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description by which tie u-S equations are derived, this means that
energy must be inserted to the physical field at irfinity. (ii)
-Solutions of discrete nonlinear evolutions,are numerical computation.
In our studies we have found the following surprising situatiun.
Namely associated with the integrable nonlinear Schrodinger equations
are standard numerical schemes which exhibit at intermediate levels of
mesh refinement a weak form of temporal chaos. Differnece schemes
developed by Inverse Scattering Transform (IST) Methods do not exhibit
this spurious chaos. All schemes agree when the mesh is sufficiently
refined. tiii) Inverse problems associated with multidimensional
problems. A key element in this work is the DBAR method developed by
the principal investigator and his colleagues a few years ago. The
method has been ext~ded from the study of two dimensional invese
problems, geophysics and acoustics. (iv) Cellular Automata and
solitons. The principal investigator and his associates have been
studying a class of cellular automata which admit solitons
interaction. These systems are not reversible, which is quite a novel
and interesting aspect. (v) Painlebe Equations. In our study of
Painlebe equations we have developed a method to linearize these
classical nonlinera ordinary differential equations. the
linearization is provided by a system of Riemann-Hilbert boundary
value problems which can be related to a system of linear integral
equations. (vi) Semi-infinite and forced nonlinear evolution
equations. Solution to these systems are under study and a connection
between certain boundary value problems on the semi-infinite line and
forced nonlinear wave equations has been found. (vii) Solutions to a
class of nonlinear singular integro-differential equations have been
developed. These include the well known Benjamin-Ono, Intermediate
Long Wave and Sine-Hilbert equations. We have recently been studying
multidimensional nonlinear singular integro-differential equations and
have an number of interesting results. The broad attack is to
understand the behavior and solutions of coherent structures in
nonlinear equations arising in physical problems. The results
obtained and interest by scientists in our work have motivated many of
the studies. In what follows is a list of recent publications and our
most recent proposal to AFOSR.
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Overview

The curreiiL rE.a, ch funding has been used to support the

research activities of Professor Mark J. Ablowitz and his

associates. The principal investigator has been working in the

general area of nonlinear wave propagation for over twenty years.

The main focus of this work is the understanding of the nonlinear

phenomena involved with the wave propagation arising in physical

problems. The work has application to numerous areas of physics,

engineering and mathematics. Applications include fluid dynamics,

waves in stratified fluids, internal waves and wave excitation

phenomena; numerical epprox w:tin and computatiui; nonlineo,

optics; and plasma physics. Moreover the study of solutions to some

of the underlying nonlinear evolution equations has led naturally

to the investigation and new results in the separate but closely

related field of inverse scattering. Developments in both one and

multidimensional inverse problems have been made.

During the period of support of this grant there has been

enormous activity. The principal investigator has had 14 research

papers published and 8 papers accepted for publication; with still a

number of papers ready to be submitted. There are a number of

research directions and problems we are pursuing. These include the

following. sn

(i) Development of solutions to multidimensional nonlinear T A
O'.Lced

evolution equations of physical significance. Prototypes are the r,1a.o

so-called Kadomtsev-Petviashvilli and Davey-Stewartson equations.

We have found some new and important results. The nature of the L

AVatJ tand/or
Ula Spoal

r.



boundary value problems and solutions of the equations in the

so-called strong coupling limit have recently been uncovered. The

role of the boundary conditions and a number of the essential

differences between one and two (spatial) dimensional problems have

been clarified. The role of the boundary conditions is important in

the understanding of why highly localized multidimensional soliton

solutions exist for one of the Davey-Stewartson (D-S) equations

(i.e. DS-I but not DS-II). Specifically the soliton solutions

correspond to a nontrivial mean field contribution at infinity.

Considering the asymptotic description by which the D-S equations

are derived, this means that energy must be inserted to the physical

field at infinity.

(ii) Solutions of discrete nonlinear evolution equations and

numerical computation. In our studies we have found the following

surprising situation. Namely associated with the integrable non-

linear Schrdinger equations are standard numerical schemes which

exhibit at intermediate levels of mesh refinement a weak form of

temporal chaos. Difference schemes developed by Inverse Scattering

Transform (IST) Methods do not exhibit this spurious chaos. All

schemes agree when the mesh is sufficiently refined.

(iii) Inverse problems associated with multidimensional

problems. A key element in this work is the DBAR method developed

by the principal investigator and his colleagues a few years ago.

The method has been extended from the study of two dimensional in-

vese problems to n dimensions (n>2). In principal the method can be

applied to inverse problems, geophysics and acoustics.



(iv) Cellular Automata and solitons. The principal in-

vestigator and his associates have been studying a class of cellular

automata which admit solitons as special solutions. Very recently

we have generalized these automata to two and three dimensions and

have fou,,d instances of soliton interaction. These systems are not

reversible, which is quite a novel and interesting aspect.

(v) Painlev6 Equations. In our study of Painlev equations

we have developed a method to linearize these classical nonlinear

ordinary differential equations. The linearization is provided by

a system of Riemann-Hilbert boundary value problems which can be

related to a system of linear integral equations.

(vi) Semi-infinite and forced nonlinear evolution

equations. Solutions to these systems are under study and a connec-

tion between certain boundary value problems on the semi-infinite

line and forced nonlinear wave equations has been found.

(vii) Solutions to a class of nonlinear singular in-

tegro-differential equations have been developed. These include the

well known Benjanin-Ono, Intermediate Long Wave and Sine-Hilbert

equations. We have recently been studying multidimensional nor-

linear singular integro-differential equations and have a number of

interesting results.

The broad attack is to understand the behavior and solutions

of coherent structures in nonlinear equations arising in physical

problems. The results obtained and interest by scientists in our

work have motivated many of the studies. In what follows is a list

of recent publications and our most recent proposal to AFOSR.
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I. Forward

The puruose for the continuation of this research funding is

to sudport the research activities presently being carried out by

Professor Mark J. Ablowitz and his associates. The principal in-

vestigator has been working in the general area of nonlinear wave

propagation for over twenty years. The principal focus of this work

is the understanding of the nonlinear phenomena involved with the

wave propagation arising in physical problems.

In recent years the field of nonlinear wave propagation has

witnessed considerable progress and conceptual breakthroughs and has

provided valuable insights and results for mathematicians,

physicists and engineers. Exact and approximate analytical

solutions are particularly important to scientists as a means to

understand the key elements governing physical problems. Direct

applications include fluid dynamics, meteorology, nonlinear optics

includiiy Fiber optic communications, lattice dynamics, plasma

physics, numerical approximations and computation amongst others.



