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A. BAYLISS, B.J. MATKOWSKY AND M. MINKOFF
Bifurcation and pattern formation in
combustion

1. INTRODUCTION

In our research program we employ a combination of analytical and numerical
methods to determine the behavior of solutions of combustion problems.
Specifically we consider highly nonlinear time-dependent systems of partial
differential equations which model the behavior of both solid and gaseous

fuel combustion. In gaseous fuel combustion we are particularly interested

in the transition from laminar to turbulent combustion, including a
description of the intermediate stages of this transition. These stages

often occur as a sequence of bifurcations, as critical parameters of the
problem are varied, with each successive step exhibiting more and more complex
spatial and temporal behavior, often leading to spatial and temporal pattern
formation, The solutions frequently exhibit very steep gradients, in both
time and space, thus naturally calling for adaptive gridding techniques. We
have developed an adaptive pseudo-spectral method which is both very accurate
and very efficient, Our algorithm allows us to describe the solution on
bifurcation branches, well beyond the region where analytical methods work
well. e have however taken advantage of the analytical results that we

first obtain, to aid us in choosing appropriate parameter values and initial
conditions for the numerical computations, In addition the analytical results
serve as benchmarks for our computations. The computations reveal new and
interesting behavior, not otherwise obtainable. Below we discuss two problems,
involving solid and gaseous fuel combustion respectively.

2, CONDENSED-PHASE COMBUSTION

We first consider a problem in gasiess condensed-phase combustion. This type
of combustion is characterized by a highly exothermic reaction occurring in

* This research was supported in part by the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38 and Grant DEFG02-87ER25027, and N.S.F.
Grant DMS87-01543,




the solid fuel itself without the prior formation of a gaseous phase., Thus
the solid itself burns, and is transformed directly into a solid product,
Owing to the exothermic reaction a combustion wave propagates from the high-
temperature combustion products toward the cold unburned fuel, Typically

the activation energies of the reaction are large and the reaction is
significant only in a narrow region, called the reaction zone, whose width

is inversely proportional to the activation energy. In the 1imit of infinite
activation energy the reaction zone shrinks to a propagating surface, termed

a reaction front, It has been observed that this process is often accompanied
by the melting of the reactant [5], so that a melting front propagates ahead
of the reaction zone or front. Upon reacting, the heat of fusion is released,
and the product is in the solid phase.

This process is currently being employed as a rethod of effectively
synthesizing certain ceramic and metallic alloys. Rather than employing an
external source of energy, the process, referred to as SHS (for self-
propagating, high-temperature synthesis), employs the energy of the reaction
to convert reactants to products which are specially hard, are impervious
to extreme temperatures and have other desired characteristics {6, 14]. It
has been observed that the product is not always uniform in composition, but
rather there are zones of varying concentrations in the synthesized sample.
This is due to pulsations in the velocity of the reaction front. Planar
pulsating rmodes of propagation have been observed, which are sometimes
referred to as "auto-oscillatory" combustion, characterized by striations in
the synthesized product. Helical modes of propagation, referred to as spin
combustion, have also been observed, in which a spiraling notion of a non-
uniform front occurs (one or more luminous points, corresponding to hotspots,
are observed to rove in a helical fashion on the surface of a cylindrical
sample) [9, 15].

Mathematically this process can be described by a reaction-diffusion system
for the temperature and concentration of a limiting component of the reaction.
The reaction is modeled by first-order irreversible Arrhenius kinetics.
Typically the mass diffusivity is assumed to be zero in both the solid and
liquid phase,

Analysis of a model in which melting was not accounted for, in the limit
of infinite activation energy, revealed that auto-oscillatory conbustion was
due to a Hopf bifurcation when a parameter ) exceeded a critical value xc [131.




The bifurcation parameter is x = N(1 -¢)/2, where N is an appropriately non-
dimensionalized activation energy and ¢ = Tu/Tb’ where Tu (Tb) is the
temperature of the unburned (burned) solid, This model was extended in [10]
to account for melting of the fuel prior to the reaction., Again a similar
Hopf bifurcation was found when a parameter u = A/(1-in) exceeded a critical
value M. The parameter M accounts for the effect of melting and is defined
below., In [17], the model, without melting, in a cylindrical geometry, was
suggested as a description of spin combustion. However, in the absence of
melting, the resulting bifurcation is subcritical and unstable and therefore
may not be able to account for the phenomenon., In [11] it was found that
spin combustion could be explained as a supercritical, stable Hopf bifurcation.
These analytical studies were based on the 1imit N - =, where the reaction
zone shrink§ to a reaction front and the reaction term becomes asymptotically
a & function on the front, whose strength, as a function of T and of u, was
determined by the method of matched asymptotic expansions.

Bifurcation analysis is necessarily a loca: theory, valid only in a
neighborhood of the bifurcation point, The behavior of solutions far from
this neighborhood must be obtained numerically. A related model of gasless
condensed-phase combustion was studied numerically in [16]. Sinusoidal
oscillations were computed, which took on the character of relaxation
oscillations as the activation energy increased. As the activation energy
increased further an additional spike in the temperature was observed and
the solution appeared to have doubled in period. Upon further increasing
the activation energy, additional spikes in the temperature were computed
and the pulsation became increasingly complex., In [1], another related model
was studied. Again a sinusoidal oscillation was found beyond a critical
value of a parameter related to the activation energy. As the parameter was
increased further, the authors exhibited oscillations with complex structure,
and claimed to have found two transitions, in each of which the period
approximately doubled, befaore the computations had to be stopped due to
computational difficulties.

In [3] the model of [10] for finite N was studied numerically. A sinusoidal
oscillation in the solution was found very close to the analytically predicted
Hopf bifurcation point, There followed a progressive sharpening of the peaks
leading to relaxation oscillations. A period-doubling transition was found,
and evidence clearly indicated that the transition was due to a period-




doubling secondary bifurcation., This model was studied further in [19]. In
view of the results in [1, 16] it might have been expected that additional
period-doubling bifurcations would be found, with a possible transition to
chaos. However, we showed that this is not the case for the parameter range
studied. Our results are illustrated in figure la and can be summarized as
follows: There is a very rapid growth and sharpening of the pulsation along
the period-doubled solution branch, Beyond a certain value of u, stable
period-doubled solutions can no Tonger be computed. There is an interval of
bistability in which singly and doubly periodic solutions are both stable,
each with its own domain of attraction. No additional period doublings were
found along the period-doubled solution branch for the range of parameter
values considered, though they may occur for other parameter values.

We solve a model which is a generalization of the one employed in [13] in
that it accounts for melting [10]. The reaction term is governed by global,
one-step, irreversible Arrhenius kinetics, which is cut off at a certain
distance ahead of the melting front.

To describe the model we let a tilde (™) stand for a dimensional quantity,
assume the front propagates in the -X direction and denote the location of
the melting front by X = o). If T and © respectively denote the temperature
and concentration of a limiting component of the reactant, the model is
described by the reaction-diffusion system

TE = X?;; + ( 2(5 R ;)> gKEexp(-E/R?)
(2.1)
E% = - ( o ) giEexp(-E/R?),
where
@) - A X <a(d)
b -~ -~
» x> 6(t).

In (2,1) X is the thermal conductivity, A the rate constant, g the heat
of reaction, E the activation energy, and R the gas corstant. Because the
fuel melts, the rate constant is multiplied by a factor o > 1, due to the
increased surface-to-surface contact in the liquid phase. Upon melting, the




heat of fusion ¥ is absorbed by the fuel, but is released during the reaction
so the product is in the solid phase. Thus behind the melting front we take
the heat released to be § + y. The function g = g(x - 5(%)) cuts off the
reaction term at some point ahead of the melting front. This is employed
because the Arrhenius model for the reaction term does not vanish far ahead
of the front, while in practice no significant reaction occurs prior to
melting. In the computations we use
1, X - 8(8) > 7,

g(x - (1)) =

0, x-o(t) <z, ,

where ZC = -3, Ue have found that the behavior of the solution is not
sensitive to Zc in this range although the location of the period-doubied
bifurcation point varies slightly with ZC [3]. In addition, no significant
effect is found if a smoother functional form is used for the function g.

Across the melting front there is a jump in the heat flux, due to the
absorption of the heat of fusion necessary to cause melting. The velocity
$E of the melting front satisfies

-~

% = — 7.1, 2.2
¢t [x] (2.2)

¥C,
where Eﬁ is the concentration at the melting surface and [?~J denotes the

- X
jump in T; across this surface. The boundary conditions for the system are

given by
S G S SO
C>0,T~ fb’ as X > + ®,

where the subscripts u and b refer to unburned and burned, respectively. We
observe that the burned temperature T, is derivable from the time-independent
solution of the problem as fb = ?u + BEU.

He nondimensionalize by introducing
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The reference velocity U is the velocity of the uniformly propagating front
in the asymptotic 1imit N >> 1. We also introduce the moving coordinate
system

z = x - ¢(t), (2.3)

so that the position of the meiting front is fixed at z = 0.
In terms of the nondimensionalized quantities, the system (2.1) becomes

1

Op = 08, * Gy ¥ ( )) sacerp (L3051

0‘(1+Y o+ (] - 0JO (24)
, .
- () N1 - a)e-1)
Co = 0ly ~\ o ) R Tomrogye )
subject to the boundary conditions
C+1,0~+0as z~>- (2.5)

C+0,0~>1as z>+ o,

Note that the boundary condition C ~ 0 as z - + « follows from (2.4). At
the melting surface z = 0, the temperature o is fixed at Om, and the velocity
of the surface 1is obtained from

o, + YC(0)¢t = 0. (2.6)

The quantity A = XK/UZexp(-E/R?b) is unknown and depends on the (unknown)
velocity U. It can be determined by finding the solution corresponding to
the steadily propagating front, An asymptotic (N >> 1) expression for A was
derived in [10].

The solution of our problem will be shown to exhibit bifurcation phenomena
as we vary the parameter u = 4/2(1 - M), where &4 = N(1 - o) and

6




M=(1- LLgll]exp[A(em - 1)1,

In order to have a mode) which is amenable to numerical computation, it
is necessary to reduce the problem defined on an infinite domain to one on a
finite domain, \e introduce finite boundary points ZL <0, ZR > 0 and require
boundary conditions to impose at these points. Highly nonlinear waves are
generated near the melting front (z = 0) and it is not obvious how to obtain
a boundary condition which is absorbing with respect to these waves. MWe
therefore require that the boundaries be placed sufficiently far away so as
not to affect the dynamics of the solution., The numerical results were
obtained with ZR = ZL
to further increases in these values.

= 12 and we verified that the solution was insensitive

At Z = ZL we imposed the boundary conditions

c(zL) =1, O(ZL) = 0, (2.7)

At Z = ZR only a boundary condition on © is required. We tested two boundary
conditions, The first was

o(z.) = 1. (2.8)

The second boundary condition was an absorbing boundary condition using the
dispersion relation at the analytically predicted Hopf bifurcation point.
The analysis in {10, 13] showed that the temperature in the burned region
had the form

1+ eegzeimt (2.9)

(o]
it

where £ % {1 - (1 +4iw)] and € is a measure of the deviation from the
bifurcation point., At the bifurcation point wy = 1.029 and £ = -0.30902
-0.63602i, Guided by (2.9) we can derive a boundary condition by assuming
the functional form

Q,1z
O0=1+ce  flut+ 222),

where f is an arbitrary function and & = £, + 122. Differentiating this

1

andntn,




expression, we obtain

0, =2 o, - — (0 -1). (2.10)

For the boundary location ZR = 12 we found that (2.7) and (2.10) gave virtually
identical results. Using (2.10) we found that © oscillated around unity at
Z= ZR but typically the oscillation was of the order % 0,003. The
computations presented here were obtained using (2.10).
The numerical procedure is based on an adaptive pseudo-spectral method
introduced in [3]. For completeness we briefly describe this method, A
more complete description of the pseudo-spectral method can be found in (4],
Consider the model equation

1. {2.11)

WA

Up = au, o+ bux, -1 g x
In the pseudo-spectral method the approximate solution u is expanded as a
finite sum of Chebyshev polynomials

J
u~ ud(x,t) = ZO an(t)Tn(x) (2.12)
n=

where

1

T = cos(n cos 'x)

n
is the nth Chebyshev polynomial. The expansion coefficients a, are obtained
by requiring (2.12) to solve (2.11) exactly at the collocation points

x; = cos (37/3), 3 = 0,1,...,d. (2.13)
The implementation of the collocation procedure proceeds by observing that
o § OT ) = T b (T () (2.14)
- = a (t)T'(x) = b _(£)T _(x), 2.14
;;2- n=0 " n nZO n n
where the coefficients {bn} are related to the coefficients {an} by a well-
known recursion relation. Further details can be found in [4].

s




In the computations, the intervals [ZL,OJ and [O,ZRJ are each mapped onto
{-1, 1] and the solutions are updated in time within each interval, The
velocity of the melting front oy is determined from (2.6). To determine 0O,

C and by @ semi-implicit time differencing scheme is used, which is
described in detail in [3].

The temperature field exhibits a very rapid variation in a small region
behind the melting front. This is the reaction zone in which the reaction
term is significant, and outside of which it is not. For the pulsations
considered here both the location and width of the reaction zone can vary
dynamically,

In order to improve the effectiveness of the pseudo-spectral method behind
the melting front, an adaptive procedure was developed in [3]. In this method
we introduce a family of coordinate transformations

x = q(s,a) : [=1,11 > [-1,1], (2.15)

where o is a parameter vector chosen so that in the new coordinate system the
weighted second Sobolev norm

1
I{a) = j 1 w(s) (A fusslz + B luslz + C fulz)ds {2.16)

is minimized. Here w(s) = (1-52)'1/2 is the Chebyshev weight function and
for our specific computation we have taken A =B = 1, C = 0, The functional
(2.16) is minimized whenever ¢t changes by more than a prescribed amount, and
the solution interpolated to the new coordinate system where the integration
proceeds. For the computations presented here the coordinate transformation

a(s,@) = % tan" (o tan [F (s-1)3} + 1, (2.17)

with o > 0, is sufficient, although more general transformations can be used
(see [2]). For this problem, (2.16) was used as an indicator of the numerical
errors. A different functional, which appears to be niore effective, was
developed and implemented in [2] for a problem of gaseous combustion. Finally
we note that adaptive finite difference methods for combustion problems are
presented in [7, 8, 18].
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We now describe the behavior of the solutions to the model (2.4)-(2.6),
obtained from our numerical computations., The computed pulsating solutions
were obtained by solving the time-dependent equations until a steady-state
solution was achieved. As a result only stable solutions can be computed.
The following parameters were fixed for all of the computations: N = 50,

a = 1.7,y = 0,5 and O = G.8. The bifurcation paraneter u was changed by
varying g. We have considered values of ¢ in the range 0.8222 < ¢ <(0,8355,
This corresponds to a variation in y between 4.208 < u < 4,535, The
analytically predicted bifurcation, using a § function reaction term, occurs
at u = 4,236, For the Arrhenius reaction term with the above parameters,
sinusoidal oscillations first appear at a value of u between 4.270 and 4,281,

T
T T T T T T T —
2000 4.2419 4.2838 4.3257 4.3676 4.4085 4.4514 4.4933 4.5352
mu

Figure 1(a) Solution branches: Opax Plotted against v,
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Figure 1(b) The region is expanded to illustrate the bistable behavior

In the bifurcation diagram given in figure la, we surmarize the different
solution branches that have been found, In this bifurcation diagram the
maximum value of G over one cycle is plotted against u. Three solution
branches are indicated. On the first branch, corresponding to u < Hys
Gmax = 1 and there is no pulsation. This branch corresponds to uniformly
propagating reaction waves. On the second branch, corresponding to
HpoS b lin, the solution is Jeriodic with period T(u) and Omax increases
as indicated., On the third branch corresponding to Hy < B < lg, the solution
has become doubly periodic with period 2T. For u > ) solutions are again

T periodic. These solutions can be continued to values of u < Hge Thus

1

— - ——



there is a value u* with by < p* < g such that p* < W< is an interval

of bistability in which the T periodic and 2T periodic solutions stably
coexist, each with its own domain of attraction. e conjecture that the

T periodic branch which exists for u* < u 1is a continuation of the T periodic
branch which exists for By <u < and that the portion of this branch
(represented by the broken curve in figure 1a) which exists for By << u*
corresponds to unstable T periodic solutions. This is a conjecture since

our numerical method can only compute stable branches of solutions.

A detailed 1llustration of the various solution types is presented below.
We first discuss the nature of the transitions between the different branches.
In general the solution near transition points is difficult to compute, since
the equilibration time, i.e, the time for transients to decay, becomes very
long. In addition numerical computations may not exhibit sharp bifurcation
points even though such points may be present in the underlying analytical
model. This is due to perturbations inherent in the numerical discretization
which lead to the effect of imperfect bifurcation [12]). Therefore we did
not attempt to determine the exact numerical values of the transition points.
Our results are based on solutions which were validated by increasing the
number of collocation points, i.e. increasing the resolution of the
calculation,

Our computational results lead to the following conclusions about the
nature of the transitions, The transition between the first two branches
corresponds to a Hopf bifurcation at a value Hy with 4.270 < by < 4.,281.

Such a bifurcation was suggested by the linear stability analysis in [10]
with ;1 = 4,236 for a model with a § function reaction term, For u close to
Ly with ;; > My the solution is nearly sinusoidal. As u increases the
pulsations develop sharp and narrow spikes so that they take on the character
of relaxation oscillations.

The transitio~ between the second and third branches appears to occur via
a supercritical period-doubling secondary bifurcation at y = Uy with
4,456 < Hy < 4.459, \e conclude this because the solutions appear to approach
the singly periodic solutions continuousiy as u -+ Ho from above. In addition
the equilibration times become very long as p - Hye

We now describe the return to the T periodic branch. Stable period-doubied
solutions are not found for y > Has with 4,521 < My < 4,523, Stable T

periodic solutions exist for p > p* with 4.515 < ™ < 4.518 and they persist
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for u > iy As stated above, we conjecture that these solutions are part of
the same solution branch as the original T periodic solution for By <M< kg
and that the portion of this branch given by Hp < u < u* corresponds to
unstable solutions. We observe that there is a region of bistability for
<< M3 where both singly and doubly periodic solutions are stable, each
paving its own domain of attraction. A blow-up of this region is shown in
figure tb. The T periodic branch has been followed up to u = 4,53516. No
additional period doublings or other transitions have been found in this
region, though they may occur for other parameter values.

We now give a detailed description of the solutions that have been computed.
He found sinusoidal oscillatory solutions near y = Eqs which developed into
relaxation oscillations as u increased. These relaxation oscillations were
characterized by a slow movement of the reaction zone followed by a very
rapid movenient during which the temperature spiked over a very short time
interval. As . 1s increased further the spikes occur over progressively
shorter intervals in time during which the temperature at the spike increases
dramatically,

We illustrate this behavior in figures 2a-2g where we plot ¢ as a function
of t at a fixed value z(;). For each vlawe of y, z{y) is chosen to be close
to the point where the maximum terperature in both space and time occurs.

We note that, by evaluating the global Chebyshev expansion at the given
point, we can compute the solution at any given value of z, even though the
collocation points adaptively change in time., \le observe that the reaction
zone moves closer to the melting surface (z = 0) as p increases.

In figure 2a we consider the case y = 4,2597. In this case there is no
pulsation and the solution is exhibited at the arbitrarily chesen point
z = 0.5 for 20 time units, In figures 2b and 2c we consider u = 4,294
(z = 0.5) and . = 4,454 (z = 0.2). These are singly periodic solutions,

The growth of the temperature spike is apparent as is the rarrowing of its
duration,

In figures 2d and 2e we consider yu = 4,466 {(z = 0,123) and 11 = 4,51918
(z = 0.026). The figures illustrate the extremely rapid growth that occurs
along the doubly periodic solution branch, At u = 4.51913 there is
bistability and a stable singly periodic solution also exists. This solution
is shown in figure 2f (z = 0.026). Finally in figure 2g we illustrate the
case 11 = 4,5352 (z = 0.026) along the second stable part of the singly

periodic solution branch,
13
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Figure 2(b) © at z = 0.5, p = 4,294, singly periodic solution branch.
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Figure 2(d) © at z = 0,12, u = 4,466, doubly periodic solution branch,
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Figure 2(g) ©.at z = 0,026, u = 4,5352, singly periodic solution.
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The figures illustrate the rapid growth of the temperature spike as u
increases, and its extremely short duration. In figure 2g the temperature
rises fromo = 1.97 to © = 2,51 over a time interval of 1.6 x 10'5. Very
high numerical accuracy was required to resolve these spikes and to verify
the periodicity of the pulsation.

The velocity b = oy of the melting front undergoes a pulsation similar to
that of the temperature. We illustrate this for u = 4,51918 for the doubly
periodic solution (figure 3a) and the singly periodic solution (figure 3b).
It can be seen that ¢ increases by more than two orders of magnitude over a
cycle. The temperature spike occurs slightly before the spike in ¢. After
the temperature spike, there is a rapid diffusion of heat into the colder
material. This surge of heat then results in a rapid movement of the
location of melting, as illustrated in figures 3a and 3b.

VELOCITY OF MELTING FRONT - SINGLY PERIODIC BRANCH

mu = 451918
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Figure 3(a) ¢, u = 4.51918, doubly periodic solution branch,
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VELOCITY OF MELTING FRONT - DOUBLY PERIODIC BRANCH
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Figure 3(b) oy U s 4.51918, singly periodic solution branch.
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In figures 4a-4d we plot spatial profiles of the temperature. In figure
4a, where there is no pulsation, the solution is shown at the final time of
the computation. In figures 4b-4d the solution is shown at the time that é
spikes. The figures illustrate the Tocalized nature of the reaction zone and
the extremely rapid spatial variation of the solution. There is a sharpening
of the temperature profiles, and a rapid growth of the maximum temperature,
as u increases along the bifurcation branches. We observe that the basic
structure of the solution persists for all the values of u considered. During
the slow part of the pulsation, the temperature varies much more gradually.

TEMPERATURE - STEADY BRANCH

mu = 4.25972
14 T T T F T ¥ T T T T
‘120 100 8.0 -6.0 4.0 -2.0 0.0 2.0 40 6.0 8.0 100 120
z

Figure 4{a) Spatial profile of 0, u = 4.260, no pulsation.
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Figure 4(b) Spatial profile of @ when |<;>| is maximum, y = 4,454, singly
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Figure 4{c) Spatial profile of O when I&J} is maximum, u = 4.51918, doubly
periodic solution branch,
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Figure 4(d) Spatial profile of O when |&>| is maximum, u = 4,51918, singly
periodic solution branch,
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Figure 5 illustrates temperature profiles for a singly periodic solution at
four different times. In the figure, ts is close to the tine of the
temperature spike, t1 corresponds to the minimum of ié], while t2 ard t4
are points at which |¢| = t. A corresponding graph for a doubly periodic
solution is similar,

TEMPERATURE PROFILES
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Figure 5 Spatial profiles of O at four different times, u = 4.51918,
singly periodic solution branch.
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3. GASEQUS FUEL COMBUSTION

We now consider the behavior of cellular flames stablized by a line source
of fuel [20]. Experimental observation of laminar flames show that in
certain gaseous mixtures smooth flames often break up into cells [24].
Cellular flames, sometimes referred to as wrinkled flames, are characterized
by periodic pointed crests along the flame front pointing in the direction
of the combustion products. The pointed crests are connected by smooth
troughs that are convex toward the fresh fuel. The temperature is higher

at the troughs which therefore appear brighter and lower at the crests which
appear darker. It is believed that the development of cellular flames is a
stage in the transition from laminar to turbulent flame propagation.

In typical combustion problems the activation energies are large. As a
result the reaction terms in the governing equations are significant only in
a small region, termed the reaction zone. In this region the fuel is
consumed and the products of combustion are formed. Ahead of the reaction
zone the temperature is too Jow to sustain the reaction, while behind the
reaction zone the fuel is essentially depleted and no reaction can occur,

The extent of the reaction zone is 0(1/N) where N is an appropriately non-
dimensionalized activation energy. In the 1imit of infinite activation
energy the reaction zone shrinks to a surface called the flame front, Across
the flame front temperature and concentration are continuous but have dis-
continuous normal derivatives [26]. Thus cellular flames appear as a
wrinkling of the flame front,

lle consider problems where the reaction is governed by a deficient
component which is consumed in the reaction zone, The specific problem
studied here is that of a flame stablized by a 1ine source of fuel of strength
2mk, This problem was analyzed in [25] where a time-independent, axisymmetric
solution valid in the 1imit of infinite activation energy was found. This
solution is referred to as the basic solution, The analysis revealed that
stationary cellular flames arose as bifurcations from the basic solution,
when the Lewis number L, the ratio of heat conductivity to diffusivity of
the 1imiting component of the reaction, was less than a critical value
LC < 1., In that case there was a value KC(L) such that for « > KC(L) stable,
stationary cellular flames existed.

Solutions on the cellular solution branches as k is increased further into
the more fully nonlinear regime are studied by numerica) computations. The
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results of these computations, for a finite value of the activation energy,
are presented here. HNumerical studies of this problem appear in [20,21,22].
In [21] the transition from an axisymmetric solution to a cellular solution
was illustrated as a bifurcation phenomenon as L was decreased with « fixed.
The nonlinear growth of these cells, as L was further decreased, was also
illustrated.

In [227 it was shown that for fixed L, as k increased, transitions could
occur between cellular flames of different mode number. A bistable region
was found where stable cellular flames of different mode number coexisted at
the same parameter values, each with its own domain of attraction. A more
complete numerical study of these transitions is presented in [20].

Our results can be best illustrated by referring to figures 6 and 7. In
these figures we plot the maximum difference between the temperature and
concentration of the cellular solution and the corresponding axisymmetric
solution., We find that as x is increased beyond the first bifurcation point
there is a transition to stable, stationary cellular flames of increasing
mode number. We have computed stationary cellular solutions with mode
numbers increasing from 3 to 6. Around each transition we find an interval
of bistability.

Our numerical method is based on integrating the time-dependent equations
of the model until a time-independent solution is obtained. As a result, we
generally compute stable solutions and cannot give a precise characterization
of the mechanism of the transition. In certain circumstances we can compute
unstable solutions and illuminate the nature of the transition.

Typically modal transitions occur when cells of one mode number become
unstable to angular perturbations of an adjacent mode number. Thus if the
original modal solution branch continues beyond the transition point, these
solutions can be computed using a time-dependent forrmulation, provided the
computational domain is restricted to exclude the unstable modes. By
restricting the angular domain to an angular sector we have been able to
compute unstable modal solutions., Based on these computations, we conjecture
that the transitions occur via subcritical bifurcations connecting the
different unimodal solution curves. In the parameter range considered here,
we do not find stable mixed riode solutions, although it is probable that
unstable mixed mode solutions exist. For the parameter range considered, we
have not found more than two stable cellular solutions coexisting at given
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parameter values.

To describe the mathematical model, we let a tilde (™) denote a dimensional
quantity. We consider the following dimensional quantities: ?u’ ?b’ the
temperatures of the unburned mixture and the adiabatic flame temperature
respectively; Eu’ the concentration of the deficient component of the unburned
reactant (fuel); E, the activation energy; R, the gas constant; X, the thermal
diffusivity; and A, the rate constant. HNondinensional temperature and

concentration are defined by

O
]

E/Eu
0=(F-T)@F

where T is the temperature and C is the concentration of the deficient
component. The nondimensional activation energy is defined by

N = E/(RTb).

The spatial and temporal variables are nondimensionalized by

where v is the planar, adiabatic flame speed., Assuming an appropriately
nondimensionalized flow field U and one-step irreversible Arrhenius kinetics,
the equations of the diffusional thermal model of combustion are [26]

Ot = A - E'VE) + AC exp[ﬂ_(.1"0) (0‘1)]

o + (1-g)o
AC N(1-0) (0-1) 3.1
C, = 2% —y.vg-Ag expitz9) B9-1)4,
t T - P o+ (1-0)0

Here L, the Lewis number, is the ratio of thermal conductivity to the
diffusivity of the deficient component, The quantity A is called the planar
flame speed eigenvalue and depends on the unknown reference velocity v. In
the 1imit M = N(1-0) large the asymptotic expansion of A is known [23]:
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A = o L+ 0. (3.2)

In our computations we use the leading order term in (3.2) to approximate A

in (3.1). A different value of A will alter the spatial and temporal scales
but will not change any patterns found for the solutions. The external flow
field U is taken as that of a Tine source of fuel of strength 2mk, i.e.

U==r, (3.3)

<~

~ - . o s .
where r is a radial unit vector. The boundary conditions are

0~ 0(1), r+ 0(=),
(3.4)
C» 1(0), r+ 0(x).

It is characteristic of combustion problems that the activation energies
are large and the reaction terns are important only in a narrow region called
the reaction zone. In the limit N >> 1, (1-0) << 1, M >> 1, the reaction zone
shrinks to a surface r = ¥(¢), where ¢ is the polar angle, called the flame
front, across which the normal derivatives of © and C are discontinuous with
derived jump conditions [26]. In this Timit the axisymmetric, stationary
solution

(3.5)

(]
i

= 1-0+0(

exists, The effect of the fuel source is to stabilize the front location at
r = k. The solution (3,5) is called the basic solution.

The stability of (3,5) was analyzed in [25]. The basic solution is stable
for L near unity. There exists a critical value of L, Lc = 1 - 0(1/M), such
that if L < Lc the basic solution is unstable to angular perturbations for «
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sufficiently large, « > KC(L). A weakly nonlinear analysis showed that small
disturbances evolved into stationary cellular flames.

The behavior of the model (3.1} as the parameters move into the more fully
nonlinear regime is the subject of this paper. The computations are for
finite activation energy. In the numerical computations the boundary
conditions (3.4) must be applied at artificial boundary points ry and ry.

We apply the boundary conditions

e(r

[l
(]
—
-
—
~
"
—

2) =
(3.6)

|
(]
—
-~
)
~—
|
o

O(r1) =

In the computations presented here we chose ryo= 2.4, ry = 30.4. The
reaction zone was sufficiently far from the boundaries so that no significant
sensitivity to the boundary location was observed.

The numerical method is based on an adaptive Chebyshev~fourier pseudo-
spectral discretization. In our work the radial coordinate system is varied
adaptively to enhance resolution of the regions of rapid variation [2,3].

The interval [r1, rz] is first mapped into the interval [-1,1] by the
linear transformation

2r _ (r1+r2)

S =
AL R

We then introduce the collocation points

5 = cos (nj/d) (i =0,...,d)
(3.7)
o = 2rk/K (k= 0,000,k - 1)
and approximate the solution by the Chebyshev-Fourier expansion
J a i26
0= 7 0. (T.(s)e (3.8)
3=0 [elsks2 I

with a similar expansion for C. Here Tj(s) is the jth Chebyshev polynomial

32




Tj(s) = cos(j cos'1s).

The coefficients §, in (3.8) are obtained by collocation, that is by

requiring equatio%gl (3.1) to be exactly satisfied at the
collocation points. In the pseudo-spectral method Oj,k are the unknowns;
the expansion (3.8) is used only to compute derivatives at the collocation
points,

In order to improve the resolution of the regions of rapid variation near
the reaction zone, we adaptively transform the radial coordinate by a

coordinate transformation
s = q(ssa)
where o is a two-element vector. The specific form of the transformation is

q(s3a) = % tan'1[ot1 tan(%(s"1))] + 1

A

s! = EEETT

where a = (u1, az); @y > 0and -1 <a, <1, The two paraneters &, and o,
provide the flexibility to move regions of rapid variation to the boundary
(az) and then expand these regions (a1). Other choices of coordinate trans-
formation are possible.

The vector o (equivalently the radial coordinate system) is chosen
adaptively so as to minimize a functional of the solution which measures the
spectral interpolation error. This functional was introduced and described
in [2]. For a function f which is a weighted combination of © and C, we
have

o {faf el 2 YT s

The analysis and computations presented in [2] demonstrate that (3.9) is an
effective measure of the spectral interpolation error. Owing to the angular
dependence in the reaction zone, it would be more effective to choose a for
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each value of ¢. Such a _edure is currently under development.

