-2/(p-1)c(e) (3.10)

where M(e) > 0 in P and solves

AX + \a + aP = 0 in P

a 0 on 32,

and v = 2/(p - l)[2/(p - 1) + 2 - N]. If 1 < p < p, there is no singular

solution of the form given in (3.10). When N = 2, there is at most one

solution of this form.

A regular stationary solution of (P) is a function w 0 0, w E C 2(D) n CO(0)

such that

Aw + WP : 0 in D

(s)
w =0 on 3D.
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REMARK: The only stationary solutions w(x) of (P) such that

x2/(p-1) w(xx) = w(x)

for all X > 0, are of the form (3.10).

Then, the remainder of (b) follows from

LEMMA 5 [3]: If p satisfies the conditions of Theorem 4 and if

0 u0  min{rE ,us} (3.11)

for some c > 0 and some solution us of the form, then the solution of (P) is

global in time.

If p is further restricted, more is true.

THEOREM 6 [3]: If

1 -(N+2)/(N-2) N> 2
_N = 2,

and if (3.11) holds, then not only is u global but also

lim u(x,t) = 0, x E D.
t-

To prove Lemma 5, one defines

u(ro) = inf{usO

where i : Arm() and m > 0 satisfies

m+ (N - 2)m - v < 0,

where v(> wl) is given in Theorem 4. The function 5 is a supersolution of

(S) in the weak sense. The result then follows by comparison principles.
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The proof of Theorem 6 is more difficult because it depends on the

following lewia:

LEMMA 7 [3]: Let p satisfy the hypothesis of Theorem 6. Then there are no

nonnegative solutions of (S), w(x), such that w s us in D.

The maiii idea of the proof of Lenia 7 is to consider the one-parameter

family

w(x;x) = x 2/(p-)w(xr,e).

One can show (but not easily) that if this family has an envelope on any

subcone, then w is singular at r = 0. If it fails to have an envelope on

any subcone it follows that

G(r,e) = wr + 2 w > 0
r p-I r

on the cone with strict inequality somewhere. If we then set

z(r,e) = r2/(p'1)w(re)

and

L(r) = { z(r'e)c(e)dS',

a calculation leads to

Lrr + (N - 1 - 2q)L r  0 (q 2/(p - 1)).

Whence, for r > ri, where Lr(r ) > 0

r 2q+-N p < (N+2)/(i-2)
L Z) L(r1) + const

In r p = (N+2)/(N-2),

where the constant is positive. From this, we see that L(r) is unbounded

on (r ,). On the other hand, since w < us%
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L(r) 2 J ( ()dSe

and obvious contradiction.

In [3], we also prove

THEOREM 8 [3]: If 1 < p < 1 - 2/y_ then there are no regular stationary
solutions of (S) except w 0 .

4. RELATED RESULTS

The technique of [3] can also be applied to study (P) in domains which are

exterior to a bounded region. Let Dc = R - D be a bounded region. Then in

[3] we prove the following. (Theorems 8.2, 8.3, of [3].)

THEOREM 9 [3]: (a) If 1 < p < 1 + 2/N, (P) has no nontrivial nonnegative

global solutions. b) If p > 1 + 2/N there are nontrivial bounded global

solutions. If N 3, p > I + 2/(N - 2), 0 E Dc and

u(x,O) u (x) Xjxj- 2/(p- 1)

where

X (N -2- 2 )]1/(P-1)
-p - 1 p - 1 !

then u is a global solution of (P). If N/(N-2) < p (N + 2)/(N - 2), u(x,t)

decays to zero pointwise at t - .

Extensions of this result to other problems (including those with convection-

like terms) are given in [36]. Theorem 9(a,b) settles an oldconjectureof Fujita.

The proof of the nonexistence result is similar to the proof of the result

when 0 is a cone. The first part of (b) follows from Fujita's result and

comparison. The second part of (b) follows by arguments similar to those

used to prove Theorem 4 and Lemma 5.

In [9], stationary solutions of the problem
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ut = Au + IxlC uP in D x [O,T)

(P0) U = 0 on DD x (O,T)

U(x,O) = UoX) on D

(where u0  0) were considered when D = RN. In [3], we established the

following when D is a cone and o > -2.

THEOREM 10 [3]: Let

p 1 + (2 + a)/(2 - _)

p 1 + (2 + u)/(-y_).

(a) If 1 < p < p, there are no nontrivial global regular solutions of (P),

(b) If

<p < (N+1)/(N-3) N 4

N = 2,3,

there are singular stationary solutions o' (P ) of the form

us =r- (2+(j)/(P-1) O.

If

N -3 N - 2

then regular solutions of (P ) with u(x,O) min(rc,u s ) for son > U are

global and decay to zero pointwise as t - c. If

N + 2 + 2 (N+1)/(N-3) N a 4
N - 2 < N 3

then regular solutions with u(x,O) min(r6,us) for some E > 0 are global.
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(c) If 1 < < p, (P) has no stationary solutions except u 0 and noa
singular solutions of the above form.

The proofs of the statements in Theorem 10 are very similar to the proofs

of the corresponding statements when o = 0 except in the case of the first

statement. In most of these arguments, the quantity 2/(p - 1) is replaced

by (2 + o)/(p - 1).

For the statement (a), we let

6 = a/(p - 1)

and put

u xj-6v.

Then the differential equation becomes

V = r- (N-26-1) 3 (r - 2 6 - 1 v )
(4.1)

+ r-2 [A v - 6(N - 2 - 6)v] +

If we set

F(t) = vr N - dS dr
0 Q

we find that (3.5) holds provided (3.4) holds with m replaced by n + 6. The

condition that both (3.5) and (3.6) hold for all x sufficiently small becomes

Y+ - 6 < n < 2/(p - 1) - N

and (a) follows.
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5. THE RESULTS OF LEVINE AND MEIER

Bandle and Levine [3) observed that when D D k ,

p = p(k,N),

so that, in view of fleier's early result [15], p is the cutoff between the

blow-up case and the global existence case. Meier then conjectured that

this was true for every cone, i.e. that p = p.

In [17] he showed that, when N = 2 and y = 1/n, n = 1,2,..., p is the

cutoff between (a) and (b). He also showed there that if N = 3 and

S = {(q,e) E S2 0 < c< w/n, 0 < e < 7}

or

= {( ,e) E S2 0 < < iT/n, 0 < 6 < iT/2},

there p is again the cutoff for (a), (b). The values of p for these cases

are given in Table 1.

Meier's original arguments were modified in [17] but they also utilized

the Green's function which can be constructed for such domains by the method

of images.

He also showed there that if D is any domain, there is a critical

exponent p*, p* 1, such that if p > p* there are always nontrivial global

solutions of (P) while if 1 < p < p* (when p* > 1) there are no nontrivial

global solutions. (When 0 is bounded, p* = 1.)

Careful inspection of rHeier's arguments led him and Levine to conclude

that it should be possible to prove that for cones, p* = p in all cases.

This they were able to do by showing that if v:= y+ + (N - 2) and to > 0

w(r,O,t) :=r -(N-2 )/2 F e' X(t+to)dJV (Yr r)JV (vr)dX (e) ,~  5

0
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then w is a positive solution of the heat equation vanishing on the boundary

of the cone. Then one can find a function $(t) defined on [0,o) such that

u(r,e,t) = a(t)w(r,e,t) (5.2)

is a global, positive, supersolution of (P). See [14] for details.

Meier has also conjectured that p belongs to the blow-up case but this

problem remains open l).(See section 6 below, however.)

The gap between p and p can be closed for (P ) as well, at least for a 2 0.

We have

THEOREM 11 [14]: Let p be as in Theorem 10 and a 0.

(a) If 1 < p < p, (P) has no nontrivial global solutions.

(b) If p > p, then (P ) has nontrivial global solutions.

The extra condition arises through the construction of a supersolution for

(P). One has to require that
(N+y+)

liri sup (t + to) (2c sup rawP-1(r,B,t) 1<00.
t + O,EM I

This leads to the condition that a 2 0.

tie obtain the following corollary (Corollaries 3.2, 3.4 of [14J.)

COROLLARY 12 [14]: If u solves (P ) where p > p(), a a 0 and if

u(r,e,t) (t)w(r,a,t) for some to, then for all r > 0,

lim sup t(N+y +)/(2+a) sup u(r,e,t) cr-0/ (p-1)

for some constant c depending only upon (O), t0 and geometry.

* The integral can be evaluated. It has the value

(t + to)'1exp[-(1+r 2)/4(t+t o)]I (r/2(t+t0 ))

where I is the modified Bessel function of order v. See Watson, A Treatise

on the Theory of Bessel Functions, Cambridge University Press (1922), p. 395.
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When a = 0, we may replace sup by supD. In particular, the Lw norm of

the solution decays faster than (t + t )-1/(P-1)E for some E > 0.

We remark finally that our existence and nonexistence results take place

in the space

{f If = 0 on aD, J e-klxl(If(x)I + IVf(x)I)dx < - for all k > 01.

This is a larger space than H1(D) as our singular solution, r-2/(p-1)(a),
01belongs to this space if p > 1 + 2/(N - 1) but not to H 0 D). (The inclusion

follows from Schwarz's inequality.)

6. THE RESULTS OF ESCOBEDO AHD KAVIAI

In [22,23,24], the authors examine (P) from the point of view of L2 theory.

They introduce the weighted Hilbert spaces

L2(D," = {f I J IfI2K(y)dy < -1,
H1(D,K) = {f I f, Vf E L 2(D,K), f = U on 3D},

where K(y) = exp(.Iyi2. On this space they consider the initial-boundary

value problem for

vs + Lv = IvIP-1 v + (p - 1)-1v

where

v(s,y) eS/(P-l)u(es - 1,es/ 2y), (6.1)

u solves (P) and where

Lf E -Af - 1 y.Vf = K 1 V.(KVf)

denotes the self-adjoint operator which results frohm the change of variables

(6.1). If X is the smallest eigenvalue of L on H1(DK), then [22]

I N/2 being the smallest eigenvalue of L on R
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They treat the problem from the point of view of potential well theory

[25]. lie quote their principal results for our cones below. (It is assumed

that u(.,t) E H I(D) unless otherwise specified.) The following result is
Theorem 4.5 of P22].

THEOREII 13 [22]: Let 1 < p < (N + 2)/(N - 2) and D be a convex cone.

(i) If p 1 + I/XI and u(.,O) 0, then u(.,t) blows up in finite time.

(ii) If p a I + 1/XI and u(O) E H (D,K)

E( ,K) 1 f Ivu(0)12K(y)dy - 1 I ju(O)jP+1 K(y)dy
*7 0(p + 1) JD

1 1 L u(U)I 2K(y)dy s 0, (6.2)

then u(t) blows up in finite time.
(iii) If p > I + 1/xI there exists u0  HI(D,K) uE 1 0, u0  0 0, such that

u(t) is global in time.

(iv) If p > 1 + I/A 1 and u(t) is a global solution, then

lim sup t /(p-  Iu(t)ll2 <

Je see from this that when our cones are convex we have the p belongs to

thK blow-up case!) (For all cones, one can show directly that X 1N+ y+).)

Also, as we see from Corollary 12, some solutions do decay more rapidly

than t-  . Are there any solutions for which

lim tl/(p-I) 11uMt)J
t-*w L

is a finite, nonzero number, i.e. solutions which decay exactly like

t-I/(p- 1) in L_?

We see also that the range of p is somewhat restricted here since

p < (N + 2)/(N - 2) and that the class of solutions fo;' which blow-up occurs

is smaller than that considered in [3].

The singular solutions we have constructed here do not belong to the

Hilbert space when D is a cone. Moreover, they exist over a range of p which
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neither includes nor is contained in (1, (N + 2)/(N - 2)) when N > 2. Thus

some additional structure is lost when the Hilbert space approach is taken.

The result (ii) holds for any p > 1 when (6.2) holds. This is a
consequence of [13] since f(v) = IvIP-1v + v(p - ) satisfies the structure

conditions of [13] and since L is positive definite on H1 (DK).0'
Finally, (iv) does not improve Theorem 6 because of the extra condition

that u(-) E H1(D,K).
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Added in Proof: After this paper had been written, eier and the author were

able to establish that for any cone, the number p given in Theorem 3 belongs

to the blow up case. The argument is a modification of that of Weissler [20].

By careful scrutiny of Weissler's arguments coupled with judicious use of

inequalities we were able to avoid the difficulties to which we alluded in

the discussion following Theorem 2. The result will appear in [37].
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J. MAWHIN

Bifurcation from infinity and nonlinear
boundary value problems

1. INTRODUCTION

Let 11 be a real Hilbert space and L : D(L) c H -)- H a linear self-adjoint

operator with compact resolvent. If o(L) denotes the spectrum of L (a pure

point spectrum {Ai}iE J with no finite accumulation point), the following

result concerning the solvability of the equation

Lu - Au = h (1)

for A C R and h C H is well-known:

(i) If A g a(L), problem (1) has a unique solution for each h E H.

(ii) If A = A. E G(L), problem (1) has a solution if and only if h C Ni,
11

where Ni = N(L - Ail).

Moreover, we can describe as follows the set of solutions (A,u) of (1) in

the neighbourhood of A. E G(L). As H = N. Ni, we can write each element1- - 1 . 1 ±
u of H in the form u = u + u, with u E Ni and u E Ni, and (1) is equivalent

to the system

(L - i)u - ( - Ai)u = h,

- (A - Ai)G : h.

Letting

Li (L - A.i)l DWL nl N- - N-
1 1D(L) nN-.

(a bijection), we can write, for 0 < J - Ail sufficiently small, the unique

solution u(A) of (1) in the form (with I. the identity on N4i)

u(M) = (Xi - X) -I  + (li - (A - i)Li1 - L h
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and the second term of the right-hand member has a limit when X x. There-

fore, if h # 0, i.e. if H f N,

Iu(x)II = {Ixi-x - 2  115h12 + 11i -(X-xi)L i] 1 L i 2} / 2  +

if x - x On the other hand, if h 0 0, i.e. if h E H4, then

1l 1u(X) - L_ 1B E NiL

if x xi, and the set of solutions of (1) for x = xi is given by Lh + N.

Thus, the bifurcation diagram (A, ))u)l) for the solutions of (1) has, for X

close to Xi, the shape indicated on figure 1.

It LkII 10

he N

-' i

Figure 1

It may be of interest to study cases where h is replaced by a nonlinear

operator N on H and the closest situation to the inhomogeneous problerm (1)

is that where N is continuous and bounded on H, i.e. JjNujj: C for all u E H

and some C > 0. The corresponding nonlinear equation
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Lu - Xu = Nu (2)

is equivalent, when x f a(L), to the fixed point problem

u = (L - Xl)- Nu,

whose right-hand member is a completely continuous operator on H with bounded

range. The Schauder fixed point theorem immediately implies the existence of

at least one solution. For the case where x = xi C a(L), i.e. for the

equation

Lu - Aiu = Nu, (3)

the existence question is more delicate (as for the linear case), but conditions

have been introduced in the late 1960s by Lazer and his coworkers [5,6,7]

which may be viewed as some type of nonlinear version of the condition h E UL

in the linear case. The reader may consult [2) or [8] for more recent

references to those conditions generally referred as Landesman-Lazer conditions.

Now, when A, has an odd multiplicity, a result of Krasnosel'skii [3,4],

subsequently refined and extended by Stuart [13], Toland [14], Rabinowitz [12]

and others, implies for equations (2) with the above assumptions the existence

of a continuous branch of solutions going off from (xi, ) in the sense that

for each F > 0, there is a ball B centred at zero in H such that, on the

boundary r of each bounded open neighbourhood of B, there is a solution (X,u)

of (2) with A E (Ai - c, Ai + ) and u E r. Applied to the linear problem (1),

such a result does not distinguish the situations where h E N' or h f N+. A
I I

striking difference between the two situations seems to be the existence,

when h E Ni, of an a priori bound independent of A for the solutions u of (1)

when X E [Ai - 6, Xi + 6]-,{Ni }, for some 6 > 0. Following the spirit of some

recent joint work with Schmitt [10,11], we shall describe in this paper the

use of bifurcation from infinity and of the existence of a priori estimates

near Ai for the solutions of (2) in the obtention of existence and multiplicity

results in the nonlinear case.

2. NONLINEAR EIGENVALUE PROBLEMS WITH SUBLINEAR NONLINEARITY

Let X be a real Banach space, L D(L) c: X- X a Fredholm linear operator with
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index zero, and N : X - X an L-completely continuous nonlinear operator [9]

such that

HINullu/ ll- 0 if IullI

We shall be interested in the structure of the set (X,u) E R x X of the

solutions of the nonlinear equation

Lu - Au = Nu (4)

near X = 0. Other situations can be reduced to this one by translation of A.

THEOREM 1: Assume that 0 is an isolated eigenvalue of L with odd multiplicity

and that there exists 6 > 0 and R > 0 such that each possible solution (A,u)

of (4) with -6 a X a 0 (resp. 0 < X i 6) is such that lull < R.

Then there exists n > 0 such that the following holds:

(a) equation (4) has at least one solution for -6 < A - 0 (resp. 0 a X a 6);

(b) equation (4) has at least two solutions for 0 < X - q (resp. -n ; X < 0).

PROOF: Dealing, say, with the first case, it is easy to show that the degree

(see e.g. [9]) DL(L - QI - N, B(R)) of L - XI - N on the open ball B(R) of

centre zero and radius R in X is well-defined and equal to one in absolute

value of all -6 ; X a 0, and hence there exists Y > 0 such that the sarme is

true for -6 L A i y. Consequently, there exists a continuum CR of solutions

(X,u) of (4) in [-5,y] x B(R) whose projection on R is [-&,y]. On the other

hand, the results of bifurcation from infinity imply the existence of a

continuum C. of solutions (,u) of (4) bifurcating from infinity at X = 0.

More explicitly, there exists a > 0 such that for each 0 < c < a there is a

subcontinuum C E 
- C. contained in U,(O,o) = {(A,u) E C. : IX < c, [lull>/c),

and connecting (0,-) to aU S(O,). Necessarily, for c = min(I/R,y,a), we

have C. c {(A,u) E CQ : 0 < X < e}, and hence we obtain a second solution

with lull > R for 0 < X I q = min(c,), with 0 = sup {A:(A,u) E Cc}. a

The bifurcation diagrams are sketched on figure 2.
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o 0 ,

Figure 2

COROLLARY I: Assume that the assumptions of Theorem 1 hold, except that the

inequality sign at zero is strict. Then the conclusion (a) of Theorem I still

holds and either (b) holds or (4) has an unbounded set of solutions for

X = 0.

REIARK 1: When x = 0 is a simple eigenvalue, the results on bifurcation from

infinity imply the existence of two different kinds of solutions of large

norm, a positive one and a negative one (the sign being that of the projection

of the solution on the normalized eigenfunction associated with the zero

eigenvalue). The conclusion (b) of Theorem 1 can then be improved to the

existence of at least three solutions.

Applications of those results to periodic and Dirichlet boundary value

problems can be found in [10] and [11]. For example, in the case of the two-

points boundary value problem
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-u" - n 2u - Xu = 9(u) -h(x),

u(O) = u(T) = 0

with g R - R continuous and bounded, n E N*, h E L2 (0,), so that we can

take X = 2(0,7), D(L) = H.2(0,7), Lu = -u" - n 2u, !u = g(u(.)),

shown in [10] and [11] that the assumptions of Theorem 1 hold in the following

situations, where

9+ = lim inf g(t), G+ lim sup g(t),

(i) n 1 1, G_ (sin nx)+dx - g. f (sin nx)-dx < J h(x)sin nx dx
00 0

< g+ f (sin nx)+dx - G_ (sin nx)-dx,
0 0

(ii) n a 1, G, f (sin nx) dx - g J (sin nx)-dx < f h(x)sin nx dx
< g- (sin nx)+dx - G+ f (sin nx)-dx,

1 0
(iii)n = 1, J h(x) sin nx dx = 0 and g(u)u > 0 for u / 0.

2.

As each eigenvalue n is simple, the conclusion of Remark 1 holds and if

nonstrict inequalities hold in condition (iii) or (iv), Corollary I is

applicable. In the next section, we shall apply Theorem 1 to another example.