2. Overview

The central theme in this research is to understand the

behavior and development of coherent structures in nonlinear

problems and the solutions of the governing equations. The methods

of analysis used are approximation methods such as asymptotic

analysis, perturbation methods, numerical computation, and exact

methods of solution. Especially interesting amongst the exact

methods is the Inverse Scattering Transform (IST) and the associated

concept of the soliton. IST employs methods of direct and inverse

scattering in a novel way to solve certain underlying nonlinear

evolution equations. The IST method brings together two important

fields of st,dy: (a) solutions of nonlinear evolution equations and

(b) Inverse Scattering. Indeed applications of inverse scattering

are themselves quite varied and significant. They :nclude acoustic

scattering, geophysics, radar imaging etc. Studies of IST have led

to mew methods of solving inverse problems associated with differen-

tial and difference equations in both one and multidimensions.

In recent years a number of problems have been identified and

solved. These include the following.

- Solutions of nonlinear multidimensional systems of physi-

cal significance. Prototypes are the Kadomtsev-Petviashvili and

Davey-Stewartson equations. The nature of the boundary value

problems and solutions of the equations in the strong coupling limit

have recently been uncovered. The role of the boundary conditions

is important in the understanding of why highly localized multi-

dimensional soliton solutions exist for equations such as the

Davey-Stewartson system.



3. Current and Priposed Research

In this section we shall briefly discuss some of the topics

which we have studied along with the principal results and future

directions.

(a) Multidimensional Nonlinear Evolution Equations, Solutions,

and Physical Manifestations.

The Inverse Scattering Transform (IST) method has been .ell

established as a powerful tool for solvi;9 nonlinear equations in

one space and one time dimension. Essential for the applicability

of this method is the association of a given nonlinear evolution

equation with a linear scattering (spectral) problem. In reference

[1] a review of many of these ideas is given with prinary attention

directed at one plus one dimensional (i.e. one space and one time

dimension) problems. Indeed at th2 time [1] was written an effec-

tive procedure to solve the relevant two plus one dimensional

problems was unknown, even though it had already been established

that certain multidmensional nonlinear evolution equations were con-

nected with multidimensional scattering problems [2].

In an important breakthrough we developed, implemented and

characterized the IST technique for a class of physically inter-

esting nonlinear evolution equations in two plus one di-ension with

suitable boundary values (decaying sufficiently fast at infinity).

There are some reviews available regarding this new method and its

applications (see for example, [31, [4]).



Some of the nonlinear multidimensional equations we have

studied include the following:

(i) The Kadomtsev-Petviashvili (KP) equation:

(ut+6UUx+u + 3a2U = 0, 02 = +1 (1)
t X xx X yy

(ii) The Davey-Stewartson (DS) system:

jut + 02uxx +Uyy = ( -IuI2 )u

-xx " C2 yy = ±2(lul 2)xx' 2 = ±1 (2)

(iii) The 3-Wave Interaction equations:
uit+CixUix+CiyUiy = YiUjUk' (3)

with i,j,k taking the values 1,2,3 permuted, c ixc, yi are con-

stant, u* is the complex conjugate of u. The above equations arise

in a number of important physical problems e.g. fluid dynamics,

nonlinear optics, plasma physics etc. (see for example Ref. [5-8].

It should be pointed out that these equations are natural two

dimensional generalizations of one dimensional equations which have

broad physical significance. In particular the K-P equation

generalize the Korteweg-deVries (KdV) equation; the

Davey-Stewartson equations reduce to the ubiquitous nonlinear

Schrodinger equation in the one dimensional limit, and the three

wave interaction arises in a generic sense in both one and two

dimensions reduction as well.

With regard to the Davey-Stewartson system, the equations (2)

above, are in fact a special case of a more general system discussed

in [5,7,8]:

iut + oluxx+Uxx = (-lul2 )u

+ 1 b lu,2) (4)Cxx a @yy = -a( xx



GI a,b constants. (4) reduces to (2) when we take a1  -1/a=  =+I

b = 2/2,02=1 The generalized D-S system (4) is of con-

siderable physical interest; it is the most natural two dimensional

analogue of the one-dimensional nonlinear Schrodinger equation and

as such has broad physical application. Depending on the

values of a ,a,b we have rich and varied behavior. This in-

cludes: IST reductions (i.e. equations (2)); self-focussing

singularities (a special case of (4) is the extesively studied two

dimensional nonlinear Schrodinger equation); instability of plane

wave solitons; depending on the sign of a, there are a variety of

interesting boundary value problems available. For example when

2a = +1 in (2) the mean term will not, in general, vanish as

r =/x 2+y2 - and it turns out that the equation can

support exponentially decaying multidimensional soliton solutions.

(This will be briefly discussed later in this section.)

In recent studies we have illustrated how the boundary values

of can be critical in the solution of (2) and (4). In [9] we

have solved equation (2) and given the action angle variables for

the specific boundary value behavior corresponding to a DBAR limit

of the inverse problem. In [10] we showed that the more general

system (4) has a reduction in the strong coupling limit which is ex-

actly solvable. This limit problem clearly shows how and why the

boundary values of € are critical in the solution process. The

strong coupling limit of the Zakharov equations of plasma physics

can be solved in a similar manner as well [11].



Besides illuminating the structure of a limiting class of solutions

to these equations, preliminary studies indicate that the strong

coupling'limit will provide a useful vehicle to numerically solve

the governing equations via the Fourier split-step method. We in-

tend to study the numerical simulation of (4) in the near future.

Moreover a natural question to ask is how does the various boundary

value problems arise in physical problems. We have some results

[12] and intend to continue our work in this direction.

It should be stressed that the system (4) has a generic physi-

cal manifestation. It arises in the study of weakly nonlinear two

dimensional modulations of an underlying single phase wave train.

In [8] we have shown that the self focussing phenomena, so widely

studied for the two dimensional nonlinear Schrodinger problem

[13-16], is relevant. Moreover we are considering new physical

systems for which the system (4) is relevant and for which the

phenomena of self-focussing can and should be observable.

With regard to the solution of (2) the IST method is

relevant. In 1+1 dimension IST involves understanding and solving

certain kinds of Riemann-Hilbert boundary value problems (RHBVP) the

so-called "splitting" of analytic functions which govern the one

dimensional direct and inverse scattering problems. For 2+1

dimensions the governing inverse problem is more difficult and the

much more general technique, the DBAR method, must be used to formu-

late integral equations which serve to characterize and solve the

underlying inverse problem and thereby solve the associated non-

linear evolution equations. We also note that for certain boundary



value problems the inverse problem reduces to the solution of a non-

local RHBVP and can be viewed as a degenerate DBAR problem. In our

earlier studies we were able to incorporate weakly decaying lump

type solitons (i.e. solitons which decay in all directions) in the

IST method and give them a spectral characterization [see 3,4].

Previously these lump type soliton solutions were outside the

framework of the initial value problem and had only been found by

direct methods. Of considerable interest are the exponentially

decaying soliton solutions to the Davey-Stewartson system (2),

recently found by Boiti, Leon, Martina and Pempinelli [17] for the

2Davey-Stewartson I system (eq. (2) ,o =+1). In the context of L h

earlier discussion these solitons arise when the boundary values of

the mean term p do not decay at infinity. Fokas and Santini [18] have

shown that these solutions can be incorporated into the usual IST

scheme by suitably modifying the time dependence of the scattering

data. We are studying these solutions both in the context of the

way in which they arise in a physical problem involving the

Davey-Stewartson system as well as applying these ideas to other

nonlinear wave equations in multidimensions.

