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The main results obtained and published during the period covered by this report, August 1988
- July 1989, are dcsibcd bel- together with references given to the corresponding

publication.

1. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients,

(Henk A. Blom and Yaakov Bar-Shalom, EEE Transactions on Automatic Control Vol. 33,

No. 8, August 1988)

An important problem in filtering for linear systems with Markovian switching coefficients

(dynamic multiple model systems) is the one of management of hypotheses, which is necessary

to limit the computational requirements. A novel approach to hypotheses merging has been

developed for this problem. The novelty lies in the timing of hypotheses merging. When

applied to the problem of filtering for a linear system with Markovian coefficients this yields an

elegant way to derive the interacting multiple model (IMM) algorithm. Evaluation of the IMM

algorithm makes it clear that it performs very well at a relatively low computational load. These

results imply a significant change in the state of the art of approximate Bayesian filtering for

systems with Markovian coefficients.

2. Failure Detection Via Recursive Estimation for a Class of Semi-Markov Switching Systems,

(L. Campo, P. Mookerjee and Y. Bar Shalom, Proceedings 1988 IEEE CDC. Austin, Texas)

U - An area of current interest is the estimation of the state of discrete-time stochastic systems with

parameters which may switch among a finite set of values. The parameter switching process of

interest is modeled by a class of semi-Markov chains. This class of processes is useful in that

it pertains to many areas of interests such as the failure detection problem, the target tracking

problem, socio-econoic problems and in the problem of approximating nonlinear systems by

a set of linearized models. It is shown in this paper how the transition probabilities, which

govern the model switching at each time step, can be inferred via the evaluation of the

conditional distribution of the sojourn ,,nc Following this, a recursive state estimation

algorithm for dynamic systems with no,. bservations and changing structures, which uses

the conditional sojourn time distribution, is derived and and applied to a failure detection

problem. 0
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3. Distributed Adaptive Estimation with Probabilistic Data Association, (K.C. Chang and Y.

Bar-Shalom, Automatica, Vol. 25, No. 3, pp. 359-369, 1989)

The probabilistic data association filter (PDAF) estimates the state of a target in a cluttered

environment. This suboptimal Bayesian approach assumes that the exact target and

measurement models are known. However, in most practical applications, there are difficulties

in obtaining an exact mathematical model of the physical process. In this paper, the pioblem of

estimating target states with uncertain measurement origins and uncertain system models in a

distributed manner is considered. First, a scheme is described for local processing, then the

fusion algorithm which combines the local processed results into a global one is derived. The

algorithm can be applied for tracking a maneuvering target in a cluttered and low detection

environment with a distributed sensor network.

4. An Adaptive Dual Controller for a MIMO-ARMA System, (P. Mookerjee and Y. Bar-Shalom,

IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989)

I An explicit adaptive dual controller has been derived for a multiinput rnultioutput ARMA

system. The plant has constant but unknown parameters. The cautious controller with a

one-step horizon and a new dual controller with a two-step horizon are examined. In many

instances, the myopic cautious controller is seen to turn off and converges very slowly. The

dual controller modifies the cautious control design by numerator and denominator correction

terms which depend upon the sensitivity functions of the expected future cost and avoids the

turn-off and slow convergence. Monte-Carlo comparisons based on parametric and

nonparametric statistical analysis indicate the superiority of the dual controller over the cautious

controller.

I
U
I
I
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5. Time-Reversion of a Hybrid State Stochastic Difference System, (Henk A.P. Blom and

Yaakov Bar-Shalom, Proc, 1989 IEEE Intn'l. Conf. on Control & Applications, Jerusalem,

Israel, April 1989 to appear in IEEE Trans. Info, Theory, 1990)

This paper develops the reversion in time of a stochastic difference equation in a hybrid space,
with a Markovian solution. The reversion is obtained by a martingale approach, which

previously led to reverse time forms for stochastic equations with Gauss-Markov or diffusion

solutiois. The reverse time equatioas follow from a particular non-canonical martingale

decomposition, while the reverse time equations for Gauss-Markov and diffusion solutions3 followed from the canonical martingale decomposition. The need for the non-canonical

decomposition stems from the hybrid state space situation. The non-Gaussian discrete time3 situation leads to reverse time equations that incorporate a Bayesian estimation step.

6. A New Controller for Discrete-Time Stochastic Systems with Markovian Jump Parameters, (L.

Campo and Y. Bar-Shalom, 11 th IFAC World Congress, Tallinn, USSR, Aug. 1990

A realistic stochastic control problem for hybrid systems with Markovian jump parameters may

have the switching parameters in both the state and measurement equations. Furthermore, both

the syst,-m state and the jump states may not be perfectly observed. Prior to this work the only

existing implementable controller for this problem was based upon a heuristic multiple model

- partitioning (MMP) and hypothesis pruning. In this paper a stochastic control algorithm for

stochastic systems with Markovian jump parameters was developed. The control algorithm is

derived through the use of stochastic dynamic progamming and is designed to be used for

realistic stochastic control problems, i.e., with noisy state obeservations. The state estimation
and model identification is done via the recently developed Interacting Multiple Model

algorithm. Simulation results show that a substantial reduction in cost can be obtained by this

new control algorithm over the MMP scheme.I
I
I
I
I
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I 7. From Piecewise Deterministic To Piecewise Diffusion Markov Processes, (Henk A.P. Blom,

Proc, IEEE CDC 1988)

Piecewise Deterministic (PD) Markov processes form a remarkable class of hybrid state

processes because, in contrast to most other hybrid state processes, they include a jump

reflecting boundary and exclude diffusion. As such, they cover a wide variety of impulsively

or singularly controlled non-diffusion processes. Because PD processes are defined in a

pathwise way, they provide a framework to study the control of non-diffusion processes along

same lines as that of difftsions. An important generalization is to include diffusion in PD

processes, but, as pointed out by Davis, combining diffusion with a jump reflecting boundary

seems not possible within the present definition of PD processes. This paper presents PD

processes as pathwise unique solutions of an 1t6 stochastic differential equation (SDE), driven
by a Poisson random measure. Since such an SDE permits the inclusion of diffusion, this

approach leads to a large variety of piecewise diffusion Markov processes, represented by

pathwise unique SDE solutions./I
I
I
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merging. When applied to the problem of "-dog for a linear system with
Markovisu coefficients this yields an t .way to derive the Interacting
multiple model (1MM algorithm. E. adoo of the IMM algorithm
makes it dear that It performs very wel at . relatively low computational
load. Tbese results Imply a significant change In the stale of the art of
approximate Bayesian filtering for systems with Markovian coefficients.

I. INTRODUCTION

In this contribution we present a novel approach to the problem of
filtering for a linear system with Markovian coefficients

x, = a(O,)x,_ + b(8,) w, (1)

with obh-ervations

Y, +g (0) U,(2)

O, is a finite state Markov chain taking values in (1, , N) according to
a transition probability matrix H, and w,, u, are mutually independent
white Gaussian processes. The exact filter consists of a growing number

of linear Gaussian hypotheses, with the growth being exponential with the
time. Obviously, for filtering we need recursive algorithms whose
complexity does not grow with time. With this, the main problem is to
avoid the exponential growth of the number of Gaussian hypotheses in an

efficient way.
This hypotheses management problem is also known for several other

filtering situations [10], [51, [61, 191, and [4]. All these pri~bleris havestimulated during the last two decades the development of a large variety

of approximation methods. For our problem the majority of these are
techniques that reduce the number of Gaussian hypotheses, by pruning
and/or merging of hypotheses. Well-known examples of this approach arethe detection estimation (DE) algorithms and the generalized pseudo

Bayes (GPB) algorithms. For overviews and comparisons see [141, [7].
[12]. and [17]. None of the algorithms discussed appeared to have good
performance at modest computational load. Because of that, other
approaches have been also developed, mainly by way of approximating
the model (1), (2). Examples are the modified multiple model (MM)
atgoridus [201], the modified gain extended Kalman (MGFK) filter of
Song and Speyer [131, [7], and residual based methods [191, [21. These
algorithms, however, also lack good performance at modest computa-
tional load in too many situations. In view of this unsatisfactory situation
and the practical importance of better solutions, the filtering problem for
the class of systems (1), (2) needed further study.

One item that has not received much attenton in the past is the timing ofhypotheses reduction. It is common practice to reduce die number of
IGaussian hypowe immediately after a measurement update. Indeed, on

fir sight there does not seem to be a better moment. However, in two
recent publications [31, [1), this point has been exploited to develop,
respectively, the so-called IMM (interacting multiple model) and AFMM

The Interacting Multiple Model Algorithm for Systems (adaptive forgetting thtrogh multiple models) algorithms. The latter
exploits pcuning to reduce the number of hypotheses, while the [MMwith Markovian Switching Coefficients exploits merging. The [MM algorithm was the reason for a further
evaluation of the timing of hypotheses reduction. A novel approach to

HENK A. P. BLOM AND YAAKOV BAR-SHALOM hypotheses merging is presented for a dynamic MM situation, which leads
to an elegant derivation of the IMM algorithm. Next Monte Carlo

A.Wract-An Important problem H- fMerine for naw systems with simulations are presented to judge the state of the art in MM filtering after
Markovia switching eceffienats (dynamie multiple model systems) is the the introduction of te [mivi algorithm.
one of management of hypotheses, wMi I necessary to limit the
computational requirements. A novel approach to hypotheses merging Is 11. TITNG OF HYPOTHESES REDUCTION
presented for this problem. The novelty lies In the timing of hypotheses

To show the possibilities of timing the hypothesis reduction, we start
Manuscript received June 24, 1997; revised October 21. 197. Tis paper is baed on a with a filter cycle from one measurement update up to and including the

por submission of Ocober 20. 1986. The work of the sood author wam uppored by next measurement update. For this, we take a cycle of recursions for the
the Au" Force Office of Scientific Rescarh under t 54-01 12. evolution of the conditional probability measure of our hybrid stateH. A. P. Bjorn is widi the Naeioria Aer ose Ldiofry. NLR. Amsterdam. The Markov process (x,, 0,). This cycle reads as follows:Ndheratnds.

Y. Ear-Shalom is with the University of Connecnti. Storra, CT 06268. hWNI EEE Log Number 821022. P(8,,IY,-,) P(8 ,,} (3)

0018-9286/88/0800-0780501 .00 © 1988 IEEEI
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if P{8,1Y, -) = 0 prune hypothesis 6,, 11. THE IMM ALGORITHM

pIx, 1,,- Y,-1 -- - plx, 1j, Y,-,] (4) The IMM algorithm cycle consists ofthe following four steps, of which
Ethe first three steps are illustrated in Fig. I.

p1x,-16,, Y,-,] - px,6,, Y,-,] (5) 1)Starting with theNweightsf,(i - 1), the N means.(t - 1)and

the N associated covariances A,(t - 1), one computes the mixed initial
P(6,I Y,-1 ) P1, 1,) (6) condition for the filter matched to 6, i. according to the following

p[x,J6,. Y,- -b-p px, l,, YJ. (7) equations:

For output purposes, we can use the la,; c, toal probability N(t)= Hj(t- 1), ifo,(t)=0 prune hypothesis i, (12)

p(xJ Y]=zp[x, ,=i, YlP{6,=i Y, }. (8) .Pt- 1)= . ,(t - l)R(t - l)/.,(r), (13)

Let us take a closer look at the derivation of the above cycle. As v, and w, Av,(t1)= Hilpl(t l)(t -t1)+[1,(t l)_-?,(t l)][ .]rp,(t)"

are mutually independent, the Bayes formula, which represents (6) and
(7), follows easily from (2). From the evolution of system (I) follows (5).
The Chapman-Kolmogorov equation for the Markov chain 8, (14)

P(6,='I Y,-, I HP{o,_,=jI Y,_,} (9) 2) Each of the N pairs P(t - 1), A'(t - l) is used as input to aI Kalman filter matched to 6, = i. Time-extrapolation yields..f(t), (t),
and then, mewasurement updating yields. S?,t), /R,(t).

which represents (3), can be seen as a 'mixing." To derive a 3) the N we ts ,(t) a e upJ tcd from the innovations of the N

representation of (4) we first introduce the following equation on the basis Kalman filters.

of the law of total probability:
p~x _,l,=i Y,,]= [p x,_la,,=j 0, i. ,-, 6,(t)=c -pdat) - IIQ,(t)ll - 2 exp I{- l/20Tr(t)Q,- 1(t)d,(t) (15)

with c denoting a normalizing constant

-P8,_,=jO,=i, Y,-0}] (10) 0,(t)=y,-h(i)f, (t) (16)

As 0, is independent of x,_ if ,_ is known, we easily obtain Q,(t) =.b.(i),,(t)h to) j g(i)g 1r(i,. (17)

3 p[x,.,16, .=j 0,=i, Y,_,=p[x,_l0,_=j Y,]. 4) For output purpose only. 1, and 9, are computed according to

Substitution of this and of the following: £- = j5()J,(t) (18)

P{e,_,=j O,= i. Y, ) j= H ,,P( , _=j j Y_,1/P{0,= i Y_, )

in (10) yields the desired representation of transition (4) ', j,()[t,(t)+1i,(t)-2,1l I (19)

p I, -, (6, = i Y, H,,P , -,jI Y Only step I) is typical for tM 1MM algorithm. Specifically. thc mixing
- represented by (13) and (14) and by the interaction box in Fig. 1. cannot

p[x,_j, 1 =j. Y,]/pIB,=iIY,}. (11) be found in the GPB algorithms. Ths is the key of the novel approach to
- the timing of fixed depth hypotheses merging that yields the IMM

Notice that the mixing of the densities in (i1) is explicitly related to the algorithm. We give a derivation of the key step I).
above-mentioned Markov properties of 0, and the conditional indepen- Application of fixed depth merging with d = I implies that

dence of 0, and x,- 1 , given 8,_ 1. According to the above filtering cycle
there are at any moment in time N densities on R' and N scalars. The plx,-6,-a=i.Y,-N{,(-I1),(t-I)}.
densities on R" are rarely Gaussian. Even if ptxo 1 Yo] is Gaussian, den
pfx,10, = i, Y] is in general a sum of N' - ' weighted Gaussians Substitution of this in (II) immediatevy yields (3) and (14). with

(Gaussian mixture). Explicit recursions for these N' individual Gaussians
and their weights can simply be obtained from the above filter cyck. ?'(t-I) 4 E[x,.II,=i. Y,_,
Obviously, the N times increase of the number of Gaussians during each
tilter cycle is caused by (4) only. and

In the sequence of ciemena, transitions. (3) through (7), we can apply
a hypotheses reduction either after (4). after (5), or after (7). We review 1'(t - I)
these reduction timing possibilities for the fixed depth merging hypotheses
reduction. This fixed depth merging approach implies that the Gaussian the associated covariance. Finally, we introduce the approximation,

hypotheses, for which the Markov chain paths are equivalent durint, 'he
recent ps cf some fixed depth, are merged to one moment-matched plx,1 ,9,=i, Y,.)-N{2't- I)./.'(t- I)}

Gaussian hypothesis. The degrees of freedom in applying this fixed depth
merging approach are the choice of the depth, d (a 1), and the moment of which guarantees that all subsequent IMM steps fit correctly-

application. If the application is immediately after each measurement Remark: The IMM can be approximated by the GPB I Pigorithm by
update pass (7), it yields the GPB (d + I) algorithms 141, [161. In the replacing f,(t - 1) and Ai(t - I) in step I) by R, , and r ,- . Together

next section we derive the IMM algorithm by applying the fixed depth with (12) this approximates (13) and (14) in step I) by, .P'(t - I) = ._I

nerging approach with depth, d = 1, aftereach pass of (4). It can easily and fi'(t - 1) = At, 1 . These equations are equivalent to(1 3 )and (14) if

be verified that all other timing possibilities yield disguised versions of each component of H equals I/N, which implies that 8, is a sequence of
I MM and GPB algorithms. Merging after (5) with d = I yields a mutually independent stochastic variables. The latter is hardly ever the

disguised but more complex IMM algorithm. Merging either after (4) or case and we conclude that the reJuction of the IMM to GPBI leads to a

after (5) with d - 2 yields a disguised but more complex GPBd significant petformrance degradation. Obviously, the computational loads

algorithm. of 1MM and GPP'I are almost equivalent.
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TABLE I

A ti-I THE PARAMETERS OF THE 19 CASES OF WESTWOOD [181

CASE H-VALUES 0-DEPENDENT VALUES

Ft 6 40 20 .995.990 1.0 10 0t 2 40 20 9 95 ".9 %) .5 1 .0 .5

f. 3 40 20 M-M .1 1.0 50

0M 4loim1 200 100 .995w 51 1080 8.

5 40 20 9%,.990 8.0 ! .0 1.0

16 40 20 995. 1..0 1.0 3O 7 40 20 995.900 .5 t.0 2 0
8 4 0 2 0 9 9 5 , 7 5 0 0 1

9 40 20 995 20 10.95 0

.) .. A 00 10 20 95 1O _O80 8- -<# ------- .---- 11 40 20 995 S 1008

1 2 4 2 995 5 10._80

r., The IMM algorithm 13 200 00 995 5 0. so

IV. PERFORMANCE OF THE IMM ALGORITHM 15 40 20 995 1.0 1 0 1.50

16 10 2 95 5 1 0.0 0 1 0,20
'71? 200 5 950.0.0 1 0 1 0 1.0

Presentd, a comparison of the different filtering algorithms for systems 18 so 5 .90.12 1.0 1.0 1

with Niarkovian coefficients with respect to their performance is 19 10 2 95 .5 10 10.400

ho, "pered by the analytical complexity of the problem f 16l, [ 15]. Because

f this, such comparisons necessarily rely on Monte Carlo sirriulations for , .

Ithat have been developed by Westwood 1181. To make the comparison I-:

more precise, we specify these cases and summarize the observed
performance results- In all 19 cases both -ir and y, are scalar, processes,

which satisfy x, -- a(O,)x,( + b(6,)w, + u(t) and y, = h(O,)x, +

g(Oj, wth ,:0- 10 1) a~) =10. cos (21rt/100), .sD a Gaussian
variable with expectation 10 and variance 10, Pl(oD = I } = P (e0 = 0)

1/2, while Hoo = (I - 1/r-0) and H = (I - lUri). The parameters
1b, h, g and the average sojourn times r0 and r, of these 19 cases are ,61

Igiven in Table .

3e results of Westwood [181 show that, in all 19 cases the differences
in performance of the GPB2 and the GPB3 algorithms are negligible,
while in only seven cases (5. 6, 8, 16, 17, 18, 19) the differences in

performance of the GPBI and the GPB2 algori(hms are ,egligible. To our

present comparison the other 12 cases (1.2.3, 4.7.9, 10, 11. 12, 13, 14, *-
15) are interesting. For each of these 12 cases we simulated the GPBI, the '7

GPB2, and the IMM algorithms and ran Monte Carlo simulations, Fig. 2. rrns error for case 7. illustratice of the six cases (I .7. 2. 14. 15)berr bxh

consisting of 100 runs from t = 0 to I = 100. For simplicity of IMM and GPB2 perform slighdy better than GPBI

interpretation of the results we used one fixed path of 0 during all runs:
= 0Oon the time interval (0, 30). 6 = I on the interval (31. 601, and06 = 0 ...

on the interval [61, 1001.
The results of our simulations for the 12 interesting cases are as *-

follows. In six cases (1, 2, 7, 12, 14, 15) both the IMM and the GPB2
performed slighdy better than the GPBI, while the IMM and the GPB2
performed equally well. For typical results, see Fig. 2. In the other six

cases both the IMM and the GPB2 performed significantly better than the I

GPBI. For typical results see Figs. 3 and 4. Of these six cases the IMM

and the GPB2 performed four times equally well (cases 3, 4, 11, and 13)
and two times significantly different (cases 9 and 10).

On the basis of these simulations we can conclude that the IMM

performs almost as well as the GPB2, while its computational load is

about that of GPBI. We can further differentiate this overall conclusion.
* Increasing the parameters ro and 71 increases the difference in

performance between GPB I and GPB2, but not between IMM and GPB2.
e Ifa is being switched, then the IMM performs as well as the GPB2, I * Ii

while the GPB1 sometimes stays significantly behind.
* If the white noise gains, b or g, are being switched, then the IMM Fig.3. rmsero for case3, ilustive ofthe fourcase(3.4. II. 13) where both 1MM

performs as well as the GPB2, while the GPBI sometimes stays and GPB2 perfom better dan GPBI, while 1MM and GPB2 perform equally well

significantly behind.

e If only h is being switched, then in some cases the IMM, and even for cases 1, 3, and 4 the GPB2 and the IMM algorithm performed equally

more often, the GPBI tend to diverge while the GPB2 works well. well. one can conclude that the MM. the modified MM, the MGEK, the

Another interesting question is how the 1MM compares to the modified MGEK with "postprocessor," and the GPBI are in all 19 cases
MM algorithm and the MGEK filter. Apart from the GPB algorithms, outperformed by the IMM algorithm.

