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On Calculating Analytic Centers
A. A Goldstein*

This note was motivated by papers of Renegar and Shub(88) and by Ye(82). We apply
Smale’s(86) estimates at one point for Newton’s method to the problem of finding the
analytic center of a polytope. The method converges globally in the appropriate norm.

The ideas are then applied to obtain a possible benchmark for path following methods.

When Smale’s method is tractable its power stems not only from the fact that the in-
forniation is concentrated at one point. There are 2 norms to estimate, not 3 as in the
Kantorovich estimate. Moreover no estimate of the inveice »~f the derivative operator by
iself 15 needed. The need for the norm of the inverse by itself often makes for coarse

t\:"‘!]l:‘f;)Q

1. Setting

Let A denote an m by u orthonormal matrix of rank n and b an m by 1 matrix.
We assume that m > n. Denote by e a m by 1 :n.trix whose ~romponents are all ones.
Transposes of matrices will be denoted hy an asterisk, rows of a matrix by superscripts.
and columns by subscripts. The euclidean space of real m-tuples will be denoted by E,,.
e E, wemean by diag{u) the diagonal matrix with entries u,,. The dot product
correspounding to the usual norm will be denoted by [ , ]. The usual norm will be written
as |0 E, will be also be renormed under a dot product that will be denoted by < . >.

{

The norm ansing from this dot product will be written as || ||. Let P be a polytope with

non-empty interior given by the inequalities
hb—Ar > 0.

Given ro n the mterior of P and ¢ > 0. we seek the analyvtic center £ of P to within a
tolerance of €. Let Ri(r) = b, — A'x .

Claim 1. Let N be the smalles: " rer exceeding
L 1
1+ log, {log, (4.95m ¥ marR(x¢)) + log2|( -
€

Then if N steps of the Newton sequence are generated using the gradient of thie potential
{ : A i

function below
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Justifitestton
The proof of the claim depends on the following ingredients. T T '
EVﬁ_.,;~w> - —_—
; Dict-1 8./ ‘,

2. Some ingredients. ‘ ‘1'5f Lo e
i .r T

The potential of P is defined by the expression ‘Dist B
"
W(P):Tna.THR,'(.T)S.Z'EP} ﬂ'/% 1-

1=1

The maximum 1s achieved at an unique point called the analytic center of P. (Ye 87 .

We shall find this point by seeking a zero for the gradient of the logarithmic potential

Let Dir) = diag{1/R,(x)). thus D;,(z) = 1/R;(x

We apply Newton's method to the gradient of ¢ which we denote by F. F(x) may be
represented by the matrix 4*D(x)e. and F(x) € E,. The kth Frechet differential of F at
x can be identified with a multi-linear mapping from (Ex)* to E,,. A representation of

these differentials as matrices follows.
F'ix)hy = —A™D*(x)diag(Ahy)e = —A*D{x)Dix)Ah,

F''(r by hy) = =247 D(r)D*(r) diag( Ahy ) Al

F" (. hy. hy. hy) = =3'A*D(2)D*(z) diag( Ahs ) diag( Ah,) Ah,
and
F¥ e hy by hy) = =K' A*D(2)D*(z) diag( Ahg). ... diag(Ahy) Ak,
= KA D(E)Q(r. by hy)
H(‘I‘('
By = sap{lQua by h)la e = hallae=. o= [l = 1) <1

3




Theorem 1. {Smale 86 ) Assume F is an analytic map between real Banach spaces X and
. . .- . I . . . .
Y, that 1s the Frechet derivatives F"“)(.r) exist for all x € X and k=1.2.3...... Civen oy €

X. assume that the inverse of F'(r) which we denote by F!  (r) exists. Set
D 1

3(rg) = ||FL(x0)F(x0)]] and

1, : 3
Yag) = .s‘llp{HFF_I(I())F(U(IU)H““ o 2}

If
B(xg)y(xg) < 130707

then g is an approximnte root of F. That is, the Newton sequence
!
Tegr = T — F_(r)F(ay)
is well defined and {rg} converges to say €. a root of F at the rate:
1 | et
hksr — axl] < —(3) Fzy)