On still another front we are searching for integrable

equations in higher dimensions (i.e. 3+1 dimensions). At the

present time there are very few equations in higher dimensions which

have mathematical and/or physical significance and for which the IST

technique can be applied. Examples include the self dual Yang Mills

equations, see for example [19,20], and the generalized sine-Gordon

equation [21]. Unfortunately despite the relevance of these

equations to mathematics and physics they do not provide the type of

multidimensional n+1 dimensional structure which would serve to most

naturally generalize the IST results in 1+1 and 2+1 dimensions.



(b) Multidmensional Inverse Scattering

It is significant that the inverse scattering analysis,

described briefly in section (a) of this proposal can be applied to

the study of n-dimensional inverse problmes see ref. [22-25]. Both

scalar and first order systems of n-dimensional operators have been

considered. The procedure is based upon the DBAR method and allows

a systematic approach for finding linear integral equations which

serve to reconstruct the underlying eigenfunctions and the

potential. Importantly equations are developed which characterize

the scattering data and allow an alternative and simpler approach to

reconstruction of the potential, instead of the linear integral

equations mentioned above. These characterization equations are

quadratically nonlinear. As such one does not expect that the

standard procedure of IST will apply with these higher dimensional

scattering problems as the basic linear problem since the time

evolution equations will necessarily have to satisfy the nonlinear

characterization equations. This helps explain why so few non-

linear evolutions or dimensions higher than 2+1 are known to be

solvable by IST.

Applications of this idea are to the multidimensional station-

ary and nonstationary Schrodinger equation and the generalized AKNS

system. It should be noted note that the inverse problem for the

stationary Schrodinger equation has been discussed, via different

methods by Faddeev [26] and Newton [27]. Recently Nachman and

Lavine and Novikov and Henkin in [28] have analyzed the ideas

presented in [22] for large data, in order to investigate the existence



of the solutions to the linear integral equations governing the

relevant eigenfunctions. This is intimately connected with the notion

of exceptional points of the homogeneous integral equation.

Future problems we intend to study include application of this

idea to acoustic scattering and geophysics, and carry out a numeri-

cal study of the characterization equations as a means to develop

concrete inverse scattering reconstructions of an underlying potential.



(c) Discrete Inverse Scattering Transform, Numerical Schemes

and Numerically Induced Chaos.

It is significant that many of the concepts related to the in-

verse scattering transform apply to discrete nonlinear evolution

equations. For example some well known examples are the Toda

Lattice [29]

u e-(Un-UnI) _-(un+l-un)

and the following discrete nonlinear Schrodinger equation DNLS [30i

iu (un+U -2u)/h2 + UU*(u +U ) (6)

n t n+1 n-i n n n n+1 n-i

(h is the mesh size). Here we shall discuss some aspects of the

latter equation which we call the integrable DNLS equation. Indeed

(6) can be solved both on the infinite interval [30] as well as the

periodic interval [31].

A natural question to ask is whether equation (6) represents a

good approximation to the NLS equation,

iut +Uxx + 2u2u = 0 (7)

In our recent studies [32,33] we have compared (6) to the

straightforward discrete approximation

iUn + (Un++Un-2un)/h2 + 2u nun  0, (8)

iu +( n+1 + n-1 un n 2*

as well as to standard Fourier spectral schemes. The

differential-difference schemes were solved using the

Runge-Kutta-Merson routine in the NAG software library, with



sufficiently high accuracy so that the results were not consequences

of the time integration. For certain initial values, (which induce

the so-called Benjamin-Feir instability) standard discretizations that

we used other than the integrable DNLS scheme (6) produced chaotic solutions

for intermediate levels of mesh (mode) refinement. The chaos disappears

as expected when the discretization is fine enough and convergence

to a quasi-periodic solution is eventually obtained. The results

for the integrable DNLS equation get better uniformly as the mesh is

refined. It should be noted that discrete NLS equations have im-

portant physical applications in their own right (see for example

ref. [34-35]). Preliminary calculations on a forced nonlinear

Schrodinger equation studied by Bishop, Flesch, Forest, McLaughlin

and Overman [36] also indicate that qualitative features of the

numerical solutions differ substantially between the various methods

when one integrates for long periods of time.

Even though the example discussed above is relatively simple,

nevertheless if numerically induced chaotic motions can exist when

simulating integrable P.D.E.'s such as the NLS equation, it becomes

clear that one must be very careful when dealing with more complex

flows (e.g. Rayleigh -Benard connection [37]). Moreover these results

further underscore the importance of estimating the Fourier dimen-

sion of the underlying phase space of the differential equation (see

for example [38]). We intend to pursue the above line of in-

vestigation, considering other nonlinear evolution equations,



different forcing and initial behaviors as well as developing an

analytical understanding of why the chaotic motion appears in these

schemes.

C still another front we have developed partial difference

equations (i.e. numerical schemes) which are solvable by IST. An

obvious application is to numerical simulations. Some years ago we

succeeded in analytically developing such schemes [39]. These

schemes can be shown to converge to a given nonlinear P.D.E. (which

itself is solvable by inverse scattering) in the continuous limit.

Moreover they have the nice property that they are neutrally stable,

have exact soliton solutions and possess an infinite number of con-

served quantities. In subsequent studies we have compared the

practical numerical simulations of a given nonlinear P.D.E. (e.g.

cubic nonlinear Schrodinger, KdV and MKdV) using traditional

methods, with our newly developed schemes. Our schemes have proven

to be extremely strong. The results are compiled in a sequence of

papers [40-43]. This work is continuing and novel numerical

techniques which serve to increase speed have been found; we are

currently developing schemes for multidimensional problems as well

as developing higher order accurate schemes. In tie future, we

hope to continue to assess the usefulness of various numerical

schemes on important model nonlinear problems for both one and two

spatial dimensional problems. We note also that interesting recent work on KdV

type equations via finite elements has been performed in [44]. In

the future we hope to carefully compare our schemes with these

finite element schemes as well.



(d) Semi-infinite and Forced Nonlinear Evolution Equations

Despite the success of the IST method to solve initial

boundary value problems in 1+1 on the infinite line --<x<-,

nevertheless the question of solving different boundary value

problems remains elusive. One of the simplest such problems is the

nonlinear Schrodinger equation (NLS) on the semi-infinite line,

namely: equation (7) with the initial boundary values u(x,O) = h(x),

u(O,t) = g(t), where h(x) decays rapidly as x4. and the given

functions h(x), q(t) have appropriate smoothness and satisfy a

necessary compatibility to ensure the existence of a solution at x=O,t=O.