Westwood f 18] also evaluated four more filters, the MM. the modified On the basis of these comparisons one can conclude that for practical
MM, the MGEK, and a MGEK with a "postprocessor. "' For the 19 cases filtering applications with N = 2, the IMM algorithm is the best first

there was only one algorithm that outperformed the GPBI algorithm in choice. As the IMM algorithm has been developed on the basis of some

some cases. It was the MGEK filter in the cases I, 3. and 4. He also found generai hypotheses reduction principles, which are N-invariant, one can

that the MGEK filter performed in these cases marginally or significantly reasonably expect that this is also true for larger N. But it is unlikely that
less good than the GPB2 algorithm. As the above experiments showed that the IMM performs in all applicatons almost as good as the exact filter

I
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(161 J. L. Weiss. "A comparison or finite filtering methods for -.atus directed
procceses, Master's thesis, Chales Stark Draper Lab., Maus. tist. Technol.,Lz~ ~ (l~ Rep. CSDL-T-8l9, 1983.

77E (1711. L. Weis, T. N. Upsdhyay. and R. Tenney. "Finite comnputabl flters for linear

syati subject>~ to tievayn model uneovn. pp. Proc. N;ECON, 1983,

121A.S. Wisky.E. Y. Cow, S.B. Gerslwin. C. S.Greerie.P. K lIoupt, and A
L. Krkjin, Dynaic odel-baed tchariesfordeection or incidents on

(21 J W Wod. . raid, ad . edavll. Imgeestimation using doubly

stohasicGa~sia rndo rildmodls." EEETras.Pattern A nal. Machine

*nel. vol PAI9 pp 4-5.18

Fig. 4. merofoca9.flsrtvoftetocss(an10wheIM

performs better than GPBI. but slightly worse than GPB2 (in these two cases only h

Thberefore, if the 1MM performs not well enough in a particular
application one should consider using a suitable GPB ( - 2) or DEIalgorithm [14], or one might try to design a better algorithm by using
adaptive merging techniques [161. The DE algorithm might possibly be
.improved by the novel timring of hypotheses reduction [I). If for a
particular application the performance of the selected algorithm has a too
'high computational load, then it is best to try to exploit some geometrical
structure of the problem considered 121, 111].

In situations where estimnation has to be done outside some time-critical
control loop, it is usually preferable to use a smoothing algorithm insteadIof a filtering algor-ithm (81, (141, (211. In view of the above filtering
results, this suw ..ts that the ideas that underly the 1MM algorithm can be
exploited to develop better smoothing algorithms.
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Failure Detection Via Recursive Estimation for a Class ofI )emi-Markov Switcligg Systems

1. Campo'. P Mookeriee'. and Y bar-Shaloml

Abstract state estimat'on in a multiple model environment is a

function of the elemental {"model-matched") state

,,n area of current Interest Is the estimation of estimates obtained via estimators tuned to all

the state of discrcte-time stochastic systems with possible parameter histories rhus, with time. the
parameters which may switch among a finite set of estimator must keep track of an exponentially growingvalues.parameter hma switchimng aro ofinteest number of parameter his.ory hypotheses Even in the
values. lhe parameter switching process or interest rase of M3rkov switching the estimation algorithm
!s modeled by a class of semi-Markov chains This requires exponentially growing memory ITI. T21
class of processes is L'seful in tiat it pertains to Suboptimal algorithms like the Generalized
many areas of interests such a. the failure detection Pseudo-Bayesian Algorithm CIPBI . Al. 1i. T21 and the
problem, the target tracking problem. socio-ecunomic Interacting Multiple-Model Algorithm 1IMM) I12. 83.
problems and in the problem of approximating 84I are viable approaches to obtain a real-time
nonlinear systems by a set of linearized models it implementable estimatinn algorithm. These algorithms
is shown in this paper how the transition rely on different ;eyopothe merging techniques to
probabiliti.,. which .svern the model switching at limit the memory and computational requirements IB4
each time step, can be inferred via the eva.Lation of In S2.C2l a semi-Markov switching problem was
the conditional distribution of the sojourn time. cor.idered, but tne jumps were assumed to be
Following this, a recursive state estimation perfectly observed. In (M91 an etimation scheme for
alorithm for dynamic systems with noisy observations po sed. wan (N'31 an e stimat on he
and changing structures, which uses the conditional semi-Narkov processes was developed based Opon the
sojourn time distribution, is derived. dLtection-estimation algorithm (OrAl This approach

is obtained by retaining a cea Lain number of most
i. Introduction likely parameter history hypotheses The estimation

schemes based upon the OEA (which discards all but a
In this paper we are concerned with failure number of most likely history hypothesesl and the CPO

detection via recursive estimation of parameters iii or IMM (which u;e hypothesis merging) algorithms
discrete-time dynamic systems. The topic of interest represent differe.nt philosophies of algorithm
is stochastic systems with abruptly changing
parameters i.e., model jumps. The recursive state design. Ve present an example comparing the two
estimation algorithm for this problem developed in methods for a particular state estimation problem
this paper provides the con-,tional model later in this paper.

probabilities used for oetecting the change in system The problem is formulated in Section 2. in
I parameters which signify component failures. Section 3 the sojourn time conditional "probability

The abruptly changing parameters, which switch mass functions and the conditional transition
among a finite set of values, are modeled as a Markov I
or a semi-Markov chain with known transition probabilities which we derived in trial, are given
statistics 1M2.N3.5-flg.GIJ. Although the idea of here for clarity and ease (,f reference. The
semi-Markov chains is appropriate for the model inclusion of Section 4, the state estimation
concerned, the analysis presented in the above is algorithm which was developed in [ib). is for thL
actually only for Markov chains (since the transiton sake of completeness. In Section S simulations a'e
probabilities were assumed fixed and the transitions presenter. Preliminary results on this problem were
depended only on tle latest state - see Eq. (g in
{N21]. The process considered in this paper is of presented in [Mla, Mlb].

the semi-Markov type and pertains to many areas of 2. Formulation of the problem
Interest. A failure In a component of a dynamical
system can be represented by a sudden change in the The system is modeled by the equations
systems parameters 18,SI,Wll. Also, a repair to a x[k] - FlM(kli x(k-li * vfk-i. M(k]l 2.1)
system represents a change in the parameters 1851. z(kl - H{N(kl] x(kl - w(k.M(k]] (2.2)
Other areas that this class of processes pertains to where M(kJ denotes the model "at time k' - in effect
ar. the target tracking problem 111. socio-economic during the sampling period ending at k. The process
problems (G21 and the technique of approximating and measurement noise sequences. vik) and wik). are
grossly nonlinear systems by a set of linearized white and mutuali, uncorrelated.
models (MNIV,21. The model at Lime k is assumed to be among the

The first treatment of estimation in a switching possible r models
environment was In (All where the means and Mik) e (I,. ..r) (2.31
covarlances of the process and measurement noises For example
experienced jumps. As Indicated In iCIL the optimum F(Mfkl-j( - F (2.4)

vik-l.M(k-j] " N(uf a I (2.51
I. University of Connecticut i.e.. the structure of the system and/or the

Storrs, CT 06268 statistics of the ,iolses might be different from
Supported by AFOSR Grant g4-0112 mrdel to model. The mean u, of the noise ran

model a maneuver or a system failure as a
2. Villanova University deterministic input.

VIIlanova. PA 19OgS The model switching process to be considered here
Supported by the Grant from the Vice-President for is of the semi-Markov type The process Is specified
Academic Affairs Office. Villanova University and by a family of transition matrices p,i I7,)
AFOSR Grant 81-0112 i e . it is a "sojourn-tIme-dependent Markov'" STOM]



chain, which belongs to the semi-Markov class. Tie 13 Ii is the sojourn time while the argument of

specification of the STOM chain is more closely p defined above is the cFrrent time

related to physical models because it does not have ,1 The conditional probability mass function (3 31

the artificial restart of the sojourn time counting of the Sojourn time T in state , at time k is

of the semi-Markov process for virtual transitions* given by the following expressions

and can capture Important features in many realistic

situations p (k-l] 11

For the class of semi-Markov chains governing the grkl I T b,(k.l I

evolution of the system's model considered here, we [ p(k-sI ]s-i p lk-m;

need the pdf of the sojourn time conditioned on the g s) I - ,k.sl , b(k.ml

observations, to infer the transition probabilities s=2. *k (3 71

The conditional transition probabilities based on pk-mi

noisy observations of the system's state are obtained glk.ll -i bk,m 13 1
in the next section ' lk1 ,
inth ext ov chan H.RIisExpressions 13.61-1381 are proven by induction in

A semi-Markov iSNi chain (HI. H12. Rl) is

character izec by a fixed matrix of transition [Mlal Thv ,tations a, arid b, used above are

probabilities [p ) and a matrix of sojourn defined belo.
The probability that the process will stay stime probaoility density functions

tfe rob which are functions of the time steps In the same state i as it is at time
k-s is. conditioned on the information at k-s.I current state i as well as the destination state I given by the expression

of the transition. In a SM chain first the io

destination of the jump is chosen according to b,{k.sJ l P{Mikii. M({kS-IIM(k-Sl=i.Z
' 

_

Ip I and then the time after which the jump -s-2n-

takes place (i.e.. the sojourn timei is chosen X [1 n

according to {i f Ti). In this model the Conditioned on the available information

process can undergo a virtual transition i e . jump Z'
-
, at time k-s. the joint probability of

'in place" if j=il; however, in this case, the the process residing in the same state I for the
sojourn time counting is still restarted even though next s time steps is denoted as
the system has been in state i for some time

3. Sojourn Time Probability Mass Functions and

Conditional Transition Probabilities = PiMk)=, M k-s-)=jlM k-s)=J.Z
5
')P{Mlk-S 1=JIZ'

The process Miki, k=0,1.. ., which represents

the system model, can exist in one of r = b(k,sli (k-sl * VP(Mikl=l .Mi*-s.IkilMk-sk=Z'(

possible states. The current probabilities of s

transition for the STOM process (chain) are functions -I(k-siI of the sojourn time T and are defined as b,{k,sl P {k-sI

p Ti = P(M{kIjjIM(k-l=i.T,(k-l)=T {3 11

where Tik-li is the sojourn time in state i at L km- . n

time k-I It is assumed that at k-0 the sojourn

time (in whatever state the system model is) is -g, [nJ pi k-s)

T-1 Thus the values T can take are from I I 2

to the maximum, which at time k-I is then k eab,sk.s) p(k-si

let z~i be a noisy measurement of the state Of r'S.p i p{

the dynamic system whose model undergoes transitions I i (n)p lp 2. pJs-lI g s(nl P Ik- I

according to the above described STD1 process Based n' =

on the available information b(k.sl p ,(k-sI

iZ:1{z(Ki)W the probability of the k X -i ]f- PIl gJ"S'n) vI(k-s)

model process being in state i . denoted as n: z p
v,(k) . is defined as s-l ...k (3

1 k, P k i_ ..r (3.2) 4. The state estimation algorithm
The conditiotal pmf of the sojourn time in state As indicated in Sec. 1, the optimal estimator for

M~ko=i base n the available information Zk at linear systems with Markov model jumps requires an
time k is exponentially increasing memory. Among the

8'(T) "= P{(",kl=TIM~k-Z) - p{ r(k)-TlM~k)-i.Z" ) suboptimal approaches discussed, it appears that the

P(Mtk-lii..,.M(k-T.lI.i,Mik-T7iiIM(klki,Z
' l )  

(3.31 IMM is the most cost-effective in implementationI where the perfect knowledge of the state M[k) 1841. In view of this, the state estimation for a

all)ws one to go down to one index less in the linear system with sojourn-time-dependent transition
conditioning. i.e., zk- .  probabilities is developed in the sequel based on the3 Following (3.11 the conditional probability of IMM approach.

transition from i to j at time k-I given the In this approach, at time k the state

observations Z"
' is, in terms of 13.31, estimation is computed under each posible model

hypothesis using r filters (for the r possible
l(~k-i)= P(M(kl'jlM~k'lIi'Zk'} modelsi. with each filter using a different

U P(MklkjiMfk-1i.T(k-Ii'T.Z 'i combination of the previous model-conditioned
estimates. Each model transition probability Is a

.p(rilk-li.rlM(kI-ik i..Z') known function of the sojourn time given by (3-li,
Each model has a sojourn time Ylk) in state

Xp(ii} 8'-'(T) (3 51 which is. however, not known The filter has access

Note thpL the argument of p defined in only to the observations from which the conditional
pmf of the sojourn lime 13 6) , 81 can be obtained.

I



I.
this In turn is to be used in calculation Of the where the notations from (.41 and 13 5} were used
conditional transition probtiabvilities (3 S1 and

To find the conditional pdf of the state of Oe ('k-Ilk .i8x(k-iiM(k-lki,Z81l
dynamic system described by (2.11-(2.31 the total
probability theorem is used as follows is the model -conditioned state estimate at time k-I

phe expression of p for the STOM case
plxlkJiZkl - X p~x~kllMlki.,.zlI.ZI, P(Mlk=I~IZ'} using terms involving sojourn time probabilities is

the one obtained in (3.51 The covariance
- p.IxkllM~k)-Tzhkl,Ze'l I(k] 14 11 corresponding to (161 is

Ii.e, r filters running in parallel The P° lk-lik-1] iPk -IklaP(-Ik l

model-conditioned posterior pdf of the state. caii be izi
rewritten as (with the irrelevant conditioning on • ['(k-Ik-Il-i lk-llk-l)1
Z -1 in the numerator omitted) "{i'(k-lIk-I-i l0 (k-Ik-Ill I4 9)
p I x [ k II M k ) - j . Z k I , Z" I the estimate 14.1l and covariance I4.9} are used

plz(kjJM(kl-j.xlkll p(xlklMikl=j.Zkl 14 21 is input to a standard Kalman filter matched to
plz(k)lM(k)-j.Z' 1" MlkIsj to yield the model-conditioned estimate

reflecting one cycle of the state estimation filter i
matched to model j starting with the prior, which x klkI and its covariance PJ~klk)
is the last term above. The total probability The likelihood functions corresponding to the r
theorem is now applied to this prior, yielding filters are computed as

p[xlk M(k jZi-i. AJ k) * plz(k)IM(klk j.Z' 1

Ip xlkhIMk)j.M(k-i.Z' 1-PMk-si Mkl=.Z' p[Z(k1lM(kl-J,i 
0 1k-Ilk-l),P°'(k-Ilk-Ill (4.101where the past data have beei replaced by (1.61 and

Jp~x(kJ1M~kJ-j,M~k-tl-i.Zk'_l p.13 (k-llk-1) I 13) (1.81 according to the key step of the IMM. The
k-l- i3 model probabilities 11.41 are updated as follows

where I
p1k) -- P(Mlk~jlZtH [ 'H p - P(Mlk)jlZ) - !A (klI P'1k-Il p,(k-l) 11 III

and where the conditional transition probabilities.
p . are as given in 14.81.

1.1,13h(k-tlk-l - P{M(k-Il iIMlk]j.Z ' ' 14 51 Eqs 1H.71 and 14.11) in combination with
Note that Eq. 14.3) represents a Gaussian mixture are the key results that make possibleunder the typical Gaussian assumptions on the noise
tprms in Eqs. (2.11 and (2.21. This mixture is then the state estimation for a system with sojourn-time-
approximated by a single moment-matched Gaussian. dependent model transitions

Therefore it follows that the input to the filter Finally, for output only. the latest state
matched to model j, j=l ....r. is obtained from an estimate and covariance are obtained according to
interaction of these r filters. This interaction Eqs (4 II and (4.3) as
consists of the mixing of the estimates icklk) X RI lkl p (k) 4 121

x'[k-tlk-t) according to the weightingsI (probabilities) p)Vi (k-Ilk-I). The P~kikI z" p,(k)(P1lklkI
evaluation of the probabilities (4.41 and (4.S) in JI
the STOM situation, are the key results needed •[iX(klk - i1klk)jJii(klk) - j(klk)]') (4 131
to obtain a recursive state estimation algorithm for S. Simulation Results
this type of model switching. These probabilities are
shown below to follow from the results in Section 3. The algorithm developed in Sec. 4 using the

Fig. 4.1 describes the resulting Interacting sojourn time pmf obtained in Sec. 3 Is used to

Multiple Model (IMM) algorithm, which consists of r estimate the state of the system. In the first
interacting filters operating in parallel- The example the results of this STOM-based IMM estimationscheme are compared with results obtained from an IMMmixing is done at the input of the filters with the algorithm based upon a Markov model transition
probabilities, detailed later in (4.71, conditioned assumption. In the second example the STOM-based IMM

I o n Z 
-
_ . estimation scheme is compared to the

One cycle of the algorithm consists of the detection-estimation algorithm of [M9. It is
following: assumed that an STOM process described in Sec. 2

Starting with the model-conditioned estimate governs the switching between models. In the
-tdfollowing T Is the sampling period and k Is ani'l[k-lik-l), with associated covariance integer representing the number of sampling periodsPW(k-Ilk-l1, one computes the mixed initial since time zero.

condition for the filter matched to M(kl-j according Example I

to (4.31 as follows The estimation of a controlled double integrator
rl system with process and measurement noises Is

i 0
J(k-Ilk-l) . iik-Ijk-lIp Ik-lk-l (4.6) considered with a gain failure. The two possible

From (4.5) models are given by the following system equation

Pat (k-I k-I) - P(M(k)jlMlk-Il)i.Zk'I)P(M k-l)ilZ-') x'(k-tI ' [ ] xI k)

p jk-I) p lk-Il 14 71 ] ulk) [ v(kl i-l,2 S11

with measurement equationThis is the key step of the IMM ihat yields an zjk) - It 01 x'tkl * w(k) (S 2)
algorithm with fixed (and modest) computational The models differ in the control gain parameter bcaal t o wth~ Gne alnd Pedot comaeionaulreae ihzroma :~aine
requirements using r filters It yields performance The process and measurement noises are mutuallycomparable to the Generalized Pseudo Bayesian uncorrelated with zero mean and variances
algorithm with r 2  

filters 1141. given by

I(vlkl vill - 410
"
1 6,J IS 3)



and Here (vikIl and (wikI) are mutually independent

Ciw~kl wijI - 6, IS 1I zero-mean Gaussian white noise sequences with

The control gain parameters were chosen to be bl-2 covariances U-0.1 and R-10, res pectively. The

and b2
-1. initial conditions are x(01-N(30.4001. P(M 0=l=i-/3

The transition probabilities pl (T} and for i=1.2.3 For the real system x(01l in every

P22 (T defined in 13-1l are shown in Fig simulation The process M~kj is modeled by a

semi-Markov chain with the imbedded Markov chain
S-I Note that p 1T . fof i j. are given transition probabilities given byp, p-p 22"33' 0. p 0.7.

by -
i 2 3 12

p (Tl) -p I 1 (5 SI p,3.0-3, p21 0.G. p 0.
4 .p3 1 

0.
3. and p32 ' 0.7 The sojourn

Thus we see that p 1 
7
1 is initially .5 and time probability mass functions p1IT} are assumed

rises rapidly to .99 and then decreases towards .1 to be

which is its steady state value We also see that Pi
T

) = aexpi-IT-3iJ

p (T) has a value close to 1.0 for this range p2 ll= azexpl-r-611
of T and thus model state two is essentially an pl{Ti = a)expI-IT-Sil 15 91
absorbing state

Figs 5-2 through S-1 present the results of for Tn0 with a such that

100 Monte Carlo runs. The true ,,%tem was initially p,(rl=l, 1= 1.2.3 IS I0
model I for every run and the model transitions ':0

occurred according to the probabilities of Fig 5-1. The results of 50 Monte Carlo runs average are

For simplicity, since we are mainly interested in the shown in Figs S-5. 5-6. In Fig. S-S we compare the
estimation of the state, and not in the control rms state errors of the two filter OCA based
strategy, we set u(kI=3 for all k . semi-Markov estimator of IM91 with our two filter GP8

The Markov based IMM used for comparison utilized based semi-Markov approach, and with the GPB
the a priori average transition probabilities estimator using 3 filters. Note that the values for
S (TI. obtained by taking the expected the OEA estimator are two-time-step smoothed values
value of the transition probabilities shown in (see [M91. Fig. 7. M-2 most likely histories

Fig. S-1. In other words, the conditional retainedl whereas the values for the STOM-IMM
probability from (3.51 is replaced by the a estimator are filtered values We can see that our
priori (unconditional) 5 given below in (5.71 estimator with two filters is stable as opposed to
The probability of having a sojourn time T the unstable two-filter OEA method.
equal to T is the probability that model I is in The plot of the 3 filter STOM-IMM estimator shown
effect for T-I steps, and then a transition occurs in Fig. S-S is given so that one can compare the

at step T. improvement obtainable by adding an extra filter to

P7=t -p (T(561 this approach. We see that the long term trend is
S f=If" for the 3 filter STOM-IMM to give a smaller rms error

Thus we get than the version with 2 filters.

