UNCLASSIFIED

‘. ) vy

R oY R ~~'r_! ) -

Ly
~y

=1

§ s! ha
ETTRTYC P ACCITiF A TR N E TUK NAAT 45 taa 3 13

AD-A215 486

i B Y .
Dl AT e

Form Appraved

UMENTATION PAGE OMB No. 0704-0188

1b. RESTRICTIVE MARKINGS

— — . -

2 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release; distribution
i 20. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPQRT NUMBER(S)

A & ) . .
APOeT el 1 e

EST Dept.

T 6a. NAME OF PERFORMING ORGANIZATION
Univ. of Conn.

6b. OFFICE SYMBOL
(If applicable)

7a. NAME Of MONITORING ORGANIZA .ION

Air Force Office of Scientific Research

6c. ADDRESS (City, State, and 2IP Code)
Box U-157
Storrs, CT 06269-~3157

7b. ADDRESS (Crty, State, and ZIP Code) i
Directorate of Mathematical & Information
Sciences, Bolling AFB DC 20332-6448

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AFOSR Ny MOSC. &§-0009
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Bolllng AFB DC 20332-6448 ELEMENT NO. NO. NO ACCESSION NO.
61102F 2304 Q {

1. TITLE (Inciuge Security (Classification)

Stochastic Adaptive Control and Estimation Enhancement

12. PERSONAL AUTHOR(S)

Y. Bar-Shalom

Annual

13a. TYPE OF REPORT

13b. TIME COVERED
#rROM 08/01/88r®7/31/89

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
1989 September 1 -50

16. SUPPLEMENTARY NOTATION

COSATH CODES 18. SUBIJECT TERMS {(Continue on reverse if necessary and identify by block number)

FIELD

GROUP SUB-GROUP

systems,

i

/
Aoy e 40'77"'-'-"‘/ &,_,/5./‘7“'9" g

. e Ae L
Sern) grvi 2007004
e

>

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The investigations summarized in this report deal with:
systems with unknown parameters)

a) adaptive dual control of
b) estimation and control of hybrid stochastic
c) distributed estimation in systems with measurements of uncertain or:mln'

and {d) solution of continuous~time hybrid stochastic differential equationms.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
DO uncrassieiepunumited T SAME AS RPT. [T DTIC USERS UNCLASSTFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 220 TeLEPHONE (Incluge Area Coge) | 22¢. OFFICE SYMBOL
o‘ CPOU‘ [ (202)Y-767-5025 NM
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF TH|S PAGE
UNCLASSITIED




THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




APOSET: vy

.

Annual Report
Grant AFO<P-88-0202

Stochastic Adantive Control
and

Estimation Enhancement
Y. Bar-Shalom

September 1989

e

P

081




(AFREP) 890921

The main results obtained and published during the period covered by this report, August 1988
- July 1989, are described below together with references given to the corresponding

publication.

1. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients,
(Henk A. Blom and Yaakov Bar-Shalom, JEEE Transactions on Automatic Controi Vol. 33,
No. 8, August 1988)

An important problem in filtering for linear systems with Markovian switching coefficients
(dynamic multiple model systems) is the one of management of hypotheses, which is nccessary
to limit the computational requirements. A novel approach to hypotheses merging has been
developed for this problem. The novelty lies in the timing of hypotheses merging. When
applied to the problem of filtering for a linear system with Markovian coefficients this yields an
elegant way to derive the interacting multiple model (IMM) algorithm. Evaluation of the IMM
algorithm makes it clear that it performs very well at a relatively low computational load. These
results imply a significant change in the state of the art of approximate Bayesian filtering for
systems with Markovian coefficients.

2. Failure Detection Via Recursive Estimation for a Class of Semi-Markov Switching Systems,
(L. Campo, P. Mookerjee and Y. Bar-Shalom, Proceedings 1988 IEEE CDC, Austin, Texas)

An area of current interest is the estimation of the state of discrete-time stochastic systems with
parameters which may switch among a finite set of values. The parameter switching process of
interest is modeled by a class of semi-Markov chains. This class of processes is useful in that
it pertains to many areas of interests such as the failure detection problem, the target tracking
problem, socio-economic problems and in the problem of approximating nonlinear systems by
a set of linearized models. It is shown in this paper how the transition probabilities, which
govern the model switching at each time step, can be inferred via the evaluation of the
conditional distribution of the sojourr .nc Following this, a recursive state estimation
algorithm for dynamic systems with no. :  bservations and changing structures, which uses
the conditional sojourn time distribution, is derived and and applied to a failure detection ..?L_

a

a
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Distributed Adaptive Estimation with Probabilistic Data Association, (K.C. Chang and Y.
Bar-Shalom, Automatica, Vol. 25, No. 3, pp. 359-369, 1935

The probabilistic data association filter (PDAF) estimates the state of a target in a cluttered
environment. This suboptimal Bayesian approach assumes that the exact target and
measurement models are known. However, in most practical applications, there are difficulties
in obtaining an exact mathematical model of the physical process. In this paper, the pioblem of
estimating target states with uncertain measurement origins and uncertain system models in a
distributed manner is considered. First, a scheme is described for local processing, then the
fusion algorithm which combines the local processed results into a global one is derived. The
algorithm can be applied for tracking a maneuvering target in a cluttered and low detection
environment with a distributed sensor network.

An Adaptive Dual Controller for a MIMO-ARMA System, (P. Mookerjee and Y. Bar-Shalom,
IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989)

An explicit adaptive dual controller has been derived for a multiinput roultioutput ARMA
system. The plant has constant but unknown parameters. The cautious controller with a
one-step horizon and a new dual controller with a two-step horizon are examined. In many
instances, the myopic cautious controller is seen to turn off and converges very slowly. The
dual controller modifies the cautious control design by numerator and denominator correction
terms which depend upon the sensitivity functions of the expected future cost and avoids the
turn-off and slow convergence. Monte-Carlo comparisons based on parametric and
nonparametric statistical analysis indicate the superiority of the dual controller over the cautious
controller.
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5. Time-Reversion of a Hybrid State Stochastic Difference System, (Henk A.P. Blom and

Yaakov Bar-Shalom, Proc. 1989 IEEE Inin'l. Conf, on Control & Applications, Jerusalem,
Israel, April 1989 to appear in IEEE Trans. Info. Theory, 1990)

This paper develops the reversion in time of a stochastic difference equation in a hybrid space,
with a Markovian solution. The reversion is obtained by a martingale approach, which
previously led to reverse time forms for stochastic equations with Gauss-Markov or diffusion
solutiviis. The reverse time equations follow from a particular nion-canonical martingale
decomposition, while the reverse time equations for Gauss-Markov and diffusion solutions
followed from the canonical martingale decomposition. The need for the non-canonical
decomposition stems from the hybrid state space situation. The non-Gaussian discrete time

situation leads to reverse time equations that incorporate a Bayesian estimation step.

A New Controller for Discrete-Time Stochastic Systems with Markovian Jump Parameters, (L.
Campo and Y. Bar-Shalom, 11th IFAC World Congress, Tallinn, USSR, Aug. 1990

A realistic stochastic control problem for hybrid systems with Markovian jump parameters may
have the switching parameters in both the state and measurement equations. Furthermore, both
the system state and the jump states may not be perfectly observed. Prior to this work the only
existing implementable controller for this problem was based upon a heuristic multiple mode]l
partitioning (MMP) and hypothesis pruning. In this paper a stochastic control algon'tﬂm for
stochastic systems with Markovian jump parameters was developed. The control algorithm is
derived through the use of stochastic dynamic progamming and is designed to be used for
realistic stochastic control problems, i.e., with noisy state obeservations. The state estimation
and model identification is done via the recently developed Interacting Multiple Model
algorithm. Simulation results show that a substantial reduction in cost can be obtained by this
new control algorithm over the MMP scheme.
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From Piecewise Deterministic To Piecewise Diffusion Markov Processes, (Henk A.P. Blom,
Proc, IEEE CDC 1988)

Piecewise Deterministic (PD) Markov processes form a remarkable class of hybrid state
processes because, in contrast to most other hybrid state processes, they include a jump
reflecting boundary and exclude diffusion. As such, they cover a wide variety of impulsively
or singularly controlled non-diffusion processes. Because PD processes are defined in a
pathwise way, they provide a framework to study the control of non-diffusion processes along
same lines as that of diffusions. An important generalization is to include diffusion in PD
processes, but, as pointed out by Davis, combining diffusion with a jump reflecting boundary
seems not possible within the present definition of PD processes. This paper presents PD
processes as pathwise unique solutions of an [10 stochastic differential equation (SDE), driven
by a Poisson random measure. Since such an SDE permits the inclusion of diffusion, this
approach leads to a large variety of piecewise diffusion Markov processes, represented by
pathwise unique SDE solutions.
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The Interacting Multiple Mode! Algorithm for Systems
with Markovian Switching Coefficients
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merging. When applied (0 the problem of  “~riag for a linear system with
Markovian coelficieats this yields an ¢ . way (o derive the interacting
maltiple modd (IMM) algorithm. Ev. atiow of the IMM algorithm
makes i clear that [t performs very well at a relatively low computationsal
toad. These results imply a significaat change in the state of the art of
approximate Bayesian flltering for systems with Markovian coefficicats.

I. INTRODUCTION

In this contribution we present a novel approach to the problem of
filtering for a linear system with Markovian coefficients

x;=a(@)x,.,+b@)w, (A}

with ob<ervations
Ye=h(8,)x,+g(8,)v, )
6, is a finite state Markov chain taking values in {1, - - -, N'} according to

a transition probability matrix ff, and w,, v, arc mutually independent
white Gaussian processes. The exact filter consists of a growing number
of lincar Gaussian hypotheses, with the growth being exponential with the
time. Obviously, for filtering we need recursive algorithms whose
complexity does not grow with time. With this, the main problem is to
avoid the exponential growth of the number of Gaussian hypotheses in an
efficient way.

This hypotheses management problem is also known for several other
filtering situations [10], 5], (6], [9]. and [4]. All these prublems have
stimulated during the last two decades the development of a large variety
of approximation methods. For our problem the majority of these are
techniques that reduce the number of Gaussian hypotheses, by pruning
and/or merging of hypotheses. Well-known examples of this approach are
the detection estimation (DE) algorithms and the generalized pseudo
Bayes (GPB) algorithms. For overviews and comparisons see [14], [7],
{12]. and {17]. None of the algorithms discussed appeared to have good
performance at modest computational load. Because of that, other
approaches have been also developed, mainly by way of approximating
the model (1), (2). Examples are the modified multiple model (MM)
algorithms [20], [7], the modified gain extended Kalman (MGEK) filter of
Song and Speyer [13], [7], and residual based methods [19], [2]. These
algorithms, however, also lack good performance at modest computa-
tional load in too many situations. In view of this unsatisfactory situation
and the practical importance of better solutions, the filtering problem for
the class of systems (1), (2) noeded further study.

One item that has not received much attention in the past is the timing of
hypotheses reduction. It is common practice to reduce the number of
Gaussian hypotheses immediately after 2 measurement update. Indeed, on
first sight there does not scem to be a better moment. However, in two
recent publications [3], [1], this point has been exploited to develop,
respectively, the so-called IMM (interacting multiple model) and AFMM
(adaptive forgetting through multiple models) algorithms. The latter
exploits pruning to reduce the number of hypotheses, while the IMM
exploits merging. The IMM algorithm was the reason for a further
evaluation of the timing of hypotheses reduction. A nove! approach to
hypotheses merging is presented for a dynamic MM situation, which leads
to an elegant derivation of the IMM algorithm. Next Monte Carlo
simulatioas are prescated to judge the state of the art in MM filtering after
the introduction of the IMv aigonthm.