3. A GENERALIZED STEKLOV PROBLEM

If D = {z E f Izi < 1} and F = 3D = {z E C z = e is, s E [0,2 1]}, and if

g : R - R continuous and bounded, h E L2(0,2i) and a E R are given, the

generalized Steklov problem [1,15] consists of finding a complex function
w = u + iv which is holomorphic in D, continuous on 0 and satisfying the

conditions
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v(O) = 0 (5)

3(s) + av(s) = g(u(s)) - h(s), s E [0,27r], (6)

where, in the second equation, we write u(s) and v(s) for u(e 
is) and v(eis

respectively. If w is holomorphic on D, continuous on 5 and has real value

u on r, then its imaginary part v on I is given by

v(s) = -Hu(s) + v(O)

where H is the Hilbert transform defined by

Hu(s) = (1/2TOr) u(eit)cot t-s dt.
0 2

Thus, in (6), because of (5), we can replace v(s) by -Hu(s). In terms of

Fourier series, if

u(s) - a0 + X (ak cos ks + bk sin ks),
k=1

then v is given by the conjugate series

v(s) - E (-bk cos ks + ak sin ks).
k=1

Therefore, if we define

D(L) = {u E L
2(F): u is absolutely continuous and-auE L 2)

L : D(L) - () , L2(r), u -u - aHu,

it is easy to show that L is a Fredholm linear operator of index zero with

(i) N(L) = span(1) if a is not a positive integer;

(ii) N(L) = span(l, cos ns, sin ns) if a = n, a positive integer;

(iii)R(L) = {h E L2(r) : h(s)y(s) = 0 for each y E N(L)}.

125



Moreover, L has a compact resolvent and its only real eigenvalue is zero,

which is simple if a is not a positive integer and has multiplicity three in

the other case. Again, we set

9+ = lim inf g(t), G± = lim sup = lim sup g(t).
t ± t+± W t ±

THEOREM 2: Assume that one of the following conditions hold:

(i) a V I* and 2TrG < j h(s)ds < 2g+;

(ii) a 9 I* and 27TG+ < 2 h(s)ds < 2Tg_;

(iii) a = n E N* and

h(s)y(s)ds < f g+y (s) - G_y-(s)]ds for all y E N(L)-{O};
0 0

(iv) a = n E 1* and

h(s)y(s)ds > EGy+(s) - gy-(s)]ds for all y C N(L) -{O}.

Then there exist 6 > 0 and R > 0 such that each possible solution of

Lu - Xu = g(u) - h (7)

satisfies lull 2 < R when -6 A 0 if (ii) or (iv) holds and when 0 A X 6

when (i) or (iii) holds.

PROOF: Let us consider, say, the case of condition (iii), the other ones

being similar or simpler. Let u be a possible solution of (7) and let us

write it u = u + u, with U E N(L) and u E N(L) .  If P is the orthogonal

projector in L2(I) onto N(L), we deduce from (7) that

Lu - A = (I-P)[g(u) - h],
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and hence the boundedness of g and the compact injection of H (1) into C(r)

implies the existence of Z > 0 and K > 0 such that

Il C(r) < (8)

for each possible solution u of (7) with IXj < S. On the other hand, we

have, for each y E N(L),
2T, 2Tr

0 h(s)y(s)ds = | [g(u(s) + U(s)) + xu(s)]y(s)ds. (9)

Therefore, if the conclusion of Theorem 2 does not hold, there must exist a

sequence (Xk,uk) in [0,] x L 2(r), satisfying (7), (8), (9) and such that

IfGklIH w if k w o. Without loss of generality, we can also assume that

Yk Uk/ lukl - yo E N(L) n aB(1)

uniformly on [0,2,]. Let E+ = {s E [0,2Tr] : yo(s) .> 0}; clearly,

IIUkfl Yk(S) - + for k -) if s E E, and (0,2n)--(E+ U E) has measure zero;

finally,

f Yk (s)yo(s)ds > 0

for k sufficiently large. Therefore, one can deduce from (9), the above

remarks and Fatou's lemma that

2i h(s)yo(s) + f lim sup g( l k0lYk(s) + Uk(S))(-Yo(S))ds

0 E k-*c

+ lim inf g( 1I5kilyk(s) + Uk(s))yo(s)ds,
E+ k--o

and hence

f h(s)yo(s)ds > (gyo(s) - G yo(s))ds,

a contradiction with assumption (iii). a

127



By combining Theorem 2 with Theorem 1 and Remark 1 (in the case where

a f N*), and with Theorem 1 (when a E N*), one can obtain existence and

multiplicity results for (5)-(6) in the neighbourhood of A = 0.
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E. MEISTER AND F.-O. SPECK

Modern Wiener-Hopf methods in
diffraction theory

This survey paper is an introduction to the operator theoretical approach to

classes of diffraction problems for the Helmholtz equation and a half-plane

screen. In contrast to the classical pioneering work of Jones, Noble,

Weinstein [24,53,70] and others, problems are now studied in a well-posed

Sobolev space setting. For a number of typical reference problems one-to-

one correspondence to solutions of Wiener-Hopf systems is proved rigorously

and leads to factorization problems for certain nonrational matrix functions.

Algorithms for canonical or generalized Wiener-Hopi, factorization are

developed by combination of algebraic, operator and function theoretic ideas.

The explicit representation of the diffracted fields can therefore be

analyzed in detail, e.g. by singular expansions near the edge, which are

known to be important for numerical treatment.

1. INTRODUCTION

In a famous paper [61] Sommerfeld studied in 1896 an optical diffraction

problem with a semi-infinite screen, the so-called "Sommerfeld half-plane

problem", which also has interpretations in acoustics and in electromagnetic

theory [53]. He considered a nontransparent screen Z = [(x,y,z) E 3 : x > 0,

y= 0} and a time-harmonic incoming plane wave Re(e 2 i t/t Uin c (x ,y ,z)) with

complex amplitude

uinc (x,y) = eik(x cos 0+ y sin e) (1.1)

not depending upon z, i.e. the wave propagates perpendicular to the edge

x = y = 0, z E R so that we face a two-dimensional proble1 forgetting about z.

The wave number k is assumed to fulfil Re k > 0 and Im k > 0 due to a lossy

medium.

The diffracted or scattered field Uinc as well as the total field

Uto t = Uinc + usc then satisfy the Helmholtz equation. Further the argument

* Sponsored by the Deutsche Forschungsgemeinschaft under Grant Number KO 634/32-1.

130



of vanishing electrical components on the banks E of E yields that the

limits of usc are given by the values g(x) of -Uinc (x,y) on E energy

considerations lead to the well-known edge and radiation conditions [6,38,39].

Altogether we have for u Usc

(6 + k2 )u= 0 inQ=lR2

+ +

u0 = Uly:+o g on Z

(1.2)

vu(x,y) 0 O(r'1 /2), r = v(x2 + y2) 0

[(x,y).v - ikrlu(x,y) : or12 ), r - .

This problem can be seen as a special case from the following class of mixed

boundary-transmission problems shown in figure 1. Those are worth studying

in order to illuminate the nature of diffracted wave fields as a function of

media and screen properties.

L+u = 0 y radiation
condition

edge-cond.

complementary screen

- E - - tV
interface [uO VX g±

[ ]o = 0

L-u 0

Figure 1

The Helmholtz equation is here replaced by two proper elliptic partial

differential equations L±u = 0 of second order with constant coefficients

holding in the open half-planes P, : y > 0. The Dirichlet data given before
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on z are considered as particular linear combinations V u of the Cauchy

data u+ = UIy=±0 and u ± = (au/Dy)ly± 0 with constant complex coefficients,

which setting includes many physically relevant situations [64,65]. Since

the PDE is no more assumed to hold across the "complementary screen"

E' : x < 0, y - 0 we add other suitable conditions, e.g. vanishing jumps

of the Cauchy data. It should be remarked that, for different media in -,

the jump conditions Eu] 0 = 0, [p 3u/ay]0 = 0 with piecewise constant
4 +

p(x,y) = p in ± make more sense ("refaction law" [41]). But then the

analysis is not more complicated, if we even admit arbitrary boundary

conditions on Z' (from the same class as on Z provided they are reasonable,

i.e. of "normal type" [45,63]).

The desire of a well-posed setting and a general formulation of the edge

and the radiation condition (which gave rise to discussions in the past [12,

20]) lead us to investigate the following principal questions.

1. The choice of appropriate function spaces (which are not proposed by

nature) is influenced by: (i) the physical argument to have local finite

scattering energy (edge condition) and outgoing scattered waves (radiation

condition); (ii) the mathematical desire to obtain (as easy as possible) well-

posed problems, i.e. existence and uniqueness of a solution and continuous

dependence on the known data. This leads to Sobolev spaces, u E Hl(Q +) x

H I(-), so that Vu C L2 holds (due to finite energy of the scattered field)

and consequently to the trace spaces 1± 1I/2 = H±1/2(R) for the Cauchy data

u , uT, to H-1/2(R ) for their restrictions to Z, and to the closed subspaces
of H± I12 functionals supported on R+ for the jumps [u] 0 = u0 -U0,

[aulay]0 = uI - u (or, more generally, for those data which are assumed to

vanish on V).

2. The functional analytic framework is naturally determined by the type of

boundary integral equations on E± [45]. Systems of convolution type operators

on R+, so-called Wiener-Hopf (WH) operators [73]

n ~r. n s.
W : x H (R) - x H 3 (R+), (1.3)

j=1 j=1

appear in the centre of the studies (IrjI = Isjl = _ ). Their operator theory
.pp7

is best understood in the sense of pseudodifferential operators (or order

rj - sj) [14,68] and general Wiener-Hopf opeators [10,62].
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3. The representation of the solution in the numerical sense has been

frequently discussed [6,67,71] - mostly for modified geometrical situations

like bounded smooth or piecewise smooth screens as obstacles. A question

for effective computing (multigrid methods, mesh refinement, s - p or mixed

BEII-FEis [3]) consists of the (additive) splitting of singular terms. Local

theory [14,16] tells us roughly speaking that the first term behaviour of the

solution near critical points coincides with the analogue of the corresponding

canonical problem (with curvilinear geometry). This rmotivates the investi-

gation of half-plane problems first of all, since explicit analytical solution

by means of the Fourier transformation and factorization of the symbol matrix

function known from the Iliener-Hopf technique [53] yield a singular expansion

of the field [14].

4. Qualitative results are supplemented by the study of the regularity of

the solution in the language of Hs spaces [60] and of the far-field behaviour

(radiation pattern) [25], which is also based on the explicit solution by

Iliener-Hopf factorization. Since factorization methods are known in the

scalar case for several classes of decomposing algebras [52] and, in the

systems case for rational ratrix functions [1,5], much progress has been

achieved in recenL years for classes of nonrational 2 x 2 matrix functions,

which typically appear in mathematical physics and have the form

G = c1Q1 + c2Q2, (1.4)

with scalar functions c. in the Wiener algebra and rational matrix functions

Qj [22,50].

Ile close this section with an overview in table 1 concerning the principal

methods and key classification words in our philosophy for treating a

reference problem P.
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Table I

Topic Problem Main features

Boundary value/trans- Closed-form solution Weak formulation

mission problem in a well-posed setting Normal-type boundary operator

Compatibility conditions

Equivalence Representation formulae

iSystems of WH Explicit representation Lifting of L2 by Bessel

equations of bounded inverse potential operators

operators Fredholm criterion

Modified space setting

Equivalence W WH operator theory

Fourier symbol Canonical or generalized Decomposing algebras

matrix function (ready) factorization Piecewise continuous matrices

p - p regularity

Partial indices

Construction f Separation of function theoretic

and algebraic aspects

Classes of non- Factorization procedure Rational matrix functions

rational matrix Commutative algebras

functions Khrapkov and paired form

matrices

Rational transformation

Exponential increase

Pole cancellation

Further conclusions Fourier integrals

,ualitative Computation of Abel-type theorems

)ehaviour singularities and far- Series expansion

field pattern
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2. THE DIRICHLET PROBLEM

Considering the first reference problem P D9 we look for a function u E H1I(.Q+)x

Hl-) i.e. u E L 2(R 2 ) withul,± E H 1(2 suhta

2,1

(A + k2)u :0 in +  (2.1)

u =u(.,y)ly=+0  g on E (2.2)

fo0 u -u 0 0 on Z' (2.3)

fl u I  uI = 0

hold where 0+ = (x,y) E IR2 :y > 0} and E, E',, k are defined as before,

u I = 3u3~=Odenotes the unknown Neumann data (in the sense of distri-
butions on the full line), and g + = g - E HI/2(E) is given (we identify Z

with IR = (0 PB)).

We outline now the steps of the (general) solution procedure mentioned in

section I referring to 63 for the proofs, although, in this simplest case,

we will find only one scalar WH equation.

THEOREM 2.1: A function u E H I( )  H HI(Q-) satisfies the Helmholtz equation

(2.1), iff it is represented by

u(x,y) = Fg e Uo()1+(y) + e)1_(y)} (2.4)

0- 0=

for (x,y) E R2 with

+ I ix&hold ) w FX C  0 W e uo0 (x)dx (2.5)

t(k ( 2 ) k2)/2, C E R.

Fu / are the Fourier transforms of the data u E HI12(R) (in the sense of t

y=+0
with~~o the 0,)

trace theorem [34]) and t denotes the ral) oltio square root that tends

to + Aas fu with branch cuts along k siw, 2 H e.
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For convenience we introduce the column vectors of data of a solution u

of (2.1) on the line y 0

uo- uo , u,: )
(2.6)

S+-

A simple but important observation follows from the representation theorem,

Theorem 2.1.

COROLLARY 2.2: C The data in (2.6) satisfy

u0 E H
I/2  H H1/2 ,  u 1 H-1/2 H-1/2 ,

(2.7)

f E HI/2 x H-I 2  g£H I / 2 H /2

(2) They are in one-to-one correspondence by translation-invariant (convol-

ution or pseudodifferential) operators on the line, in particular there holds

f = B-u = FI( 1 -1 . Fu
-t -t 0

(2.8)

g = B+u = F- Fu

(with continuous "boundary operators" B+ due to E = + and E' = R_).

(3) The trace operator T0 : u +u 0 on the space

U = {u E H1(s + ) x H (Q-) (6 + k 2)u = 0 in -}

is continuously invertible by the potential operator G: u0 . u given by the

formula (2.4).
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(4) For a solution of the Dirichlet problem P0 there hold

f E I/2(E) x H-1/ 2 (Z), g E I/2 (E) x H1/2(R) (2.9)

i.e. 1+f = f and 1+g E 1 2() x I ( ) with 1+(x) = 1 for x > 0 and
1+(x) = 0 for x 0.

The study of the dependence u - u0 * f g leads to the following

equivalence theorem where we can change over to a scalar notation, since one

of the (jump) data in which we represent the solution is known throughout

E U Z' according to

g = B+B-1f = F-1 (1 0 Ff . (2.10)+ 0 - - t "

THEOREM 2.3: The Dirichlet problem PD, see (2.1)-(2.3), is equivalent to

the single 14H equation

Jf1 = 1+ • Af1 = -(g+ + g-) (2.11)

with linear bounded operators

11 5-1/ 2() H/2(W

(2.12)

A = F-t -  F :H - 2  H 2

A solution f of (2.11) yields a solution u of (2.1)-(2.3) in the form

u =Gu0 = GB- 1 1 (2.13)
- (-+g - Y

Thus the correctness of PD is equivalent to the bounded invertibility of

U1, which is known to be equivalent to a certain factorization of the Fourier

symbol function t"1 of A [14,63,68].

THEOREM 2.4: The WH operator tU in (2.1)-(2.12) is invertible by
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I : A- 11+ A-I1£ (2.14)
4++-

where k:H 1/2 (E) -H1/2 (R) is any extension (e.g. even extension by reflection

[46]) and A+ are defined by

A+ : F- t-1/2.F , t±( ) = ( k), E R

(2.15)
A+ H - /2  L L2 , A- : LH2 1/2

+

(so that t = t t+, A = AA+ hold).

In the physically most important case where the Dirichlet data coincide on

the banks of the screen (g+ = g-) and, as a consequence of (2.3), coincide

also on the line (u+ = uo), the result can be written in a simpler form as

follows.

COROLLARY 2.5: The Dirichlet problem PD is well-posed for any g = g-EH1().
The solution is given by (2.13) u = GuO, u0 = (u ,Uo)

T, and

u = fg+ = A_ -1 Zg+ E H (2.16)

The dependence g - u0+ u, H1 ) H 1/2)(R) - H (R ) is continuous.

COROLLARY 2.6: If g± E H112 (E) differ, the Dirichlet problem is solvable

iff the compatibility condition

g - g- E I/2(E) (2.17)

is satisfied. Then u Gu0 is given by (2.4) and

u= ± 0(g
+ 

- g) + lte(g + + g), (2.18)

where Z and Z. denote zero and even extension, respectively, and fl =A + 1

a projector in H1/2 again. The dependence
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0g+ (Uo u (2.19)

g +9 U0

1/2(W x H1/2(Z) H 1/2 (R)2 1 n (Q+ )  Hl(Q - )

is continuous.

This result follows from (2.13) after replacing the zero jump by

oW - g-).

A direct consequence of the solution formula is the singular behaviour

near the "edge" x = y = 0. For simplicity consider the Neumann data jump

given by

f = -- 1 (g+ + g) = -A-1 +1 A 1 k(g+ + g) (2.20)

in the case of smooth and rapidly decreasing (physically relevant) data
+ = g E S(Z) c H 2W. Since f does not depend on the choice of
+1

Z(g+ + g-) (see [14] Lemma 4.6), one can take a continuation in S(R), which
yils0= A-1 +2yields p A A£1_g+ + g) E C (R) n L (R) according to the translation

invariance of A-1 and order A-I = 1/2. So the singular behaviour of f near

the origin (as a kind of nonsmoothness) is directly connected to the action
of the translation-invariant operator A- 1 on functions 1+ for 0 ES

according to Abelian theorems for the Fourier transformation, i.e. it depends

directly on the increase of the Fourier symbol t+( ) = + k)I/2 of A-1 at
+

infinity [63,64]. The representation formula (4) then yields a corresponding

behaviour for Vu (whilst u is bounded).

COROLLARY 2.7: The solution of the Dirichlet problem for g- E S(Z), g+(+0) =
g-(+O), satisfies

Vu const-r "1 /2, r =(x2 + y2)1/2 + 0 in R2 - (2.21)
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3. THE D/N SOIIiERFELD PROBLEM

Since about 1975 several authors [19,40,56,57,63,64] investigated the problem

PD/N given by (2.1)-(2.3) where (2.2) is replaced by

+ +

: u(.,Y)ly:+0 = g

on (3.1)
u= u/3y(.,y)jy_ 0 =g

which are physically motivated by soft/hard-covered or perfectly conducting/

nonconducting surfaces.

In our setting it is reasonable to assume g+ E H1/2 (E), g E H-1 /2 (Z) as a

consequence of Theorem 2.1. The above-mentioned procedure (as well as the

classical approach) leads to a "simultaneous system" of WH equations and to

the question of factoring a special matrix, which was solved by Rawlins,

Heins and Meister [19,40,56,57]. But first we outline results, which are

analogous to those about PD before. The letters W, A, B+ are used for the

corresponding operators and g for data given on Z.

THEOREM 3.1: A function u C H 12 + ) x HI1(Q) is a solution of problem PP/D

iff it is represented by formulae (2.4) and (2.6a) where f = (fof 1)T C
WI/2(Z) x -1/2(E) is a solution of

Uf = 1+Af = g (3.2)

with (B+ is replaced due to the boundary conditions (3.1))

A - B B 1
- F 1 F:H 112  x H

1 /2  X /2 1 2

(0 t t -t 7 t 1

g = (g+,g-)T E H112 (E) X H-12(z),

The problem PU/N is well-posed (for all data G and with respect to this

topology) iff W is (bounded) invertible.
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PROPOSITION 3.2: A (function theoretic) factorization of 0 = _ into

factors, which are continuous on R, holomorphic in C = { E C : m U},

invertible in L±, and have algebraic growth at infinity, is given by

-I t1t -- ( ++)U{WT t + t.. t,/t (3.4)
t T \ tt __ t +_ j tt_ + t ++ /

with t±±( ) = [1(2k) ±V(k ± E)]I/2 where the first/second index corresponds

to the first/second sign, respectively (the factors -1/2 from (3.3) and

1//(4k) can be put somewhere).