The equations are integrated in time until a stationary solution is
achieved. The time marching procedure is a semi-implicit scheme using the
backward Euler scheme with approximate factorization. To describe the time
differencing we consider the model equation

Uy = Uxx + Uyy + r(U).
Using a superscript to denote the time levels and the symbols Dx’ Dy to
denote the approximate second derivative operators in the x and y directions
respectively, we have

n+1 n
U - U n+1 n+1 n
—xt = DXU + DyU + r(U )
or if § = Un+1 - U",
_ n n n
(r- Ath - AtDylé = At[DxU + DyU +r(U)]. (3.10)

The matrix on the left-hand side of (3.10) can be approximately factored
(up to O(Atz)) as

= 2
I - AtDX - AtDy] = [I - Ath][I - AtDy] + 0(at™), (3.11)

and the solution is updated in time by inverting the factored matrix on the
right-hand side of (3,11). Convergence to a steady state is monitored by

examining the maximum of the residual over the grid, i.e. maxleUn + DyUn +
j,k

r(Un)l. Typically we require the maximum residual to decre;se by 6-9 orders
of magnitude, Convergence can be very delicate near a modal transition but
is fairly rapid away from transition points.

In all of the calculations presented here the following parameters were
held fixed:

N=20, ¢ =0.615, L = 0.44, ry = 2.4, ro = 30.4.

Solution branches were computed with as the parameter that was varied,
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The first cellular transition was obtained by using as initial data the axi-
symmetric solution with an anguiar perturbation. Subsequent solutions were
obtained by varying k using cellular data with a nearby value of « as initial
data.

A1l of the computed results presented here were obtained with a grid of
141 radial collocation points and 128 angular collocation points. Clearly
the effective angular resolution is less for cells of higher mode numbers.
These computations were validated by computing solutions on coarser grids
and verifying that there was very little change as the grid was coarsened,
Generally the most difficult computations occur near transition points where
a cellular solution is very weakly unstable to perturbations of an adjacent
mode number. Mear these points the amplitudes of all modes must be monitored
carefully to ensure that there is not a weak instability which could lead to
a modal transition if the solution was computed for a sufficiently long time.
We have concentrated on localizing the transition points to intervals out-
side of which we are confident that we have a stable cellular solution. Our
procedure is to follow a particular modal solution branch by varying x. All
other modes are monitored to ensure that they are not growing. When we come
to a value of k where another mode shows persistent growth, so that the given
modal solution can be judged unstable, we take that value of « as an upper
(or lower) bound on the stable region of the solution branch.

In discussing the solution branches we refer to figures 6 and 7. In these
figures we plot the maximum norm difference of the computed temperature
(figure 6) and concentration {figure 7) between the cellular and the axi-
symmetric solution, The computed values are indicated by full circles in
the figures. The unstable axisymmetric solution was computed using an
axisymmetric version of the computer program so that angular perturbations
were not present, The curves in the figure represent five solution branches,
the axisymmetric branch and cellular solutions branches of mode numbers 3-6,
respectively.
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Figure 6 Maximum norm difference of © between the computed cellular
solution and the axisymmetric solution. Full circles represent
actual computed values. Open circles correspond to unstable
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Figure 7 Maximum norm difference of C between the computed cellular
solution and the axisymmetric solution, Full circles represent
actual computed values. Open circles correspond to unstable
solutions,
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The axisymmetric solution branch is stable for « < K where 8.3 < Ky < 8.4.
For k > K4 with « - Ky small, the solution with arbitrary initial data
evolves to a stationary three-cell. This solution can be computed for
Ky <K <Ky where 11,25 < Ky < 11.70. At « = 11.70 initial data from a
lower value of « evolved to a stationary four-cell, The four-cell solution
branch can be continued for the range K1 <K < Kg where 10.0 < K1 < 10.4 and
1.8 < k5 < 16.2. The region x' <« < <, is a region of bistability in
which both three- and four-mode cellular flames coexist, each with its own
domain of attraction.

For « > Ko initial data from a nearby solution branch evolved toza five-
cell solution, The five-cell solution branch can be computed for x“ < k < K3

where 12.2 < K2 < 12.7 and 17.1 <k, < 17.5. A six-cell solution branch

exists and has been computed in the3range 15,6 <k < 17.6. An upper limit
for this branch has not been determined. It can be seen from the figures
that the graphs of these branches are similar. We have not found values of
k where more than two stable solutions coexist.

In figures 8, 9 and 10 we present perspective plots of © along the
different solution branches. Each figure is for a value of x in a region of

bistability. In figure & we plot the three-cell and four-cell solution at

x = 11,0, In figure 9 we plot the four-cell and five-cell solution at
k = 14,8, In figure 10 we plot the five-cell and six-cell solution at
k = 15.7.
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The figures show a small region over which O drops rapidly from
unity to zero. In the limit of infinite activation energy this region would
shrink to the flame front. The subregion where the temperature begins to
drop is called the reaction zone and is the region where the reaction term
has the greatest effect on the solution, It is apparent from the figures
that the primary effect of the cellular solution is to cause a wrinkling of
the reaction zone, The wrinkling increases in spatial complexity with
increasing mode number of the cell, In addition, the amplitudes of the
wrinkles increase with increasing «, consistent with the behavior shown in
figures 6 and 7 and the generally destabilizing effect of increasing « found
in the analysis of [25]. We point out that as k increases the curvature of
the flame front decreases. Other examples of a destabilizing effect of
decreasing curvature have been found for other problems in combustion (for
example, [23]).

We next consider the spatial behavior of a specific cellular solution.
The analysis for the flame front mode] demonstrated that, along the flame
front, the harmonic would combine with the fundamental in a manner that
would produce a pattern of peaks and troughs. The peaks point in the
direction of the burned region, i.e. toward the products of combustion, while
the relatively flat troughs point toward the cold region, i.e. toward the
fuel. This hehavior is also present in experimentally observed cellular
flames [24].

The computations exhibit a similar behavior. In figures 1la-e we plot
temperature and concentration as a function of the pola: angie ¢ for various
r locations. The results are for a six-cell with x = 15,6, The figures
show a large sinusoidal oscillation just ahead of the reaction zone. The
characteristic crests and troughs of cellular flames appear only in a
localized region where the overall oscillation is considerably reduced.
This is consistent with the analysis in [25] which predicted a faster decay
rate away from the front for the harmonics.
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Lastly we consider the conclusions that can be inferred about the nature
of the transitions. In view of the fact that the stationary cells are
computed from a time marching algorithm, only stable solutions can be computed.
The convergence to a stationary solution can be very deceptive. In figure 12
we plot the logarithm of the residual of the equation for © for the case of
a transition between a four-cell and a three-cell at « = 9.25, The initial
data were a four-cell at a larger value of k. The horizontal axis is the

MAXIMUM RESIDUAL

LOG OF RESIDUAL

I | | | J 1 l |

0] 0.1 0.2 03 04 05 06 07 0.8 0.9 1.0
(TERATION FRACTION

Figure 12 Convergence history for the transition from a four-cell to
a three-cell at « = 9.25,

fraction of the number of time steps. The time step changed at several
times due to the adaptive procedure. The solution appears to converge (to
a four-cell) and then begins a siow divergence while the three-mode grows.
Finally, the rec<idual decays as the solution converges to a stable,
stationary three-cell,

The nature of the transition is clarified by notiqg that modal solutions
can be computed beyond the transition points provided the computational
domain is restricted to exclude the unstable angular perturbation.
Specifically, we restricted the computation to the sector 0 < ¢ < 2n/3 and
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enforced periodicity at ¢ = 0 and ¢ = 2n/3. In this way we were able to
compute three-cell solutions beyond the transition point Kz. at x = 11,70
and 11.85, These points are indicated on figures 6 and 7 and demonstrate
the continuous extension of the solution branch beyond the point at which
it loses stability. Similarly we were able to compute four-cell solutions
for values of K below the value ! where the four-cell Toses stability.
Although we have not done this for the other solution branches, we believe
that the behavior is similar, Since the solution branches exist beyond the
points at which they lose stability, it appears that the modal transitions
occur via subcritical bifurcations connecting the different modal solution
branches.
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P.J. BROWNE
Two-parameter eigencurve theory

This lecture presents a survey of some recent results in two-parameter
spectral theory developed by P.A, Binding and the author. Examples of
eigenvalue problems in ordinary differential equations with two spectral
parameters exist in the classical literature — the Mathieu equation is a
well-studied case which readily comes to mind. The first part of the lecture
contains an overview of properties of eigencurves in abstract problems, while
the second part shows the realization of these theories when applied to
second-order ordinary differential equations.

1. THE ABSTRACT PROBLEM

Let H be a separable Hilbert space and in it consider operators T, R, S as

follows:
(i) T:D(T) = H-> H : self-adjoint, bounded below and with compact resolvent,
{i1) R,S:H =~ H : self-adjoint, bounded.

The eigenvalue problem under consideration is that of finding (A,u) € R2
so that there is a nontrivial solution y € H of

(T - AS + wR)y = 0.

There is no a priori guarantee that eigenvalues (A,u) exist, so we assume R
{or some linear combination of R and S) to be strictly positive definite. It
then is possible to assure without loss of generality that R = I and so the
eigenvalue problem becomes that of finding (A,u) € R2 so that there is y # 0
with

(T - XS +ul)y =0,

* Research supported in part by a grant from the NSERC of Canada,
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Equivalently, given X we seek j so that y € o(AS - T). For any A €R, 2
o(AS - T) is nonempty and consists of a sequence of eigenvalues u"(1) of
finite multiplicity accumulating only at - <, lle index these eigenvalues
variationally and thus have |

W00 2 uron 26?00 2 L. (1)
These are the so-called eigencurves we wish to study and this lecture details
some of their basic properties.

The u"(\) are piecewise analytic: According to Kato's analytic perturbation

theory, AS - T has, for varying A, a sequence ug(x) of analytic eigenvalues
with a corresponding set of orthonormal eigenvectors y:(k) also analytic in
A. These curves may not have the desired ordering (1) but if we take the
pointwise maximum and then the maximum but one and so on, we generate our
un(A) with the desired ordering. The points where our un(k) fail to be
analytic are the points where two or more of the ug cross., At points of
analyticity '
F 00 =6ya (), i) :

with corresponding forrmulae for right- and left-hand derivatives holding for
all values of A,

uO(A) is convex: I.,e., {{A\,u) | A€R, u 2 uo(k)} is convex.
DEFINITION: A is a critical point and (A,ui(x)) a critical pair for ui if
whroad) o s o,
and is degenerate if (ui)' = 0 is some neighbourhood of A,
The nondegenerate critical points for ui have no finite accumulation.

DEFINITION: The form domain D(t) of T, Select a € R large enough so that
P=(T+ a)1/2>exists. Define D(t) = D(P) and, for x € D(t),




t(x) = |Px||? - a.

Alternatively, if T = J sdE(s), where E is the resolution of the identity

for T, then
0(t) = {x l[ SJ(E(s)x,x) < ©},
t(x) = J sd(E(s)x,x).
Note that t(x) is an extension of (Tx,x), x € D(T).

DEFINITION: D := N(S) n D{t), where N(S) is the null space of S.

Condition N is said to hold if O = {0}.

If N holds there are no degenerate critical points, and if v is real, the
number of critical points {X,u) with u 2 y is finite.

ASYHPTOTIC PROPERTIES

DEFINITION: " has (1,0) € R as an asymptotic direction (1,a) as A + @ if
a is an accumulation point of LT(A)/A as A » o,

If " has an asymptote of slope a, then {1,a) is the asymptotic direction
for un, but u" may have an asymptotic direction without having an asymptote.

DEFINITION: If E is the resolution of the identity for S (i.e. S = J sdi(s)),

define
ul = inf {y | dim E(y,=)H s i},

For examp]e,'if S has numerical range {a,b] and b is a point of continuous
spectrum then al = b for all i, while if b is an isolated eigenvalue of

multiplicity k, then al = b for i = 0,...,k-1.

(i) ) has (1,a') as its (unique) asymptotic direction as A »+ =,
+
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lle now investigate the problem of characterizing the case in which u" has
an asymptote as well as that of finding the equation of the asymptote.
It is converient to use new (skew) coordinates {A,u) related to (i,u) via

ERE-IAN AR

which corresponds to rotating the X-axis through an angle 9, Then

=i

T XS +pl =T = X$(8) + I
where
S(2) = (cos 8)S - (sin 8)I.

We intend using 9 = tan-l(ul). e then see that without loss of generality

we can return to the case
(T - xS +ul)y =0, o =0,

Thus the problem now is to find conditions under which
Li(k) - constant as } > «

and to determine the constant.

With S = j sdE(s) we put N+(S) = E(0,~)H, N(S) = null space of S,
N (S} = E(-=,0)H, D* = N+(S) n D(t), dim N,=4d,,D= N(S) n D(t). The
conditions we require are given in terms of the dimensions of these spaces.

(ii) If dim N+(S) > i then 91(X) +® a5 A > ® _ (This is true for general
values of 9 but with ul = 0 we have dim Nl (S) & i.)

(6N

(313) If dim N_(S) < i and dim (D @ N_) £ 1, then u'(A) > - @ as A > <,
(iv) If dim N,(S) < i and dim (D @ N,) > i then u'(A) > constant as A = <,

Thus result (iv) characterizes the case in which an asymptote exists.

[&,]
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DEFINITION:

o = Min (Max (t(u) | JJul|=1, uE€F} | FSD, dimF =j+ 1)

Max {Min {t(u) | fJul|=1, v € EX N D} | dimE = j, E- n D # {0}}.

=4

0,...,dim 0~1, They are "stationary"”

These quantities are defined for j
values of t restricted to D.

If dim N+(S) < i and dim ([ @ N+) > 1, then

i i_d+
pw(r) > -t as A > o,
This gives the egquation of the asymptote.

In terms of the original (A,p) coordinates we require S to have al as an
eigenvalue with eigenspace El. The asymptote has equation
i-d

u = alk -1 +(El).

2. ORDINARY DIFFERENTIAL EQUATIONS OF SECOND ORDER

Here we take H = L2([a,b]),
D(T) = {y € H|y"' € A.C,, y" € H, and boundary conditions are satisfied}
Ty = -y" + ay,
where q € L”([a,b]) is given. e are also civen s € L"([a,b]) and define
(Sy)(x) = s(x)y(x).
The eigenvalue problem is
-y" +qy - Asy +uy = 0.

Various boundary conditions can be used:
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(S} y(a)cos o+ y'(a) sing=10, 0

74N
fe
IA
=

y(b) cos B+ y'(b) sinR=10, 0

N
»
A
=

-

(P) y(a) = y(b), y'(a) = y'(b),
(A-P) y(a) = -y(b), y'(a) = -y'(b).
With S defined as above we have

ag =a =ess sup s(x), vi.
X €[a,b]

A11 eigencurves u' have the same asymptotic direction (1,a) and further,
either all u' have asymptotes or none do.

p' has an asymptote if, and only if, s achieves its essential supremum on
some interval(s), The key set is the "essential interior" of 5'1(a) given
by £ = {x | s{w) = o for almost all w in some neighbourhood of x}.

This set is open and can be written as a union of disjoint intervals

Q= ? (ai’bi)‘

A characterization of the form domain D(t) for T has been given by Hinton
(3] as well as a formula for the quadratic form t(y), y € B(t). This
quadratic form consists of the usual Dirichlet integral plus a term arising
from the boundary conditions. lle use standard variational theory applied to

the minimax proces. for finding the quantities ), It turns out that to
calculate the ™ one solves the eigenvalue problem

-y" +qy = 1y

on the intervals (ai’bi) in © subject to boundary conditions as follows:

(a) We use a Dirichlet condition at any ai’bi # a,b, and in addition
(b) we retain (S) if T had been given via (S).

(c) Ve use y(a) = y(b) if T had been given via (P).




—

(d) We use y(a) = -y(b) if T had been given via (A-P).

EXAMPLE: Consider Hill's equation

-y" < Asy +wy =0 on [-1,1]

with periodic boundary conditions y(-1) = y(1), y'(-1) = y'{1). le take

s{x) as
s{x) = 0on [-1,-1/21 U [1/2,1]
s{x) = 1 on (-1/2,1/2).

Clearly a = t and g = (-1/2,1/2). Thus the eigencurves have asymptotes and
we calculate the 7’ by

-y" = 1y on [-1/2,1/2]

subject to Dirichlet conditions to give
s (3052, 5= 0,1,2,..

Thus the asymptotes for the eigencurves are
uw=aA- (J+1)2n2.

Other examples can be given.

Details of these and further results can be found in [1,2].
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J. FLECKINGER-PELLE
On eigenvalue problems associated with

fractal domains

It has been known for more than two centuries (Euler, Lagrange) that the
vibrations of a membrane 2 are described by the wave equation

aiu(x,t) = cAu(x,t), (x,t) € @ x R,,

with some limit conditions. Therefore, the determination of the characteristic
frequencies of  leads to the following eigenvalue probiem:

~Au = Au in Q
(Pg)

u=20 onoQ,

Problem (PO) arises also if we study the evolution of temperature in a medium,

described by the heat equation,
When Q is a bounded open set in Rn, nz2it, (PU) has an infinite nunber of

eigenvalues:

> + ©,

< < < < <
0 <A <A sA _..._A.=Aj+1=,.,,x.jw

1 3 J

Here, each eigenvalue is repeated according to its (algebraic) multiplicity.
An analogous result holds for the Neumann problem:

-Ou = Au in Q
3, = an
Y = 0 on 9%,

Problems (PO) and (P1) are considered in their variational form; in other
words, we say that A is an eigenvalue of (PO) (resp. (P1)) if there exists a
nonzero u in H’(Q) (resp. Hé(Q)) satisfying -Au = Au in the distributional
sense.

Here H1(Q) is the usua) Sobolev space of order 1, and Hé(Q) is the
completion of CE(Q) with respect to the norm of H‘(Q).
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t. MEYL'S FORMULA

We are interested in the asymptotics of xj as j tends to + «, or what is

equivalent, in the asymptotics, as A tends to + «, of the "counting function"
N(\), also denoted more precisely by Ni(A,—A,Q) (i = 0 or 1 according to the

boundary conditions), the number of eigenvalues of (Pi) tess than i:
N(A) = Ni(k,-A,Q) = #{Aj LY

This problem was introduced by Lorentz and Jeans in the study of electro-

magnetic radiation theory.
It was proved in Weyl (1911) that, for 3Q smooth enough,

1y O0ae,8) = (21) Ty 214V, a5 2+ ey (1)

where o denotes the volume of the unit ball in Rn, and l-ln stands for the

n-dimensional Lebesgue measure.

1.1 A COUNTEREXAMPLE: Indeed, it was proved in Métivier (1976, 1977) that
(1) always holds for the Dirichlet problem (PO) when Q is bounded., For the
Neumann problem, (1) holds only when the boundary o is not "too long"; it
holds in particular if Q satisfies the “strong cone property". Moreover,
the necessity of such a condition is established by the following counter-
example (Fleckinger and Hetivier, 1973):

For a given positive number s, let us define

R = (OGy) €ER° [ x € (0,150 <y<tv T 370 (x)
JEN J
where (Ij)jGN is an infinite sequence of disjoint open intervals in (0,1)

and where 'I denotes the defining function of the set Ij:
J

1A x €1
1(w={ . :
Ij 0 if x ¢ Ij

For this set, when 0 < s < 1/2, we have

Ny (h,=0,00) = A28 g A > 4 o,

1
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The symbol = means that there exist two positive constants ¢' and ¢" such
that

a8 s N (,ma,00) 5 e /B

, for all X large enough,
Therefore, in this example, leyl's formula does not fiold and A'1N(A) + + © 3§

A >+ o,

1.2. A RECTANGLE: When © is a rectangle (0,a) x (0,b), (1) is very easy to
establish, since, in this case, the positive eigenvalues of (Pi) are known:
-q -
Ap Q" pznza €4 qznzb 2, with (p,q) € N* x N*,
Hence, Ni(A,-A,Q) is the number of pairs of integers which are inside a
quarter ellipse; it is an old result of number theory (Gauss, 1876)that this
number is proportional to the area of this quarter ellipse, and, therefore,
(1) holds when ¢ is a rectangle in R2.
This can be extended to a hyperrectangle in R,

1.3. EXTENSIONS: When @ is a bounded open set in Rn, it is possible to

prove (1) by the “leyl-Courant method" which consists of cutting R" into cubes
and approximating Q by a union of cubes (see e.g. Courant and Hilbert (1953)
or Reed and Simon (1978)). Throughout the proof, the following two results
are used:

NU(A,-A,Q) 2 NO(A,-A,Q') if Q 2> Q. (2)
If @, and 2, are two disjoint open sets in 2, with Q= QT U QE, then

NO(X,—A,Q1) + NO(A,-A,Q s NO(A,-A,Q) s N1(A,-A,Q)

5)
s N1(A9—AQQ1) + N1(x9'A:02).

This formula is known as "Dirichlet-Neumann bracketing" by physicists,




2. INFLUENCE OF THE BOUNDARY AND APPLICATIOQNS IN INDUSTRY

When (1) is established, two questions arise naturaily.

(i) Is it possible to estimate the “remainder term" Ni(x,—A,Q) - ¢(2,0)
where ¢$(X,2) denotes "lleyl's term":

s(1,0) = (zn)'“wnlnlnxn/z? (4)

(ii) Since the volume Ian can be deduced from the knowledge of the spectrurm,
are other geometrical attributes available with this knowledge?

This was summarized in a famous paper (Kac, 1966) entitled: "Can one hear
the shape of a drum?" Indeed, it is impossible to determine Q completely
just from knowledge of the eigenvalues since there exist isospectral drums in
R", n 2 4, which are not isometric (Urakawa, 1982). Nevertheless, the
asymptotics of the eigenvalues determine the "length" of the boundary (or
more generally its measure, laﬂln_1), the number of angles, the nunber of
"holes",... (see e.g. lickean and Singer (1967) and Sleeman and Zayed (1983)).
Note that the asymptotics of the eigenvalues are derived from the asymptotics
of the counting function N(A) as well as from the asympotics of Z(t) as t = 0,
where

-x.t

()= § e 9.
jEN

The estimates on Z(t) are derived from the estimates on the heat kernel
associated with our problems (Pi)'

If 30 is smooth enough, the following estimate holds (Seeley, 1978; Ivrii,
1980; H8rmander, 1985):

Ni(4,-8,2) = 9(3,0) + ynlann_1x("‘1)/2 e o0y o s,
(5)

where Yn is a number which depends only on nand i (i = 0 or 1), This result
is usually established by a Fourier transform of the spectrum and by use of
the Fourier-integral operators, s

This result, which is of course very important from a mathematical point
of view, also has important applications in industry. It is obvious that a
"body"  has the same volume IQIn when it is cracked, but it then has a more
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important boundary 3Q. Therefore, any variation in the vibratory response
of a body - e.g. the driving shaft of a power plant - indicates a variation
in the geometry of the body and hence, it is possible, just by sending
vibrations, to detect any crack.

Indeed, it is possible to guess, by use of the counterexariple exhibited
above, tiiat in some problems the boundary can play an important role, even
more important in the counting function than \leyl's term. In the following
we will be concerned with "fractal boundaries", which are precisely such
that |89|n_1 = + o,

3. ASYMPTOTICS OF THE EIGENVALUES OF THE DIRICHLET LAPLACIAN ON AN OPEN SET
WITH FRACTAL BOUNDARY

In 1979, the British physicist M. Berry, studying the scattering of waves by
“fractals", suggested substituting in the second term of (5) the Hausdorff
measure and dimension of the boundary 3aQ for its Lebesgue measure and for
(n-1) (Berry, 1979, 1980). This measure was introduced in 1919 by Hausdorff
in the following way.

For h € R and € > 0, we set

h

H(3Qsh,e) = inf } ris

i€l
where the infimum is taken over the set of coverings of the boundary 3 by
balls (Bi)iEI’ with radii ry <e.

The function € - H(3Q,h,e) decreases with €, and the Hausdorff h-dimension
of I is

Tim H(3Q,h,e).
e+0

Hh(BQ)

Moreover, h0 = ho(aQ) defined by

Hh(aﬂ)

{+°°1fh<h0

0 if h> h0

is called the Hausdorff dimension of 3%,
This Hausdorff dimension has been widely studied since (Mandlebrot, 1982)
and it seems to be the most popular dimension among mathematicians. Neverthe-
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less, it was proved in Brossard and Carmona (1966), with the help of a
counterexample consisting of a union of cubes, that Berry's conjecture may
fail with the Hausdorff dimension, and they suggested replacing it by
Minkowski's one.

This Minkowski dimension has been introduced in different ways by many
authors, and therefore it has different names such as "Cantor-Minkowski
dimension", “ordre dimensionnel" (by Bouligand), "Bouligand dimension“,
"logarithmic density", "box counting dimension", "Kolmogorov entropy",....
These definitions are equivalent (Bouligand, 1928; Tricot, 1981). e give
here some of them.

For a given positive number e, we set

Q= {x € R" | d(x,30) < e} (6)

where d(x,aq) denotes the Euclidian distance of x to the boundary aQ. We
then consider the positive numbers d such that

lim e~ (n=d

) _
e+0 IQEI" - 0

and we define &:= 6(3Q), the Minkowski dimension of 32, as

- . =(n-d) -
§ = sup{d € R_ | llg £ {Qefn = 0}, (7)
le also have (Bouligand, 1928)
§ = inf(d > 0 | 1im sup %n(e,a0) = 0},
e+0

where n(e,3R) denotes the minimal number ¢f balls with radius e which are
necessary to cover 322, Therefore & can also be introduced as an "entropy":

. In n(e,3q)
§ = Vim sup -
€_>0 -ln €

Let us consider a "grid" in R" where the cubes (Qc)cezn' for-a given integer
N, are such that
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n
QC = kg1 (g /My (g +1)/N), with g €N
A "maille utile" for Bouligand is a cube Q_ which intersects the boundary 3@,
and, if m(N_1,aQ) denotes the number of "mailles utiles", we have

§ = 1im
[

n w(t™!,a0)
IR et

Equivalently, in computer science, the "pixels" are defined by

Ag = (ck/N)k=1,...,n € Rn, when the associate cubes QC intersect the boundary.
Other definitions of the Minkowski dimension are possible (see e.g. Tricot,

1981). We also mention the following inequality which was used in Brossard

and Carmona {1986); with the above notations, we have

hO(BQ) s §(9Q).

In Lapidus and Fleckinger-Pel1é (1987, 1988), the following result is
established:

THEOREM 1: If Q is bounded and if 30 is fractal, with linkowski dimension
5§ € (n-1,n), we have

NO(A,-A,Q) = (2n)'"wn[Q|nA"/2 + o(AG/Z), as A >+ ®,

This result has been extended in Lapidus (1988) to riore general elliptic
operators and to Neumann boundary value problems.
Here we shall prove:

THEOREM 2: If @ is bounded and if 32 is &-Mirkowski measurable, with &-
Minkowski measure u satisfying

vim (0 o) <y, (8)
e

then there exist two positive numbers AO and ¢{(n,8) such that
IHg(1,-8,8) - 600, 2)] 5 c(n,8)*2, for al1 A 2 Apr (9)
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In the following we will introduce a positive number €9 such that, for
a]] € € (0,60),

e g <o (10)
Then, we choose Pg € N such that

-p
2 0

m

€ge (11)

4, PROOF

We proceed as in Métivier (1976, pp. 36-37), Métivier (1977, pp. 197-199) or
Lapidus and Fleckinger (1987).
For each integer p, we consider as in Courant and Hilbert (1953) a

tessalation of R" into congruent and non-overlapping cubes (Q )C en
-(p+pg) *p Cp

with side “p =2 We define by induction

- n - :
A -{coez IQEOCQ} andQO-CgA QCO,QO-NTE]
0"

B
1

il n | ] . o _ or
: {c1 ez" | QC1 <9y} and 2y =9 u (C1gA1 QC1), Q) = o]

>
1]

61” < o" d LI ' . .," - "‘I'.
te, | Q Qp-qand Q) g U (C LEJA Q, )s Ry = Ny

E p

p

We also define for each integer p

B, = €z’ n ; ne' = R = U .
o = 15 | Q @ # B Q, 2, P} and R, p Q
p p 4 p
p P
We first make some simple observations.
A '(p"'po)
REMARK 1: szp < with € = /ﬁnp =vn 2 ; the set a_has been

defined by (6). Moreover
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REMARK 2: Since v n_ s ey for all integer p, we deduce from (10) and (11)
and from Remark 1 that

N oon < < o n(n-6)/2 n-§

(b Ay € 19541y < i9 1% 2 (ny )"
Hence

(# Ap) £V, un;d (12)
with

v, =2 (2/mins), (13)
An analogous calculation shows that

(#8,) 5 vy ne”. (14)

REMARK 3: Since the positive eigenvalues of (Pi) on a cube QC with side

n. are ﬂzq-z( 2, q.2 + +q 2) with € N, for any integer
p p Q1 q2 cae n 9 qJ L)

2 (a+pg) ey

- q
p 2P :=max{q €N | ﬁznq <Ay =max{q €N | 2

we have

N1.(>\,-A,Qc ) = 0.
p

During the proof, we also make use of the following estimate (Courant
and Hilbert, 1953, Section VI.4, or Reed and Simon, 1978, Proposition 2,
pp. 266-267),

PROPOSITION 1: There exists a positive constant c¢', depending onty on n,
such that, for a1 cubes Q < Rn, with sida n, and for all A > 0

2)(n-1)/2

I 00=0,0) = ¢(X,Q) | g c'1 + (An 1.
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It follows from (2), (3) and Remark 3 that

P A
Zo ) z NO(\,-A,QCk) S Ny(h,-2,2) € Ng(h,=6, TURG

p
£ E X N (X:'A’Q ) + 5 H (A"A’Q )-
K0 ¢, €A, % e, | °p
k™ k p=rp
Then, by subtracting "the Weyl's term” ¢(A,&), we obtain

P
k§0<# AT (5=2,0, ) = 00,0, )T - 180,7) - 9(1,94)]

A

nw
il ~1O

)—¢(X’QCP)]

k

0 (# Ak)[N1(A;'ﬁ9ng) = O(A’Q;k)] + (# BP)[N1(A’-A’QC

P

+ ol - M
rH0u5) + ( B) 0050, ) - 0(h,). (15)
We first examine the "interior term:

P
T

(# A ) [N, (x,=0,0 ) - o0x,Q. )).
L Lk Lk

By use of Proposition 1, we obtain

2)(n-1)/2

{# Ak)[1 + (Xnk

1.
Then, by Remarks 2 and 3, we have

T o=y (n=1)/2 (n=1)g 1 1 . 8/2
1Tyl = Z:O rquny L1+ T 12 p(EE:T + ESTCT:TT?_)A .

An ar-iogous calculation for the "boundary term"

T = (“ B ) [N ().9_1.130, ) = :‘(\aQ, )]
2 P 1 ’,P ‘—.P
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gives a similar estimate:

(py+1)
T, s &2 0 (17)

We consider now
Ty = o(0,0) - 6(3,25) = o(h,p).

By definition of ¢{A,0) (equation 4)), by definition of P (Remark 3) and by
Remark 1, it follows easily that

-n \n/2 [ : 5/2
!T3] s (2m) 7w A ,er,n S uvp Nl (18)
For the same reason, we still have
- - ,8/2
T4 = (# BP)®(A,QCP) < UY1wnk . (19)

Hence, by combining (15) to (19), we obtain Theorem 2. o
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R. LEIS

Initial-boundary value problems in
elasticity

During the last decade much work has been done in elasticity and especially
in thermoelasticity. One wants to solve initial-boundary value probiems
first, and afterwards one tries to get more specific knowledge of the
solutions obtained. For instance, one enguires about their regularity, or
about their asymptotic behaviour for large times. Meanwhile linear problems
are fairly well understood whereas many nonlinear problems are still open.