H. TIMING OF HYPOTHESES REDUCTION

To show the possibilities of timing the hypothesis reduction, we start
with a filter cycle from one measurement update up to and including the
ncxt measurement update. For this, we take 2 cycle of recursions for the
cvolution of the conditional probability measure of our hybrid state
Markov process (x,, 8,). This cycle reads as follows:

PO Y} % Pla]Y. ) ®

0018-9286/88/0800-0780501.00 © 1988 IEEE
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if P{6,]Y,-1} = 0 prunc hypothesis 6,,
Mixiag
P{xl—llohl- Y,,,] - - plxl-llolt Yl-l] 4)
Evolution
plx, 18, Y} — pix |6, ¥, \} (5)
Bayes
P{8|Y,...} — P{8,|Y.} (6)
Bayes
plx |6, Y._.] — plxlé,, Y.l m

For output purposes, we can use the law cf total probability

plx| Y=Y plxl|b,=i, Y.1P{6,=i|¥.}. ®)
1/

Let us take a closer look at the derivation of the above cycle. As v, and w,
arc mutually independent, the Bayes formula, which represeats (6) and
(7), follows easily from (2). From the evolution of system (1) follows (5).
The Chapman-Kolmogorov equation for the Markov chain 6,

P{6,=i|Y.. }=Y H,P{8,_,=jlY, .} ®
4

which represents (3), can be seen as a ‘‘mixing.”* To derive a
representation of (4) we first introduce the following equation on the basis
of the law of total probability:

Pix - |8=i. Yo =3, [pIx, 16, =), 6,=i, Y..]
/

- P{6,_,=j16,=i, Y, 1]. (10)

As 8, is independent of x,_, if 8,_, is known, we easily obtain
plx,|8,,=/,0,=i, Y, ) =plx,_,]6,_1=]. Y.}
Substitution of this and of the following:
P8, =j16,=i, Y, }=H, P =jY, . }/P{8,=ilY, }
in (10) yields the desired representation of transition (4)

plxcl8,=i, Y, \)= 3 H,P{8, =/ Y.}
7

s plx b= Y,,,]/P{O,:il)’,‘-,}. 1)

Notice that the mixing of the densities in (11) is explicitly related to the
above-mentioned Markov propertics of 6, and the conditional indepen-
dence of 6, and x,_,, given 8,_,. According to the above filtering cycle
there are at any moment in time N densities on R” and NV scalars. The
densities on R* are rarely Gaussian. Even if p{xo] Y] is Gaussian, then
plx|6, = i, Y,) is in general a sum of N'~' weighted Gaussians
(Gaussian mixture). Explicit recursions for these N individual Gaussians
and their weights can simply be obtained from the above filter cycle.
Obviously, the N times increase of the number of Gaussians during cach
tilter cycle is caused by (4) only.
In the sequence of ciemendaiy transitions, (3) through (7), we can apply
a hypotheses reduction cither after (4), after (5}, or after (7). We review
these reduction timing possibilities for the fixed depth merging hypotheses
reduction. This fixed depth merging approach implies that the Gaussian
hypotheses, for which the Markov chain paths are equivalent during the
recent prst of some fixed depth, are merged to one moment-matched
Gaussian hypothesis. The degrees of freedom in applying this fixed depth
merging approach are the choice of the depth, d (= 1), and the moment of
application, If the application is immediately after each measurement
update pass (7). it yields the GPB (d + 1) algorithms [14], {16]. In the
next section we derive the IMM algorithm by applying the fixed depth
merging approach with depth, d = 1, after each pass of (4). It can easily
be verified that all other timing possibilities yield disguised versions of
IMM and GPB algorithms. Merging after (5) with d = | yilds a
disguised but more complex IMM algorithm. Merging cither after (4) or

after (5) with d 2 2 yiclds a disguised but more complex GPBd
algorithm.

1988 781

. THE IMM ALGORITHM

The IMM algorithm cycle consists of the following four steps, of which
the first three steps are illustrated in Fig. 1.

1) Starting with the N weights §,(r — 1), the N means £(/ - 1) and
the N associated covariances (¢ — 1), one computes the mixed initial
condition for the filter matched to 8, = i, according to the following
equations:

p)=, H,p,(1~1), if p,(1)=0 prune hypothesis i, (12
4

B-1)= 3 Hp(t- D&~ 1/pA0), (13)
/

Rt~ 1= H, b~ DRt~ 1)+ (24~ 1) -2¢ = DI .17 V/p.0).
7

(14)

2) Each of the N pairs £#(¢ — 1), R'(¢ - 1) is used as input t0 a
Kalman filter matched to 6, = i. Time-extrapolation yields, ,(¢), R.(1),
and then, measurement updating yields, £,(¢), R,(7).

3) The N weichts p(I) aic updated from the innovations of the NV
Kalman filters,

Bty=c - p(n) - [Q M exp {-1/207(0)Q () 0.(0)}  (15)

with ¢ denoting a normalizing constant

o) =y, = h()X(1) (16)

Q) =ROR (A1) + 2()g T ().

a?)
4) For output purpose only, £, and K, are computed according to

£= Y AL (8)

R=3 AR +12O-£N. 17). (9

Only step 1) is typical for the IMM algorithm. Specifically, the mixing
represented by (13) and (14) and by the interaction box in Fig. 1. cannot
be found in the GPB algorithms. This is the key of the novel approach to
the timing of fixed depth hypotheses merging that yields the IMM
algonthm. We give a derivation of the key step 1).

Application of fixed depth merging with d = | implies that

plx 0, =i, Y ] ~N{£(-1), R~ D}

Substitution of this in (11) immediately vields (13) and (14), with

£~-1 & E{x, ,18,=i Y.}
and
Rr~1)

the associated covariance. Finally, we introduce the approximation,
Pl \18,=0 Y, | J~-N{£2u-1), &~ 1)}

which guarantees that all subsequent IMM steps fit correctly.

Remark: The IMM can be approximated by the GPBI algorithm by
replacing £,(f — 1) and R,(f ~ 1) instep 1) by £, and R,_,. Together
with (12) this approximates (13) and (14) in step D) by, £'(1 - 1) = £,
and Ri(f - 1) = R,_,. These equaiions are equivalent to (13) and (14) if
each component of / equals 1/N, which implies that 4, is a scquence of
mutually independent stochastic variables. The latter is hardly ever the
case and we conclude that the reduction of the IMM to GPBI leads to a
significam performance degradation. Obviously, the computational loads
of IMM and GPR! are almost equivalent.
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[ lnteraction ] Lza
Friter
1 toe
t 0
Kelmsa Kalman m
g1 8-n

LS The IMM algorithm

IV. FcRFORMANCE OF THE IMM ALGORITHM

Present!, a comparison of the different filtering algorithms for systems
with Markovian coefficieats with respect to their performance is
ha -pered by the analytical complexity of the problem [16], {15]. Because

€ rhis, such comparisons necessarily rely on Monte Carlo simulations for
specific examples. For our simulated examples we used the set of 19 cases
that have been developed by Westwood {18]. To make the comparison
more precise, we specify these cases and summarize the observed
performance results. In all {9 cases both x; and y, are scalar processes,
which satisfy x, = a(f,)x,. + b(B)w, + u(t) and y, = A(f,)x, +
2(0,)v,, with ,:Q = {0, 1}, u(t) = 10. cos {2x£/100), x, a Gaussian
variable with expectation 10 and variance 10, P{8, = 1} = P{6, = 0}

= 1/2, while Hyp = (1 — 1/19) and H; = (1 — 1/7,). The parameters
a, b, h, g and the average sojourn times 1y and 7, of these 19 cases are
given in Table 1.

The results of Westwood [18] show that, in all 19 cases the differences
in performance of the GPB2 and the GPB3 algorithms are negligible,
while in only seven cases (5, 6, 8, 16, 17, 18, 19) the ditferences in
performance of the GPB1 and the GPB2 algorithms are negligible. To our
present comparison the other 12 cases (1,2, 3,4, 7.9, 10, 11, 12, 13, 14,
15) are interesting. For each of these 12 cases we simulated the GPBI1, the
GPB2, and the IMM algorithms and ran Monte Carlo simulations,
consisting of 100 runs from 7 = 0 to ¢ = 100. For simplicity of
interpretation of the results we used one fixed path of ¢ during all runs: §
= Qon the time interval [0, 30]. 6 = [ on the interval (31, 60],and § = 0
on the interval (61, 100].

The results of our simulations for the 12 interesting cases are as
follows. In six cases (1, 2, 7, 12, 14, 15) both the IMM and the GPB2
performed slightly better than the GPBI1, while the IMM and the GPB2
perforined equally well. For typical results, see Fig. 2. In the other six
cases both the IMM and the GPB2 performed significantly better than the
GPBI. For typical results see Figs. 2 and 4. Of these six cases the IMM
and the GPB2 performed four times equally well (cases 3, 4, 11, and 13)
and two times significantly different (cases 9 and 10).

On the basis of these simulations we can conclude that the IMM
performs almost as well as the GPB2, while its computational load is
about that of GPB1. We can further differentiate this overall conclusion.

¢ Increasing the parameters 79 and 7, increases the difference in
performance between GPB1 and GPB2, but not between IMM and GPB2.

o [f a is being switched, then the IMM performs as well as the GPB2,
while the GPBI sometimes stays significandy behind.

* [f the white noise gains, b ocr g, are being switched, then the IMM
performs as well as the GPB2, while the GPBl sometimes stays
significandy behind.

¢ [f only A is being switched, then in some cases the IMM, and even
more often, the GPB1 tend to diverge while the GPB2 works well.

Another interesting question is how the IMM compares to the modified
MM algorithm and the MGEK filter. Apart from the GPB algorithms,
Westwood (18] also evaluated four more filters, the MM, the modified
MM, the MGEK, and a MGEK with a **postprocessor.”" For the 19 cases
there was only one algorithm that outperformed the GPBI algoathm in
some cases. [t was the MGEK filter in the cases 1, 3, and 4. He also found
that the MGEK filter performed in these cases marginally or significantly
less good than the GPB2 algorithm. As the above experinwents showed that

TABLE 1
THE PARAMETERS OF THE 19 CASES OF WESTWOOD [18]

CASE | H-VALUES O—DEPENDENT VALUES
# | To | 71 | stoan [ b0, bt | wor my | gor . e
1 40 20 995,990 1.0 1.0 1.0
2 | 40| 20 | ‘essiee0 s 10 5
3 40 20 .995,.990 -1 1.0 50
4 200 100 .995,.890 A 1.0 5.0
s | 4 | 20 | 995 9% 80 1.0 10
6 | 40 | 20 | 95990 10 10 3
7 | a0 | 20 | ‘995 900 5 10 20
8 | 4 | 20 | 995750 10 10 6
9 | 4| 20 995 20 10,95 5
10 40 20 995 1.0 1.0, 80 2
1" 40 20 995 5 1.0,.80 8
12 4 2 995 5 1.0,.80 8
13 200 100 995 S 1.0,.80 8
14 40 20 995 150 10 10
15 40 20 995 1.0 1.0 150
6 | 10| 2 95 s 1000 1020
17 200 5 950.0.0 1.0 1.0 1.0
18 %0 5 .950,1.2 1.0 1.0 10
19 10 2 95 5 10 10400

Res 40

304

A
0 n x «
Fig. 2. rms error for case 7, illustrative of the six cases (1, 2, 7, 15, 14, 15) where both
IMM and GPB2 perform slighdy better than GPBI

Raas 40—

—

Fig. 3. rms efror for case 3, iltustrutive of the four cases (3, 4, 11, 13) where both IMM
and GPB2 perform better than GPB1, while IMM and GPB2 perform equally well

for cases 1, 3, and 4 the GPB2 and the IMM algonithm performed equally
well, one can conclude that the MM, the modified MM, the MGEK, the
MGEK with ‘‘postprocessor,”” and the GPB1 are in all 19 cases
outperformed by the IMM algorithm.

On the basis of these comparisons one can conclude that for practical
filtering applications with N = 2, the IMM algorithm is the best first
choice. As the IMM algorithm has been developed on the hasis of some
generas hypotheses reduction principles, which are N-invanant, one can
reasonably expect that this is also true for larger N. But it is unhkely that
the IMM performs in all applications almost as good as the exact filter
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(16]) ). L. Weiss, A comparison of finite filtering methods for ..atus directed
processes,”’ Master's thesis, Charles Stark Draper Lab., Mass. Inst. Technol.,
Rep. CSDL-T-819, 1983.

f17] J. L. Weiss, T. N. Upadhyay, and R. Teancy, **Finitc computable filters for linear
systems subject to time-varying modd uncertainty,’” in Proc. N.iECON, 1983,
pp. 349-355.

(18} E. K. Westwood, Fdlcn.ng algorithms for the lincar estimation problem with
twudmgp-nnwn M.S. thesis, Univ. of Texas at Austin, 1984

(19] A. S. Willsky, **Detection of abrupt changes in dynsmic systems.”* Rep. MIT-
LIDS-P-1351, 1984.

{201 A.S. Willsky, E. Y. Chow, S. B. Gershwin, C. S. Greene, P. K. Houpt, and A.
L. Kurkjian, *‘Dynamic model-based techniques for the detection of incidents on
freeways,"* JEEE Trans. Automat. Contr., vol. 25, pp. 347-360, 1980.