When g(t) = 0 early work [45] established that the IST method

was applicable and reduced to the sine-transform solution. When

g(t) O, one needs to find the proper nonlinear analogue of the sine

transform with nontrivial boundary forcing. In recent work Fokas

[46] has developed a method by which the evolution of the inverse

scattering data in time obey nonlinear equations which in the

linear limit properly reduce to known results (the sine transform).

Presently we are studying the question of linearization of these

nonlinear equations and extensions to other physically important

models.

Recently we [47] have found that certain forcing functions of a

distributional type for KdV and NLS satisfy similar time evolution

equations for the scattering data as in the semi-infinite problem.

We expect to study this problem in the small amplitude limit in

order to describe the evolution of and generation of solitons due to

external forcing. This problem has direct physical applications:

e.g. moving pressure distributions in fluid flows [48].



(e) Solitons in Cellular Automata

In recent years there has been wide interest in the study of

Cellular Automata (CA) - see for example [491. CA's have been used

to simulate intriguing and intricate patterns, the development of

coherent structures, simulation of PDE's such as the Navier-Stokes

equations and have been applied to a variety of physical phenomena.

We have been studying a class of CA's termed Parity Rule Filter

Automata first derived by a group of scientists at Princeton

University [50]. This is a 1+1 dimensional CA which has a broad

array of interesting particles and phenomena associated with it.

In [50] via numerical simulation various interactions and initial

value problems were considered; it was found that frequently tie in-

herent particles behaved like solitons. In a subsequent paper [51]

a numerical method to compute periodic particles was given and applications

to computation were given.

In our recent work we have studied the Parity Rule Filter

Automata analytically. In particular we have been able to give a

straightforward analytical rule called the Fast Rule Theorem which

is equivalent to this CA [52]. Using this rule we have been able to

study the interaction of particles and give concrete statements

regarding when these particles will behave like solitons [53].

Moreover we have studied the question of obtaining periodic

particles by analytic means and have obtained linear difference

equations which characterize them.

Futue directions include the investigation of other types of

Filter Automata in 1+1 dimensions with solitonic properties, and an

extension of this concept to multidimensional Cellular Automata. We

have already made progress in this direction.



(f) Physically Significant Singular Nonlinear In-

tegro-Differential Equations and their Solutions

We have applied the IST to a class of nonlinear singular in-

tegro-differential equations. There are many physically important

applications where such singular integro-differential equations

arise,and the understanding of special cases where analytical

solutions can be obtained is of considerable value. A physical

application which has been both of practical and laboratory interest

is long internal gravity waves in a stratified fluid. In fact there

have been a number of recent discoveries of gigantic internal wave

solitons in the ocean. These studies have been reported in the

popular literature, e.g. Scientific American [54], Physics Today

[55] and the New York Times [56]. However both the way in which it

arises, and the relevant mathematics strongly suggest that many

other applications will be found as well. In fact it has been shown

that there are applications to shear flow problems [57].

An equation describing long internal gravity waves in an

appropriate two layer media is the so-called intermediate long wave

equation (ILW)

u t+2uu x +T(u xx) + 6ux = 0 (9)

where
: ( 2--6)coth( - u( )dC.T(u) 1 -

f-, represents the principal value integral and 8 is a parameter.

References [58,59] discuss the derivation of (9) in the context of

internal waves. As 6+0 we have the KdV equation

ut+2uu + A ut x 3 Xxx (10)



whereas if 6-- we have the so-called Benjamin-Ono (B-0) equation

ut + 2uu x + H(u xx) = 0 (11)

where H(u) 7 ---d is the Hilbert transform of u.

Thus equation (10) contains as limiting forms both the KdV and

Benjamin-Ono equations. The fact that (9 ) has multisoliton

solutions [60,61] suggested to us that indeed (9 ) may be solvable

by the Inverse Scattering Transform (IST). In fact in our studies

we found [62],[63] a Backlund Transformation, a generalized Miura

Transformation, soliton and rational solutions, interesting dynami-

cal systems and a new type of scattering problem which allows the

IST method to be applied. The scattering problem for (9) is inter-

preted as a differential RHBVP in strips of width 26. As 6+0 it

reduces (as it should) to the SchrUdinger scattering problem

relevant to KdV (10), and as 6- to a differential RHBVP in half

planes. The latter is used to linearize the Benjamin-Ono equation

(11). The method to solve (9) and its inverse problem was given in

[64-65]. In the limit 6-- the inverse scattering results reduce

to those of the one dimensional Schrbdinger scattering problem. The

inverse scattering amounts to solving a RHBVP in the spectral

parameter with a "shift". A certain discrete symmetry relation must

be derived in order to obtain this RHBVP. On the other hand when

6+. the discrete symmetry relation becomes continuous, and this

gives rise to a nonlocal RHBVP as the inverse problem. The method

of solution to (11) is given in [66]. Subsequently we were able to

demonstrate how one can find the results for the Benjamin-Ono equa-

tion ( 6- ) by taking a suitable limit of the intermediate equa-

tion [67]. It turns out that the Benjamin-Ono equation bears many

similarities to multidimensional problems, specifically the

Kadomtsev-Petviashvili equation. In some sense the nonlocality

behaves like an extra spatial dimension.



In more recent studies we have found other interesting non-

linear singular integro-differentfal evolution equations which fall

into similar categories such as those discussed above. An important

case is the so-called Sine-Hilbert equation: (note the analogy to

the classical sine-Gordon equation)

Hut = sin u (12)

Equation (12) is but one of a class of interesting nonlinear

singular integro-differential equations which are solvable by IST.

The novelty here is that the underlying scattering problem is a pure

RHBVP and we have demonstrated possibility of having only bound

states in the scattering theory and no continuous spectrum [68].

Still another type of solvable nonlinear singular in-

tegro differential equation is discussed in [69]. In the future we

intend to study 2+1 dimensional nonlinear singular integro-differen-

tial equations. Certain equations have been reported in the

literature, and the DBAR method appears to be well suited in order

to obtain solutions.



(f) Nonlinear Optics, Perturbations and Applications

One of the first applications of inverse scattering was

associated with the focussing and defocussing of light beams in a

medium with a nonlinear index of refraction. Indeed the equation of

motion in one dimension is governed by the cubic nonlinear

Schrbdinger (NLS) equation; Zakharov and Shabat [70] first solved

this equation explicitly by the method of IST. As mentioned

earlier, in section (a) of this proposal, the two spatial

dimensional NLS equation has a self focussing singularity. The

question of formation and local behavior of the singularity has been

a continuing theme of investigation for almost twenty years (see for

example ref. [13-16]). Given the basic physical derivation of the

Davey-Stewartson (D-S) equations [7-8] one expects that the D-S

equations will arise naturally in nonlinear optics as well.

Moreover since they have a self-focussing singularity of a similar

type to the 2DNLS equation and the fact that D-S reduces to 2DNLS as

a special case, makes the analytical and numerical study of the D-S

equations of considerable interest.