X p ,{il P(7,=1} i=1,2 IS 7a In Fig. S-6 we compare the probability of error

and obtained using a I filter OCA estimator versus the 3

(b and filter STOM-IMM estimator. Both curves were obtained

1P, 1 - ,, 15.7b1 from a filtering operation (see [M91 Fig:. 10. N=O).
Figs. 5-2 and 5-3 are plots of the RMS error in We can see that the present estimator gives a much

x11k} and x2 (kI respectively. From Fig. 5-2 we clearer indication of the correct system structure

can see that the STOM-based IMM estimator improves and hence is preferable for failure detection
the RMS error in x1 (kl by as much as 20 percent. 6. Conclusion
From Fig. 5-3 we see that the RMS error in x2 (ke

of the STOM-based IMM estimator is as low as one We have applied the recursive state estimation

third the error of the Markov-based IMM scheme. Thus algorithm for dynamic systems, whose state model

the mean-square error improved by an order of" experiences jumps according to a sojourn-time-

magnitude. dependent Markov. STOM, chain. to the problem of

Fig. 5-4 is a plot of the average model failure detection. The algorithm, which is of the IMM

probability error. This is the error in the filter's type, uses noisy state observations and the
determination of the correct system model, calculations are done in the following order:

Typical running times for the STOM-based IMM vs. I. Probability of each model being the current

the Markov-based IMM are in the ratio of 3:1. The model

length of the time-span over which the sojourn time model

pmf is computed can be truncated - it becomes 2. Sojourn time pin In the current model

negligible after 15 steps. This keeps within 3. Model-conditIoned state vector estimates and

reasonable limits the additional calculations of the covarlances

STOM-based filter and prevents any growth of the 4. Overall state vector estimate and its

computational or memory requirements. covariance.

Example 2 The first example simulated indicates that the
In this example we make a comparison between the use of the STOM-based IMM estimator can give a

detection-estImation algorithm. (EA, based substantial improvement in state estimation overaor ith a

semi-Markoy estimator of 1M91 with the STOM-based 1MM suarkavtiase imrovTen lnatte r stlmes on her air
estimator of this paper. For this purpose the system average transItion probabilities while the former
and the semi-Markov model switching process usesoi transition probabilities bte d

attributes are as in IM9 example 3. and are repeated uses conditional transition probabilities obtained

here for ease of referance. from the conditional sojourn time distribution. This

The model process MkI is taken as a semi-Markov example shows that the STOM-based scheme Is

chain The scalar system is described by [M91 substantially better than the Markov-based scheme In

x(k~ll - I.04 x(kl * v(k) determining the true system model, which Is

zlki - x(kI * OIM(kllw(kl, K=0..2, .. 15,8, beneficial for failure detection schemes,
The second example simulated shows that, for the

where r - 3 models. 0(lj-I00, 0(21-10, and 031-I particular system under consideration the STOM-based

U
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Distributed Adaptive Estimation with
Probabilistic Data Association*

K. C. CHANGt and Y. BAR-SHALOMO§

A fusion algorithm for target state estimation under cluttered environment
with uncertain measurement origins and uncertain system models in a
distributed manner can be applied for tracking a maneuvering target in a

cluttered and low detection environment

Key Words-Distributed estimation; multiple model; target tracking; probabilistic data association;
Bayesian methods; distributed sensor networks.

Abstract-The probabilistic data association filter (PDAF) Several approaches have been proposed to
estimates the state of a target in a cluttered environment, perform the state estimation of a system together
This suboptimal Bayesian approach assumes that the exact
target and measurement models are known. However, in with identification of each model (out of a finite
most practical applications, there are difficulties in obtaining set) in a centralized framework. One of the
an exact mathematical model of the physical process. In this significant schemes is the so-called generalized
paper, the problem of estimating target states with uncertain (GPB) method (Tugnait, 1982;
measurement origins and uncertain system models in a
distributed manner is considered. First, a scheme is described Chang and Athans, 1978) and the other is the
for local processing, then the fusion algorithm which interacting multiple model (IMM) algorithm
combines the local processed results into a global one is (Blom, 1984; Blom and Bar-Shalom, 1988). The
derived. The algorithm can be applied for tracking amaneuvering target in a cluttered and low detection general structure of these algorithms consists of
environment with a distributed sensor network. a bank of filters for the state cooperating with a

filter for the parameters. A GPB algorithm of
1. INTRODUCTION order n (GPBn) needs N" filters in its bank

THE MAJOR difficulty in tracking a target with (Tugnait, 1982). The IMM algorithm performs

switching models/parameters in a cluttered nearly as well as the GPB2 method with notably
environment is due to the fundamental conflict less computation, namely, at the cost of GPB1
between the operations of model/parameter (Blom and Bar-Shalom, 1988). A distributed
identification and data association, since the estimation scheme with uncertain models has
measurements with large innovations are con- also been derived (Chang and Bar-Shalom,
sidered as unlikely to have originated from the 1987). However, in all the above approaches, a
target of interest. In this paper, a multiple model perfect data association was assumed, i.e. there
approach in conjunction with the probabilistic is no uncertainty in measurement origins.
data association (PDA) filter (Bar-Shalom and To take into account the data association
Tse, 1975; Bar-Shalom, 1978) to track a target problem, an adaptive PDA algorithm was
with switching models using distributed sensors, presented in Gauvrit (1984) for tracking in a
is presented. cluttered environment with unknown noise

statistics. This algorithm identifies on line the
* Received 23 February 1988; revised 18 August 1988; unknown varian-ces of the process and measure-

received in final form 17 September 1988. The original
version of this paper was presented at the 10th IFAC World ment noises but uses an earlier (static) multiple
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1987. The Published Proceedings of this IFAC meeting may paper, a distributed estimation problem which
be ordered from: Pergamon Press plc, Headington Hill Hall,
Oxford OX30BW, U.K. This paper was recommended for takes into account both model and measurement
publication in revised form by Associate Editor P. M. G. origin uncertainties will be derived. To handle
Ferreira Guimaraes under the direction of Editor H. the model uncertainty, a more general formu-
Kwakernaak.
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measurements, the PDA scheme will be As in the PDA filter, it is assumed that a rule
employed. The probabilities of associating of validation of the candidate measurementst is
measurements to a target given different system available such that it guarantees that the current
models will be computed and used to weight the return will be retained with a given probability.
combination of state estimates. For each sensor, denote the validated measure-

The problem is formulated in Section 2. A ments at time k as
centralized algorithm which combines the IMM T (4)
algorithm and the PDA filter, resulting in the Z'(k) - {z;(k)}'2 (4)
MMPDA (multiple model PDA) filter, for local where m, is the number of validated measure-
processing will be described in Section 3.* Then ments of sensor i at time k, and
the fusion algorithm which combines the local z , 

A {i)1k (5)
processed results from multiple sensors into a
global one will be presented in Section 4. The local model-conditioned state pdfs at

The algorithm can be applied for tracking a sensor i are
maneuvering target in a cluttered and low
detection environment with a distributed sensor
network (DSN). i = 1, 2; j = 1 ... r (6)

with the corresponding model probabilitics
2. PROBLEM FORMULATION p(Mi(k) IZ,.k, y,.k},

Let us consider the two-node scenario similar
to that given in Chang et al. (1986), where each i = 1, 2; j = 1 . r.. , (7)
node processes the local measurements from its where
own sensor and sends the local estimates to the yi.k= {Yi(1). Y'(k)} (8)
fusion processor periodically. The fusion pro- and Y'(k) denotes the information received by
cessor then sends back the processed results node i during the sampling period ending at time
after each communication time. k, which is defined as the fusion result (namely,

The dynamics of the target in track are global conditional pdf) up to time k - 1.
modeled asAssuming lossless communication and that the

x(k) -=f[r(k - 1), M(k), v[M(k), k - 1]] (1) information communicatd is the sufficie..
statistics, i.e. the information contained in y," is

where x(k) is the state vector, v[M(k), k - 1] equivalent to the information in Z 'k- , then we
the process noise vector and M(k) the system have the following equality:
model from time k - 1 to k. Assume the random p(x(k) I T-, y'k) =p(x(k) izk-, Z" -1)
model process M(k) is Markov and it can only
take values from a finite set M, which contains r =p(x(k) IZ* - ) (9)Sdistinct models,t i.e. where i represents all sensors other than sensor i

M- ,(2) and Z1 ={Z(1)}. 1 , where Z(1) represents
measurements from all sensors at time I.

The measurement system is modeled as follows. Given the above models, the question now is
If the measurement originates from the target in how the global conditional pdf can be con-
track, then structed by fusing together the local ones.

z(k) = h'[x(k), M(k)I + w'[M(k), k] (3) Specifically, we shall investigate what is the
necessary and sufficient information that has to

swhere zi'(k) is the measurement vector from be transmitted between nodes. The derivations
sensor i and w'[M(k), k is the corresponding will be carried out for arbitrary pdfs; however,
measurement noise vector. The two noise the simulations assume linear models with
sequences are mutually independent and inde- Gaussian random variables, in which case the
pendent of the initial state. state's model-conditioned pdf (6) is Gaussian

and the overall conditional pdf of the state is a
*The MMPDA algorithm has been implemented in the Gaussian mixture (Bar-Shalom, 1988).

interactive software MULTIDAT (Bar-Shalom, 1987, 1988).
t The models can have states of different dimension. In

this case, the lower dimension state vectors are augmented 3. CENTRALIZED ALGORITM FOR LOCAL

with suitable components that are zero w.p.I, to make them PROCESSING

compatible. T'his is elaborated on in Section 5. For each local node, the centralized algor-
t Such a rule, also called "gating", considers only the ithm where all measurements are sent to and

measurements within some distance from the predicted processed with one processor is descibed below.
measurements (for details, see, e.g. Bar-Shalom and is d d
Fortmann (1988)). The goal is to compute the conditional state
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distribution given the local accumulated measure- where
ments. With only model uncertainty, the local
conditional pdf at sensor i can be obtained as c2[Mj(k) = , c',[Mi(k), 61]

p(x(k) I Z", Y") o,,
x P{Of 0 Mi(k), Zik-, Yak}

= p(x(k) I Mi(k), Z"., yi.k) =p(Z'(k) I Mi(k), Za,.-,, Y"). (15)
j_1

x P(M,(k) I Zi', yo.k). (10) In equation (13), the joint measurement density
is (see, e.g. Bar-Shalom (1988))

When the additional measurement origin uncer-
tainties are present, the above equation becomes p(Z'(k) I Mi(k), 01, Z'- 1 , Y")

p(x(k) I Z.,', yi.k) ,k ,
=p-p(zk) IM,(k, 0, Z', r,.k)