Initial-boundary value problems play an important role in mathematical
physics. We only remind the reader of the wave equation, the Maxwell
equations, the Scrh8dinger equation, or the system of equations of elasticity.
In the linear case all these problems lead to a self-adjoint operator such
that the asymptotic behaviour of the solutions and the existence of wave
operators can be obtained by means of spectral theory. In linear thermo-
elasticity, however, the underlying operator is not seif-adjoint owing to
the coupling of a hyperbolic with a parabolic equation. Although solutions
can be obtained with the aid of semigroup theory, it is more difficult - and
presumably more interesting - to derive their asymptotic behaviour.

The Tecture is organized as follows. \le start by treating initial-boundary
value problems of linear elasticity, and indicate the existence of wave
operators. The main part of the lecture (section 2) is concerned with linear
thermoelasticity. We solve initial-boundary value probliems, give some
asymptotic expansions as t + «, and especially describe the asymptotic
behaviour of solutions of the free-space problem. In the third section,
finally, we deal with some nonlinear questions., e are particularly
interested in obtaining solutions global in t for small smooth data.

1. LINEAR ELASTICITY

We start by presenting a brief survey of results obtained in Tinear elasticity.
The underlying equation of state is Hooke's law (stress-strain relation)
3

T = 9 Co U, d,k=1,2,3, (1.1)
Jk m,n=1 Jjkmn “on
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T5k is the stress tensor, Umn = (amUn + anUm)/Z the strain tensor, and

U := (U1,U2,U3) the e]astic3disp1acement vector. It is defined in an open
and connected domain € in R°, The elastic moduli Cjkmn are real-valued,
bounded and measurable functions on Q. From physical considerations they
display the following symmetry relations

C =C

Jjkmn - Cmnjk kjmn*®

Furthermore

- = 2
3c, > 0 Vo € C, Ty = Lyi WX ) Cjkcjkmn(x)gmn z c, jzk [gjk]

holds. For exterior domains @ (domains with bounded complement) we assume

the existence of a sufficiently large constant e such that the Cjkmn are
constants in & := {x € | [x| > e].

I prefer rewriting Hooke's law using Sommerfeld's terminology. Let

=T23 0.5=T a. =T

Gy = Tyq Gy = Tyy Gy = T3g O 31 % % T2

1 = Ugy €y = Uy €3=Ugg €y = 2Upg &g = 2Ugy €5 = 20,5,

Using the generalized gradient symbol

’ \
3 0 0
1
0 3, 0
0 0 3
D := 3
0 3 9,
0 03,
\ a2 31 0 J

Hooke's law then reads

a = S.DU (1.2)
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where S is a positive definite six-row matrix containing the elastic moduli,
and DU represents the strain tensor.

The elastic medium may show certain synmetries, Special anisotropic nedia
are monoclinic media (one axis of symmetry), rhombic media (two axes), or
cubic media (three axes). For details compare Sommerfeld (1949, p, 278f) or
Leis (193G, p. 201f). The isotropic medium is given by

FaSat

o o T O o o
o T O O o o

lo o o s n <
o o o ¢

\'EOOOOO

o o o X < &

where p and k are the Lamé constants, u > 0, 2u + 3¢ > O,and v := 2p + k > 0.
Using this notation potential and kinetic energy are given by

(DV,a) 2 and (U

HU,)
L°() t

s (1.3)
t L%(q)

where M is the positive definite density matrix, and for short we write L2

instead of (Lz)6 or (L2)3 respectively. Thus the equations of linear
elasticity read

- 1 =
MUtt D'SDU

t
o
.

(1.4)

0

U~ := U(0) and U1

Ut(O) are the initial values.

When @ is equipped with a boundary 30, we may set boundary value problems,
For simplicity we take M = id and formulate the Dirichlet problem. Let

£:0(E) < L%(a) » L¥(a)
U -+ -D'sDU

where
D(E) := (U € fi,(a) | D'SDU € ).
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(DY, SDU) 2 plU]% with p > 0 then easily follows, and E is a self-adjoint
operator (in the case of the Neumann problem one has to use the second Korn's
inequality). Thus we can define £} with D(Ei) = ﬁ1. Assuming U0 € D(Eé) and
U1 € L2 we obtain a "weak solution with finite energy", U € C(RS,D(EQ) n
C1(R6,L2), of

Upy + EU =0 (1.5)
through
u(t) := cos(E2t)0® + 7% sin(edt)u!, (1.6)

which has to be interpreted by the spectral formula for self-adjoint operators.

Then

JERUHE? + U li® = const

is the energy.

Let & be bounded. Using Rellich's selection theorem one can then easily
prove the existence of a countable number of eigenvalues of E, and one obtains
a representation of U in terms of standing waves, which is typical for such
equations,

More interesting is the case of exterior domains. So let Q be an exterior
domain now. For simplicity we also assume the medium to be isotropic. Only
a few anisotropic media have so far been dealt with. In this case a solution
U of (E-A)U = 0 can be decomposed in Qe into a solenoidal and a potential
component. Both components solve Helmholtz equations with different wave-
numbers, Applying Rellich's estimate and the principle of unique continuation
(Heck 1969), one can conclude that E has no point eigenvalues. Here we have
to assume that the coefficients Cijkm are differentiable. The spectrum of E
is continuous, and o{(E) = RB. It is also possible to formulate radiation
conditions for each component of U, and to solve exterior boundary value

problems

(E-\)U = F, A €R"

76

—




for F with finite support (F € Hf). For details compare Leis (1970), or Leis

(1986, p. 217). Thus one can prove the limiting absorption principle, which
says that one obtains an outgoing or incoming solution (U+ or U7) of the
exterior boundary value problem by taking the 1limit in ﬁ1'p (ﬁ1 with weight
o(x) = 1/{1 + |x|})

+

U(x) = 1im [E - (A = ie)] 'F.
40

Stone's formula then provides the spectral family of E
NI Lo -
(P(X) U, V)= 11@ sy Jo ((E - (u+ie) U= [E- (u-ie)] U, Vidy,
¥

and one concludes that the spectrum of E is absolutely continuous saying that
{P(A)U, U) is absolutely continuous for all U € L2.

This result is strong enough to yield asymptotic statements for U(t) as
t + », Using the Riemann-Lebesgue Temma we can easily show "local energy

decay" saying that for all r and Q. := {x € 2 [ |x] < r}

Vim J etu)? s ug? - o (1.7)
toco Qr

Thus one expects that, for large t, U behaves 1ike a free-space solution,

.e . . . 3
Let Co,ijkl = Cijk1|9e and E0 be the corresponding oper;tor defined in R,
It is relatively easy then to discuss the solutions of atUO + EOU0 = 0 using
the Fourier transform. Knowing that the spectrum of E is absolutely

continuous we can apply perturbation methods originated by Kato (1976),
Belopolskii and Birman (1968), Pearson (1978) and others. Assuming
ul e D(E_é) and using corplex notation, H := U0 T LZ(Q), we can

show that wave operators

W LZ(Q) -+ LZ(R3), unitary
. o
W s s-lim o €Ot Je Bt
tro0

exist. J : L2(0) » L2(R) is defined by
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J{x)g(x) for x €Q
(Jg)(x) := { 0

otherwise,

where j € Cm(R3) with jl{x | [x] $ e} =0 and jl{x | |x|] 2 e+ 1} = 1. Because

of local energy decay the W do not depend on the special choice of j. Let

JO : LZ(R3) > LZ(Q) be the adjoint of J, namely
(990 (x) = j(x)g(x) for x € Q.

The crucial part of the existence proof for the wave operators is to show

2,53 2
(EJ0 - JOEO)PO(H) € 81(L (R7), L°(Q)), (1.8)
2,53 2 . . )
(R7) to L(Q). P0 is the spectral family of EO, H<R

a bounded interval, and D := EJ0 - JOEO is a linear first-order differential

a nuclear map from L

operator with C_ coefficients supported in K < {x|e < |x| < e + 1}. Equation
(1.8) follows either from explicit representation of PO(M)U by means of the
Fourier transform, or by exploiting the fact that, for all n, V := PO(M)U
belongs to U«Eo)n), and that

()" vil's c(m) (]

holds. Using standard regularity theorems it then follows that V € Hg(K),
and that

L 2,03
DPO(M) : L°(R

) > Hy(K)
is a bounded operator. The inclusion map
i 0 > 2K
is nuclear (cf. Yosida 1974, p. 279). So
(Edy - JoE )P (M) = L2@R%) » (2(0)
0 00”0 '
(Ed, - J.En)Po(M) = iDP,(M) € B, (L2®%),12%(a))
0 0 0" 0 0 1 ’ *
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Therefore we obtain

vim o JUCt) - Ug()] = 0.
trteo

The UE(t) are free-space solutions with initial values Hﬁ = HiH. S = W (W)™
is the scattering operator, Figure 1 illustrates this. For more details
compare Leis (1986, p. 112f).

Lo .
eflﬁot He

Figure 1
Finally let us remark that we could have put the elasticity equations into

a system first-order in t, namely

sou 0 D SDU
- . = 0. (1.9)

Ut t D' 0 Ut

We shall use this notation in the next section to be able to apply semigroup

theory.

2. LINEAR THERMOELASTICITY

We use the notation of section 1. In addition to that et T be the tempera-
ture, 0 = T—T0 the temperature difference, ¢ the specific heat, L = (]ij) the
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heat conductivity tensor, and G =(gij) the stress-temperature tensor. The
latter describes the coupling between elasticity and thermodynamics.

For the coefficients we make the usual assumptions. Let them be real-
valued, bounded and measurable functions on the domain Q, ]ij = ]ji,gij = gji’
and

0 vz € R3 vx €0 g.l..(x)z. 2 11|c|2,

3 1] J

w

1

3c

w

i 0 wxeq clx)z Cye

For exterior domains in addition to this we assume the existence of positive
constants 1,,c, € R" and 9 € R such that

vx € Q, ]ij(x) = 1g8450 gij(X) = 9p440 c(x) = ¢q.

For simplicity we assume T0 =1,

The difference between linear elasticity and thermoelasticity is that we
have to replace Hooke's law by the law of Duhamel-Neumann saying

(2.1)

Tik = Cikmn Ym ~ 951 O

and that we have to add a heat equation. Let us denote I':= (Y1,Y2,...,Y6)'
where
Yy 1Oy Yp 3T 9 Y3333 Vg it 93 Yo T i

The linear system of thermoelasticity then reads

YT L tre =
HUtt D'.2U + D'TO =0

v ' -
COt V'O + T DUt =0, (2.2)

For I = 0 these equations decouple into the equations of linear elasticity
and the heat equation.

e are looking for solutions with finite total energy (for its definition
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compare the papers of Carlson (1972) and Biot (1956))

E(+) 3= (DU, SOU) + (Uys MU) + (0, co).

For that reason and because we want to put the equations into a first-order

system, we set

(v1 SDU sou®
V := V2 = Ut . V0 = U1
0
L% 0 0
rs™t o o 0 b 0
Q:= |0 Mmol, N:= |0 0 or |,
L 0 0 ¢ 0 r'D -v'Lv

and choose the Hilbert space H() to become (LZ(Q))10 with scalar product

(V: N)H .= (vs Q”)(LZ(Q)

)10
We then get E = leig. To formulate the Dirichlet problem let

A:D(A) S H > H
Vo v

where

D(A) = {VEH |V, EH AVs €H AN EHY

Then we are looking for a V € C(RS,H) which is a weak solution of

Vt + AV = 0 with Vv(0)

This means that for all ¢ €

*
JR+ (v, hyt A ¢)H N

W, (2.3)

C(R,D(A)) n C, (R, #)

(0, e(0)),,
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shall hold. A is the adjoint operator, A* = Q'1N', where

0 D 0
N' := | D' 0 -b'r s
0 -I'p -V'LV

and D(AY) = D(A).

To derive some properties of A we start with

(AV, V) = (vv3, va3) + 21 Im{(V1, sz) + (r'sz, v3)}

yielding
- 2
Re(AV, V) = (Wy, LWV,) 2 11|v3|1 2 0.
Furthermore

N(A) = Dé x 0 %0

where D := (U € (L2(2))® | D'V = 0} and N(A*) = N(A). A is a closed
operator and

H = R(A) ® N(A") = RTB) © N(A)

R(A) = SDH, @ (%)% o 12,

R(A) and N(A) reduce A. Thus it is possible to restrict ourselves to R(A)
when dealing with (2.3).

Let A € € with Re X < 0 and (A-A)V = 0. Then we get

(W, LW.) -Re A V][ =0

3> LVV3)

and thus V = 0. By the same argument N(A* - X) = 0, Therefore (A->\)'1 exists
and H = R(A-X). Let (A-A)V = F. Then again
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or

(WVg0 L9Y3) - Re d V]| 2 5] (v, F)|

1A TT] 5 -1/Re A

Thus we have proved

€ :={) €C] Re X < 0} =p(A),

and from semigroup theory we get the existence of a family H(t), t 2 0, of
bounded 1inear operators such that:

1.

+a w
. .

problems can be treated simitarly.

Thus we have solved the Dirichlet probiem.

H(0) = id, H(s+t) = H(s)H(t);

TH(EHTs 15

H(t)A = AH(t);

wW € H, t- H(t}v is continuous;

vV € D(A), t » H(t)V is differentiable;

w € p(a), v(t) := HeVY € C(Rg, D(A)) N C,(RY, H) is the unique

solution of V, + AV = 0 with V(0) = V7,

v [ve)|] s VO

is obvious. NVV3(t)||+ 0 as t + « also holds. Let

where H*(t) is the semigroup generated by A*.

1:=(VeEDA) | vtz0 [[HEW| =W eV =V}

Other initial-boundary value
Some immediate conclusions are possible

It is the adjoint of H(t). I

is a closed subspace of D(A) with respect to H-IIA = (ll-llz + HA-HZ)é 50
that

D(A) =T @ 1%,

(2.4)
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1 and 1t are invariant under H(t) and H*(t). Let V° € D(A), V(t) := H(t)V

and

_ 0 0
V- = V1 + V2

according to (2.4). Then

(1) vtz 0 JHe) - IO

(i) vr> 0 Yim[V(t) - H(t)V?”Q - 0.
1o r

For details compare Racke (1987). These results describe the asymptotic
behaviour of V(t) for bounded domains Q. The problem remains to characterize
1. It can be shown that I is the u-liA-c1osure of the span of eigenfields
belonging to purely imaginary eigenvalues. These eigenvalues give rise to
undamped vibrations. It is interesting to note that they exist iff

M~ 1D'SDU + AU = O with P'DU = 0

has nontrivial solutions U € H An example for the existence of such
eigenfunctions has been given wnere R is the unit circle (in R ).

In the following let @ be an exterior domain. In that case from (i1) we
get local energy decay

vr > 0 Tlim |V(t) = 0.
o0

lg,

To obtain further results we first discuss the corresponding free-space
problem assuming an isotropic medium, Thus let M = id, L = id, ¢ = 1,
g\J = Yaij’ Y € R, and

D'SD = - u rot rot + v grad div, D'T = y grad
where ;,v are positive constants. Furthermore let Hy := (LZ(R3))10 and Ag
be defined in analogy to A. MWe already know

= R(Ay) ® N(AG) = (SDIl| 2 <ide (9 = 0 x 0).
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Both subspaces reduce AO' To get a further reduction we define

H3 : gﬁ(ﬁ1 n DO’ xDo x 0

n

]
P ..l AR 2
HO 1= 'SD(H1 n RO) xRO x L

where
2,531,3 _
(L™(R7))™ = Dy @ Ry

we (2®N | rotu

el
[}
[
(=3
—
it
<
—

e (LR divu - o

A=l
]

We then obtain a decomposition into solenoidal and potential fields,

precisely

- p
Hy = Hy @ Hy @ N(AO), (2.9)

all subspaces reducing AO‘ Therefore our equations (2.2) decompose into

3 s _ .
Uiy + 1 rot rot 0> =0 (2.6)
and
P v UP 4 - -
Utt v grad div U" + y grad 0 = 0
(2.7)

- iv uP =
Ot AQ + vy div Ut 0.

Equations (2.6) are the Maxwell equations. Their solutions are undamped
vibrations and may be discussed in analogy to section 1. For details compare
Leis (1986, p. 146f), The coupling constant y only appears in (2.7), which
are the more interesting equations.

To discuss the spectrum of A0 and the asymptotic behaviour of the solutions

V = 0 one can use the Fourier transform, and after straightforward

of Vt + A0
:= iR and

but lengthy calculations obtains detailed results., Let A1
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Then we get for the spectrum A of A0

o o+
.

=2 u APy v o}

==
1}

where X\ = 0 is the point eigenvalue originating from N(AO). A% = A, due to

1
(2.6). For AP we obtain

3

AP(y) := (A €C | 3g €R° a(r,q,v,y) = 0}

= Ay U Ag(y)
where A,(0) = A, and
80,gv.y) 1= = 23+ 1g]B% - (v + v9) gl + vlalh
The characteristic polynomial of RO’ the Fouriei transform of AO’ reads

23,742

0= Al 4w jalD)?

'A(aoaq:VsY)- (2-8)

It is interesting to give the analogous polynomials for the corresponding
problems in R2 and R1. They read

o
I

= Ro'(ﬂg + M |q|2)'A(Kosq9V,Y) in Rz (2.9)

8(Rg5G,v,Y) in R', (2.10)

o
n

Thus in R1 we neither get a null space nor a vibrating component.

Figure 2 shows some A3(v\ for v = 1 in the upper half-plane, The curves
are symmetric witk respect ro *ie x-axis. For more details compare Leis
(1980, 1981, 1986, p. 231f). . also remark that Racke (1986) introduced
generalized eigenfunctions and that he gave an eigenfunction expansion,

Knowing the spectrum of A0 we can also calculate the asymptotic behaviour
of the solutions of Vt + AOV = 0, Let

VO - y0s 0P, 00
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according to (2.5). Then

Op ]

Vi) = RS+ (WP 4 v

where

00

(iy Vv~ = H(t)V00 is stationary;

(i) H(t)vOS is an undamped vibration of Maxwell type - the asymptotic

behaviour is similar to that given in section 1;

(iii) let v = 0 - then the first two components of H(t)vOp are undamped
vibrations also and the third component is a solution of the heat
equation and thus vanishes as t » «;

{iv) et y # 0 - then lim HH(t)V0p||= 0.
{00

The asymptotic behaviour of the solutions of only a few boundary value
problems has been given so far. Assuming an isotropic medium these are
boundary conditions which are compatible with the decomposition into
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solenoidal and potential fields. In that case we obtain results similar to
those we got for the free-space problem. Such boundary conditions are

{n x U)|aQ = 0 A (div u)}aQ =0 A0)y=0
or
(neU)|yq =0 4 (nxrot U)'asz:O A a@/an|3Q = 0,

where U is the elastic displacement vector again.

3. SOME NONLINEAR PROBLEMS

In this last section I want to indicate some results on the existence of
solutions of nonlinear problems global in t for sufficiently small and smooth
data. Let us start with the free-space problem of elasticity (homogeneous
isotropic medium in R3), and write the linear system as a first-order system,
cf. (1.9); symbolically

V. + AV = 0 with v(0) = V0, (3.1)

t

Let the nonlinear problem be given by
V, + AV = F(V,TV) with v(0) = V7, (3.2)

and let P be the projector on N(A)., Then naturally we assume PV0 =0 and
PF(V,VV) = 0 for all v, W,

We consider (3.2) to be a perturbation of (3.1) and assume
IF(V, 7)) < c(v] + Jov])3 (3.3)

for |V| + [W| small, Then Klainerman (1982) and Klainerman and Ponce (1983)
proved that for sufficiently small and smooth V0 a solution of (3.2) global
in t exists, and that asymptotically it behaves like a solution of the linear
system (3.1). In this case, therefore, wave operators can be introduced
again (cf. (3.14)).

The idea of the proof is to combine the usual local existence theorem with
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an a priori estimate of the solution. One starts by deriving sharp P -9
estimates concerning the asymptotic behaviour of solutions cf the linear
equation (3.1). Let

At 0

V(t) ;= e "V

be the solution of (3.1). Then
v, =1V,
L L

immediately follows. From explicit knowledge of the fundamental solution of
(3.1) one also obtains

O NEERCRI R L (3.4)
L L
»3
(derivatives up to the third order have to be taken on the right-hand side).
The general tP - 19 estimate then is a consequence of the usual interpolation
inequalities between these extreme cases. It reads

-1+2/q 0 3.5
||v(t)||Lq < cq(1 +t) v ||LpN (3.5)

where q 2 2, 1/p + 1/g = 1 and 3(2-p)/p ¢ Np < 3.

Next a local existence theorem is used to ubtain a solution V € C([O,T],Hq)
n C1([0,T],Hs_1) of the nonlinear equation (3.2) in an interval [0,T], T > 1,
Then

vt € [0,T] V()] _ + [[wv(t)| = 1

(2]

follows, and ||V0||S is assumed to be small (||-]|S denotes the L2-norm of all
derivatives up to the order s, s 2 3). To prove the local existence theorem
one first estimates the solutions of the linearized problem, and their
derivatives, and then applies the contraction principle. Details can be
found in Klainerman (1980, p. 94f).
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In the third step "high-enerqy estimates" are derived by elementary but
tricky partial integration and applying Gronwall's lemma. This means that
one can estimate high derivatives of the local solution (3 represents any
derivative, at,a1,az, or 33)

t
IVl s e W11 explc jo V| e+ vt 2, 3ar ). .6)

The fourth step is essential. Defining with T := 7 + N6/5’ p =T+ N6/5’
and 0 := 2 +p

M) = s (s 07wl
t€[0,T] L't

one shows that a constant MO, not depending on T, exists such that

M (T) < M (3.7)
0 2 6/5 . . .
holds for small V- € L,c niL o To derive this estimate one starts from
A0 Y -A(ter)
V(t) = e "V + J e F(V,9V) (r)dr. (3.8)
0

Using the calculus inequality (cf. Klainerman 1980, 1982)

[ F(Vsv) < cf|wv v 3.9
“L6/5 <l Ile I |1L6T (3.9)
s P 1e) ’
and
VI, + HoVllasclVil g (3.10)
L L L'

which follows from Sobolev's inequality and the differential equation, one
obtains from (3.8) and (3.5) with q = 6, p = 6/5, and (3.6)

2.
x £ cs(1 + x2ecx ) (3.11)

where x := M (1) and V0| , + V)] 4 < 6 is small. This yields (3.7).
Lo

6/5
Ly's
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Estimate (3.7) then leads to the a priori estimate for the local solution
V(t), we wanted to prove, namely

e

, s {1
3 K, independent of T vt € [J,T] “V(t)”0 s kv, (3.12)
. 0 1,0 .
assuming ||V |12 + v ll6/5 to be sufficiently small.
L L
»7 N
Thus we can reapply the local existence theorem to obtain the desired

global solution V € C([O,w),Ho) n Cl([O,w),HO_1) for

0 0 .
Iv HLfO . v HL%S X

sufficiently small. From (3.7) and (3.10)

IVl + IV, + 13vll, = o™/ (3.13)
L L L

» T

as t > « follows. Defining

Vi) o= V(t) + [ e‘A(t’”’F(v,vv)(r)dr,
t

V" is a solution of the linear equation Vt + AV = 0, and the previous results
inmediately lead to

Tim IV(t) - VRO = Tim V(b)) - V)] 6 =0 (3.14)
te L

e L "t

It should be remarked that similar statements hold in R", n 22, \hen
n z 6 quadratic terms on the right-hand side of (3.3) are allowed. In the
case of the wave equation n 2 4 suffices to obtain that result. This has
been shown by Klainerman (1985) who improved the estimate (3.4) Ly veplacing
the L1-norm on the right-hand side by L2-norms of FVU. I' consists of
differential operators which leave solutions of the wave equation invariant
{cf. also Christodoulou 1986, John 1987). In 3
in (3,3), global smooth solutions of the wave equation may exist when a "null
condition" is fulfilled (Klainerman 1986); an example can be found in
Klainerman (1980, p. 45}, John (19561) has shown, however, that generally

, and with quadratic behaviour
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they blow, Plane waves and radial solutions also blow. In R1 solutions
always blow (John 1974, 1976).

The next problem is to treat initial-boundary value problems. So far this
has only been done by Shibata and Tsutsumi (1986) for the wave equation with
constant coefficients and "nontrapping”" domains with Dirichlet boundary
condition. Here also the asymptotic behaviour of the solutions cf the
linear equation has to be given first, and therefore the "nontrapping”
condition is used.

Let us now switch to thermoelasticity. ile again write the underlying
equations (cf. (2.2)-(2.3)) in the form

Vi, + AV = F(U) with v(0) = VO, (3.15)
W is a vector composed of V and certain derivatives ¢ V; F := (O,fz,f3)',
- _ - N 2
where f2 = fZ(BV1,VBV1,V3,VV3) and f3 = f3(BV1,VBV1,/V2,V3,VV3,V 3). The

medium again is assumed to be homogeneous and isotropic, and

1~ LZ, bounded
’

U - 7e(s0) U,

Let us first deal with the corresponding problem in R1. From (2.10) we
know that in the linear case we do not get vibrations. The coupling tern
appears isolated so that a study in R1 should help to understand the general
situation in R3. Since there are no vibrations in R1 we expect that heat
dissipation is strong enough to prevent a solution from blowing up at least
for small and smooth data. This was proved by Zheng and Shen (1987). On
the other hand Dafermos and Hsiao (1Y86) gave an example with blow-up for
large and smooth data.

For bounded domains in R1 Slemrod (1981) showed the existence of global
sclutiors for small and swooth uata and cpecial boundary conditions, narely
Ux|aQ = 0 and o|aQ =0or U|aQ =0 and OxlaQ = 0 (here again U denotes the
elastic displacement vector). The Dirichlet initial-boundary value problem
was treated by Racke (1988a,b). He is able to show lccal existence for
bounded and exterior domains, High-energy estimates, however, are still
missing, and hence the question whether global solutions exist is still open,

An exterior initial-boundary value problem in R1. again leaQ = (0 and
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OIdQ = 0, has been treated by Jiang (1988). He uses the Fourier sine and
cosine transform to obtain LP - 1% estimaces for the linear problem. He also
proves high-energy estimates, and he is able to show the existence of
solutions global in t for small and smooth data. Jiang is also capable of
treating the boundary condition UIBQ = 0 and o o 0.

In R3 the situation is more difficult since we anticipate vibrations (cf.
{2.8)-(2.10)). On the other hand we already know that global solutions exist
for the hyperbolic part. So we again expect the existence of solutions
global in t, Local existence follows from a result of Kawashima (1983},
whereas Racke (1988c) showed the existence of global solutions for small and

smooth data essentially assuming
F(N) = F1(u) + FZ(BV1,V3)

where

F ) = o) = o oV, i v vy Y

i and F2(BV )

1°? 3)
for small |W|. The term F, only appears in the heat equation. To do so he
also derived LP - 9 estim;tes for the linear equation and gave high-energy
estimates. Initial-boundary value problems have not been dealt with as yet.

Let me end up by indicating some open problems. So far we have assumed a
homogeneous and isotropic medium, Little is known for inhomogeneous or
anisotropic media., In any case it would be most important to prove global
existence and possible uniqueness of weak solutions for large data.

In R1, as we know, the parabolic component dominates. Systens of conver-
sation laws in R1 have been studied and solved using Glimm's difference
scheme (Glimm 1965; cf, Smoller 1983). It should be Tooked at whether this
method works in thermoelasticity also.

In R3, however, we meet with a parabolic and a hyperbolic component. The
existence of certain weak solutions for parabolic equations has been proved
(cf. von Wahl 1985), Solutions of hyperbolic equations with large data,
however, generally develop singularities at a time t = TU' the 1ife span,
which was proved by John (1981); cf. lajda (1984). T0 depends on the large-
ness of the initial data; T0 = » for smal) and siooth data and cubic non-
linearity, as we have seen before, Generally the existence of global weak
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solutions has not yet been shown, and so far one does not have a clear idea
of what happens in nonlinear thermoelasticity.
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H.A. LEVINE

The long-time behaviour of solutions of
reaction-diffusion equations in unbounded
domains: a survey

1. INTRODUCTION

N N

Let B = R" be a domain with a piecewise smooth boundary, or else D = R,
There has been, it is fair to say, more than a passing interest in positive
solutions of the problem:

ut=AU+Up in DX (O)T)9 (p>1)

(P) u(x,t) = 0 (x,t) € 9D x (0,T)

u(x,0)

uo(x) X€ D,

It is known that when D is a bounded domain, not all solutions are global,
a result due to Kaplan [11] and, as a consequence of more general consider-
ations, to Levine [13], who showed that if

-1 2 1 +1
E(uo) _.ZJD IVUOI dX'-p—-;——TJD UE dx < 0. (1.1)

then the solutions (P) cannot be g1oba1.+ (D need not be bounded.) Hore
recently several authors have examined the precise nature of how the solution
fails to be global. Beginning with Ball [2], several authors [4,5,83,19,20,
21], to cite just a few, have studied the pointwise blow-up of solutions of
(P) for large initial data.

In the study of pointwise blow-up, these authors restricted p to satisfy

* This research was supported by the Air Force Office of Scientific Research
under Grant No, AFOSR 88-0031. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes not with-
standing any copyright notation therein.

+ That is, the solution cannot remain in Hé(D) n Lp+1(D) for all time.
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(1.2)

(N+2)/(N-2) dif N> 2
p < {

o if N=1,2,

whereas the (weaker) global nonexistence results of [13] do not require this
restriction. (In some cases p = (N + 2)/(N - 2) is included in the study of
single point blow-up [8].)

On the other hand, for any p > 1, when D is bounded, (P) can have non-
trivial global solutions for any initial values Uy for which Bug + ug s 0.
These global solutions will decay to zero if the set

S={f€ Hé(D) | of + P =0 inD, f =0 on3aD, fz 0}

is either {0} or if
ugx) < inf{f(x) | f €S} x €D

with strict inequality on an open subset of D. If (1.2) holds, it can be
shown that S is not trivial. See [18] for example.

Fujita [6] was perhaps the first to examine (P) on all of RN. He proved
the following interesting result.

THEOREM 1 [6]: (a) If 1 <p <1+ 2/N, then (P) does not possess nontrivial
global solutions. (b) If p > 1 + 2/N, then there are global positive
solutions of (P).

Case (a) is often called the blow-up case while (b) is called the global
existence case. (In [1,10,12] and later in [20], it was established that
p=1+ 2/N belonged to the blow-up case.,) Such a result may be called a
"Fujita-type" blow-up theorem. It is the purpose of this talk to discuss
other such Fujita-type results for parabolic equations.

It should perhaps be remarked that John, Glassey and others [26-34] have
obtained partial "Fujita-type" results for hyperbolic problems such as
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T ey

= AU+ |u|p (x,t) € RN (0,7)

Ytt
(H) u(,0) = uplx) x € RV
ut(x,U) = vo(x) X € RN,

although the results are not as complete as they are for (P) (as is to be
expected), For example, in [31] it was shown that if 1 < p < po(N) where
PO(N) is the Targer root of (N - 1)p2 - N+ 1)p -2 =20 then (H) has no
nontrivial global solutions. On the other hand, Glassey [26,27] (when N = 2)
and John [28] (when N = 3) have shown that for p > pO(N) small data, non-
trivial, global solutions exist. Schaeffer [30] showed that both p0(2) and
p0(3) belong to the blow-up case. More recently, in [32,33] it is shown

that if N = 2,3,4,...

p > pi(N) i= (N2 + 3N - 2)/N(N - 1),
then small data, nontrivial global solutions of (H) do exist. Thus, to our
knowledge, there remains a gap for (H) when N > 3_Jr

e turn now to a discussion of (P) in other unbounded domains.

2. THE FIRST RESULTS OF MEIER

In [16], Meier considered (P) when, for fixed k € [1,N], k an integer,
Dk = Ix |x1 > 0,...,xk > 0}.

The results of Meijer are somewhat more general than we present here in that
he considers the equation

Up =AU+ tuP in Dk x [0,00)
where g 2 0, p > 1. However, we shall state them here only in the case of
q = 0 for purposes of comparison with the results of Fujita et al. for (P).
Let p(k,N) = 1 + 2/(N + k).