[21] J. W. "Voods, S. Dravida, and R. Mediavilla, *‘Image estimation using doubly
stochastic Gaussian random field models,'* JEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-S, pp. 245-253, 1987

3 1 i 3 I

» » 4 « ] - « Py

Fig. 4. mms emmor for case 9, illustrative of the two cases (9 and 10) where IMM
performs better than GPBI, but slightly worse than GPB2 (in these two cases only A

jumps).

Therefore, if the IMM performs not well enough in a particular
application one should consider using a suitable GPB (=2) or DE
algorithm [14], or onec might try to design a better algorithm by using
adaptive merging techniques [16]. The DE algorithm might possibly be
improved by the novel timing of hypotheses reduction [1). If for a
particular application the performance of the selected algorithm has a too
high computational load, then it is best to try to exploit some geometrical
structure of the problem considered [2], [11].

In situations where estimation has to be done outside some time~critical
conurol foop, it is usually preferable to use a smoothing algorithm instead
of a filtering algorithm [8], {14], [21]. In view of the above filtering
results, this sugg--ts that the ideas that underly the IMM algorithm can be

l exploited to develop better smoothing algorithms.
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Failure Detection Via Recursive Estimation for a Class of
semi-Markov Switching Systems

L Campo', P Mookerjee’, and Y bar-Shatom!

Abstract

nn area of current interest is the estimation of
the state of discrcote~time stochastic systems with
parameters which may switch among a finite set of
values. The parameter swilching process of interest
ts modeled by a class of semi-Markov chains. This
class of grucesses is uvseful in thal it pertains to
many areas of interests such 45 the failure detection
problem, the target tracking problem, socio-ecunomic
problems and in the problem of approximating
nonlinear systems by a setl of linearized models It
is shown in this paper how the Lransition
probabilitirs, which guvern the model switching at
each time step, can be inferred via the eva.uation of
Lthe conditional distribution of the sojourn time.
Following this, a recursive stale estimation
algorithm for dynamic systems with noisy observations
and changing structures, which uses Llhe condilional
sojourn time distribution, is derived.

[ Introduction

~In this paper we are concerned with faituie
detection via recursive estimation of parameters in
discrete-time dynamic systems. The topic of interest
is stochastic systems with zbruptly changing
parameters i.e.,, model jumps. The recursive state
estimation algorithm for this problem developed in
this paper provides the concitional model
probabilities used for cete:ting the change in system
parameters which signify component faitures.

The abruptly changing parameters, which switch
among a finite set of values, are modeled as a Markov
or a semi-Markov chain with known transition
statistics [M2,M3,M5-M8.GI]. Although lhe idea of
semi-Markov chains is appropriate for the model
concerned, the analysis presented in the above is
actually only for Markov chains (since the transition
probatilities were assumed fixed and the Lransitions
depended only on t'e lalest state - see €q. (8) in
[M2]). The process cansidered in this paper is of
the semi-Markov type and pertains to many areas of
interest. A fallure in 3 component of 3 dynamical
system can be represented by a sudden change in the
systems parameters [B5,51,W1}. Also, a repair to a
sysitem represents a change in the parameters (8S].
Other areas that this class of processes pertains to
arc the target tracking problem [B1], socio-economic
problems (G2] and the technique of approximating
grossly nonlinear systems by a set of linearized
models [M4, VI, V2]

The first treatment of estimation in a3 switching
environment was in {Al] where the means and
covariances of the process and measurement noises
experienced jumps. As iIndicated in [Cl], the optimum
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state estimation in a mulliple model environment is a
funcltion of the eiemental (“modei-matched”’} state
estimates obtained via estimators tuned to all
possible parameter histories hus, with time, Lhe
estimator must keep track of an exponentially growing
number of parameler hislory hypotheses. Even in the
case of Markov swilching the estimation aigorithm
requires exponentialiy growing memory (71, T2)
Suboptimal algorithms {ike the Generalized
Pseudo-Bayesian Algorithm tG#B) ial, [, T2) anc the
Intecacting Mullipie~-Model Algorithm (IMM) {[L2, 83.
B2] are viable approaches lo obtain 3 real-time
tmplementable eslimatinn glgorithm. These algorithms
rely on different Liyopolhe- merging techniques Lo
limit the memory and compulational requirements {B4)

{n {S2,C2] a semi-Markav swilching problem was
corsidered, bul Lne jumps were assumed Lo be
perfectly observed. In {M9] an estimation scheme for
semi-Markov processes was ceveloped based upon the
detection-estimation aigorithm (0€EA)  This approach
is oblained by retaining a ce:tain number of most
likely parameter history hypotheses The estimation
schemes based upon the DEA {which discards all but 3
number of most likely history hypotheses) and the GP8
or MM (which use hypothesis merging) algorithms
represent differ2ntl philosophies of algoarithm
desiga. Wwe presenl an example comparing the two
meLthods for 3 particular state estimation problem
later in this paper.

The problem is formulated in Section 2. In
Section 3 the sojourn time conditional probability
mass functions and the conditional transition
probabilities which we derived in [Mia}, are given
here for clarity and ease «f reference. The
inclusion of Section 4, the state estimation
algorithm which was developed in {M1bl, is for the
sake aof completeness. In Section § simulations z-e
presented. Preliminary results on this problem were
presented in [Mia, Mib].

2. Formulation of the problem

The system is modeled by the equations

x(k) = FIM(K]] x(k-1] * v{k-1, M(k]] 2.1)
z(k) = H{M(Kk]] x(k] « wlkM(k]] (2.2)
where M{k}] denotes the mode! “al time k* - in effect

during the sampling period ending at k. The process
and measurement noise sequences, vik) and wik), are
white and mutuali,” uncorrelated.

The model at time k is assumed to be among the

possible r models
M{k) € (1, .r) (2.3i
for example
F(M(k)=j] = Fj (2.4)
vik-1M(kl=j) ~ N(ul. 0,.] {2.5)

i.e., the structure of the system and/or the
statistics of the uofses might be different from
model to model. The mean u, of the noise can
mode! a3 maneuver or a system failure as a
deterministic input.

The model switching process to be considered here
is of the semi-Markov type The process |s specified
by a family of ltransition matrices p“_('r_)

e, it is a "sojourn-time-dependent Markov” (STOM)

B © .




chain, which belongs to the semi-Markov class. The
specification of the STOM chain is more closcly
related to physical models because il does nol have
the artificial restart of the sojourn Lime counting
of the semi-Markov process for virtual transitions’
and can capture important features in many realistic
situations.

For the class of semi-Markov chains governing the
evolution of the system’s model considered here, we
need the pdf of Lhe sofjourn time condilioned on the
observations, to infer the transition probabilities
The conditiona! transition probabilities based on
noisy observations of the system’s state are obtlained
in the next section

‘A semi-Markov (SM) chain {Hi, HZ, Rl} 1s

characterized by a fixed matrix of transilion

probabilities [p }] and a matrix of sojourn
1)

time probabitity density functions

{f, tr,1l; which are functions of the
current statle i as well as the destination state |
of the transition. in 3 SM chain first the
destination of the jump is chosen according to

lp.,' and then the time after which the jump
takes place li.e.
according Lo

. the sojourn time] is chosen
(f”(1|]l. In this model the
process can undergo a virtual transition (ie. jump
“in place” if j=i]; however, in this case, the
sojourn time counting is still restarted even though
the system has been in state i for some lime

3. Sojourn Time Probabdbilitly Mass Functions and
Conditional Transition Probabililies

The process M(k], k=01, which represents
the system model, can exist in one of r
possible states. The current probabilities of
transition for the STOM process (chain] are functions
of Lhe sojourn time 71 and are defined as

p.,[” = P(H(k)=jlM(k-1}=i.7 (k-1)=T) (3.1)

where t1.(k-1] is the sojourn time in state i at
time k-1. It is assumed that at k=0 the sojourn
time {in whatever state the system mode! is} is
r=1 . Thus the values T can take are from 1
to the maximum, which at time k-1 is then X

1et z(i) be a noisy measurement of the state of
the dynamic system whose model undergoes transitions
according to the above described STOM process Based
on the available information
I"=(z(x})t, the oprobability of the
model process being in state i , denoted as
wlk) . is defined as

u (KIZP(M(K)=IlZY)  i=tr (3.2)

The conditiopal pmf of the sojourn time in state
M(k]=i basez on the available information 7t at
time k is

g' (1] 2 P(r(kI=TIM(K)=iZ") = Plr (R)=TIM(K)=i, Y

. P{H{k=1)si. . M(k-Te1)=i M{k-7)4ilM(k]=i, 2"y (3.3)
where the perfect knowledge of the state M(k)
allows one to go down Lo one index less in the

conditioning, i.e., AR ‘
Following (3.1) the conditional probability of
transition fram i to j at time k-1 given the

observations 2'' is, in terms of (3.3).
B, (k-1} 2 PM(K)=IM(k~1]=i,2" "}
\'; PM(KInjlM{k=1]ei T (k=11x7,2"")
'ilP(r'(k-lI'fIH[k-H-i,Z"l)
;i_l p (1) &1 (35)

Note thél the argument of p”, defined in

{31] 1s the sojourn time whife the acrgument of

p defined above is the current Lime
'

The conditional probability mass function (3.3)
of the sojourn time 7T in state 1 at time &k is

given by the following expressions

gty = —ﬂk;# b,(k1] ~136)
y [k-s) u lk-m]
g (s) = [l - 3:(7‘5—)_ b (k :]ﬂ a(k a7 Blkm)
K (37]
lk~ ]
gtlke1) = H a‘k ST my blkm) (3 8)
Cxpressions ll&) (3.8} are proven by induction n
(M1aj The cotations 3, and b, used above are
defined below
The probability that Lhe process will stay s
Lime steps in the same state 1 as 1t is 3t Lime
k-s is. conditioned on the (nformatinn at  k-s,
given by the expression
blk.s) £ P{MIKI=t, M(k-sel)=ilM(k-s)=1.2"")
k-gel nes-l
= > e et s=l. Kk (39

n:{ mn
Conditioned Jon the availcbte information
2" at time k-s. the joinl probability of
the process residing 1n the same stale 1 for the
next s Llime steps 1s denoled as

alk.sI2P(MIK)=1, Mlk-s+1)=i12""")

ip(nlk)n. Hik-sel)=1lM(k-5)=1.2" *IPMIKk-5)=5IZ" "}

IR

= b (k.slulk=s] « TP(MIKk]=L Mk ~setl=ilMlk-s1=1.2""")

y|
-u)(k-sf
= b(k s) v (k-s)
kege - .
2 z ‘o (MiK=, CMik-set)=ilf(k-s)= T (k-s)=n.)

8,"‘Inl]ullk—sl
b {k.s)

ullk-S]

k-5l R
. ‘z‘: 3 pjllnlph[l]p"[ZI..p“(s-ll g,‘ *(n) ]u’lk- )

nzl

b {k.si

ul(k-Sl
k-sel s-1
) e 01 p llls"‘lnl] u(k-s)
#i At Mo !
s=1,...k (31

4. The state estimation algorithm

As indicated in Sec. I, the optimal estimator for
linear systems with Markov mode! jumps requires an
exponentially increasing memory. Among the
suboplimal approaches discussed, it 3ppears that the
MM is the most cost-effective in implementation
[B4]. In view of this, the state estimation for a
linear system with sojourn-time-dependent transition
probabilities is developed in the sequel based on the
IMM approach.

In this approach, at time k Lthe state
estimation is computed under each po:ssible model
hypothesis using ¢ filters (for the ¢ possible
models), with each filter using a different
combination of the previous model-conditioned
estimates. Each model transition probability is 3
xnown function of the sojourn time given by (3-1],
€ach model has a sojourn time r (k) in state i
which is, however, not known The filter has access
only to the observations from which the conditional
pmf of the sojourn time (36, ,8) can be obtained.