j
=
1 t A

-  if i ,- 0

~~~~~~V -"Jll r'  t'  M k) ote ws* - P(O x M(k)f,( i k, y ,k , yakt 0 (16
x P{ 0 M,(k), Z"i, Y'.-} (A:)p[z(k) I Mi(k)] otherwise

where Is the eentth k) itwhere Vk is the volume of the validation region,
where 0', is the event that z},(k) is the correct beas ou asmpin nth icret

11 1 becuseour assumption on the incorrect
measurement and 5 denotes no correct measurements being uniformly distributed,*

measurement. independent from each other and from the
The first term on the right-hand side of correct measurement, and

equation (11) is the standard PDA filter based
on model M,, where for each 6O. p[z',(k) I M(k)]

p(x(k) I Ai,(k), 0';, Z ik, yiak)pk ' = P-'p(z(k) I M(k), 0', Z-ak1 , yrk) (17)
1

6 -1p(Z'(k) I k)c[Mi(k), 0p( ()xkis the truncated density which is zero outside the
M ai(k), 0 , Z

i
.
k-

I, yi.k) validation region where PG is the probability that
yiIk) the correct return will lie in the validation

xp(x(k) I Mi(k), Z'k- , Y''k) (12) region.
where 0' has been omitted in the last term above In equation (14), P{O. I lMi(k), Ztk-

l
, 
y,.k) is

(since it is irrelevant) and the prior probability of the event 0, based onmodel M to be correct at time k. By choosing a
c'I[Mi(k), 0,] large enough validation threshold, this prob-

p(Zi(k) lx(k), M(k), Z
i'k - I

, yi.k) ability becomes independent of M,(k) and is
assumed to be the same for all 0, unless target

xp(x(k) M,(k), Z i k- , yik) dx(k) signature information can be used. If no such

=p(Z'(k) I M(k), 19i, Z'ik-1, yi.k). (13) information is available, then

Using Bayes' rule, the second term on the P{O IM,(k), Z"k-, a
i k)

right-hand side of equation (11) is 1 - PP if li =0

P(O, I M,(k), Zik, y,.k) = POPot(18)

p(Z'(k) Mi(k), e', Zik-1 , 1i.k)p{Oi I MA(k), Mk
zi[-1 Z" p-"Y"*(M(k)' Z"',"Yi"k)
-kk where PD is the probability that the correct

p(Z,(k) Mi(k), Zik-1, yik) return will be detected.
x p(Mi(k), Z°'-, y..k) For each model M(k) and event 0',, equation

1 (12) is the standard filtering equation. In that

c2[M(k)Jp(Z(k) IM(k), 0., Zik, yak) equation, by using the IMM approach (Blom
and Bar-Shalom, 1988), the extrapolated pdf is

x P{O, I A,(k), Z 'k -1 , y, obtained by combining the extrapolations of the
I - c[M(k), 01,]1

U x p(6 I, M(k), Z '" .} (14) "For more elaborate models see Bar-Shalom (1988).
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prior pdfs (independent of the event 0,) where

p(x(k) I M.(k), Z"-1, yi.k) c'= c'[Mj(k)]G[Mj(k)]

I - p(x(k) IMj(k), M,(k - 1), Z.k-1, yk*) = p(Z' (k) mleZ', Y ) (22)

-)Mk , k- 1, r" and c'[M(k)] and c[Mi(k)I have been obtained
in equations (15) and (20), respectively.

I '- "(k) I Mj(k), MI(k - 1), Z i'k-
1
, yi.A) Equations (12)-(21) complete a recursive cycle

of the local processing. A flow diagram of the

x P{Mj(k), M,(k - 1)1 Zik-T, Y"} local MMPDA algorithm is given in Fig. 1. The

SpMj(k)IZ,.k-l, yi.k} flow of data is represented by the model-

1 conditioned means fi, and the model prob-

= i ,) [P(x(k ) I Mi(k ), abilities P,

M,(k - 1), Zi.k 1, yi.k) 4. FUSION ALGORITHM

P{Mi(k) IMI(k- 1)) With the local conditional pdfs obtained inx P{M/(k-l)1Zi.k-1, yi~k}] (19) Section 3, we can now derive the fusion
algorithm to obtain global pdf. Similar to

where p(x(k) I M,(k), M,(k - 1), Z ', yi*) is equations (10) and (11), the global conditional
the extrapolation of the conditional state pdf pdf can be obtained as
given Z-'k-' and Yi.k from model M1(k - 1) to p(x(k) I Z')
model Mj(k) and

c3[M'(k)] = P{MI(k) I Zi, yi.k} > p(x(k) I M,(k), Zk)p{M,(k) I Z,}j=
= P(Mj(k) jM,(k -1)) p02)I jk, ~,6, zk)

The x {M ,(k- 1) 1 Ztk- 1 , Y ). (20) j1 0 ", 6,"
(  I

The last term of equation (11) is the a Mj(k), P{Mi(k)
posteriori model probability, which is obtained (23)
as (3
a P(Mj(k) IZi' k-1 , yi.k)}

I Z.k-., yi.k) Assuming measurements from different sensors
- 'k are independent given the target state, then the

XP(M(k) IZi.k-1, yi.,} first term on the right-hand side of equation (23)
• can be obtained as

I = 7 ci[M(k)]ci[M(k)] (21) Pol(k) t9M(k),OO,2, Zk)

2 3' ' '1 p( ()Ix(k) , ,.(k), ,,oZ -)

.1(k __ __1 . xkIl 1 M (k), (01 , ,,, Z * '1

x p(Z(k) I x(k), M,(k), 6,, Zk -)3 cjM)(k) 61,, , 1

x' mixZ() xkMkO, k.

I[ xp(x(k) M i )(k), -)
2

FILTERO [OTR p((k) I x(k), M(k), 6, Z )]

FI2. 0. Cen1ralized MMPDA algorithm with r= 2 at P(x(k) M(k), Z -)

3 SeisO i. (24)

. =.--..,...= mmnmnn mnI II I I
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where Assuming 0l, and 01' are independent given

O'l. 021the target state, then similarly to Chang et al.
c[Mi(k), 0 1' O (1986), the second term of equation (23) can be

= f (Z~) xk),M,(), 0 , 2, IC 1)obtained as

f p(Z(k) I x(k), M0(k, 0, Zk1 , k M (, 62

= p(Z(k) Ii(k), 01, t, 2 zk- ) (25) =C[M(k)f~ 12 Z(k) I x(k), M,(k),
12 ~Zk 1 )p(x(k) I M,(k), Z-') dx(k)

is the normalization constant. 1ISince from equations (12) and (9) =cttMk(k)]
p(x(k) I M,(k), at, Zi'k, yi.k) 2

1. 1 px~k, 0,, Z'(k) I M(k),V
C'NM,(k), 0"1x p(x(k) I Mi(k), Zk-

1
) dx(k)

x p (Z(k) I x (k), Mj(k), 0i, Zk-1 ) 2 ~;M.k) 'kZ 1

2

Equation (24) can be rewritten as rIp(x(k) I Mj(k), 0', Z'(k), ZAk- 1 )

p(x(k) IM,(k), 0', , CZk) px ~ )M()Zl dtx(k)

1 (30)
c[Mj(k), 01', 612 where

[I [cl[M,(k), 0,] c,[Mj(k)l = P(Z(k) IM,(k), Z ') (31)

x p(x(k) jI(k), 0', Zi'", yi~k)]Ip(x(k) (Aj(k) , zk- 1 )an

12M~~ c1(M,(k)J
c0[M,(k), 0,',, 021 2 pZ(~M~()ZR

rH p(x(k) I M,(k), 0i, Zi~k, yi.k)i-
(27) - c,(Mj(k)J 32

where the denominator can be derived as s=

p(x(k) IMj(k), Zk-1) =p(x(k), M,(k) I Z ) are normalization constants, where c'2[M,(k)]
p(M,(k) I Zk-') was given in equation (15).

r Zk-1)Since the information contained in Zk-1 is theZ Ip(x(k) IMj.(k), M,(k - 1), ZA)same as that in {Zi.k11, yi~k} (see equation (9)

x P{M,(k) M,(k - 1))P{M,(k - 1)1 zk-1  for details), equation (30) can be written as

SP{M,(k) jM,(k - 1)}P(M,(k - 1)1 Zk-1} P{61, 111 Pd(k), Zk)

and) i-rI P(O'. I M,(k), zk ik

and (k,~ ~ cIM,(k), 0),, 0'] c2[M (k)]

Hc'[M(k), 0'] 11p(x(k) I M(k), 1;, Z~,Y

2 1J p -(x(k) I A1j(k), Zkl) dx(k)

p(x(k) M,(k), 01,, Zik yf.k) 1 2f, c2[M(k) - ,PO,,IM~) Z- '
fJ p(x(k) I Mj(k), Zk-3 ) dx2) HP{j k4,(),Z', lk(2)IC[ikOt, '1.(3

is the new normalization constant. From equations (27) and (33), equation (23) can
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be written as and ' are =p(Z(k) Z ) (36)

p(x(k)I Zk) = and
,~t c2[Ml(k )J and

2 = - (37)
[I [p(x(k) I M,(k), Or,, Z0' ' , Y )JI p(Z'(k) zk Ic)

4 x P{(0" f M,(k), z'.-, Y"')

p(x(k) I M,(k), Zk-) 4.1. Ouerview of thefusion algorithm

x P(M,(k) I Zk}. (34) From the above, it follows that the global a
posteriori pdf and model probabilities are

The last term of equation (34) is the global a obtaincd by combining (multiplying) the local a
posteriori model probabilities. With equations posteriori pdfs and model probabilities and
(31) and (32) we have removing (dividing) the common a priori pdf and

iZk model probabilities. From equation (34), we can
P(M/k) IZ} see that for each model, the conditional global

1p(Z(k) M,(k), Zk•)PJM,(k) Z"-') pdf given that this model is correct is obtained

c by the sum of global fused pdfs given all possibleI global event pairs 0,, 01. The overall global a
-c[M(k)]P{M(k) posteriori pdf is then obtained by the sum of
C global pdfs of each model weighted by the global

[ ] a posteriori model probabilities. Equations (34)

c[ and (35) represent the complete cycle of fusion
processing. From them it follows that the

-c[M,(k)] information needed to be communicated from
C local nodes to the fusion node consists of:2

--,I [c2[M,(k)]P{M,(k)I Z-')l (a) the model probabilities;

x p{M,(k) I Z'-') (b) the association event probabilities; and
(c) the corresponding pdfs (mean and covari-

Sc2[M,(k)] ance for Gaussian case).

2 A summary flow diagram of the fusion
1I [p(Z'(k)i M(k), Z 'k-', yk) algorithm with two models is given in Fig. 2. For

I x ____P____M_______________Z____-_________ k1kI *P{M,(k) I -  ) Z"")

cjM,(k I'(k) I Jk 11 P "

H [P{M,(k) I Z'(k), Z k- 1
}

i ( "-.C. , ,'k (21"?a-I

x p(Z'(k) Zk-')] It--- I " P '
x NOCE__2__

P{M,(k) z k-1 } ,I )

MI (k) M ([))

nI [P{M,(k) I Zi'", yak }p(Z'(k) jZk-1)J

2P{M,(k) I Z"-')

11Z, , k ' y,. k ________

C2A.1,(k)1, . PM() 3)='MNTO

- P{M,(k)IZk_,} (35)

where the denominator is the same as that of IN.) ,,

equation (28) and the normalization constants e Fic.. 2 Distributed MMPDA algorihm with r 2.



U Distributed adaptive estimation 365

simplicity, only the mean of each pdf is shown in where the process noise v(k) representing here
the figure. References to the corresponding the acceleration increment ever one period is a
equations are also given in the figure. zero mean Gaussian white noise vector with

covariance
5. SIMULATION RESULTS Iq 2.. 0A two-dimensional single target tracking L 0 q2.,

problem will be considered. Two target dynamic
models will be assumed, one with (nearly) Assuming only position measurements to be

constant velocity and the other with (nearly) available, then. for node i

constant acceleration. The Markov transition z'(k) =H'x(k) + w,(k) (45)
matrix of the models is known and given. The where
initial target state estimate is given and the initial 01 o 0°0
probabilities of the two target models are = [ 1 (46)

assumed equal. 0 a

The target dynamic models with discretization and W(k) is a zero mean Gaussian white noise
over time intervals of length T are vector with co-ariance

x(k) =F(Mf(k)] x(k - 1)r.0

+ G[M(k)]v(k - 1) (38) ry
where for model 1, the nearly constant velocity To overcome the fact that one has different

model, the state is state dimensions the lower dimension vector was
x=Ix i y [' (39) augmented with suitable zero components

and (which then have mean and variance zero) to

F1 T 0 0 make it compatible with the higher dimensionI 0 1 0 0 state.
F= 0 0 1(40) With sampling interval T = I s, the true target

0 1is simulated with constant velocity for the first
seven scans, then switches to constant acceler-

T21? 0 ation for the next seven scans, and finally returns
T 0to constant velocity for another seven scans. The

G= 0 Tz2 (41) initial target state is assumed to be [lO0m,

0 30 ms - , 0,100 m, 15 m s 01 and the acceler-
0 T1 ation is assumed to be 5 and -5 m s- 2 for the x

The process noise v(k) = t,,, vj' representing and y coordinates, respectively.
the acceleration during one period is a zero The variances of the process noise are taken as
mean Gaussian white noise vector with q,.. = qi1 = 0.1 (M S2) for model 1, the nearlycovariance . constant velocity model, and q2 , =q!.,=

Iq . 1.0 (m s-2)2 for model 2, the nearly constant
L 0 q1 , acceleration r.odel. The detection probabilities

For models 2 (with acceleration), the state is for both sensors are equal to 0.67 and the false
X=[x . . . ]' (42) alarm rates are 0.01lm - 2. The standard

and deviations of the measurement errors are

1 T T 2 /2 0 0 0 assumed to be V(l0)m for both x and v
coordinates of the two sensors. The Markovtransition matrix for the model parameters is

F= 0 0 1 0 0 0 (43) assumed to be

0 0 0 1 T T'/2 10.9 0.1

S0 0 0 0 1 T 0.1 0.9

L0 0 0 0 0 1 The initial state estimate is generated randomly

T 2 /2 0 with mean the same as the true target state

T 0 and covariance matrix equal to

1 0 diag [1W . 1, 0.1, 1X , 1,0.1].
= 0 T2"(44) Three different configurations will be tested.First, each sensor will be simulated indepen-0 T dently using the MMPI)A algorithm described in

0 i 'Ltil, 3. Second, a centralized processing with
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measurements from both sensors will be both single sensor cases the algorithm fails to
simulated using the same MMPDA algorithm, detect clearly the switches of the target between
Finally, the distributed case will be simulated. In two models. The distributed algorithm not only
this case, the two nodes will communicate every responds faster in detecting the first jump of the
scan.* At each scan, each node will process its target from the constant velocity mode to the
own sensor measurements first, then send the constant acceleration mode, but also successfully
local processed results to the fusion node. After detects the end of the acceleration. The
receiving the information from both local nodes, centralized algorithm, which is not shown in the
the fusion node will use the fusion algorithm figures, performs exactly the same as the

I derived in the previous section to construct the distributed one.
global estimates and send the results back to The average performances for the three
each local node. configurations for 50 runs are given in Table 1.

Simulations were carried out with 50 Monte The centralized and distributed algorithms
Carlo runs. The results of one sample run are successfully track the target in 43 out of 50 runs
shown in Figs 3-5. Figures 3 and 4 show the ("successful tracking" is defined when the
estimated and true trajectories of the target with estimated target position is within 30 m of the
sensors 1 and 2, respectively. Figure 5 shows the true target position for the last three scans).
results for the distributed case where the two However, out of 50 runs, sensor 1 alone and
sensors interchanged their processed results. As sensor 2 alone only track the target successfully
one can see, the single sensor processed results in 27 and 30 runs, respectively. The r.m.s.
have poor performance, and the target is lost in position errors for those successful runs are also
both cases. Figure 6 shows the probability calculated. Similarly, the centralized and distrib-
trajectories of model 2 for the three cases as uted algorithms perform better than the single
calculated by the corresponding state/model sensor configurations. Note that the quality of
estimators. As can be seen from the figures, in the estimation using two sensors in terms of

mean square error is significantly better than
but has the advantages o( redundancy and reliability (or This is totally equivalent to the centralized configuration using a single sensor.
D)SN system. This configuration can also be used with a The centralized case yields the upper bound of
lowcr communication rate (Chang eral, 1986) the performance for the distributed configur-
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ation when the nodes communicate every scan. ance of the algorithm. With full communication
The simulation shows that the results of rate, the distributed case performs exactly the
the distiibuted algorithm are the same as in the same as the centralized case, which confirms the
centralized algorithm, which confirms the theor- theoretical equivalence, but has the advantages
etical equivalence. of increased reliability.
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Substituting these into (3.10), and using (E-2), we obtain 151 G. C. Goodwin and K. Sin. Adaptive Fdtering Prediction and Control.
Englewood Cliff, NJ: Preadoe-Hall. 1984.

lrme (t)w0. (3.13) 161 C. A. Dcoer . "SowlY varying discrete system, x,.I - Ax-," Elecfron. Lett..
vol. 6. pp. 339-340. May 1970.

171 C. A. Dewo an M. Vidya ,gar, Feedback Systems: Input-Output Proper-

The estimation property (E-3), the uniform boundedness ofy(t) and u(t), ties. New York: Acadeic. 1975.
and (2.5) the definition of t', imply that 1Sl G. C. Goodwin. R. L. Leal, D. Q. Maym. and R. H. Middleton. "RaIpproche-

meat between continuos and discrete model reference adaptive oool,"

rn C(I)= 0. Automatica. vol. 22, pp. 199-207, 1986.

Substituting this into (3.11) and, again, using (E-2) we obtain

lim e(t) =0. (3.14)
(-" An Adaptive Dual Controller for a MIMO-ARMA

Since E(z') is a stable polynomial, we can establish ii) by substituting SystemS(3.13) and (3.14) into (3.12). VVV
Remark 3.1: The multirate sampling estimation algorithm in general P. MOOKERJEE AND Y. BAR-SHALOM

does not have the property that e()/[ I + 110(l - 1)11 21 2 E 12, which is
required in the stability proof of conventional adaptive control algorithms.
However, we still prove the stability using property (E-3) and the reltion Abstract-An adaptive dual controller Is presented here for a multiin-le~t) I - l~t~ fort _ gt <ti.put multioutput ARMA system. The plant has constant but unknown

t (e(I)t for t, :5 ( < f. parameters. The cautious controller with a one-step horizon and a new

dual controller with a two-step horizon are examined. In many Instances,

IV. CONCLUSIONS the myopic cautious controller Ih seen to turn off and converges very

In this note, we have developed a multirate sampling adaptive control slowly. The dual controller modifies the cautious control design by

algorithm which allows a fast sampling rate of feedback control to be numerator and denominator correction terms which depend upon the

even if the computation of parameter estimate and controller coefficient sensitivity functions of the expected future cost and avoids the turn-off

eve te complationo perameerftime and slow convergence. Monte-Carlo comparisons based on parametricmay take a relatively long period of time. annoarmristttcl nlssIdaethsuroryofteul
The key idea to achieve this is to record the plant input and output prior and nonparametric statistical analysis Indicate the superiority of the dual

to the currently obtained estimate and use them to compute the coming

estimate and controller coefficients. Thus, the computation is not 1. INTRODUCTION
dependent upon the inputs and outputs'appearing during the updating
process. The closed-loop system is shown to be stable. Multiinput multioutput systems with unknown parameters are encoun-

Remark 4.1: tered in many practical situations, and their control poses a great
i) One may further extend the algorithm to consider t - ti- I > n + m challenge to the stochastic control theory. It is not possible to obtain an

+ d = it. In this case, a relation optimal solution for such systems because of the dimensionality involved
in the stochastic dynamic programming [6]. In such situations, emphasis

+e(ts- +i+k)( sCt max I e(t{+C, is on obtaining a suboptimal solution that incorporates the intrinsic
+ < Le * )1 properties of the optimal solution. For stochastic systems, the control has

in general a dual effect (21, (111: it affects the system's state as well as the
(k < c, C, < on, C2 < on), can be used, and the algorithm only needsto future state and/or parameter uncertainty. Thus, the dual controller offers
compute e(t) for j_1 _ 1 < ti- I + if but not for every t in t_ -I t < ts .  significant improvemet potential for the control of uncertain linear

ii) Instead of the ARMA model, one can use 5-model [81 in the plants. In multistage problems it "probes" the system to enhance real-
algorithm, which retains the key features of the continuous-time model time identification of the system's parameters in order to increase the
and allows a wide bandwidth MRAC system to be achieved, accuracy of the subsequent control decisions and regulates the system at

iii) The multirate sampling adaptive control is presented for an indirect the same time [41, [91.
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performance are applicable to the presented multirate sampling adaptive second class (developed for SISO systems in [31, [161, (171) used the
algorithm. These methods include: a) various modifica,Jns of parameter stochastic dynamic programming equation and expands the future cost
estimator for improving convergence rate; b) noise and disturbance about a nominal trajectory. Using first- and second-order Taylor series
filtering techniques; c) robustness techniques with respect to disturbances expansions of the expected future cost about a nominal trajectory, dual
and unmodeled dynamics, such as deadzone, normalization, etc.; d) controllers for MIMO static systems are developed in [5] and [141. A
internal model principle for deterministic disturbance rejection, etc. second-order Taylor series expansion of the future expected cost is

performed about a nominal trajectory and a dual controller based on a
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controller prevents the turn-off phciomenon and slow convergence cost to go from k to N, and P is the cumulated information at time k when
prevalent with a cautious solution. the control u(k) is to be applied. The information I" is the set of all past

Section II gives the problem formulation. The approximate dual controls until time k - I and outputs until time k.
controller with a two-step horizon for the MIMO system is derived in Thus. for a two-step horizon we have
Section I. The control solution is obtained by approximating the solution
of the stochastic dynamic programming equation. A second-order Taylor j min E{C(k)+J Z.'t,, 2 II
series expansion of the expected future cost is performed about a nominal .. -

trajectory and this leads to a dual control solution in a closed form.
Following the derivations of the controller, a summary of the algorithm is - min E[ .y(k + I) -y,) 'Q(k)(y(k + I) -y,} + 'k+ I.k+ 21]
given. Section IV describes the simulation of the plant and compares the
performances of the cautious and the dual solutions. Section V concludes (2)
the note. where J*+, 2k is the optimal expected cost at the last step with one-step

I. PROB'LEM FORMULATION horizon and is obtained by minimization of Jk .k,.,2 and Jk,. 1,.2 is the

cost to go from k + I to k + 2.

The MIMO system to be controlled is described by The cautious control at k + I with one-step horizon is given by

y(k)= -Ay(k- l)+Bu(k- l) +e(k) (1) u(k+ 1)=[E{B'Q(k+ I)BIIk*1}]
-

whr E[B'Q(k+ l){Ay(k+ I)+y,)1*']. (3)
where

E[e(k)] =0; E(e(k) e'(j)] = W 6