THEOREM 2 [161: (a) If 1< p < p(k,N), (P) has no nontrivial global solutions

t I am told that Sideras has closed this agap but the work is unpublished,
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(b) If p > p(k,N) there are global, bounded solutions of (P) which decay
uniformiy to zero on Dk as t » + o,

It is not known whether or not p(k,N) falls into the blow-up case for
kK > 0.“)

The Fujita-type results of Fujita, Heier, ileissler and others depend
heavily on specific properties of the Green's function for the heat equation
in RN or Dk‘ For example, if H(x,t) denotes the Green's function, then

H(0,t) = (2rt)™ V2 (p = Ry)
and

=1 (D = Ry}

H(*,t) R
I I o N

rY)
properties which played an important role in the arguments of [16] and [2C],
It is the second property, which fails if D = Dk, that prevented ileier from
extending leissler's argument to this case.(1)

Because, for most geometries, the Green's function is not readily found,
it is desirable to have alternate methods available for investigating
asymptotic properties of solutions. For example, the argument of Kaplan [11]
for proving blow-up (global nonexistence) depended on the positivity of the
first Dirichlet eigenfunction for A on bounded domains., Such an argument,
which works also for hyperbolic problems on bounded domains, fails on
unbounded domains.

Recently, however, Bandle and Levine [3] have modified Kaplan's argument
to obtain blow-up results of Fujita type for other unbounded domains. They
have also obtained Fujita~type global existence results for "large" p. More
recently Levine and }eier (14] have improved upon some of these large p
results. The arguments of [3, 14] for large p also avoid the use of the
Green's function for the heat equation. lle recently learned of some related
results of Kavian and others which are obtained by different methods. Ue
turn next to a discussion of these results,

(1) But see Section 6 and the note added in pruof.
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3. THE RESULTS OF BANDLE AND LEVINE

We consider the case for which D is a cone in RN

{for convenience). That is, we write, for x € RN, x = {r,0) where r € (0,»)
and 8 € Q where @ < SN'1 is a submanifold of the unit sphere with boundary,
o0, smooth enough to permit integration by parts. lle assume also that 3 has

with vertex at the origin

positive (N - 2)-dimensional measure.
Let wy be the smallest Dirichlet eigenvalue for the Laplace-Beltrami
operator on Q. Let y, denote the positive and negative roots respectively of
2
v+ y(N-2) - wy = 0.

Explicitly,

Yo = (1/2) (2 - N2 LN - 2)° + 40,212y,

The following result is given in [3] as Theorem 2.3 and Theorem 7.5,
THEQOREM 3 [3]: (a) If

T<p<1+2/(2-vy)=p (3.1)

then no nontrivial, nonnegative, almost regular solution of (P} can be global
in time. (b) Let

poi=min(1 + 2/N, 1+ 2/(=y_)). (3.2)
If
p>p (3.3)

then (P) has nontrivial global, almost reqular solutions,

REMARK: In [3], a generalization of (a) in which u” is replaced by f(u) is
also given, See also [35].

A solution of (P) is almost regular on QT =D x [0,T) if
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“(i1) for all k > 0 and t € [0,T), Tim inf e " J (Ju] + Ju ])ds,

() uectop n @ -0 x (T,

0,

r- Q ~

(iii) there is a sequence {rn}:=1’ r, ~ 0 such that

Tim J [r::'1
Q

N0

lup(rys8

(rsBst)} + N Zlulr ,0,t)[1ds .
Let us write out the conditions (3.1), (3.3). le see that we always have
p <1+ 2/Nunless wy = 0 in which case p = 1 + 2/N.

Moreover, p = 1 + 2/N if and only if wy 2 2N, i.e. if and only if Q is
"small", Thus, for fixed p > 1, in accordance with what is known for bounded
domains, small cones are more stable than large ones., In the case N = 2 and
Q = {0,yn) we have

p=1+2y/(1 + 2y)

1

p = nin(2,1 + 2v),
so that if y < 1/2, the statement (b) is an improvement in the range of p
for which we have global solutions over what we would obtain if we apply the
Fujita result.

The idea behind the proof of (a) is the following: Since we cannot apply
the argument of Kaplan directly, we let y(8) be the first Dirichlet eigen-
function of the Laplace-Beltrami operator,~Ae, with y > 0 on @ and

~

y(6)dS, = 1.
[ o
Ve then let, for m,k > 0,
-1rme-kr

olr,g) = C wle),

where C = k'(m+N)r(m + N) so that
[ ¢ dx = 1,
D
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If

(k2

# 00+ (- 2m - wd 2 e (172) N - 10158 (3.4)
then it is easy to show that

Ap + 2 2 0

and that

satisfies
F'(t) 2 -aF(t) + (F(t))P (3.5)

in view of the almost regularity of u. Consequently u will not be global in
time it

F(0) > 3/ (P=1), (3.6)
fow (3.4), (3.5) and (3.6) will simultaneously hold provided

m2 + (N - 2)m - wy > 0 (3.7)

L M+ (/8- D2 5.9)
B = - 3-8
;Z h27+ (N-2)m - wy

and
k-[z/(P-'l)-(m-bN)] J rm+N-1e-k\" (j U)(B)UO(Y‘,O)d56>dY‘ S F(m"‘N)B1/(p-1).
0 Q - -
(3.9)
Thus, if
2-N-vy_= Y, <m< 2/{p-1)-N
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and 8 is fixed, we can choose k (and hence 1) so small that (3.7), (3.8) and
(3.9) hold.

Concerning (b), if p = 1 + 2/H, the result follows from the Fujita result
by comparison.

If p=1+2/(-y_), the argument is more subtle and depends upon the
following sequence of lemmas., (If p 2 (N + 1)/(li - 3), the result again
follows from the Fujita result by comparison since 1 + 2/N < (N + 1)/(N - 3}.)
Thus, it suffices to consider only the case 1 + 2/(-y_) <p < (N + 1}/(N - 3).
The lemmas are of interest in their own right. (They are Theorems 3.2, 7.4,
6.1, 4.6 of [3].)

THEOREM 4 (3]: If

{ (N+1)/(N-3) N> 3

1 - 2/'\.'-(p<
© N=2,3,

then there is a singular stationary solution of the form

-2/(p-1)

us(r,g) =r a(6) (3.10)

where a(6) > 0 in Q and solves

Aqa +va +aP =0 in 9]

~

Q
It

0 on 39,
and v = 2/(p - 1)[2/(p - 1) +2 -N]. If 1 <psp, there is no singular
solution of the form given in (3.10). When N = 2, there is at most one

solution of this form.

A regular stationary solution of (P) is a function w2 0, w € CZ(D) n Co(ﬁ)
such that

AW + w =0 in D
(s)
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REMARK: The only stationary solutions w(x) of (P) such that
2P 1Dyx) = wix)
for all A > 0, are of the form (3.10).
Then, the remainder of (b) follows from
LEMMA 5 [3]: 1If p satisfies the conditions of Theorem 4 and if

05 ugs min{re,us} (3.11)

for some ¢ > 0 and some solution ug of the form, then the solution of (P) is
global in time.

If p is further restricted, more is true.
THEQREM 6 [3]: If

{ (N+2)/(N-2) N> 2

1-2/y_<pc<
o N =2,

and if (3.11) holds, then not only is u global but also

1im u(x,t) = 0, x € D.

tooo

To prove Lemma 5, one defines
u(r,0) = inf{u ,y}
where y = Ar'a(e) and m > 0 satisfies
2
m-+ (N-2m-v <0,

where v(> w1) is given in Theorem 4, The function u is a supersolution of
(S) in the weak sense. The result then follows by comparison principles.
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The proof of Theorem 6 is more difficult because it depends on the

following lemma:

LEMMA 7 [3]: Let p satisfy the hypothesis of Theorem 6. Then there are no
nonnegative solutions of (S), w{x), such that w g ug in D.

The main idea of the proof of Lemma 7 is to consider the one-parameter

family

Az/(p-1)

wix;) = w(kr,g).

One can show (but not easily) that if this family has an envelope on any
subcone, then w is singular at r = 0, If it fails to have an envelope on

any subcone it follows that

2
p -1

slE
BV
o

G(r,g) ERTN

on the cone with strict inequality somewhere. If we then set

rz/(p'1)w(r,e)

2(r,e) =
and

L) < [ alrgdale)as,,
Q -~ T2

a calculation leads to

Loy * (N -1 - 29)L, 20 (a=2/(p-1)).

\Whence, for r > s where Lr(r1) > 0

209+1-N p < (N+2)/(N-2)
Lir) 2 L(r,) + const

n

nr p (N+2)/(N'2)1

where the constant is positive., From this, we see that L(r) is unbounded

on (r1,w). On the other hand, since w < Ugs
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L(r) s JQ az(g)dse

~

and obvious contradiction.
In [3], we also prove

THEOREM 8 [3]: If 1 < p < 1 - 2/y_ then there are no regular stationary
solutions of (S) except w = 0.

4, RELATED RESULTS

The technique of [3] can also be applied to study (P) in domains which are
exterior to a bounded region., Let D¢ = Rl - D be a bounded region. Then in
(3] we prove the following, (Theorems 8.2, 8.3, of [3].)

THEOREM 9 [3]: (a) If 1 <p < 1 + 2/N, (P) has no nontrivial nonnegative
global solutions. (b) If p > 1 + 2/N there are nontrivial bounded global
solutions, If N23,p>1+2/(N-2),0¢€D"and

u(x,0) = uy(x) < Aixl_z/(p-1)

where

e e

then u is a global solution of (P), If N/(N-2) <p s (N + 2)/(N - 2), u{x,t)
decays to zero pointwise at t » o«

Extensions of this result to other problems (including those with convection-
1ike terms) are given in [36]. Theorem 9(a,b) settles an oldconjectureof Fujita.

The proof of the nonexistence result is similar to the proof of the result
when D is a cone. The first part of (b) follows from Fujita's result and
comparison. The second part of (b) follows by arguments similar to those
used to prove Theorem 4 and Lemma 5,

In [9], stationary solutions of the problem
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9P in D x [0,T)

AU+ | x|
r) u=0 on 3D x (0,T)

u(x,0) = ug(x) on D

{where Ug 2 0) were considered when D = RN. In [3], we established the
following when D is a cone and o > -2.

THEOREM 10 [3]: Let

=1+ (2+0)/(2-y)

o

1+ (2+a)/(-v_).

o
]

(a) If 1 <p < p, there are no nontrivial global regular solutions of (PC).

[\
E=

(N+1)/(N-3) N
p<pc< {
o N = 2,3,

there are singular stationary solutions of (PO) of the forn

u = r-(2+0)/(P'1)a(

: 8-

If

5 < p < min { N+ N+2+20 m}
N-3 N -2

then regular solutions of (Po) with u(x,0) = min(rg,us) for some ¢ » 0 are

global and decay to zero pointwise as t » =, If

F-’<N+2+20<p<

{ {N+1)/(N-3) Nz4
N-2 ® N

3
then regular solutions with u(x,0) s min(re,us) for some ¢ > 0 are global.
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{c) Ift1<p<p, (Po) has no stationary solutions except u = 0 and no

singular solutions of the above form,

The proofs of the statements in Theorem 10 are very similar to the proofs
of the corresponding statements when ¢ = 0 except in the case of the first
statement, In most of these arguments, the quantity 2/(p - 1) is replaced

by (2 + o)/(p - 1).
For the statement (a), we let

§=o/(p-1)
and put
u = [x] .

Then the differential equation becomes

_ o ~(N-28-1) 3 [ H-28-1 3v )
Yg= A 3r

+ r—z[Aev - 8(N-2-3g)v] + vV,

If we set

F(t) = f j vor™1 ds dr
0/q 4

we find that (3.5) holds provided (3.4) holds with m replaced by m + §. The
condition that both (3.5) and (3.6) hold for all ) sufficiently small becomes

Yy, -d<m<2(p-1)-N

and (a) follows,
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5. THE RESULTS OF LEVINE AND MEIER

Bandle and Levine [3] observed that when D = Dk,

p = plk,N),

so that, in view of Heier's early result [15], p is the cutoff between the
blow-up case and the global existence case. Meier then conjectured that
this was true for every cone, i.e. that p = p.
In [17] he showed that, when N = 2 and v = 1/n, n = 1,2,,..,p is the
cutoff between (a) and (b)., He also showed there that if N = 3 and

Q= {(¢,0) € 52 l 0<¢<m/n, 0<0<m}

or

Q=1(¢,8) €S° | 0 <o<m/n, 0<8<mn/2l,
there p is again the cutoff for (a), (b). The values of p for these cases

are given in Table 1.
Meier's original arguments were modified in [17] but they also utilized

the Green's function which can be constructed for such domains by the method

of images.
He also showed there that if D is any domain, there is a critical

exponent p*, p* 3 1, such that if p > p* there are always nontrivial global
solutions of (P) while if 1 < p < p* (when p* > 1) there are no nontrivial

global solutions, (lhen D is bounded, p* = 1.)
Careful inspection of Meier's arguments led him and Levine to conclude

that it should be possible to prove that for cones, p* = p in all cases.
This they were able to do by showing that if vi=y_+ 3(N - 2) and tg > 0

W(r,8,t) c= r~(N-2)/2 r M)y (/ar)a (Ean(e), (5.1)
0
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then w is a positive* solution of the heat equation vanishing on the boundary
of the cone. Then one can find a function g(t) defined on [0,») such that

u(ryg,t) = g(thwlr,g,t) (5.2)

is a global, positive, supersolution of (P). See [14] for details.

Meier has also conjectured that p belongs to the blow-up case but this
problem remains open(1 {See section 6 below, however.)

The gap between E_and p can be closed for (Po) as well, at least for o 2 0.,
We have

THEOREM 11 [14]: Let p be as in Theorem 10 and o 2 0.
(a) If 1 <p<p, (P) has no nontrivial global solutions,

(b) If p> p, then (Po) has nontrivial global solutions.

The extra condition arises through the construction of a supersolution for

(P). One has to require that
(N+v,)

1im sup (t + ty) (Z+0) { sup rcwp_1(r,6,t) }< ®,
>+ Y‘>0,9€Q -

This leads to the condition that ¢ 2 0.
We obtain the following corollary (Corollaries 3.2, 3.4 of [14].)

COROLLARY 12 [14]: If u solves (P ) where p > p( ), o 2 0 and if
u{r,e,t) ¢ g(t)wlr,g,t) for some tys then for all r > 0,

1im sup t(N+Y+)/(2+°) sup u(r,e,t) g cr'O/(p'1)
ft++ = BeQ ~

for some constant ¢ depending only upon g(0), t0 and geometry,

* The integral can be evaluated, It has the value

(t + tg) lexpl-(14r2)/4(t+t0) 11 (r/2(tst)))

where Iv is the modified Bessel function of order v. See latson, A Treatise
on the Theory of Bessel Functions, Cambridge University Press (1922), p. 395.
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When ¢ = 0, we may replace sup_ by supp. In particular, the L norm of
the solution decays faster than (t + to)'”(p-”—E for some £ > 0.

We remark finally that our existence and nonexistence results take place
in the space

{f|f =0 on 3D, J e'klxl(lf(x)l + |VF(x)|)dx < = for all k > 0}.
D

This is a larger space than H'(D) as our singular solution, r-2/(p—1)a(9),
belongs to this space if p > 1 + 2/(N - 1) but not to Hé(D). (The inclusion

follows from Schwarz's inequality.)

6. THE RESULTS OF ESCOBEDO AND KAVIAN

In [22,23,24], the authors examine (P) from the point of view of L2 theory.
They introduce the weighted Hilbert spaces

L2, = {f | J I£12K(y)dy < =},
D

{f ] f, 9 € L2(0,K), f = 0 on 30},

1
HO(D,K)

where K(y) = exp(%JYIZ). On this space they consider the initial-boundary
value problem for

|vlp_1v + (p - 1)—1v

+
Vg Lv

where
vis,y) := es/(p_”u(es - 1,es/2y), (6.1)
u solves (P) and where

LF = -0F = 2y-VF = K17+ (kvf)

denotes the self-adjoint operator which results from the change of variables
(6.1). If A, is the smallest eigenvalue of L on H1(D,K), then [22]
k1 2 %N, N/2 being the smallest eigenvalue of L on RN.
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They treat the problem from the point of view of potential well theory
[25]. \le quote their principal results for our cones below. (It is assumed

that u(-,t) € H’(D) unless otherwise specified.) The following resuit is
Theorem 4.5 of PZZ].

THEOREM 13 [22]: Let 1 < p < (N + 2)/(N - 2) and D be a convex cone,
(i) Ifps 1+ 1/>\1 and u(-,0) = 0, then u(-,t) blows up in finite time,
(1) If pz 1+ 1/x, and u(0) € Hy(D,K)

1 2, 1 p+1
£E(0,K) : 0 K{y)dy - —~———— 0 K{y)d
(0,K) ’ZJD |vu(0) | 2K(y)dy Y [D 1u(0) P 'K (y)dy

1 2
— u(0)|“K(y)dy s 0, (6.2)
2(p - 1) jg } '

then u(t) blows up in finite time.

(111) If p > 1+ 1/, there exists u, € H1(D,K) up2 0s Ug # 0, such that
u(t) is global in time.

(iv) Ifp>1+ 1/, and u{t) is a global solution, then

lim sup ¢1/(p-1) TuCt}}
t++ o C (D)

< oo,

We see from this that when our cones are convex we have the p belongs to
the blow-up case£1)(For all cones, one can show directly that Ay =%(N+ y+).)
Also, as we see from Corollary 12, some solutions do decay more rapidly

than t'1/(p'1). Are there any solutions for which

vim £/ P yucty))
L

is a finite, nonzero number, i.e. solutions which decay exactly like
e~ 1/(p-1) 5 L™

We see also that the range of p is somewhat restricted here since
p < (N+2)/(N-2) and that the class of solutions fo. which blow-up occurs
is smaller than that considered in [3].

The singular solutions we have constructed here do not belong to the
Hilbert space when D is a cone. Moreover, they exist over a range of p which
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neither includes nor is contained in (1, (N + 2)/(N - 2)) when N > 2, Thus
some additional structure is lost when the Hilbert space approach is taken.
The result (ii) holds for any p > 1 when (6.2) holds. This is a
consequence of [13] since f(v) = |v|p'1v + v(p - 1) satisfies the structure
conditions of [13] and since L is positive definite on H;(D,K).
Finally, (iv) does not improve Theorem 6 because of the extra condition
that u(+) € H}(D,K).
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J. MAWHIN
Bifurcation from infinity and nonlinear

boundary value problems

1. INTRODUCTION

Let H be a real Hilbert space and L : D{L) < H + H a Tinear self-adjoint
operator with compact resolvent. If g(L) denotes the spectrum of L (a pure
point spectrum {Ai}ied with no finite accumulation point), the following
result concerning the solvability of the equation

lu - xu=h (M

for » €ER and h € H is well-known:
(i) I1f X g o(L), problem (1) has a unique solution for each h € H.

(1) If A = A, € o(L), problem (1) has a solution if and only if h € Nf
where Ny = N(L - Ail).

Moreover, we can describe as follows the set of solutions (A,u) of (1) in
the neighbourhood of Xi € OSL)' As H = Ni @ N#, we can write each element
u of H in the formu = u + u, with u € N; and ue€ N#, and (1) is equivalent
to the system

(L= 2Du = (-0 = h,
= (>\" )\1)1.1 =E-
Letting
L, = (L - A1) :D(L) n NE - N
1 ) nnt v

1

(a bijection), we can write, for 0 < [A - A,| sufficiently small, the unique
solution u{A) of (1) in the form (with I the identity on N#)
-1, =17

u) = Oy - 0TR e 1y -,
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and the second term of the right-hand member has a 1imit when ) Aje There-
fore, if i #0, i.e. if H €N,

JuOI= Uagal 2 IRIZ + gL - e T R 22

+ oo
if A > A;. On the other hand, if h = 0, i.e. if h € H‘:‘ then

-1 1
u(x) > L; k€ N

if X > ;s and the set of solutions of (1) for A = A; 1s given by L;1ﬁ + Ny
Thus, the bifurcation diagram (i, Jju]] ) for the solutions of (1) has, for A

close to Ajs the shape indicated on figure 1.
) hg N© \ he N©
g N ' /1 1PN
- 'ui“ ! prans

Figure 1

It may be of interest to study cases where h is replaced by a nonlinear
operator N on H and the closest situation to the inhomogeneous problem (1)
is that where N is continuous and bounded on H, i.e. |[Nu|[s C for all u € H
and some C > U, The corresponding nonlinear equation
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Lu - au = Nu (2)

is equivalent, when ) € o(L), to the fixed point problem

u=(L- AI)-1Nu,

whose right-hand member is a completely continuous operator on H with bounded
range. The Schauder fixed point theorem immediately implies the existence of
at least one solution. For the case where ) = A4 € g(L), i.e. for the

equation

Lu - au = Nu, (3)
the existence question is more delicate (as for the linear case), but conditions
have been introduced in the late 1960s by Lazer and his coworkers [5,6,7]
which may be viewed as some type of nonlinear version of the condition h € N#
in the linear case. The reader may consult [2] or [8] for more recent
references to those conditions generally referred as Landesman-Lazer conditions,
Now, when Ai has an odd multiplicity, a result of Krasnosel'skii [3,4],
subsequently refined and extended by Stuart [13], Toland [14], Rabinowitz [12]
and others, implies for equations (2) with the above assumptions the existence
of a continuous branch of solutions going off from (Ai,m) in the sense that
for each ¢ > 0, there is a ball B centred at zero in H such that, on the
boundary T of each bounded open neighbourhood of B, there is a solution (j,u)
of (2) with ) € (Ai TR e) and u € T, Applied to the linear problem (1),
such a result does not distinguish the situations where h € N? or h ¢ N#. A
striking difference between the two situations seems to be the existence,
when h € Ni’ of an a priori bound independent of ) for the solutions u of (1)
when ) € [Ai -8 Ayt 6]\{xi}. for some § > 0, Following the spirit of some
recent joint work with Schmitt [10,11], we shall describe in this paper the
use of bifurcation from infinity and of the existence of a priori estimates
near \; for the solutions of (2) in the obtention of existence and multiplicity

results in the nonlinear case.

2, NONLINEAR EIGENVALUE PROBLEMS WITH SUBLINEAR NOWLINEARITY

Let X be a real Banach space, L : D(L) = X » X a Fredholm linear operator with
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index zero, and N : X -~ X an L-completely continuous nonlinear operator [9]
such that

INull 7 ull> 0 dif flufl> = .

We shall be interested in the structure of the set (A,u) € R x X of the
solutions of the nonlinear equation

Lu ~ Au = Nu (4)
near A = 0, Other situations can be reduced to this one by translation of X,
THEOREM 1: Assume that 0 is an isolated eigenvalue of L with odd multiplicity
and that there exists & > 0 and R > 0 such that each possible solution (X,u)

of (4) with -6 < A £ 0 (resp, 0 £ A £ 68) is such that flull < R.
Then there exists n > 0 such that the following holds:

A

(a) equation (4) has at least one solution for -6 < x £ 0 (resp. 0 £ X £ 8);

ay

(b) equation (4) has at least two solutions for 0 < A g n (resp. -n £ X < 0).
PROOF: Dealing, say, with the first case, it is easy to show that the degree
(see e.g. [9]) DL(L - M - N, B(R)) of L - AI - N on the open ball B(R) of
centre zero and radius R in X is well-defined and equal to one in absolute
value of all -8 ¢ A s 0, and hence there exists v > 0 such that the same is
true for ~§ £ A s y. Consequently, there exists a continuum CR of solutions
{A,u) of (4) in [-6,v] x B(R) whose projection on R is [-8,Y]. On the other
hand, the results of bifurcation from infinity imply the existence of a
continuum C, of solutions (A,u) of (4) bifurcating from infinity at A = 0,
More explicitly, there exists o > 0 such that for each 0 < ¢ £ o there is a
subcontinuum C_ < C, contained in U_(0,2) = {(A,u) € C, = [X] <&, [[u]|>1/e},
and connecting (0,*) to 3UE(0,w). Necessarily, for € = min{1/R,v,a), we
have C. < {(hu) € C,: 0 <X <e}, and hence we obtain a second solution
with Jlull > R for 0 < X s n = min(e,B), with B = sup {A:(A,u) € C}. o

The bifurcation diagrams are sketched on figure 2,
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Figure 2

COROLLARY i: Assume that the assumptions of Theorem 1 hold, except that the
inequality sign at zero is strict. Then the conclusion (a) of Theorem 1 still
holds and either (b) holds or (4) has an unbounded set of solutions for

A= 0.

REMARK 1: ilhen X = 0 is a simple eigenvalue, the results on bifurcation from

infinity imply the existence of two different kinds of solutions of large
norm, a positive one and a negative one (the sign being that of the projection
of the solution on the normalized eigenfunction associated with the zero
eigenvalue). The conclusion (b) of Theorem 1 can then be improved to the
existence of at least three solutions.

Applications of those results to periodic and Dirichlet boundary value

problems can be found in [10] and [11]. For example, in the case of the two-
points boundary value problem
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n 2

-u" - n - au = alu) - hix),

u(0) = u(r) =0

with g : R >~ R continuous and bounded, n € N*, h € L2(0,w), so that we can
take X = L2(0,n), D(L) = Hg(O,n), Lu = -u" - n2u, Hu = g(u(.)), it has been
shown in [10] and [11] that the assumptions of Theorem 1 hold in the following
situations, where

g, = lim inf g(t), G, = lim sup g(t),

t+t - t+t
™ i m
(i) nz1,6_ J (sin nx)*dx - 9, J (sin nx) dx < J h(x)sin nx dx
0 0 0
m i
<g, j (sin nx)"dx - G_ J {sin nx) dx,
0 ¢
T ki
(ii) n 2 » G, J (sin nx) - g J (sin nx) dx < I h(x)sin nx dx
0 0 0
i s
<g_ J (sin nx)dx - G, J (sin nx) dx,
0 0

0 and g(u)u > 0 for u # 0,

™
(iii)n = 1, f h(x) sin nx dx
0

™
(iv) n =1, J h(x) sin nx dx = 0 and g(u)u < 0 for u # 0.
0
As each eigenvalue n2 is simple, the conclusion of Remark 1 holds and if
nonstrict inequalities hold in condition (iii) or (iv), Corollary 1 is

applicable. In the next section, we shall apply Theorem 1 to another example,

3. A GENERALIZED STEKLOV PROBLEM

IfFD={z€C: |z <1}andT =23D={z€C:z=e'S, s&[0,2r]}, and if
g : R > R continuous and bounded, h € L2(0,2n) and a € R are given, the
generalized Steklov problem [1,15] consists of finding a complex function
w = u + iv which is holomorphic in D, continuous on D and satisfying the

conditions
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v(0) = 0 (5)
B(s) + av(s) = g(u(s)) - h(s), s € [0,2n], (6)

where, in the second equation, we write u(s) and v(s) for u(e1s) and v(e]s)
respectively. If w is holomorphic on D, continuous on D and has real value
uon T, then its imaginary part v on T is given by

v(s) = =Hu(s) + v(0)

where H is the Hilbert transform defined by

2T

Hu(s) = (1/2w) JO u(eit

Jeot 353 dt.
Thus, in (6), because of (5), we can replace v(s) by -Hu(s). In terms of
Fourier series, if

u{s) ~ ap+ I (ak cos ks + b, sin ks),

k=1 k

then v is given by the conjugate series

o

v(s}~ L (~bk COS ks + CH sin ks).
k=1

Therefore, if we define

D(L) = {u € LZ(F): u is absolutely continuous and %% € LZ(F)},

L : D(L) < L3(T) > L(1), u b2 - ek,

it is easy to show that L is a Fredholm linear operator of index zero with

(i) N(L) = span(1) if a is not a positive integer;

(i1) N(L) = span(1, cos ns, sin ns) if a = n, a positive integer;
2m

(iii)R(L) = {h € LZ(F) : J h(s)y(s) = 0 for each y € N(L}}.
0
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Moreover, L has a compact resolvent and its only real eigenvalue is zero,

which is simple if a is not a positive integer and has multiplicity three in

the other case., Again, we set

g, = lim inf g(t), G, = 1im sup = 1im sup g(t).

- t+rtow - t >t t =

THEOREM 2: Assume that one of the following conditions hold:

2n
;
(i) a € N* and 2nG_ < J h(s)ds < 2ng_;
0
* 2“
(ii) a € N and ZnG+ < J h(s)ds < 2ng_;
0

(iii) a = n € N* and

2

2m b
J h(s)y(s)ds < J [g+y+(s) - G_y'(s)]ds for all y € N(L) ~{0};
0 0

(iv) a =n € N* and

2m 2m
J h(s)y(s)ds > J [G+y+(s) - gy (s)lds for all y € N(L) ~{0}.
0 0

Then there exist 6 > 0 and R > 0 such that each possible solution of

Lu -~ Au = g(u) - h (7)

satisfies Jull o < Rwhen -8 < % 50 if (ii) or (iv) holds and when 0 < X 5§
L

when (i) or (iii) holds.

PROOF: Let us consider, say, the case of condition (iii), the other ones
being similar or simpler., Let u be a possible solution of (7) and let us
write it u = U + U, with 4 € N(L) and U € N(L)*. If P is the orthogonal

projector in LZ(F) onto N(L), we deduce from (7) that

LU - AU = (I-P)[g(u) =~ hJ,
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and hence the boundedness of g and the compact injection of H1(F) into C(T)
implies the existence of & > 0 and R > 0 such that

hol ¢(py < R (8)

for each possible solution u of (7) with |A| s . On the other hand, we
have, for each y € N(L),

2n 2n _
jo h(s)y(s)ds = jo Lo(ils) + U(s)) + nu(s)Iy(s)ds. (9)

Therefore, if the conclusion of Theorem 2 does not hold, there must exist a
sequence (Ak,uk) in [0,8] x Lz(r), satisfying (7), (8), (9) and such that
uﬁk1|+ o if k + =, Without loss of generality, we can aiso assume that

Y = U/ ful] vy € ML) 0 3B(1)
uniformly on [0,2n]. Let £, = {s€ 0,277 : yo(s) 2 0}; clearly,
lu ll ¥ (s) » 2= for k > if s € E, and (0,2m) ~(E, U E_) has measure zero;
finally,

2n
Io yk(s)yo(S)ds >0

for k sufficiently large. Therefore, one can deduce from (9), the above
remarks and Fatou's lemma that

2w
J, Mehvgls) « [ Tim sup oG llyls) + B s (-yg(s)as
2 IE lizllff gC flu 1y, (s) + u, (s))yg(s)ds,
+
and hence
2n 2% + _
]0 h(slyg(s)ds 2 [0 (g,¥5(5) - Gy5(s))ds,
a contradiction with assumption (iii). o
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By combining Theorem 2 with Theorem 1 and Remark 1 (in the case where
a £ N*), and with Theorem 1 (when a € N*), one can obtain existence and
multiplicity results for (5)-(6) in the neighbourhood of X = 0.
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E. MEISTER AND F.-O. SPECK
Modern Wiener-Hopf methods in
diffraction theory

This survey paper is an introduction to the operator theoretical approach to
classes of diffraction problems for the Helmholtz equation and a half-plane
screen. In contrast to the classical pioneering work of Jones, Noble,
Weinstein [24,53,70] and others, problems are now studied in a well-posed
Sobolev space setting, For a number of typical reference problems one-to-
one correspondence to solutions of Wiener-Hopf systems is proved rigorously
and leads to factorization problems for certain nonrational matrix functions.
Algorithms for canonical or generalized Wiener-Hop+ factorization are
developed by combination of algebraic, operator and function theoretic ideas.
The explicit representation of the diffracted fields can therefore be
analyzed in detail, e.g. by singular expansions near the edge, which are
known to be important for numerical treatment.