Another important application of nonlinear optics which has

been carefully studied is coherent optical pulse propagation. These

studies involve the interaction of intense light radiation with

various external media. If the frequency of an impinging light wave is

appropriate, then strongly resonant interactions between the light

and the media can take place. A particularly simple asymptotic

description is obtained by considering the media to be a so-called

two level atom and taking the light beam to be governed by classical

electrodynamics. Within this framework the resonant interaction of



intense light with matter can be treated; the governing equations in

the theoretical model lead to another context in which solitons

occur. Indeed this resonant situation and associated soliton

phenomena has been observed experimentally and in numerical

solutions of the governing equations [71-72]. This phenomena is

commonly referred to as Self-Induced Transparency (S.I.T.). The

asymptotically reduced equations of motion of S.I.T. are very

special, i.e. it has been shown that these equations can be solved

exactly by use of the Inverse Scattering Transform [73-74].

Specifically, the analysis demonstrates that arbitrary initial

values break up into a sequence of coherent pulses which do not

decay as they propagate, plus radiation which rapidly attenuates.

These coherent pulses are the solitons. A review of some of this

work can be found in [75].

A natural question is whether these solitons are stable under

multidimensional perturbations. In ref. [76] we have shown that a

certain type of soliton i.e. a "2-n pulse" is, in fact, unstable to

certain transverse perturbations. These results are consistent with

numerical and experimental studies on the transverse offects in

S.I.T. [77-78]. In [79] we showed that the breather soliton solu-

tion referred to as the "Or" pulse was also unstable to long

transverse perturbations. These stability calculations naturally

led us to study the more general question of adding perturbations to

equations which admit solitons or even solitary waves as special

solutions. We have found that many of these perturbation problems

can be successfully treated by well known asymptotic methods [80].

We have compared our results to some of those in the literature

which employ the Inverse Scattering Transform (see for example ref.



[81-83]. An advantage of the direct technique is that it also may

be applied to problems which are not necessarily integrable and

hence IST does not apply at first. This analysis allows us to con-

sider the question of stability and perturbations to more general

solutions of the equations of self-induced transparency as well as

the stability of more complicated soliton modes.

Recently an important application of solitons and their

perturbations has been discovered in the study of optical soliton

transmission in glass fibers. Experimental and numerical studies

have confirmed the existence and practical relevance of soliton

propagation in optical fibers. (See for example: [84-87].) These

studies have led to a number of theoretical papers in the U.S.,

U.S.S.R. and Japan and they have required the use and extension of

the perturbation results described above (see for example ref.

[1,79-83]. The theoretical analysis requires one to derive higher

order perturbations of the nonlinear SchrUdinger equation. Having

these higher order perturbations in hand allows one to determine

their effect on the soliton solutions, and their evolution

properties in the optical fiber.

There are numerous applications of optical solitons, and the

related theory opens up a vista of associated research problems and

valuable areas of study. We intend to address the question of opti-

cal soliton propagation, periodic perturbative forcing in addition

to higher order perturbations and their ramifications on the soliton

propagation. This should shed additional light on the need for

amplifiers and repeaters in the transmission problem. We also ex-

pect to consider related questions involving multidimensional

perturbations.



(h) Nonlinear O.D.E.'s of Painleve Type and their Solutions.

The development of the Inverse Scattering Transform has shown

that certain nonlinear evolution equations possess a number of

remarkable properties, including the existence of solitons, an in-

finite set of conservation laws, an explicit set of action angle

variables, etc. In [90] it was demonstrated that there is a deep

connection between these nonlinear partial differential equations

(PDE's) solved by IST and nonlinear ordinary differential equations

(ODE's) without movable critical points. Some definitions are as

follows: a critical point is a branch point or an essential

singularity in the solution of the ODE. It is movable if its loca-

tion in the complex plane depends on the constants of integration of

the ODE ( an ODE without moveable critical points is

said to be of Painleve' type, or simply P-type. In [90] we studied a

number of nonlinear evolution equations solvable by IST and

corresponding symmetry reductions for which the relevant ODE was of

P-type.

We have exploited this connection in order to develop both

solutions and asymptotic conection formulae to some of the classical

transcendents of Painlev6 [91] as well as others. "he method to

determine if an ODE is of P-type is a useful device for

determininig the integrability of an ODE. For example in [92] using

this idea we have derived a new explicit solution for the traveling

waves of Fisher's equation. Indeed this method, which was used

successfully in classical problems [93] has seen a recent revival of

interest (for example see [94-95]. In particular we note the exten-

sion of the ODE concept to PDE's [96]. In recent years there have



been numerous research papers on these questions and it has

attracted wide interest (for a partial review see [97]).

On the other hand there is also the important questionof solving

the underlying nonlinear ordinary differential equation.

In this regard one is interested in finding a method of lineariza-

tion of the ODE corresponding to general initial conditions. In our

studies we have extended [100] the work of Flaschka and Newell [99]

for the second Painleve' equation and have recently obtained

results for some of the other classical Painlev equations; in

particular we have found solutions to the classical Painleve' IV, V

equations [100]-[01].

In the future we intend to consider a number of related

questions such as the following.

Derivation of the complete connection formulae (i.e. the

global connection of asymptotic states) for the interesting Painleve

equations. It should be mentioned that important work has already

been accomplished in this direction (see for example [102]-[104]).

Continue to develop methods of solution (i.e. linearization) for

all of the Painlev' equations and give an alternative proof that the

underlying ODE's do in fact satisfy the Painlev4 property; i.e. that

they have no moveable branch points or essential singularities, regardless

of initial conditions;

Consider the extension of the Painlev6 test to nonlinear

singular integro-differential equations. Although there have been

some attempts to do this, we have found that the published work is

not adequate.
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equation, M.J. Ablowitz, R. beals and K. Tenenblat, Stud. Appl. Xath.,
74, pp. 177-203, 1986.

86. Solutions of Multidimensional Extensions of the Anti-Self-Dual Yang-Mills
Equations, M.J. Ablowitz, D.G. Costa and K. Tenenblat, INS#66 preprint,
November, 1986 (to bE published Stud. Appl. Math.).

87. A Method of Solution for Painleve Equations: Painleve IV, V, A.S. Fokas,
U. Mugan and M.J. Ablowitz, INS#73 prepri,,t, 1Z7.

88. Exactly Solvable Multidimensional Nonlinear Equations and Inverse
Scattering, M.J. Ablowitz, Procedings of Nonlinear Evolution Equations,
Solitons and the IST, Oberwolfach, Germany, 1986, Ed. by M.J. Ablowitz,
M.D. Kruskal and B. Fuchssteiner, World Scientific Publ. Co.

89. Topics Associated with Nonlinear Evolution Equations and Inverse Scattering
in Multidimensions, M.j. Ablowitz, Ed. by M. Lakshmanan, Proceedings of
"Solitons", Winter School, Tiruchirapalli, India, January, 1987 INS#76
preprint.

90. Numerical Simulation of the Modified Korteweg-DeVries Equation,
Thiab R. Taha and M.J. Ablowitz, INS#77 preprint, February, 1987.