NN



this {n turn is to be used in calculation of the
conditional transition probabvilities (3 5]

To find the canditional pdf of the state of the
dynamic system described by (2.11-{2.3}] the tota!
probability theorem is used as follows

v
pIx(KIZ') « ¥ pix(k}M(kle)z(k],2 ') P{H{K]I=)IZ")

51
f

= Tolx(k)M(k)=j,z{k]),2"""] b (k) t4 1]
3t
ie, r fllters running in parailel The
model-conditioned posterior pdf of the slate, can be
rewritten as {with the irrelevant conditioning on
' in the numerator omitted)
plx(k)IH(K)=j, 2(k), 2"
z{k}HM(k)=j x(k -
LG LICT LR LY TP (42]

plz{k)iM(k)=j,2" '}
reflecting one cycle of Lhe state estimation filter
matched to model j starting with the prior, which
is the last term above. The total probability
theorem is now applied to this prior, yielding

plx(kIIM(kxjZz" "]
r

= Tplx(k)IM(K)=jMlk-11=i.2" " IP(M{Kk~1}=ilM(k]=j.7" ")

(53

= Tplx(K)Mk)=jM(k-11=i.2"""] v, (k- tlk=1] (43}
ist '
where
b k) & P(M{k]=jlZ") (4 4)
and
w (koo 2 POMk- 1) =ilMk)=j25 ) (45)

Note that Eq. (4.3) represents a Gaussian mixture
under the lypical Gaussian assymptions on the noise
terms in €qs. (2.1} and (2.2). This mixture is then
approximated by a single moment-matched Gaussian.®

Therefore it follows that the input to the filter
matched to model j, j=!,..r, is obtained from an
interaction of these r filters. This interaclion
consists of the mixing of the estimates

Z{k~1lk-1) 3ccording to the weightings
(probabilities) u”‘.[k-llk-l]. The

evaluation of the probabilities (4.4) and (4.5) in
the STOM situation, are the key results needed
to obtain a recursive state estimation algorithm for
this type of model switching. These probahilities are
shown below to follow from the results in Section 3.

Fig. 4.1 describes the resulting Interacling
Multiple Model (IMM} algorithm, which consists of r
interactling filters operating in parallel. The
mixing is done at the input of the filters with the
probabilities, detailed later in (4.7), conditioned
on PARIS

One cycle of the algorithm consists of the
following:

Starting with the modei-conditioned estimate

x'(k-1lk-1), with associated covariance

P'lk-1ik-1), one computes the mixed initial
condition for the filter matched to M(kj=j according
to (4.3] as foilows

.
AU-tlk-1) = 3 K ketlke-tu, (k-1lke1) (45
From [4.5) "
i le-tik=1) = LP(MEk)= jIMt-1)ei, 2P 1) =il 2t )
)

ﬂl,—-

b (k-1) ui(k-1) (4.7)
H

‘This is the key step of the IMM that yields an
algorithm with fixed (and modest) computational
requirements: using r filters it ylelds performance
comparable to the Generallzed Pseudo Bayesian
algorithm with r? filters (B4].

where the notations from (4.4} and (35) were used
and

%(k-11k-11 2€{x(k-1}M{Kk-1]=i,2" "] (4.8}
i1s the model-conditioned state estimate at lime k-1
The expression of 6” for the STDM case

using terms involving sojourn time probabilities is
the one ottained in (3.S]. The covariance
corresponding to {46]) is

13

PPE-tlk-1) « Tu (k1K= 1P (k- 11k-1)

[
< (K tk-tk-1- Rk -1k - 1))
(% (k=1lk- 11X k- k- 111) {19

ihe estimate {4.5) and covariance [4.9) are used
as npul 1o 2 standard Kalman filter matched lo
M{k]l=j to yield the madel-condilioned estimate

'Ixlk} and its covariance P'(klk]).
The likelihood funclions corresponding to the r
filters are compuled as

A k) = plzlklingk)=jz" ']

= plz(e)IME) =i 2k~ 11k-1) P (k-11k-1)] (410}
where the past dala have been replaced by (4.6) and
(4.8} according to the key step of the IMM. The
model probabilities {4.4] are updated as follows:

bIK) < PRIKIIIZY = EAMKIS B (k-1) b (k1) (4111
i1 ] €

where Lhe conditional transition probabilities, -
ﬁ“. are as given in (4.8).

Egs (4.7) and {4.11) in combination with
pl) are the key results that make possible

the state estimation for a system with sojourn-time-
dependent model transitions.

Finalty, for output only. the fatest state
estimate and covariance are obtained according to
£gs (41) and (4.3} as

x(klk) = T %i(klk} u (k) - (4.121
e
Plkik) = § uj(k)(P‘lklk]
r! .
o (%K) - xUklRIZ(KIK) - 2EKIK))) (413)
S. Simulation Results

The algorithm developed in Sec. 4 using the
sojourn time pmf obtained in Sec. 3 is used to
estimate the state of the system. In the first
example the results of this STOM-based IMM estimation
scheme are compared with results obtained from an IMM
algorithm based upon a Markov model transilion
assumption. In the second example the STOM-based MM
estimation scheme is compared to the
detection-estimation algorithm of [M9]. [t is
assumed that an STOM process described in Sec. 2
governs the swilching between models. [n the
following T is the sampling period and k is an
integer representing the number of sampling periods
since time zero.

Example 1

The estimation of a controlled double integrator
system with process and measurement noises is
considered with a gain faflure. The two possible
models are given by Lhe following system equation

1T ;
SR o
2
. [ 0 ] ulk) o [”2] vkl i=1.2 (5.1]
b’ T

with measurement equation

z(k) = {1 Q] x'(k) « wik] (52)
The models differ in the control gain parameter b’
The process and measurement noises are mutually
uncorrelated with zero mean and varfances
given by

Elvied vijll « 44107 &, (5 3)

M
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and
Elwik] wijll = &, (S 1)
The coatrol gain pacamelers were chosen to be b'x2
and b=t
The (ransition probabilities pnlrl and
012(11 defined in (3-1) are shown in Fig
S-1 Note that p”(1)4 for i#j, are given

by -
pu(” =1 - 0"(11, (S.S]
Thus we see that pnlrl is initially .5 and
rises rapidly to .99 and then decreases lowards .l
which is its steady state value We also see that
on(ﬂ has a value close to 1.0 for this range
of 1 and thus mode! state Lwo is essentially an
absorbing state

Figs. $-2 through S-4 present Lhe results of
100 Monte Carlo runs. The true sy~stem was initially
model | for every run and the model transitions
occurred according Lo the prababilities of Fig S-1.
For simplicily, since we are mainly interested in the
estimation of the state, and not in the control
strategy, we sel u(kl=3 for all k .

The Markov based IMM used for comparison utilized
the a priori average lransition probabilities
p,lr]. obtained by taking Lhe expected
value of the transition probabilities shown in
Fig. S-1. in other words, the conditional
probability p from (3.5) is replaced by the a
priori (unconditional) p given below in (5.7]
The probability of having a sojourn Lime 7
equal to 1t is the probability that model 1 s in
effect for 71-1 steps, and then a transition occurs
at step 7.

Plr=1) = 'ﬁl p (] ][1 - e l1] {(5.61
Thus we get =
b - s p (1) Plr=r) =12 (5 7a)
and "
B, =1-7 (5.7b}

n

Figs. S-2 and S-3 are plots of the RMS error in
x,(k} and x,(k] respectively. from Fig. 5-2 we
can see that the STOM-based IMM estimalor improves
the RMS error in x,(k) by as much as 20 percent.
From Fig. 5-3 we see that the RMS error in x,(k]
of the STOM-hased (MM estimator is as fow as one
third the error of the Markov-based IMM scheme. Thus
the mean-square error improved by an order of
magnitude.

Fig. 5-4 is a plot of the average model
probability error. This is the error in the filter’s
determination of the correct system model.

Typical running times for the STOM-based IMM vs.
the Markov-based IMM are in the ratio of 3:1. The
length of the time~span over which the sojourn time
pmf is computed can be truncated - it becomes
negligible after 15 steps. This keeps within
reasonable limits the additional calculations of the
STOM-based filter and prevents any growth of the
computational or memory requirements.

Example 2

in this example we make a comparison between Lhe
detection-estimation algorithm, (0EA}, based
semi-Markov estimator of [M9] with the STOM-based IMM
estimator of this paper. For this purpose the system
and the semi-Markov model switching process
attributes are as in [M9)] example 3, and are repeated
here for ease of referance.

The model process M(k) is taken as a semi-Markov
chain. The scalar system is described by [M9]

x{kef] = [ 04 x(k} + v(k]

Z(k] = x(k) ¢ O{M(k))Jwik]), K=0.1.2,.. (5.8)

where r =« 3 models, 0(1}=100, 0(2])=10, and 0(3)=1

Here {(vik)} and (wlk]} are muytually independent
zero-mean Gaussian white noise sequences with
covariances Q«0.1 and R=10, re<pectively. The
initial canditions are x(0}~~{30,400), P{H{O)=i}=1/3
for i=1,2.3 Ffor the real system x(0)={ in every
simulation The process M{k) is modeled by a
semi-Markov chain with the imbedded Markov chain
transition probabilities given byp”-pn-pn-l), pu-0,7,

- . =0, =07 T i
p”-0.3, Py 0.6, Py l].*!.p]1 0.3, and P, 0.7 The sojourn
time prohability mass funclions pll'rl are assumed
to be
pl1) = aexpl-17-31]
p,lrl = aexpl-lr-6{)
o1 = a,exp{-17-8l] (s 9]
for 120 with a such thadt

ip‘['ll:l‘ 1=1,2.3 (S 10]
-0

The resulls of SO0 Monte Carlo runs average are
shown in figs 5-5. 5-6. In fig. 5-5 we compare the
rms state errors of the two filter 0EA based
semi-Markov eslimator of [M9] with our two filter GPB
based semi-Markov approach, and with the GPB
estimator ysing 3 filters. Note that Lhe values for
the DEA estimator are two-lime-step smoothed values
[see [M9]. Fig. 7. M=2 most likely histories
retained] whereas the values for the STOM-IMM
estimator are fillered values We can see that our
estimator with two filters is stable as opposed to
the unstable two-filter 0EA method.

The plot of the 3 filter STOM-IMM estimator shown
in Fig. 5-5 is given so thal one can compare the
improvement obtainable by adding an extra filter to
this approach. We see Lhat the long term trend is
for the 3 filter STOM-IMM to give 3 smaller rms error
than the version with 2 filters.

In Fig. 5-6 we compare the probability of error
obtained using a 4 filter DEA estimator versus the 3
filter STOM-IMM estimator. Both curves were obtained
from a filtering operation {see {M9] Fig. 10, N=0).

Ve can see that the present estimator gives a much
clearer indication of the correct system structure
and hence is preferable for failure detection

6. Conclusion

Ve have applied the recursive state estimation
algorithm for dynamic systems, whose state mcdel
experiences jumps according to a sojourn-time-
dependent Markov, STOM, chain, to the problem of
failure detection. The algorithm, which is of the IMM
type, uses noisy state observations and the
calculations are done in the following order:

1. Probability of each model being the current
model

2. Sojourn time pmf in the current model

3. Model-conditioned state vector estimates and
covariances

4. Overall state vector estimate and its
covariance.

The first example simulated indicates that the
use of the STOM-based IMM estimator can give a
substantial improvement in state estimation over 23
Harkov-based IMM. The latter relies on the a priori
average transition probabilities while the former
uses conditional transition probabllities obtained
from the conditional sojourn time distributlon. This
example shows Lhat the STOM-based scheme is
substantially better than the Markov-based scheme In
determining the true system model, which Is
beneficlal for fallure detection schemes.

The second example simulated shows that, for Lhe
particular system under consideration the $STOM-based

e ———————e



IMM estimator, which is an hypothesis merging
technique, compares favorably in tecms of Lhe
probability of error, to the delection-estimation
algorithm based estimator, which discards the
unlikely parameter hlstory hypothesis
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Distributed Adaptive Estimation with
Probabilistic Data Association*

K. C. CHANGt and Y. BAR-SHALOM1$§

A fusion algorithm for target state estimation under cluttered environment

with uncertain measurement origins and uncertain system models in a

distributed manner can be applied for tracking a maneuvering target in a
cluttered and low detection environment

Key Words—Distributed estimation; multiple mode}; target tracking; probabilistic data association;

Bayesian methods; distributed sensor networks.

Abstract—The probabilistic data association filter (PDAF)
estimates the state of a target in a cluttered environment.
This suboptimal Bayesian approach assumes that the exact
target and measurement models are known. However, in
most practical applications, there are difficulties in obtaining
an exact mathematical model of the physical process. In this
paper, the problem of estimating target states with uncertain
mcasurement origins and uncertain system models in a
distributed manner is considered. First, a scheme is described
for local processing, then the fusion algorithm which
combines the local processed results into a global one is
derived. The algorithm can be applied for tracking a
maneuvering target in a cluttered and low detection
environment with a distributed sensor network.

i. INTRODUCTION

THE masor difficulty in tracking a target with
switching models/parameters in a cluttered
environment is due to the fundamental conflict
between the operations of model/parameter
identification and data association, since the
measurements with large innovations are con-
sidered as unlikely to have originated from the
target of interest. In this paper, a multiple model
approach in conjunction with the probabilistic
data association (PDA) filter (Bar-Shalom and
Tse, 1975; Bar-Shalom, 1978) to track a target
with switching models using distributed sensors,
is presented.