1. INTRODUCTION

In a famous paper [61] Sommerfeld studied in 1896 an optical diffraction
problem with a semi-infinite screen, the so-called "Sommerfeld half-plane
problem", which also has interpretations in acoustics and in electromagnetic
theory [53]. He considered a nontransparent screen £ = {{x,y,z) € R3 : x>0,
y = 0} and a time-harmonic incoming plane wave Re(eZi"t/T

complex amplitude

uinc(x,y,z)) with

uinc(x’y) - eik(x cos O+ y sin 9) (1.1)
not depending upon z, i.e. the wave propagates perpendicular to the edge
x =y =0, z €R so that we face a two-dimensional problen forgetting about z.
The wave number k is assumed to fulfil Re k > 0 and Im k > U due to a lossy
medium,

The diffracted or scattered field Uipe 28 well as the total field

Upot = Yine * Yse then satisfy the Helmholtz equation. Further the argument

* Sponsored by the Deutsche Forschungsgemeinschaft under Grant Number KO 634/32-1.
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of vanishing electrical components on the banks zi of ¢ yields that the

1imits of u,. are given by the values g(x) of -uinc(x,y) on zi; energy

considerations lead to the well-known edge and radiation conditions [6,38,39].

Altogether we have for u = u

sC
(a+ ku =0 in@ =R -7
+ *
ug = “Iy=10 =g on ¢
(1.2)
ulx,y) = or" M2y, r=v2 s yz) ~0

o(rl/z), r + oo,

[(x,y)+9 - ikrJu(x,y)

This problem can be seen as a special case from the following class of mized
boundary-transmission problems shown in figure 1. Those are worth studying
in order to illuminate the nature of diffracted wave fields as a function of
media and screen properties.

[tu=0 y radiation
T condition
edge-cond.
complementary \ screen
e e e . L
interface
[ulo=10 VEy = g*
(3elo =0
L u=0
Figure 1

The Helmholtz equation is here replaced by two proper elliptic partial
differential equations Liu = 0 of second order with constant coefficients

holding in the open half-planes Qi Ty 2 0. The Dirichlet data given before
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on Zt are considered as particular linear combinations Viu of the Cauchy
i—

data up = u| y=10 and u (au/ay)ly =40

which sett1ng 1nc1udes many physically relevant situations [64,65]. Since

the PDE is no more assumed to hold across the "complementary screen"

with constant complex coefficients,

T i x <0,y - 0we add other suitable conditions, e.g. vanishing jumps
of the Cauchy data. It should be remarked that, for different media in Qi,
the jump cond1t1ons [uJ0 =0, [p au/ay]0 = 0 with piecewise constant
o{x,y) = i in & make more sense ("refaction law" [41]). But then the
analysis is not more complicated, if we even admit arbitrary boundary
conditions on L' (from the same class as on I provided they are reasonable,
i.e. of "normal type" [45,63]).

The desire of a well-posed setting and a general formulation of the edge
and the radiation condition (which gave rise to discussions in the past [12,
20]) lead us to investigate the following principal questions.

1. The choice of appropriate function spaces (which are not proposed by

nature) is influenced by: (i) the physical argument to have local finite
scattering energy (edge condition) and outgoing scattered waves (radiation
condition); (i1) the mathematical desire to obtain (as easy as possible) well-
posed problems, i.e. existence and uniqueness of a solution and continuous
dependence on the known data. This leads to Sobolev spaces, u € H1(Q+) X
H1(Q'), so that Yu € L2 holds (due to finite energy of the scattered field)
{i1/2 i1/Z(R) for the Cauchy data

un, u1, to H’1/ (R ) for their restrictions to £, and to the closed subspaces
H¢1/2(R ) of H;t1/2
[Bu/ay]0 = u1 - u (or, more generally, for those data which are assumed to
vanish on Z').

and consequent]y to the trace spaces |

functionals supported on R for the jumps [u]0 = u0 - 0,

2. The functional analytic framework is naturally determined by the type of

boundary integral equations on it [45]. Systems of convolution type operators
on R , so-called Wiener-Hopf (WH) operators [73]

I o n S.
HIR,) » x HIR,), (1.3)
1 j=1
J

b o
H X3

J
appear in the centre of the studies (|r.| = |5j| = %). Their operator theory

is best understood in the sense of pseudodifferential operators (or order
rj - sj) [14,68] and general Wiener-Hopf opeiators [10,62].
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3. The representation of the solution in the numerical sense has been
frequently discussed [6,67,71] - mostly for modified geometrical situations
1ike bounded smooth or piecewise smooth screens as obstacles. A question

for effective computing (multigrid methods, mesih refinement, s - p or mixed
BEM-FEMs [3]) consists of the (additive) splitting of singular terms. Local
theory [14,16] tells us roughly speaking that the first term behaviour of the
solution near critical points coincides with the analogue of the corresponding
canonical problem (with curvilinear geometry). This notivates the investi-
gation of half-plane problems first of all, since explicit analytical solution
by means of the Fourier transformation and factorization of the symbol matrix
function known from the lliener-Hopf technique [53] yield a singular expansion
of the field [14].

4, Qualitative results are supplemented by the study of the regularity of
the solution in the language of HS spaces [60] and of the far-field behaviour
(radiation pattern) [25], which is also based on the explicit solution by
\liener-Hopf factorization. Since factorization methods are known in the
scalar case for several classes of decomposing algebras [52] and, in the
systems case for rational matrix functions [1,5], much progress has been
achieved in recent years for classes of nonrational 2 x 2 matrix functions,

which typically appear in mathematical physics and have the form
G = c1Q1 + czQz, (1.4)

with scalar functions cj in the Wiener algebra and rational matrix functions
Qj [22,50].

lle close this section with an overview in table 1 concerning the principal
methods and key classification words in our philosophy for treating a
reference problem P,
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Table 1

pe—

Topic

Problem

Main features

Bounda}y value/trans-
mission problem

Closed-form solution
in awell-posed setting

Weak formulation
Normal-type boundary operators
Compatibility conditions

Equivalence

II Representation forrulae

ISystems of WH
‘equations

Explicit representation
of bounded inverse
operators

Lifting of L2 by Bessel
potential operators
Fredholm criterion
Modified space setting

Equivalence II WH operator

theory

Fourier symbol
matrix function

Canonical or generalized
(ready) factorization

Decomposing algebras
Piecewise continuous matrices
p - p regularity

Partial indices

Construction f]  Separation of function theoretic

and algebraic aspects

Klasses of non-
rational matrix
&unctions

Factorization procedure

Rational matrix functions
Commutative algebras
Khrapkov and paired form
matrices

Rational transformation
Exponential increase

Pole cancellation

Further conclusions ||  Fourier integrals

ualitative
behaviour

Computation of
singularities and far-
field pattern

Abel-type theorems
Series expansion
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2. THE DIRICHLET PROBLEM

Considering the first reference problem PD, we look for a function u € H’(Q+)x

H1(Q-), j.e. u€ LZ(RZ) withulQi € H1(Qi), such that

(& + k% = 0 in o (2.1)
+ +
up = u(.,y)ly=i0 =g on & (2.2)
+ -
fo=uy-u, =0
0 0 0 } on Z' (2.3)
+ -
f1 = Uy - s 0

2

hold where o = {(x,y) €R® : y 2 0} and Z, L', k are defined as before,
t

uy = du/3y| _+p denotes the unknown Neumann data (in the sense of distri-
butions on the full line), and g* = g~ € Hi/Z(Z) is given (we identify Z
with R_ = (0,@)).

We outline now the steps of the (general) solution procedure mentioned in
section 1 referring to [63] for the proofs, although, in this simplest case,
we will find only one scalar WH equation.

THEOREM 2.1: A function u € H'(2%) x H'(27) satisfies the Helmholtz equation
(2.1), iff it is represented by

u(x,y) = Fglx{e°t(g)yag(£)1+(y) + et(E)yGB(E)1_(y)} (2.4)
for (x,y) € R2 with
At - t _ > ixg &
up(€) = Frot ug(x) = e " uglx)dx (2.5)
t(g) = (8% - k)2, ¢ e,
Fué are the Fourier transforms of the data uﬁ € HI/Z(R) (in the sense of the

trace theorem [34]) and t denotes the branch of the square root that tends
to + @ as £ > & @ with branch cuts along tk tiw, w 2 0,
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For convenience we introduce the column vectors of data of a solution u
of (2.1) on the liney =0

uy ul
B} ( 0) ) ( 1)
Ug = b T I
0 \u0 1 uy

+
(e (20)
) 8T g )

A simple but important observation follows from the representation theorem,

(2.6)

Theorem 2.1.

COROLLARY 2.2: {i; The data in (2.6) satisfy

1/2 1/2

W2 u e V2,

u0 €H

(2.7)

1/2 1/2 1/2

1/2 « H72

feEH 'S xH /5, g €H

(2) They are in one-to-one correspondence by translation-invariant (convol-
ution or pseudodifferential) operators on the line, in particular there holds

1 -1
f =By = o ( ). Fu

t -t/ 0

(2.8)

[{a)
n

1T -1
el \
B+u0 = F (1 \ /- Fu0

(with continuous "boundary operators" B, due to ¢ = R, and g' =R_).

(3) The trace operator T0 U Uy on the space
u=quen(@) «H(@) : (a+ku =0 in o)

is continuously invertible by the potential operator G: Ug > u given by the
formula (2.4).
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(4) For a solution of the Dirichlet problem P there hold
f e’y x TV%z), g€ AY2(z) x H/%R) (2.9)

f.e. 1,f = fand 1,9 €H72(z) x H'/2(z) with 1,(x) = 1 for x > 0 and
1+(x) = ( for x < 0.

The study of the dependence u » ug f » g leads to the following
equivalence theorem where we can change over to a scalar notation, since one
of the (jump) data in which we represent the solution is known throughout
Iz U L' according to

1 0

g=887"r=F" ( ¥ )- Ff. (2.10)
0 -t

THEQREM 2.3: The Dirichlet problem P, see (2.1)-(2.3), is equivalent to

the single WH equation

+ -
Wfy =1, = Afy = -(g" +g) (2.11)

with linear bounded operators

w2y - w8y
(2.12)

-1,.-1 -1/2

A=F e oE 12

+ H .
A solution f of (2.11) yields a solution u of (2.1)-(2.3) in the form
0
u = Gu, =GB ( ) (2.13)
0 - -1
W
Thus the correctness of PD is equivalent to the bounded invertibility of

W, which is known to be equivalent to a certain factorization of the Fourier
symbol function t™' of A [14,63,68].
THEQREM 2.4: The WH operator W in (2,11)-{2.12) is invertible by
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1, * A2 (2.14)

where 2:H1/2(Z) +H1/2(R) is any extension (e.g. even extension by reflection
[46]) and A, are defined by

A, = FIVeF , t(e) = (£ k), £ €R
(2.15)

=172 | 2 2 1/2

A H L™ At Lm - H

+

(so that t =t t , A=AA_hold).

In the physically most important case where the Dirichlet data coincide on
the banks of the screen (g+ = g ) and, as a consequence of (2.3), coincide
also on the line (uB = ua), the result can be written in a simpler form as
follows.

1/2

COROLLARY 2,5: The Dirichlet problem PD is well-posed for any g+ =g €H/°(L).

The solution is given by (2.13) u = Gugs Uy = (ua,ua)T, and
1/2

uﬁ = mg’ = A_1+A:1lg+ €R/e, (2.16)

The dependence g* » ua U, H1/2(Z) > H1/2(R) -> H1(R2) is continuous.

COROLLARY 2.6: If g* € H'/2(z) differ, the Dirichlet problem is solvable
iff the compatibility condition
~1/2

g" - g  €R() (2.17)

is satisfied, Then u = Gu0 is given by (2.4) and
+ - -
ug = * 20(9+ -g)+ me(g+ +9), (2.18)

where 20 and £_ denote zero and even extension, respectively, and II =A_1+A:1

p1/2

a projector in again. The dependence
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) B U (2.19)

+ - +
(9 -9 \ N (UO
g +g "
g Ug

Y2y « 1My - 0V2m)2 S W ety « rle)

is continuous,

This result follows from (2.13) after replacing the zero jump by
2o(a" - a7).

A direct consequence of the solution formula is the singular behaviour
near the "edge" x = y = 0. For simplicity consider the Neumann data jump
given by

f, = -u"(g+ +g7) = —A:11+A:12(g+ +g) (2.20)

in the case of smooth and rapidly decreasing (physically relevant) data

gt =¢ € s(x) < H1/2(z). Since f1 does not depend on the choice of

2(g" + g7) (see [14] Lemma 4.6), one can take a continuation in S(R), which
yields ¢ = A:19(g+ +g ) €CT®R) n LZ(R) according to the translation
invariance of A:1 and order A:1 = 1/2. So the singular behaviour of f1 near
the origin {as a kind of nonsmoothness) is directly connected to the action
of the translation-invariant operator A:1 on functions 1+¢ for ¢ € 8
according to Abelian theorems for the Fourier transformation, i.e. it depends
directly on the increase of the Fourier symbol t (g) = (g + k)2 of A;1 at
infinity (63,64]. The representation formula (4) then yields a corresponding

behaviour for Vu {whilst u is bounded).

COROLLARY 2.7: The solution of the Dirichlet problem for gi € S(2), g7(+0) =
g (+0), satisfies

1/2 1/2

Yu ~ conster ‘%, p = (x2 + y2) >0 inR% - &, (2.21)
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3. THE D/N SOMFIERFELD PROBLEM

Since about 1975 several authors [19,40,56,57,63,64] investigated the problem
PD/N given by (2.1)-(2.3) where (2.2) is replaced by

+

=9

+

Yy

U(.,y)ly=+0

on Z, (3.1)

U; BU/3Y(-sy)l

i
[ta]

y==0 ~

which are physically motivated by soft/hard-covered or perfectly conducting/
nonconducting surfaces,

In our setting it is reasonable to assume g+ € H1/2(Z), g' €H (X) as a
consequence of Theorem 2.1. The above-mentioned procedure (as well as the
classical approach) leads to a “"simultaneous system" of WH equations and to
the question of factoring a special matrix, which was solved by Rawlins,
Heins and Meister [19,40,56,57]. But first we outline results, which are
analogous to those about PD before., The Tetters W, A, B+ are used for the
corresponding operators and g for data given on L.

-1/2

THEOREM 3.1: A function u € H1(Q+) x H1(Q') is a solution of problem PP/D
iff it is represented by formulae (2.4) and (2.6a) where f = (fU,f1)T €
51/2(2) x ﬁ'1/2(2) js a solution of

M = 1,Af = g (3.2)

with (B+ is replaced due to the boundary conditions (3.1))

A=8,Bl" = Fleeren! /2 w12 12y 12
-1
10y 1 1 ot
- ) ) oM \
? (0 t/ <-t-t/ o2\ g/ (3:3)
g = (gh00) e 2(z) x w2(z),

The problem PD/N is well-posed (for all data G and with respect to this
topology) iff W is (bounded) invertible.
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PROPOSITION 3.2: A (function theoretic) factorization of ¢ = 5_5+ into

. +
factors, which are continuous on R, holomorphic in £~ = {¢ € 0 : Im g Z 0},
invertible in Ei, and have algebraic growth at infinity, is given by

-1 1 1
-1t -t =t t - it
\: 1 ( "+ t-- \ [ T4+ th-+ \ (3.4)
(t 1 SR Ny 4\ v/

+- -+ ++

1/2 where the first/second index corresponds

with t::(g) = [V(2k) v/ (k ££)]
to the first/second sign, respectively (the factors -1/2 from (53.3) and

1//(4k) can be put somewhere),.
REMARK 3.3: If the order of a translatiion-invariant operator T is denoted

by s = ord T provided T : H > WS is continuous for r € R and s is minimal,
we observe (in suggestive notation for the systems case)

0 -1
ord A= [ ) (3.5)

X 14 -3/4
ord 1! = ( )

5/ 1/4
for Ki = F'15+-F. The Tast assertion implies only
RA, : /2 ym1/2 —_— /4 o p3/8 —_ H x K (3.6)
A A

+ -

in contrast v A : B2 V2, yW2 12
of the factor elements are too high by 1/4.

. Roughly speaking, all orders

This phenomenon is possible, because terms of highest increase in (3.4)
cancel out [19], e.q.

t, ()t (g) +t__(£)t_ (&) =v(4k), £ €R (3.7)

instead of 0(|£|1/2) as |&] » =, As a functional analytic interpretation, a
bounded operator A : X + X = H1/2 x H'I/Z is factored into unbounded (densely
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defined) operators R+ : D(Ai)-+ X. This becomes clearer after 1ifting the
operator W on the L2 {order-zero) level in order to use the theory of singular
integral operators of Cauchy type [52]; see [45], Prop. 3.1, for details,

LEMMA 3,4: The UM operator W in (3.2) is equivalent to the (1ifted) WH

operator
2,2
Woo=1 Al € L(L°(2)) (3.8)
0 + ULZ(Z)Z
with
el e 2,2
Ay = F ogF =AM € L(L"(R)") (3.9)

8 =(t_ 0 \ @(t+ 0 \___l{-t'/t“‘ 1 \
\ A Y

That is, W and ”0 are connected by invertible factors:

Wy = TWT,
_ 2202, /2 -1/2
T, = 1008008 > W2y < wV2(r)
0
oty e (F
+ L 0 2 /
odd (3.10)
T = 10002 x WV2() » 2n)?
L
- + =0

where ZD’ Ke, Eodd denote extensions by zero, as an evan or odd funct;onal,
respectively, (& 0 is usually dropped due to the identification of L"(Z) and
1+L (R); furthermore 1+ can be dropped in T+ and the extensions in Tf1 can be
replaced by any others, which act into the corresponding space HS(R).)

According to the holomorphy properties of ty, WH factorizations of ¢ and
°0 can be performed into each other. The existence of a standard [5,16] or
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{synonymously) a canonical [15,52] factorization of g (which involves a
bounded operator factorization of /\0 and thus of A) is disproved [54] by the
fact that the symbol matrix function 2 has a discontinuity at « due to
t_(g)/t (g) » 1 as £ > xw. On the other hand, the theory of singular
integral equations [52] ensures the existence of a generalized factorization
(due to an unbounded operator factorization of Ao)

0g = 95.Deg, (3.11)

1 2%2

with factors in weighted L2 spaces ¢;, € LZ(R,p)
1. =

i
+

, o(E) = (2 + 1)71/2

holomorphic extensions @3 n € and @31 in €7, and a middle term

. K . K
D(e) = disg ((ED) ', (30 2.

This is a consequence of piecewise continuity of ¢0 {on R=R U {=}) and the
Fredholm criterion for NO:

det ¢o(g) # 0, £ €R
(3.12)

detlyy(- =) + (1 = wag(+ =)1 # 0. u € [0,13.]

A generalized factorization of oy (with D = I) can now be obtained from
(3.4), (3.9) and an additional manipulation with rational matrix functions
in the middle by putting

_ -iE ig : .

see [64], Theorem 4,4, For the corresponding operators AOt = F'1¢0+-F one
observes the orders

ord A, = (3.14)

174 -1/4 -1/4 -1/4
o~ (, (e e

, ord A, =
16 -1/4" 0+ 16 1/4
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which add up to zero in the composition, i.e. A0 = AO_A0+ represents an
unbounded operator factorization in the L™ sense but the setting

2 174 1/4 2 2

> HY ' x Y —s L x L
0+ A0~

(3.15)

2
AR, + LT X LT —

allows an additional interpretation with bounded operators (in remarkable

contrast to (3.6)) with intermediate spaces Hﬂ/4 where the projector on

HEV/4(5) is also bounded; cf. [14]. We obtain the following results.

THEQREM 3.5: The WH operator “0 in (3.8) is (bounded) invertible by

-1 _ -1 -1
= A eat!
e AL Ty

W (3.16)

1.-1

+F are either interpreted as unbounded L2 operators or

-1 -1 -
where AO: F ¢0

bijections in the setting (3.15).

COROLLARY 3.6: The inverse of W in (3.2) is given by

-1 -1 -1

W o=A"1_-A_ 7| _ (3.17)
+ + H1/2(Z) xH 1/2(2)
_ =)
A, =F o, ~F
1 0 1 0
¢>=6( ), o, = Vi
T N\hig /T Ny g/
; . . . 1/4 -1/4
with bounded operators, if 1_ is considered to act on H x H (and

L= diag(le,zodd) for instance).

COROLLARY 3.7: The solution of PD/N for g € s(z)2 = Hi/z(z) x H'i/z(z)satisfies

3/4

Ju ~ conster /7, r = (x2

1/2 2

+ yz) +0 in R° - I, (3.18)
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4, PROBLEMS WITH GENERAL FIRST- AND SECOND-KIND TRANSMISSION CONDITIQNS

In this chapter we would like to answer the question: "Is the non-square-
root singular (3.18) an ordinary or an exceptional phenomenon?" For this
purpose we consider a class of diffraction problems P for u € H1(Q+) X H1(Q')

of the form
(b + K%y = 0 in oF
+ -
3gup * boup = My
on I (4.2)
ajuy + byuy = hy
¢ 1T )
aou0 + bouU = h0
on Z' (4.3)
+ [T |
ajuy + bauy = hy
where a ..,bi € T are known constant coefficients and hy € H1/2(Z),

h1 € H'Q/Z(Z), h6 € H1/2(Z'), hi € H'1/2(E') are assumed. There are several
physically relevant examples in this class of problems; see [64] where also
the case of different wave numbers in ot is discussed,

For simplicity we avoid cases that lead to decomposing WH systems, see
[63], or matrix UH operators with non¢losed ranges according to a minority
of less important (artificial) diffraction problems. P is said to be of

normal type [52], if the boundary operators

B, : H/2@®)Z > W2(R) x W /2(R) (4.4)
a b
B+:F'1< D T AP
-at b1t/ N
al bl
8_:F-1/\ 0 °>-F=F‘1gB “F
-ait b;t -

have Fourier symbols 9% which are regular on R and stable at = [b64]), i,e.
+
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det o () £ 0, £ €R
+
+ (4.5)
[det op ()1 - 0(]5[i1), lg] » e
+

hold. This obviously is equivalent to the fact that the data combinations
in (4.2)-(4.3) (considered as defined on the full line) are in one-to-one
correspondence with the Dirichlet data Ug in the sense of the space setting
(4.4); see Theorem 2.1 for this proof. By analogy with the previous
investigation we obtain the following results [64].

THEOREM 4.1: Let P be of normal type. A function u € H'(2%) x H'(@")

represents a solution of problem P, iff (i) u is of the form (2.4) where ul

0
are given by

(U(-)):B:1{<v+)*<;ehi.)} (4.6)

Yo Wy odd 1

and (ii) (v+,w+)T is a solution of the WH system

h 2 h!
0 -1 0
) B ( ) - 1+B+B- ( )

\ ' (4.7)
M ‘ hy %odd"
W=, s Fle e o V%) « 25y > W1 2(n) < w1V 2(n)
-1
=0, @ .
B+ B_
An elementary computation of the symbol yields
-1
a,b! + b.a! (-a b’ + bjal)t ' |
® ="T“:1 — ( 0°1 7 Po% 0’0 ¥ "0% ) (4.8)
3gby * bgdy T -ayby + bjap)t a1bg * By3g

see (3.3) for P = PD/N' In brief and after elementary transformation this
can be written as
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a bt 1t
o= ( Yol o )=o (4.9)
ct d At

iff the system does not decompose, The corresponding reference problems PA
obviously form equivalence classes with respect to their functional analytic
structure. The number

a=eg (4.10)

is called the characteristic parameter of P, \le introduce the lifted
operators UO, A0 and 2 by analogy to Lemma 3.4 and conclude for a normal-

type problem:
PROPOSITION 4.2: W is a Fredholm operator, iff

ad =0, bc #0 (4.11)
or

ad £ u, A £ [1,2) (4.12)
holds (in the decomposing or nondecomposing case, respectively).

Thus we know about the existence of a generalized factorization (3.11) of

¢0, if (4.12) is satisfied, as we did in the case PD/H that corresponds to
A = ~1. But the explicit factorization formulae become more complicated

now. They are obtained by the method of Khrapkov [29] and Daniele [8,9];
see [64] for details.

PROPOSITION 4.3: For » € L, 0 # A # 1, a function theoretic factorization
{in the sense of Proposition 3.2) is given by

( 1 t ) ( |
g = =00 4,13
e -t '
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10 0 1/2
-1,1/4 : PA
=(1-2 ") {cosh[c-lo -sinh[C-J0 ] (
o = gY*](o 1> v\l
with
. 1/2
_1 A + 1 < an
C-;]og -}-\-172——-——1- (4.14)
1/2 , - 1/2
vole) = (k &) + ik T£)

(2k) /%

and arg A2 ¢ [0,n), arg [(x”2 + 1)/(>\1/2 - 1)] € [-n,0], arg k172

It turns out that F'1o. F suffers from a similar order deficiency as A
did in (3.5) and that this can be corrected by the same trick; see [64],
Chap. 4. We present the result for the reference problem PA’ since the
relation to P is obvious from (4.9).

PROPOSITION 4.4: For X £ [1,o) a generalized factorization (3.11) of the
Tifted matrix is given by

t 0 10 10 e o
00=00_°00+=(0 t:1 )0_(5/”\ 1)-({//}\ 1>0+<; t). (4.15)

The corresponding operators AO+ = F-1oO+ * F satisfy

]
—_
~—

21 =8 56

]
—_—
~—

21 =8 58

(4.16)
1
-2(5 - 1) >

H1=8) H1-4)

% B
—
On
i
-
—

ord A0+ = (

with § = Re C € (0,1].

Therefore we obtain exactly the same interpretation as for the problem

PD/N where § = 1/2 holds.
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THEOREM 4.5: Let P be of normal type and nondecomposing (abcd # 0). The WH
operator Il in (4.7} is invertible (and P well-posed) iff the characteristic
parameter satisfies A £ [1,#)., In this case the inverse has the form of
(3.17) with

(10 roooy
o = o
-\ cl/b> '(g//x 1/

10 0
Q+=(-g//x 1> O’“(Z b )

1/72(1-8) y H-1/2('-6)).

(4.17)

(and intermediate space H

COROL! ARY 4.6: For sufficiently nice data,(hs,h?) € S(r) say, the singular
behaviour of the solution of a problem from the class PA(x £ [1,o)) is
described by

Ju ~ const-rs/z_l, r >0 in R2 -ztuzr' (4.18)

with
. 1/2
_ 1 A + 1
§ = Re -{Y-]Og —)\-77-2—-;—-1- € (0,1].

The factorization (4.15) of % is bounded (and thus the related operator
factors are bounded with respect to the corresponding spaces), iff ¢ = 1,
i.e. » € (0,1), is satisfied. These are the only cases where the square-
roet singularity appears. For all other parameters ) € € - [0,») of well-
posed problems, the order of the singularity is higher, namely

8/2 - 1 € (-1, -1/2). (4.19)

e would like to close this section with a humorous comment. The
"mathematicians' answer " to our question at the beginning is that (4.19)
represents the "ordinary case” whilst the square-root singularity appears
only for a very small parameter set, » € (0,1), of measure zero in € - [1,),
and is therefore considered "exceptional”,
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The “physicist's answer" might be the opposite, since rost of the problems
are as unnatural as PD/N’ which represents an idealized model (perfect
conductance and isolation do not really exist). If one therefore accepts
only impedance conditions, one finds nothing but square-root singularities,
as we shall see in the next section.

5. PROBLEMS WITH IMPEDANCE AND OTHER THIRD-KIND CONDITIONS

From the physical point of view, third-kind conditions often make more sense
than do Dirichlet or Heumann conditions. As a reference problem, we first
study the impedance problem PIm with different face impedances pi on the

banks of £ where u € H1(Q+)x HY(Q7) must satisfy

(a + k%) =0 in o (5.1)
u; + ip+u6 = nt
on ¢ (5.2)
u, - |p-u6 = h
+ -
fU = ug - g = 0
on ¢'. (5.3)

It is assumed that Re pt > 0, Im pi > 0 hold and ‘ni are given in 5-1/2(2).

In view of the classical approach we refer to [53,59] for p+ =p , and to
(9,21,36,37] for p* # p . Sobolev space considerations can be found in [13,
43,65]. In our opinion the most interesting mathematical questions are: How
to modify the space setting in order to obtain a well-posed problem? How to
find the (function theoretic) WH factorization and to perform it into a
canonical or generalized one? Therefore we start with an observation, which
is similar to (2.17) [43,65].

LEMMA 5.1: A necessary condition for pImp to be solvable (in the above-
mentioned setting) reads

+

ht - h” e n () (s.

[8,]
Foy
~—
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This is a consequence of

- . . - - ~=1/2 1/2
htoon = 1+(f1 + 1p+u6 + ip uo) en /e, H / (z) (5.5)
where H1/2(z)c+ ﬁ'1/2(z) is continuously embedded (note that ﬁ'1/2(z) is a

dense but nonclcsed subspace of H'1/2(z)). Before further discussion we
look for the equivalent WH system, rewriting the boundary conditions on I in
the form

- +

+ .+ bW = h
uy - Uy +ipiug +ipyg =

YT s iptut - iput =t -
Uy 1 ip oy ip u

1
=

for incorporating (5.4) and getting pleasant-looking formulae, respectively.

PROPOSITION 5.2: The impedance problem PImp is equivalent to the WH system

H

f f ht - n”
1 Meep (VY L
u<f ) 1,F cF\f(]) -(_h+_h-> (5.7)
W Y2y < 1125y - i VR )R

1 - 1'p1:-1 iq \
/

© =< -1 -1
iqt t1 - ipt™H

with p = %—(p

- 1

+
hel
—
-
Fal

n

S|
Pl
h=]

This result is analogous to Theorem 3.1. If we continue to study the
lifted operator UO (without compatibility condition) as in {3.9), we find
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¥ 0
(t ) = \.
%0 ( 0 1/

This implies that W is not Fredholm, see (3.12) with y = 1/2; more precisely
the range of W is not closed [52].

REMARK 5.3: In order to obtain at least a Fredholm operator ﬁ by space
modification, one has different possibilities.

(i) It seems physically most natural to incorporate only the compatibility
condition (5.4) according to smooth extendability of the jump datum (5.5)
and to stay in the "energy space" H1(R2 - ) with u, This leads to the
study of a more complicated modified WH operator

W 02y <« 025y - V25 « V23, (5.9)

(i) Following the spirit of Eskin's book [14] one may study W on the scale
of Sobolev spaces, say

k Nz« B E) - W ()2 (5.10)

for o - 1/2 € Z instead of o = 1/2 [13]. This yields also regularity results
and a singular expansion for the solution,

(i11) Another modification consists of the replacement of L2 by LP and of H®
by ”s,p’ p € (1,), p# 2 (p has another meaning here); see an analogous
discussion in [64].

The idea of treating the WH operator in the first sense (5.9) consists of
two steps. First one substitutes one component (where H_1/2(z) is replaced

~a

by H 1/2(2)) by use of the liH operator (2.12) of the Dirichlet problem

1,-1

uy = LFT R BTV s ) (5.11)

such that W in (5.9) is equivalent to another modified WH operator

i 20 V205 > w20y <« w2y, (5.

(53]
—_
N
~—
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Secondly one turns over to a (usual) WH operator (in the sense of (1.3))

e L2) « #Y2() - L2 < V2 (5.13)

by embedding H1/2(Z) L LZ(Z). Inversion of W then yields that the subspaces
in (5.12) are mapped onto each other because of invariance properties of
scalar operators of the type "I+ smoothing". At the end it turns out that
all the factorizations (function theoretic [36] as well as operator theoretic
[13,65] versions) are connacted by relatively simple transformations. We

collect the results without technical details.