91. On the Initial Value Problem for a Class of Nonlinear Integral
Evolution Equations Including the Sine-Hilbert Equation, P.M.
Santini, M.J. Ablowitz and A.S. Fokas, J. Math. Phys. 28(10)
October 1987.

92. Davey-Stewartson I System: A Quantum (2+1) Dimensional Integrable
System, C.L. Schultz, M.J. Ablowitz and D. Bar Yaacov, Phys. Rev.
Lett., Vol. 59 No. 25, December 1987.

93. A Rule for Fast Computation and Analysis of Soliton Automata, T.S.
Papatheodorou, M.J. Ablowitz and Y.G. Saridakis, Stud. in Appl.
Math. 79, 1988.

94. Analytical and Numerical Aspects of Certain Nonlinear Evolution
Equations IV, Numerical, Modified Korteweg-deVries Equation, J. Comp.
Physics, Vol. 77 No. 2, August, 1988.
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95. Hodograph Transformations of linearizable Partial Differential
Equations, A.S. Fokas, P.A. Clarkson and M.J. Ablowitz, INS#78,
April 1987, to be published in SIAM Jrnl. Appl. Math.

96. Forced Nonlinear Evolution Equations and the Inverse Scattering
Transform, A.S. Fokas and M.J. Ablowitz, INS#99, June 1988, to be
published Stud. in Appl. Math.

97. Interaction of Simple Particles in Soliton Cellular Automata, A.S.
Fokas, E.P. Papadopoulou, Y.G. Saridakis and M.J. Ablowitz, INSi#97,
June 1988, to be published Stud. in Appl. Math.

98. A Method of Linearization for Painlev6 Equations: Painleve IV, V,
A.S. Fokas, U. Mugan and M.J. Ablowitz, Physica D 30, 1988.

9C. Classical Poisson Bracket Relations and Quantum Commutation
Relations for Davey-Stewartson, C.L. Schultz, M.J. Ablowitz,
D. Bar'aacov, Proceedings of the IVth Workshop on Nonlinear Evolution
Equations and Dynamical Systems, Balaruc-les Bians, France, June,
1987, ed. J.P. Leon, World Scientific 1988.

100. Strong Coupling Limit of Certain Multidimensional Nonlinear
Equations, M.J. Ablowitz and C.L. Schultz, INS#100, to appear Stud.
in Appl. Math.

101. Painleve Equations and the Inverse Scattering and Inverse Monodromy
Transforms, M.J. Ablowitz, INS#105, September 1988, to appear
Proceedings on Solitons in Physics and Mathematics, Institute of
Math and Its Applications.

102. Nonlinear Evolution Equations, M.J. Ablowitz, INS111, to be publishzcd
Proceedings for Singular Behaviour and Nonlinear Dynamics, held in
327os. Greece, August 1988.

103. Nonlinear Fvolution Equations, Inverse Scattering and Cellular
Automata, M.J. Ablowitz, INS#114 to be published Proceedings of IMA
Workshop on Solitons in Nonlinear Optics and Plasma Physics,
Minneapolis, Minnesota, November 1988.

104. Numerically Induced Chaos in the Nonlinear SchrUdinger Equation,
B. Herbst and M.J.Ablowitz, INS#117, submitted January 1989.

105. On Numerical Chaos in the Nonlinear Schr~dinger Equations, B. Herbst
and M.J. Ablowitz, to appear Proceedings of Workshop on Complete
Integrability, Orleon, France, INS# 120 , January 1989.

NONTECHNICAL ARTICLES:

Soviet and U.S. Ties in Science, New York Times, August, 1980.

GRANTS:

National Science Foundation 1972 - present
Mathematics Section 1972-73: P.I. M.J. Ablowitz,

A.C. Newell

1973-76: P.I. M.J. Ablowitz,
D.J. Kaup, A.C. Newell, H. Segur.
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National Science Foundation (cont'd) 1977-81: P.I. M.J. Ablowitz,D.J. Kaup, A.C. Newell.

1982-86: P.I. M.J. Ablowitz,
A.S. Fokas, D.J. Kaup.

Present Amount- $38,744

National Science Foundation 1983-84: P.I. E.E. Doberkat,
Mathematical Science M.J. Ablowitz, A.S. Fokas
Research Equaipment
Present Amount: $15,000

National Science Foundation, 1985: P.I. M.J. Ablowitz
Summer Institute
Amount: $13,000

National Science Foundation, 1986: P.I. M.J. Ablcwitz
Suiner institute
Amount: $ 7,000

Office of Naval Research, 1978 - present
Mathematics Division 1978-81: P.I. M.J. Ablowitz,

D.J. Kaup, A.C. Newell.
1982-83: P.I. M.J. Ablowitz,

A.S. Fokas.
1983-84: P.I. M.J. Ablowitz,

A.S. Fokas.
1984-86: P.I. M.J. Ablowitz.
1986 - present

P.I. M.J. Ablowitz
A.S. Fokas.

Present Amount: $39,959

Air Force Office of Scientific 1978 - present
Research Mathematics Division, P.I. M.J. Ablowitz
Present Amount: $66,689.

Sloan Fellowship: 1975-1977.

John Simon Guggenheim Fellowship: 1984.

INVITED PRESENTATIONS:

Rensselaer Polytechnic Institute, Mathematics Department, May, 1972.

American Mathematical Society Summer Conference on Nonlinear Wave Motion, Clarkson
College of Technology, July, 1972.

Applied Mathematics Sunrmer Seminar, Dartmouth College, August, 1972.
Sponsored by the Office of Naval Research, Mathematics Branch.

Massachusetts Institute of Technology, Mathematics Department, December,
1973.

Rensselaer Polytechnic Institute, Mathematics Department, March, 1974.

Invited Speaker: SIAM Fall Meeting on Nonlinear Wave Propagation,
October, 1974.

34



Joint Seminar: University of Chicago-Northwestern University, November, 1974.

Rockefeller University, December, 1974.

McGill University, Mathematics Department, November, 1975.

Princeton University, Applied Mathematics Department, January, 1976.

University of Pittsburgh, Mathematics Department, March, 1976.

Massachusetts Institute of Technology, Mathematics Department, 10
Lectures on Nonlinear Wave Propagation, April-May, 1976.

University of Chicago, Geophysics Department, May, 1976.

University of Denver, Mathematics Department, May, 1976.

Nihon University, Physics Department, Tokyo, Japan, July, 1976.

Nagoya University Plasma Physics Institute, Najoya, Japan, July, 1976.

Kyoto University, Physics Department, Kyoto, Japan, July, 1976.

litsumeikan University, Mathematics and Physics Departments, Kyoto,
Japan, July, 1976.

Osaka University, Mechanical Enoineering Department, Osaka, Japan,
July, 1976.

University of Rochester, Mathematics Department, Ap-il, 1977.

University of Rome, Mathematics Department, Rome, Italy, June, 1977.