kj. (2) The cost from step k + I to k + 2 is

Here y(k) is the output of the plant, u(k) is the input to the plant, and 'k + I.k 
= tr Q(k + I) W

e(k) is the measurement noise. +E[(Ay(k+ 1)+y,)' Q(k+ l)(Ay(k + l)+y,}
The parameter matrices A and B are unknown. This model describes

some industrial processes like an ore crushing plant, or a heat exchanger + u'(k + I)B'Q(k + l)Bu(k + I) - 2 (Ay(k + 1) +y,}'

[1]. The unknown elements of A and B comprise the parameter vector • Q(k+ l)Bu(k+ I)ll]- (4)

0(k) whose estimate at time k is 0(k) with covariance matrix P(k). The
parameter vector is designated as and inserting (3) into (4) the optimal cost at the last step is

8(k) A [a;IbIaIb'I ...Ia.Ib1' (3) J+.k+2=tr Q(k+ l)W

where n is the dimension of the output vectory(k) and a,, b; are the ith +E[(Ay(k+ 1) +y,) 'Q(ki+ l){Ay(k+ I) +y,)Ill*"]
row of the matrices A and B, respectively. Assuming the parameters are
time-invariant, we have - El1Ay(k + 1) + y,)'Q(k + I)B I I*]

6(k+ l)=0(k). (4). [E(B'Q(k+ l)BIk+)]
- 1

E[B'Q(k+ l){Ay(k+ 1)+y,}flpl]- (5)
- A measurement matrix H(k) is defined as

where E{-1k+1 ) is the conditional expectation given the availableH(k) A diag [ -y'(k)l u'(k), -y'(k)l u'(k), -. ] (5) inomto J + .

where H(k) has n rows, and y'(k), u'(k) are the measurement and The unknown parameters will be chosen from the Gaussian family and

control vectors transposed. thus their estimate 3(k + 1) and associated error covariance P(k + 1) are
With these definitions, the measurement model is the sufficient statistic. The parameter vector estimate O(k + 1) and the

associated covariance matrix P(k + 1) are obtained from a Kalman filter

y(k)=H(k- l)0(k- l)+e(k). (6) according to

The performance criterion to be minimized is J(O), i.e., the conditional K(k + 1) = P(k)H'(k)(H(k)P(k)H'(k) + W] - (6)

expected value of the cost C(O) from step 0 to N, denoted by

J(O) = E{C(O)IIk 0(k + 1) 6(k) +K(k + l)[y(k + 1) - H(k)P(k)]

IN-I 1 =P(k)+K(k+I)P(k+l) (7)

=E Y, (y(k+l)-y,}'Q(k){y(k+l)-y,)I]l (7) P(k+ l)=P(k)-P(k)H'(k)[H(k)P(k)H'(k)+ W]-'H(k)P(k). (8)
1k-0I

where Q(k) is the diagonal weighting matrix, I k is the cumulated Here r(k + 1) is the innovation of the process.
information at time k, and y, is the desired output. From (5) it is Clear that Jk+ I.k+ 2 is a nonlinear function ofthe estimated

parameter vector S(k + 1) and covariance P(k + I). But the estimated

vector S(k + 1) and the covariance P(k + 1) are not known until the
DUALCONTROL HORIOcontrol u(k) is applied.

First the controller is derived and then a summary of the algorithm is A control u(k) with a two-step horizon can be obtained from (2) if a

provided, second-order Taylor series expansion of J*+ 1.1+2 is performed about a

A dual control solution with a two-step horizon is obtained by suitable nominal trajectory. Here the nominal trajectory is defined by

minimizing (2.7) with respect to the control u(0) for the multidimensional 1 a nominal parameter estimate J(k + 1) = 6(k)
plant (2.1)-(2.4). This is obtained by solving the general equation of
stochastic dynamic programming [3], (7], (81 2) a nominal control dL(k)

3) a nominal covariance P(k+ I) obtained by using a(k)
J1(k) min E{C(k)+ J*(k+ 1)11k} k ,N- 1 1, 0 (1)

.1*) 4) a nominal measurement Y(k+ I) obtained by using z(k) and

where J*(k) is the optiml expected cost to go from k to N, C(k) is the 6(k), i.e.. f(k+ 1) = 1(k)6(k).I



EEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 34. NO. 7. JULY 1989 797

Expansion of (5) about this nominal trajectory results in with the superscript here denoting the matrix element, ej the ith Cartesian
J I*k+ =1, +J'(k+ l)(y(k+ l)-j(k+ I)] basis vector, and

+[y(k+ l)-y(k+ l)]'J,,(k+i)ly(k+ l)-y(k+ I I) P (k+1) a1p(k+ 1)
- Ou(k) ;P( - 6 au2(k) i~~,".

+ J, (k + 1)[;(k + 1) - J(k)] +-I [;(k+ I) -;(k)]'~O

SJ(k + 1)[6(k + I) -S(k)] evaluated at P(k + 1) and a(k) and r the number of unknown parameters.
Now a (suboptimal) dual solution up(k) with a two-step horizon can be

+tr [J,,(k + 1)(P(k + 1) -15(k+ 1)}] (9) obtained from (2) using (18)-(20) and is given in closed form by
,here it is the zeroth-order term and the cost sensitivities are uD(k)=(E{B'Q(k)Bll } +F]-'IE{B'Q(k)(Ay(k)+y,)11} +f] (21)

J, - 
Ek + 1) +1] (21)

J (k+ ) d,( k + 1) (10) where the elements of the mat;, F and those of the vectorf are given by
L ayI(k+ I) j

S a'J*+ 1.k2 +' ) l auP,(k )

J.(k+ ) 4  
8  -+) R,Iay, (k + *I)ayj(k+ 1) +(11)k )al~)P,)(Hk

+ 1 (k+.k.2 (12) 2 [ au,(k) a.(,k)
a(1 +!tr [ 7 k+l ( k)(k))( a(k) (k))+i tr Jx.( + 1 ( du (k) au, (k)

J~(k~) a Jk+l~k+2

J, (k(+ 1) A) (13) i.j= 1. . m (22)

and

k=+1 -i \al-k) (k) ,(k+ I)
The above sensitivities arc evaluated a, 1(k), J5(k + l), and y(k + I); [

uid Pd(k + 1) is the ijth clement of the covar-iancc matrix associated 1 J~ + I)-J k+1 aP(k + 1)

with the parameter estimates Si(k + 1) and j(k + 1). -2 2 3)l u,(k)

Under the Gaussian ass.nption for the zero mean noise

3y(k+l)-(k+l)-M[tb, V] (15) +i tr 1pk+1 vk I alk3jk
where the conditional mean is 1..

+ I , ( 1 H(k) 4( H(k) 6() ik. ,=E(H(k)e(k)+e-(kk),I} ++. L1,(k+ ) 2au,(k) au,(k) ][ [H(k) -/ '(k)] (k) (16) (23)

ind the' conditional covariance is
and m is the dimension of the control vector, u is the ith element of the

V=E[{y(k+ )-(+l)(k+ l)-(k+ 1)control vector.

=H(k)P(k)H'(k)+ W. (17) It is clear from (21) that this approximate dual solution uD(k) is a
modification of the cautious solution by the cost sensitivity terms. The

With the choice of the nominal path as defined earlier and using (6), cautious solution is(21) withF = Oandf = 0. These account for the dual
(16). and (17). the conditional expected value of (9) is effect. The implementation of this second-order dual solution is per-

* E(Jk .k 2
1k)}=J1+J;(k+ l)(H(k ) - Jq k ) ] 6(k) formed by the method described below.

Algorithm Summary.
+ I + uk ) Compute the sensitivity functions Jv(k + 1), Jp(k + 1), Jy(k +
+2 2) 1), J,,(k + 1) for (18) with #(k + 1) = (k) and the nominal values

I a(k), P(k + 1), y(k + I) defining the nominal path.
+2 tr [J (k+ l){P(k)-P(k+ 1))] 2) Search on (2) with (18) [with the sensitivity functions computedabove, starting with first nominal values 0(k), P(k + 1)] over t(k) to

+tr [Jp(k+ l)(P(k+ 1)-P(k+ 1))]. (18) obtain an improved nominal for which J,*.,. is lower. This search isI The above expected future cost (18) is a function of the nominal done by selecting a first coarse grid. A grid search is necessary to avoid
prameters multiplied by appropriate sensitivity functions J,(k + 1), locking in on a local minimum. Then another grid is chosen about ther(k + ), J(k + 1) and Jp(k + 1). These sensitivities introduce the latter control over a narrower interval and from a second search ut(k) is

dual effect into (2) which is then used to yield u(k). It must also be noted obtained,

doat the covariance P(k + 1) is nonlinear in u(k) and is not yet know. 3) Using u(k) compute the covariance sensitivities P.(k + 1). P,(k

Hence, a second-order expansion of P(k + I) is proposed about a + 1); together with the previously computed cost sensitivities J )(k + 1).

bominal control (k) and a nominal covariance P(k + 1) in order to Jp(k + 1), J,,(k + 1), J,(k + 1) obtain F. f defined in (22). (23).

obtain a (suboptimal) dual solution UD(k) in a closed form from (2). Finally, the control to be applied, uD(k), is calculated from its explicit
This expansion is performed as follows: expression (21).

The iteration described in step 2) above is carried out to obtain better

P(k+(k+l)u(k)- (k)l covariance sensitivities. The control uD(k) could have been obtained
+)=(k+)+ ee directly from (21) by skipping step 2) above; however, as indicated in [13]

" I and [14), this results in unsatisfactory performance. With this iteration of

+ [u(k) - d(k)]'P' (k + I)[u(k) - a(k)] (19) step 2), the "improved" sensitivities yield good performance as sho%-n in
the next section.In
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IV. SIMULATION RESULTS TABLE I
AVERAGE COSTS FOR THE THREE ALGORITHMS IN THE SIMULATION

Performance is evaluated from 500 Monte Carlo runs for the following WITH A LIMITER (lu,I 2.0. luzI < 2.0) (500 MONTE CARLO RUNS).controllers: THE SUPERIOR RATE OF ADAPTATION OF THE DUAL ALGORIT'HM
1) heuristic certainty equivalence [31 (with a one-step horizon); IS DEMONSTRATED HERE
2) one-step ahead cautious controller; and

TIoe HCE Cautlo..s D3) dual controller based upon sensitivity functions (with a two-step Stophorizon) derived in Section I. k
The plant equations for a two-input two-output system are k r .

y,(k+ l)= -a,yl(k)-al 2y(k)+b, ul(k)+b,2 u2 (k)+el(k+ I) (I) - L-1
1 14851 14851 3623 3623 69" 694

yi(k+ l)= -aly,(k)-ayI(k)+bzu,(k)+bnuI(k)+e2(k+1) (2) 2 6241 21092 3961 7554 6722 136663 3578 24.670 3246 10830 4230 17896m4 1616 26286 2836 13666 1866 19762

where 5 1354 27640 2505 16171I 807 28447 2154 18325 953 222072 593 2904.0 1921 2024-6 700 22907
.W,=7.522; W2=432. (3) 8 462 29502 1670 21916 582 23489

9 397 29899 1623 23539 535 24024The true values of the parameters are 10 347 30246 1327 24866 385 24409

al =0.8 bm,1 -74.84 40 77 34'.444 281 43810 89 29178

a,,=O*1 b,, -511.04

oz, =0.2 bki 53.31-. 75 b22 8.5.31 (4TABLE II
0.75 b. = -82.56. (4) STATISTICAL SIGNIFICANCE TEST FOR COMP ARISONS OF THE CAUTIOUS

AND THE DUAL ALGORITHM IN THE SIMULATION WITH A LImITEROnly the gain parameters (B matrix) are considered unknown for (Iu, 1 2.0. 1 u21 NT S T 2.0) (500 MONWTE CARLO RU TS)
testing the dual effect and their initial estimates were generated as % (bq, (__2.,__ 2)0M _C OU
b 2

.) i, j = 1, 2. This choice of system was motivated by the helicopter Ti., Test ,ts.t,.aod
vibration study S131. st atistic I,,r .... t

A large initial uncertainty is chosen in the parameter estimates in order k Z. z I
to test the leaning capabilities of the various adaptive algorithms. The 1 -8.1 -91cost weighting marcsare .2 -5. 3 .69

3 -2.2 -30Q(k) = diag (q,, q2); q, = 1.0, q2 = 1.0- (5) 4 3.5 341(5 3.3 40

The desired response is 6 6.0 36
y,=[- 18 80]'. (6) 8 6.3 659 6.5 67n1 I.7 

71
" For the model chosen ()--(6) the optimal ontrol solution in order to 11 6.3 76

reach a steady-state value of y, in (6) is 12 5.6 70
13 5.9 82
14 5.2 62u,* = 1.0, u ' 1.0. (7) is 5.5 79
16 4.9 70
17 4.5 78In terms of the notation of (1) and (2) i8 4.4 74
19 4.4 76

D(k) A [all 712 61f(k)-bzl(k) a1l an 62 ,(k) 62(k)]' (8) 020 J .3 76Hand
Hy -)Yl(k) -yi(Ik) u,(k) u2(k) 0 0 0 0 JI90 0 0 0 -y(k) -y(k) ul(k) 0](9

The controllers are implemented with a sliding horizon for a total of 40 caution and probing to learn the parameters fast. Fig. I compares the
time steps. The evaluation criterion is performances of the three algorithms for 500 Monte Carlo runs. Both

Table I and Fig. 1 demonstrate the superior rate of adaptation of the
C6=(y(k+ 1)-y,)' Q(k)(y(k+ I)-y,). (10) dual algorithm.

Table II provides a statistical significance test and shows the improved
A. Analysis of the Monte Carlo Average Costs performancesof the dual solution from time step 4) onwards with at leas,

98 percent confidence.
Comparisons are made between the performances of the cautious and Table III indicates the percentage of runs where the cost exceeds 2000

the dual algorithm on the.system and a statistical significance analysis is for the two algorithms. This threshold of 2000 is selected from a sampledone using the normal theory approach (i.e., it is assumed that the central distribution study of the cost at each time step. Table IV shows the
limit theorem holds for the sample mean from a large number of runs) percentile test [14], [15] comparing the cautious and the dual solution.
[14]. Tables I-IV contain the results of the simulation runs. Table I They clearly indicate from time step 4).onwards the light tailed nature of
compares the aiverage cost C, over 500 Monte Carlo runs for the first 40 the distribution of the cost yielded by the new dual control algorithm.
time steps for .HCE, cautious and the dual algorithms, with a control
limiter Iuil : 2, i = 1, 2.: B. Individual Time History Runs

Clearly it is seen that the cumulative average cost is the lowest for the
because of lack of caution. The cautious controller is overly cautious and offered by the dual solution; it provides no information about the cautious

exhibits slow convergence. However, the dual controller incurs less control's turning-off phenomenon [16], [18]. Hence, a careful investiga-
penalty in time step 1) than the HCE and makes a judicious choice of tion of the individual runs is required to examine these occurrences.
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TABLE III CAUTIOUS AND DUAL
COMPARISON OF THE TAILS USING THE CAUTIOUS AND THE DUAL

ALGORITHMS IN THE SIMULATION WITH A LIMITER CATIOUS
(Iu,1 :5 2.0. Jul[ 1: 2.0) (500 MONTE CARLO RUNS) - - .-- UA

T ime P e*rcen ta4 g e o f r uns• : O~ a

Step tt.ch exceed 2000

k C atouA Dual

186 76 I ........... . .-260 52
43 40

4 33 25
5 31 17
6 22 10
7 21 a8 19 7
9 16 3

10 12 2
it 12 182S12 10 1.4 o;° 10 2w so 40
1 3 1 1 1 .4 i w S o14 7 1 Tm tI15 a 0.4 Fig. 2. Time history of output I using the cautious and the dual algorithms

17 6 0.2 for run 90 (500 Monte Carlo runs; Iu, I s 2.0; Jul I s 2.0).

18 6 0.4
19 S 0.4

L20 5 0.2

0 0CAUTIOUS AND DUAL

TABLE IV . _ __CA.,rousIF*CF-".LE TE.S' FOR COMPARISONS OF THE CAUTIOUS AND THE DUAL
ALGORITHMS IN THE SIMULATION WITH A LIMITER . -....

u(Iul : 2.0. lull -; 2.0) (500 MONTE CARLO RUNS) . ".

Tie

Ste, A' test statistics

S05 196 23 :-
7 32,
1 35

9 710 37

11 4012 40 1 0 10 20 30 40
13 4.0

F u14 1, Time step
15 3216 11 Fig. 3. Time, history of output 2 using the cautious and the dual algorithms
1.7 16I for run 90 (500 Monte Carlo runs; I u, :5 2.0; 1 ul < 2.0).

isl 16

19 18

, CAUTIOUS AND DUAL

CAUTIOUS, DUAL AND HCE cArTous3 ___ WAL

j DUAL

wV

0 O M 20 )0 - 40
Time Step .,

Fig. 1. Time history of the average cost using the heuristic certainty 0 10 20 30 40
equivalence, cautious, and the dual controllers. (500 Monte Carlo runs, Tiw. Step
lull r 2.0, lull s 2.0.) The superior rate of adaptation of the dual Fig. 4. Time history of control I using the cautious and the dual algorithms
algorithm is demonstrated here. for run 90 (500 Monte Carlo runs; Iu.j 2.0; , I < 2.0).
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CAUTIOUS AND DUAL over the cautious controller. The key improvement is in the avoiding of
situations like turn-off and slow convergences, typical of the cautious

Scumous solution.
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TIME-REVERSION OF A HYBRID STATE STOCHASTIC DIFFERENCE SYSTEM
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ABSTRACT Our problem falls in the category of how to
reverse a Markov process in time. The Markov

The reversion in time of a stochastic difference property implies that the past and the future are
equation in a hybrid space, with a Markovian independent under the condition that the present
solution, is presented. The reversion is obtained state is known (Wentzell, 1911). This invariance
by a martingale approach, which previously led to with respect to the time direction is the key
reverse time forms for stochastic equatiois with property used in time-reversion studies. There are
Gauss-Markev or diffusion solutions. The reverse two types of studies that deal with this problem,
.time equations follow from a particular a classical type and a systems-type. The classical

non-canonical martingale decomposition, while the type of study assumes that the transition measure
reverse time equations for Gauss-Markov and or the generator of a Markow process is given and
diffusion solutions followed from the canonical then tries to characterize the transition measure
martingale decomposition. The need for this in reverse-time direction (Nagasawa, 1964; Kunita

non-canonical decomposition stems from the hybrid and Watanabe, 1966; Chung and Walsh, 1969; Az6ma,
-tat* space situation. Moreover, the non-Gaussian 1973; Hasegawa, 1976; Oynkin, 1978; Williams,
discrete time situation leads to reverse time 1979).
equations that incorporate a Bayesian estimation The systes-type of study assumes that a
step. stochastic equation with a Karkovian solution is

given for which it tries to characterize the
1. INTRODUCTION tise-reversed equation. The first time-reversed

equations were obtained by orthogonality
This paper adresses the problem of time-reversion arguments, for the linear Gaussian situation
of a hybrid state Markov process which is given as (Ljung and Kailath, 1976. Lainiotis, 1976). For
the solution of a stochastic difference equation, general diffusions, it has already been pointed
The desired result is a similar equation but out by Stratonovich (1960) how to obtain the
running in reverse-time direction while having a reversed-time equations by actually following the
solution that is respectively pathwist and in classical approach: from a stochastic equation via
probability law equivalent to the solution o the the generator and the time-reversed generator back
forward equation. to time-reversed equations. A truly systems-type
The motivation to study this problem eteas from of study has been started by Verghese and Kailath

two different kinds of application. The first is (1979), by showing how for a linear Gauszla..
to approach the solution of a nonlinear smoothing system a more direct martingal. approach leads in
problem by a merging o the estimates of two a simpler way to time-rversed equations.
nonlinear filters: one filter matches the original Moreover, by this approach it was possible to

model and is applied in the usual time direction obtain a reversed-time equation with a pathwise
while the other filter matches the time-reversed equivalent solution. Early elaborations of these
model and is applied in the reverse-time ideas led, along different routes, to
direction. The second application is the ti*a-reversed equations with pathwise equivalent
determination of a rate distortion theory lower solutions (Anderson, 1962: Castanon, 1962:
bound for a discrete-time nonlinear filtering Pardoux, 1963). During subsequent studies, quite
problem by the method ot Galdos. This method is large classes of stochastic differential equations
based on Bucy's representation formula and and their reversed-time equations have been
requires a Monte Carlo simulation in reverse-time identified (Elliott and Anderson, 1965; Pardoux,
direction of model matching trajectories, starting 1965: Elliott, 1946a, 1986bl Haussmann and
tram a prespecified end point (Galdos. 1961; Pardoux, 1966; Pardoux, 1986). Recently these
Washburn et al., 1965). For both of these two results have been extended by using the Girmanov
applications it is necessary to have a transformation of Brownian notion (Picard. 1986:
time-reversed diference equation for which the Protter, 1967). Obviously, this Girsanov approach
Markovian solutions are in probability law can not be applied to discontinuous or

To give an idea of why there is an additional

problem in using a martingale approach to the
reversi h of an equation with a discontinuous

This research has been supported by AFOSR Grant solution, te give a brief outline of the approach.
54-00112, while the first author we on leave at The martingale approach roughly consists of
the University of Connecticut. checking if the time-reversed driving noise

.. . . , ,



sequence can be decomposed in a suitable of it is significantly larger than the state space

revose-time mrtingale part and its complement of *t, this Is a rather brute force transformation
and next, if such a decomposition exists (Jacod of (l.a). A more elegant transformation of (1.a)
and Shiryaev, 1)67; Jacod and Protter, 1988r, to the more common equation consists of
selecting such a decomposition. The final step is substituting (l.b) in (l.a), which yields an
to characterize both the martingale part and its equation of the following form,
complement. In contrast with a continuous process xt+1 - a'(etxt,wt,vt).

such a decomposition is not unique for a , Instead of a state space expansion, there appears
discontinuous process (see for example, Jacod and an additional noise term, v t . From the latter
Shiryaev, 1967). This makes the selection of-s representation, it follows immediately that the
suitable martingale decomposition far from trivial processes (t,xt) and !#.- --* Marko procasses.

in the hybrid state space situation, because a The latter transformation clearly shows that (l.a)

aless c .d choice yieids unnecessarily complicated is indeed more general than the more commonly

reverse-time equations. This complication is studied equation with first order dependence of

presently unsolved, neither in continuous-time nor (0t). With the study of this more general

in discrete-time. It will be solved in the sequel equation, we also anticipate the time-reversion

for quite general difference equations in a hybrid results obtained. In the sequel it will turn out

space. with that result we subsequently reverse that a reverse-time equation of (I.a) has, in

the considered difference equation in time. general, a second order dependence on the

time-reversed ({t), even when •(et+1 ,Et,xt,vt) is

The paper is organized as follows. In section 2 we ot-invariant. In view of this, it is natural to

define the hybrid state stochastic difference study the above more general form.

equation that will be considered and shortly
compare its tie-reversion with the time-reversion In the sequel we consider the time-reversion of

of a linear Gaussian equation. In section 3 we system (1) under the following assumptions:

specify the time-reversion requirements. Next, in

sections 4 and S we consider, respectively, the A-1

pathwise time-reversion and the in probability law a(o,q,.,w) has an inverse &*:X
2
xRnxRP°-Rn, such

equivalent time-reversion. In section 6 we disuss that for any (, ,w E
2

xRP,
the results obtained. a*(e .,a(O,.,x V|.V)-x; all XERn. (2)

2. THE STOCHASTIC DIFFERENCE £QUATION CONSIDERED A.

b(.,v) has an inverse b*:XxR-M, such that for any

The stochastic difference equation we consider in vER,

the sequel is the following system, on an b*(b(e8v),v)-e; all OEX. (3)

appropriate stochastic basis and a discrete time
interval (0,T] a Xx(O,T) T<-, Assumptions &. and AZ suogest to trasform

xt+1 . A(ot+llot-Xt,wt), (l.a) (l.a,bc) to the following tiae-reversed model,

Ot+l - b(et,vt), (l.b) xta*(OtoSxt+l,wt)1

Yt - c(Ot,xtwt, ut), (1.c) ot-b*(et+,,vt),
where (wt), (ut) and (vt) are i.i.d. standard yt-c(Ot'xt'vt'ut).

Gaussian sequences of dimension p, q and 1 Because (wt,vt) and the future (- reverse-time
respectively, the initial distribution of (x0 ,o0 ) past), $t+l - e((y

s
,x

s ,
O
s
); SE(t+l,T]), are

has the density mass function p 6 and dependent, this is not the time-reversed system we
ido x00 Fshould look for. Unfortunately, it is not clear(wt,vt,ut} is independent of (Xo,5 0 ). Further xt, how to continue from here. To develop some

It and yt have respectively Rn-, X- and R"-valued howgt contae f here. o •t oe

realizations (with N a countable set), while a, b insight, we take a quick look at the

and c are measurable mappings of appropriate time-reversion of a linear Gaussian system.

dimensions such that system (1) has a unique Linear Gaussian eampole
solution for each initial (xoo0) with Consider the following linear Gaussian system

pxo,8o(X0 , 0 )O. The mappings a, b and c areI ~xt+l - Axt + Sit.

time-invariant for notational simplicity only. Assumption .a implies that A is Invertible. I'.

which
The second order dependence of (l.a) on IOtj is Xt - A (xt+l - t).

quite uncommon (Blom, 19S). Obviously, (l.a) Obviously wt and the future St+l are dependent,
reducee to the more common situation of first which requires a martingale decomposition of wt.
order dependence, only if a(et+l,St,xt,wt) is In this linear Gaussian case the canonical
invariant w.r.t. either St or ft+l. The martingale decomposition is the appropriate one.
interpretation of (1.a) as an equation with a It consists of decomposing wt in its reverse-time
second order dependence on lot suggests the predictable part, t(vtlt+,l), and its complement
substitution of Lt+la(ot+,,t) in (l.&). On doing W.;

this (l.a) reduces to the more common equation, , wt - Z(wtl$tl) + w*t.
and it follows immediately that (ft) and (It,xt} The problem is now to writQ the predictable pert

are Markov processes. However, as the state space as a function of xt l (if possible) and to

I
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I characterize the covariance at wvt. As pointed out -

by Verghese and Kailath (1979) it follows readily

from orthogonality arguments that rt - B(tFt+iXt+l.t), (4.b)

Etwtit+ll - E(Wtlxt+l). Vt - a(t,1t+l,|tRt+lRt'Qt~ut
) ,  

(4.c)

while the fundamental formula far LAS estimation
yields where 1, b and a are deterministic malppings of

E(tlxt+i) . STR-I(t+l) x. 1  appropriate dimensions and (Ot.gt) ia noise

Coy( WtJ - I- BTR-(t+l)B, sequence to be specified. For a better
where R(t+l) is the covaraince of xt 1 .  . understanding of (4) notice that the substitutions
By a straightforward substitution of these redUlts of (4.&) in (4.c) and of (4.b) in (4.&,C)

we obtain transform (4) to a reverse-tin system of the sore

Xt - A-
1 

(xt+l - B BTR- (t+l}xt+l - Bw*tl, common form:

which yields the desired reverse-tim. system:

t - A
- 1 

(it+l - B BTR-I(t+I)Rt+l - BOO. it - a(t'1t+l'Rt+l'0t'Qt)'

The orthogonality arguments and the LSE t - B(tUt+l,t+l'Qt).

estimation step, used in th. above procedure, t " e(t.Ut+lRt+l'Qt'
9
t
'
ut)

;  
all tE[O,T-1].

prevent a straightforward extension of that

procedure to equation (1). In the sequel we To be a useful reverse-time system. (t,9t) should,

replace the orthogonality arguments and the LLSE as much as possible, be independent of the future

estimation step respectively by Markov duality (- reve-sad-time past) information field

arguments and a Bayesian estimation step. Besides t (( 
•  

,{(,s , 5,, us)i sE~t+l,TI).
this, we have to select an appropriate martingale A minimal requirement is then, that the
decomposition. Following the linear Gaussian case, conditional expectation of (t,t), given it+,,

the canonical martingale decomposition seems a

good candidate: should be zero. Because it is a decreasing

(wt,vt)-(Wt*,vt*)+E((Wt,vt)lt+l) sequence of siga algebras, the latter can most

Unfortunately, this decomposition leads to very easily be put in martlng&al language (see Elliott,

complicated elaborations of the Bayesian 1952: Kumar and Varaiya, 19861 and the definitions

estimation step. To avoid these complications, we below):

use in this paper the following decomposition: {0t,Qt} in (4) should be a reverse-time Martingale

(wt'vt*) " (wt'vt) - ('t,'t) "Difference secruence w.r.t.

With: 4t a E(vtl~t+l} 
and5t E~wtg5t.1 ,vt)". einto

The ain step, that must be carried out, is to Assume (0t; tE(O,T]} is an increasing sequence of
prove that the latter is a ari ial s information fields, i.e. .._ICs; any sE[.,T].

decomposition, and to elaborate on the Bayesian A random sequence (
1

t) is said to be a Katengale
estimation step. For the presentation of these Difference seqence w.r.t. iff for 511. tt(O,T],

results a constructive approach is taken, starting (ii) E(itlu)<r,

with a precise description of the time-rversie- (ii) E(ItI)<f,objcties.(iii) E(EtI~sJ-O as.: for all sE(Ot-l].

objectives.

3 IKE-REVERSIO OBECTIVS2 efinition

Assume ($t; tE(O,T]) is a decreaing sequence of

We want to obtain a time-reversed version of information fields, i.e. $CS,_l; any &E(l,T1.

A random sequence (tt) is said to be a
system (1), such that its solution, (yt,Rt,1rt), is reverse-time Martincale Difference seauence v.r.t.

in some sense equivalent to (yt,xt,et). To make 2t iff for all tE(O,T),

this objective explicit it needs both a (i) t is ft-eaasurable,

specification of what we mean by a time-reversion (4) E(Ittl}<5,

of (1), and a specification of the desired sense (iLL E(tti~s)-O as. ; for all s[t+l,T1.

of process equivalence.

Kavi-7 *noctff' tIh. A-- type of reverse-time
By a reverse-time system we mean a stochastic system, the next step is to specify the types of

difference equation which starts at time T and equivalence o solutions of systems (1) and (4),
runs in negative time direction on the interval in which we are interested. For stochastic

(OT). We require from a time-reversion of system processes several useful types of equivalence have

(1) that it does not change the state space and been defined and named in the pest. We restrict

that the solution of the resulting reverse-time ourselves to the two most important types of

equivalence and their unambiguous names (Elliott,system represents the process (Yt,
2
t,|t). More 92 eo n Siye,16)

1962; Jacod and Shirysov, 1967):
specificly, (7t,Rt,1t1 must be the solution of the - indistinguishable,

following systm of stochastic difference - equivalent in law.

equations, all tE(O,T-l] Definitions are given below.

I
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I eiiinduality of the Markov property, ( it, t) to

pce ss and li t T a t conditionally independent of $t 2 given

UTWO icetm processes ( 5) ad((J is0T| said if

be edisti ve ihable it uely sa to dofind on.the 0 (xt fl tt+ )"

ame probability space ( 4,sP) and s Theorem
P( tt " tt • all teJ0,T]) - . (5) Assume (wt,vt} , {0 t, t| and lwt*,vt*l satisfy (1)

4 a rei enti v y " (9). Then (t * vt
* )  

is a reverse-time
tlnt rrtiale difference oequfnce w.r.t. It whileU 4ITwo processes (tt) and (it), tcO,T , rESaI d to a t tsatisfy:

be tauivalent in law, if they have the smestts
space, E, u cnd for ell Otl<ti<...<tkT, yt - c(wtot+l,t,Xt+l), (10.&)

PtNt.... tk )dX - P((rtl._ttk)EdX) , (6) t - X(vtlet+xtl), all -2(0,T-11. (10.b

for any k and all measurable dXCk. Proof: Sea Blom and Bar-Shalom (1989).

For iscote-imeproesse (5 issatifie if Theorem S implies that dt and 4t can be written an
land only if, tor all tE[0,T), tt-Tt almost surely-

Our objective in the sequel is to obtain Ot - f(t et+lg0t,Xt)) , (1.4)

tihme-rvrs d systems o f type (4), with solutions t - g(t,#t+IXt+l)" (11.b)
that are respectively indistingutshable and Substitution of (9.&) and (1.a,b) in [7.a,b,c)
touivalent in law w.r.t the solution o (1). yields

S INDISTINGUIS1ABL TIME-REVERSI ON xt - a(t,0tl,0txt 1wet)0 (12.a)

- t -(GSt+,0i+),, t7 (b2.b

In this section we derive a type (4) version of o (-tlX+~~) 1.D

system (1), such that their solutions, yt " c(t,Utrast,Xt+l,Xt
, 

t,ut
)  

(12.c)

(rt,rt,it) and (yt,xt fet), are indistinguishable, iti
nd illustrate these results for a jump-linear f(t,#,'x'W*) - (13.a)

e ampe *(y9 5 a, 5 v, 5 ;s~,3.(8) I) x T.v 1) - ( YgT,,x, (1..b,

The first step of our derivation consists o a
substitution of (2) and (1 in (1), to arrive at c(t,6,1,x,z,w*,u) - c(,zw*+tf (t,1,x),U). (13.c)
the in section 2 discussed time-reversed system. The above result is summarized by the following

Sw scorollary.

ut b*(t+l,vr), (7.b) 6 Corollary
Yt " c(0t, xt'Wtut). (7.c) Under a sduptaon f.1 nd X.2, the (oluion

Although (7) and (4) look similar, one requirement eis not mt: the driving noise in (7) is not aT t t e the resl a so s

niderstiuhe arta stution of a line o

reverse-tima Martingale Difference sequence w.r.t. indnise iot of

the future Information ofeld system ( i if
It t @{(ys'xs,8s'wsVsU3; GE{t,TI}. (8) (1) (7T,5tT,6T) - (YT, XT,OT) a.*.,

fparticular reverse-tina Martingale Difference (1X) A, u and aliatify (13.x.b,c),
sequence, (Wt*,vt*}, an follows, (III) (Qt'Qt) - (Wt - vt*) A.m. : all tE[0,T-I),

p r o c e s E(w t V t wt . s u c t h e d e c m p s i o iw i t h * t  a n d v * t s a t i s f y i n g ( 9 . ) a nd ( 1 0 ) .

with 
Jum-linear exampl i

tn (hirt+ey, 1 9 . (.b) To illustrate the results obtained so ar. let usUts non-canonica l ecops t. consder the particular situation of linearybad lte )-. systemT with first order Markovan fwitchn
cofficients and observation noise ikepwiKant of

Notice that the definition of t differs the ie at driving noise. Both (,% xv) and
eignrecantly from the rvers*-time predictable c(,x,,u) are then linear In ix,), while the
process E(vtlgt+l}. AsSsuch the decomposition in first in %-invariant a;-. the second is v-invariant,
(9) Is not the uique canonicl decomposition (see by which system (1) simplifies to,

JtcOd end hirlov, 167t). The introduc
t
ion of xt+1 - A(ot+i)x t + B(0t+)wt,this non-crnnical decomposition is a crucial step 4t+I - b(ft,vt),3 cesta y for obteinirn th ttim,-rerson of Yt - G(st)xt + H(et)ut-

hybrid states ystem (1). Then from Corollary 6 we readily find the
I indistinguishable time-reversd system,

n the seq4uel we veriy that (vt*,vte} is indeed & xt -A-(ft+i) [xt+ 1 _ B(0t+ ) [0t+w~t)),
reverse-time Martingale Difference sequence w.r.t.
It, and thus also w.r.t. St* a It u d(W*V*;,t - b*(St~l,;t+V*t),

a EC~t,TI). Moreover we show that, due to the Yt - G(ft)Xt + H(ft)ut.

I
I



where (w't,vt) is the roversa-time MO-soquence of P Vtlet+-etXt+l(w
l
.) -

Theorem 5, t-f(tXtt'Xt+l)0 -t- pt t+(xt+) p400 (14.&)
and f, g and b* are according to (II) and (13.b). wtIdt+l't't+l(t

The difference equation for xt is similar to the where wt satisfies (10.&).
one for the linear Gaussian example in section 2. With this our remaining step is to characterize

But due to wt, it may even be nonlinear inxt+ ,  the density at the right-hand side of (14.&) by

At the and of the next section we will show that applying Bays ferula.

there are soe further simplifications possiiae

for this example, in case of in probability law U Propsstion

(iv) of Theorem 7 permits a density which is

5. EQUIVALENT IN LAW TIKE-REVERSION characterized by (14.a) and,

In this section we derive conditions under which PwtIt+l1Etxt+l(.10111x) -Sxa*T(e'I'x,')l
the solutions of (1) and (4) are equivalent in law, .c(,','x) Pw (.) px (a(ex.)lw)] (14.b)

and discuss these results for a jump-linear t tiet

example. So far our line of reasoning is quite with wx the gradient and c either a normalizing

similar to the martingale approach of factor or zero ift px(xje,q)-0.

time-reversing a diffusion. However, things are xt+iet+lst

quite different now we require equivalence in law Moreover,only. The reason is that while in the diffusion (tltle't')= e;
l t l - " I

situation this requires that dwt and dwt are .p 4 , (xI,;) p- (xlO). (15)

equivalent in law, no similar simple results hold xt+ll t+l,8t xt~lI~t~l

in the discrete-time situation. Instead of this, Proof: See Blom and Bar-Shalom (1989).

we identify the relation between conditional laws

of wt and wt by a Bayesian estimation step. Next Jump-linear exaile

we characterize f and the required law of w* t . For a linear system with first order Markovian
switching coefficients we arrived. in section 4,

7 Theorem at the following reversed-time equation:

Under assumption A.1 the solution (Yt,Rt,#t) of xt - A-(et+l)CXt+l - B(Ot+l)Cwt+w't],

reverse-time system (4) is equivalent in law w.r.t. with w*t the reverse-time MD sequence and

the solution (yt,xt,et) of system (1) if, 0t=.(wtIet+l'Ot,xt+l). Because &* is linear in

(i) P((J T,1,T)EdX) - P((yT,xT,OT)EdX): (x,w), its gradient w.r.t. x is w-invarlant, by

for any measurable dXCRmxRnxp(, which proposition 8 yields

(ii) A and Z satisfy (13.&,c), Pw tOt+I,wtt+l (wI' "x) -

(iii) P(1t-q~Irt+i-O,Rt+i-xj c1 (e,R,X)pw (wp (A(O(xB~ewIi

t t t x In spite of the simplification this is a form
which is in general quite complex, by which O t

(iv) P(QtEdXl(Rt+,t+x,Ut)-(x,,R)J- still may be a nonlinear function of xt+l.
- P(wt*EdXl(xt+l,st+l,et)-(xe,.)), Obviously, this type of complexity could have been

all (x,e,R.t)RnxK
2
x(O,T-l and measurable dXCRP, expected, as it is well known that a discrete-time

with w*t and f satisfying (9.a), (lO.a) and (11.&). Bayesian estimation step leads to nonlinear

equations, unless the prior densities involved are

Proof: See Blom and Bar-Shalom (1989). Gaussian.

Our remaining problem is the characterization of 6 CONCUOING REMARKS

the conditional law of w*t. As this is actually a

discrete-time nonlinear filtering problem, it can We considered the problem of reversing the Markov

be done by applying Bayes formula. We do this solution of a nonlinear stochastic difference
under the following additional assumptions: equation in time. The nonlinearities were due to

nonlinear coefficients and a hybrid state space,

&. The a priori distribution of (xt,st) i.e. a product of an Euclidean space and a

permits a density-mass function for all te(O,TI. discrete set. For simplicity, it was assumed that
the process in the discrete set satisfies the

A4. a*(.,,,x,w) is once differentiable in xeRn Karkov property. Subsequntly we gave a precise
for all description of our time reversion objectives: the

(#,q,w)EK~xRP. development of time reversed difference equations,
of for s similar to the original equation, but

If the distrib-itions in (iv) of Theorem 7 have driven by reversed-time martingale
density-mass functions then it can easily be difference sequences, such that their solutionsU verified that (iv) implies, are respectively indistinguishable from and in

I



probability law equivalent to the solution of the R.J. Elliott, B.D.O. Anderson, Reverse time

original equation. Following this the derivation diffusions. Stochastic Processes and their

oa -he Indistinguishable reverse-time aquatn was Applications, Vol. 19 (1985), pp. 327-339.

performed. The main new theoretical result is the J.1. Caldos, A rate distortion theory lower bound

introduction and evaluation of a non-canonical on desired function filtering error, IEEE Tr.

(ad and Shiryi-v, 1987) reverse-time martingale Information Theory, Vol. 27 (1981), pp. 366-368.

decomposition, wl;ich is appropriate to tao hybrid M. Hasegawa, On the construction of a

state apace situation. In contrast with this, all time-reversed Karkov procesA, Progress

previous reverse-time equations are based on a Theoretical Physics (Japan), Vol. 55 (1976), pp.
canonical martingale decomposition. After that, it 90-105.

was shown how the in probability law equivalent U.G. Haussmann and E. Pardoux, Tim4-revarsal of

time reversed system can be obtained by diffusions, Annals of Probability, Vol. 14

introducing an appropriate Bayssian estimation (1986), pp. 1188-1205.

step. As expected, this Bayesian estimation step J. Jacod, P. Protter, Time reversal on Livy

leads to closed form equations whos processes, Annals of Probability, Vol. 16

dimensionality often complicates further (1988), pp. 620-641.

applications. In view of this, in Blow and 3. Jacod, A.N. Shiryaev, Limit theorems for

Bar-Sha)m (1989) we elaborate the Bayesian step stochastic processes, Springer, 1987.

for linear systems with MarkovLan switching P.R. Kumar, P. Varaiya, Stochastic systems,

oefficients (jump-linear systems), and apply the Prentice Hall, 1986.

the results to smoothing a trajectory with sudden M. Kunita and T. Watanabe. On certain reversed

manoeuvers. processes and their application to potential

theory and boundary theory, J. Math. Mech., Vol.
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A NEW CONTROLLER FOR DISCRETE-TIME STOCHASTIC SYSTEMS
WITH MARKOVIAN JUMP PARAMETERS
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USA

A Irt. A realistic stochastic control problem for hybrid systems
with Markovlan jump parameters may have the switching parameters In both the
state and measurement equations. Fur thermore, both the system state and the

lump states may not be perfectly observed. Currently the only existing

Implementable controller for this problem is based upon a heuristic multiple

model partitioning (MMPI and hypothesis pruning. In this paper we present a
stochastic control algorithm for stochastic systems with larkovian jump
parameters. The control algorithm Is derived through the use of stochastic

dynamic programming and Is designed to be used for realistic stochastic control

problems, i.e.. with noisy state observations. The state estimation and model
Identification Is done via the recently developed Interacting Multiple Model

algorithm. Simulation results show that a substantial reduction in cost can be

obtained by this new control algorithm over the (MMP) scheme.

Keywords. Stochastic control: Oynamic programming; Hybrid systems.
Multiple model partitioning; Markovlan jump parameters.

I. INTRODUCTION More recently in [SZI a feedrorward/feedback

An important problem of engineering concern controller was presented for the continuous-time

Is the control of discrete-time stochastic problem with a completely observed system state

systems with parameters that may switch among a and where the -modal Indlcator- is measured with
finite set of values. In this paper we present a high quality sensor. In [M61 the
ite etelopt v alus Inthisoper wer picresentie continuous-time jump-linear problem is considered

the development of a controller tar discrete-time where the system state and -modal processes-'are

hybrid jump-linear Gaussian systems. Here the perectly sbse t he opti oal reltto r

state and measurement equations have parameter perfectly observed. The optimal regulator was
marcswihaefntoso akvobtained and notions of stochastic

matrices which are functions of a Markov stabilizability and detectability were Introduced
switching process. The sJta states are not to characterize the behavior of the optimal
observed and only the state Is observed in the system on long time Intervals. In (M71 the
presence of noise. continuous-time jump-linear problem with additive

Along with presenting a desirable practical and multiplicative noises and noisy measurements
control algorithm we also point out an of the plant state was considered with the plantInteresting theoretical phenomenon. We show that mode assumed perfectly observed-

there Is a natural connection between the In [Ell a sufficient stability test is given
Interacting multiple model (IMM) state estimation for checking the asymptotic behavior of the error
algorithm 1811 and the control of Jump-linear Introduced by the averaging of hybrid systems.
systems. Thus the IMM Is the state estimation In IIll the continuous-time lump-linear problem
algorithm of choice for use In these types of with non-Markovian rei'me changes was
control problems. considered. A control scheme was presented for

Systems which pertain to the jump-linear the case of perfect ovservations of the system
modelling methodology are found In many areas. state and plant regime.
Systems of a highly nonlinear nature can be In (C31 a discrete-ile Karkovian jump
approximated by a set of linearized models (M3. Optimal control problem was considered. The
Vt. V21. A failure In a component of a dynamical controller Is for the case of perfect system
system (or subsequent repair can be represented state observations and known form process. They
by a sudden change In the systems parameters (82. derive necessary a. s4(filcent conditions for
St. WI. Also economic problems, which can be the existence of optimal comstant control laws