THEOREM 5.4: The modified impedance problem (5.1)-(5.4) is well-posed for
- - ~ ~ - -
any data h* - h™ € Hi 1/‘(z), h* +h™ €H 1/2(’2). The function u is given by
T _ + -

= (‘|+(u0 + UO)’

formulae (2.4), substitution ug = (uS,uO)T - (1+90’f+)
-F-'t+‘F(ua - ua)) and the unique solution of

1,-1

-1 - + -
1 ~F T E( - h
i, (0N o ( ) (5.14)
O\ T e .
+ - Thogd' *
- -] - a2
where U, = 1F 1¢0‘F:L2(Z)2 - LL(Z)2 has the Fourier symbol
AR ipt”] 1'qt’1t;1
@0 = \ _1 _1 / (5-15)
iqt_ 1 - ipt
. . . . s < - - 2\ 2x2 .
which admits a bounded factorization (3.11) g = %0- 204° °0: € C(R)“7C, i.e
there holds
O R puy -1z
Hy' = F o, " F1 -+ F '§.' - F| . (5.16)
0 0+ + 0 LZ(Z)Z
As mentioned above, this implies
Yy ~ const'r‘1/2, r>0inR® - %, (5.17)

The method to obtain 501 explicitly [13] is similar to the procedure in
section 4, ile shall come back to it later in a general context.
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Other relevant boundarv/transmission conditions 1ike reactance conditions
(311

+ - -
ug - Uy =0
(5.18)
+ - _ =1/2
Uy - Uy + kU = h1 €H (R+)

and the interest in their mathematical structure motivated us to consider
the following class of “screen problems" P

2 +
(A +k"Ju=0 in Q" (5.19)
A, U+ Aol + AUl + AU = h, ]
1170 1270 13™1 1471 1
on I (5.20)
- + - +
da1tp * 3k * 33Uy * 3pgly 7 Ny |
+ -
Ug - Y = 0
. on I’ (5.21)
up - Uy = 0

for u € H1(Q+) x H1(Q') with constant coefficients and hj € Hsj(Z) where
sj = £ 1/2 depends on the type of the problem.
He outline the features of the operator theoretic approach (see [65] for
the proofs and section 6 for explicit factoring in some of the most interesting
cases). First we observe that the class splits into three subclasses
according to

d d
rank ( 13 714 ) = 0,1,2. (5.22)
d3

Rank 0 corresponds to PD and is dropped here. Rank 1 or 2 implies (51,52) =
(-1/2, +1/2) (after suitable linear combination of the two conditions (5.19))
or (sy5s,) = (-1/2, -1/2) respectively. So the boundary operators read
B, = F-1oB FoH1/2 « w72 o g/e Hx1/2
+
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511 + 6131: a

-a,,t -1 1
12 7 %18t ) \
o = (

at/ B Ny /7

!
3p1 * 33t 3y, -3y,

+

PROPOSITION 5.5: Problem P is equivalent {in the sense of Theorem 3.1) to
the WH system

-1 T
Wf = 1+B+B_ f=h-= (h1,h2) (5.24)
- - _ S
W AV« Y85y V2 (5) x n 4(x)

where the Fourier symbol matrix has the form

-1

0 =o0gog = 0p. * g {(5.25)
4+ "=
T AR I A TR PR
RN t _ /"
apgt p3 Ayt - 0

In this representation the coefficients %50 are taken from (5.19) after
reformulation in terms of the jumps and sums of the Cauchy data, The first
term in (5.24) is called the principal part of ¢ and corresponds to the
highest-order terms of (5.19) - provided we consider the case, where
det o £ 0 holds. For what follows let P be of normal type, cf. (4.4),1.e.

det o(g) # 0, £ ER
(5.26)
[det o(g)]i1 = O(Iglid), E+4tcw

(B_ is bijective anyway). The cases d = -1,0,1 correspond to the ranks
8,1,2, respectively, in (5.21).

Let us first discuss the case d = 0. ile assume Op3 = Gny = 0 without loss
of generality and have the six-parameter family of symboi matrices

apy gt a3 - 0‘1°t.1
o= ( 2. (5.27)
% ~oppt
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Their structrue can be discussed as in sections 3 and 4, which already contain
many examples. The reactance problem (5.17) also belongs to this class. For
a compact formulation of the Fredholm criterion (3.12) we abbreviate

Q1 Q92 %13 944 %3 %9g
a = >, o = ( >, a = ( ). (5.28)
\ogy oy g3 Ggy4 azy Oy

PROPOSITION 5.6: The set of parameters % where W is Fredholm is character-
ized by the following three conditions: first

det G.Z # 0, Cl140-22 f 0 (5.29)
secondly
det ag = 0 or
(5.30)

det ag # 0, ~detay/det oy £ 7 = {z = t (£), £ € R}
and thirdly

aq30p¢ = 0 or

_ *14%22

Oq20nq # 0y A = € [0,1]
137217 7 7 7 ayqay,

where the very last condition includes (5.28).

From this result it is clear that the theory splits into many different
cases, but all of them allow explicit generalized factorizations by the
methods presented in section 7; see [65] for details,

The other class of problems (d = 1, case of rank 2, Sy = -1/2) includes

the impedance problem P and therefore has a rather subtle philosophy,

Imp -
For simplicifcation we premultiply the system by a11 and obtain the four-

parameter family of symbols and operators
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~ -1
1 - a12t

-1 ("N
-1

o =c>c1 o= . .
-t + Oy '0.221:

WE = 1,73 Ff = o]’ = R (5.32)
0 iM25) < T2 - V25 - w2y,

The last tilde was added, since a compatibility condition

h, = o44h -
a1 T M4T2 ¢ §1/2s, (5.33)

h
et 0

1

(instead of h’1/2(2)) is obviously necessary for P to be solvable as it was

in Lemma 5.1.

PROPOSITION 5,7: If d = 1 and det oy # 0 are satisfied, the following
assertions are equivalent. (i) The operator { defined by (5.31) is a
Fredholm operator with index zero. (ii) There holds

det 3(¢) = %‘%fl 40, £€R (5.3)

i.e. problem P is of a normal type. (iii) The characteristic numbers

Gqo + O
A = "1‘2“2':“’2‘1‘ A R R R (5.35)
are not contained in the curve{z = t{&), £ € R}.

The proof [65] is based on the idea presented before Theorem 5.4 and ends
with a discussion of the lifted modified symbol matrix

YA 1 = 3.,/ o
(" e ) (5.36)
1/t = 1 =Gp/t_
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6. EXPLICIT WH FACTORIZATION OF CERTAIN NONRATIONAL 2 x 2 MATRIX FUNCTIOMNS

The aim of this section is to describe procedures for canonical (standard) or
generalized factorization (3.11) [5,52] of 2 x 2 matrix functions of the

A
form

G = c101 + c202 (6.1)

(and related types) with scalar functions < in the Uiener algebra W(R) =
€ + FL'(R) or another decomposing or more general subalgebra of C(R), and
Qj € R(R)2 x2

A1l the above-mentioned 1ifted matrice§ G = oy 9 are in the class of
piecewise continuous matrix functions on R = R U {=} with jumps only at =,

, i.e. rational matrix functions without poles on R.

They were assumed to be 2-regular [52] in the sense of (3.12), which is
equivalent to the existence of a generalized factorization (3.11) and to the
Fredholm property of ”0‘ On the other hand it is not always clearthat they
are of the form (6.1), since two different square-roots t _(g) = (g % k)”2
are involved; see e.g. (5.8). )

Thus, for algebraic aspects, we also consider the unlifted Fourier symbol

)2 x2, which are not bounded invertible on R in

matrix functions ¢ € C(R
general but are always of the form (6.1), because they are rational in ¢ and
t(¢) (which yields o € w(R)% *?
reason for considering also the (weaker type of) function theoretic factori-

zatton
G =0G_G (6.2)

where Gf‘ € C(R)2 x2 have holomorphic extensions in t* and either (i) no
growth condition or (ii) algebraic behaviour, respectively, at infinity.

So it becomes clear that the interaction of function theoretic aspects
(holomorphy, zeros and poles, asymptotics at =), operator theoretic features
(Fredholm characteristis, order, boundedness and invariance properties of
operators, compatibility conditions) and algebraic arguments (decomposing
algebras, commutative matrix factorization) - besides pkysical relevance -
yields a high grade of complexity, which means many, many cases. In order
to avoid confusion we would 1ike to describe a methodical conception and
refer to original papers for examples [13,43,62,64,65]. It is our intention
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to obtain a complete factorization procedure for (6.1) by a concept which

separates the above-mentioned mathematical aspects (we shall summarize our
results in Conclusion 6.9; the objective of ready factorization is rather

complicated; see [33]).

The central idea of commutative matrix factorization can be found in
several papers; see [8,9,22,26,27,29,58,72] for instance. The most relevant
work in this context was published by Khrapkov [29]; an early source is due
to Heins [18] in 1950. Note that the letters f, g, Aqseee have a new meaning
in what follows orientated by the notation in [22,50,65], which we use for

reference.
A matrix G € C(R)2 x2 is given in Khirapkov canonical form (K-form), if

G = a11 + a2R (6.3)
-c(g) a(g)

R(g) = » £ €R
b(g) clg)

holds, where [ denotes the 2 x 2 unit matrix, ay, a4y € C(R) and a,b,c are
polynomials, If K< C(R) is an algebra, which costains R(R) (e.g. an R-
algebra [52]), then the set of K-form matrices (6.3) with a fixed R and
3 € K forms a commtative algebra A(R;K) of 2 x 2 matrix functions.

It is easy to recognize K-form matrices by taking a2R =G - %tr G-I with
trace zero and splitting off a scalar function such that R is a polynomial
matrix, e.qg. of maximal order and coefficient 1 in the highest-order term
of -det R(g) for uniqueness in the representation (6.3). In this case R

is said to be the deviator polynomial matrix of G,

2]
THEOREM 6.1: Let G € C(R)“ *2 o a matrix function of K-form (6.3). Split

-det R = c° + ab = ng (6.4)

into polynomials such that 92 contains all square facturs with g(¢) # 0 for
¢ € R. Further assume a function theoretic factorization and an additive

decomposition, respectively,




(det G)1/2 = (a% - agng)u2 =

= _Y+
a, + a,g/f (6.5)
T = -i ]og -—“—‘-—-a—g-w =T + T
yE 3788 -t

into functions that are holomorphic in Et and continuous in m*, respectively,
where consistent branches are chosen. Similarly put g = g_g, with gi(g) £0
in T_. Then a function theoretic factorization of G reads

[ep)
1]

G_G

e

(6.6)
g-
65 = vy G coshly V(F)T,I1 + ;71:/}- sinhly /(f)7,IR}.
- +

The question how to get from (6.1) to (6.3) was answered in [50].

LEMMA 6.2: The matrix function (6.1) can be written in K-form (6.4), iff
there exist scalar rational functions 991 929 with

Obviously it is easy then to obtain (6.3). Otherwise one can try to
factor Q1 (or QZ) in order to obtain

6= cq0y + 60 = O leyT + ¢y,

~ I (6.8)
= 0,_(a,1 + a,R)Q,,

5 - %tr 5-1 has trace zero., This Teads to the question whether

the K-form can be simplified by rational transformations. In [50] we proved
the following invariance property.

where R

LEMMA 6.3: If G = a1I + aZR is a K-form and transformed into (6.8), then

the determinants of R and R coincide up to a factor which is the square of a
rational function,

This result can be interpreted as: f is an (algebraic) invariant under
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splitting off rational factors ~ and becomes most important by the following

observation.

COROLLARY 6.4: If f = 1 and a, + 3,9 admit function theoretic factorizations

with aigebraic behaviour at infinity, this holds also for the factors G, »

which simplify to

1 9= 1 .
G, = g-{ai Qug + v, 11+ ;g Cu, - v IR} (6.9)

a1 + azg =W OT WMy 31 - azg =V =V

REMARK 6.5: The question of algebraic behaviour of G, (g) for £ » t » depends

on 1, in (6.5). In general we have exponential behav;our, if the degree of

f is—higher than 2. Daniele [9] proposed the following trick for a trans-

formation of a function theoretic factorization G = G_G, with exponential

increase into another one G = GG, without. As an ansatz introduce a

rational matrix function Q = qll + qu € A(R;R(R)) with the same R and factor

it by Khrapkov's formulae (6.6)., Determine qj such that the behaviour of

the factors Q: coincides with the behaviour of G: at infinity. Then
6 = 6.07'00] s, (6.10)

holds according to the commutativity of A(R;K) and this can be performed into

the desired factorization by factoring Q = 6_6+ classically [5] provided it
exists (which question can be answered independently, e.g. by the aim of
(3.12)).

In many examples, this trick can also be used to get rid of the poles in
(6.6) or (6.9), see [51], but in general not to reduce the order of algebraic
increase, which may cause a diagonal middle factor in the generalized
factorization (3.11) and is therefore shifted to the very end of the procedure;
see [64,65] for example,

Ve would like to present another method [50] with more detailed results,
which works for K-form matrices in the case f = 1, This approach has
significant applications in elastodynamics [48,49,51] and is more general
than the concept of functionally commutable matrix functions [35). G is said
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to be of paired form [52], if it can be represented as

G = b1R1 + b2R2
2 x2
bj € C(R), RJ. € R(R) (6.11)
2 = = -
R1 = R1, R2 =1 R1.

LEMMA 6,6: For fixed R,, the matrices (6.11) form a commutative subalgebra
of C(R)Z <2 ’

Further they are always of K-form, see Lemma 6.2, because of

1 1 =
G = -E(b1 + bz)I + ,z(b1 = by)R = a,I + a,R (6.12)

2)

)22,

where R = Ry - R, € R(R tr(R

? P Rz) = 0, Conversely there holds

LEMMA 6.7: The matrix (6.1) with ¢ € C(R) can be written in paired form,
iff (6.7) is fulfilled and the corresponding deviator polynomial matrix R
satisfies

- det R = 92 (6.13)

with gi1 € R(R).

THEOREM 6.8: Let G be of paired form (6.11) with bj € W(R) (or in another
decomposing algebra) and Ry = 0(1) at ». Then a right canonical factorization
of G exists, iff

b(e) #0, ¢ €R, j=1,2 (6.14)

holds, It can be obtained explicitly from
K1 K:
- (e L _Rr)-
G = (by_ qRy + by Ry) (q1 15 Ry)+(by Ry +byq ) (6.15)

x2

by canonical factorization of the middle factor in R(R)2 where ¢(g) =

162




(£-1)/(g+1), K5 and bj+ are taken from the scalar factorization of bj

Kj -
% 7 P3-t TPy (5.16)
. -1 _ i-Kj b(g)
bys(g) = /(b(oo))exptFx_)£1+(x)F€_'X]n[(%T.{.) E;“(;TJ}

and qj are suitable bounded R(R) elements.

CONCLUSION 6.9: For several important subclasses (loc.cit.) of 2 x 2 matrix
functions of the form (6.1) the following procedure leads to a right canonical

or generalized factorization:

(i) Transformation of G by splitting rational matrix functions (non-
commutative factorization in R(R)2 XZ) in order to get into the
commutative subalgebra A(R;K).

(ii) Function theoretic factorization of K-form matrices within A(R;K)
{by scalar factorizatior of the nonraticnal coefficients in K).

(ii1) The Daniele and pole compensation trick (commutative factorization
of a rational ansatz matrix within A(R;K) with exponential increasing

or bounded factors, respectively).

(iv) Canonical factorization of the remaining middle term matrix (non-

2x2

commutative factorization in R(R) again).

7. SOME RELATED WORK

Leaving the field of Sommerfeld half-line problems for the Helmholtz equation,
we first think of 3D configurations with a screen I that represents a special
Lipschitz domain [66] in the plane {(x,y,z) € R3 :y = 0}, ilost of the above
results can be extended for genuine half-plane problems where, e.g. Uine in
{1.1) depends on z (the Fourier transform variable of z is a fixed parameter
in the WH procedure). But the function space setting u € H1(Q+) X H1(Q-)
with half-spaces Qi = R3 is not compatible with the increase of Uine for

Z » - =, This trouble does not occur for the quarter-plane

a = {(x,y,z) € R3 :y=0, x>0,z >0}, (7.1)
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ii1/2(2) play an auxiliary

But half-plane problems with "decreasing data" in |
role for the solution of the quarter-plane problems [44,46], We assume ¢ to be
Lipschitz in order to have a (continuous) extension operator &: H3(z) »HS(RZ),
s €R [7,66]. Let P(z,k,D) and P{z,k,N) be the corresponding Dirichlet
problem (2.1)-(2.3) and Neumann problem, respectively. They are governed

by (single) WH equations

WE = X
A=F 't

W2y - i)

respectively. It was shown in [44] that the unique solution of P(z,k,D) can
be represented in the form

u = Gnlg (7.3)

with an (arbitrary) extension operator R:H1/2(Z) - H1/2(R2) and the projector
T acting in W72 onto Aﬁ'1/2(2) along ﬁ1/2(z'). I is orthogonal, iff k = i
holds, which idea leads to a series expansion of the solution of P(Z1,1,D),
P(Z1,k,D) and P(Z1,k,N) by analogy.

This simple reasoning yields straightforward results about the correctness
of P and interesting relations to general WH operators [10,11,62] with
insights about Babinet's principle and Bessel potential operators (unpublished
work of R, Duduchava, R. Schneider and F.-0. Speck). The study of single
Lipschitz or polygonal domains can also be seen as a first step for treating
multi-media problems [42,55].

Another 2D configuration of traditional interest [2,17,23,26,69] consists
of two paraliel half-lines (plates) with shift

ZD v 21

(o]
]

(7.4)
Ly = {{x,y) : x>0,y =0}, £y = {xy) o x> byy = al.

The (unlifted) Fourier symbol matrix functions are 4 x 4 sized with three
nonrational entries of different behaviour (in contrast to t+), namely
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t(e) = (82 - kA2, e(e) = M8 ) < e, g en, (7.5)
A yarticular block structure

ezR, (t

AN 12lted
% T\ , J
€C R21(ti) Rzz(ti)

\7.6)

with 2 x 2 submatrices Rjﬁ' which are rational in tt' makes it possible to
discuss the operator theoretic properties of P and to invert |l as a pertur-
bation of two 2 x 2 systems for the corresponding single plate problems by a
fixed point argument [45,47].

According to the physical relevance of waveguides, see e.g. [23], it would
be desirable to investigate problems with a modified space setting (non-
decreasing solutions between the plates). Also N plates [28] and periodic
configurations [41] are of particular interest.

Another topic with non-Khrapkov symbols are the two- or multi-media
problems with different Helmholtz equations (i.e. different wave numbers
k1,k2) in of [64]. In general it is impossible to transform o elementary
(i.e. by multiplication with rational matrix functions) into the form (6.1)
for using commutative algebra arguments. So often the fixed point principle
is used, if the assumption is reasonable that lk1 - k2i is small (32]. An
extension of the idea of paired operators (6.11) to N-part versions, cf.
[4,27,40,42],

N
G= ) b.R. (7.7)

jor 93
seems to be artificial. But in fact, there are significant applications in
elastodynamics (N = 3) [51].

It is known that elliptic boundary value and transmission problens for
PDE systems, which appear in the electromagnetic theory, etlasticity and
thermo-elasticity, lead to a higher number of coupled equations (up to eight
even for the half-line). But a detailed study of the block structure of the
symbol matrices makes it possible to reduce the systems for relevant examples
[30] and to factor such complicated-looking matrix functions as in the
elastodynamic case. Here one finds additional information on the following
fact [51]. A decomposition into shear and pressure waves is possible but it
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destroys the topological simplicity of the space setting. The reason is that
the -div and curl operators on H1 yield nonclosed subspaces, which phenomenon
corresponds to rational transformations on the symbol level and their
interpretation as unbounded operators.
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R.A. SMITH
Orbitally stable closed trajectories of
ordinary differential equations

The main aim of this lecture is to show how extended Poincaré-Bendixson
theory can be used to prove the existence of an orbitally stable closed
trajectory for a class of autonomous ordinary differential equations in R",
Consider the equation

= Fx) ()

in which the function F : S ~ R" satisfies a local Lipschitz condition in

open S < R". Suppose that bounded open D has D = S and that its boundary 3D
is crossed inwards by all trajectories of (1) which meet it. Suppose further-
more that D contains only one point K such that F(K) = 0. To avoid technical
complications we also assume that the Jacobian matrix J(X) = 3F/3X exists and
is continuous in some neighbourhood of K with Re z # 0 for all eigenvalues

z of J(K).

In the special case n = 2 the classical Poincaré-Bendixson theorem shows
that if the critical point K is unstable then each trajectory in D converges
to a closed trajectory as t -~ + = and D contains at least one orbitally
stable closed trajectory T. If, in addition, F(X) is analytic in D then r is
asymptotically orbitally stable and D contains only a finite number of closed
trajectories. It is well-known that these results can fail when n > 2 because
D may contain almost-periodic trajectories or other more complicated chaotic
motions. However, these results remain valid when n > 2 if we add the
following assumption to exclude the possibility of such chaotic motions:

HYPOTHESIS (H): “uppose that there exist positive counstants A, ¢ and a

constant nonsingular real symmetric n x n matrix P with exactly two negative
eigenvalues such that, for all X, Y in S,

(X - V)TPLF(X) - F(Y) + A(X = V)T 5 -|X - Y|2. (2)

The following result is proved in [7] (see also [8, section 4]):
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THEOREM 1: If n > 2 and (H) holds then each trajectory of (1) in D converges
either to K or to a closed trajectory as t » .+ «, If, in addition, the
unstable manifold U through K has dim U = 2 then D contains at least one
orbitally stable closed trajectory I'. If also F(X) is analytic in D then I
is asymptotically orbitally stable and D contains only a finite number of
closed trajectories.

An obvious consequence of this theorem is that D contains no chaotic
motions of (1). To verify that dim U = 2 it is sufficient to show that
Re z > 0 for exactly two eigenvalues z of J(K). Orbitally stable closed
trajectories are of interest because it is only these which can be observed
in practice in a physical or biological system. To apply Theorem 1 we do
not need to compute the matrix P in (2); we only need to know that it exists.
lle now describe a useful method for verifying (2). Consider equations
(1) which have the feedback control form

dx _
where A, B, C are constant real matrices of typesn xn, nxr, s xn,
respectively, and ¢ : CS - R" is a C' function. Since the r x s Jacobian
matrix ¢'(Y) exists for all Y in the subset CS of RS we can define

A(CS) = sup|e'(Y)| for Y € CS, (4)

where |+| denotes the spectral norm. If A has no eigenvalues on the Tine
Re z = =) in the complex plane, we can define

u{r) = supjc(zl - A)-18| for Re z = -\ . (5)
The following result is proved in [5, p. 702]:

FREQUENCY DOMAIN LEMMA: If u(A)A(CS) < 1 and A has exactly two eigenvalues
z with Re z > -\ then there exist P, ¢ such that (H) holds with

F(X) = AX + Ba(CX).
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The hypothesis on the eigenvalues of A ensures that the eigenvalues of P
satisfy the requirements of (H). The spectral norm |M] and the Euclidean norm
lMle of any real or complex rectangular matrix M = (mij) satisfy
2.1/2 -

[Z|mijl ] = |M|e 2 M| = sup [|MX]/]X|].
lhen the spectral norms in (4), (5) are replaced by Euclidean norms we get
larger constants Ae(CS), ue(x) which are much easier to compute formally.
Then ue(A)Ae(CS) < 1 is a sufficient condition for u(A)A(CS) < 1.
To illustrate how this lemma can facilitate the application of Theorem 1

we consider the special case of the modified Michaelis-tlenten equation in
3

R”. This is
dx/dt = -x + (u + ax)y + (1 - x)bh(z),
dy/dt = (x - axy - vy)c, (6)
dz/dt = (y - z)d,

in which a, b, ¢, d, u, v, are positive parameters and the given function
h : [0,») ~ (0,1] satisfies

h(0) =1, h(z) » 0 as z » +,
(7)

0>h'(z) 2 -k for 0 < z < o,

where k is a positive constant. This is a rescaled version of some equations
arising from a yeast cell model devised by Hahn, Ortoleva and Ross [2, p.516].
Since x, y, z represent scaled chemical concentrations we will confine our
attention to solutions of (6) in the positive cone Ri.

BOUNDEDNESS LEMMA: If u < v there exists a bounded closed rectangular box
Hec Ri such that every solution of (6) in Rf ultimately enters il and remains
in it thereafter, Furthermore W contains only one critical point K.

This elementary lemma is proved in [8] by considering the signs of the
derivatives x', y', z' on planes parallel to the coordinate planes. For the
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special case when a is small and h(z) = (1 + zp)'1 with p > 1, Dai [1] used
the torus principle to prove that a certain box W contains at least one closed
trajectory provided that the unstable manifold U through K has dim U = 2, By
adding further restrictions which include u small and p large, Dai was able

to prove the existence of a unique asymptotically stable closed trajectory in
W. This result cannot be used to test any nunerical set of parameter values
because it does not specify how large p must be nor how small a, u must be,
The following more explicit result is proved in [8]:

THEQREM 2: Suppose that h{(z) satisfies (7) and that

2y, 3peky e, (8)

W<V, d>03/2) (v +a)+ 3051+ b
Then each trajectory of (6) in the box W converges either to K or to a closed
trajectory as t - + », If, in addition, the unstable manifold U through K
has dim U = 2 then W contains at least one orbitally stable closed trajectory
r. If, furthermore, h(z) is analytic in (0,o) then I' is asymptotically
orbitally stable and W contains only a finite number of closed trajectories.

The following is a brief sketch of the proof in [8]. Equation (6) can be
written in the form (3) with

X 0 0 ¢ y 1 p 0
X=1]yl{, A=10 -g 0/, B=|-c s C=1{0 g .
z 0 d -d 0 0 0 0 r

where g, vy, p, q, r are auxiliary constants to be chosen later. An elementary
calculation gives

-1 - )
p(x) = sup |C(zI - A) Bl, A (CH) = sup |o'(Y)]
€ ez = -Al e R YeCH e

as functions of g, v, p, q, r. It is practicable to chose p, q, r, Y so as
to minimize ue(X)Ae(CW). \le can then choose g, A satisfying 0 <g<Ac<dso
that (8) implies ue(A)Ae(Cﬁ) < 1. This ensures that the eigenvalues of A
satisfy the requirement of the frequency domain lemma and that ue(A)Ae(CS) <
for some open S o fl, Then this lemma shows that (6) satisfies hypothesis (H)
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and the conclusions of Theorem 2 follow from those of Theorem 1 by choosing
D =1il. Since the size of Ae(Cﬂ) depends on the size of the box W, it is
important to choose W as small as is consistent with the boundedness lemma.

Theorem 2 shows that extended Poincaré-Bendixson theory can produce new
information about stable clcsed trajectories which seems to be unobtainable
by the various other methods discussed in the survey of Li [3]. 1In [7],
Theorem 1 is used in a similar way to obtain explicit conditions for the
existence of a stable closed trajectory of Rauch's equation and also of the
generalized Goodwin equation,

So far we have considered only an extended version of the Poincaré-Bendixson
theorem. Several related results for plane autonomous systems have been
extended to higher-dimensional equations in [4,6]. To describe one of these
we suppose that in (1) the Jacobian matrix J(X) = 3F/3X exists and is
continuous throughout S. Suppose, as before, that D < S and 3D is crossed
inwards by all trajectories of (1), though now we allow the possibility that
D may contain many critical points - even nonisolated critical points. In
the special case n = 2, Bendixson's negative criterion shows that if D is
simply connected and 0 > trace J{X) in D then D contains no closed trajectories
and each trajectory in D converges to a critical point at t » + «, The
following generalization of this result is proved in [6, p.249]:

THEOREN 3: If n > ' and D is simply connected then each trajectory of (1) in
D converges to a <ritical point provided that 0 > A1(X) + AZ(X) in D, where
Ay 2 Xy 2 ... 22 are the eigenvalues of the symmetric matrix J(X)T + J(X).

Because the formal calculation of x1(X) + A,(X) is difficult it is some-
&
times more convenient to use instead the following corollary proved in [6,
p. 253]:

COROLLARY: If n > 2 and D is simply connected then each trajectory of (1) in
D converges to a critical point provided that there exists a continuous
function 8 : S » R and a <onstant real symmetric positive definite n x n
matrix Q such that

T -
J(X)'Q + QJ(X) 26(X)Q z 0 in D,
+ in (9

(n - 2)e(.) + trace J(X) < 0 in D.
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Here (9) reans that the symuetric matrix on its left-hand side is positive
semidefinite. If we put o(X) = A, with constant » > 0, we can sometines
verify (9) by means of a modified frequency domain lemma, This idea is used
in [8] to obtain explicit conditions for every trajectory of (6) in the box
W to converge to the critical point K as t» + «. It is also used in (7] to
obtain explicit conditions for every trajectory of the Lorenz eguation to
converge to a critical noint,

REFEREMNCES

[1] Lo-sheng Dai, On the existence, uniqueness and global asymptotic
stability of periodic solutions of the modified Hichaelis-Menten
mechanism, J, Differential Eqns, 31 (1979), 392-417,

[2] H. Hahn, P.J. Ortoleva and J. Ross, Chemical oscillations and multiple
steady states due to variable boundary permeability, J. Theor.Biol., 41
(1973), 503-521.

[3] Bingxi Li, Periodic orbits of autonomous ordinary differential
equations: theory and applications, Nonlinear Anal., 5 (1981), 931-958.

[4] R.A, Smith, An index theorem and Bendixson's negative criterion for
certain differential equations of higher dimension, Proc. R. Soc. Edinb.
A,91 (1981), 63-77.

[5] R.A. Smith, Massera's convergence theorem for periodic nonlinear
differential equations, J. Math, Anal. Appl., 120 (1985), 679-708.

[6] R.A, Smith, Some applications of Hausdorff dimension inequalities for
ordinary cifferential equations, Proc, R. Soc. Edinb. A,104 (1986), 235-
259,

[7] R.A. Smith, Orbital stability for ordinary differential equations, J.
Differential Eqns, 69 (1987), 265-287.

(8] R.A. Smith, Some modified Michaelis-Menten equations having stable
closed trajectories, Proc. R. Soc. Edinb. (1988), to appear.

R.A. Smith

Department of Mathematics
University of Durham,
Durham,

u.K.

177




TIAN JINGHUANG
A survey of Hilbert’s sixteenth problem

ABSTRACT: In this survey, we give a short history of the study of Hilbert's
16th problem. We emphasize Dulac's problem, the finiteness of the number
Hn(a,b), especially for the methods for quadratic systems and for higher-
order systems. We pose some outstanding issues and provide the newest
advances in researching the problem.

1. PROBLEM AND HISTORY

As is well-known, the so-called Hilbert's problem 16 is “the question as to
the maximal number and position of Poincaré boundary cycles (limit cycles)
for a differential equation of the first order and degree of the form

dy _ Yn

®T,

or the equivalent system

n PR n ..

%% = i+§:0 ain1YJ = 0 (6y), %% = 1+§=0 bijx1YJ =¥ (xy),
where b and Y, are rational integral functions of the nth degree in x and
y" [1]. MNote that Xn and Yn are relatively prime and at least one of them
is of degree n, \le Jet En(a,b) denote the nth-degree differential system
with the coefficients aij’ bij’ En the set of all systems En(a,b) and Hn the
maximal number of limit cycles of E, respectively, Thus Hilbert's problem
16 is to find the upper bound

Hn = sup {Hn(a,o) : aij € R, bij € K}

and determine the relative position of Timit cycles, Hn is called the
Hilbert number of En. The problem is the second part of the 16th of the 23
problems posed by D, IHilbert at the Second International Congress of
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Mathematicians, Paris, 1900, The long history for 88 years of the study of
this problem indicates that it has been the most difficult of the 23 problems.
Indeed, it is still unsolved even for the simplest case n = 2. In two books
[2,3] all1 Hilbert's 23 problems are mentioned except the 16th Hilbert believed
that his 23 problems would have a deep significance for the development of
mathematics as it entered the 20th century. The 16th problem is so., [lany
mathematical models from physics, engineering, biology, chemistry, economics,
astrophysics and fluid mechanics are concerned with periodic solutions and
limit cycles of polynomial differential systems. Since these are basic
questions in the gqualitative theory of ODEs, Hilbert's 16th problem has

become more and more important and has attracted the attention of many pure
and applied mathematicians,

2, THE FINITENESS PROBLEM

The finiteness problem of the number of limit cycles of polynomial differential
systems contains the following two parts:

(i) Hn(a,b) =« or Hn(a,b) < » for each fixed n and given coefficients

a5 bij;

(i) Hy = @or H <o, for each fixed n.