Los Alamos Labs, Albuquerque, New Mexico, November, 1977.

Denver University, Mathematics Department, November, 1977.

New YorK University, Mathematics Department, February, 1978.

Princeton University, Applied Mathematics Department, April, 1978.

International Quantum Electrodynamic Conference, Atlanta, GA, May, 1978.

Princeton University, Plasma Physics Lab, May, 1978.

Syracuse University, A.M.S. Meetina, invited speaker, October, 1978.

Naval Research Laboratory, Fluid and Numerical Computations Group,
December, 1978.
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Physics Group, C.N.R.S. Saclay, France, December, 1978.

S.U.N.Y. Buffalc Mathematics Department, April, 1979.

Catholic University, Conference on Inverse Scattering, invited speaker,-
May, 1979.

University of Rhode Island, Conference on Nonlinear Partial Differential Equations,

June, 1979.

International Conference on Solitons, Jadwisin, Poland, August, 1979.

International Conference on Soliton Theory, Kiev, U.S.S.R., Part of a
Joint U.S. - U.S.S.R. Academy of Sciences agreement, September, 1979.

New York University, Courant Institute of Mathematical Sciences,
December, 1979.

Columbia University, Dept. of Mathematics, February, 1979.

Workshop on Nonlinear Evolution Equations and Dynamical Systems, Chania, Crete, July
9-23, 1980.

Remarks on Nonlinear Evolution Equations and the Inverse Scattering
Transform, Banff Conference, Banff Alberta, Canada, August, 1980.

Brown University, Providence, Rhode Island, October, 1980.

University of Montreal, November, 1980.

University of Michigan, November, 1980.

Georgia Institute of Technology, December, 1980.

Washington, D.C., December, 1980.

York University, Toronto, Canada, March, 1981.

Workshop on Nonlinear Evolution Equations, Solitons and Spectral
Methods, August 24-29, 1981, Trieste, Italy.

Workshop on Mathematical Methods in Hydrodynamics and Integrability
in Related Dynamical Systems, La Jolla Institute, La Jolla, California, December
7-9, 1981.

York University, Physics Department, March, 1982.

Yale University, Mathematics Department, March, 1982.

Princeton University, Applied Mathematics Program, April, 1982.

Columbia University, Program in Applied Mathematics, April, 1982.

Solitons '82, Scott Russell Centenary Conference and Workshop, Edinburgh,
Scotland, August, 1982.
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Cornell University, Ithaca, NY, Wave Phenomena, Twenty-Fifth Annual
Meeting of the Society for Natural Philosophy, September 22-25, 1982.

School and Workshop, Nonlinear Phenomena, November 29-December 17,
1982, Oaxtapec, Mexico.

Cornell University, Ithaca, NY, April 21, 1983.

S.U.N.Y. at Stony Brook, Department of Theoretical Physics,.
April 22-25, 1983.

2nd Workshop on Nonlinear Evolution Equations and Dynamical Systems
Orthodox Academy of Crete, Chania, Crete, August 13-28, 1983.

2nd International Workshop on Nonlinear and Turbulent Processes in
Physics, Kiev, USSR, October 10-25, 1983.

Fifth IMACS International Symposium on Computer tethods for Partial Differential
Equations, Lehigh University, June 19-21, Bethlehem, Pennsylvania, 1984.

Princeton University, Department of Mathematics, March 22, 1984.

University of Rome, Rome, Italy, 6 lectures: May 1-30, 1984.

Landau Institute for Theoretical Physics, Academy of Sciences of the U.S.S.R.,
Moscow, U.S.S.R., October, 1984.

V.A. Steklov Mathematical Institute, Academy of Sciences of the U.S.S.R., Leningrad,
U.S.S.R., October, 1984.

University of Tokyo, Institute of Physics, Tokyo, Japan, November 1-5, 1984.

Gakashuin University, Department of Physics, Tokyo, Japan, November 5, 1984.

Kyoto University, Physics depdrtment, Kyoto, Japan, November 7-8, 1984.

Kyushu University, Research Institute for Applied Mathematics, Fukuoka, Japan,
November 9, 1984.

Miyazaki University, Miyazaki, Japan, November 12-14, 1984.

Ehime University, Department of Applied Mathematics, Ehime, Japan, November 14,
1984.

Hiroshima University, Department of Mathematics, Hiroshima, Japan, November 15, 1984.

Nagoya University, Department of Physics, Nagoya, Japan, November 19-21, 1984.

Kyoto Univesity, Kyoto, Japan, Attend RIMS meeting, November 26-28, 1984.

University of Brazilia. Brazilia, Brazil, 4 lectures, December 10-24, 1984.

Laboratory for Scientific Computation, Rio de Janiero, Brazil, December 14, 1984.

Workshop on NOnlinear Dynamical Systems: Integrability and Qualitative Behavior,
University of Montreal, July 29-August 16, 1985.

University of Montreal, Department of Mathematics, November 4-5, 1985.
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University of Brazilia, Brazilia, Brazil, January 6-19, 1986.

Workshop on Physical Applications of Nonliner Systems: Waves in Fluids and

Plasmas, University of Montreal, May 5-9, 1986.

Mathematisches Forschungsinstitut Oberwolfach, W. Germany, July 26 - August 8, 1986.

Penn State, Department of Mathematics, September 17-19, 1986.

"Solitons", Winter School, Tiruchirapalli, India, January, 1987.

Institute for Mathematics and Its Applications, University of Minnesota, IMA

Program in Inverse Problems, Minneapolis, Minnesota, January, 1987.

Virginia Polytechnic Institute, Department of Mathematics, Blacksburg, VA,

February, 1987.

4th Workshop Nonlinear Evolution Equations and Dynamical Systems, June 11-25, 1987

Montpellier, France.

AMS Thirty-Fifth Summer Research Institute, Bowdoin College, Brunswick, Maine,

July6-24, 1987.

Workshop on Nonlinear Waves held at the Institute for Applied Mathematics,
University of Minnesota, Minneapolis, MInnesota, July 24-27, 1987.

National Science Foundation, Washington, DC October 9, 1987.

SIAM 35th Anniversary Meeting, Denver, Colorado, October 12-15, 1987.

Workshop on Integrable Systems and Applications, Ille d'Oleron, France,
June 20-24, 1988.

Woarkshop on Nonlinear Evolution Equations: Integrability and Spectral
Methods, Como, Italy, July 4-15, 1988.

Workshop on Singular Behavior and Nonlinear Dynamics, Samos, Greece,
August 18-26, 1988.

Tnstitute for Mathematics and its Applications, University of Minresota,
Minneapolis, MN, September 13-16 and November 7-11, 1988.

Workshop on Mathematical MethoHs in Plasma Physics, Cornell University,
Ithaca, NY, October 20-23, 1988.

Columbia University, Department of Mathematics, New York, NY, October 17, 1988.

University of Colorado, Department of Mathematics, Boulder, CO, February 15, 1989.