* Received 23 February 1988; revised 18 August 1988;
received in final form 17 September 1988. The original
version of this paper was presented at the 10th IFAC World
Congress which was held in Munick, F.R.G., during July
1987. The Published Proceedings of this IFAC meecting may
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Oxford OX30BW, U.K. This paper was recommended for
publication in revised form by Associate Editor P. M. G.
Ferreira Guimaraes under the direction of Editor H.
Kwakernaak.
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to this address.

$ U-157, ESE Department, University of Connecticut,
Storrs, CT 06268, U.S.A.
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Several approaches have been proposed to
perform the state estimation of a system together
with identification of each model (out of a finite
set) in a centralized framework. One of the
significant schemes is the so-called generalized
pseudo Bayes (GPB) method (Tugnait, 1982;
Chang and Athans, 1978) and the other is the
interacting multiple model (IMM) algorithm
(Blom, 1984; Blom and Bar-Shalom, 1988). The
general structurc of these algorithms consists of
a bank of filters for the state cooperating with a
filter for the parameters. A GPB algorithm of
order n (GPBn) needs N" filters in its bank
(Tugnait, 1982). The IMM algorithm performs
nearly as well as the GPB2 method with notably
less computation, namely, at the cost of GPB1
(Blom and Bar-Shalom, 1988). A distributed
estimation scheme with uncertain models has
also been derived (Chang and Bar-Shalom,
1987). However, in all the above approaches, a
perfect data association was assumed, i.e. there
is no uncertainty in measurement origins.

To take into account the data association
problem, an adaptive PDA algorithm was
presented in Gauvrit (1984) for tracking in a
cluttered environment with unknown noise
statistics. This algorithm identifies on line the
uaknown variaaces of the process and measure-
ment noises but uses an earlier (static) multiple
model approach (Bar-Shalom, 1988). In this
paper, a distributed estimation problem which
takes into account both model and measurement
origin uncertainties will be derived. To handle
the model uncertainty, a more general formu-
lation with dynamic multiple models described by
Markovian parameters will be adopted. These
parameters may switch within a finite set of
values which represent different system models.
To take care of the missing and false
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measurements, the PDA scheme will be
employed. The probabilities of associating
measurements to a target given different system
models will be computed and used to weight the
combination of state estimates.

The problem is formulated in Section 2. A
centralized algorithm which combines the IMM
algorithm and the PDA filter, resulting in the
MMPDA (multiple model PDA) filter, for local
processing will be described in Section 3.* Then
the fusion algorithm which combines the local
processed results from multiple sensors into a
global one will be presented in Section 4.

The algorithm can be applied for tracking a
mancuvering target in a cluttered and low
detection environment with a distributed sensur
network (DSN).

2. PROBLEM FORMULATION

Let us consider the two-node scenario similar
to that given in Chang ef al. (1986), where each
node processes the local measurements from its
own sensor and sends the local estimates to the
fusion processor periodically. The fusion pro-
cessor then sends back the processed results
after each communication time.

The dynamics of the target in track are
modeled as

x(k) = fix(k = 1), M(k), v[M(k), k= 1]] (1)

where x(k) is the state vector, v[M(k), k — 1]
the process noise vector and M(k) the system
model from time k — 1 to k. Assume the random
model process M(k) is Markov and it can only
take values from a finite set M, which contains r
distinct models,t i.e.

M= (M} (2

The measurement system is modeled as follows.
If the measurement originates from the target in
track, then

z'(k) = h'lx(k), M(K)] + w'[M(k), k] (3)

where z‘(k) is the measurement vector from
sensor i and w'(M(k), k] is the corresponding
measurement noise vector. The two noise
sequences are mutually independent and inde-
pendent of the initial state.

* The MMPDA algorithm has been implemented in the

. interactive software MULTIDAT (Bar-Shalom, 1987, 1988).

t The models can have states of different dimension. In
this case, the lower dimension state vectors are augmented
with suitable components that are zero w.p.1, to make them
compatible. This is elaborated on in Section 5.

$Such a rule, also called “‘gating”, considers only the
measurements within some distance from the predicted
mcasurements  (for details, see, c¢.g. Bar-Shalom and
Fortmann (1988)).

As in the PDA filter, it is assumed that a rule
of validation of the candidate measurementst is
available such that it guarantces that the current
return will be retained with a given probability.
For each sensor, denote the validated measure-
ments at time k as

Zi(k) = {z)(k)}4 (4)

where m is the number of validated measure-
ments of sensor i at time k, and

VAR RVAI()) s (5)

The local model-conditioned state pdfs at
sensor i are

plx(k) | M,(k), Z"*, Y*¥),
i=1,2; j=1,...,r (6)
with the corresponding model probabilitics
P(Ml(k) | Z"k, Yl.k}'

i=1,2;, j=1,...,r (7)
where » _ v
Yk ={Y'(1),..., Y(k)} (8)

and Y'(k) denotes the information received by
node { during the sampling period ending at time
k, which is defined as the fusion result (namely,
global conditional pdf) up to time k — 1.

Assuming lossless communication and that the
information communicated is the sufficient
statistics, i.e. the information contained in Y“¥is
equivalent to the information in Z“*~', then we
have the following equality:

plx(k) | Z*, Y4y = p(x(k) | Z+471, ZH4t)
=p(x(k) | 27" 9)

where i represents all sensors other than sensor i
and Z*={Z(}f.,, where Z(I) represents
measurements from all sensors at time /.

Given the above models, the question now is
how the global conditional pdf can be con-
structed by fusing together the local ones.
Specifically, we shall investigate what is the
necessary and sufficient information that has to
be transmitted between nodes. The derivations
will be carried out for arbitrary pdfs; however,
tiue simulations assume linear models with
Gaussian random variables, in which case the
state's model-conditioned pdf (6) is Gaussian
and the overall conditional pdf of the state is a
Gaussian mixture (Bar-Shalom, 1988).

3. CENTRALIZED ALGORITHM FOR LOCAL
PROCESSING

For each local node, the centralized algor-
ithm where all measurements are sent to and
processed with one processor is described below.
The goal is to compute the conditional state

——————
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distribution given the local accumulated measure-
ments. With only model uncertainty, the local
conditional pdf at sensor { can be obtained as

plx(k) | Z*%, Y¥)
=,>; px(k) | M(k), Z*, Y
X P{My(k) | Z"*, Y**}. (10)
When the additional measurement origin uncer-

tainties arc present, the above equation becomes

plx(ky| 2", Y*¥)
=3 {S ptctir 1100, 1, 2%, v+

x P{6} | M(k), Z'*, Y"-“}}
x P{M;(k)| Z*, Y**} (11)

where ) is the event that zj(k) is the correct
measurement and 65 denotes no correct
measurement.

The first term on the right-hand side of
equation (11) is the standard PDA filter based
on model M;, where for each 6

p(x(k) | Mi(k), 6;, Z"*, Y**)

1
=mp(zl(k) | x(k),
Mj(k), 8, Z“*~1, y'¥)
xp(x(k) | M(k), Z"*7', Y**)  (12)

where 8; has been omitted in the last term above
(since it is irrelevant) and

ci[M(k), 61)
- fp(z’(k) | x(k), M(k), 6i, ZH+~1, Yi¥)
X plx(k) | Mi(k), Z"*', Y**) dx(k)
=p(Z'(k) | M(k), 6, Z"*7, Y*5).  (13)
Using Bayes' rule, the second term on the
right-hand side of equation (11) is
P{6} | Mi(k), Z“*, Y*}
p(Z'(k) | Mi(k), 6;, Z“*', Y*¥)P(6; | M,(k),
Zi,k—l’ Y""}P(M(k), Zi,k-l' Yi.k)
P(Z'(k) | Mi(k), Z“*~!, Y*¥)
x p(Mj(k), Z"*1, Y™

L ‘ i k—1 (%3
= ) P @R | Mk, 6, 24 v

X P(();, , M(k)n Z:,k—l, Yi.k}
1 ) ,
= o) M O
x P{6; | M(k), Z“*7', Y'*}  (14)

where

chM(k)]) = 92. ci[Mi(k), 6)]

)('P{B;, ‘ h’/(k)' Zi,k—l, Yi.k}
=p(Zi(k) | My(k), Z71, Y. (15)

In equation (13), the joint measurement density
is (see, e.g. Bar-Shalom (1988))

p(Z'(k) | Mi(K), 6, Z'*~", Y*%)
mi
=II:Ilp(ZKk) ‘ A’!,(k), g", Zl.k-—]' Y"k)

vy i L=0
= -mi+1 i . (16)
V; plzi(k) | M, (k)] otherwise

where V, is the volume of the validation region,
because our assumption on the incorrect
measurements being uniformly distributed,*
independent {rom each otlicr and from the
correct measurement, and

plzi(k) | Mi(k)]
= Pg'p(zi(k) | Mi(k), 6;, Z*7", Y (17)

is the truncated density which is zero outside the
validation region where P is the probability that
the correct return will lie in the validation
region.

In equation (14), P{6; | M,(k), Z"**~', Y"*} is
the prior probability of the event 8] based on
model M; to be correct at time k. By choosing a
large enough validation threshold, this prob-
ability becomes independent of M;(k) and is
assumed to be the same for all 8] unless target
signature information can be used. If no such
information is available, then

P{G;',A'l,(k), Zi,k-—l' sz}
1= PsPp if 1,=0
= FsPp

18
y otherwise (18)

my
where P, is the probability that the correct
return will be detected.

For each model M;(k) and event 6], equation
(12) is the standard filtering equation. In that
equation, by using the IMM approach (Blom
and Bar-Shalom, 1988), the extrapolated pdf is
obtained by combining the extrapolations of the

* For more claborate models see Bar-Shalom (1988).
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prior pdfs (independent of the event 6))
p(k) | M(K), ZV4", i)
= 5 p(:(h) | MK, Mk = 1), 2247, ¥4
X P{Mk — 1) | My(k), Z"<"1, Vi)
Lo | M), Mk = 1), 2, Yy
X P{M;(k), Mi(k — 1) | Z"*~!, Y**}

P{M,(k) l Zi.k-l' Yi,k}

| e
=m/§ (p(x(k) | Mi(k),

M/(k _ 1)’ Zi.k-‘l' Yi.k)
< P{M;(k) | Mi(k - 1)}
X P{M,(k = 1) | Z#*~1, yik} (19)

where p(x(k) | Mj(k), Mi(k — 1), Z"*7', Y**) s
the extrapolation of the conditional state pdf
given Z“*~! and Y** from model M, (k —1) to
model M;(k) and

SSM(K)] = P{M;(k) | Z"*~", Y*%)
= 2 P(Mk) [ Mk = 1))

X p{m(k—1)| Z-571 Y4} (20)

The last term of equation (11) is the a
posteriori model probability, which is obtained
as

P{M(k) lzi,k—l’ Y!k}

= P20 | MK, 247, 7
XP{M(I() | Zi'k_l, Yi.k)
=Ci:cs[M,~(k>Jc§M(k>1 1)

~ -~
LRLITE 3] -,(k-uu-u

1w

r INTERACTION (MIXING)
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-~ ~

I | ;)
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Fii. 1. Centralized MMPDA algorithm with r=2 at

sensor {.

where

r

ci= 2 e M(k)]es[M;(k)]

j=1

=p(Z'() | 247 YY) (@)
and c[M;,(k)] and c5[M;(k)} have been obtained
in equations (15) and (20), respectively.
Equations (12)-(21) complete a recursive cycle
of the local processing. A flow diagram of the
local MMPDA algorithm is given in Fig. 1. The
flow of data is represented by the model-

a

conditioned means £, and the model prob-
abilities F,.