REMARK 3.3: If the order of a translation-invariant operator T is denoted

by s = ord T provided T : Hr , Hr-s is continuous for r E R and s is minimal,

we observe (in suggestive notation for the systems case)

ord A = (  - (3.5)

~±I = 1/4 -3/4

r A 5/4 1/4

forA = F-I.F. The last assertion implies only

A 1 : H1/ 2  11 H I 2 - 1/4 x H3/ 4  - -1 (3.6)
- + >- Hi H H36A A

+

in contrast 7n A : H /2 x H-1 /2 _ H1/2 x H-1 /2 . Roughly speaking, all orders

of the factor elements are too high by 1/4.

This phenomenon is possible, because terms of highest increase in (3.4)

cancel out [19], e.g.

t+_()t++() + t.(Q)t_+() = 1(4k), E R (3.7)

instead of 0(II 1/2 as -1 -. As a functional analytic interpretation, a

bounded operator A : X - X = H11/2 x IF-112 is factored into unbounded (densely
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defined) operators A. : V(A±) X. This becomes clearer after lifting the

operator W on tie L 2(order-zero) level in order to use the theory of singular

integral operators of Cauchy type [52); see [45), Prop. 3.1, for details.

LEMA 3.4: The IIH operator W in (3.2) is equivalent to the (lifted) WH

operator

W0 = 1. A0 L2  E L(L2 () 2)  (3.8)

with

A0 = F-I10 .F =A-AA+ E L(L2 (R) 2 (3.9)

t 0 (t+ 0 1 1f-t-/t+ I
o \0 t-1 \ t + j  7 - \  t+/t- j

That is, W and U0o are connected by invertible factors:

W= TWT+

T+ =1 *+o:L2 E 2 H 1/2(E x H-1/2(E)+ 0+

T _ 1  = I= 1 Ae Z+ Z e

odd (3.10)

T = I+AZ:H
1/2(E) x H I/2(E) - L2 () 2

T I = 1+ A_0,

where ' Xe' todd denote extensions by zero, as an evan or odd functional,

respectively. (L is usually dropped due to the identification of L2 () and

1+L (R); furthermore 1+ can be dropped in T+ and the extensions in T_ can be

replaced by any others, which act into the corresponding space Hs(R).)

According to the holomorphy properties of t±, WH factorizations of D and

0 can be performed into each other. The existence of a standard [5,16] or
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(synonymously) a canonical [15,52] factorization of t0 (which involves a

bounded operator factorization of A0 and thus of A) is disproved [54] by the

fact that the symbol matrix function D0 has a discontinuity at - due to

t.(d)/t+() P ±1 as & - ±ow. On the other hand, the theory of singular
integral equations [52] ensures the existence of a generalized factorization

(due to an unbounded operator factorization of A0 )

(D = h-D@0+ (3.11)

with factors in weighted L spaces D± L2 (R,p)2 X2  P = (C2 + 1)- 1/2
holomorphic extensions 4±1 in C+ andO(± 1 in C, and a middle term

0+ + nC adamddetr

D(E) = diag 1,i (, 2 2).

This is a consequence of piecewise continuity of D0 (on R = R U {-I) and the

Fredholm criterion for W0:

det % () 0 0, C E R

(3.12)

det[II( 0 (- c) + (1 - 1)JD0(+ c)) $ U. u E [0,1).

A generalized factorization of (0 (with D = I) can now be obtained from

(3.4), (3.9) and an additional manipulation with rational matrix functions

in the middle by putting

0 0- "P¢0

(3.13)

=- t - 1 i 1 ( t

see [64], Theorem 4.4. For the corresponding operators A = F-1 Do±F one
observes the orders

(1/4 -1/4 ord A, (-1/4 -1/4) (3.14)

1/4 -1/4 0+ 1/4 1/4
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which add up to zero in the composition, i.e. A0 = A0 Ao+ represents an

unbounded operator factorization in the L2 sense but the setting

L 2 14 1/42 2
A0 Ao+ : L X L2 -> H 4 x HA 4  0> L x L (3.15)

allows an additional interpretation with bounded operators (in remarkable

contrast to (3.6)) with intermediate spaces Ii±1/4 where the projector on

H ±1/4() is also bounded; cf. [14]. We obtain the following results.

THEOREM 3.5: The WJH operator 110 in (3.8) is (bounded) invertible by

A 1 A1+ A !I 2 2 (3.16)
0 0 0-L Wx

where A-± = F- .F are either interpreted as unbounded L2 operators or

bijections in the setting (3.15).

COROLLARY 3.6: The inverse of W in (3.2) is given by

-IAA11+ I H 1/2(E) xH- 1/2() (3.17)

A+ F'± • F

1 0 + I( 0

1/4 1/

with bounded operators, if 1+ is considered to act on H/4 × H- 4 (and

z= diag(keZd ) for instance).

COROLLARY 3.7: The solution of PD/N for g E s()2 H12 (E) x H- /2(E)satisfies

Vu - const-r-3/4 , r = (x2 + y 2)I/2 0 in R- (3.18)
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4. PROBLEMS WITH GENERAL FIRST- AND SECOND-KIND TRANSMISSION CONDITIONS

In this chapter we would like to answer the question: "Is the non-square-

root singular (3.18) an ordinary or an exceptional phenomenon?" For this

purpose we consider a class of diffraction problems P for u E HI( + ) x HI( -)

of the form

(A + k 2)u= 0 in +

a +bu- ha~u0 + bu0 = h0

on z (4.2)+ ,

a u1 + bU - hJ

a~u0 + b6uu = h6

on Z' (4.3)

alu1 + bu 1 = h;

where a E..... I € are known constant coefficients and hn 0  HE/2(E),

>a , h E H 1/2 (), h' E H- 1/ 2 (') are assumed. There are several

physically relevant examples in this class of problems; see [64] where also

the case of different wave numbers in Q- is discussed.

For simplicity we avoid cases that lead to decomposing WH systems, see

[63], or matrix 11H operators with nonclosed ranges according to a minority

of less important (artificial) diffraction problems. P is said to be of

normal type [52], if the boundary operators

B+ : H112 (R)2 H11 2 (R) x H-11 2(R) (4.4)

B :F- ( aO  b 0  F F-1

+ -aIt b1t" F B F

: F_1  a b 0 F = F- I1 • F

k-aj-t blt~

have Fourier symbols aB which are reguZar on R and stabZe at [64J, i.e.
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det ( ) , E R
(4.5)

[det a ]± B = 0(W~±) W¢

hold. This obviously is equivalent to the fact that the data combinations

in (4.2)-(4.3) (considered as defined on the full line) are in one-to-one

correspondence with the Dirichlet data u0 in the sense of the space setting

(4.4); see Theorem 2.1 for this proof. By analogy with the previous

investigation we obtain the following results [643.

1+ 1-THEOREM 4.1: Let P be of normal type. A function u E H (Q+) x H W -)

represents a solution of problem P, iff (i) u is of the form (2.4) where u 0

are given by

{( o,+o I V+>+( eh (4.6)

u0  W+ k oddh 1

and (ii) (v+,w+)T is a solution of the WH system

(v V+ h o) z h
h ) = ( 1 B B- 1 e 0

+w h )  
-+ + 1h (4.7)

+ 1 1 oddi1

14 = 1+ F-1 • F : W1/2(E) . j-1/2(E) H1/12(E) ×H-'/2(E)

-1
P = aB yB

An elementary computation of the symbol yields

Saob + boa, (-aob6 + boao)t1

a ~b + b~a -alb; + b1a;)t alb6 + b1a6

see (3.3) for P = D/" In brief and after elementary transformation this

can be written as
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a bt "  ) I t - (

ct d X-1t 1

iff the system does not decompose. The corresponding reference problems P

obviously form equivalence classes with respect to their functional analytic

structure. The number

ad E T (4.10)

is called the characteristic parameter of P. le introduce the lifted

operators UO, A0 and D0 by analogy to Lemma 3.4 and conclude for a normal-

type problem:

PROPOSITION 4.2: W is a Fredholm operator, iff

ad =O, bc J 0 (4.11)

or

ad # u, X f [1,') (4.12)

holds (in the decomposing or nondecomposing case, respectively).

Thus we know about the existence of a generalized factorization (3.11) of
0V if (4.12) is satisfied, as we did in the case P /N that corresponds to

X = -1. But the explicit factorization forrulae become more complicated

now. They are obtained by the method of Khrapkov [29] and Daniele [8,9];

see [64] for details.

PROPOSITION 4.3: For A E T, 0 1 1, a function theoretic factorization

(in the sense of Proposition 3.2) is given by

1 t -1
S = t+(4.13)
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-1/4 1 0 0 1/21t "

= (1_ -I)I4 {cosh[C.Iog y_+ (0 1 )-sinh [ C 'Iog +]t / 0

with

C = i log (4.14)

y+() = (k-+ 1/2 + i(k 1 )1/2

(2k)I/Z

and arg X1/2 E [0,f), arg [(xI2 + I)/(X - 1)] E [-Tr,0], arg k1/2 = arg k.

It turns out that F'01. F suffers from a similar order deficiency as A

did in (3.5) and that this can be corrected by the same trick; see [64],

Chap. 4. We present the result for the reference problem P., since the

relation to P is obvious from (4.9).

PROPOSITION 4.4: For X f [1,o-) a generalized factorization (3.11) of the

lifted matrix is given by

GO = O-'*O+= ( t -I  • a+ .t(4.15)1 1/ / 0 t+0- 0

The corresponding operators A F F aO+ F satisfy

or A0  0 6) 1 (6- 1)1 61/ord AO_

7 6) -20 1)
(4.16)

ord AO+ : ) (6 -1 ) ( - 1))

(1 6) -- (1 - 6)

with 6 = Re C E (0,1].

Therefore we obtain exactly the same interpretation as for the problem

PD/1 where 6 = 1/2 holds.
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THEOREM 4.5: Let P be of normal type and nondecomposing (abcd $ 0). The WH

operator 11 in (4.7) is invertible (and P well-posed) iff the characteristic

parameter satisfies X I [1,-). In this case the inverse has the form of

(3.17) with

1 0 1 0

(4.17)

1 0 a 0
o VA 1) +( b

- /x I 0 b

(and intermediate space H 
/2 (1-6) x H-

COROLIARY 4.6: For sufficiently nice data, (ho,h I ) E S()) say, the singular

behaviour of the solution of a problem from the class PAx f [1,o)) is

described by

Vu - const'r /2-1, r - 0 in IR2  U' (4.18)

with

6 Re T log X -1/(0,1].

The factorization (4.15) of co is bounded (and thus the related operator

factors are bounded with respect to the corresponding spaces), iff 6 = 1,

i.e. A E (0,1), is satisfied. These are the only cases where the square-

root cingularity appears. For all other parameters X E [ - [0,) of well-

posed problems, the order of the singularity is higher, namely

6/2 - 1 E (-1, -1/2). (4.19)

lie would like to close this section with a humorous comrent. The
.mathematicians' answer " to our question at the beginning is that (4.19)

represents the "ordinary case" whilst the square-root singularity appears

only for a very small parameter set, x E (0,1), of measure zero in T - [1,-),

and is therefore considered "exceptional".
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The "physicist's answer" might be the opposite, since most of the problems

are as unnatural as PD/N' which represents an idealized model (perfect

conductance and isolation do not really exist). If one therefore accepts

only impedance conditions, one finds nothing but square-root singularities,

as we shall see in the next section.

5. PROBLEMS JITH IIIPEDANCE AND OTHER THIRD-KIND CONDITIONS

From the physical point of view, third-kind conditions often make more sense

than do Dirichlet or Neumann conditions. As a reference problem, we first

study the irpeda nce problem Pimp with different face impedances p- on the

banks of Z where u C HI(Q+)x Hl(Q - ) must satisfy

(A+ k2)u 0 in- (5.1)

u 1 + ip u0 =

on E (5.2)

I- ipu0 h

on E'. (5.3)

f u 1 u =

It is assumed that Re p- > , Im p > 0 hold and h are given in H-1C2(E).p+-

In view of the classical approach we refer to [53,59] for p = p , and to

[9,21,36,37] for p+ / p-. Sobolev space considerations can be found in [13,

43,65]. In our opinion the most interesting mathematical questions are: How

to modify the space setting in order to obtain a well-posed problem? How to

find the (function theoretic) WJH factorization and to perform it into a

canonical or generalized one? Therefore we start with an observation, which

is similar to (2.17) [43,65].

LEWNA 5.1: A necessary condition for PImp to be solvable (in the above-

mentioned setting) reads

h+ - h- E W2(X) (5.4)
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This is a consequence of

h h = 1+ (f 1 + ip u + ipu) + H/2() (5.5)

where H112(Z)(_- H-1/2(E) is continuously embedded (note that H-1 /2(Z) is a

dense but nonclosed subspace of H 1 /2 (z)). Before further discussion we

look for the equivalent WH system, rewriting the boundary conditions on E in

the form

+ U- ++" .- h+

- u1 + ipu0 +ip u0 = h - h

(5.6)
u+ + u1 + ip u0 - ip u0 = h + h

for incorporating (5.4) and getting pleasant-looking formulae, respectively.

PROPOSITION 5.2: The impedance problem PImp is equivalent to the WH system

W(f) 1+F1-F(f1 = + h-> (5.7)fo 0 I+-¢Ffo/

W .-/2(E x 2) H- 1 2 (Z) 2

-1

1 - ipt iq

iqt-  t[1 - ipt- 1

with p = (p+ + p-), q =(p+ - p-).

This result is analogous to Theorem 3.1. If we continue to study the

lifted operator 110 (without compatibility condition) as in (3.9), we find

0t 0
0 0 t1j 0 + 1(5.8)

--

iqt 2 1 - ipt-
1
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±I 0
%(±co (±/ \

00 1

This implies that U is not Fredholm, see (3.12) with = 1/2; more precisely

the range of W is not closed [52].

REMARK 5.3: In order to obtain at least a Fredholm operator W by space

modification, one has different possibilities.

(i) It seems physically most natural to incorporate only the compatibility

condition (5.4) according to smooth extendability of the jump datum (5.5)

and to stay in the "energy space" H1 (R2 - 2) with u. This leads to the

study of a more complicated modified WH operator

W: q-I/2(E) x HI/2(Z) _ H-1/2(Z) x H- 112(Z). (5.9)

(ii) Following the spirit of Eskin's book [14] one may study W on the scale

of Sobolev spaces, say

K :H-Iz) xi H() - HO' 1 ()2 (5.10)

for aL - 1/2 f Z instead of a = 1/2 [13]. This yields also regularity results

and a singular expansion for the solution.

(iii) Another modification consists of the replacement of L
2 by Lp and of Hs

by W , p C (1,-), p # 2 (p has another meaning here); see an analogous

discussion in [64].

The idea of treating the WH operator in the first sense (5.9) consists of

two steps. First one substitutes one component (where H-C/2(E) is replaced

by H-1/2()) by use of the 1H operator (2.12) of the Dirichlet problem

UD = 1F-t-1 . F : H-1/2(E) - H1/2( ) (5.11)

such that W in (5.9) is equivalent to another modified UH operator

z: H1/2()x 112(E) I/2(E) 1 H-/2(). (5.12)
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Secondly one turns over to a (usual) WH operator (in the sense of (1.3))

L L2(E) . H1/2(E) - L 2(E) X 11-1/2 (E) (5.13)

W:[ 1/2 21/

by embedding H1/2 (E) '. L2 (E). Inversion of W then yields that the subspaces

in (5.12) are mapped onto each other because of invariance properties of

scalar operators of the type "I+ smoothing". At the end it turns out that

all the factorizations (function theoretic [36] as well as operator theoretic

[13,65] versions) are connected by relatively simple transformations. lie

collect the results without technical details.

THEOREM 5.4: The modified impedance problem (5.1)-(5.4) is well-posed for
aydth+ h- H12Zh -/(

any data h - h E H 1/2(z) h+ h- E H )112 W. The function u is given by

formulae (2.4), substitution u0 = (U+,uo)T , (1+g0,f )T (1+ (u + ),

-Ft+'F(u0 - uo)) and the unique solution of

OI 1+ gO  (F- F ' t - 1. F(h + - h-)
f+/ \ Flt-1 Fzodd(h+ h) (5.14)

where 0 = 1+F 1 
0 " F:L

2 (Z)2 - L2(2)2 has the Fourier symbol

10 : - ipt-I1 iqt-l1 5 15

1-m -1 -15.5
0 iqt-1  1 - ipt-1 /

which admits a bounded factorization (3.11) 0 = 0- 0+' $0± E C(R)2x2, i.e.

there holds

Q-1 = F-1 - F1 I [2 2 (5.16)
0 F 0+ "F+ FI01 L 2(W)2

As mentioned above, this implies

Vu - const'r-1/2, r - 0 in R2 - (5.17)

The method to obtain %0± explicitly [13] is similar to the procedure in
section 4. We shall come back to it later in a general context.
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Other relevant boundary/transmission conditions like reactance conditions

[31]

+ -

u + u =0OU 0

(5.18)

U u +KU E-1/21 1 0 =h1 (R+)

and the interest in their mathematical structure motivated us to consider

the following class of "screen problems" P

(A + kL)u = 0 in 0- (5.19)

a11u0 + a12u0 + a13u1 + a14u1 1 on h(5.20)

u- -a u + ua21U 0  22U0 231 24u1 2

+ u= 0u0 - 0

u on ' (5.21)

1+ .

for u E HI( +) H (Q-) with constant coefficients and h E H J(E) where3
sj = ± 1/2 depends on the type of the problem.

lie outline the features of the operator theoretic approach (see [65] for

the proofs and section 6 for explicit factoring in sore of the most interesting

cases). First we observe that the class splits into three subclasses

according to

rank ( a13  a14  = 0,1,2. (5.22)
a23 a24

Rank 0 corresponds to PD and is dropped here. Rank 1 or 2 implies (SlS =

(-1/2, +1/2) (after suitable linear combination of the two conditions (5.19))

or (SlS 2) = (-1/2, -1/2) respectively. So the boundary operators read

B±= F"I0B± 'F:H 112 x H112 _ H± 112 x H±1/2 (5.23)
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a1 1 + a 13 t a 12 a 14 t -B  1

B+ = a21 + a2 3 t a2 2 - a2 4 t - - t j

PROPOSITION 5.5: Problem P is equivalent (in the sense of Theorem 3.1) to

the 1JH system

f 1B 1f h = (h,h2)T (5.24)

12 2

W I112 (Z) -I/12() , H-I1 2 (Z) x H2(,)

where the Fourier symbol matrix has the form

-1
= OB+0B_ apr +  (5,25)

_ 1 4 t 13 ) +I ( 11 t - 12

- -c24t C23 T 2 1t - c22

In this representation the coefficients a.j are taken from (5.19) after

reformulation in terms of the jumps and sums of the Cauchy data. The first

term in (5.24) is called the principal part of a and corresponds to the

highest-order terms of (5.19) - provided we consider the case, where

det apr 0 holds. For what follows let P be of normaZ type, cf. (4.4),i.e.

det 0( ) # 0, E R

(5.26)

[det a( )]±l = O(j1 ±d), , ±

(B_ is bijective anyway). The cases d = -1,0,1 correspond to the ranks

0,1,2, respectively, in (5.21).

Let us first discuss the case d = 0. lie assume 023 = '24 
= 0 without loss

of generality and have the six-parameter family of symboi matrices

a (a 1 1 - c14t a13 " 1 2 t- (5.27)
c21  -a22

t-
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Their structrue can be discussed as in sections 3 and 4, which already contain

many examples. The reactance problem (5.17) also belongs to this class. For

a compact formulation of the Fredholm criterion (3.12) we abbreviate

= ( ). a '14 (2 1 (5.28)
'21 0'22 = '23 a24 c2 22 c21 j "

PROPOSITION 5.6: The set of parameters aj, where 11 is Fredholm is character-

ized by the following three conditions: first

det a2 Oa 122 ' 0 (5.29)

secondly

det 0 = 0 or
(5.30)

det a0 0, -deta2/det a0 f F = - t-1( )' E i}

and thirdly

0'13021 =0 or

a130'21 01 O , = - f E0,1]

'13P21

where the very last condition includes (5.28).