Moreover

3. Proof of Claim 1.
Assume rg is given in P(A). The matrix
P{ 2g ) = D(.J'() ),“1(1_"1‘D(I())D(.I'U )“1)_1_4‘D(.I'())

maps cach point in E,, to its closest pcint in the range of the matrix D(ry)Ad . Henee
IP(ro)ll, = 1. We renorm E,, by

2}l = | De-Axll,

Here Deo = C'D{xg) with C = 1/8%111%. With this defimtion we get:

PRI
(Sl

Hay) = CllP(xg)e

/8

|2 = mn

Also

Sien < Coaup (P[5 sup(IQY¥ AN Ty = €

Thus Jlrg)in(eg) < < 130707

OOt




Hence by Smale’s theorem the sequence generated by the Newton algorithm converges to

the analytical center € with a rate given by (A) in Theorem 3.1 above.
Since < x, ¢ >= [D¢-Ar. DeAr] > C?||z||3/mazR,(z¢)*. then
lrllz < CRi(zo)ll=]l

Now choose N so that
C Ri(zo)llen = €] < ¢

4. Application to programming

By a theorem of Ye (89). if one of the hyperplanes of P is translated to pass thru £ then

the resulting polytope PT satisfies

Consider the following algorithm for linear inequalities. We wish to solve the system
b— Ax > 0if this is possible. Given an arbitrary r¢ choose M so that b+ M — 4 > 0.
Find the center of this polvtope P(M). Take the smallest component of R(£). say R (&1
Begin anew with the polyvtope P(M — R,(€)). This algorithm has a worst case iteration

count of O(n:) ties our cost of getting to the center.

For linear programming let the polytope P be given by b - Ax > 0 and P()M) the polytope
define by the inequalities for P together with the inequality M - [c . x] > 0. We seek the
smallest M for which P(M) s non-empty. We first find the center & of the polvtope P.
We then find the intersection of the ray {r = £ — tc : t > 0} with P Translate the cost

hyperplance to pass thru this point. Then find the center of the new polytope P(N.
5. Benchmark

We now consider the possibility of starting from a point in a polytope P{N) and moving

to the center of a neighborinug polytope P(A — 1/2/m) by Newton steps.

Assume that at (rg. My). Ri(a, M) =b,+ My — A’z > 0. We seek a point (ry. M) such
that P v/
()‘]—) = 0. 1<, <n (la)
ar, '
0(}( N .\[) OO( Iy .\11 )
— ) 11
B} oM 01




and snch that

Ri(b;+ M, —A'xy) > 0

—_—
O]
~—

Let My, = My — 1/2\/m. Assume that the value of 7, is well defined and given. Otherwise
P(M,) is emmpty and My is within 1/2\/m of M* the optimal value of M. We show that

{rp.Mg) is an “approximate root” for system (I).
Remark The matrix (A e) has rank n+1.

Proof Because of our boundedness assumption on the polytopes. the system of inequalities
Ar > 0 1snconsistent. If ui1s in the null space of (A e) then An = ~u,41¢ # 0. a

contradiction.

In matrix notation the system (1) (after scaling the second entry) is

*

’(D(I.f\[)(—D(II,J\L)CO (1)

o)

Thus we see that - F'(z. 1) may be generated from the matrix

—€
B = (_’11 . ‘42. ceey “‘1,,, ‘4n+] ) where 44,1_+_1 = 5
2./m
Assume that (4. a0 A4, ) is rescaled if necessary so that ||B]| < 1. By the Remark we

see that B has rank n+41. Thus Claim 1 holds for this case as well. If we are satisfied with
a reduction of 1/3y/1n this will happen in N steps by the claim with € set to 1/6\/m. We

have then the following result: (not an algorithm but a benchmark)

Claim 2. We are given a point (xg. My ). Let My = My — 1/2/m. If P(AMiiy) is
not empty. take rp4y for its center. Let the system (I) be run with Newtons™ method.
Otherwise, stop. In N steps My will be reduced by at least 1/3/m. This value updates
M4y and the corresponding iterate for x updates ry4,. Assume the optimal M say M*

known. Then the global Newton process can be termiuated in no mere than Q steps. where

Q > 3Vm( My — M1+ log, 1(')g,_,(4.95m% marR(ro)) + log, <G\/E>}

6




At termination My is within 1/2/0 of M* and o x s an approximate root for systewn (1
9

with M* replacing M) and € replacing ry. respectively.
A similar result holds for linear programmuing,.
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