The first important step in the solution of Hilbert's 16th problem is to
determine whether Hn is finite for every given n. For this purpose, it must
be known whether Hn(a,b) is finite for a specific n and given coefficients
aij’ bij‘
a limit cycle surrounds at least a singular point and the number of singular

Suppose that Hn(a,b) =« for a polynomial system En(a,b). Since

points of any polynomial system En(a,b) is finite, there nust be at least a
next of infinitely many cycles surrounding at least a common singular point.
Therefore only the following four cases are possible. If these cycles are
enclosed by a circle, then

(1) these cycles accurulate on a closed orbit;

(2) these cycles accumulate at a singular point;

(3) these cycles accumulate on a separatrix cycle. Otherwise,

(4) these cycles tend to infinity.
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The case (1) is impossible, for the Timit cycles of En(a,b) correspond to
isolated fixed points of the return map h and the return map (a two-sided
analytic function) cannot have a nonisolated fixed point, In 1923, Dulac [4]
claimed to have disposed of all the other cases (2), (3) and (4) and so proved
that Hn(a,b) (not Hn) is finite., But after 59 years, I1'yashenko [38,39]
discovered an essential loophole in Dulac's proof and gave a counterexample

to Dulac's lemma from which Dulac deduced, together with his theorem,

the finiteness of the number of limit cycles of En(a,b).

DULAC'S LEMMA: The germ of a semiregular map f : (R*,0) » (R*,0) is either an
identical map or has an isolated fixed point, zero.

A so-called semiregular map f : (R+,0) - (R+,O) is a map defined on a
semi-interval (0,b) of the positive semi-axis R with the origin 0 (on a
separatrix cycle or at the singular point) such that f(x) may be approximated
by an asymptotic series of the form

v ®

v,
ex Oy y PJ(?n ¥)x J (*)
1

(where ¢ > 0, 0 < Vg S Vp S eee s Vj + @ and Pj are polynomials) so that for
any natural number N there is a partial sum sn(x) such that f(x) -sn(x) = o(xN).

IT'yashenko's counterexample is that the map

-1/x

X +e sin(1/x) x>0

is semiregular and has a countable number of fixed points X, = 1/km  accumu-
lated at zero.

The proof of Dulac for his Temma is as follows; the fixed points of the
germ of f are the roots of the equation f(x) = x. If the principal term of
the asymptotic series (*) of f is not the identical map, then the equation
has an isolated zero root. If the principal term is the identical map and f
is not the identical map, then the equation f(x) = x is equivalent to the
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equation

v v
1 )X2+...=0 (*%)

P1(1n X)x '+ P2(1n X

where P1 is a nonzero polynomial. The equation obtained after dividing (w«)

v
by x ! has no real roots in a sufficiently small deleted right-side neighbour-
hood of zero, In fact, for the first term P1(1n x), of the reformed equation

lim P1(]n x) =2 #0or lim P1(1n X) = o,
x>0+ x-+0+

v
The sum of the rest of the terms can be written as o(x 1) and so it tends to

zero as x » 0°. Therefoie the equation f(x) = x has x = 0 as its isolated
root.

A mistake in Dulac's argument above is that the equation f(x) = x is not
equivalent to the equation (*+) if the semiregular map has the principal term
x and is not the identical map and P1 is a nonzero polynomial,

As stated above, the problem of the finiteness of the upper bound on the
number of limit cycles of En(a,b) is still unsolved and is called Dulac's
finiteness problem. Under some additional conditions a few results on this
problem have been obtained. In the case when n = 2 Chicone and Schafer (6]
disposed of the cases (2) and (3) and so proved that all bounded graphs are
finite and every quadratic systenm Ez(a,b) has at most finitely many limit
cycles in an arbitrary bounded domain in the plane. Using the work of
Chicone and Schafer, Bamén [7] proved that all unbounded graphs are finite
and therefore that every Ez(a,b) has a finite number of limit cycles in the
plane. So there has been an affirmative answer to Dulac's finiteness problem
in the case n = 2. However, it is not known whether H2 is finite. I1'yashenko
[5] proved that every En(a,b) has a finite number of limit cycles if all its
(finite or infinite) singular points are not degenerate, This conclusion
contains the following result of Sotomayor and Paterlini [41]: In the space
of quadratic vector fields there exists an algebraic submanifold such that
every field outside the submanifold has only finitely many limit cycles.
I1'yashenko [42] has outlined a method faor proving Dulac's finiteness theorenr
(i.e.Hn(a,b) <), First, one should prove that limit cycles of an analytic
vector field cannot accumulate on a separatrix cycle or at a singular point,
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Secondly, one should use the following theorem of Dulac on semitransversality.

A semitransversal to a separatrix cycle of an analytic vector field may be
selected so that the corresponding monodromy mapping is either a plane germ,
or vertical germ, or semiregular germ.

Very recently the Dulac problem might have been solved by four French
mathematicians using non-convergent power series. The basic proof idea may
be found in [55], [56], but the full proof is long and has not yet appeared
in print (See Zentralblatt flir Math.,Band 615, 58011;J.Ecall etal, Non-accumu-

lation des cycles-Timites,I,II C.R. Acad.Sci., Paris, Sér.I304,375-377;431-434 (1987).

Up to now nobody has found an upper bound of the number of limit cycles
of a general polynomial system. But this kind of upper bound has been found
for some special polynomial systems., For instance, the maximum number of
1imit cycles of the system

X = -y + 8x + e+ mxy + nyz, y

"
x

or the system

X = -y + 8x + sz + mXy + nyz, 9 x(1 + by)

is 1. The maximum number of 1imit cycles of centre-symmetrical quadratic
systems [53] is 2. Dilberto defined a limit cycle of En(a,b) as strongly
stable (unstable) if div(Xn,Yn) < 0 (> 0) on the cycle. He proved that the
sum of the number of strongly stable and strongly unstable limit cycles of

(a b) is smaller than ?(n - 2)(n-3) +1. If these cycles surround a unique
s1ngu1ar point, then the sum is smaller than Z(n 1). The maximum number of
limit cycles of the fifth degree systemy = x, x = y + 3pX + a,X +ayX 5 is
two [57].

3. THE LOWER BOUND PROBLEM

It is easy to see that to find an upper bound of the number of limit cycles
of a polynomial system is difficult and to find that of infinitely many
polynomial systems of the same degree is much harder. On the other hand,

comparatively speaking, it is easier to find a Tower bounc . S This is
because if only an example of En(a,b) with K 1imit cycles w. - .nown, then
it would follow that Hn z K.

The results obtained in this aspect are as follows: 2 24, H 25, H3 z 11,
and
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I -1Z(n2 +5n) -7, ifn 26 1is even

2

(n® +5n) - 13, ifn 29 is odd

=
~y —

4, SOME HETHODS OF PRODUCING LIMIT CYCLES
In order to obtain as many limit cycles as possible of En(a,b), pecple
generally adopt the following methods.

(a) Construct a suitable Poincaré-Bendixson annular domain (including
such a kind of annular domain whose inner boundary is an asymptotically
unstable or stable singular point and whose external boundary is a part
of the equator). The famous example of Shi [25] with four limit cycles
deals with this case.

{b) Produce 1imit cycles from a family or a few families of periodic
cycles by a small perturbation of the system in question. (This method
is used in Li's [32] example with 11 limit cycles of E3(a,b)). (Poincaré
bifurcation).

(c) Produce local limit cycles from a separatrix cycle with singular
point(s) on it by a small perturbation. (Recently, Joyal [37] obtained
a wonderful result. If a polynomial differential system has a loop with
only a fine saddle of order k - 1 (k > 1), then any perturbation of the
system has at most k limit cycles and for any integer (1 s % s k), there
exists a perturbation with exactly & limit cycles.)

(d) Produce local limit cycles from a fine focus or a centre by small
perturbations of coefficients. (Hopf bifurcation).

We will explain the methods (a), (d) and (b) respectively. In 1979 Shi [14]
constructed the following quadratic system and proved the existence of four

Timit cycles of the system by using the method of Poincaré-Bendixson annular
domains. Shi's example was

200 2

x = -107290, _ 10k 2

+ (5 - 10-13)xy +y (shi)
i

Voo x o+ x2 e (<25 -8 x107°% 4 9 w107 3)xy.
The system‘YShi) has an unstable rough focus, M{0,1) and a stabie rough focus
0(0,0), and a straight 1ine without contact, 1 - 25y = 0. It has a singular
point at infinity, saddle. On the Poincaré sphere there are four annular
domains. Domain I is bounded by 0 and the contour without contact L3 domain
IT is bounded by % and the contour without contact %95 domain III is bounded
183
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by 295 the straight Tine without contact, and part of the equator; domain IV
is bounded by M, the straight line without contact, and part of equator.
The phase portrait of the system is shown in figure 1. By the Poincaré-

Figure 1

Bendixson annulus theorem the system (Shi) has at Teast four limit cycles, of
which one surrounds the rough focus M and the other three surround the rough
focus 0,

In order to introduce the method (d), let us recall the definition of a
weak (fine) focus. A focus P of the system En(a,b) is said to pe fine, if it
is a centre of the corresponding linearized system

. 3(X ,Y )
£ = |1 £y £ € R?
3(x,y) b

where Xqs ¥ are the right-hand functions of the system En(a,b). From two
foci F1 and F2 shown in figure 2, we can see that the focus F2 is finer than
F1 or that F2 is slower than F1. He will characterize this property of foci
by means of the concept "order". A fine focus of higher order is finer than
one of lower order and is closer to a centre. The order of a fine focus is
defined later. (Similar to focus, a limit cycle may be distinguished as

rough and fine, even fine of higher order.)
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Figure 2

We start with a system having a weak (fine) focus whose order k (k 2 1) is
as high as possible and perturb slightly the coefficient of the system so
that the stability of the focus is changed into the opposite., Then, as a
result of perturbing each time, a small-amplitude 1imit cycle bifurcates out
of the focus. After successively perturbing the coefficients, we obtain at
least k Timit cycles around a rough focus, In 1952, Bautin [8] first adopted
this method to obtain limit cycles of quadratic systems and proved that at
most three limit cycles can appear from a centre or a fine focus with a
variation of the coefficients, This method is named Bautin's technique.
Since at that time there was no work on two nests of limit cycles [9],
Bautin's result led to an incorrect impression that H2 = 3. Hence the papers
by Petrovskii and Landis {10,11] appeared early and late in 1955 and in 1957,
Although the above papers had to be withdrawn because of a mistake {12],
before 1979 it was still hoped that H2 = 3. For example, this may be seen
in the book by Ye [13] where some conclusions on various distributions of
Timit cycles of Ez(a,b) were based on the invalid assertion of Petrovskii
and Landis, In 1979, in addition to Shi [14], Chen and Wang [15] constructed
quadratic systens with at least four cycles as shown in figure 3 (so H2 z 4).
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l‘ . .,' N
@ by perturbing two times teot
A 8

G

when 8y =38, = 0 when 0 < 62 < 61<<1
(1,1) distribution of 1imit cycles {1,3) distribution of limit cycles
N(0,1) a rough focus N.0 are fourgh foci

0(0,0) a fine focus of order 2
AB:1-3y = 0 a straight line
without contact

Figure 3

By using Bautin's technique Chen and lang constructed the following
quadratic system and proved the existence of a distribution (1,3) of limit
cycles:

X = -y - 8% - 3x2 + (1 - 61)xy + y2

. 2 (Chen-Wang)
y = x(1 + * - 3y).

In both examples of Shi and Chen-ilang, the same (1,3) configuration of
Timit cycles is obtained. These remarkable results have renewed interest in
Hilbert's 16th problem. After that, many new authors and new results appear.
Li [17],Blows and Lloyd [19],Qin, Cai and Shi [16], G. Wanner [18], Andronova
(43], Cherkas [45] and Rudenok [46] found more general quadratic systems
with (1,3) distribution. Andronova began with a conservative system

. 2 Z .
X = =y + X" +my , y=x + bxy

having exactly two cnetres and an infinite saddle under the conditions
¢n+b)>0,n{n+b)>0, nlb-2) <2,
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She constructed the system

- 2]
-y + zxz + [(22+b)/(g+n)Jaxy + ny2, y=x+ax" +bxy (0<awt)

X

with a rough focus at (0,1/n) and a fine focus of order at least 2 at (0,0)
which approximates the conservative system. Using Bautin's technique, she
proved the system has (1,3) configuration of Timit cycles. In her second
article [43] she further proved that in the subspace of parameters of the
conservative system one picks out a region, in the neighbourhood of which
there is a quadratic system with the property that the number of limit cycles
is no less than four, among them no more than three around one focus at the
origin and no less than one around the other. This fact is in agreement with
the nonexistence of 1imit cycles around a fine focus of order 3 for any
quadratic system [20].

Cherkas constructed a quadratic system with two pararmeters a, v in the
form

2

> e
I

2
(ox = y)(1 + vy) - ax” + b11xy + (b02 + aaoz)y

2 2
(x - ay)(1 + vy) - x= - oby,xy + (ag, + aboz)y

“«l .
It

which has exactly a focus, (0,0) and an anti-saddle. He proved the system
has at least four limit cvcles with (1,3) distribution for 0 < -0 << 1 and
the corresponding Y. Dudenok proposed a method of constructing examples of
the existence of at least four limit cycles for the system

. 2 2 - 2 2
X = -y + Ax + A%+ 2a11xy sy .y = x4 Ay +bynx +2b11xy +b02y .

Blows and Lloyd [19] generally show how to construct quadratic systems with
at least four Timit cycles and their results complement the findings of many
authors, such as Shi [14,47], Chen and Wang {151, Qin, Shi and Cai [48], and
Li [17].

It is convenient to use Li's formulae of the focal values for a general
quadratic system. The general form of quadratic systems with a fine focus
at the origin is
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. 2 2 ¢ 2 2 .2,
X = ax + by + ax~ +mxy+ ny , ¥y = Cx - ay + px + qQxy +ry (a“+bc < 0}.

Let ¢ = (—a2 - bc)V2 and introduce the transformation
__ b a - . 1 _c
XETE T YT PRt

Then the above system is reduced to the form
X = -y + azox2 Ayt aozyz, y =X+ b20x2 + b11xy + bozyz. (G)

Extending Bautin's formulae of the focal values, Li gave the corresponding
formulae for the general quadratic system (G).

THEOREM OF LI: Let
Wy = Ao - BB, W, = [B(5A ~ B) + a(5B - a)ly, Wy = (A + BBYad (W)
where

A= a0 + 3o B = b20 + b02’ a=a ¢ 2b02, B = b11 + ZaZU’

3 2

Y = b, A -(azo-b]1)A B+ (b

i 2 2
20 B”, =3, * b20 + a,A+b, B.

027211 02" *P20

Then

(i) the origin is a fine focus of order k (k = 1,2,3) if and only if the
condition (k) holds:

(1) w, #0,
_09 wzfoy

—
[a®]
~—
x
i

(3) Wy = 0, Wy = o, Wy # 0.
(ii) If W, < 0, then the origin 0 is stable; if W, > 0, then O is unstable.
(iii) 0 is a centre if and only if Wy = Wy = Wy o= 0.

The formulae (W) may be replaced by the following
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8(5A-R)Y if A # 0 {A@ua ifA£O
Wy = Ax-8B, Wy = a(bB-a)y if B#0 Wy = 1Bayd if B #0
l 0 ifA=8=0, L 0  ifA=-=8B-:0.

COROLLARY 1 OF LI'S THEQOREM: The origin 0 is a centre of (G) if and only if

(1) A -88 =y =20, or
(2) «a =8 =20, or
(3) 5A-B8=5B-0a=238 =0,

COROLLARY 2 OF LI'S THEOREM: For Ye's form of quadratic system

i = -y + ixz + mxy + nyz, & = X + ax2 + bxy (Ye)
which has a fine focus at the origin, let

Wy = m(x + n) - (b + 2%)a

2

Wy = ma(5a - m)[{(% + n)z(n +b) - a“(b+ 22 +n)]

- 2,2 \ 2 2 R
Wy = ma [(2a” + n(2 + 2n)J{(L + n)"(n + b) - a“(b + 22 + n)],
then
(i) (0,0, is a fine focus of order k if and only if the following condition
(k) (k = 1,2,3) holds:
(1) w #0,
(2) W1 = 0, W2 # 09

(3) w, = W, = 0, ﬁ3 £ 0.

(ii) If Qk < 0 then the focus is stable; if Qk > 0, then the focus is
unstable.

(ii1) The origin is a centre if and only if Q1 = QZ = Q3 = 0.
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Therefore, the origin is a centre for the system (Ye) if and only if one
of the following cenditions (1)-(4) holds:

(2) m{e +n) = a(b + 22), af(z + n)Z(n + b) - az(b + 22 +n)] =0,
(3) m=b+2v =0,
(4) m=5a, b =232+ 5n, 2a2 +n(& + 2n) = 0.

After having constructed a (1,3) distribution, one naturally poses the
question: "Are there (0,4) distributions and/or (2,2) distributions of limit
cycles of quadratic systems?" It is easily seen that a corresponding example
of E2 with (0,4) distribution would be obtained at once, if an example with
a fine focus of order k (k = 1,2,3) enclosed by 4-k Timit cycles were
constructed. But most Chinese mathematicians in the field now believe that
there can exist at most 3-k limit cycles around a fine focus of order k
{(k = 1,2,3) for EZ' This conjecture for k = 3 has finally been proved by
Li [20]. However, it should be noted that the impossibility of (0,4)
distribution cannot be derived from the conclusion just mentioned. Concerning
(2,2) distribution, Ye [21] proposed a methiod of proving the impossibility.
The present author pointed out in his talk at MIA, University of Minnesota,
and at the University of Delaware (see SIAM News 13, ilarch 1985) that workers
in the field are confident that there are no more chan four 1imit cycles for
EZ’ but a rigorous proof of this assertion continues to elude researchers.
(Although Qin [22,44] claimed that he had proved that H2 = 4, Cao [23] rointed
out his problem. If Qin's work were rig-t, then papers [6], [73, [20] and
[21] mentioned above were all not necessary.)

BLOWS AND LLOYD'S CONTRIBUTIONS: Blows and Lloyd [19] extended Bautin's
technigue of creating small-amplitude iimit cycles from a fine focus of

Ez(a,b) to higher-order systems and employed symbolic manipulation methods
in computing the so-called focal values of nth-degree polynomial systems.
This is a great breakthrough over Bautin's method and so it is an important
contribution to Hilbert's 16th problem in the case of higher-degree systems.
Therefore let us outline the ideas here.
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In order te produce limit cycles from a fine focus (at the origin) the
corresponding polynomial system should take the form

X
"

n

Y o+ AKX + 1');2 Pi(x,y)

. n

Froxe e ] 0y00y)
j=2 !

where Pi’ Qi are homogeneous polynomials of the ith degree. As is known, a
suitable Lyapunov function V for (1) should be constructed so that the rate
of change along trajectories of (1) is

2,2 2
14y (68 4 yHK

\./=n(x +y2)+n(x2+y +

2 4 ces
where the quantities Nos Ngs wves Moy ouw are polynomials in the coefficients
of Pis Q;» and X and are called the focal values of (1). For (1), the fine
focus at the origin is called of order k if Ny =Ny = cee =Ny = o,
Moka # 0. The guantities Nos Mg s wes s Mok * Mopsr nust be computed
to find the number of small-amplitude limit cycles surrounding the origin.
= Ny = 0, but

all N2js2 £0(j =k, k+1,,,.). The ideal generated by the no; in the

The number k is the largest integer such that Ny =Ny = oo

coefficient polynomials has a finite basis which consists of nonzero poly-
nomials n2k/<n2""’"2k-2> where <n2,...,n2k_2> is the ideal generated by
Noseeeslo oo If we write the basis as B = {L(0),L(1),...,L(M)} then B is
called the focal basis and the polynomials L(0),...,L(M) are called the
Lyapunov quantities of (1). Suppose the system En(a,b) (or the system (1))
has a fine focus of order k at the origin. So L{0) = L(1) = ... = L(k-1) = 0,
L(k) < 0 (if L(k) > 0, the discussion is similar) and the origin is a stable
fine focus of order k which is denoted by the symbol 0;. Let L be a Tevel
curve of V which is close to the origin so that trajectories of (1) are
inwardly across L. HMow let us perturb (1) so that for the perturbed system
(Py), L(0) = L(1) = ..., L(k-2) = 0, but L(k-1) > 0. The origin is now an
unstable focus which is denoted by the symbol O;_1. By the continuity of the
vector field, the perturbation of (1) may be so small that the trajectories
of (P1) are still inwardly across L, By the Poincaré-Bendixson theorem there
exists a stable 1imit cycle between 0:_1 and L which is denoted by CT.
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Obviously, in a small enough inward neighbourhood of CT there is a closed

curve.C1 such that the trajectories of the system (P,) are outwardly across
C,. HMow perturb (Py) to (Pz) so that L(0) = L(1) = ... = L{k - 3) =0,
L{k - 2) < 0. The origin is now a stable focus of arder k - 2, O;_z. By
the continuity of the vector field, the perturbation of (P1) to (PZ) may be
so small that the trajectories of (Pz) are still outwardly across C1. By
the Poincare-Bendixson theorem there is an unstable limit cycle of (Pz),
CE, between 0;_2 and C1. Continuing this process up to the kth perturbation,
we obtain k 1imit cycles CT, cg,...,c;, and the unstable rough focus 06, if
k is odd. Here C: is a limit cycle of the system (P,), Cé is of (Pz),...,C;
is of (PK). If k is even, a stable rough focus 06 is obtained after the kth
perturbation of (1). Let the perturbations (Pi) to (Pi+1) (i = 2,3,...,k-1)
be small so that C1 is a contour without contact of (Pk). Similarly, in an
inward small neighbourhood of CE there is a contour without contact of (Pk),
C2. By the Poincaré-Bendixson theorem there exists an unstable limit cycle,
C;1, between C.l and CZ' By similar discussions, k Timit cycles of the final
perturbed system (P, ), C;1, C:Z""’C;k-1’ and C: are obtained.

Therefore, at most k small-amplitude limit cycles can bifurcate from a
fine focus of order k under suitable perturbations of the polynomial system

(1).

SLEEMAN'S METHOD: In his recent research report [49], based on the above
work of Blows and Lloyd and using the idea of Hopf-bifurcation and the method
of averaging of Show and Mallet-Paret [50], Sleeman posed a new approach to
the resolution of Hilbert's 16th problem, His solution to the problem
successfully depends on the manipulation of complicated algebraic quantities

involving the coefficients a5 b.. and leads to an algorithm for determining

Lyapunov quantities and certain “;ieraging maps". Because of a large number
of manipulations in the evaluation of integrals of trigonometric polynomials,
the algorithm in the averaging process is solved using the symbolic manipu-

Tation package MACSYMA [51,52]. Finally, the results obtained are applied to
quadratic and cubic systems and an outline for a systematic attack on higher-

order systems is given,

CUBIC SYSTEMS: First, it is necessary and interesting to compare the known
relative positions of cycles of EZ with some relative positions of cycles of

192




E3. The author [26] pointed out that many properties of cycles of F3 differ
greatly from those of E2' For example, a closed orbit (a Timit cycle) of
E3 may surround more than one critical point (as shown in figure 4); when
it surrounds only a singular critical point the latter may not be a focus

or a centre. (The Van der Pol equation
. - 2
X =y, y=-x+31-x%)y

has a unique limit cycle surrounding a node.) A centre and a limit cycle of
E3 can coexist. There can exist three cycles of which one encioses the two
others, which are separate, or three cycles which separate mutually. The
above-mentioned cases are illustrated in figure 4, The cases (a)-(e) of
1imit cycles and singular points can be realized only for E3, but not for E2.

DO @) g

The number of a node a centre one surrounds two three separate
singular points
is 1.

(a) (b) (c) (d) (e)

Figure 4
Each closed orbit of any quadratic system Ez(a,b) encloses a convex region,
s0 that it is cut by any straight line in at most two points. For each closed

orbit of any cubic system E3(a,b), it is cut by any straight line in at most
four points [54].
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Concerning a lower bound and the relative positions of limit cycles of
cubic systems, some results have been obtained, Sibirskii [24] and Shi [25]
gave examples of E3 with five concentric limit cycles by perturbing a fine
focus. Recently, Blows and Lloyd [19] also constructed a class of such
system E3 with five cycles. A1l the cubic systems given by those authors
have no quadratic terms in x and y. It follows from these examples that
H3 2 5. From a viewpoint of relative position of limit cycles, these examples
only supply a nest of limit cycles enclosing a focus. Different from that
distribution of limit cycles, I1‘'yashenko [40] also showed that H3 2 5.
However the corresponding 1imit cycle may surround more than one singular
point.

The author with his co-authors [27] gave a variety of distributions of
1imit cycles of cubic systems shown in figure 5.

Figure 5

It should be pointed out that the famous Russian mathematician Arnold [28]

obtained such a distribution of cycles of E, early in 1977 (figure 6).

3
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Figure 6

Li and Li [31] obtained 12 kinds of patterns of limit cycles of cubic
systems by perturbing a cubic Hamiltonian system, Let CE denote a kind of
pattern. In CE C represents limit cycle, m the number of 1imit cycles and
k the multiplicity of singular points enclosed by the m cycles. The symbol
"-" means that cycles separate. The symbol ">" means that one or several

cycles enclose another or others. They obtain the following 12 kinds of

patterns:
(1) ¢ (k= 1,3,5,7,9),
(2) € (k = 1,3,5,7),
(3) ¢y cl,
(4) ¢y =) - cly,
(5) ¢y= s,
6) ¢} () - ¢,
(1 ¢yocd-cdy,
(8) C§DC:9
(9 &l - chy,
(10) c} > c} -(c} - c}),
(1 cg>c) ~(c) - ¢ - chy,
(12) ¢y - (cy=¢f - Cp) - Cl.

195




For example

Now let us explain the method (b) of producing limit cycles.

Before giving the newest results of Hilbert's 16th problem for E3 we
introduce the corresponding new method of producing 1imit cycles of E3 which
is a generalization of continuous variation of coefficients suggested by
Hilbert. This method is a wonderful application of Pontryagin [29]1 and Zhang's
[30] method to Hilbert's 16th problem for E3. Horeover, the technique of the
application is well-developed by Li and Li [31] in 1985. Li and Huang obtained
that H3 2 11 [32]. They found a cubic system
x(1 + 4x2-y2) + uy(x2 + 0.43y2 - )

(1)
2) 2 A i

X
. 2 2
y = y(1 + x% - 0.5y7) + ux(x~ + 0.43y
where A, u are parameters

-1.579338 < XA < -1.57401, 0 <y << 1,

System (1)u has at least 11 Timit cycles as shown in figure 7.

by perturbing

>
7 families of closed
orbits (non-isolated)
(a) The phase portrait of (1)u=0 (b) 11 1imit cycles of (1) with
with 4 centres and 3 saddles -1.579338 < X < -1.57401 for 0 < p <<

Li's example with 11 cyc1es:(1)u

Figure 7
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Consider the disturbed Hamiltonian system:

%a’é = g-l} - uX[p(x,y) - A1 = P(X,yaush)
(2)u
%{‘ = '5;(“ uV[Q(X,l’) = )\J O(XQ.. )Ui)\)

1l

q(o’o) = 09 As U
0. Suppose that

where H(x,y), p(x,y), q{x,y) are polvnomials with p(0,0)
two parameters with 0 < y « 1 and P(0,0,u,1)=0(0,0,u,))
the following condition holds.

CONDITION A: The integral of the system (2)u -0 H{x,y) = (h1 < h < hz)
represents a family of closed orbits {T } which surround C (C 2 1) centres
and/or s {s 2 0) saddles, expand when h increases, and are negatively

oriented. Let

fx,y) = xp, + yq +p+a, " - Interior of I

¢(h) = ”Dh dx dy, w(h) = ”Dh f(x,y)dx dy (hy <h< h,)

ah) =20 (hy < h < hy).

Then the function A = A(h) is called the detection function of (2) correspond-
ing to the family tT } and the graph of this function is the detect1on curve.

Applving Pontryagin and Zhang's method to system (2)u leads to:
FUNDAMENTAL THEOREM A (on bifurcations from periodic cycles): For a fixed

W (0 <u <« 1) and a given value AO of parameter A, the system (2)u is
considered. Suppose that condition A holds. Then

(i) system (2)u with A = XO has a unique stable (unstable) 1imit cycle near
the closed curve T' ', if Mhy) = Ag, A'(hy) > 0 (< 0),

,f
(i) system (2) with A = Ao has no more than k 1imit cycles near rl1 (i z21),
i g = A(h ) and x'(h%) = ... = 2Dy =0, 2 40
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If the closed orbits {r"} in condition A expand when h decreases or are
positively oriented then the 1imit cycle mentioned in (i) of the theorem has
the opposite stability.

CONDITION B: (1) Condition A holds. (2) Integral curves H(x,y) = hy»
(i = 1,2) are homoclinic orbits or heteroclinic orbits of (2)u=0 which
surround some orbits of {rh} and are surrounded by some orbits of {rh}

h changes monotonically

being symmetrical with respect to the x-axis. (3) T
with h in each region divided by the homoclinic and heteroclinic orbits.
(4) The vector field of (2) is invariant under a rotation through 2a/k

u
{(k = 1,2,...). (5) Saddles of (2)u are hyperbolic. (6) a(h) #0 (h1 <h <h2).
Applying Mel'nikov's [33,34] method to (2)u Teads to
FUNDAMENTAL THEOREM B (on bifurcations from singular closed orbits): Suppose

that conditions A, B hold. If ) = A(hz) +o(u) or X =X (h1) + o(u), then
(Z)U has homoclinic or heteroclinic orbits.

By using the two fundamental theorems on bifurcations and starting with
a suitably chosen Hamiltonian polynomial system, a variety of distributions
of 1imit cycles may be obtained by perturbing the system. This is the
theoretical base of the above-mentioned example with 11 Tlimit cycles.
Concerning Hn Otpokov [35] obtained in 1954 an estimate

2

(n® +5n) -7, ifnisevenandn 26

N —

2

(n® +5n) - 13, if n is odd and n 2 9.

N —

Shen [36] recently gave by means of many properties of Chebyshev's poly-
nomials Tn(x) the following recursive inequality on H,

> (N + 1.2 e n o+ 1 .
Hy 2 ( -7;——) Hp-1’ if 5— is an integer.

Thus
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Hsz()2 24 x4 =16
82, _
H72(7[)H3“4H3>4x”'44
Hyy 2 G2 2 9 x11= 99
Ho> (n + 1) H (n + 1) if n + 1 is divisible by 4
n = 3"13 ’ )

On the other hand, by Otpokov's estimation, we have

Hyy 275

"

Therefore, Shen's result is better than Otpokov's in the case of n = 4k - 1
(k is a natural number).
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J.F. TOLAND .
A homotopy invariant for dynamical
systems with a first integral

1. INTRODUCTION

This lecture concerns joint work with Norman Dancer on a degree theory for
T-periodic orbits of flows with a first integral where T is fixed a priori.
The familiar Brouwer degree may be regarded as an algebraic count of the
number of solutions in an open bounded subset @ < R" of the equation f(x) = p
when f is continuous on & (the closure of 2) and f(x) # p when x € 3% (the
boundary of ). It is an integer-valued homotopy invariant. In 1967 Fuller
defined a rational-valued degree for dynamical systems which might be regarded
as giving an algebraic count of the number of periodic orbits in &,
irrespective of their period, of the equation x = f(x) when f has no zeros

in &

and no periodic orbit in & intersects 3% (see Fuller [4], and Chow and
Mallet-Paret [1].) In their respective contexts each of these is a homotopy
invariant and has a natural set of applications in bifurcation theary using
the methods of Rabinowitz [7]. In particular, each is invariant to small
perturbations in f. Therefore if x = f(x) + €g(x) has no periodic orbits in
< for all ¢ sufficiently small, then the Fuller degree for x = f(x) in 2,
if it is defined, is necessarily zero, A special case when the Fuller degree
is always zero arises if there exists a nondegenerate first integral for the
equation x = f(x), i.e. when <VV(x),f(x)> = 0 for some real-valued functional
V. Then V is constant on trajectories of x = f(x) and x = f(x) + €9(x) has
no periodic solutions in Q for € # 0, A similar difficulty was encountered
by Dancer [2] when he considered the Brouwer degree for S1—1nvariant functions
on Rn; in this case the Brouwer degree is always zero also. He coped by
restricting attention to equivariantmappings which are, in addition, gradients
of functionals on R". His approach leans somewhat on the methods of Fuller.
Our purpose in this lecture is to show how to define a degree for all
Lipschitz continuous, nonvanishing vector fields defined on Q < R" (where &
is bounded and open) which are orthogonal to VY, V being a continuously
differentiable function on Q with nonvanishing gradient, such that every
T-periodic orbit of x = f(x) in O lies in Q. If these conditions are
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satisfied we say that (q,f,V) is admissible. (lle require f to be defined on
3 and V to be defined on @ and <f(x),VV(x)> = 0 on Q.) Here T > 0 is
specified a priord, and is fixed,

Our degree function, which will be denoted by deg(®,f,V), where its
dependence on T is understood but suppressed for the sake of a convenient
notation, can be regarded as an algebraic count of the number of T-periodic
orbits of x = f(x) in &. It is a homotopy invariant in the sense made
precise in (II) below.