From this result it is clear that the theory splits into many different

cases, but all of them allow explicit generalized factorizations by the

methods presented in section 7; see [65] for details.

The other class of problems (d = 1, case of rank 2, s2 -1/2) includes
the impedance problem PImp and therefore has a rather subtle philosophy.

For simplicifcation we premultiply the system by al and obtain the four-

parameter family of symbols and operators
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o _0 ( C 1  1  - a 1 2 t - )

-t + 21 - 22 
t-

F - 1 V *Ff - ~h (5.32)

: 2 11/2 112

The last tilde was added, since a compatibility condition

- c 4h, c'14h2  H-11 2(S (533)
h1 = det C E

(instead of h'I/ 2 (Z)) is obviously necessary for P to be solvable as it was

in Lemma 5.1.

PROPOSITION 5.7: If d I and det a, $ 0 are satisfied, the following

assertions are equivalent. (i) The operator W defined by (5.31) is a

Fredholm operator with index zero. (ii) There holds

det d() 0-de # 0, E R (5.34)

i.e. problem P is of a normal type. (iii) The characteristic numbers

12 +  21 1 + 4a 1 2(

= 2 + Z [(12 c21 )2 +  1 /2 (535)

are not contained in the cRve{ t), E R.

The proof [65] is based on the idea presented before Theorem 5.4 and ends

with a discussion of the lifted modified symbol matrix

S = (11 /tt+ 1 - a12 A

G 021/t - 1 - 22/t_
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6. EXPLICIT WJH FACTORIZATION OF CERTAIN NONRATIONAL 2 x 2 MATRIX FUNCTIONS

The aim of this section is to describe procedures for canonical (standard) or

generalized factorization (3.11) [5,52] of 2 x 2 matrix functions of the
form

G = c1Q1 + c2Q2  
(6.1)

(and related types) with scalar functions c. in the Wiener algebra W(R) =

I ; FL (R) or another decomposing or more general subalgebra of C(R), and

Qj E R(R) 2 x2, i.e. rational matrix functions without poles on R.

All the above-mentioned lifted matrices G = % 0, o are in the class of

piecewise continuous matrix functions on P = R u {-} with jumps only at c.

They were assumed to be 2-regular [52) in the sense of (3.12), which is

equivalent to the existence of a generalized factorization (3.11) and to the
Fredholm property of W. On the other hand it is not always clearthat they

are of the form (6.1), since two different square-roots t±(C) (6 + k)1/2

are involved; see e.g. (5.8).

Thus, for algebraic aspects, we also consider the unlifted Fourier symbol

matrix functions D E C(R)2 x2, which are not bounded invertible on R in

general but are always of the form (6.1), because they are rational in and
t(C) (which yields o E W(R)2 x2, if D(+ -) = (- -) holds. This is one inportant

reason for considering also the (weaker type of) function theoretic factori-

zation

G = G_G+ (6.2)

where G1I E C(R) 2 x2 have holomorphic extensions in C± and either (i) no

growth condition or (ii) algebraic behaviour, respectively, at infinity.

So it becomes clear that the interaction of function theoretic aspects

(holomorphy, zeros and poles, asymptotics at c), operator theoretic features

(Fredholm characteristis, order, boundedness and invariance properties of

operators, compatibility conditions) and algebraic arguments (decomposing

algebras, commutative matrix factorization) - besides physical relevance -
yields a high grade of complexity, which means many, many cases. In order

to avoid confusion we would like to describe a methodical conception and

refer to original papers for examples [13,43,62,64,65]. It is our intention

158



to obtain a comlete factorization procedure for (6.1) by a concept which

separates the above-mentioned mathematical aspects (we shall summarize our

results in Conclusion 6.9; the objective of ready factorization is rather

complicated; see [33]).

The central idea of commutative matrix factorization can be found in

several papers; see [8,9,22,26,27,29,58,72] for instance. The most relevant

work in this context was published by Khrapkov [29]; an early source is due

to Heins [18] in 1950. Note that the letters f, g, al,... have a new meaning

in what follows orientated by the notation in [22,50,65], which we use for

reference.

A matrix G C C(R)2 x2 is given in Xhrapkov canonical form (K-form), if

G =alI + a2R (6.3)1 2

R( ) (b(& c() E ER

holds, where I denotes the 2 x 2 unit matrix, al, a2 E C(R) and a,b,c are

polynomials. If K - C(R) is an algebra, which co-tains R(R) (e.g. an R-

algebra [52]), then the set of K-form matrices (6.3) with a fixed R and

a. E K forms a commutative algebra A(R;K) of 2 x 2 matrix functions.

It is easy to recognize K-form matrices by taking a2R = G - 1 tr G.I with

trace zero and splitting off a scalar function such that R is a polynomial

matrix, e.g. of maximal order and coefficient I in the highest-order term

of -det R( ) for uniqueness in the representation (6.3). In this case R

is said to be the deviator polynomial matrix of G.

THEOREM 6.1: Let G E C(R)2 x2 be a matrix function of K-form (6.3). Split

-det R = c2 + ab = g2f (6.4)

into polynormials such that g2 contains all square factors with g(C) # 0 for

& E R. Further assume a function theoretic factorization and an additive

decomposition, respectively,

159



(det G)1/2  (a 2 a2g 2f)I/12

1log a + a2g f 
(6.5)

Vf a - a2g/f _ T

into functions that are holomorphic in C± and continuous in F, respectively,

where consistent branches are chosen. Similarly put g = g_g+ with g±(E) 0

in T+,. Then a function theoretic factorization of G reads

G = GG+
-+ (6.6)

= cosh[2 /(f)[+]l + I sinh[j /(f)T+]R.
9+- g~/f

The question how to get from (6.1) to (6.3) was answered in [50J.

LEMMA 6.2: The matrix function (6.1) can be written in K-form (6.4), iff

there exist scalar rational functions q11, q21 with

q11Q1 + q21Q2 = I. (6.7)

Obviously it is easy then to obtain (6.3). Otherwise one can try to

factor QI (or Q2) in order to obtain

G = c1Q1 + c2Q2 = Q1 _(c11 + c2Q)QI+

=- ; I + 2 )Q + 
(6.8)

where = Q - 1tr QoI has trace zero. This leads to the question whether
the K-form can be simplified by rational transformations. In [50] we proved

the following invariance property.

LEMMA 6.3: If G = alI + a2R is a K-form and transformed into (6.8), then
the determinants of R and P coincide up to a factor which is the square of a
rational function.

This result can be interpreted as: f is an (algebraic) invariant under
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splitting off rational factors - and becomes most irportant by the following

observation.

COROLLARY 6.4: If f = 1 and a1 ± a2g admit function theoretic factorizations

with algebraic behaviour at infinity, this holds also for the factors G+,

which simplify to

G= 7 tg_ III + 0+ [,i v]Rl (6.9)
g+

a1 + a2g = = V_ +, a1 - a2g = V.+.

REMARK 6.5: The question of algebraic behaviour of G±(C) for E ± c depends

on -+ in (6.5). In general we have exponential behaviour, if the degree of
f is higher than 2. Daniele [9] proposed the following trick for a trans-

formation of a function theoretic factorization G = G_G+ with exponential

increase into another one G = GG without. As an ansatz introduce a

rational matrix function Q = q1
I + q2R E A(R;R(R)) with the same R and factor

it by Khrapkov's formulae (6.6). Determine q. such that the behaviour uf

the factors Q± coincides with the behaviour of G± at infinity. Then

G GQQQIG+ (6.10)

holds according to the commutativity of A(R;K) and this can be performed into

the desired factorization by factoring Q = QQ+ classically [5) provided it

exists (which question can be answered independently, e.g. by the aim of

(3.12)).

In many examples, this trick can also be used to get rid of the poles in

(6.6) or (6.9), see [51], but in general not to reduce the order of algebraic

increase, which may cause a diagonal middle factor in the generalized

factorization (3.11) and is therefore shifted to the very end of the procedure;

see [64,65] for example.
We would like to present another method [50] with more detailed results,

which works for K-form matrices in the case f = 1. Thi approach has
significant applications in elastodynamics [48,49,51] and is more general

than the concept of functionally commutable matrix functions [35]. G is said
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to be of paired form [52], if it can be represented as

G = b1R1 + b2P2

b. E C(R), R. E R(R)2 x2  (6.11)

1 RI, R2  I - RI

LEM4A 6.6: For fixed R., the matrices (6.11) form a commutative subalgebra

of C(R)

Further they are always of K-form, see Lemma 6.2, because of

1 1G = Z(b1 + b2)I + Z(b 1 - b2)R = a11 + a2R (6.12)

where R = R1 - R2 E R(R)
2x2 , tr(R - R2) =. Conversely there holds

LEMMA 6.7: The matrix (6.1) with c. E C(R) can be written in paired form,

iff (6.7) is fulfilled and tile corresponding deviator polynomial matrix R

satisfies

- det R = g2  (6.13)

±1

with g E R(R).

THEOREI 6.8: Let G be of paired form (6.11) with b. E W(R) (or in another

decomposing algebra) and R = 0(l) at w. Then a right canonical factorization

of G exists, iff

bj( ) 0 0, E Ci, j = 1,2 (6.14)

holds. It can be obtained explicitly from

K I  Kz

S=(bl qjR + b2 _R2 ).(i1 R + .- R )'(b R + b2 q ) (6.15)
1b 2-2 q I q22 1+ 1 2+

by canonical factorization of the middle factor in R(R) 2 x2 where C( ) =
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Kj and bj± are taken from the scalar factorization of b.

b b j_ jbj (6.16)bjC = +~()ep~ F

1(x)K -K.+

and qj are suitable bounded R(R) elements.

CONCLUSION 6.9: For several important subclasses (loc.cit.) of 2 x 2 matrix

functions of the form (6.1) the following procedure leads to a right canonical

or generalized factorization:

(i) Transformation of G by splitting rational matrix functions (non-

commutative factorization in R(R) 2 x2) in order to get into the

commutative subalgebra A(R;K).

(ii) Function theoretic factorization of K-form matrices within A(R;K)

(by scalar factorizatior of the nonrationa! coefficients in K).

(iii) The Daniele and pole compensation trick (commutative factorization

of a rational ansatz matrix within A(R;K) with exponential increasing

or bounded factors, respectively).

(iv) Canonical factorization of the remaining middle term matrix (non-

commutative factorization in R(R) 2 x2 again).

7. SOME RELATED WORK

Leaving the field of Sommerfeld half-line problems for the Helmholtz equation,

we first think of 3D configurations with a screen Z that represents a special

Lipschitz domain [66] in the plane {(x,y,z) E R3 : y = 0}. ;iost of the above

results can be extended for genuine half-plane probleis where, e.g. uinc in

(1.1) depends on z (the Fourier transform variable of z is a fixed parameter

in the WH procedure). But the function space setting u E H1 ( +) - H ( -)

with half-spaces 0± R3 is not compatible with the increase of uinc for

z - =. This trouble does not occur for the quarter-plane

l= {(x,y,z) E R3 : y 0 0, x > 0, z > 0}. (7.1)
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But half-plane problems with "decreasing data" in H+ 
1/2() play an auxiliary

role for the solution of the quarter-plane problems [44,46]. We assume z to be

Lipschitz in order to have a (continuous) extension operator Z: Hs(Z) H(R ),

s E R [7,66]. Let P(Z,k,D) and P(Z,k,N) be the corresponding Dirichlet

problem (2.1)-(2.3) and Neumann problem, respectively. They are governed

by (single) WH equations

UJf = XZ.Af = g

A = F 1 tTIF (7.2)

W : H I (E)- H+ (E)

respectively. It was shown in [44] that the unique solution of P(E,k,D) can

be represented in the form

u = GIzg (7.3)

with an (arbitrary) extension operator Z:H 11 2(Z) - H12(R2 ) and the projector

7 acting in H112 onto AH- 1/2() along H1/2(Z'). 11 is orthogonal, iff k = i

holds, which idea leads to a series expansion of the solution of P(Zl,i,D),

P(E1 ,k,D) and P(EI,k,N) by analogy.

This simple reasoning yields straightforward results about the correctness

of P and interesting relations to general WH operators [10,11,62] with

insights about Babinet's principle and Bessel potential operators (unpublished

work of R. Duduchava, R. Schneider and F.-O. Speck). The study of single

Lipschitz or polygonal domains can also be seen as a first step for treating

multi-media problems [42,55].

Another 2D configuration of traditional interest [2,17,23,26,69] consists

of two parallel half-lines (plates) with shift

o u

(7.4)

E0= {(x,y) : x > 0, y = 01, I = {(x,y) x > b,y = al.

The (unlifted) Fourier symbol matrix functions are 4 x 4 sized with three

nonrational entries of different behaviour (in contrast to t+), namely
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2 2 1/2 -at(s) ibVt(Q) K k2I, E(C) = e - a (  C( ) = e i ,  E R. (7.5)

A articular block structure

( R11 (t±) JC R 12 (t± )

EC R \.f21 (t+)l R 22(t±) 76

with 2 x 2 submatrices RjZ, which are rational in t±, makes it possible to

discuss the operator theoretic properties of P and to invert W as a pertur-

bation of two 2 x 2 systems for the corresponding single plate problems by a

fixed point argument [45,47].

According to the physical relevance of waveguides, see e.g. [23], it would

be desirable to investigate problems with a modified space setting (non-

decreasing solutions between the plates). Also I plates [28) and periodic

configurations [41] are of particular interest.

Another topic with non-Khrapkov symbols are the two- or multi-media

problems with different Helmholtz equations (i.e. different wave numbers

kl,k 2) in ± 64]. In general it is impossible to transform a elementary

(i.e. by multiplication with rational matrix functions) into the form (6.1)

for using commutative algebra arguments. So often the fixed point principle

is used, if the assumption is reasonable that Ik1 - k2 1 is small [32). An

extension of the idea of paired operators (6.11) to N-part versions, cf.

[4,27,40,42],

N
G = j b.R. (7.7)

j=1 
J

seems to be artificial. But in fact, there are significant applications in

elastodynamics (N = 3) [51].

It is known that elliptic boundary value and transmission problems for

PDE systems, which appear in the electromagnetic theory, elasticity and

thermo-elasticity, lead to a higher number of coupled equations (up to eight

even for the half-line). But a detailed study of the block structure of the

symbol matrices makes it possible to reduce the systems for relevant examples

[30] and to factor such complicated-looking matrix functions as in the

elastodynamic case. Here one finds additional information on the following

fact [51]. A decomposition into shear and pressure waves is possible but it
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destroys the topological simplicity of the space setting. The reason is that

the -div and curl operators on H yield nonclosed subspaces, which phenomenon

corresponds to rational transformations on the symbol level and their

interpretation as unbounded operators.
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R.A. SMITH

Orbitally stable closed trajectories of
ordinary differential equations

The main airi of this lecture is to show how extended Poincard-Bendixson

theory can be used to prove the existence of an orbitally stable closed

trajectory for a class of autonomous ordinary differential equations in Rn,

Consider the equation

dX F(X) (1)

in which the function F : S Rn satisfies a local Lipschitz condition in

open S c R n . Suppose that bounded open D has D - S and that its boundary aD

is crossed inwards by all trajectories of (1) which meet it. Suppose further-

more that D contains only one point K such that F(K) = 0. To avoid technical

complications we also assume that the Jacobian matrix J(X) = DF/ X exists and

is continuous in some neighbourhood of K with Re z 0 for all eigenvalues

z of J(K).

In the special case n = 2 the classical Poincar6-Bendixson theorem shows

that if the critical point K is unstable then each trajectory in D converges

to a closed trajectory as t + - and D contains at least one orbitally

stable closed trajectory F. If, in addition, F(X) is analytic in D then p is

asymptotically orbitally stable and D contains only a finite number of closed

trajectories. It is well-known that these results can fail when n > 2 because

D may contain almost-periodic trajectories or other more complicated chaotic

motions. However, these results remain valid when n > 2 if we add the

following assumption to exclude the possibility of such chaotic motions:

HYPOTHESIS (H): 'oppose that there exist positive cunstants X, C and a

constant nonsingular real symmetric n x n matrix P with exactly two negative

eigenvalues such that, for all X, Y in S,

(X - Y)Tp[F(X) - F(Y) + x(X - Y)] -EIX - y2 (2)

The following result is proved in [7] (see also [8, section 4]):
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THEOREM 1: If n > 2 and (H) holds then each trajectory of (1) in D converges

either to K or to a closed trajectory as t - + . If, in addition, the

unstable manifold U through K has dim U = 2 then D contains at least one

orbitally stable closed trajectory F. If also F(X) is analytic in b then r

is asymptotically orbitally stable and D contains only a finite number of

closed trajectories.

An obvious consequence of this theorem is that D contains no chaotic

motions of (1). To verify that dim U = 2 it is sufficient to show that

Re z > 0 for exactly two eigenvalues z of J(K). Orbitally stable closed

trajectories are of interest because it is only these which can be observed

in practice in a physical or biological system. To apply Theorem 1 we do

not need to compute the matrix P in (2); we only need to know that it exists.

We now describe a useful method for verifying (2). Consider equations

(I) which have the feedback control form

dXX- AX + BD(CX), (3)

where A, B, C are constant real matrices of types n x n, n x r, s x n,

respectively, and D : CS Rr is a C' function. Since the r x s Jacobian

matrix D'(Y) exists for all Y in the subset CS of Rs we can define

A(CS) = supIcD'(Y)l for Y E CS, (4)

where denotes the spectral norm. If A has no eigenvalues on the line

Re z = -x in the complex plane, we can define

() = supFC(zI - A)-1 BI for Re z = -X . (5)

The following result is proved in [5, p. 702]:

FREQUENCY DOMAIN LEIA: If P(X)A(CS) < 1 and A has exactly two eigenvalues

z with Re z > -X then there exist P, c such that (H) h6lds with

F(X) = AX + B (CX).
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The hypothesis on the eigenvalues of A ensures that the eigenvalues of P

satisfy the requirements of (H). The spectral norm IMI and the Euclidean norm

AMle of any real or complex rectangular matrix M = (mij) satisfy

[ 2Imit2 11/ 2 = ItIe 1 = sup [IMXI/lXI].

When the spectral norms in (4), (5) are replaced by Euclidean norms we get

larger constants Ae(CS), Pe (X) which are much easier to compute formally.

Then P (X)A (CS) < 1 is a sufficient condition for (A)A(CS) < 1.e eTo illustrate how this lemma can facilitate the application of Theorem I

we consider the special case of the modified Ilichaelis-lienten equation in
3R . This is

dx/dt = -x + (u + ax)y + (1 - x)bh(z),

dy/dt = (x - axy - vy)c, (6)

dz/dt = (y - z)d,

in which a, b, c, d, u, v, are positive parameters and the given function

h : [0,-) (0,1] satisfies

h(0) 1 I, h(z) , 0 as z + ,

(7)
0 > h'(z) -k for 0 < z <

where k is a positive constant. This is a rescaled version of some equations

arising from a yeast cell model devised by Hahn, Ortoleva and Ross [2, p.516].

Since x, y, z represent scaled chemical concentrations we will confine our

attention to solutions of (6) in the positive cone R 
3

BOUNDEDNESS LEMtIA: If u < v there exists a bounded closed rectangular box

W -R + such that every solution of (6) in R+ ultimately enters W and remains
in it thereafter. Furthermore W contains only one critical point K.