Rutgers University, Department of Mathematics, New Brunswick, NJ, March 3, 1989,

"Nonlinear Evoltuion Equations, IST and Cellular Automata.
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TEACHING CREDENTIALS:

Courses Taught Elementary Calculus
Differential Equations
Advanced Calculus for Engineers
Modern Managerial Mathematics
Introduction to Numberical

Analysis
Approximation Methods of Applied

Mathematics
Nonlinear Wave Motion
Elementary Analysis
Asymptotic and Perturbation

Methods
Methods of Applied Mathematics -
Complex Analysis, Partial

Differential
Equations, Vector Calculus, etc.

Teaching Evaluation I have been rated by students on
a scale of 5. The average is
approximately 4.5.

Ph.D. STUDENTS:

J. Ladik, Nonlinear Differential - Difference Equations, June, 1975,
Clarkson University.

Y.C. Ma, Studies of the Cubic Schrodinger Equations, Princeton University, 1977.
was an informal advisor and reader of the thesis.

A. Ramani, On O.D.E.'s of Painleve Type, Princeton University, 1979. I
was an informal advisor and reader of the thesis.

Y. Kodama, Perturbation and Stability Problems in Nonlinear Waves.
Ph.D. 1979, Clarkson University.

T. Taha, Numerical and Analytical Aspects of Nonlinear Evolution Equations. Ph.D.
1982, Clarkson University.

P. Santini, Aspects of the Theory for Multidimensional Nonlinear Partial
Differential Equations Solvable via the Inverse Scattering Transform.
Ph.D., June, 1983, Clarkson University.

U. Mugan, On the Soliton of the Classical Equations of Painleve. Ph.D.
August, 1986.

R. Balart, Mathematical Modeling of Directional Solidification in the Absence
of Gravity, Ph.D., December, 1986.
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POSTDOCTORAL ASSOCIATES:

J. Satsuma 1977-79 From: Kyoto University,, Applied Mathematics
Department, Kyoto, Japan.

Present Address: University of Tokyo, Mathematics
Department, Tokyo, Japan.

Y. Kodima 1979-81 From: Nagoya University, Physics
Department, Nagoya, Japan.

Present Address: Ohio State, Department of
Mathematics, Columbus, Ohio.

A. Nakamura 1981-82 From: Osaka University, Physics Department,
Osaka, Japan.

Present Address: Osaka University, Physics
Department, Osaka, Japan.

D. Bar Yaacov 1982-86 From: Yale University, Department of
Mathematics, New Haven, Connecticut.

Present Address: Vassar College
Department of Mathematics
Poughkeepsie, NY 12601

P. Clarkson 1984-86 From: Orlel College, Department of Mathematics
Oxford, England

Present Address: The University of Birmingham
Department of Mathematics
Birmingham, England

MASTER'S STUDENTS:

Benjamin Funk, June 1972

COMMITTEES:

(a) National

National Science Foundation Postdoctoral Fellowships
in Mathematical Sciences, 1978 - 1986.

Conference Board on Mathematical Sciences, Renional
Conferences Panel, 1979, 1980.

National Science Foundation Mathematics Panel Workshop,
International Section, September 8-10, 1985.

NATO Postdoctoral Fellowship Review Panel,
December 12-14, 1985.
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(b) Clarkson University

Computer Science Committee of the Mathematics Department,
1971-1973.

Undergraduate Committee of the Mathematics Department, 1972-1974.

Graduate Committee of the Mathematics Department of 1974-1978.

Research Committee of Clarkson University, 1977.

Tenure Committee of Clarkson University, 1978.

Faculty Senator of Clarkson University, 1978.

(c) New York State
Member of Technical Advisory Committee for the New York State
proposal for the Superconducting Super Collider, 1987.

CONFERENCE ORGANIZATION:

Co-Director, Organizer of American Mathematical Society
Summer Conference of Nonlinear Wave Motion, Clarkson
University, July 1972.

Co-Director, Organizer of the Joint - U.S. - U.S.S.R.
Academy of Sciences Meeting held in Kiev, U.S.S.R.,
September 1979.

Co-Organizer of the Summer Institute on Nonlinear Dynamical
Systems held at the University of Montreal, July 29 - August
16, 1985.

Co-Organizer of the Workshop on Physical Applications of
Nonlinear Systems to be held at the University of Montreal,
May 5 - 9, 1986.

Co-Organizer of the Oberwolfach Conference on Solitons
to be held at the Mathematical Research Institute,
Oberwolfach, W. Germany, July 27 - August 2, 1986.

PROFESSIONAL AFFILIATIONS:

Tau Beta Pi, Engineering Honor Society
Sigma Xi
Society of Industrial and Appl. Math.
Math Association of America
American Mathematical Society

BIOGRAPHICAL LISTINGS:

Who's Who in Education
Who's Who in the East
Probably others
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CONSULTING EXPERIENCE:

Polaroid Corporation: Numerical Computation of Fluid
Flow. Mission Research Corporation, Washington, DC:
Nonlinear Wave Theory.

EDITORIAL BOARDS:

Editorial Board: Studies in Applied Mathematics 1983 -
SIAM Journal in Applied Mathematics 1983 -

Associate Editor: Journal of Mathematical Physics: 1976-1979.

Journal/Grant
Reviewing: Physical Review

Phys. Rev. Lett.
J. Math. Phys.
S. I .A. M.

J. of Applied Mathematics
J. on Math. Analysis

Studies in Applied Mathematics
J. Fluid Mechanics
Phys. of Fluids
N.S.F. Grants - Math
Nat. Acad. Sci. - Grants for U.S. Army
A.F.O.S.R. Research Grants
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CURRENT SUPPORT AND PENDING APPLICATIONS

Principal Investigator -Mark J. Ablowitz

Current Support

USAF, AFOSR-88-0073, "Nonlinear Wave Propagation," Amount of Award: $159,363; Time Period:
11/1/87-10/31/89; Time Commitment of PI: 2.75 summer months; Location of Research: Clarkson
University, Potsdam, NY.

,To Il ll -

NSF, DMS-8803471, (w/A. Fokas, D. Kaup), "Nonlinear Wave Motion," Amount of Award: $15,500; Time
Period: 7/01/88-12/31/89; Time Commitment of PI: None; Location of Research: Clarkson
University, Potsdam, NY.

USNA, N00014-88-K-0447, (w/A. Fokas), "Nonlinear Waves and Inverse Scattering," Amount of Award:
$30,000; Time Period: 7/1/88-12/31/89; Time Commitment of PI: .63 summer month; Location of
Research: Clarkson University, Potsdam, NY.

Pending Applications

ANCA, "Physics (Science) at the Frontier - A Cooperative Program for Northern New York, Southern
Quebec, Ontario," Amount Requested: $7,000; Time Period: 1/1/89-12/31/89; Time Commitment of P1:
None; Location of Research: Clarkson University, Potsdam, NY.

This renewal proposal which is being submitted to USAF.
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