modelled by parameters that are subject to sudden which stabilize the controlied system as the time

changes due to shortages In Important materials horizon becomes Infinite. Through examples they
lG21. And as Is noted in (161 there also exist show the Interesting result that stabilizability
applications to the design of control systems for of the system in each (orm Is neither necessary
large flexible structures In space. nor sufficient for the existence of a stable

There has been an extensive amount of work steady-state closed-loop system.
done In this area end on the related problem of In (YIl a discrete-time system with perFect
controlling stochastic dynamic systems with state and mode Information was considered. A
anknown, time-Invariant parameters. We refer the controller was presented which Is stabilizing in
reader to the IT31 and 1G31 for a list of the mean square exponential sense.
references and a discussion of their scope and As pointed out In 2 , we generally cannot
applications, determine the optimal jump-linear quadratic

Research sponsored under Grant AFOSR-8-0202. Gaussian closed-loop control law analytically



I. 4 goe I a two-step problem. In order to compute I
the optimal control extensive numerical search J " ClO] x(NNl'O(NlN ix(k)'Q(k)x(kl
methods must be employed and thus one would like u(kl'R(ku(k)l.
to find simpler suboplmal control schemes. (.

Currently the only existing Implementable
controller (or this problem (switching parameters where Q(kik0 for each k-0.1....N and and It Is
In the system state and measurement equations and sufficient that R(k))0 for each k. . N-1.
noisy state observations). is the one discussed The discrete-timL system state and

in (T3] and is of the OLOF class. This algorithm measurement modeling equations are
is based upon a heuristic multiple model
partitioning (PMP) and hypothesis pruning. The xik) = F1Mfk)Jxlk-l) G/'ifkilulk-l)
MMP approach, being simple and straightforward to ovlk-1,M(klI (2.2a)

implement. Is a reasonable choice for the unknown
parameter problem (L., and as shown in (T31 It zlk) HM(kllx(kl * w(k.M(klI k0.,I.Z.... (2.Zb)
works well for applications Involving switching where x(k) is an nxl system state v ctor. u(k) is
parameters in the state measurement equation an pxi control Input. and z(k] is an mxl system
only. For the non-switching parameter problem state observation vector. The argument M(ki
the operating mode Is determined to a high
probability In a relatively short period of time denotes the model -at time k- - in effect during
and the IHMP approach gives the linear quadratic the sampling period ending at k. The process and
Gaussian optimal control. measurement noise sequences, vik-IM(k)] and

For switching parameter problems a different w[k.M(k)]. are white and mutually uncorrelated.
situation exists. Here because of the switching The model at time k Is assumed to be among a
the operating mode may not be determined to a finite set of r models
high probability. The proposed approach to

deriving a suboptimal control scheme Is to start M(k) c (1.2,...,r) (2.31
with the solution to the optimal control problem
via the use of stochastic dynamic programming. for example
By utilizing dynamic programming and making
appropriate suboptimal assumptions the use of riM(k"]) - F (2.1)
numerical search methods has been avoided. Ie
thus have developed a multiple model control . (2.51
scheme which has the following desirable
properties: (al It gives the optimal final wiK,M(k)l-] - h'[, V11 (2.6)

control. (bi the algorithm utilizes the ItM state

estImation scheme, and (c) It has the same i.e.. the structure of thi system and/or the

property as the MiP approach in that It gives the statistics of the noises might be different from
optimal linear quadratic control under the model to model.
assumption of a perfectly known model history The model switching process to be considered

sequence (which Is however an unrealistic here is of the Markov type. The process is
assumption for this class of problems). here by trarkon trix the lmes

For comparison purposes we Implement the specified by a transition matrix with elements
-switching parameters in the system state P1 . Let
equation- controller, proposed (but not tested)
In [T31. We show via example that a I & (z(01,z(Il....,z(kl.u(0 .uJ l....u(k-IlI (2 71
statistically significant reduction in cost can

be achieved through the use of our controller denote the information available to the
which also belongs to the OLOF class, controller at time k (i.e. the control is

The paper Is outlined as follows. In section causal).

Z the problem formulation Is given. in section 3
an Interesting connection between the IMM state
estimation algorithm and the control of multiple ITHE T MM ESTIMATOR
model systems Is shown to exist. In section 4 we
obtain the control algorithm. A new full-tree" An Integral part of any control algorithm for

control algorithm Is derived which utilizes all this class of problems is the system state
possible future parameter history sequences. In estimator. In this section we show that there
section S we use simulations to compare the hMP exists an Interesting connection between the
control algorithm with the full-tree controller. control of multiple model stochastic systems and

the IMM system state estimator (11. To this end

2. PROBLEM FORMULATION we start by solving for the time N-i optimal

The problem to be solved. Is discussed next. control. The optimal control at time N-I. Is the

We took the pragmatic approach of starting with vaius' of u(N-Il which minimizes

the available mathematical and statistical tools
found to yield success In solving similar J(N-i] - EjxIN-I]'O(N-I)x(N-I)ou[N-I]R(N-Ilu(N-1)

problems of this type In the past (I.e.. use Is
made of the stochastic dynamic programming method .x(Ni'QiNIx(N) IikI)
and the total probability theorem. etc.). As we
shall see, not only does this practical r .

"  x
t i°u(NI) R  N ii

engineering approach yield an Improved multiple ECxiN-Il(N-llxI N-I,.u1 - 11

model control algorithm, but It also leads to the
Interesting theoretical observation of a direLt ,x(NI'O(Nlx(N lK-. M(NIj
connection between the IMM state estimation I /
algorithm and Jump-linear control.

It Is desired to find a sequence of causal "P(M(Ni=Jllw-I (311
control values to minimize the cost functional



II ININ-1I A PIM(NJJ|I"'J 13.2) J'(k.lhJ A mIp E(X(kl'Q(klx(ki-u(k)'R(klu(k)

and use the state equation (2.2a) and (2.4).
(2.5) In (3.1 to get (4.31

).U where J°(k.I') is the optimal cost-to-go from

time k to the end. Now applying the total
Zu(N-J)'Gj'Q(N)FxIN-1)ou (N-I)I'[ R (N- 1) '(N I Gil probability theorem to (4.3) yields

J*(k.k 3 - min ( Ejx(kl 0(k)x(k) - u(k)'R(klu(k)

trQ(N)VI m ,(NIN-,| (3.3) • (4 -)

Now taking the partial of (3.3) w.r.t. u(N-li and The control that minimizes an approximation

setting It to zero yields to (4.4) Is derived; In the Appendix, and Is given

as

I u(N-1 N-I)- Gas(NIGj (NIN-1) k
= : G Q(Nx NIiJl_(N - )

J-1

(oeit o-nk-i pktimakllt(Nak*lt 1ri45

- [(NIN- 1I [ 13.41

IrreevNo t theand again we see the natural way the IM mixed
E~x(_I)I,_,M(N~j}. ~x[.I)IN.,M(N=j' Initial estimates show up.

,O(Note that1tT e trol control parameters P u(k d

IINJII ) i,(N-iN-lN3 (model-history-conditioned optimal cost matrices)M|N-}=I P[MN-I=IIMN)=~i
N - }  

[.5) are computable off-line.

where. since M(NlJ In the first conditioning Is
Irrelevant, the expectation Inside the summation . $IMIZAT.ION R£3MXT$

Is The FT controller developed In Sec. 4 is used
_ to control the state trajectory or the system.

E~x(N-IJ]IN-'.M{NJ-j) - {N-i1N-i~aj(N-LIN-IJ The performance or this algorithm, as determined
by (2.1), Is compared to the cost obtainable by
using the MMP controller discussed In 1T31. In

_.- [N-iN-1) (3.61 order to obtain a meaningful comparison we use
the rigorous statistical analysis technique

which Is the IMM mixed Initial estimate (111. presented In 195. W31.
Thus using (3.6) In (3.4) we get The control of a double Integrator system

with process and measurement noises Is considered

u'(N-1] --IR(N-I)- 7G;((N)p,(NIN-I)-1 with a gain failure. The two possible models are
J- gi , even by the following system equation

u( . N-11 G-IN (N-IIN-I )ININ-)I (3.7) x nos ose

)-I IT/2 vk iJ. 0 1lb

4. THE CONTROL ALGORITHM T/2 v(kj 1-1.2 (5.11

We will derive a full-tree control algorithm with measurement equation

(FTI which computes control values by taking Into z(kJ - (1 01 xl(k) * w(k) (5.2)
account all possible future model histories. As
will be seen by our example this method offers The models differ In the control gain parameter
Improved performance over the existing scheme b. The process and measurement noises are

mutually uncorrelated with zero mean and
T31. variances given by

The I-th future history of models Is
denoted as E[v(k} v[)J - 0.16 6j(5.3

M "4 - (M(k)-lI,.._.,M(N)=.lN I .. ,rk (4.1) and
Etwlk) wil]) - 86j (5.4)

where I Is the model at time I from The control gain parameters were chosen to be

history I and b1.2 and b.0.5.

I s Ii S r I-k,...,N 14.21 be The Kartkov transition matrix was selected toI



L O.I a (5.51 the FT controller performs better than the flP
controller for this problem. The estimated

For this example N-7, and the cost parameters improvement (decrease In cost) of 701 Is
Rik) and O(k). (see (2.1)), were selected as statistically significant.

R(k) * 5.0 (5.6)

and TABLE II

I (Oj 8.8 8.8 STATISTICAL TEST FOR ALGORITHM COMPARISONS

OM. k . Test Estimated
Statistic improvement

0(2) . 08

0(3) 8 (5.71 FT-MP 13.456 3.316 4.1 70
O M( ) 8 - :8

*0(5) 8
OM8 8 6. CONCLUSION

0(7) The development of a new control algorithm
0 for discrete-time hybrid stochastic systems with

where the last matrix, 0(7). reflects our desire Markovian jump parameters has been presented.

to drive x,(7) vigorously to zero. Also note This contoiier was derived through the use of
that ror this example T-1.0.

The real system was Initialized with stochastic dynamic programming and by taking Into
x(O)-[30.0. 0.01' and a random selection was done account all possible future "histories of
for choosing the initial model with models". This scheme uses the IMM state
P(M(O)-I]=0.5, 1-1,2. The Kalman filters each estimation algorithm. We show that there Is an
received an Initial state covarlance of

Interesting connection between the IMM state
P(00).0 2.0 (5.8) estimator and control of jump-linear hybrid

. 2. systems. This new controller is of the OLOF

and the initial state estimate was selected as class and has off-line computable control gain

[,,(0,0) E z(0lparameters.

E 0 0 E z(O] - z(-J (5.9) From the example It Is seen that this scheme
can achieve a statistically significant reduction

where z(-tl - 30.0 * w(-I and z(Ol - 30.0 * in cost when compared to the multiple model
w(0). partitioning approach.Statistical tests were made on the results or

50 Monte Carlo runs. Sample means and variances
I of the Monte Carlo costs C, defined in (2.11

were computed for the FT, MMP, and "known APPENDIX
mLdel-history (i.e. optimum linear quadratic)
controllers.

Table I contains the results. The FT
algorithm shows a clear reduction In cost as I. Derivation of (4.5)
compared with the KiMP scheme. However In order
to provide a rigorous argument that the actual Note that given the future history of
performance Is ordered as Table I Indicates we models Mk'Lm. the optimal cost-to-go
apply the statistical test presented in (85. W3].

Table II contains the results. The sample J'(k.1I) Is easily computed and Is
standard deviation a- of the mean of denoted.

the cost diferences. - are shown.J . x1 k . 1
The hypothesis that the FT controller is better J;(k-l'l*'Zl-E{x ( k-t l' P' ( k- l x ( k -I
than the lIMP scheme can be accepted only If the
probability of error a is less than, say. I* l(k-l) (A.A)

percent. Then the threshold against which we where the notation from 1B41 Is used for P(k-t|

compare the test statistic i/o Is
P-2.33. This test statistic has to exceed the Since the expectation In (4.4) Is conditioned

threshold In order to accept the hypothesis. on M4. J , we obtain our or approximation

by replacing J'(k-1,I k l ) Inside the

TABLE I expectation with (A.ll, and (4.41 becomes

SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS '"- 2
J'(k.I )  

m , [E(x(k)'0(k)x(k) * u(k)'R(k)u(k)
Mo t e~~r or y FT MMP I

Sample Mean 2,4 6,06 19.MP E(:(k-:) P(k-I)x(;.IfijI".M'*"i (AZ

Saingl. Standar a9 .ES127Deviation rd 2.096 3M96E5 ,1 2E7)1,[N~k*I1) (A.2)

I
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FROM PIECEWISE DETERMINISTIC TO PIECEWISE DIFFUSION MARKOV PROCESSES

3 Henk A.P. Blom

University of Connecticut, ESE Dept.

!
ABSTRACT

Piecewise Deterministic (PD) Markov processes form a as they provide pathwise representations with a
remarkable class of hybrid state processes because, strong Markov characterization of all major non-
in contrast to most other hybrid state processes, diffusion Markov processes. As such, PD Markov
they include a jump reflecting boundary and exclude processes pruvid- 4 rumc.4orK to study Markov
diffusion. As such, they cover a wide variety of decision drift processes (Hordijk and Van der Duyn
'-pulsively oL singuiarly controlled non-diffusion Schouten, 1983; Yushkevich, 1983) along the same

processes. Because PD processes are defined in a line as diffusions (Vermes, 1985). With this, anpathwise way, they provide a framework to study the interesting generalization is to extend the spectrumcontrol of non-diffusion processes along the same of hybrid state Markov processes by including
lines as that of diffusions. An important diffusion into PD Markov processes. As the present
generalization is to include diffusion in PD definition of PD processes does not seem to have an
processes, but, as pointed out by Davis, combining opening left for that inclusion (Davis, 1984), we
diffusion with a jump reflectin boundary seems not need a different approach.
possible within the present definition of PD . . .
processes. This paper presents PD processes as
pathwise unique solutions of an It6 stochastic
differential equation (SDE), driven by a Poisson - Piecewise
random measure. Since such an SDE permits the /Diffusion
inclusion of diffusion, this approach leads to a--
large variety of piecewise diffusion Markov Crountin Processes Diffusions
processes, represented by pathwise unique SDE processes
solut2 ons. wihMarkovian

I1. INTRODUCTIO Itni icwie Cefcet

Because many of the stochastic processes that we Mav
meet in nature have a state space that is a product Processes
of a continuous space and a discrete set, we often
need pathwise models on such a hybrid state space.
As a result, several classes of hybrid state space
models have been developed, such as systems with Fig. 1. Main classes of hybrid state Markov
Markovian switching coefficients, doubly stochastic processes.
counting processes and Markov decision drift
processes. These models are used in quite different The approach that overcomes this difficulty,
fields of applications, by which their studies have presented in the sequel, is to assume a stochastic
often evolved separately. One reason to study hybrid differential equation (SDE) in a hybrid space and toE state space processes within a common framework is construct a large class of piecewise diffusion
that their martinale parts are in general Markov processes from it. With.respect to the state
discontinuous. This property has attracted a lot of space we restrict our attention to a hybrid subset
attention, and is by now very well documented of a Euclidean space. Then the most general SDE is
(Jacod, 1979; Cinlar et al., 1980; Bremaud, 1981; of ItO type, driven by Brownian motion, w, and a
Elliott, 1982; Bensoussan and Lions, 1984; Ethier Poisson random measure, p on (0, )xU,
and Kurtz, 1986; Jacod and Shiryaev, 1987). It is dtt - a(tt)dt + 0(tt)dwt + 6 *(ttu) p(dt,du).
quite clear from these results that, to study hybrid
state Markov processes along the same lines as The path of a solution of this SDE is right
diffusions, we need both pathwise representations continuous and has left hand limits: t. - I
and strong Markov (martingale) characterizations of If p generates a multivariate point (t,ut), then the
those processes. Unfortunately, for hybrid state path of t has a discontinuity:
Markov processes there is presently a lacuna of E t- +
pathwise representations with strong Markov In the sequel we shall focus on pathwise unique
chracterlzations. This lacuna is apparent if we solutions. The classical result for the existence of
depict the main classes of hybrid state Markov such solutions requires that * is sufficiently

* processes in the form of a Venn-diagram (fig. 1). continuous (Gihman and Skorohod, 1972), which
-- restricts the SDE essentially to systems withThere exist pathwise representations with strong Markovian switching coefficients. However, there are

Markov characterizations of counting processes with some non-classical pathwise uniqueness results that
diffusion intensity (Snyder, 1975; Marcus, 1978), of allow a discontinuous # (Lepeltier and Marchal,E diffusions with Markovian switching coefficients 1976; Jacod and Protter, 1982; Veretennikov, 1988).
(Wonham, 1970; Brockett and Blankenship, 1977) and Taking these results as a starting point, we
of Piecewise Deterministic (PD) Markov processes introduce and evaluate a particular structure for p
(Davis, 1984). For many other Markov processes in in section 2. This structure poses hardly any
figure 1, there exist only strong Markov restrictions on the possible solution of the SDE,U characterizations (Kingman, 1975; Anulova, 1979, while it enables a separate evaluation of an
1982; Bensoussan and Lions, 1984; Belbas and unbounded jump intensity and a hybrie state space
Lenhart, 1986). Actually, PD Markov processes seem situation. In view of this separation, we first
the most interesting of all processes in figure 1, consider, in sections 3 and 4 the modelling of a

jump reflecting boundary in Rh through an unbounded
Research supported by AFOSR Grant 84-00112, while jump intensity, and after that, in section 5, we
the author visited the University of Connecticut, consider the hybrid state situation.
on leave from National Aerospace Laboratory NLR, Assume an open subset 0 of Rn with Jump reflecting
PO Box 90502, 1006 BM Amsterdam, The Netherlands. boundary ao, which means that (tt) undergoes an

U



instantaneous jump into the interior of 0o Ift) 2 THE SDE OF LEPELTIER AYD MARCHA,
tries to cross or to travel through 60. To moder
this with the above SDE, the Poisson random measure We assume a stochastic basis ( ,5,F,P), endowed with
p should instantaneously generate a point when (it) an m-dimensional standard Wiener process + andnters to. However, this a not possible as a a Poisson random measure, p(dt,du) on Rx (Jacod
Poisson random measure generates almost surely no and Shiryaew, 1987, p. 70), with intens ty measure
point at an entrance time. To overcome this problem, dtXm(du), and consider the followin stochastic
we briefly discuss the following three approaches: differential equation (SDE) in R+XR ,
1. Replace p by a random measure, ,ith almost dtt - Q(tt)dt + 0(tt)dwt + R_ Rd *(tt_,u) q(dt,du) +

surely one point at an arbitrary time.
2. Assume a 0 such that p generates an active point + R+xRd *([t_,u) p(dt,du) (1)

during an infinitesimal small time interval wheL. q is the martingale measure of p, to is an
after entering 60. s0 -measurabl' random variable, while a, 8 and * are

3. Assume a # such that p generates an active point measurable mappinga of appropriate dimensions.
during an infinitesimal small time interval just
before entering 0. The classical reference for equation (1) is Gihman

Approach 1 adequately solves the instantaneous jump and Skorohod (1972). Significant exLtrnions of their
problem but creates many new problems, because if p results have been obtained by Lepeltier anu :1archal
is not a Poisson random measure, then the SDE can (1976) in their study of the relation between an
not be analysed within the powerful It6 framework. integro-differential operator and an SDE of type
Approach 2 is the well known approach of randomized (1). Their particular SDE can easily be obtained
stopping (Bensoussan and Lions, 1984). As this from (1), by intryducing homeomorphism 2appings of
approach allows (tt) to cross or to travel throuqh R-xRd tnto (uER + ;0<Iull) and of R+XRu into
- )the -.- lti& , ) -4 is uL beL. a modiiication (ut1=d4_;l<luI<.), anu subsequently transforming m
of a PD Markov process. Approach 3 is the desired and 0 correspondingly. Consequently, the results of
solution. However, the problem with approach 3 is Lepeltier and Marchal can immediately be used in the
that it is in general not known how to carry it out. present study of (1), while allowing the intensity
A constructive answer to this will be given in the of the active points in R+ to be unbounded outside
sequel. It is clear that approach 3 needs a kind of some known Borel set OCRn.
prediction of the time that (tt) might, otherwise, -
enter JO. Actually, PD Markov processes are Assumntions
presently the only processes for which this
prediction problem is solved (Davis, 1984). As such, TJ. There is a constant K such that, for all EE n

we first formulate that solution in an SDE set up in I( I + 18(U) 2 +R-Rd Iv( ,u) m(du) K(l+I U )
section 3. NeXL, in section 4, we present a solution

of the prediction problem for the situation with A For all kEN there exists a constant L such
diffusion. that, for all t and y in th3 ball Bk=(uGRn;VuJ2 k),