This elementary lemma is proved in [8] by considering the signs of the

derivatives x', y', z' on planes parallel to the coordinate planes. For the
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special case when a is small and h(z) (1 + zP) "I with p > 1, Dai [l used

the torus principle to prove that a certain box W contains at least one closed

trajectory provided that the unstable manifold U through K has dim U = 2. By

adding further restrictions which include u small and p large, Dai was able

to prove the existence of a unique asymptotically stable closed trajectory in

W. This result cannot be used to test any numerical set of parameter values

because it does not specify how large p must be nor how small a, u must be.
The following more explicit result is proved in [8]:

THEOREM 2: Suppose that h(z) satisfies (7) and that

u < v, d >(3/2)(v + a) + 3[(1 + b2)+3bck]I/2. (8)

Then each trajectory of (6) in the box 11 converges either to K or to a closed

trajectory as t + + -. If, in addition, the unstable manifold U through K

has dim U = 2 then 11 contains at least one orbitally stable closed trajectory

F. If, furthermore, h(z) is analytic in (0,-) then F is asymptotically

orbitally stable and W contains only a finite number of closed trajectories.

The following is a brief sketch of the proof in [B]. Equation (6) can be

written in the formi (3) with

x 00 U yU p 00

X = yA= -g _ ,B = -c 0, C= q 0 .
z 0 d -d 0 0 0 0 r

where g, y, p, q, r are auxiliary constants to be chosen later. An elementary

calculation gives

xe(x) = sup IC(zI - A)-1 BI , Ae(CW) = sup Il'(y)I ele z = -_ YECw

as functions of g, y, p, q, r. It is practicable to chose p, q, r, Y so as

to minimize P e (X)A e(CO). We can then choose g, X satisfying 0 < g < X < d so

that (8) implies Vie (A)Ae(CQ) < 1. This ensures that the eigenvalues of A
satisfy the requirement of the frequency domain lemma and that e (A)A e(CS) < 1

for some open S D Q. Then this lemma shows that (6) satisfies hypothesis (H)
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I

and the conclusions of Theorem 2 follow from those of Theorem 1 by choosing

D = VI. Since the size of Ae (CO) depends on the size of the box 11, it is

important to choose 11 as small as is consistent with the boundedness lemma.

Theorem 2 shows that extended Poincars-Bendixson theory can produce new

information about stable closed trajectories which seems to be unobtainable

by the various other methods discussed in the survey of Li [3]. In [7],

Theorem 1 is used in a similar way to obtain explicit conditions for the

existence of a stable closed trajectory of Rauch's equation and also of the

generalized Goodwin equation.

So far we have considered only an extended version of the Poincar6-Bendixson

theorem. Several related results for plane autonomous systems have been

extended to higher-dimensional equations in [4,6]. To describe one of these

we suppose that in (1) the Jacobian matrix J(X) = 3F/DX exists and is

continuous throughout S. Suppose, as before, that D c S and 3D is crossed

inwards by all trajectories of (1), though now we allow the possibility that

D may contain many critical points - even nonisolated critical points. In

the special case n = 2, Bendixson's negative criterion shows that if D is

simply connected and 0 > trace J(X) in D then D contains no closed trajectories

and each trajectory in D converges to a critical point at t - + -. The

following generalization of this result is proved in [6, p.249]:

THEOREM 3: If n and D is simply connected then each trajectory of (1) in

D converges to a ritical point provided that 0 > 1(X) + 2 (X) in D, where

X X2  X n are the eigenvalues of the symmetric matrix J(X) T + J(X).

Because the formal calculation of X1 (X) + A2 (X) is difficult it is some-

times more convenient to use instead the following corollary proved in [6,

p. 253]:

COROLLARY: If n > 2 and D is simply connected then each trajectory of (I) in

D converges to a critical point provided that there exists a continuous

function e : S - R and a constant real symmetric positive definite n x n

matrix Q such that

J(x)TQ + QJ(X) + 2e(X)Q 0 in D,

(n - 2)ek,;) + trace J(X) < 0 in D.

176



Here (9) neans that the symmetric matrix on its left-hand side is positive

semidefinite. If we put e(X) = x, with constant X > 0, we can sometimes
verify (9) by means of a modified frequency domain lemma. This idea is used

in [8] to obtain explicit conditions for every trajectory of (6) in the box

U to converge to the critical point K as t - + -. It is also used in [7] to

obtain explicit conditions for every trajectory of the Lorenz equation to

converge to a critical point.
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TIAN JINGHUANG

A survey of Hilbert's sixteenth problem

ABSTRACT: In this survey, we give a short history of the study of Hilbert's

16th problem. tie emphasize Dulac's problem, the finiteness of the number

Hn(a,b), especially for the methods for quadratic systems and for higher-

order systems. tie pose some outstanding issues and provide the newest

advances in researching the problem.

1. PROBLEI AND HISTORY

As is well-known, the so-called Hilbert's problem 16 is "the question as to
the maximal number and position of Poincar6 boundary cycles (limit cycles)

for a differential equation of the first order and degree of the forr

Y
dy _ n

n

or the equivalent system

dx n . dy n
-= 7 a xY -  (Xy), + b..x y Y (xy),

i+ '=O n= i+j=O 1j n

where X n and Y are rational integral functions of the nth degree in x andn n
y" [1]. Note that Xn and Yn are relatively prime and at least one of them

is of degree n. We let E n(a,b) denote the nth-degree differential system
with the coefficients aij, bij, En the set of all systems E n(a,b) and Hn the

maximal number of limit cycles of En respectively. Thus Hilbert's problem

16 is to find the upper bound

Hn = sup {H n(a,b) : a.j E R, bij E R}

and determine the relative position of limit cycles. H is called then
Hilbert number of E n . The problem is the second part of the 16th of the 23
problems posed by D. Ililbert at the Second International Congress of
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Mathematicians, Paris, 1900. The long history for 88 years of the study of

this problem indicates that it has been the most difficult of the 23 problems.

Indeed, it is still unsolved even for the simplest case n = 2. In two books

[2,3] all Hilbert's 23 problems are mentioned except the 16th Hilbert believed

that his 23 problems would have a deep significance for the development of

mathematics as it entered the 20th century. The 16th problem is so. iany

mathematical models from physics, engineering, biology, chemistry, economics,

astrophysics and fluid mechanics are concerned with periodic solutions and

limit cycles of polynomial differential systems. Since these are basic

questions in the qualitative theory of ODEs, Hilbert's 16th problem has

become more and more important and has attracted the attention of many pure

and applied mathematicians.

2. THE FINITENESS PROBLEM!

The finiteness problem of the number of limit cycles of polynomial differential

systems contains the following two parts:

(i) Hn (a,b) = - or Hn (a,b) < - for each fixed n and given coefficients
a ij, b ij;

(ii) H = or H < -, for each fixed n.

The first important step in the solution of Hilbert's 16th problem is to

determine whether Hn is finite for every given n. For this purpose, it must

be known whether H n(a,b) is finite for a specific n and given coefficients

aij, b ij. SLppose that H n(a,b) = - for a polynomial system E n(a,b). Since

a limit cycle surrounds at least a singular point and the number of singular

points of any polynomial system E n(a,b) is finite, there must be at least a

next of infinitely many cycles surrounding at least a common singular point.

Therefore only the following four cases are possible. If these cycles are

enclosed by a circle, then

(1) these cycles accumulate on a closed orbit;

(2) these cycles accumulate at a singular point;

(3) these cycles accumulate on a separatrix cycle. Otherwise,

(4) these cycles tend to infinity.
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The case (1) is impossible, for the limit cycles of En(a,b) correspond to

isolated fixed points of the return map h and the return map (a two-sided

analytic function) cannot have a nonisolated fixed point. In 1923, Dulac [4]

claimed to have disposed of all the other cases (2), (3) and (4) and so proved

that H n(a,b) (not H n) is finite. But after 59 years, Il'yashenko [38,39]

discovered an essential loophole in Dulac's proof and gave a counterexamiple

to Dulac's lemma from which Dulac deduced, together with his theorem,

the finiteness of the number of limit cycles of En (a,b).

DULAC'S LEMiA: The germ of a semiregular map f : (R+,0) - (R*,O) is either an

identical map or has an isolated fixed point, zero.

A so-called semiregular map f : (R+,O) - (R+,O) is a map defined on a

semi-interval (O,b) of the positive semi-axis R+ with the origin 0 (on a

separatrix cycle or at the singular point) such that f(x) may be approximated

by an asymptotic series of the form

v0  v.
cx + P (in x)x (,

(where c > 0, 0 < v0 < vI < vj and P. are polynomials) so that for

any natural number N there is a partial sum s nX) such that f(x) -s n(X) = o(xN).

Il'yashenko's counterexample is that the map

f x + e- / x sin(I/x) x > 0

f s
0 x=O0

is semiregular and has a countable number of fixed points xk = 1/k0 accumu-

lated at zero.

The proof of Dulac for his lemma is as follows; the fixed points of the

germ of f are the roots of the equation f(x) = x. If the principal term of

the asymptotic series (*) of f is not the identical map, then the equation

has an isolated zero root. If the principal term is the identical map and f

is not the identical map, then the equation f(x) = x is equivalent to the
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equation

Vl xV 2

P1 (In x)x + P2(In + ... = 0 (**)

where P1 is a nonzero polynomial. The equation obtained after dividing (**)

by x has no real roots in a sufficiently small deleted right-side neighbour-

hood of zero. In fact, for the first term P1 (In x), of the reformed equation

lim P1(In x) = 0 or lim P1 (In x) =x *O+ x*O+

v1

The sum of the rest of the terms can be written as o(x ) and so it tends to

zero as x -> 0+. Therefore the equation f(x) = x has x = 0 as its isolated

root.

A mistake in Dulac's argument above is that the equation f(x) = x is not

equivalent to the equation (**) if the semiregular map has the principal term

x and is not the identical map and P1 is a nonzero polynomial.

As stated above, the problem of the finiteness of the upper bound on the

number of limit cycles of E n(a,b) is still unsolved and is called Dulac's

finiteness problem. Under some additional conditions a few results on this

problem have been obtained. In the case when n = 2 Chicone and Schafer [6]

disposed of the cases (2) and (3) and so proved that all bounded graphs are

finite and every quadratic system E,(a,b) has at most finitely many limit

cycles in an arbitrary bounded domain in the plane. Using the work of

Chicone and Schafer, Bamdn [7] proved that all unbounded graphs are finite

and therefore that every E2(a,b) has a finite number of limit cycles in the

plane. So there has been an affirmative answer to Dulac's finiteness problem

in the case n = 2. However, it is not known whether H2 is finite. Il'yashenko

[5] proved that every En (a,b) has a finite number of limit cycles if all its

(finite or infinite) singular points are not degenerate. This conclusion

contains the following result of Sotomayor and Paterlini [41]: In the space

of quadratic vector fields there exists an algebraic submanifold such that

every field outside the submanifold has only finitely many limit cycles.

Il'yashenko [42] has outlined a method for proving Dulac's finiteness theorem

(i.e.H n(a,b) <-).First, one should prove that limit cycles of an analytic

vector field cannot accumulate on a separatrix cycle or at a singular point.
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Secondly, one should use the following theorem of Dulac on semitransversality.

A semitransversal to a separatrix cycle of an analytic vector field may be

selected so that the corresponding monodromy mapping is either a plane germ,

or vertical germ, or semiregular germ.

Very recently the Dulac problem might have been solved by four French

mathematicians using non-convergent power series. The basic proof idea may

be found in [55], [56], but the full proof is long and has not yet appeared

in print (See Zentralblatt fbr Math.,Band 615, 58011;J.Ecall etal, Non-accumu-

lation des cycles-limites,I,II C.R. Acad.Sci., Pris,Sr. 1304,375-377;431-434 (1987).

Up to now nobody has found an upper bound of the number of limit cycles

of a general polynomial system. But this kind of upper bound has been found

for some special polynomial systems. For instance, the maximum number of

limit cycles of the system

= -y + 6x + x2 +mxy + ny , y = x

or the system

x = -y + 6x + + mxy + ny2 , y = x(1 + by)

is 1. The maximum number of limit cycles of centre-symmetrical quadratic

systems [53] is 2. Dilberto defined a limit cycle of E n(a,b) as strongly

stable (unstable) if div(X n,Y n) < 0 (> 0) on the cycle. He proved that the

sum of the number of strongly stable and strongly unstable limit cycles of

E n(a,b) is smaller than -(n - 2)(n-3, +1. If these cycles surround a unique

singular point, then the sum is smaller than -(n-1). The maximum number of

limit cycles of the fifth degree system y = x, x = y + a0x + a1x
3 +a2x

5 is

two [57].

3. THE LOWER BOUND PROBLEM

It is easy to see that to find an upper bound of the number of limit cycles

of a polynomial system is difficult and to find that of infinitely many

polynomial systems of the same degree is much harder. On the other hand,

comparatively speaking, it is easier to find a lower boun, ,i. . This is

because if only an example of E n(a,b) with K limit cycles , nown, then

it would follow that H K.n
The results obtained in this aspect are as follows: H2 4, H3 a5, H3 Z11,

and
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H (n + 5n) - 7, if n 6 is even
n 1(n + 5n) - 13, if n 9 is odd

4. SOM1E IiETHODS OF PRODUCING LIMIT CYCLES

In order to obtain as many limit cycles as possible of En (a,b), people

generally adopt the following methods.

(a) Construct a suitable Poincar6-Bendixson annular domain (including

such a kind of annular domain whose inner boundary is an asymptotically

unstable or stable singular point and whose external boundary is a part

of the equator). The famous example of Shi [25] with four limit cycles

deals with this case.

(b) Produce limit cycles from a family or a few families of periodic

cycles by a small perturbation of the system in question. (This method

is used in Li's [32] example with 11 limit cycles of E3(a,b)). (Poincar6

bifurcation).

(c) Produce local limit cycles from a separatrix cycle with singular

point(s) on it by a small perturbation. (Recently, Joyal [37] obtained

a wonderful result. If a polynomial differential system has a loop with

only a fine saddle of order k - 1 (k > 1), then any perturbation of the

system has at most k limit cycles and for any integer 2(1 : £ k), there

exists a perturbation with exactly I limit cycles.)

(d) Produce local limit cycles from a fine focus or a centre by small

perturbations of coefficients. (Hopf bifurcation).

le will explain the methods (a), (d) and (b) respectively. In 1979 Shi [14]

constructed the following quadratic system and proved the existence of four

limit cycles of the system by using the method of Poincar6-Bendixson annular

domains. Shi's example was

S-10- 200x - lox2 + (5 - 10- 13 )xy + y2

= x + x2 + (-25 - 8 x1052 + 9 x 1o 13)xy.

The system 'Shi) has an unstable rough focus, M(0,1) and a stable rough focus

0(0,0), and a straight line without contact, 1 - 25y = 0. It has a singular

point at infinity, saddle. On the Poincar6 sphere there are four annular

domains. Domain I is bounded by 0 and the contour without contact k ; domain

II is bounded by ZI and the contour without contact Z2; domain III is bounded

183



by Z,, the straight line without contact, and part of the equator; domain IV

is bounded by M, the straight line without contact, and part of equator.

The phase portrait of the system is shown in figure 1. By the Poincarg-

Figure 1

Bendixson annulus theorem the system (Shi) has at least four limit cycles, of

which one surrounds the rough focus t and the other three surround the rough

focus 0.

In order to introduce the method (d), let us recall the definition of a

weak (fine) focus. A focus P of the system E n(a,b) is said to be fine, if it

is a centre of the corresponding linearized system

'D(XnYn) ] 2

5:C 
C E, R

L X Y I p]
where Xn) Yn are the right-hand functions of the system E n(a,b). From two

foci F1 and F2 shown in figure 2, we can see that the focus F2 is finer than

F or that F2 is slower than F1. Ile will characterize this property of foci

by means of the concept "order". A fine focus of higher order is finer than

one of lower order and is closer to a centre. The order of a fine focus is

defined later. (Similar to focus, a limit cycle may be distinguished as

rough and fine, even fine of higher order.)
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(C))

Figure 2

We start with a system having a weak (fine) focus whose order k (k 1 1) is

as high as possible and perturb slightly the coefficient of the system so

that the stability of the focus is changed into the opposite. Then, as a

result of perturbing each time, a small-amplitude limit cycle bifurcates out

of the focus. After successively perturbing the coefficients, we obtain at

least k limit cycles around a rough focus. In 1952, Bautin [8] first adopted

this method to obtain limit cycles of quadratic systems and proved that at

most three limit cycles can appear from a centre or a fine focus with a

variation of the coefficients. This method is named Bautin's technique.

Since at that time there was no work on two nests of limit cycles [9],

Bautin's result led to an incorrect impression that H2 = 3. Hence the papers

by Petrovskii and Landis [10,11] appeared early and late in 1955 and in 1957.

Although the above papers had to be withdrawn because of a mistake [12],

before 1979 it was still hoped that H2 = 3. For example, this may be seen

in the book by Ye [13] where some conclusions on various distributions of

limit cycles of E2(a,b) were based on the invalid assertion of Petrovskii

and Landis. In 1979, in addition to Shi [14], Chen and Wang [15] constructed

quadratic systeris with at least four cycles as shown in figure 3 (so H2  4).
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by perturbing two times
A *..-.>

when 2 = 0 when 0 < 62 < 6 << 1

(1,1) distribution of limit cycles (1,3) distribution of limit cycles

N(0,1) a rough focus N.0 are fourgh foci

0(0,0) a fine focus of order 2

AB:1-3y = 0 a straight line

without contact

Figure 3

By using Bautin's technique Chen and Wang constructed the following

quadratic system and proved the existence of a distribution (1,3) of limit

cycles:

x= -y - 2x -3x
2 +( - 61 )xy + y

2

2 (Chen-Wang)=O x , + x -3y).

In both examples of Shi and Chen-Wang, the same (1,3) configuration of

limit cycles is obtained. These remarkable results have renewed interest in

Hilbert's 16th problem. After that, many new authors and new results appear.

Li [17],Blows and Lloyd [19],Qin, Cai and Shi [16], G. Wanner [18], Andronova

[43], Cherkas [45] and Rudenok [46] found more general quadratic systems

with (1,3) distribution. Andronova began with a conservative system

x = -y + ZX " + my , y = x + bxy

having exactly two cnetres and an infinite saddle under the conditions

Z(n + b) > 0, n(n + b) > 0, n(b - Z) < 0.
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She constructed the system

-y + zx2 + [(2z+b)/(z+n)]axy + ny2  y= x + ax+ bxy (0 < a <)

with a rough focus at (0,1/n) and a fine focus of order at least 2 at (0,0)

which approximates the conservative system. Using Bautin's technique, she

proved the system has (1,3) configuration of limit cycles. In her second

article [43] she further proved that in the subspace of parameters of the

conservative system one picks out a region, in the neighbourhood of which

there is a quadratic system with the property that the number of limit cycles

is no less than four, among them no more than three around one focus at the

origin and no less than one around the other. This fact is in agreement with

the nonexistence of limit cycles around a fine focus of order 3 for any

quadratic system [20].

Cherkas constructed a quadratic system with two pararieters a, -( in the

form

x = (ax - y)(1 + yy) - ax2 + b1lxy + (b02 + aO2 )y2

y (x - ay)(1 + Yy) - x2 - xy + (a02 + ab02)y
2

which has exactly a focus, (0,0) and an anti-saddle. He proved the system

has at least four limit cycles with (1,3) distribution for 0 < -a << 1 and

the corresponding Y. Dudenok proposed a method of constructing examples of

the existence of at least four limit cycles for the system

x -y + Xx + a2x 2 + 2allxy + a20Y , = x + Xy+bx +2blxy +bo2y

Blows and Lloyd [19] generally show how to construct quadratic systems with

at least four limit cycles and their results complement the findings of many

authors, such as Shi [14,47], Chen and Wang [15], Qin, Shi and Cai [48], and

Li [17].

It is convenient to use Li's formulae of the focal values for a general

quadratic system. The general form of quadratic systems with a fine focus

at the origin is
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22 , ay + px + qx%" + r a+c<)
x ax + by zx +mxy + ny y = bcx- + 2  x r

Let a = (-a2 - bc) 112 and introduce the transformation

1 a 1 c
C- 0f 0' -a,

Then the above system is reduced to the form

•-y +a 20x
2 + axy + a 02y

2, x + b20 x  + b xy + b02y
2. (G)

Extending Bautin's formulae of the focal values, Li gave the corresponding

formulae for the general quadratic system (G).