The approach described here is naive. The degree is first defined in a
smooth nondegenerate situation, and then extended to the general context by
approximation, To this end one needs to establish a type of Kupka-Smale
genericity result (see e.g. Palis and de Melo [6]) in the class of vector
fields with a first integral. This step requires greatest technical effort
and an outline of the details involved is given in section 3. In [3] there
is a proof that, when the degree is calculated for a Hamiltonian system whose
first integral is the Hamiltonian, then the degree agrees (up to a change of
sign) with the abstract degree defined by Dancer [2] for 51-invariant gradient
mappings once the latter has been calculated for a (gradient) Hamiltonian
system, lle ignore this aspect of the theory now. Our presentation neans
that computations are carried out directly with the dynamical system, and not
through an abstract forrwlation as in the case for the 51-degree. We return
to the observed connection with the S1-invariant gradient degree in the later
naper when we consider changes of the index and bifurcation theory [3].

This lecture is completely descriptive and deliberately avoids a detailed
discussion of the technical mathematical treatment which is being reported
upon, Our aim is to give an intuitive account of the degree theory beginning
in section 2 with the definition and basic properties. In section 3 there is
a nonrigorous descriptive account of the ideas involved in establishing the
generic results on dynamical systeris with a first integral on which the
definitions and proofs of section 2 are based.

2., THE DEGREE

Suppose that (%,f,V) is admissible and that v is the only T-periodic orbit in
' of x = f(x) and let p €Y. There is no loss of generality in supposing
that p = 0, the origin of Rn. Then 0 is a fixed point of the time-T-map F
defined by the flow x = f(x), and indeed 0 is locally a unique fixed point of
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F in the hyperplane £(0)4(= H, say). Let K = wW(0)t, and Tet Q be the
orthogonal projection in 8" onto VV(O)l and parallel to W(0) (see figure
1).

fO)* O

vv(0)

Figure 1

Now because V(F(x)) = V(x) for all x and W(0) # 0, it is easy to see
that there exists a neighbourhood U of 0 such that F(x) = x, x € U, if and
only if Q(F(x)-x) = 0, MNow ¢ = Qo{I-F) is function from an open set U n H
in the (n-1)-dimensional space H into the (n-1)-dimensional space K which
has an isolated zero at 0 € H, Let €1seees® o be an arbitrary basis for
HnKand let {VV(O),e1,...,en_2} and {f(o),e1,...,en_2} be bases for H and
K respectively. Then with respect to these orientations the Brouwer degree
degB(U n H,$,0) is defined and is independent of {e1,...,en_2} since these
basis elements are common to the domain and the co-domain, The usual
stability of the Brouwer degree means that the value of the degree is locally
independent of the choice of the point p on v chosen for the calculation.
Since v is connected the calculation is independent of the choice of p on Y.
Hence degB(U n 1,%,0) depends only on v,f and V. If it is defined and non-
zero then ®(x) = 0 has a solution in U n H and so there is a T-periodic orbit
through a point of U n H, However the following illustrates that, as it
stands, this Brouwer degree lacks the stability required of an index for Y
(see figure 2).
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Figure 2

In the example of figure 1 let us suppose that vy has minimal period T/3,
say, and that the calculation above gives degB(U n H,9,0) = k # 0, Let us
suppose also that after a small perturbation of f to fe the T-periodic orbit
v (which must persist in some form or other because k # 0) becomes an orbit
Ye of minimal period T. Thus @ has three zeros, Py i=1,2,3, in U n H, and
if Ui is an isolating neighbourhood of Py then £ = deg(H n Ui,QE,O) is
independent of i, since PysPy and P3 all lie on the same orbit e Therefore,
by the stability of the usual Brouwer degree, deg(U n H,2,0), to small
perturbations we find in this case that 3% = k. Careful observation of what
can happen in circumstances like these leads naturally to the following
definition of an index for y, an isolated T-periodic orbit. Because it is
stable to perturbations, this index leads naturally to a degree theory which
enjoys the usual properties,

DEFINITION: Suppose that (Q,f,V) is admissible, that y is the unique T-periodic
solution of x = f(x) in @, and that T/m is the minimal period of y. (Such an
m € N exists since f(x) # 0 in Q.) Let

degB(U n H,0,0)

ind(y) = —————————
m

If there is only a finite set {y1,...,yk} of T-periodic orbits of x = £(x) in

Q, let
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=

deg (Q,f,V) = E ind (Yi)'
i=1 {

We will say that an admissible (Q,f,V) is finite if there are only a finite
number of T-periodic orbits of x = f(x) in @, In the next section there is 1
a description (omitting details) of the proof that for any admissible (,f,V) ‘
there exists a sequence of finite admissible (Q,fk,v) such that fk + f
Jniformly in Q, and deg(Q,fk,V) is independent of k for all k sufficiently J
large. This enables us to make a definition of the degree for any admissible
(@,f,V):

mgm;ﬂv)=dmuhf&V)fM'ﬂ1k sufficiently large.

If we show that the right-hand side is well-defined, then the following
properties of the degree are immediate from the definition:

if deg(Q,f,V) = M/N, (M,N) = 1, and p*|N where p is a prime number 0
I

and o € N, then 2 contains an orbit of period T/pa.

To see this, note that for all k sufficiently Targe the finite admissible
(Q,fk,v) has degree (lI/N), and it is immediate from the prime factorization
theorem and the definition of the degree in the finite admissible case that
X = fk(x) has a (T/pa)-periodic orbit in 2, Since fk > f uniformly and f is
Lipschitz, the classical continuous dependence theory (Hartman [5], Ch. 2,
Th. 3.2) ensures that x = f(x) also has a (T/pa)-periodic orbit in Q.

Suppose now that a family of finite admissible (q,f,,V,), X € [0,1],
depends continuously on A in the sense that the fA's are continuous in A with
respect to the metric of uniform convergence on &, and the Vy's are continuous
with respect to the metric of uniform convergence on compact subsets on £,
This will be called a finite admissible homotopy. Then because there are
only a finite number of T-periodic orbits of X = fx(x) in © for each A, it
is an easy matter to infer from the homotepy invariance of the classical
Brouwer degree function that deg(Q,fA,vA) does not depend on A, This rather
weak version of the horotopy invariance property fo- finite admissible
homotopies is a consequence of our definition and classical continuous
dependence theory for initial-value problems in a straightforward fashion.
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In the next sectior. we will indicate how to show that if (stx’vx)’ A€ (0,11,
is an admissible homotopy in the sense that each (Q,fA,VA) is admissible and
the dependence on A is continuous in the sense described above, then there
exists a sequence of finite admissible homotopies (Q,fl;,V)\) such that
f§ -+ f uniformly in & and A € [0,1]. (For each A € [0,1] and k € N,
(Q,fi,vf) is finite and admissible,) This approximation theorem is established
through a long technical argument. However, once it has been established, we
can use it to prove that the above degree function is indeed well-defined,
and that it enjoys a strong hnmotopy invariance property. The argument for
well-defindedness goes as follows.

Suppose that (2,f,V) is admissible and fk =+ f uniformly on Q where
(Q,fk,v) is finite and admissible. lle can show that deg(Q,fk,V) is independent
of k sufficiently large as follows. Let k and & be natural numbers. Then for
k and & sufficiently large, (Q,Xfk + (1-X)fl,v) is an admissible homotopy
since fk -~ f uniformly on {. Mow we have claimed that any admissible homotopy
can be approximated by a finite admissible homotopy and so there exists
gT > Afk + (1-A)f2 uniformly on & and A € [0,1] as m > @ where (Q,g§,v) is
finite and admissible. Hence by the homotopy invariance of finite admissible
homotopies deg(Q,gT,V) is independent of A € [0,1]. MNow gg - fQ, (Q,fz,v)
and (Q,gg,v) are both finite and admissible, and so an elementary argument
involving only the stability of the Brouwer degree leads to the conclusion
that deg(Q,gg,V) = deg(ﬂ,fQ,V) for all m sufficiently large; also for all m
sufficiently large deg(Q,gT,V) = deg(Q,fk,V) for the same reason. Hence for
all m sufficiently large

deg(@, V) = deg(2,q7,V) = deg(2,g0,V) = deg(®,f",V).

This shows that if fk -+ f uniformly and if (Q,fk,V) is finite and admissible,
then deg(Q,fk,V) is independent of k for all k sufficiently large.

Thus provided we can show that admissible homotopies can be approximated
by finite admissible homotopies then we can show that the basic definition of
the degree function given above makes sense.

It is now easy to see that the approximation of admissible homotopies by
finite admissible homotopies leads to the strong homotopy property of the
degree function, namely that:
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deg(Q,fA,VA) is independent of A when (Q,fA,VA) is any ()

admissible hormotopy.

To see this let f§ > f, unifornly on ¢ and A € [0,1] be such that (Q,f&,vx)
is a finite admissible homotopy. Then by definition deg(Q,fx,VA) =
deg(Q,fi,Vx) for all k sufficiently large (k depending on A), Mow if X1 and
AZ are in [0,1] we obtain

k k k k
deg(Q,f deg(Q,fx WYy ) = deg(Q’fA,’VAZ)

v, )
MM 1M

deg(Q,f, LV, ) k
2 2

for some k, where the niddle equality follows because the degree function is
constant for finite admissible homotopies. Thus the homotopy property is
established.

So far we have outlined the definition of our degree functions for T-
periodic orbits of admissible flows with a first integral and established
a powerful homotopy invariance property provided we know that admissible
horiotopies can be approximated by finite admissible homotopies. tiow it is
tine to show how this result is obtained, It is to be hoped that the
following outline of our nethod, which onits the technical details, makes
the rather tedious step-by-step nature of the proof clear.

3. GENERIC THEORY OF ADMISSIBLE HOMOTOPIES

Suppose that (@,f,,V,), A € [0,1], is an admissible homotopy, i.e. )

(i) A~ fx is continuous with respect to uniform convergence on {1;

(ii) A~ Vx is continuous with respect to C1-convergence on compact subsets
of Q3

(i11) F,(x) #0, x €8, X €[0,1], W,(x) # 0, x €9, X € [3,1];

{iv) all T-periodic orbits of x = f,(x) in & Tie in @, A € [0,11.

Because of (iv) we know that there is an open set U with U = © such that
all T-periodic orbits in Q of x = f,(x), A € [0,1], 1ie in U. Since W # 0
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on U we know that |W/| 2 a > 0 on U for some a. Since in defining the degree
2 could clearly be replaced by U there is therefore no loss of generality in
assuming throughout that

{(v) IVV)\(X)I 2a>00n8, x€[0,1].

Now our purpose is to indicate how (,f,,Vy) can be approximated by a
finite admissible homotopy. There is no loss of generality in supposing at
the outset (because if necessary we can make smooth approximations and
extensions) that
(vi) fA and VA are jointly infinitely differentiable with respect to

A€ (-6,(1 +8)) and x € R", and that f and VV grow no faster
than linearly at infinity; in particular for any XA, solutions of
the initial-value problems x = fx(x) and i==VVX(x) are unique,
exist for all time and depend smoothly on the initial data and

on A,

One further elementary observation is in order:

(vii) there exists m* > 0 such that any T-periodic solution in Q of

X = fA(X) has minimal period no less than T/m*,

This is immediate from (iii).

The proof may now be organized as a sequence of steps.,

STEP 1: First we indicate how to prove that the smooth admissible homotopy
(?,f,,V,) can be approximated by a smooth admissible homotopy (Q,fi,vx) such
that x = fA(x) has only finitely many T/m*-perijodic orbits in 2 for any

A € [0,1]. The proof depends on the following geometrical observation. For
each », let O, denote the set of x in  such that x(t) € 2 for all

t € [0,{(T/m*) + €) for some € > 0 if x = f,(x) and x(0) = x. Clearly 2, is
open. Let F.: Q, - Q denote the time-(T/m*)-map for the equation x = fx(x),

AT A
and let F, denote its graph: thus F, = {(x,F,(x)) : x € o). Let
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F = v ) xT,.
AE(-8,1+8)

Now for each x € @, , let eA(X) denote the trajectory through x of the
equation X = W, (x), and let

0= U {1} x {x} x {ex(x)}_
A€E(-8,1+6)
XEQA
Now F = R2n+1 is a smooth submanifold of dimension (n+1) and © C:R2n+1 is

a smooth submanifold of dimension (n+2). The first observation, which is not
difficuit to prove, is that if F # © then the intersection is a two-dimensional
embedded submanifold of R2n+1 and if (A,x,y) € FH O, then y = Fl(x) = X and
x lies on a (T/m*)-periodic orbit in Q of x = f,(x). In other words F f ©
comprises a manifold of (T/m*)-periodic orbits of x = fy(x). However,
F O is insufficient to ensure the aim of step 1; in other words, for a
fixed value of A there may be a cylinder of (T/m*)-periodic orbits of x =fA(x).
To outlaw this possibility a further transversality condition must be
satisfied.

Let A denote the vector bundle with base space

n

£ = {x} xQ xR

U
AE(=6,146) A

and such that the fibre over (A,x,y) € E is L(x), which denotes the space of
1inear operators from f)‘(x)l into va(x)l. Then A is a smooth manifold of
dimension (n® + 2). Let I < A be the submanifold defined by

2= {(A,x,y,L) : (A,x,y) €@, rank L = n-21},
The £ has co-dimension 1 in A, HNow consider the set

D= {(AsxaFA(X)QQ()‘,X)"(I'dXF)\[X])lf}\(x).L N (-6,1+5),x € Q)\}
where Q(A x) is the orthogonal projection onto va(x)l. Then D € A, If

D Z, thenDn I is a one-dimensional manifold. In particular, if F 4o,
and (x,x,Fy(x)) €@ nF, but (A,x,F,(x), Q(X,x)°(1'dxFA[X])lfA(x)l) £z,
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theh x lies on an isolated orbit of x = f&(x). On the other hand, if
0 ,x,F, (x)) €0 n F, and (A,x,F, (x), Q(A,X)O(I-dXFA[XJ)lfx(x)J) €r,and D 3 &
then it also follows that x lies on an isolated orbit of X = fx(x) in Q.
(This occurs at the points where X = A1 in figure 3.)

Therefore it will suffice for our purposes to show that fx can be perturbed
in such a way that £ # D and F i) O are assured, This can be done locally in
a neighbourhood of a point (X,p) with p = FA(p) using perturbations of the
form

<a,W,(x)>
£.(x) + o(XR) G - A W (x)}
) n ERS A

where n > 0, ¢ is a test function with support centred at the origin, for
some fixed a € R". The proof of this result is a straightforward calculation
of the derivatives of functions defined by the differential equation, but it
involves in an essential way the fact that (T/m*) <s the minimal period of Y.
A standard compactness argument then yields a perturbation for which F f ©
and D i £ on © of the form

F0 ¢ T 6oy o —-—————2—<a"’WA(X)> W, (x)}
x) + (—) {a, - .
r =t UM w0l Ax

The set 3500053, CAN be chosen so small that the perturbation of fA can be
made as close to zero as we like. The proof depends crucially on the fact
that the orbits of minimal period T/m* for ) € [-38,1 + 48] form a compact
subset of [-36,1 + 48] x Q.

This perturbation has enabled us to describe in some detail the structure
of all the (T/m*)-periodic orbits in  for x € (-3§,1 + 28). Generically
(i.e. after a small perturbation) there is at most a finite set of points
Apsesesdy € (36,1 + 35) and all (T/m")-periodic orbits for other values
of » Tie on curves Yy parametrized by A. The set {A1,...,xk} is characterized
by the fact that for ). there exists p. € YAi such that

(A;sp;.F, (ps)s Q o(I-d_F, [p.]) -.) €5 nD.
1°7 A1 1 ()\1’P1) X A.' 1 |fx (p1 1
i

Since D A £ and F fh @, these are turning points of the curves Y, of (T/m")-

213




periodic orbits mentioned earlier (see figure 3).

p(a)

N

Figure 3

STEP 2: Now we make further perturbations of the vector fields fA for X in
small neighbourhoods of Aysensshy to ensure that Ay 1 <1<k, isnota
period-multiplying bifurcation point. This means we must ensure that no
integer root of unity, apart from unity itself, is an eigenvalue of

dxFA (p] when p = F. (p). To obtain this after perturbation is a matter of
1

Az
arguing locally in n;ighbourhoods of these critical (T/m*)-periodic orbits,
The perturbation is chosen in such a way that on these critical orbits the
vector fields are unchanged, and hence the orbits themselves are unchanged.
In a deleted neighbourhood of these orbits the vector field is adjusted
slightly to ensure that no integer root of unity is an eigenvalue of
dxFXi[piJ’ 1 <1 gk, when Fx.(pi) =Py Care must be taken to ensure that

after perturbation <fA,VVA> =0,

STEP 3: At this stage the (T/m*)-periodic solutions of x = fx(x) 1ie on
curves parametrized by ) # Aps 1 5 i < k; the (T/m*)-periodic solutions of
X = fx$x) are isolated for each }i’ and there is no period-multiplying
bifurcation at these critical values of A. Let us consider a curve
?()\), A€ (Oysr
X = fA(x) in Q.
This step is to show that if for some X € (Ai’xi+1) period-multiplying
bifurcation occurs, then after perturbation we can ensure that it is a period-
doubling bifurcation which is not "vertical". Clearly, generically we cannot
preclude the possibility of an eigenvalue of dXFA[pAJ passing through -1 as
A varies. However it is intuitively obvious, and it can be proved, that after

i+1)’ p(r) € Y,» Where y, is a (T/m*)-periodic orbit of
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a perturbation no root of unity apart from 1 or -1 is an eigenvalue of

d Fx[pxj. Moreover the bifurcation equation for solutions of the equation

X = FA(X) corresponding to period~doubling is a nondegenerate cubic in one
variable, and so the period-doubling bifurcation is a pitchfork. Because
of translation invariance of the differential equation this corresponds to

a "nonvertical" bifurcation of a single branch of (ZT/m*)-periodic solutions
of the flow (see figure 4),

Figure 4

In particular these bifurcating solutions of period (27/m*) lie on a curve
which Tocally intersects ) = Xi once at the bifurcation point, and which lies
locally on one side of A or the other. (The quadratic term in the bifurcation
equation necessarily is zero, a fact that can be observed from the trans-
Jation invariance of autonomous ordinary differential equations.)

We note also that on the bifurcating branch of (2T/m*)~periodic solutionsno
root of unity (apart from unity itself) is an eigenvalue of dxF[p], and
hence close to bifurcation there is no further period-multiplying bifurcation.

At this stage we observe that all the properties of the (T/m*)-periodic
orbits established in steps 1-3 above by suitable perturbations are stable
in the sense that they will continue to hold after further perturbation,
provided that the further perturbation is sufficiently smali, Uith this
observation in mind we turn our attention to periodic orbits of minimal
period T/(m*-1) for X\ € [- %6, 1+ %—6]. This set of orbits does not form a
compact subset of [- %5, 1+ %-6] x Q.

STEP 4: However, because of step 3 we know exactly that the only possible
points of its boundary which are not in the set are period-doubling points
with ) € Apeesdye Wle have already seen in step 3 that for X close to the
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period-doubling points and in a neighbourhood in Q of the period-doubling
orbits there are at most a finite number of (2T/m*)-periodic orbits. \le
can therefore restrict our attention to the compact set of orbits of minimal
period (2T/m") lying outside open neighbourhoods of the period-doubling
bifurcation points of step 3 above.

fow we repeat the argument of step 1, with the time-{7/(m*-1))-map instead
of the time (T/m")-map used earlier. This then ensures that after a small
perturbation there are only a finite number of orbits of minimal period
(T/(m*-1)) in o for any A € [- %6,1 + %—6], and that these orbits 1ie on
curves parametrized by A except for a finite set of turning points, Now we
repeat the argument of step 2 to ensure that the turning points are not
period-doubling bifurcation points, and finally we repeat the argument of
step 3 to ensure that any period-multiplying bifurcations which might arise
are period-doubling bifurcations, and that the bifurcation is a nondegenerate
pitchfork on which, locally, no period-multiplying bifurcation occurs.

With this in hand we turn our attention to the set of orbits of minimal
period T/{(m*-3).

Now we proceed by induction, and after m* iterations we arrive at a smooth
finite admissible homotopy.

Of course if (Q,f,V) is admissible, then it can be thought of as a constant
admissible homotopy, and so the approximation result needed the definition
of the degree has been obtained in passing.
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J.J. TYSON
Traveling waves in excitable media

1. INTRODUCTIGH

Many tissues of biological origin are able to transmit signals in the form
of propagating waves of chemical or electrical activity. The most familiar
example is the nerve axon which conducts waves of membrane depolarization
along its length [1]. Neural networks, as found in the cerebral cortex,
support organized waves of electrical [2] and chemical [3] activity in two
spatial dimensions. Heart muscle propagates waves of electrical activity
and muscular contraction., The spatial organization of these waves in two
and three spatial dimensions is related to cardiac function and dysfunctiun
[4]. Signal transmission is also important in developmental biology where
spatial and temporal coordination is essential to proper morphogenesis, A
paradigm of such coordination is found in the slime mold Diciyoctelium
Jiszoidewm where traveling waves of cyclic AMP direct the process of
aggregation of single-celled amoebae into a multicellular slug [5].
Traveling waves of chemical reaction are aiso found in nonliving systems.
Waves of oxidation are observed in many chemical reactions [6], the most
famous of which is the Belousov-Zhabotinskii (BZ) reaction, The BZ reaction
involves the oxidation of certain carboxylic acids by bromate ions in the
presence of a suitable transition-metal ion catalyst., In the early 1950s
Belousov was studying this reaction as an analog of the oxidative
decarboxylation of organic acids in living cells when he discovered that the
reaction oscillates back and forth between oxidized and reduced states for
many cycles [7]. Later Zhabotinskii, Winfree, and others discovered that the
BZ reaction would also support spatial waves of oxidation which propagate
through thin unstirred layers of reagent [8]. A thin layer need not be
spontaneously oscillatory to support oxidation waves. Indeed, linfree's
nonoscillatory recipe [8] is particularly convenient for studying wave
propagation in the BZ reaction. ilhen carefully prepared, the medium will
remain for a long time uniformly in a reduced state, but if perturbed
sufficiently, a single circular wave of oxidation will propagate away from
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the point of perturbation until it collides with the boundary of the dish
and disappears.

There are many similarities between oxidation waves in the BZ reaction
and activity waves in neural, neuronuscular, and developmental biology. A1l
these media may be spontaneously oscillatory or merely excitable. They can
propagate waves in one, two, or three spatial dimensions. Wave propagation
is self-regenerative, i.e. waves propagate without loss of amplitude or
speed. \laves are annihilated on collision with other waves or with
boundaries., Periodic traveling waves show dispersion, i.,e. the speed of
propagation varies with wave frequency. In two spatial dimensions two
characteristic patterns of propagating waves are observed: expanding con-
centric circular waves ("target" patterns) and rotating spiral waves. In a
given preparation, target patterns generally come in a variety of temporal
periods (with wavespeed and wavelength determined by the dispersion relation),
whereas spiral patterns have a unique pitch and rotation frequency. In
three spatial dimensions these characteristic patterns generalize to expanding
spherical waves and rotating scroll waves.

The similarities among the various examples of wave propagation in
excitable media can be traced to a similarity in mathematical description.
Each example can be described with reasonable fidelity by a pair of nonlinear
reaction-diffusion equations

U _ 2 i
T ED1V U+ flu,v)

) (1)
%% = sDZV v + glu,v).

In this system of equations u and v represent the state of the system (e.q.
chemical concentrations, membrane potential, ionic conductance, enzyme
activity, etc.) as functions of time and space. The functions f(u,v) and
g(u,v) describe the local rate of change of u and v in the absence of spatial
coupling, Typical forms of f and g are illustrated in the phase plane in
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figure 1, v¢ is the Laplacian operator in one, two, or three spatial
dimensions, and D1 and D2 are diffusion coefficients of u and v. (Space

and time have been scaled so that D1, DZ’ f and g are all order-one relative
to €.) The small parameter ¢ bespeaks a significant separation in time-

scales for u and v, with u tending to change ruch more rapidly than v.

g(u,v)=0

u

Figure 1 Phase plane illustrating the nullclines f(u,v) = 0 and g(u,v) = 0.

For the various examples of excitable media discussed so far, we can make
the following associations

Medium u v
Belousov-Zhabotinskii reaction Bromous acid Ferroin
Neuromuscular tissue Membrane potential Ionic conductance
Dictyostelium diecoideum Cyclic AMP Membrane receptor

Among these examples only the names of the state variahles are changed and
certain quantitative details of the kinetic functions f and g. Qualitative
features of the solutions of system (1) carry over directly to all cases,
and it is these qualitative features that we now review.
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2. WAVES IN ONE AND TWO SPATIAL DIMENSIONS

Qualitative and quantitative information about traveling wave solutions to
system (1) in one spatial dimension can be obtained by singular perturbation
theory [9]. The basic result is the demonstration of propagating fronts that
switch the system, at constant v, from the left-hand branch of f(u,v) = 0 to
the riaht-hand branch of f(u,v) = 0, From such fronts (red - blue) one can
construct isolated traveling pulses (red - blue » red) and periodic traveling
waves (...red - blue » red »~ blue...). As mentioned, the speed of periodic
traveling waves depends on period; a typical dispersion relation is illustrated
in figure 2.

T

Figure 2 Dispersion relation (full curve) and curvature relation (broken curve).

The characteristic periodic patterns in two spatial dimensions, targets and
spirals, must satisfy the dispersion relation because sufficiently far from
the center of either pattern in a radial direction both targets and spirals
are identical to one-dimensional periodic traveling waves. Target patterns
need only satisfy the dispersion relation. That is, given any temporal
period (T) above the minimum period in figure 2, the asymptotic speed (c) of
propagation is fixed by the dispersion relation and the wavelength is simply
A = ¢T. Spiral waves on the other hand seem to obey another constraint in
addition to the dispersion relation because in a given medium the rotation
frequencies of all spiral waves are the same,

The additional constraint on spiral waves arises from consideration of the
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effects of wavefront curvature on speed of propagation. These effects have
been uncovered in a series of papers by Zykov [10], Keener and Tyson [11],
and others [12]. These authors show that the normal velocity of a wavefront
(N) is equal to the speed of plane-wave propagation (c) adjusted by an amount
proportional to the curvation (K) of the front:

N=c+ ek (¢

r
~—

For positive curvature (wavefront curved in the direction of propagation)

N > ¢, whereas for negative curvature (wavefront curved away from its

direction of propagation) N < c. The curvature relation (2) has been derived

by other authors in other contexts (crystal growth, spreading flames) [13].
To see how (2) constrains spiral waves, consider the parametric equations

for a rigidly rotating one-armed spiral

r cos[e(r) - wtl

>
n

r sin[a(r) - wtl.

<
"

Here 6(r) determines the shape of the spiral (at fixed t) and w is the
angular frequency of rotation (w = 2n/T). OQur problem is to determine both
8(r) and w. Since N depends on 8'(r) and w, and K depends on 8'(r) and
8"(r), (2) is really an ordinary differential equation for the unknown
function 8(r) in terms of two parameters ¢ and w. Applying end conditions
(at r = 0 and r > =, say) to this ODE, we obtain a typical eigenvalue problem
which determines a unique c for each value of w. A rough-and-ready approxi-
mation to this curvature constraint is ¢ = (6neD1/T)1/2, which is plotted

in figure 2. Keener and Tyson [11] have emphasized the point that spiral
waves should 1ie at the intersection of the dispersion relation and the
curvature relation, as illustrated in figure 2.

The view of curvature and spiral waves has been tested in a number of ways,
Direct experimental confirmation of (2) has been obtained for oxidation waves
in the BZ reaction [14]. Keener and Tyson [11] have compared their theory in
detail with experimental measurements of spiral waves in BZ reagent and with
numerical solutions of PDE (1) with Oregonator kinetics (a reasonable model
of the BZ reaction). Furthermore, Tyson and coworkers [15] have compared the
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dispersicn/curvature theory with numerical solutions of POE (1) with modified
FitzHugh-Hagumo kinetics (a reasonable model of heart tissue) and with
Martiel-Goldbeter kinetics (a reasonable model of cyclic AP waves in
Dictyosteliwn)., In all cases there is good agreement between theory and
numerics, and where available between theory and experimental observations.

3. TRAVELING WAVES IN THREE SPATIAL DIMENSIONS

In three-dimensional space spiral waves become scroll-shaped waves rotating
around a one-dimensional filament which threads through the spatial domain,
either intersecting the boundary or closing on itself in a ring [16]. During
the course of many rotations of the scroll wave around the filament, the
filament itself moves through space. If we knew the laws of motion of the
filament, we could predict the entire history of the three-dimensional scroll
wave, so these laws become the focus of study of wave propagation in three
dimensions.

The filament moves because it is pulied about by the rotating scroll wave
which at any instant in any local region is attempting to move with normal

velocity N = ¢ + EDI(K1 + Kz), where K, and K2 are the principal curvatures

]
of the wavefront surface. Keener [17] has used this notion to derive a set
of equations describing the niotion of the filament., Keener's equations have

the form

alteration in rotation

rate of scroll wave = Ok - a1w2 + b1 %%
around filament

normal component - sz -l v ¢, %ﬂ
of velocity of filament s
binormal component 2 oW

= CLK m W+ C, =
of velocity of filament 3 3 4 ds
where s = arc length along filament, x(s,t) = curvature of filament, and
w(s,t) = twist rate of scroll wave around the filament as measured in the
laboratory frame of reference. The coefficients ass bi’ c; are constants
which depend on the matrix of diffusion coefficients and the form of the

spiral wave solution to the two-dimensional problem. In the simple case of
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equal diffusion coefficients (D1 = Dz), b1 = b2 = D and Cp = Cy=C3=0Cy= 0. j
If, furthermore, the filament is untwisted and untorted (w = 0), then Keener's
equations reduce to the simple relation n = Dk, where n is the normal velocity
of the filament in its tangent plane.
The equation n = Dx is the simplest equation of motion for a scroll wave
filament, It has been derived by many people in diverse ways [13,19] and

applied primarily to the case of scroll rings. If r is the radius of a
circular filament, then n = D« implies that dr/dt = -D/r, or r(t) =(r§-20t)1/2.
That is, scroll rings should shrink and vanish in finite time. Such behavior
is observed in numerical calculations on PDE (1) [18] and in experimental 1
observations of BZ scroll rings [20]. Keener and Tyson [19] have also
applied n = Dk to the case of elongated spiral waves and elongated target
patterns observed in thick layers of BZ reagent [16], and they found remarkable
agreement between theory and experiment.

The remaining challenge is to solve Keener's equations for filament motion
for more complicated situations, and to compare theoretical predictions with
numerical calculations on three-dimensional excitable media [21] and with
yet-to-be-obtained experimental measurements of scroll wave evolution.
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