4. FUSION ALGORITHM
With the local conditional pdfs obtained in
Section 3, we can now derive the fusion
algorithm to obtain global pdf. Similar to
equations (10) and (11), the global conditional
pdf can be obtained as

p(x(k) [ 2*)

- E p(x(k) | My(K), ZP(M(K) | Z4)

/

=22 3 e a0 0l 01, 2
x P{6}, 62| M,(k), Z"}}P{M,(k) | 74)

(23)

Assuming measurements from different sensors
are independent given the target state, then the
first term on the right-hand side of equation (23)
can be obtained as

p(x(k) | M(k), 6}, 62, Z)
1
" c[M(k), 6}, 67]
X p(Z(k) | x(k), Mi(k), 6, 6}, Z*"")
x p(x(k) | Mi(k), 6}, 6%, Z*1)
1
T M), 6}, 62)
2
x [T [p(Zi(k) | x(k), My(k), 6, Z*7Y)]

x p(x(k) | M(k), Z*")
1

1 [p(Z00) | x(k), MK, 61, 27
x p(e(k) | M(k), 27

) (k) | MK), 251

(24)
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where
cM(K), 6L, 67)
= [ pz0) 1501, M0, 61, 6, 24

x p(x(k) | My(k), 8}, 62, Z*~") dx(k)
=p(Z(k) | M(K), 8}, 6%, Z* 1) (25)

is the normalization constant.
Since from equations (12) and (9)
plx(ky| Mi(k), 6], Z“%, Y**)
_ 1
alMk), 6]
x p(Z'(k) | x(k), My(k), 6;, Z*"")
x p(x(k) | Mi(k), Z<7"). (26)

Equation (24) can be rewritten as
plx(k) | M(k), 8}, 6}, Z*)
i 1
" c[M(k). 61, 67]

2 ; .
1 [i[M(k), 6]
X p(x(k) | Mi(k), 6, Z°%, Y4
p(x(k) | Mi(k), Z*71)
1
" co[My(k), 6}, 67]
T p(x(k) | M), 6, 2+, v**)
p(x(k) | Mi(k), Z¥°1)
where the denominator can be derived as

k)| M(k), Z*! =P(X(k), Mk) |z
p(x(k) | Mi(k), Z*7") e

27)

ié:lp(X(k) | Mi(k), M(k — 1), Z*~Y)
_ X P{M(k) | M(k — 1)} P{M,(k = 1) | Z*"")
1)::‘ P{M,(k) | Mi(k — 1)} P{M,(k — 1) |z

(28)
and
1 2
k), 8}, 6] = L O G
11 ci[M(k), 6})
.ﬁl p(x(k) [ M(k), 8, Z"%, Y'*)
=f p(x(k) | Mi(k), Z*7") dx(k)
(29)

is the new normaljzation constant.

Assuming 6, and 6 are independent given
the target state, then similarly to Chang et al.
(1986), the second term of equation (23) can be
obtained as

P{6], 6, | M(k), Z*}

1
c\[M(k)) jp(@,’“ 67, Z(k) | x(k), My(k),

Z<p (k) | Mi(k), Z47") dx(k)
1
[ M(k))

'_T:Ilp(x(k), 6;, Z' (k)| M,(k), Z*°")

dx(k
PG R) [ M), 257 (k)

1 2 . )
=————1] P(6]| Mi(k), Z'(k), Z*""
cle,-(k)],-_H, {6 | M(k), Z'(k) }

T (k) | M), 6, Z/(k), 2°7)

dx(k
PG (M), 20 )
(30)

where
M =p(Z(k) | M,(k), Z"")  (31)

and

ci(My(k)] -

e[ M;(k)] = 2
1Pz W) | M(k), 247

= _ZCI[M/(/‘)] 32)

11 c5(M(K)]

are normalization constants, where c5[M;(k)]
was given in equation (15).

Since the information contained in Z*~' is the
same as that in {Z"*7', Y**} (see equation (9)
for details), equation (30) can be written as

P{6i,, 61, | Mi(k), Z*}

2 : .
Il P{6,| Mi(k), Z"*, Y**}
i=1

M)
11 pG(8) | M(k), 6, 2%, v**)
| T 7

dx(k)

=m[1‘ P68, | M(k), Z"%, v}

X co[ M;(k), 8}, 67]. (33)

From equations (27) and (33), equation (23) can
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be written as
P |24 = 2
1T PGk | MK 07, 2%, ™)
x x P{8; | M,(k), Z**, Y**}]
8}, 6}, plx(k) I M;(k), zh
X P{M,(k)| Z*)}. (34)

The last term of equation (34) is the global a
posteriori model probabilities. With equations
(31) and (32) we have

P{M;(k)| Z*)

1
=2 p(Z(k) | M(K), ZEYP{M (kY| Z5Y

1
=zalM (k)P {M,(k) [Z71)

¢

_o[M(k)]

1 [CZ[M,(k)l Il MNP | 207y

[a}

11 [c5(M,(0)1P{M, (k) | Z57))

=1

P{M(k)|2**}
_ M k)
¢
1 (p(z: )] M8, 24, v4)

x P{M,(k) | Z*""}
x

P{M,(k)| Z*"")

Cz[le(k)]
é

1P(M) | 2060, 2°7)
x p(Z(k) | Z*°)]
P(M, (k)] Z7)

X

R20)
¢

‘_Ijl [P{A’,(k) l Zi'k, Ylk}p(zx(k) ' Zk—l)]

X
P{M/(k)| Z*""}
2
K| zex yek
=C2Wf(")J'[‘I‘P{M'( 1= (35)
¢ P{M(k)|Z* ")

where the denominator is the same as that of
equation (28) and the normalization constants ¢

and ¢’ are

é=p(Z(k)|Z57") (36)
and

" C c
¢'= = : 37

i pzw 1z 1 e

4.1. QOuverview of the fusion algorithm

From the above, it follows that the global a
posteriori pdf and model probabilities are
obtained by combining (multiplying) the local a
posteriori pdfs and model probabilities and
removing (dividing) the common a priori pdf and
model probabilities. From equation (34), we can
see that for each model, the conditional global

- pdf given that this model is correct is obtained

by the sum of global fused pdfs given all possible
global event pairs 6, 6;. The overall global a
posteriori pdf is then obtained by the sum of
global pdfs of each model weighted by the global
a posteriori model probabilities. Equations (34)
and (35) represent the complete cycle of fusion
processing. From them it follows that the
information needed to be communicated from
local nodes to the fusion node consists of:

(a) the model probabilities;

(b) the association event probabilities; and

(c) the corresponding pdfs (mean and covari-
ance for Gaussian case).

A summary flow diagram of the fusion
algorithm with two models is given in Fig. 2. For

DTN
l,l 1

4 - |
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FiG. 2 Distributed MMPDA algorithm with r = 2.
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simplicity, only the mean of each pdf is shown in
the figure. References to the corresponding
equations are also given in the figure.

5. SIMULATION RESULTS

A two-dimensional single target tracking
problem will be considered. Two target dynamic
models will be assumed, one with (nearly)
constant velocity and the other with (nearly)
constant acceleration. The Markov transition
matrix of the models is known and given. The
initial target state estimate is given and the imual
probabilities of the two target models are
assumed equal.

The target dynamic models with discretization
over time intervals of length T are

x(k)=F[M(K)]x(k—=1)
+ G[M(K)]v(k - 1) (38)
where for model 1, the nearly constant velocity
model, the state is

x={x £ y y| (39)
and
't T 0 0
¢ 1 06 0
F:
0O 0 1 T (40)
0 0 0 1
727 0
T 0
G= .
0 T2 (41)
| 0 T

The process noise v(k)=(v,, v,]' representing
the acceleration during one period is a zero
mean  Gaussian  white  noise  vector with

covanance
[QI‘, 0 ]
¢ 0 g,
For models 2 {with acceleration), the state is
x=(x £ ¥ y § § (42)
and
1 T T%2 0 0 0 ]
01 T 00 0
Fe 0 0 1 0 0 (2) (43)
0 o0 1 T T
00 0 01 T
LO 0 0 0 0 1]
T2 0 ]
T 0
G = 1 0 (44)
0 T2
0 T
L 0 -

where the process noise v(k) representing here
the acceleration increment cver onc period is a
zero mean Gaussian white noise vector with
covariance

[4

Y }
Lo 2.y ‘

Assuming only position measurements to be
available, then. for node {

2'(k) = H'x(k) + w(k) (45)

I 6 0 0 0 0
H' = { } (46)
00 01 0 0

and w'(k) i1s a zero mean Gaussian white noise
vector with covariance

[r‘, ()]
0 r"

To overcome the fact that one has different
state dimensions the lower dimension vector was
augmented with suitable zero components
(which then have mean and variance zero) to
make it compatible with the higher dimension
state.

With sampling interval 7 = Is, the true target
is simulated with constant velocity for the first
seven scans, then switches to constant acceler-
ation for the next seven scans, and finally returns
to constant velocity for another seven scans. The
initial target state is assumed to be [100m,
30ms™',0,100m, 15ms™', 0] and the acceler-
ation is assumed to be 5 and —5m s for the x
and y coordinates, respectively.

The variances of the process noise are taken as
g1, =q1, =0.1(ms™?)* for model 1, the nearly
constant velocity model, and ¢.,=gq.,=
1.0(ms™%)? for model 2, the nearly constant
acceleration riodel. The detection probabilities
for both sensors are equal to 0.67 and the false
alarm rates are 0.000lm™2. The standard
deviations of the measurement errors are
assumed to be V(I0)m for both x and v
coordinates of the two sensors. The Markov
transition matrix for the model parameters is

assumed to be
[0.9 0. 1]
0.1 0917

The initial state estimate is generated randomly
with mean the same as the true target state
and covariance matrix equal to

diag (100, 1,0.1, 100, 1,0.1].

where

Three different configurations will be tested.
First, cach sensor will be simulated indepen-
dently using the MMPDA algorithm described in
Sevuon 30 Second, a centralized processing with

e
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Trajectory window
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F1G. 3. Tracking results with sensor | only (one sample run).

measurements from both sensors will be
simulated using the same MMPDA algorithm.
Finally, the distributed case will be simulated. In
this case, the two nodes will communicate every
scan.® At each scan, each node will process its
own sensor measurements first, then send the
local processed results to the fusion node. After
récciving the information from both local nodes,
the fusion node will use the fusion algorithm
derived in the previous section to construct the
global estimates and send the results back to
_each local node.

Simulations were carried out with 50 Monte
Carlo runs. The results of one sample run are
shown in Figs 3-5. Figures 3 and 4 show the
estimated and true trajectories of the target with
sensors 1 and 2, respectively. Figure 5 shows the
results for the distributed case where the two
sensors interchanged their processed results. As
one can see, the single sensor processed results
have poor performance, and the target is lost in
both cases. Figure 6 shows the probability
trajectories of model 2 for the three cases as
calculated by the corresponding state/model
estimators. As can be seen from the figures, in

* This is totally equivalent to the centralized configuration
but has the advantages of redundancy aad reliability for a
DSN system. This configuration can also be used with a
lower commuaication rate (Chang et al., 1986)

both single sensor cases the algorithm fails to
detect clearly the switches of the target between
two models. The distributed algorithm not only
responds faster in detecting the first jump of the
target from the constant velocity mode to the
constant acceleration mede, but also successfully
detects the end of the acceleration. The
centralized algorithm, which is not shown in the
figures, performs exactly the same as the
distributed one.

The average performances for the three
configurations for 50 runs are given in Table 1.
The centralized and distributed algorithms
successfully track the target in 43 out of 50 runs
(“‘successful tracking” is defined when the
estimated target position is within 30 m of the
true target position for the last three scans).
However, out of 50 runs, sensor 1 alone and
sensor 2 alone only track the target successfuily
in 27 and 30 runs, respectively. The r.m.s.
position errors for those successful runs are also
calculated. Similarly, the centralized and distrib-
uted algorithms perform better than the single
sensor configurations. Note that the quality of
the estimation using two sensors in terms of
mean square error is significantly better than
using a single sensor.

The centralized case yields the upper bound of
the performance for the distributed configur-
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FiG. 4. Tracking results with sensor 2 only (one sample run).
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F1G. 6. Model 2 probability trajectonies.

ation when the nodes communicate every scan.
The simulation shows that the results of
the distiibuted algorithm are the same as in the
centralized algorithm, which confirms the theor-
etical equivalence.

6. CONCLUSION

A recursive estimation algorithm that accounts
for the uncertainties of both measurement
origins and system models in a distributed
framework has been derived. The distributed
estimation technique has been adopted together
with the probabilistic data association (PDA)
fucer in conjunction with the interactive multiple
model (IMM) scheme. The resulting algorithm
can be applied to track a maneuvering target in a
cluttered cnvitonment with distributed sensors.
Simulation results show the expected perform-

ance of the algorithm. With full communication
rate, the distributed case performs exactly the
same as the centralized case, which confirms the
theoretical equivalence, but has the advantages
of increased reliability.
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Substituting these into (3.10), and using (E-2), we obtain

lim €,(¢)=0. (3.13)

The estimation property (E-3), the uniform boundedness of y(¢) and u(f),
and (2.5) the definition of ¢}, imply that

lim e(r)=0.

o
Substituting this into (3.11) and, again, using (E-2) we obtain

‘lim & (0)=0. (3.14)
Since £(z') is a stable polynomial, we can establish ii) by substituting
(3.13) and (3.14) into (2.12). \YAVAY}

Remark 3.1: The multirate sampling estimation algorithm in general
does not have the property that e(¢)/{1 + ||¢(t — 1)]|2]'? € &, which is
required in the stability proof of conventional adaptive control algorithms.
However, we still prove the stability using property (E-3) and the relution
lee)l = le(0)] for ;- s ¢ < .