THEOREM OF LI: Let

w = Aa - B6, w2 = [(5A - B) + a(5B - a)]Y, w3  (A + B )aU (W)

where

A = a20 + a02, B = b20 + b02, o = a,, + 2b02, B = b11 + 2a20'

3 _ 2 2o2A322

b= b 0 A -(a 0 -b
l)A2 B+(b02 -all)AB2 -a B , 1 = a 2 + b20 + a•A +bB.

Then

(i) the origin is a fine focus of order k (k z 1,2,3) if and only if the

condition (k) holds:

(1) w1 $ 0,

(2) wI = 0, w2  0,

(3) wI  0, w2 = 0, w3 $ 0.

(ii) If wk < 0, then the origin 0 is stable; if wk > 0, then 0 is unstable.

(iii) 0 is a centre if and only if w1 = w2 = w3 = 0.

The formulae (W) may be replaced by the following
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6(SA-B)-y if A / 0 'At3x if AO T
w t-B w2 x(5B-cc)y if B /$0 w 3 a fB /0

0 if A = B = 0, if A = B = 0.

COROLLARY I OF LI'S THEOREM: The origin 0 is a centre of (G) if and only if

(1) BS = y = 0, or

(2) 0 = = 0, or

(3) 5A - = 5B - c = 6 = 0.

COROLLARY 2 OF LI'S THEOREI: For Ye's form of quadratic system

2 2, 2x= -y +Zx + mxy + ny, =x i ax + bxy (Ye) .

which has a fine focus at the origin, let

W z m(Z + n) - (b + 2Z)a

w2 z ma(5a - m)[(Z + n)2 (n + b) - a2 (b + 2k + n)]

(nb + b) a+b n)],
w3  ma2[2a 2 + n( + 2n)][(Z + n)2 (n + b) - a +

then

(i) (0,0 is a fine focus of order k if and only if the following condition

(k) (k = 1,2,3) holds:

(1) /I 0,

(2) w1  o, W2  0,

(3) W 1  2 = : O, w3 / 0.

(ii) If Wk < 0 then the focus is stable; if wk > 0, then the focus is

unstable.

(iii) The origin is a centre if and only if w1 I w2  w3 = 0.
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Therefore, the origin is a centre for the system (Ye) if and only if one

of the following cuiditions (1)-(4) holds:

(1) a = z + n = 0,

(2) m(9 + n) = a(b + 2f), a[(z + n) 2(n + b) - a 2(b + 2k + n)] = 0,

(3) m = b + 2Z = 0,

(4) m = 5a, b = R + 5n, 2aL + n(Z + 2n) = 0.

After having constructed a (1,3) distribution, one naturally poses the

question: "Are there (0,4) distributions and/or (2,2) distributions of limit

cycles of quadratic systems?" It is easily seen that a corresponding example

of E, with (0,4) distribution would be obtained at once, if an example with

a fine focus of order k (k = 1,2,3) enclosed by 4-k limit cycles were

constructed. But most Chinese mathematicians in the field now believe that

there can exist at most 3-k limit cycles around a fine focus ot order k

(k = 1,2,3) for E2. This conjecture for k = 3 has finally been proved by

Li [20]. However, it should be noted that the impossibility of (0,4)

distribution cannot be derived from the conclusion just mentioned. Concerning

(2,2) distribution, Ye Z21] proposed a method of proving the impossibility.

The present author pointed out in his talk at NIIA, University of Minnesota,

and at the University of Delaware (see SIAM News 13, iiarch 1985) that workers

in the field are confident that there are no more 1han four limit cycles for

E2, but a rigorous proof of this assertion continues to elude researchers.

(Although Qin [22,44] claimed that he had proved that H2 = 4, Cao [23] pointed

out his problem. If Qin's work were right, then papers [6], [7], [20] and

[21] mentioned above were all not necessary.)

BLOWS AND LLOYD'S CONTRIBUTIONS: Blows and Lloyd [19] extended Bautin's

technique of creating small-amplitude limit cycles from a fine focus of

E2(a,b) to higher-order systems and employed symbolic manipulation methods

in computing the so-called focal values of nth-degree polynomial systems.

This is a great breakthrough over Bautin's method and so it is an important

contribution to Hilbert's 16th problem in the case of higher-degree systems.

Therefore let us outline the ideas here.
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In order to produce limit cycles from a fine focus (at the origin) the

corresponding polynomial system should take the form

n
iy + X + P (x,y)

i=2
n I

= -X + Xyl +i!2 Qi(x'Y)

i=2

where Pi. Qi are homogeneous polynomials of the ith degree. As is known, a
suitable Lyapunov function V for (1) should be constructed so that the rate

of change along trajectories of (I) is

V ~ 2  2 y') 2 'k= n2 + y + n4(x
2 + y )2 + n2k(X + y') +

where the quantities n2, n 4..... n2k' ... are polynomials in the coefficients

of Pi, Qi' and A and are called the focal values of (I). For (1), the fine

focus at the origin is called of order k if n2 : n4 = ... = n2k = 0,
n 2k+1 1 0. The quantities n2 , n4 ..... n , n2k+2 must be computed

to find the number of small-amplitude limit cycles surrounding the origin.

The numoer k is the largest integer such that n2 = n4 = ... = n2k = 0, but
all n2j+ 2 / 0 (j = k, k + 1...). The ideal generated by the n2j in the
coefficient polynomials has a finite basis which consists of nonzero poly-

nomials n2k/<n 2, ... In2k-2> where <n2, ... n2k-2> is the ideal generated by

n 2'* .. n2k_2. If we write the basis as B {L(O),L(1),... ,L(M)1 then B is

called the focal basis and the polynomials L(O),...,L(M) are called the

Lyapunov quantities of (1). Suppose the system E n(a,b) (or the system (M))

has a fine focus of order k at the origin. So L(O) = L(1) = ... = L(k-1) = 0,
L(k) < 0 (if L(k) > 0, the discussion is similar) and the origin is a stable

fine focus of order k which is denoted by the symbol 0+. Let L be a level

curve of V which is close to the origin so that trajectories of (1) are
inwardly across L. flow let us perturb (1) so that for the perturbed system

(PI), L(O) = L(1) = ... L(k-2) = 0, but L(k-1) > 0. The origin is now an
unstable focus which is denoted by the symbol Ok I. By the continuity of the

vector field, the perturbation of (I) may be so small that the trajectories

of (PI) are still inwardly across L. By the Poincar6-Bendixson theorem there

exists a stable limit cycle between O+_ and L which is denoted by C+.
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Obviously, in a small enough inward neighbourhood of C+ there is a closed

curve.C I such that the trajectories of the system (PI) are outwardly across

C1. Now perturb (P1) to (P,) so that L(O) = L(1) ... = L(k - 3) = 0,

L(k - 2) < 0. The origin is now a stable focus of order k - 2, O+ _2" By

the continuity of the vector field, the perturbation of (PI) to (P2 ) ay be

so small that the trajectorieF of (P2) are still outwardly across C1. By

the Poincare-Bendixson theorem there is an unstable limit cycle of (P2),

C2, between 0+ 2 and CI. Continuing this process up to the kth perturbation,2k2 V + C2 C+

we obtain k limit cycles CI C.2 ....C k' and the unstable rough focus 00, if

k is odd. Here C+ is a limit cycle of the system (P), C2 is of (P2)... C+

is of (PK). If k is even, a stable rough focus 00 is obtained after the kth

perturbation of (1). Let the perturbations (Pi) to (Pi+1) (i = 2,3,..., k-l)

be small so that C1 is a contour without contact of (Pk). Similarly, in an

inward small neighbourhood of C, there is a contour without contact of (Pk)

C2. By the Poincarg-Bendixson theorem there exists an unstable limit cycle,

Ckl between CI and C2. By similar discussions, k limit cycles of the final

perturbed system (Pk), Ckl, C 2  .,Ckk_1 and C+"k k'~ . c k1 n k are obtained.

Therefore, at most k small-amplitude limit cycles can bifurcate from a

fine focus of order k under suitable perturbations of the polynomial system

(1).

SLEEMIAJ1'S METHOD: In his recent research report [49], based on the above

work of Blows and Lloyd and using the idea of Hopf-bifurcation and the method

of averaging of Show and Mallet-Paret [50], Sleeman posed a new approach to

the resolution of Hilbert's 16th problem. His solution to the problem

successfully depends on the manipulation of complicated algebraic quantities

involving the coefficients aij, bij and leads to an algorithm for determining

Lyapunov quantities and certain "averaging maps". Because of a large number

of manipulations in the evaluation of integrals of trigonometric polynomials,

the algorithm in the averaging process is solved using the symbolic manipu-

lalinn package MACSYMA [51,52]. Finally, the results obtained are applied to

quadratic and cubic systems and an outline for a systematic attack on higher-

order systems is given.

CUBIC SYSTEMS: First, it is necessary and interesting to compare the known

relative positions of cycles of E2 with some relative positions of cycles of
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E3. The author [26] pointed out that many properties of cycles of F3 differ

greatly from those of E2 . For example, a closed orbit (a limit cycle) of

E3 may surround more than one critical point (as shown in figure 4); when

it surrounds only a singular critical point the latter may not be a focus

or a centre. (The Van der Pol equation

= y, y = -x + 3(1 - x2)y

has a unique limit cycle surrounding a node.) A centre and a limit cycle of

E3 can coexist. There can exist three cycles of which one encloses the two

others, which are separate, or three cycles which separate mutually. The

above-mentioned cases are illustrated in figure 4. The cases (a)-(e) of

limit cycles and singular points can be realized only for E3, but not for E2.

00 '. 0 00.000

The number of a node a centre one surrounds two three separate

singular points

is 1.

(a) (b) (c) (d) (e)

Figure 4

Each closed oroit of any quadratic system E2(a,b) encloses a convex region,

so that it is cut by any straight line in at most two points. For each closed

orbit of any cubic system E3 (a,b), it is cut by any straight line in at most

four points [54J.
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Concerning a lower bound and the relative positions of limit cycles of

cubic systems, some results have been obtained. Sibirskii [24) and Shi [25]

gave examples of E3 with five concentric limit cycles by perturbing a fine

focus. Recently, Blows and Lloyd [193 also constructed a class of such

system E3 with five cycles. All the cubic systems given by those authors

have no quadratic terms in x and y. It follows from these examples that

H 3  5. From a viewpoint of relative position of limit cycles, these examples

only supply a nest of limit cycles enclosing a focus. Different from that

distribution of limit cycles, Il'yashenko [40] also showed that H3 Z 5.

However the corresponding limit cycle may surround more than one singular

point.

The author with his co-authors [27] gave a variety of distributions of

limit cycles of cubic systems shown in figure 5.

00G
Q:0

Figure 5

It should be pointed out that the famous Russian mathematician Arnold [28]

obtained such a distribution of cycles of E3 early in 1977 (figure 6).
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0

Figure 6

Li and Li [31] obtained 12 kinds of patterns of limit cycles of cubic

systems by perturbing a cubic Hamiltonian system. Let Ck denote a kind ofmk
pattern. In Ck C represents limit cycle, m the number of limit cycles and

k the multiplicity of singular points enclosed by the m cycles. The symbol
"-" means that cycles separate. The symbol "D" means that one or several

cycles enclose another or others. They obtain the following 12 kinds of

patterns:

(1) C 1  (k 1,3,5,7,9),
k -'

(2) C (k = 1,3,5,7),
Ck(

(3) C1 = CI

(4) C1 n C1 1c3 ( 1 - 1 )
1 2

() C3  C1,
12(6) C' (CI  C1),

() 1 2 2
(7) C3  C 1  C1 ),

2 1C3 DCV
2 111

(9) Ci3 =(CI CO,

(10) C1 C1( )
C1  C1  1 C - 1

(11) 1 1 ( P
(1 ) C 1  -(C C -

C1 -( 3  1~ 1 V~ ~
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For example

Now let us explain the method (b) of producing limit cycles.

Before giving the newest results of Hilbert's 16th problem for E3 we

introduce the corresponding new method of producing limit cycles of E3 which

is a generalization of continuous variation of coefficients suggested by

Hilbert. This method is a wonderful application of Pontryagin [29] and Zhang's

[30] method to Hilbert's 16th problem for E3. Moreover, the technique of the

application is well-developed by Li and Li [31] in 1985. Li and Huang obtained

that H3  11 [32]. They found a cubic system

= x(1 + 4x 2-y 2) + y(x2 + 0.43y - )

= y(1 + x2 - 0.5y 2) + Iux(x2 + 0.43y2 - X)

where X, p are parameters

-1.579338 < X < -1.57401, 0 < << 1.

System (1) has at least 11 limit cycles as shown in figure 7.

by perturbing

7 families of closed

orbits (non-isolated)

(a) The phase portrait of (1) (b) 11 limit cycles of (1) with

with 4 centres and 3 saddles -1.579338 < A < -1.57401 for 0 < p <<

Li's example with 11 cycles:(1)u

Figure 7
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Consider the disturbed Hamiltonian system:

dx = - x[p(x,y) - A] = P(x,y,P,A)

(2)
dy HP
dy - - - y[q(x,y) - x] = Q(x,y, ,)

where H(x,y), p(x,y), q(x,y) are polynomials with p(O,O) = q(O,O) = 0, A, P

two parameters with 0 < p << I and P(O,O,p,A)=QD,O,.,A) = 0. Suppose that

the following condition holds.

CONDITION A: The integral of the system (2) 0 H(x,y) = h (hI < h < h2 )

represents a family of closed orbits f{h) which surround C (C a 1) centres

and/or s (s a 0) saddles, expand when h increases, and are negatively

oriented. Let

f(x,y) = xpx' + yqy + p + q, Dh = Interior of Fh

cp(h) zj 1D h dx dy, zp(h) = JJD h f(x,y)dx dy (h1 < h < h 2)

x(h) - 0(h) (h < h < h2).

Then the function X = A(h) is called the detection function of (2)P correspond-

ing to the family {Fh} and the graph of this function is the detection curve.

Applying Pontryagin and Zhang's method to system (2) P leads to:

FUNDAMENTAL THEOREM A (on bifurcations from periodic cycles): For a fixed

i. (0 < ' << 1) and a given value X0 of parameter A, the system (2)P is

considered. Suppose that condition A holds. Then

(i) system (2) P with X = X0 has a unique stable (unstable) limit cycle near
the closed curve i if (h i ) A '(h i ) > 0 (< 0),

(ii) system (2) P with x= x0 has no more than k limit cycles near rhi (i>1),

if X0 
=  (h*) and x'(h*) = ... = 0(k')(h) - 0, AM (h*) # 0.
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If the closed orbits { h} in condition A expand when h decreases or are

positively oriented then the limit cycle mentioned in (i) of the theorem has

the opposite stability.

CONDITION B: (1) Condition A holds. (2) Integral curves H(x,y) = hi,

(i = 1,2) are homoclinic orbits or heteroclinic orbits of (2)0 which

surround sorme orbits of { h} and are surrounded by some orbits of {p h

being symmetrical with respect to the x-axis. (3) rh changes monotonically

with h in each region divided by the homoclinic and heteroclinic orbits.

(4) The vector field of (2) is invariant under a rotation through 27,/k

(k = 1,2,...). (5) Saddles of (2) are hyperbolic. (6) x(h) 0 (h1 <h<h2 ).

Applying Mel'nikov's [33,34] method to (2) leads to

FUNDAMENTAL THEOREM B (on bifurcations from singular closed orbits): Suppose

that conditions A, B hold. If x = X(h2 ) + o(.) or X =X (hI) + o~v), then

(2) has homoclinic or heteroclinic orbits.

By using the two fundamental theorems on bifurcations and starting with

a suitably chosen Hamiltonian polynomial system, a variety of distributions

of limit cycles may be obtained by perturbing the system. This is the

theoretical base of the above-mentioned example with 11 limit cycles.

Concerning Hn Otpokov [35] obtained in 1954 an estimate

(n + 5n) - 7, if n is even and n 6

Hn

1(n2 + 5n) - 13, if n is odd and n 9.

Shen [36] recently gave by means of many properties of Chebyshev's poly-

nomials T nX) the following recursive inequality on Hn

n n

Hn - ) 2H 1 , ifn I is an integer.

Thus
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H5  H2 > 4 x 4 = 16

H > (8)2H = 4H > 4 x 11= 44
7~ 7f 3~ 3

12-2
H11 > 1(--) H3 a 9 x 11= 99

Hn > (n H3 a -(n + 1)2 , if n + 1 is divisible by 4.

On the other hand, by Otpokov's estimation, we have

H11 > 75

Therefore, Shen's result is better than Otpokov's in the case of n = 4k - 1

(k is a natural number).

ACKNOWLEDGEMENT: This research was supported by the China Natural Science

Foundation Grant No. 1860497.

REFERENCES

[1] Hilbert, D., Mathematische Probleme, Gesammelte Abhandlungen, B.III,

S.317, 1900.

[2] Aleksandrov, P.S., Problemy Gil'berta, Izdat rNauka, Moscow, 1969

(German transl.: Hilbertische Probleme, Akademie Verlag, Leipzig, 1971).

[3] Browder, F.E., Mathematical Developments Arising from Hilbert Problems,

Vols. I, II, Proc. Symp. Pure rIath., Vol. 28, 1976.

[4] Dulac, (I.H., Sur les cycles limites, Bull. Soc. Math. Fr., 51 (1923),

45-188.

[5] Il'yashenko, Ju S., Limit cycles of polynomial vector fields with non

degenerate singular points in the plane (in Russian), Funct. Anal. Appl.,

18 (1984), No. 3, 32-42.

£6) Chicone, C. and Schafer, D., Separatrix and limit cycles of quadratic

systems and Dulac's theorem, Trans. Amer. Math. Soc., 278 (1983), No. 2,

585-612.

199



[7] Bamon, R., Solution of Dulac's problem for quadratic vector fields,

An. Acad. Brasil, Cinc., 57 (3) (1985), 265-266.

[8] Bautin, N.N., On the number of limit cycles which appear with the

variation of coefficients from an equilibrium position of focus or

center type (in Russian), Amer. Math. Soc. Transl. No. 100, 1954.

[9] Tung, C.C., Positions of limit cycles of the systems

dx 2 i dy ijxiyj.
-d-a.xy = - i-i-yzYO'd- =1Z 3d' 1 + =0 i+ =0

Sci. Sinica, 8 (1956), 151-171.

[10] Petrovskii, I.G. and Landis, E.l., On the number of limit cycles of

the equation dy/dx = P(x,y)/Q(x,y), where P and Q are polynomials of

the second degree, Hat. Sb. N.S. 37 (79) (1955), 209-25U (in Russian);

Arer. Math. Soc. Transl. (2), 16 (1958), 177-211.

[11] Petrovskii, I.G. and Landis, E.M., On the number of limit cycles of

the equation dy/dx = P(x,y)/Q(x,y), where P and Q are polynomials,

Mat. Sb. N.S. 43 (85) (1957), 149-168 (in Russian); Amer. Math. Soc.

Transl. (2), 14 (1960), 181-200.

[12] Landis, E.M. and Petrovskii, L.G., Letter to the Editor, Mat. Sb., 73

(115) (1967), 160; English transl.: Math. USSR, 2, (1967), 144.

[13] Ye, Y.Q., Theory of Limit Cycles (in Chinese), Shanghai Sci. Tech.

Press, 1965.

[14] Shi, S.L., A concrete example of the existence of four limit cycles

for plane quadratic systems, Sci. Sinica (Engl. edition) 23 (198U),

153-158; Sci. Sinica (Chinese edition) 11, (1979), 1051-1056.

[15] Chen, L.S. and Wang, M.S., The relative position and number of limit

cycles of quadratic differential systems, Acta. Math. Sinica, 22 (1979),

751-758.

[16] Qin Yuanxun, Cai Suilin and Shi Songling, On limit cycles of planar

quadratic system, Sci. Sinica Ser. A. 25 (1982), 41-50.

[17] Li, C.Z., Two problems of planar quadratic systers, Sci. Sinica,

Ser. A, 26 (1983), 471-481.

[18] Ianner, G., Jahrbuch Uberblicze Mathematik (1983), 9-24.