Finally, in section 5, we explicitly consider the Is(6)-a(y)I + l8(t) (y)_ + lyl 2

hybrid state space situation. The most interesting + R-iRd *(tu)-Viyu)12m(du) L -I
effect of the hybrid state space assumption 

is that

it leads to a particular type of jumps: jumps in the A 0' is a known Borel subset of Rn,
continuous state component of (1t) that anticipate a R+ Rd X( *( ,u) 0 )m(du) is uniformly bounded on 0',
simultaneous transition of the discrete component of
(tt)" This type of jumps have been introduced by and E-+I(,u)] 8 0, for all EERn, uCRd+l.
Gnedenko and Kovalenko (1968) for piecewise linear
processes and by Sworder (1972) for systems with A1.4 For all kEN there exists a constant M , such
Markovian switching coefficients. For short we refer that, with Bk the ball of A.2:

I to these anticipating simultaneous jumps as hybrid . for all tEBk ",
* iyin. The SDE framework of this paper provides an R+ Rd I0(k,u)l m(du) Mk.elegant way of representing the hybrid Jumps of PD 1. for all tEBkn(Rn-o'),
Markov processes and their piecewise diffusion

generalizations. d I#(t,u) I m(du) M,

given that, for all uER+xRd,Some other interesting generalizations of PD Farkov VP(tu) - *(tu+Col(lO,..,o)).
processes, not considered in the sequel, are the
inclusion of continously reflecting or sticky For all rEN there is a constant Nr, such that
boundaries. The inclusion of a continuously
reflecting boundary, while preserving pathwise E( R+1Rd X( 0(ts_,u)"0 ) p(ds,du)) NT.
uniqueness, seems possible if that boundary iss
smooth enough (Chaleyat-Maurel et al., 1980; Menaldi
and Robin, 1985; Frankowska, 1985; Saisho, 1987) * ,1 Proposition
The inclusion of a sticky boundary without loosing Given m(du)-dulxu(dU) and assumptions &., A.,
pathwise uniqueness seems difficult if not &L.2, &a, A'.5 are satisfied. Then equation (i)
impossible, but strong Markov characterizations are has for any tE0' a pathwise unique solution, {tt).
possible (Kingman, 1975; Anulova, 1979, 1982). Moreover (tt) is then a right continuous Markov

'i process.

Remark: Proposition 2.1 is a version of Theorem 1114R+ - (0,-) and R- - (-o,01 of Lepeltier and Marchal (1976), in the sense that
R+ R++(O) and R_ - R-+(0). they considered the situation of 0', Rn .

Z {..,- andi,0,I,2,. . Nevertheless, for the proof we can almost follow

N = (1,2,3,..). Lepeltier and Marchal. Another recent extension of
I - Col(E 2 ,..,En) if t - Theorem III 4 of Lepeltier and Marchal is to the
I 1( =l,..,jn)situation or a non-Lipschitzian a in turn of a

i if a is a matrix sufficient non-degeneracy assumption on a
i, if (Veretennikov, 1988).

t  i-th component of process Et. If (1)'s fourth right hand term vanishes, then it isI 0 boundary of the closure of set 0. well known that . and &.2 are sufficient
Int(x) : integer part of x. conditions (Gihman and Skorohod, 1972). As such, we
X :X(True)-l and X(False)-O. have to show that (l)'8 fourth right hand term does
C DLAG :right continuous with left hand limits not change that situation, under &L.1, A1.4 and
C (0) : the set of all real-valued functions that A'.5.

are k times continuously differentiable on Due to A and the definition of ,t6 integration a
0. The superscript is deleted if k-. ' If solution of (1) is CADLAG. Due to the
is followed by b, then f and its first k discontinuities in (tt), that are caused by (1)'s
derivatives are bounded on 0. fourth right hand term, are countable. Therefore we

(4) : domain of operator 4. can associate with each discontinuity a time, Ti,U



I
* ans amulti-variaepont, T such-that Having theorem 2.2, we are prepared to consider a

and i -.. ue t th later jump reflecting boundary (in sections 3 A~nd 4) and0<TI<T2 <..<Ti<.. and 11 TiU Due to the latter the hybrid state space situation (in section 5). But
and (tt) being CADLAG, first we give a strong Markov characterization of

(Eti if there is no reflecting boundary.
I d *(Es-,u)p(dtdu) - .( U~i2. Pr tion

If (1)'s first three right hand terms vanish, then Given F vanishes everywhere and the assumptions of
the latter sum is finite (a.s.) for all tER+, due to theorem 2.2 are satisfied. Then for all [ERn ,E )
ALa and A'5. With this result it is sufficient to is a semi-martingale strong Markov process, and itsi shcw that (1) has a pathwise unique solution on an extended generator, A, is given by:
arbitrary finite time-interval [0,T). For the Af - tf + 1-f + Y+f for all fEC 2 ,b(Rn), (3)
existence of a solution, see the proof of Th. 1114 where
of Lepeltier and Marchal (1976; pp. 82-85). We M+ -i(1-)f 9(r+T]if, l
already know that a solution is unique and t(l ( i Ti-Jf
9t-measurable on (O,Tj). Because t is CADLAG and (4)

I is m u l T Then, by the F-f(c) -Rn Of( +f-f)'- i  (if (t)] S-(t,df),
definiti.n of a Poisson random measure (Jacod and i
Shiryaev, 1987, pp. 65-66) uT is $+ )RnL(o)(f( +)f(E)] S+(,df), (6)

T .= E Tl + O(Tl ,u T) is $_ -measurable and, due to and for all Borel ACRn-(0),
A'.3. t 0 - Pathwise uniqueness holds true on S-(E,A) IRJRd X 0(t,u)A J m(du) , (7)

[O.T 1 ) and tTO. Due to the latter, we can repeat S+(EA) A 4d X[ *(E,u)EA ) dul u(d.) (8)
- the procedure to show that pathwise uniqueness holds I
* true on rTI,T 2 ) and t G0, and so on for the

countable sequence of i.-tervals. Q.E.D. Due to A, A"., A. and 0 ,R n , the 5t-predictable
part of tt is

The interesting aspect of propositic- 2.1 is, that (
the coefficients of (1)'s fourth right hand term may At .(ts)ds + d o (ts_,U) m(du)ds.
be discontinuous in C. This is exactly what we need, Obviously, (At) is of finite variation on any finite
to construct a class of hybrid state Markov time-interval, while ( t-At) is a local martingale -
processes that is larger then the class of solutions (tt) is a (speciAl) semimartingale (Jacod and
of systems with Markovian switching coefficients. Shlryaev, p.43, Def. 4.21). This immediately implies
The first step towards this construction is that (Zt) is a .tr-nq !'--k-v process. Because (Et)

* replacing *(t,u) by is a semimartingale, the generator 4 follows from
*'(t,u) - *(t,u) X( [U1 <A(k)] u,[F E)x0] ), (2.a) ItS's differentiation rule for discontinuous

where F is a measurable mapping 0 R into (0,1), 0 sezimartingales (Elliott, 1982). Q.E.D.
and A are measurable mappings of appropriate
dimensions, while the range of A is R+. With this . PIECEWISE DETERMINISTIC MARKOV PROCESSES
(1) becomes
dEt = a(kt)dt + 8(tt)dwt + RIRd *(Et_,u) q(dt,du) + In this section, we represent PD Markov processes as

+ R+'Rd '(t_0u) p(dt,du). (2.b) solutions of an SDE. Therefore,R e consider (2.a,b)
with s=o and * vanishing on R xR

I Asumotions d t -(tt)dt R+'Rd -t u)-
.X( (Ul<A(A)] U [F(t)0) ) p(dt,du), (9)

&- 2 - rfine 0, = (EERn; F(t)_0), Our goal is to introduce a particular mapping
(Ef 0' n;, for all tERn, uGRd+l. F:Rn-(O,I), such that (9) has pathwise unique

solutions which are PD Markov processes. The present
A",4 Given, for all EERn-0, and uQR+xRd, definition of a PD Markov process (Davis, 1984)

A(t)=l, works without such a mapping F. Instead, there is
S(Eu)=P(tu+Col(l,O,..,0)), given an open subset 0 of R , with a jump reflecting

and for any kEN there exists a constant Mk, boundary 80, such that (tt) instantaneously jumps
such that into the interior of 0 just before it would,

A () otherwise, cross or travel through 60. For the
) j(E,u)I m(du) < Mk, for all LEBk. definition of a PD Markov process from (9) an

appropriate F.has to be constructed from 0 and a.
The construction of F will be based on the following. A(1) is on 0' uniformly bounded and continuous differential equation, on (O,0)xRn,

in dt't - a(tt)dt, tE(O,W), (10)
which has pathwise unique solutions, assuming that a(t)e tEr+, exits 0' at most a countable satisfies conditions &a and &a. From this, wenumber of times. define U as the set containing all elements of a0
that are directly accessible by (t't) from 0:

* Given m(du)=dlxA(dU) and assumptions &U, A 0 (Z0 S rE(OZ-) and t'E0 such that (
A".4, A,. are satisfied. Then equation (2.a,b) has , A ',_.0). (11)
for any 0' a pathwise unique solution (tt)- Next we introduce the following distance function,
Moreover (tt) is then a Markov process, of which the
sample paths are measurable on the stochastic basis daIL)sinf (rZ0 ; tO=t A t'rELQ), (12)
sa pe ph r e r enwhich is, under the above mentioned conditions on a,

a measurable mapping of Rn into R. With this weProof:define, for iEN,Ihi. - (1o ; da(1,,O) /i),13)
Because, on 0,, A(t) is continuous in t (due to then Borel sets, and which form the Borel
A.,) and (Ul<A'), A'6R, defines a measurable set

- mapping of R into (0,I) - X(UI<A(()) defines a OP i (14)
measurable mapping of RxO, into (0,1). Because the 6 014
range of F is (0,I), we can write Now we define our particular F as follows:

X( [u1 <A(t)] U [F(E)90] ) - X( ul<A(t) ) V F(k), F(t)-l , if tERn-o ,,
of which both right hand terms are measurable. This - 0 else. (15)i implies that the supremum is measurable, which Due to the above construction, F is measurable, by
combined with the measurability of *, makes that v, which theorem 2.2 yields:
is measurable. This ensures that (2.b) is a special
case of (1), with 0 replaced by *, according to 3.1 Corollary
(2.a). With this wo are left to verify that &._, Given an open subset 0 of Rn, and a mapping F,
&!,A and A. guarantee that & , A'.4 and " are defined by (10) through (15). Then, under the
satisfied, which is straightforward. Q.E.D. assumptiors of theorem 2.2, equation (9) has for any



toEO" a pathwise unIque solution (It). Moreover, f(tt) f(t0 ) + rf(ts) ds + d(local martingale) +(It) is then a Markov process, of which the sample
pathsare measurable on the stochastic basis + ff(E-)] dsxdu xu(d).

((+5u)1. ).

Substitution of 1+ yields
Next, we come to the main result of this section, f( M) + Af(t) ds + d(local martingale),which implies that Itt) is a Piecewise Deterministic (t" (O +  ( )d dlcamrinae

Markov process. which implies that (It) is a strong Markov process
.2Termwith extended generator [A, D(J)]. Q.E.D.

3.Z Theorem
With probability one, the process (It), of corollary 4. PIECEWISE DIFFUSION MARKOV PROCESSES
3.1, exits OUL2 zero times on (0,.).

Having obtained PD Markov processes as solutions of
Proof: an SDE, the next step is to include diffusion.
By the definition of F, all points of p in R+ become Therefore we consider the following SDE:
active as soon as (It) has exit 0". This situation d~t - a(tt)dt + B(tt)dwt +R+fRd *(tt,u).holds on until (It) reenters 0'. The reentering may p
occur due to drift or due to a jump generated by a X( [Ul<A(a)] U [F(t) O0 ) p(dt,du), (161
point of p in R+ . Obviously, the cases that (It) which corresponds to (II.a,b) if ± vanishes on R-xRu .

-eenters 0, by drift without exit of OUL_ do not Initially we assume that 5(t) (t)' is positive

cause any difficulties. In all other cases, the definite for all EERn, but relax this assumption
probability of exit OUQ by drift is further on.

Now we construct F, starting from the following
exp(-s/r) ds - r exp(-k/r), differential equation, on (0,-)xRn ,

with K-inf(l/i ;iEN) and 1/ir the intensity of dt - a('t)dt + b('t)dwt, tE(o,), (17)
pits ofp-in/ ;. Because i/ thexitnsity ost a which has palhwise unique solutions underpoints of p in R. Because J(t) exits 0" at most a assumptions AJ. and AZ, and which defines a familyc''ntzblc uubei times, ULe probability of exit of hou~geneous Markov processes with a measurableOUj_ at least once is then r/K exp(-K/r). If all transition function
points of p in RA are ative, then because KEN, P'C(r,A B P(' T-AJ'-C, all Borel A. (18)

r/K exp(-/r) - 0, Because 88 is positive definite, any element of a0
which means a zero probability to exit OULQ on is accessible by (C't) from 0. Therefore we

Q.E.D. initially use the following Euclidean distance
function,

5.3 Theorem d1(t,a0) E inf (It-yl ; yaO), (19')
The process (It), of corollary 3.1, is a which, obviously, is a measurable mapping.
semimartingale strong Markov process, and its Next, we define the Borel sets 0i as follows.extended generator, J, is given by: 0 (CEO dB(t,aO) 1 l/i), iCN, (20)

4f - Yf + Y+f , for all fED(4), and from this the Borel set
where I and 7+ are given in proposition 2.3 with 0'= .  (21)0=0, while the ioaeN s

8(-, wie the 'o(ain 0f A is: As before, we define our particular F as follows:
2)(4) - (f E C (0) c0 (uQ); Y

-
f(t)=O, all CelQ). F(t) = 1 , if EeRn-o

"
,

Pb 0 else. (22)
Prof* obviously, Fis measurable, by which theorem 2.2Define a process At as follows: yields:

At - a(C5 )ds + X(tsE0') A( _ (C,u)"  4.1 Corollary

.M s + id dGiven an open subset 0 of n, and a mapping f,
6 *(C 5 ,ui du'x ) defined by (17), (18), (19,), (20), (21) and (22).

with Si the St-adapted times that (Ct) jumps from Then, under the assumptions of theorem 2.2, equation
rn-0' into 0', i!l and (16) has for any tOe0 • a pathwise unique solution

Si - > Si_ ; s?_ Rn-, " )A finit (t). Moreover, (t) is then a Markov process, with
sample paths being measurable on the stochasticObviously, (At) is of finLe variation on Any finite basis (,,,)time-interval, while (tt-At) is a i"_!l

* tmrtnal.Subseently, ( t) isait m ri g l .S b~ q e t y k ) i Next, we come to the characterization of the
semimartingale. Application of h8's differentiation boundary bahtviour and the strong Markov property or
rule for discontinuous (piecewise delerministic) brtno
semimartingales to f(tj), with f E C , yields:

I (it) " f(to ) + i2 i f(Es-)[dts~i 
+  42Ter

1 f f( With probability one, process (It), f corollary

+ O Rf(C 5 +*(C5 -u)) - f() + 4.1, exits GUO zero times on (0,w).
<s!t R-Rd (- +

i=l at- _ (*s_,U]i] p((s),du), By the definition of F, all points of p become
up to indistinguisha~ility. active as soon as (It) has exit 0,,say at moment T,U Substitution of &!, which situation continues until (It) has reentered

p(ds,du) - q(ds,du) + dsxm(du), 0', say at moment T+&. The exit may occur due to
dt - dA + d(local martingale), diffusion or due to a jump generated by a point of p
m(au) - auu .dj), in R+. Obviously, the cases that (Ct) exits 0-0' by

* and using f E (6A,(o) n cb(0u1_), yields diffusion without entering aO do not cause any
S- f(tO)+.(t + difficulties. In all other cases we know from the

L([t) E 1 6 - ~f(Cs)[a(Cs)]ids 6 X(C5 -EO') proof of theorem 3.3 that a has an exponential
A( f5 t) distribution of which both the mean and the standard

i d (f(C 5 +#(Cs,u)) - f([s)] dsxdulxv(dU) + deviation equals r-0+. With this, it follows that,
* 1for any tE0', the probability of entering and

" if, id (f(S_+* ( u)) - f(Csi_)] dulxx(du) + exiting 10 within l/ is-0i- Si- - p, (r, Rn-0-jo) r-1 p,(-,(yERn ; It-y, > K
" d(local martingale), with x-Inf(1/i ; iEN).
up to indistinguiIshability. Because (It) is a diffusion and c>O, the right hand
Next we use the property that side is of order r (Gihnan and Skorohod, 1972, p.

*+f(m) - 0, all CELQ. 64). As this situation may occur a countable number
Because a is of linear growth and (Ct) is locally of times, we have to divide by K, yielding order
bounded, (a(Et)) is locally bounded. This implies (YI), of which the limit, rtO, is zero. Q.E.D.
that (1t) does not increase while travelling through
0-0' to L2, as this takes a time interval of zero 4.3 Proposition
durgtion. The latter and the assumptions that Given the assumptions of theorem 4.2 are satisfied.
fEC (OULQ) and 14-f(t)-O for all EL, imply that Then for all t0E0', (It) is a semimartingale strong
1+f((,)-O for all ts5E-O,. With this, Markov process, and its extended generator, 4, is

IIII



given by: + R+kd 0(t-,u) dvt(du) (23.b)if - f + 7+f , for all fBD(4), R-'where and ?+ are given in proposition 2.3, while The main objective of this section is to show thatthe doan of a the last term of (23.b) generates a particular typethe domain of 4'S:

1(A) - (f E C-' (O)nCb(OUao); ?+f(k)-0, all kEC0). of jump: a jump in (it) that anticipates a
simultaneous switching of ((li). For short we refer

--o f: Similar to the proof of proposition 3.3, to this type of jumps as hvr umxs. Notice that
except that now 7+f(Es)-O, for all tEO-0,, follows these hyhr[_J= are in some sense unexpected, as
from fEC(OU3O). Q.E.D. all coefficients of (23.a,b) are non-anticipating.

To show these hybrdumps explicitly, we need some
Finally, we consider the more general situation with preparation.U 8 (0)0( )T being positive semidefinite. Theconstruction of F works according to equations (17), e(18), (20), (21) and (22), but with distance Under assumptions .. , .2, A. and A"., the8function: pair of equations (23.a,b) has for any t0E0, a

d - inf (r2O; (L2Q E ) ) ), (19) pathwise unique solution (Et,rt), where vt is a
where L0 is the subset of aO tAi is accessible by multivariate counting process on R.+xR+xR of
(t't) from 0, () is the empty set and Et is the predictable intensity, AtzA(t_). Moreover both
closure of an n-dimensional ellipsoid, with centre (t,yt) and ((t) are then semimartingale strong
t+a(t)r and shape defined by covariance 8( () 9)r. Markov processes, of which (tt) is indistinguishable
Obviously, d5(., a) is measurable, by which the 01 's from the one in theorem 2.2.
and 0" are Borel sets and F is measurable, and we

ant: oIt follows from theorem 2.2, that the system of

4.4 Corollaryvqain (2.*,b) and (23.a) has, for any Borel U, a
Civen an open subset 0 of Rn , and a mapping F, pathwise unique solution (tt,,t(U). With this,

defined by (17) through (22). Then, under the system (2.a,b), (23.a) has a pathwise unique
assumptions of fbeorr_ Z.2, z.aLion (IV) has for solution (tt,'t)- Obviously all potentially active-iiy (0EO' a pathwise unique solution (tt)" Moreover, points of p, that are in RLxR*xR * are collected by

tkt) ;s then a Markov process, with sample paths wt in a predictable way, by which we can write
being measurable on the stochastic basis (a,9,F,P). R+xRd *( t-,u) r([U1<A(Et4) U [F( t)0] ).

Next, we come to the main result of this section. .p(dt~du) = R+'Rd #i(Et_,u) dyt(du)
up to indistinguishability. This implies that the

4.5 Theorem solution of (2.b) is indistinguishable from the
with probability one, the process (kt), of corollary solution of (23.b). Q.E.D.
4.4, exits 0Ua0 zero times on (0,-).

Now we are prepared to consider the hybrid state
space situation. Therefore we assume that the firstBy the definition of F, all points of p in R+ become component of Et is M-valued, with MCNE(l,2,..), and

* active as soon as (tt) has exit 0'. This situation that we can write the first scalar equation of
holds on until (t ) reenters 0'. The reentering may 123_b) as follows:
occur due to drift and/or diffusion or due to a jump d R3
generated by a point of p in R

+ . Obviously, the R+1R d *l(t,u) dyt(du), (23.c)
cases that (tt) reenters 0' by drift and/or with 4i a mapping of RnXR+xRd into the integer
diffusion without exit of OUQ do not cause any lattice, Z.
difficulties. of those cases where aQ is accessible Next we assume that * satisfies, for all UE0A 1
through drift only, we follow the proof of theorem[ 1

3.say L2. is the subset of L2 that can only be 0'('l) X nXil)'0j,1
entered by 1't) due to drift. For all other cases i0 1-we then notice that a strictly positive type (19) (24)
distance dR at the moment of exit 0', corresponds id into
with a strictly positive Euclidean distance from ZxRn- is a measurable mapping of x n it
L2-2 , due to the local boundedness of la(tt) n andand X is a measurable mapping of NxR

n into
IB(EtY I. Subsequently, we may follow the proof of R+, such that 1(i,.)-O for all iNIM, and
theorem 4.2 for these cases. Q.E.D. iEN )(i,)- A(E).

Mo-'over, we assume that for all IEN, EEZxRn-l and
4.6 Theorem UERd,Given the assumptions of corollary 4.4 are 1 01 U) ' 11-k (25)
satisfied. Then for all toE01, (tt) is a which, together wi an (i,.)Q for all
semimartingale strong Mar ov process, and its iEN-M, implies that if (EX, then (E t) in R+XM.
extended generator, A, is given by: substitution of (24) and (25 in (23.b,c) and

*f - if + Y+f , for all ftD(i), subsequent evaluation yield
where i and J+ are thos- given in proposition 2.3,wh, li the domain of 14 dtlt + ilol (i 'tt - ) ! u't- < ij0 X (i 'tt -) "V( ) - ( f E C2,b(o)nc (0UL0); Y+f(E)-0 all tEt0}. t-i K'

Proo: similar to the proofs of theorem 3.3 and • dyt(dulxRd), (26.a)S proposition 4.3. wih E~ ul-kA(Es. - ) -

for some integer k such that 0 < u* ! A (t

5. THE HYBRID STATE SPACE SITUATION dit - &(Et)dt + f(tt)dwt +.-,d t(ft
-,u) q(dt,du) +

In this section we explicitly consider the hybrid + d (tIt,ttt,11) dyt(R
+ xdu), (26.b)

state space sit,,ation for a system of the form vt(U) X( (UI!A(t._)]U[F(ts_)*O ] ) p(ds,du),(2.a,b), in such a way that there is no need of
assuming a particular k or A. As such, all jump a (26.c)
reflecting boundary results of the former sections rf Borel UCR+xRdt where underlining of a vector
fit into the results of this section. For ease of refers to all, but the first, components of that
notation and interpretation, we rewrite the SDE form vector.
(2.a,b) by replacing the Poisson random measure, p,
by a multivariate counting process, t, such that Assumptions
the pathwise uniqueness of (2)'s solution is &U Given, for all EERn0, and uER+xRd
preser-ed. We do that by defining, for all Borel Gien o a - 1 ,
UCR+ xR I A M - J N (n,'" - 1

Vt(U) l 6 x( (Ul<A(ts_)] U [F(s_) )0J ) p(ds,du), m(u) - l1Xi,.
X(s mdu) - dulxm~du).

(23.a) For all kEN there exists a constant Mk, suchand then rewriting (I) as that for all EEBdtt - a(tt)dt + 8(tt)dwt +R-Rd *(Et_,u) q(dt,du) + X01(,() [11-4l1 * id I!('.,t ) I (U) ] Mk.
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