[V. CONCLUSIONS

In this note, we have developed a multirate sampling adaptive control
algorithm which allows a fast sampling rate of feedback control to be used
even if the computation of parameter estimate and controller coefficient
may take a relatively long period of time.

The key idea to achieve this is to record the plant input and output prior
to the currently obtained estimate and use them to compute the coming
estimate and controller coefficients. Thus, the computation is not
dependent upon the inputs and outputs appearing during the updating
process. The closed-loop system is shown to be stable.

Remark 4.1:

i) One may further extend the algorithmto consider t; — 4;_, > n + m
+ d = A. In this case, a relation

max
o SISl g oA
tk < @, C, < w, Cy < ), can be used, and the algorithm only needs to
compute e(f) for f;_, < t < t;_, + Abutnotforevery tin¢g;_y < t < ;.

ii) Instead of the ARMA model, one can use 3-model {8] in the
algorithm, which retains the key features of the continuous-time model

fe(tj- +A+ k) sC, le(el+C,

.-and allows a wide bandwidth MRAC system to be achieved.

iii) The multirate sampling adaptive control is presented for an indirect
MRAC system. However, the method covers a wide class of direct and
indirect adaptive control algorithms of certainty equivalence type such as
pole-assignment, LQ-optimal, etc.

iv) Various methods developed for improving adaptive control system
performance are applicable to the presented multirate sampling adaptive
tlgorithm. These methods include: a) various modifica.. ons of parameter
estimator for improving convergence rate; b) noise and disturbance
filtering techniques; c) robustness techniques with respect to disturbances
and unmodeled dynamics, such as deadzone, normalization, etc.; d)
internal model principle for deterministic disturbance rejection, etc.
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An Adaptive Dual Controller for a MIMQO-ARMA
System

P. MOOKERJEE anD Y. BAR-SHALOM

Abstract—An adaptive dusl coatroller is presented here for 8 multiin-
put multioutput ARMA system. The plaal bss coastant but unknown
parameters. The cautious controiler with a one-step horizon and & new
dual controiler with a two-step hor{zon are examined. In many instances,
the myopic cautious controller ks seen (o tura off and converges very
slowly. The dual coatroller modifies the cautious control design by
numerator and denominator correction (erms which depend upon the
sensitivity functions of the expected future cost snd avoids the turn-off
and slow convergence. Monte-Carlo comparisons based on parsmetric
and nongarametric statistical analysts lndicate the superfority of the dual
controller over (he cautious controller,

I. INTRODUCTION

Multiinput multioutput systems with unknown parameters are encoun-
tered in many practical situsations, and their control poses a great
challenge to the stochastic control theory. It is not possible to obtain an
opurnal solution for such systems because of the dimensionality involved
in the stochastic dynamic programming [6]. In such situations, emphasis
is on obtaining a suboptimal solution that incorporates the intrinsic
properties of the optimal solution. For stochastic systems, the control has
in general a dual effect (2], (11]: it affects the system’s state as well as the
future state and/or parameter unceriinty. Thus, the dual controller offers
significant improvement potential for the coatrol of uncertain linear
plants. In multistage problems it “‘probes’* the system to enhance real-
time identification of the system's parameters in order to increase the
accuracy of the subsequent control decisions and regulates the system at
the same time (4], [9].

Two classes of dual coatrollers exist preseaty {14]. In the first class
(10], {12], (18], the coantrol minimizes a one-step ahead criterion
augmented by a second term which penalizes for poor identification. This
approach is simple but often requires tuning of some parameters. The
second class (developed for SISO systems in [3], (16], (17]) used the
stochastic dynamic programming equation and expands the future cost
about a nominal trajectory. Using first- and second-order Taylor series
expansions of the expected future cost about a nominal trajectory, dual
controllers for MIMO static systems are developed in [S] and [14]. A
second-order Taylor series expansion of the future expected cost is
performed about a nominal trajectory and a dual controller based on 8
two-step horizon is developed in this note for 2 MIMO dynamic (ARMA)
model. The cautious [14), [16], (18] and the new dual controller are

applied to a MIMO-ARMA system. Monte Carlo simulations, based on
parametric and nonparametric statistical analysis, indicate that the dual
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controller prevents the turn-off phcnomenon and slow convergence
prevalent with a cautious solution.

Section II gives the problem formulation. The approximate dual
controller with a two-step horizon for the MIMO system is derived in
Section ITI. The control solution is obtained by approximating the solution
of the stochastic dynamic programming equation. A second-order Taylor
scries expansion of the expected future cost is performed about a nominal
trajectory and this leads to a dual control solution in a closed form.
Following the derivations of the controller, a summary of the algorithm is
given. Section IV describes the simulation of the plant and compares the
performances of the cautious and the dual solutions. Section V concludes

the note.
I1. PROBLEM FORMULATION
The MIMO system to be controlled is described by

y(k)=—-Ay(k—1)+Bu(k-1)+e(k) (1)

where
Efe(k))=0; Ele(k) e'()] = Woy,. . ¥y

Here y(k) is the output of the plant, u(k) is the input to the plant, and
e(k) is the measurement noise.

The parameter matrices A and B are unknown. This model describes
some industrial processes like an ore crushing plant, or a heat exchanger
(1]. The unknown elements of A and B comprise the parameter vector
(k) whose estimate at time k is §(k) with covariance matrix P(k). The
parameter vector is designated as

0(k) & [a; (b lag|bs| -+~ la; |6} €))
where 7 is the dimension of the output vector y(k) and a;, b, are the ith

row of the matrices A and B, respectively. Assuming the parameters are
time-invariant, we have

8(k+1)=0(k). 4)
A measﬁrcmcnt matrix A (k) is defined as
H(k) & diag (-y"(K)u'(k), =y ()| u"(k), -] )}

where H(k) has n rows, and y’(k), u’(k) are the measurement and
control vectors transposed.

With these definitions, the measurement model is
y(k)=H(k—.,l)0(k—l)+e(k). (6)

The performance criterion to be minimized is J(0), i.c., the conditional
expected value of the cost C(0) from step O to N, denoted by

JO)=E{C(0)|I*}

N-1
=E [5_‘, {(ylk+ 1)~} QU y(k+ n—y,}ll'] )

k=0

where Q(k) is the diagonal weighting matrix, I* is the cumulated
information at time &, and y, is the desired output.

II. DUAL-CONTROL WITH A TWO-STEP HORIZON

First the controller is derived and then & summary of the algorithm is
provided.

A dual control solution with a two-step horizon is obtained by
minimizing (2.7) with respect to the control 1(0) for the multidimensional
plant (2.1)-(2.4). This is obtained by solving the general equation of
stochastic dynamic programming (3], (7], (8]

Jo(k)=min E{C(k)+J*(k+ 1)|I*} k=N-1,---,1,0 (1)
wik)

where J*(k) is the optim=! expected cost to go from k to N, C(k) is the
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cost to go from k to N, and /* is the cumulated information at time k when
the control u(k) is to be applicd. The information /* is the set of all past
controls until time kK — | and outputs until time k.

Thus, for a two-step horizon we have

j;,nz='::i',‘ E(C(ky+ I3 g1t

-r::,;? El{ylk+ )=y} QU y(k+1)~y,} I3 keallt]

)

where J |, is the optimal expected cost at the last step with one-step
horizon and is obtained by minimization of J .1 442, and Ji, 4., is the
costtogofromk + 1tok + 2.

The cautious control at K + 1 with one-step horizon is given by
utk+1)=[E{B'Q(k+1)B|I*+'}]"!
- E(B'Qk+ D{Ap(k+ 1) +p}11%']. (3)
The cost fromstep k + 1tok + 2is

Jeri k2=t Qb+ W
+E[{Ay(k+ 1) +y.} QUk+ D{Ay(k+ 1) +y,}
+u'(k+1)B'Q(k+1)Bu(k+1)~2{Ay(k+1)+y,}’
- Q(k+ 1) Bu(k+ )| 1*+"] © (4)

and inserting (3) into (4) the optimal cost at the last step is

J =tr Qlk+ )W
+ E[{Ay(k+ 1) +2,} Qk+ D{Ay(k+ 1)+ y, }]1**]
-E{{Ay(k+ )4y} Q(k+ 1) B{I**1)
C(E{B Qk+1)B|I** ]!

- E[B'QUk+ D{Ay(k+ 1) +y, HI** ']~ )

-
k+ ) k+2

where E{-|[I¥*'} is the conditional expectation given the available
information J%+!.

The unknown parameters will be chosen from the Gaussian family and
thus their estimate 8(k + 1) and associated error covariance P(k + 1) are
the sufficient statistic. The parameter vector estimate §(k + 1) and the

associated covariance matrix P(k + 1) are obtained from a Kalman filter
according to

K(k+ 1)=Pk)H (k) H(k)P(K)H'(k)+ W]~! )

Bk + 1) =B(k) + K(k+ D y(k+1) = H(k)8 (k)]
=8(k)+K(k+ Dr(k+1) Q)

P(k+1)=P(k)—- P(k)H'(K)[H(k)P(k)H'(k)+ W]~! H(k)P(k). (8)

Here v(k + 1) is the innovation of the process.

From (5) it is clear that J¢,, , , , is  nonlincar function of the estimated
parameter vector §(k + 1) and covariance P(k + 1). But the estimated
vector 8(k + 1) and the covariance P(k + 1) are not known until the
control u(k) is applied.

A control u(k) with a two-step horizon can be obtained from (2) if a
second-order Taylor serics expansion of J¥,, , ., is performed about a
suitable nominal trajectory. Here the nominal trajectory is defined by

" 1) a nominal parameter estimate §(k + 1) =8(k)
2) a nominal control d(k)
3) & nominal covariance P(k + 1) obtained by using d(k)
4) a nominal measurement y(k + 1) obtained by using (k) and
B(k), ie.. pik+ )= AK)k).
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Expansion of (5) about this nominal trajectory results in
TR ke =TT R+ Dy + 1) - pk+1)]
+% (y(k+ D) =p(k+ 1] T, (k+ DIy(k+ 1) - y(k+1)]
+J] (k+ D8k + 1) -8(K)] +% Bk + )-8k’

« Jaalk+ D)3k +1)-8(k)]
+1r (Jo(k+ D{P(k+ )= P(k+1)}] 9)
where J, is the zeroth-order term and the cost sensitivitics are

aJ
Jk+1) & [

A"+ 1,k+2
dyk+1)

(10)
arse
A kvl ke2
ke ) 2 [ay,(k+l)8y,(k+l)] o
aJs
& k+1 ke
Jlk+1) 2 [m] (12)

Julk+1) & Pierens (13
" = | @k+rnadk+n

ase
1Y k+ 1l k+2
Jptk+1) & I Pk "/(k+l)] .

The above sensitivities are evaluated at §(k), P(k + 1), and y(k + 1);
ind PY(k + 1) is the ijth clement of the covariance matrix associated
vith the parameter estimates §;(k + 1) and §;(k + 1).

Under the Gaussian ass..nption for the zero mean noise

(14)

ylk+ )= gk +1)-Rlp, V] 15)

where the conditional mean is
. Ju=E{HK)0(k)+etk+1 -A(k)3(Kk)| ¢}
=[H(k)~ A(k)]8(k)

und the conditional covariance is

(16)

-V=E[{y(k+1)=pk+1)=p}{y(k+ 1) =yk+ 1) —pu}’|I*]
=H(k)P(K)H" (k) + W. an

With the choice of the nominal paih as defined earlier and using (6),
(16), qnd (17), the conditional expected value of (9) is

E{J2,  goaly=Dit T (k4 D{H (k) - B()]8(k)

1
+% B Dkt Dut g tr [y (k+ DY)

+% tr (Ju(k+ D{P(k)-P(k+1)}]

4+t [Jo(k+ D{Pk+1)=P(k+1)}].  (18)

The above expected future cost (18) is a function of the nominal
parameters multiplied by appropriate sensitivity functions J,(k + 1),
Ik + 1), Ju(k + 1), and Jo{k + 1). These sensitivities introduce the
dual effect into (2) which is then used to yield u(k). It must also be noted
that the covariance P(k + 1) is nonlinear in u(k) and is not yet know.
Hence, & second-order expansion of P(k + 1) is proposed about a
sominal control g(k) and a nominal covariance P(k + 1) in order to
obtain a (suboptimal) dual solution up(k) in a closed form from (2).