[19] Lloyd, N.G. and Blows, T.R., The number of limit cycles centain

polynomial differential equations, Proc. R. Soc. Edinb., 98A (1984),

215-239.

200



[20] Li, C.Z. Nonexistence of limit cycles around a weak focus of order 3

for any quadratic system, Chin. Ann. Math., 7B (2) (1986), 174-190.

[21] Ye, Y.Q., On the impossibility of (2,2) distribution of limit cycles

of any real quadratic differential system, J. Nanjing Univ., 2 (1985),

161-182.

[22] Qin, Y.X., On surfaces defined by ordinary differential equations - a

new approach to Hilbert's 16th problem (in Chinese), J. Northwest Univ.,

1 (1984), 1-15.

[23] Cao, Y.L., On the mistakes of the paper by Qin, J. Nanjing Univ., 3

(1984), 415-423.

[24] Sibirskii, K.S., The number of limit cycles in the neighbourhood of a

singular point, Differential'nye Uravnenija, 1 (1965), 53-66.

[25] Shi, S.L., Example of limit cycles for cubic systems, Acta. Math.

Sinica, 18 (1975), No. 4, 300-304 (in Chinese).

[26] Tian, J.H., On general properties of cubic systems, Int. J. Math.

Educ. Sci. Technol., 14, No. 5 (1983), 643-648.

[27] Li, J.B., Tian, J.H. and Xu, S.L., A survey of cubic systems (in

Chinese), J. Sichuan Teachers Univ., 4 (1983), 32-48.

[28] Arnol'd, V.I., Loss of stability of self-oscillations close to

resonances and versal deformations of equivalent vector fields, Funct.

Anal. Appl., 11 (2) (1977), 1-10.

[29] Pontryagin, L.S., Uber Autoschwingunssyteme, die den Hamiltonschen

Nahe Liegen, Phys. Sowjetunion, Band 6, Heft 1-2, (1934), 883-889.

[30] Zhang, Z.F., Dokl. Akad. Nauk SSSR, 119 (1958), 659-662.

[31] Li, J.B. and Li, C.F., Global bifurcations of planar disturbed

Hamiltonian systems and distributions of limit cycles of cubic systems

(in Chinese), Acta. Math. Sinica, 28, No. 4 (1985), 509-521.

[32] Li, J.B. and Huang, Q.IQ., Bifurcations of limit cycle forming compound

eyes in the cubic system (Hilbert number H3 A 11) (in Chinese), J.

Yunnan Univ., 1 (1985), 7-16.

[33] lel'nikov, V.K., On the stability of the center for time periodic

perturbations, Moscow Math. Soc., 12 (1978), 1-57.

[34] Guckenheimer, J. and Holmes, P.J., Nonlinear Oscillations, Dynamical

Systems and Bifurcation of Vector Fields, Springer-Verlag, Berlin,

1983.

2U 1



[35] Otpokov, N.F., Mat. Sb., 34 (76) (1954), 127-144.

[36] Shen, Z.H., On the number of limit cycles of higher degree polynomial

systems, J. Graduate School (Beijing), 3 (1986), No. 1, 1-4.

[37] Joyal, P., Thesis, Universitd de Montreal, 1985.

[38] Il'yashenko, Yu.S., On the finiteness problem of the number of limit

cycles of polynomial vector fields in the plane, Usp. Mat. Nauk, 37,

No. 4 (1982), 127.

[39] ll'yashenko, Yu.S., Singular points and limit cycles of differential

equations in the real and complex plane (in Russian), Pushchino,

Preprint, NIVTS, Akad. Nauk SSSR, Nat. Inst. Comput. Center, 1982.

[40] Il'yashenko, Yu.S., Occurrence of limit cycles of the equation

dw/dz = - R /Rw with polynomial R(z,w) under perturbation, Mat. Sb.,

78, No. 3 (1969), 360-373.

[41] Sotomayor, J. and Paterlini, R., Quadratic vector fields with finitely

many periodic orbits, Lect. Notes in Mlath., No. 1007, 1983, 783-766

or In. Symp. on Dynamical systems, IMPA, 1983.

[42] Il'yashenko, Yu.S., Dulac's memoir "On limit cycles" and related

questions of the local theory of differential equations (in Russian),

Usp. Mat. Nauk, 40 (1985), No.6 (246), 41-78, 199.

[43] Andronova, E.A., On the topology of quadratic systems with four (or

more) limit cycles (in Russian), Usp. Mat. Nauk, 41 (1986), No. 2 (248),

183-184; Quadratic systems that are close to conservative with four

limit cycles (in Russian), Methods of the Qualitative Theory of

Differential Equations, Gor'kov. Gos. Univ., Gorki, 1963, 118-126,

166-167.

[44] Qin, Y., On surfaces defined by ordinary differential equations: a

new approach to Hilbert's 16th problem, In Ordinary and Partial

Differential Equations, Lecture Notes in Mathematics, Vol. 1151 (Eds.

B.D. Sleean and R.J. Jarvis). Springer-Verlag, Berlin, 1985, pp. 115-

131.

[45] Cherkas, L.A. and Gayko, V.A., Bifurcations of limit cycles of a

quadratic system with two parameters rotating a field (in Russian),

Dokl. Akad. Nauk BSSR, 29 (1905), No. 8, 694-696, 764.

[46] Rudenok, A.E., Limit cycles of a two-dimensional autonomous system

with quadratic nonlinarities (in Russian), Differential'nye Uravneniya,

21 (1985), No. 12, 2072-2082, 2203-2204.

202



[47] Shi, S.L. A method of constructing cycles with contact around a weak

focus, J. Differential Equns, 41 (1981), 301-312.

[48] Qin, Y., Shi, S. and Cai, S., On limit cycles of planar quadratic

systems, Sci. Sinica (Ser. A), 25 (1982), 41-50.

[49] Sleeman, B.D., The number of limit cycles of polynomial autono.ious

systeris in the plane and Hilbert's 16th problem, Applied Analysis

Report, University of Dundee, Report AA/862, March 1986, 1-88.

[50] Chow, S.N. and Mallet-Paret, J., Integral averaging and bifurcation,
J. Differential Eqns, 29 (1977), 112-159.

[51] MACSYMA 304, Mlath. Lab. Group of the Laboratory for Computer Science,

IIT, 1983.

[52] Fraser, C., Algebraic manipulation by computer - a sign of things to

come? Bull. Inst. Mlath. Appl., 21 (1985), 167-168.

[53] Tian, J.H., On limit cycles of center-symmetrical quadratic systems,

J. Sichuan Univ., No. 3 (1983), 9-14.

[54] Tian, J.H., On the shape of closed orbits of polynomial differential

systems, Int. J. ilath. Sci. Tech,, 18, No. 4 (19 ) 617-621.

[55] Ecallej, Martinet, J, Robert Moussu and Ramis, J.-P., Non-accumulation

des cycles-limites (I). C.R. Acad. Sci. Paris Ser. I Math. 304 (1987),

375-377.

[56] Ecalle, J, Martinet, J, Robert Houssu and Ra.is, J.-P., Non-accumulation

des cycles-limites (II), C.R. Acad. Sci. Paris Ser. I Math. 304 (1987),

431-434.

[57] Rychkov. G.S., 1he maximum number of limit cycles of the systemaix2i+1
Sx, x =y - a x is two, Diff. Uravn. 11 (1973), 380-391.

i=0

Tian Jinghuang
Chinese Academy of Sciences,
Chengdu,
China

203



J.F. TOLAND

A homotopy invariant for dynamical
systems with a first integral

1. INTRODUCTION

This lecture concerns joint work with Norman Dancer on a degree theory for

T-periodic orbits of flows with a first integral where T is fixed a pr-ori.

The familiar Brouwer degree ay be regarded as an algebraic count of the

number of solutions in an open bounded subset P -n of the equation f(x) = p

when f is continuous on (the closure of 2) and f(x) / p when x C Q (the

boundary of 2). It is an integer-valued homotopy invariant. In 1967 Fuller

defined a rational-valued degree for dynamical systems which might be regarded

as giving an algebraic count of the number of periodic orbits in P,

irrespective of their period, of the equation x = f(x) when f has no zeros

in 7 and no periodic orbit in intersects D£2 (see Fuller [4], and Chow and

Mallet-Paret [1].) In their respective contexts each of these is a homotopy

invariant and has a natural set of applications in bifurcation theory using

the methods of Rabinowitz [7]. In particular, each is invariant to small

perturbations in f. Therefore if x = f(x) + Eg(x) has no periodic orbits in

for all c sufficiently small, then the Fuller degree for x = f(x) in Q,

if it is defined, is necessarily zero. A special case when the Fuller degree

is always zero arises if there exists a nondegenerate first integral for the

equation x = f(x), i.e. when <VV(x),f(x)> 0 for some real-valued functional

V. Then V is constant on trajectories of z f(x) and x = f(x) + cVV(x) has

no periodic solutions in £2 for c $ 0. A similar difficulty was encountered

by Dancer [2] when he considered the Brouwer degree for S -invariant functions

on IRn ; in this case the Brouwer degree is always zero also. He coped by

restricting attention to equivariant mappings which are, in addition, gradients

of functionals on In. His approach leans somewhat on the rethods of Fuller.

Our purpose in this lecture is to show how to define a degree for all

Lipschitz continuous, nonvanishing vector fields defined on P n (where 2

is bounded and open) which are orthogonal to VV, V being a continuously

differentiable function on £2 with nonvanishing gradient, such that every

T-periodic orbit of x = f(x) in Q lies in £2. If these conditions are
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satisfied we say that (Q,f,V) is admissible. (lie require f to be defined on

and V to be defined on P and <f(x),VV(x)> = 0 on Q.) Here T > 0 is

specified a priori, and is fixed.

Our degree function, which will be denoted by deg(Q,f,V), where its

dependence on T is understood but suppressed for the sake of a convenient

notation, can be regarded as an algebraic count of the number of T-periodic

orbits of x = f(x) in 2. It is a homotopy invariant in the sense made

precise in (II) below.

The approach described here is nai've. The degree is first defined in a

smooth nondegenerate situation, and then extended to the general context by

approximation. To this end one needs to establish a type of Kupka-Smale

genericity result (see e.g. Palis and de Melo [6]) in the class of vector

fields with a first integral. This step requires greatest technical effort

and an outline of the details involved is given in section 3. In [3] there

is a proof that, when the degree is calculated for a Hamiltonian system whose

first integral is the Hamiltonian, then the degree agrees (up to a change of

sign) with the abstract degree defined by Dancer [2] for S1-invariant gradient

mappings once the latter has been calculated for a (gradient) Hamiltonian

system. !Je ignore this aspect of the theory now. Our presentation means

that computations are carried out directly with the dynamical system, and not

through an abstract forrulation as in the case for the S1-degree. UIe return

to the observed connection with the S 1-invariant gradient degree in the later

paper when we consider changes of the index and bifurcation theory [3].

This lecture is completely descriptive and deliberately avoids a detailed

discussion of the technical mathematical treatment which is being reported

upon. Our aim is to give an intuitive account of the degree theory beginning

in section 2 with the definition and basic properties. In section 3 there is

a nonrigorous descriptive account of the ideas involved in establishing the

generic results on dynamical systemis with a first integral on which the

definitions and proofs of section 2 are based.

2. THE DEGREE

Suppose that (Q,f,V) is admissible and that y is the only T-periodic orbit in

2 of x = f(x) and let p C y. There is no loss of generality in supposing

that p = 0, the origin of 1Rn. Then 0 is a fixed point of the time-T-map F

defined by the flow R = f(x), and indeed 0 is locally a unique fixed point of
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F in the hyperplane f(O) (= H, say). Let K = VV(O)1 , and let Q be the

orthogonal projection in In onto VV(O) and parallel to VV(O) (see figure
1).

-- V (Ol

r

Figure I

Now because V(F(x)) = V(x) for all x and VV(O) A 0, it is easy to see

that there exists a neighbourhood U of 0 such that F(x) = x, x E U, if and

only if Q(F(x)-x) = 0. Now 0 = Qo(I-F) is function from an open set U ni H

in the (n-1)-dimensional space H into the (n-l)-dimensional space K which

has an isolated zero at 0 E H. Let ei .... ,en-2 be an arbitrary basis for

H n K and let {VV(O),e I ... e n2 } and {f(O),ei, ... en-2 } be bases for H and

K respectively. Then with respect to these orientations the Brouwer degree

deg8 (U n H,<,O) is defined and is independent of {ei,...,en-2) since these

basis elements are common to the domain and the co-domain. The usual

stability of the Brouwer degree means that the value of the degree is locally

independent of the choice of the point p on Y chosen for the calculation.

Since y is connected the calculation is independent of the choice of p on Y.

Hence degB(U n H,,O) depends only on Y,f and V. If it is defined and non-

zero then W(x) = 0 has a solution in U n H and so there is a T-periodic orbit

through a point of U n H. However the following illustrates that, as it

stands, this Brouwer degree lacks the stability required of an index for Y

(see figure 2).
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Figure 2

In the example of figure 1 let us suppose that y has minimal period T/3,

say, and that the calculation above gives degB(U n HD,O) = k # 0. Let us

suppose also that after a small perturbation of f to f the T-periodic orbit

y (which must persist in some form or other because k 0 0) becomes an orbit
y of minimal period T. Thus 0 has three zeros, Pi, i = 1,2,3, in U n H, and

if U. is an isolating neighbourhood of pi then Z = deg(H n Ui, ,0) is

independent of i, since p1,P2 and P3 all lie on the same orbit yF. Therefore,

by the stability of the usual Brouwer degree, deg(U n H,w,O), to small

perturbations we find in this case that 3R = k. Careful observation of what

can happen in circumstances like these leads naturally to the following

definition of an index for y, an isolated T-periodic orbit. Because it is

stable to perturbations, this index leads naturally to a degree theory which

enjoys the usual properties.

DEFINITION: Suppose that (P,f,V) is admissible, that y is the unique T-periodic

solution of x = f(x) in Q, and that T/m is the minimal period of y. (Such an

m E I exists since f(x) 0 in $.) Let

ind(y) =degB(U n H,-,O)
m

If there is only a finite set {y1,...,yk of T-periodic orbits of x - f(x) in

2, let
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k
deg (Q,f,V) = ind (yi).

i=1

We will say that an admissible (Q,f,V) is finite if there are only a finite

number of T-periodic orbits of = f(x) in Q. In the next section there is

a description (omitting details) of the proof that for any admissible (Q,f,V)

there exists a sequence of finite admissible (,fk,V) such that fk f

iniformly in Q, and deg(Q,fk,V) is independent of k for all k sufficiently

large. This enables us to make a definition of the degree for any admissible

(Q,f,v):

deg(Q,f,V) = deg(SQ,fk,V) for all k sufficiently large.

If we show that the right-hand side is well-defined, then the following

properties of the degree are immediate from the definition:

if deg(S,f,V) = M/N, (M,N) = 1, and paIN where p is a prime number
(i)

and ot C 1, then 0 contains an orbit of period T/p

To see this, note that for all k sufficiently large the finite admissible
fk'v) has degree (12/N), and it is immediate from the prime factorization

theorem and the definition of the degree in the finite admissible case that

x = fk(x) has a (T/po)-periodic orbit in Q. Since fk - f uniformly and f is

Lipschitz, the classical continuous dependence theory (Hartman [5], Ch. 2,

Th. 3.2) ensures that x = f(x) also has a (T/po)-periodic orbit in 0.

Suppose now that a family of finite admissible (P,fx,Vx), X E [0,1],

depends continuously on A in the sense that the f.'s are continuous in X with

respect to the metric of uniform convergence on n, and the Vx's are continuous

with respect to the metric of uniform convergence on compact subsets on Q.
This will be called a finite admissible homotopy. Then because there are

only a finite number of T-periodic orbits of x = fx(x) in Q for each X, it

is an easy matter to infer from the horotopy invariance of the classical

Brouwer degree function that deg(Q,fA,VX) does not depend on X. This rather

weak version of the homotopy invariance property fo- finite admissible

homotopies is a consequence of our definition and classical continuous

dependence theory for initial-value problems in a straightforward fashion.
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In the next section we will indicate how to show that if (Q,fXVX), A E [0,1],

is an admissible homotopy in the sense that each (Q,fX,Vx) is admissible and

the dependence on X is continuous in the sense described above, then there
k

exists a sequence of finite admissible homotopies (Q,fx,Vx) such that

fk kfX uniformly in and X E [0,1]. (For each X E [0,1] and k E N,

(Q,fX,V) is finite and admissible.) This approximation theorem is established

through a long technical argument. However, once it has been established, we

can use it to prove that the above degree function is indeed well-defined,

and that it enjoys a strong homotopy invariance property. The argument for

well-defindedness goes as follows.

Suppose that (Q,f,V) is admissible and fk , f uniformly on 2 where

(Q,fk,V) is finite and admissible. Wie can show that deg(Q,f kV) is independent

of k sufficiently large as follows. Let k and X be natural numbers. Then for

k and 9, sufficiently large, (Q,Xfk + (1-)f ,V) is an admissible homotopy

since fk , f uniformly on n. Now we have claimed that any admissible homotopy

can be approximated by a finite admissible homotopy and so there exists
m k
X9 )fk + (-A)f X uniformly on 5 and X E [0,1] as m where (Q,g ,V) is

finite and admissible. Hence by the homotopy invariance of finite admissible
m . z

homotopies deg(Q,gm,V) is independent of A E [0,1]. Now g0  f , (2,f ,V)mX0

and (Q,go,V) are both finite and admissible, and so an elementary argument

involving only the stability of the Brouwer degree leads to the conclusion
m 9.

that deg(Q,go,V) = deg(Q,f ,V) for all m sufficiently large; also for all m

sufficiently large deg(Q,g,,V) = deg(Q,fk,V) for the same reason. Hence for

all m sufficiently large

deg (92, f ,=V) deg(,,goV) d'52,V) = deg(S,f ,V).

This shows that if fk f uniformly and if (R,fk,V) is finite and admissible,

then deg(Q,fk,V) is independent of k for all k sufficiently large.

Thus provided we can show that admissible homotopies can be approximated

by finite admissible homotopies then we can show that the basic definition of

the degree function given above makes sense.

It is now easy to see that the approximation of admissible homotopies by

finite adrissible homotopies leads to the strong homotopy property of the

degree function, namely th t:
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deg(Q,f ,V ) is independent of X when (Q,f,V ) is anyA' A (II)

admissible homotopy.

To see this let f . fx uniformly on and X E [0,1] be such that (Q,fVX)

is a finite admissible homotopy. Then by definition deg( 2,f,,V,) =

k
deg(Q,f ,V,) for all k sufficiently large (k depending on X). Now if X and

' 2 are in [0,1] we obtain
kk

deg(Q,f,1,V 1) = deg(Q,fk V1k deg(Qf k k

= deg(Q,fx ,V X)
22L

for some k, where the r iddle equality follows because the degree function is

constant for finite admissible homotopies. Thus the homotopy property is

established.

So far we have outlined the definition of our degree functions for T-

periodic orbits of admissible flows with a first integral and established

a powerful homotopy invariance property provided we know that admissible

homotopies can be approximated by finite admissible homotopies. Now it is

time to show how this result is obtained. It is to be hoped that the

following outline of our method, which onits the technical details, rmakes

the rather tedious step-by-step nature of the proof clear.

3. GENERIC THEORY OF ADMISSIBLE HOMOTOPIES

Suppose that (Q,f,,Vx), X E [0,1], is an admissible homotopy, i.e.

i) x - f5 is continuous with respect to uniform convergence on Q;

(ii) x - V is continuous with respect to C1-convergence on compact subsets

of 0;

(iii) f (x) 0 0, x E Q, A E [0,1], VV,(x) $0, x C P, X E [0,1];

'iv) all T-periodic orbits of x = f(x) in lie in S1, X E [0,1].

Because of (iv) we know that there is an open set U with U c Q such that

all T-periodic orbits in Q of x = fX(x), X E [0,1], lie in U. Since VV $ 0
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on 0 we know that IVVI a c > 0 on U for some a. Since in defining the degree

Q could clearly be replaced by U there is therefore no loss of generality in

assuming throughout that

(v) IVVX(x)I a a > 0 on , X E [0,1].

Now our purpose is to indicate how (Q,fx,VX) can be approximated by a

finite admissible homotopy. There is no loss of generality in supposing at

the outset (because if necessary we can make smooth approximations and

extensions) that

(vi) f and VX are jointly infinitely differentiable with respect to

X E (-6,(I + 6)) and x E Rn, and that f and VV grow no faster

than linearly at infinity; in particular for any A, solutions of

the initial-value problems R = f,(x) and =VV,(x) are unique,

exist for all time and depend smoothly on the initial data and

on X.

One further elementary observation is in order:

(vii) there exists m* > 0 such that any T-periodic solution in Q of

x = f,(x) has minimal period no less than T/m*.

This is immediate from (iii).

The proof may now be organized as a sequence of steps.

STEP 1: First we indicate how to prove that the smooth admissible homotopy

(Q,f,,V,) can be approximated by a smooth admissible homotopy (Q,f , V.) such

that fA(x) has only finitely many T/m*-periodic orbits in Q for any

X E [0,1]. The proof depends on the following geometrical observation. For

each 1, let 0. denote the set of x in Q such that x(t) E 2 for all

t C [0,(T/m*) + E) for some c > 0 if = fA(x) and x(O) = x. Clearly QA is

open. Let F X: QL X denote the time-(T/m*)-map for the equation x = fx(x),

and let FA denote its graph: thus F, = {(x,FX(x)) : x C QX. Let

211



F= U {W xr.XE ( - ,1 +6)

Now for each x E , let O(x) denote the trajectory through x of the

equation x = VVX(x), and let

= u {W} x {x} X {fe(x)}.
XE(-6,1+6)
xEO X

Now F- R 2n+I is a smooth submanifold of dimension (n+1) and 0 cR 2n+1 is

a smooth submanifold of dimension (n+2). The first observation, which is not

difficult to prove, is that if F 4 e then the intersection is a two-dimensional

embedded submanifold of 2n+1 and if (X,x,y) E F i 0, then y = FX(x) = x and

x lies on a (T/m*)-periodic orbit in Q of x = fx(x). In other words F ib 0
comprises a manifold of (T/m*)-periodic orbits of x = f,(x). However,

F i 0 is insufficient to ensure the aim of step 1; in other words, for a

fixed value of X there may be a cylinder of (T/m*)-periodic orbits of x =fX(x).

To outlaw this possibility a further transversality condition must be

satisfied.

Let A denote the vector bundle with base space

E= U Xx Q XxR n
XE(-6,1+6) }

and such that the fibre over (X,x,y) E E is L(x), which denotes the space of

linear operators from f,(x)± into VVx(x) . Then A is a smooth manifold of

dimension (n2 + 2). Let E c A be the submanifold defined by

= {(X,x,y,L) : (X,x,y) E 0, rank L = n-21 .

The E has co-dimension 1 in A. Now consider the set

D = {(A,x,FX(x),Q(A,x)o(l-dxFA[x])If,(x)± :X E (-6,1+ 6),x E X2)

where Q(A,x) is the orthogonal projection onto VV(x) . Then D c A. If

D t E, then D n E is a one-dimensional manifold. In particular, if F 6 0,

and (X,x,FX(x)) E 0 n F, but (X,x,FX(x), Q(Xx)O(I-dxFX[x])IfA(x)l) 9 E,
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then x lies on an isolated orbit of x = fX(x). On the other hand, if

(Xx,F.(x)) E- En F, and (X~x,F.(x), Q(x,x)O(I-dxFA[x])Ifxx±) E,and D E

then it also follows that x lies on an isolated orbit of A = f (x) in P.

(This occurs at the points where X = Xi in figure 3.)

Therefore it will suffice for our purposes to show that f can be perturbed

in such a way that Z 0 D and F t 0 are assured. This can be done locally in

a neighbourhood of a point (X,p) with p = FA(p) using perturbations of the

form

<aVV, x)>

f(x) + )xa - VVX(x)I
X 11I VV X(X) 111

where n > 0, is a test function with support centred at the origin, for

some fixed a E Rn The proof of this result is a straightforward calculation

of the derivatives of functions defined by the differential equation, but it

involves in an essential way the fact that (T/m*) is the minimal period of y.

A standard compactness argument then yields a perturbation for which F 4 0

and D 6 E on Q of the form
m XP<ai,vv Wx>

fx(x) + ( .(xi) {ai - A VV .

The set a13 .... am can be chosen so small that the perturbation of fX can be

made as close to zero as we like. The proof depends crucially on the fact

that the orbits of minimal period T/m* for X E [-J6,1 + 16] form a compact

subset of [-J6,1 + J6] x Q.

This perturbation has enabled us to describe in some detail the structure

of all the (T/m*)-periodic orbits in s? for A E (-J6,1 + J6). Generically

(i.e. after a small perturbation) there is at most a finite set of points

X19 ..... k E (-J6,1 + J6) and all (T/m*)-periodic orbits for other values

of X lie on curves y. parametrized by A. The set {Al,...,k} is characterized

by the fact that for xi there exists pi Eyii such that

(yiPi,FAi (Pi), Q(AiPi )O(l-d x F Xi[Pi]) f X (pi YL) E Z n D.

Since 0 0 E and F 41 0, these are turning points of the curves yA of (T/m*)-
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periodic orbits mentioned earlier (see figure 3).

P(A)

Figure 3

STEP 2: Now we make further perturbations of the vector fields f for A in

small neighbourhoods of X' .... k to ensure that Ai'1 ; i 5 k, is not a

period-multiplying bifurcation point. This means we must ensure that no

integer root of unity, apart from unity itself, is an eigenvalue of

dxFXi[p ] when p = F i(p). To obtain this after perturbation is a matter of

arguing locally in neighbourhoods of these critical (T/m*)-periodic orbits.

The perturbation is chosen in such a way that on these critical orbits the

vector fields are unchanged, and hence the orbits themselves are unchanged.

In a deleted neighbourhood of these orbits the vector field is adjusted

slightly to ensure that no integer root of unity is an eigenvalue of

dxFAi[Pi], 1 i k, when Fx (pi) = pi. Care must be taken to ensure that

after perturbation <f,,VV > = 0.

STEP 3: At this stage the (T/m*)-periodic solutions of x = f Wx) lie on

curves parametrized by A x Ai, 1 : i < k; the (T/m*)-periodic solutions of

= f (x) are isolated for each i' and there is no period-multiplying

bifurcation at these critical values of A. Let us consider a curve

p(X), , E (XiA i+1), p(X) E y,, where yA is a (T/m*)-periodic orbit of

x = fx) in Q.

This step is to show that if for some A E (XiAi+W) period-multiplying

bifurcation occurs, then after perturbation we can ensure that it is a period-

doubling bifurcation which is not "vertical". Clearly, generically we cannot

preclude the possibility of an eigenvalue of dxFA[pA] passing through -1 as

A varies. However it is intuitively obvious, and it can be proved, that after
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a perturbation no root of unity apart from 1 or -1 is an eigenvalue of

dXF XpX]. Moreover the bifurcation equation for solutions of the equation

x = FX(x) corresponding to period-doubling is a nondegenerate cubic in one

variable, and so the period-doubling bifurcation is a pitchfork. Because

of translation invariance of the differential equation this corresponds to

a "nonvertical" bifurcation of a single branch of (2T/r*)-periodic solutions

of the flow (see figure 4).

Figure 4

In particular these bifurcating solutions of period (2T/m*) lie on a curve

which locally intersects x = x i once at the bifurcation point, and which lies

locally on one side of Xi or the other. (The quadratic term in the bifurcation

equation necessarily is zero, a fact that can be observed from the trans-

lation invariance of autonomous ordinary differential equations.)

We note also that on the bifurcating branch of (2T/m*)-periodicsolutionsno

root of unity (apart from unity itself) is an eigenvalue of dx F[P], and

hence close to bifurcation there is no further period-multiplying bifurcation.

At this stage we observe that all the properties of the (T/m*)-periodic

orbits established in steps 7-3 above by suitable perturbations are stable

in the sense that they will continue to hold after further perturbation,

provided that the further perturbation is sufficiently small. Uith this

observation in mind we turn our attention to periodic orbits of minimal

period T/(m*-1) for X E - 1 + ]. This set of orbits does not form a

compact subset of 1- 1 6 X Q.

STEP 4: However, because of step 3 we know exactly that the only possible

points of its boundary which are not in the set are period-doubling points

with x f Xl.***Xk. We have already seen in step 3 that for A close to the
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period-doubling points and in a neighbourhood in Q of the period-doubling

orbits there are at most a finite number of (2T/m*)-periodic orbits. lie

can therefore restrict our attention to the compact set of orbits of minimal

period (2T/m*) lying outside open neighbourhoods of the period-doubling

bifurcation points of step 3 above.

Now we repeat the argument of step 1, with the time-(T/(m*-1))-map instead

of the time (T/m*)-map used earlier. This then ensures that after a small

perturbation there are only a finite number of orbits of minimal period
1 1

(T/(m*-1)) in 9 for any X E [- -,1 + 6], and that these orbits lie on

curves parametrized by X except for a finite set of turning points. Now we

repeat the argument of step 2 to ensure that the turning points are not

period-doubling bifurcation points, and finally we repeat the argumeit of

step 3 to ensure that any period-multiplying bifurcations which might arise

are period-doubling bifurcations, and that the bifurcation is a nondegenerate

pitchfork on which, locally, no period-multiplying bifurcation occurs.

With this in hand we turn our attention to the set of orbits of minimal

period T/(m*-3).

Now we proceed by induction, and after m* iterations we arrive at a smooth

finite admissible homotopy.

Of course if (Q,f,V) is admissible, then it can be thought of as a constant

admissible homotopy, and so the approximation result needed the definition

of the degree has been obtained in passing.
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J.J. TYSON

Traveling waves in excitable media

1 . INTRODUCTIO I

Many tissues of biological origin are able to transmit signals in the form

of propagating waves of chemical or electrical activity. The most familiar

example is the nerve axon which conducts waves of membrane depolarization

along its length [1]. Neural networks, as found in the cerebral cortex,

support organized waves of electrical [2] and chemical [3] activity in two

spatial dimensions. Heart muscle propagates waves of electrical activity

and muscular contraction. The spatial organization of these waves in two

and three spatial dimensions is related to cardiac function and dysfunctiun

[4]. Signal transmission is also important in developmental biology where

spatial and temporal coordination is essential to proper morphogenesis. A

paradigm of such coordination is found in the slime mold Dicto~tli~ r

3;c r where traveling waves of cyclic AMP direct the process of

aggregation of single-celled amoebae into a multicellular slug [5].

Traveling waves of chemical reaction are also found in nonliving systems.

Waves of oxidation are observed in many chemical reactions [6], the most

famous of which is the Belousov-Zhabotinskii (BZ) reaction. The BZ reaction

involves the oxidation of certain carboxylic acids by broate ions in the

presence of a suitable transition-metal ion catalyst. In the early 1950s

Belousov was studying this reaction as an analog of the oxidative

decarboxylation of organic acids in living cells when he discovered that the

reaction oscillates back and forth between oxidized and reduced states for

many cycles [7]. Later Zhabotinskii, Winfree, and others discovered that the

BZ reaction would also support spatial waves of oxidation which propagate

through thin unstirred layers of reagent [8]. A thin layer need not be

spontaneously oscillatory to support oxidation waves. indeed, Winfree's

nonoscillatory recipe [8] is particularly convenient for studying wave

propagation in the BZ reaction. Jhen carefully prepared, the medium will

remain for a long time uniformly in a reduced state, but if perturbed

sufficiently, a single circular wave of oxidation will propagate away from
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the point of perturbation until it collides with the boundary of the dish

and disappears.

There are many similarities between oxidation waves in the BZ reaction

and activity waves in neural, neuromuscular, and developmental biology. All

these media may be spontaneously oscillatory or merely excitable. They can

propagate waves in one, two, or three spatial dimensions. Wave propagation

is self-regenerative, i.e. waves propagate without loss of amplitude or

speed. Waves are annihilated on collision with other waves or with

boundaries. Periodic traveling waves show dispersion, i.e. the speed of

propagation varies with wave frequency. In two spatial dimensions two

characteristic patterns of propagating waves are observed: expanding con-

centric circular waves ("target" patterns) and rotating spiral waves. In a

given preparation, target patterns generally come in a variety of temporal

periods (with wavespeed and wavelength determined by the dispersion relation),

whereas spiral patterns have a unique pitch and rotation frequency. In

three spatial dimensions these characteristic patterns generalize to expanding

spherical waves and rotating scroll waves.

The similarities among the various examples of wave propagation in

excitable media can be traced to a similarity in mathematical description.

Each example can be described with reasonable fidelity by a pair of nonlinear

reaction-diffusion equations

SED V2u + - f(u,v)

(I)
3 - 2 V + g(u,v).

In this system of equations u and v represent the state of the system (e.g.

chemical concentrations, membrane potential, ionic conductance, enzyme

activity, etc.) as functions of time and space. The functions f(u,v) and

g(u,v) describe the local rate of change of u and v in the absence of spatial

coupling. Typical forms of f and g are illustrated in the phase plane in
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figure 1. V' is the Laplacian operator in one, two, or three spatial

dimensions, and D1 and 02 are diffusion coefficients of u and v. (Space

and time have been scaled so that Di, D2, f and g are all order-one relative

to E.) The small parameter c bespeaks a significant separation in time-

scales for u and v, with u tending to change much more rapidly than v.

g(u,v)=O

f( V)=0
V

U

Figure 1 Phase plane illustrating the nullclines f(u,v) = 0 and g(u,v) = 0.

For the various examples of excitable media discussed so far, we can make

the following associations

Medium u v

Belousov-Zhabotinskii reaction Bromous acid Ferroin

Neuromuscular tissue Membrane potential Ionic conductance

Diatyostelim diqoideum Cyclic AMP Membrane receptor

Among these examples only the names of the state variahles are changed and

certain quantitative details of the kinetic functions f and g. Qualitative

features of the solutions of system (1) carry over directly to all cases,

and it is these qualitative features that we now review.
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2. WAVES IN ONE AND TWO SPATIAL DIMENSIONS

Qualitative and quantitative information about traveling wave solutions to

system (1) in one spatial dimension can be obtained by singular perturbation

theory [9]. The basic result is the demonstration of propagating fronts that

switch the system, at constant v, from the left-hand branch of f(u,v) = 0 to

the riaht-hand branch of f(u,v) = 0. From such fronts (red - blue) one can

construct isolated traveling pulses (red - blue - red) and periodic traveling

waves (...red - blue -* red blue...). As mentioned, the speed of periodic

traveling waves depends on period; a typical dispersion relation is illustrated

in figure 2.

C\

T
Figure 2 Dispersion relation (full curve) and curvature relation (broken curve).

The characteristic periodic patterns in two spatial dimensions, targets and

spirals, must satisfy the dispersion relation because sufficiently far from

the center of either pattern in a radial direction both targets and spirals

are identical to one-dimensional periodic traveling waves. Target patterns

need only satisfy the dispersion relation. That is, given any temporal

period (T) above the minimum period in figure 2, the asymptotic speed (c) of

propagation is fixed by the dispersion relation and the wavelength is simply

= cT. Spiral waves on the other hand seem to obey another constraint in

addition to the dispersion relation because in a given medium the rotation

frequencies of all spiral waves are the same.

The additional constraint on spiral waves arises from consideration of the
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effects of wavefront curvature on speed of propagation. These effects have

been uncovered in a series of papers by Zykov [10], Keener and Tyson [11],

and others [12]. These authors show that the norial velocity of a wavefront

(N) is equal to the speed of plane-wave propagation (c) adjusted by an amount

proportional to the curvation (K) of the front:

l = c + ED1K. (2)

For positive curvature (wavefront curved in the direction of propagation)

N > c, whereas for negative curvature (wavefront curved away from its

direction of propagation) N < c. The curvature relation (2) has been derived

by other authors in other contexts (crystal growth, spreading flames) [13].

To see how (2) constrains spiral waves, consider the parametric equations

for a rigidly rotating one-armed spiral

x = r cos[e(r) - wt]

y = r sin[e(r) - wt].

Here e(r) determines the shape of the spiral (at fixed t) and w is the

angular frequency of rotation (w = 27/T). Our problem is to determine both

e(r) and w. Since N depends on e'(r) and w, and K depends on e'(r) and

"(r), (2) is really an ordinary differential equation for the unknown

function e(r) in terms of two parameters c and w. Applying end conditions

(at r = 0 and r m, say) to this ODE, we obtain a typical eigenvalue problem

which determines a unique c for each value of w. A rough-and-ready approxi-

mation to this curvature constraint is c = (6TrD 1/T) 1 2 , which is plotted

in figure 2. Keener and Tyson [11] have emphasized the point that spiral

waves should lie at the intersection of the dispersion relation and the

curvature relation, as illustrated in figure 2.

The view of curvature and spiral waves has been tested in a number of ways.

Direct experimental confirmation of (2) has been obtained for oxidation waves

in the BZ reaction [14]. Keener and Tyson [11] have compared their theory in

detail with experimental measurements of spiral waves in BZ reagent and with

numerical solutions of PDE (1) with Oregonator kinetics (a reasonable model

of the BZ reaction). Furthermore, Tyson and coworkers [15] have compared the
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dispersion/curvature theory with numerical solutions of PDE (1) with modified

FitzHugh-Nagumo kinetics (a reasonable model of heart tissue) and with

Martiel-Goldbeter kinetics (a reasonable model of cyclic AIP waves in

Diutoste iun). In all cases there is good agreement between theory and

numerics, and where available between theory and experimental observations.

3. TRAVELING WAVES IN THREE SPATIAL DIMENSIONS

In three-dimensional space spiral waves become scroll-shaped waves rotating

around a one-dimensional filament which threads through the spatial domain,

either intersecting the boundary or closing on itself in a ring [16J. During

the course of many rotations of the scroll wave around the filament, the

filament itself moves through space. If we knew the laws of motion of the

filament, we could predict the entire history of the three-dimensional scroll

wave, so these laws become the focus of study of wave propagation in three

dimensions.

The filament moves because it is pulled about by the rotating scroll wave

which at any instant in any local region is attempting to move with normal

velocity N = c + EDI(K I + K2), where K and K2 are the principal curvatures

of the wavefront surface. Keener [17] has used this notion to derive a set

of equations describing the motion of the filament. Keener's equations have

the form

alteration in rotation w2 3w
rate of scroll wave = cK a -a I 2 + bI -

around filament

normal component b K _a w2 + C 3

of velocity of filament 2 2 2 35

binormal component = c K - aw2 + c 4 _

of velocity of filament 3 3

where s = arc length along filament, K(s,t) = curvature of filament, and

w(s,t) = twist rate of scroll wave around the filament as measured in the

laboratory frame of reference. The coefficients ai, bi, ci are constants

which depend on the matrix of diffusion coefficients and the form of the

spiral wave solution to the two-dimensional problem. In the simple case of

223



equal diffusion coefficients (DI = D2), b1 = b 2 = D and c1 = c2 = c3 = c4 = 0.

If, furthermore, the filament is untwisted and untorted (w = 0), then Keener's

equations reduce to the simple relation n = DK, where n is the normal velocity

of the filament in its tangent plane.

The equation n = DK is the simplest equation of motion for a scroll wave

filament. It has been derived by many people in diverse ways [18,19] and

applied primarily to the case of scroll rings. If r is the radius of a

circular filament, then n = DK implies that dr/dt = -D/r, or r(t) =(r -2Dt) I/2.

That is, scroll rings should shrink and vanish in finite time. Such behavior

is observed in numerical calculations on PDE (1) [18] and in experimental

observations of BZ scroll rings [20]. Keener and Tyson [19] have also

applied n = DK to the case of elongated spiral waves and elongated target

patterns observed in thick layers of BZ reagent [16], and they found remarkable

agreement between theory and experiment.

The remaining challenge is to solve Keener's equations for filament motion

for more complicated situations, and to compare theoretical predictions with

numerical calculations on three-dimensional excitable media [21] and with

yet-to-be-obtained experimental measurements of scroll wave evolution.
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