This expansion is performed as follows:

Pk+ ) =Pk+1)+ Y ee/ {Pg(k+ D(u (k) - a(k)]
(¥

+% (u(k)~d(k)) PLk+ l)(ll(k)—ﬂ(k)]} (19)
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with the superscript here denoting the matrix element, e the ith Cartesian
basis vector, and

3PY(k+1)

8 APYUk+1)
du(k)

o v
pilk+1) & PLlk+) &

ij=l, -, r

€9

evaluated at P(k + 1) and (k) and r the number of unknown parameters.

Now a (suboptimal) dual solution up(k) with a two-step horizon can be
obtained from (2) using (18)-(20) and is given in closed form by

up(k)=E{B'Q(k)B|I*} + F) " (E{B'Q(kNAY(K)+y ) I*} +/1 QD)

where the elements of the matr:» £ and those of the vector f are given by

_! _ Pk D)
F,J_zu [{J,(kn) 2/..(k+l)} au,(k)au,(k)]
1 AH (k) dH(k) \’
+2 tr [J,,(k+ 1) k) P(k) (au,(k)> ]

+ % tr [J,,(k +1) (a——H(k)

3H (k) !
D)

dui(k)
ij=1,, m 22)
and
_ L[ aHWK) ’
fi= 2<au,(k)a(k)> J(k+1)
1 1 APk+1)
T [{J,(k+l) 21..(k+l)} TN ]

1 AP(k+1) N
+2l§ tr [{Jr(k*‘l)—i-’n(k*’l)} W] a,(k)

| AH (k) AH (k) !
+5§ tr [!,,(ku) (au,-(k) 3(/:))(81‘/(“ a(k)> ] a,k)

23)

and m is the dimension of the control vector, u; is the jth element of the
control vector.

It is clear from (21) that this approximate dual solution up(k) is a
modification of the cautious solution by the cost sensitivity terms. The
cautious solution is (21) with F = Oand f = 0. These account for the dual
effect. The implementation of this second-order dual solution is per- -
formed by the method described below.

Algorithm Summary:

1) Compute the sensitivity functions Ju(k + 1), Je(k + 1), Jy(k +
1), J,,(k + 1) for (18) with §(k + 1) = 8(k) and the nominal values
a(k), Bk + 1), y(k + 1) defining the nominal path,

2) Search on (2) with (18) [with the sensitivity functions computed
above, starting with first nominal values g(k), P(k + 1)] over (k) to
obtain an improved nominal for which J¢, ,, is lower. This search is
done by selecting a first coarse grid. A grid search is necessary to avoid
locking in on & local minimum. Then another grid is chosen about the
latter control over a narrower interval and from a second search u/(k) is
obtained.

3) Using u/(k) compute the covariance sensitivities P, (k + 1), Pu(k
+ 1); together with the previously computed cost sensitivities Jp(k + 1),
Jetk + 1), Jy(k + 1), J,(k + 1) obtain F, f defined in (22), 23).
Finally, the control to be applied, up(k), is calculated from its explicit
expression (21).

The iteration described in step 2) above is carried out to obtain betier
covariance sensitivities. The control up(k) could have been obtained
directly from (21) by skipping step 2) above; however, as indicated in {13)
and [14], this results in unsatisfactory performance. With this iteratioa of
step 2), the “*improved’’ sensitivities yield good performance as shown in
the next section.

ﬂ__.___“
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IV. SIMULATION RESULTS

Performance is evaluated from 500 Monte Carlo runs for the following
controllers:

1) heuristic certainty equivalence [3] (with a one-step horizon);
2) one-step ahead cautious controller; and

3) dual controller based upon sensitivity functions (with a two-step
horizon) derived in Section [II.

The plant equations for & two-input two-output system are

rilk+1)= —ay y,(k) = @ ya (k) + byuy (k) + by (k) + e (k+ 1) (1)

Yk +1)= —ay y (k) = anya(k) + by ui (k) + buu(k) + ek + 1) (2)

where .
Efe(k)e’'(j)} = Wb, =diag (W), W1);

Wi=17.52% W,=43% A3)
The true values of the parameters are
an=0.8 by=—74.84
a;;=0.1 by = -51.04
a,,=0.2 by= 53.31
a)=0.75 bp=—82.56. 4

Only the gain parameters (B matrix) are considered unknown for
testing the dual effect and their initial estimates were generated as 9 (b,

The controllers are implemented with a sliding horizon for a total of 40
time steps. The evaluation criterion is

Ce=(y(k+1)-y,) Q) y(k+1)~y,). (10)
A. Analysis of the Monte Carlo Average Costs

Comparisons are made between the performances of the cautious and
the dual algorithm on the system and a statistical significance analysis is
done using the normal theory approach (i.¢., it is assumed that the central
limit theorem holds for the sample mean from a large number of runs)
(14]. Tables I-IV contain the results of the simulation runs. Table I
compares the average cost C, over 500 Moate Carlo runs for the first 40
time steps for HCE, cautious and the dual algorithms, with a control
limiter o) < 2,i=1,2. . - '

Clearly it is scen that the cumulative average cost is the lowest for the
dual controller. The HCE incurs an excessive penalty in time step 1)
because of lack of caution. The cautious controlier is overly cautious and
exhibits slow convergence. However, the dual controller incurs less
penalty in time step 1) than the HCE and makes 2 judicious choice of
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TABLE |
AVERAGE COSTS FOR THE THREE ALGORITHMS IN THE SIMULATION
WITH A LIMITER (lu] 5 2.0, |#;] < 2.0) (500 MONTE CARLO RUNS).
THE SUPERIOR RATE OF ADAPTATION OF THE DUAL ALGORITHM
IS DEMONSTRATED HERE

Time HCE Cautious Dual
Step
& 13
1% Zzt & ztx & Z“‘t
1=-1 i-1 {=1
1 14851 14851 3623 3623 6944 6944
2 6241 21092 3961 71584 6722 13666
3 3578 24670 246 10830 4230 17896
4 1616 26286 2836 13666 1866 19762
5 1354 27640 2505 16171 1492 21254
‘ 807 28447 2154 18325 953 22207
7 593 29040 1921 20246 700 22907
8 462 29502 1670 21916 582 23489
9 397 29899 1623 23539 535 26024
10 347 30246 1327 246866 385 26409
40 n 36bal 281 43810 89 29178
TABLE 11

STATISTICAL SIGNIFICANCE TEST FOR COMPARISONS OF THE CAUTIOUS
AND THE DUAL ALGORITHM IN THE SIMULATION WITH A LIMITER
(] s 2.0, lu,} < 2.0) (500 MONTE CARLO RUNS)

b), i, j = 1, 2. This choice of system was motivated by the helicopter Tlae T Test Teciaaced ‘
vibration study [131_ Step | Statistic | Improvemen
A large initial uncertainty is chosen in the parameter estimates in order k z, £
to test the learning capabilities of the various adaptive algorithms. The 1 o1 o1
cost weighting matrices are : 2 5.3 -69
3 2.2 -30
Qk)=diag (¢1, ¢2);  @i=1.0,¢,=1.0. &) p 33 »
6 6.0 3
The desired response is ? 6.3 64
y.=[-18 80)". 6) b &2 P R
. 10 5.7 7n
For the model chosen (1)~(6) the optimal control solution in order to 1 6.3 . 76
reach a steady-state value of y, in (6) is 3 s I
14 5.2 62
ur=10,ur=-1.0. (@) 15 5.5 79
. 16 %9 70
In terms of the notation of (1) and (2) i: :Z ;:
: 19 4.4 76
3(k) 8 [ay ay bu(k) by (k) ay ay by(k) (k) ® 20 4.3 76
and » .
=2(k) ~pk) w(k) w(k) O 0 0 0
k) & yi( 1 H . 9
e [ 0 0 0 0 —nk -n) wk) k) @

caution and probing to leam the parameters fast. Fig. 1 compares the
performances of the three algorithms for 500 Monte Carlo runs. Both
Table I and Fig. 1 demonstrate the superior rate of adaptation of the
dual algorithm.

Table I provides a statistical significance test and shows the improved
performances of the dual solution from time step 4) onwards with at least
98 percent confidence.

Table II indicates the percentage of runs where the cost exceeds 2000
for the two algorithms. This threshold of 2000 is selected from a sample
distribution study of the cost at each time step. Table IV shows the
percentile test [14], (15] comparing the cautious and the dual solution.
They clearly indicate from time step 4) onwards the light tailed nature of
the distribution of the cost yiclded by the new dual control algorithm.

B. Individual Time History Runs

Analysis of the Monte Carlo average cost indicates the improvement
offered by the dual solution; it provides no information about the cautious
control’s turning-off phenomenon [16), [18]). Hence, a careful investiga-
tion of the individual runs is required to examine these occurrences.
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[n . RS TABLE I CAUTIOUS AND DUAL
" COMPARISON OF THE TAILS USING THE CAUTIOUS AND THE DUAL
ALGORITHMS IN THE SIMULATION WITH A LIMITER
(| = 2.0, ;] =< 2.0) (500 MONTE CARLO RUNS)
Time Perxcentage of runs
Step wvhich exceed 2000
| i v k Cautfous Dual
- 1 86 76
2 €0 52
3 43 40
3 1 25 b
5 3 17
é 22 10 :
b 22 [3 :1:
8 19 7 2, :
] 16 3 :
t 10 12 2 .
! u 12 1.2 g
I e R T e
1% 7 l Time Step _ .
' 135 8 0.4 Fig. 2. Time history of output 1 using the cautious and the dual algorithms
,}: -: g': for run 90 (500 Monte Carlo runs; Ju,| < 2.0; [uy] < 2.0).
i 18 6 0.4
19 s 0.4
20 5 0.2
l g CAUTIOUS AND DUAL
TABLE [V oA
PFP"EN""LE TEST FOR COMPARISONS OF THE CAUTIOUS AND THE DUAL .".
: ALGORITHMS IN THE SIMULATION WITH A LIMITER g R
(] = 2.0, 4] < 2.0) (500 MONTE CARLO RUNS) =1 M
. i Time :
: Step .‘(? test statistics . '
f. . k at K, o~ N
. ” :
i - i
) 3 i 8 o§°
&4 10
5 19
6 23
7 3
8 35
. S 57
10 7 5
l \ 11 40 § —~+————
g 23 ‘o 10 20 0 0
. 14 16 Time Step
L 32 Fig. 3. Time history of output 2 using the cautious and the dual algorithms
17 16 for run 90 (500 Moate Carlo runs; |u,| < 2.0; |u;] < 2.0).
18 16
19 18
20 25
l . CAUTIOUS AND DUAL
' CAUTIOUS, DUAL AND HCE -
. -
l 4 I_ CAUTTOUS
|
- oo .
i ——
|
l 8 i o
=3 ° M .3
w 14 g
&
o~
l A 3 1 :
T »
' A d
: ~l
! H s
l £ ® % % £ ol
g Thes Step ’ o 10 20 30 ©
_Fig. 1. Time history of the average cost using the heuristic cenamty
. ¢quivalence, cautious, and the dual controllers. (500 Monte Carlo runs; Tima Step
lay] = 2.0, {uy] < 2.0.) The superior ratc of adaptation of the dual
algorithm is demonstrated here.

Fug 4. Time history of control | using the cautious and the dual slgorithms
for run 90 (500 Monte Carlo runs; [u,] < 2.0; ;] < 2.0).

_____’
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CAUTIOUS AND DUAL over the cautious controller. The key improvement is in the avoiding of

situations like turn-off and slow convergences, typical of the cautious

Py v PN

Control 2
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H
.
H
H
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.
1
1
.
i
R
H
.
.
\

~1.75

Time Step
_Fig. 5. Time history of control 2 usmg the cautious and the dual algorithms

liman P . NI: Pri
for run 90 (500 Monte Carlo runs:; (i, ' < 2.0; |u] < 2.0). Y] ﬁ‘:cll”’ Dynamic Programming. Princeton, N nceton University
{8] D. P. Bentsekas, Dynamic Programming and Stochastic Control. New York:
The turn-off phcnomcnon is observed in many runs among the 500 Academic, 1976. . ]
Monte Carlo simulations while using the cautious controller; run 90 is a 1 P’, L zmml' M. :od::l dmd gmA E"E"TC;M s::co;r:fcgﬁ,f r:}; iucu
typical example of it. Both components arc almost off between time steps 26, pp. 1001-1008, Oct. 19?1)n )
0 and 20 during which the dual cuniroller already identified the [10] C. Elevitch, “‘An approximate analytic control law for an active suboptimal dual
parameters and reached the desired trajectory. Figs. 2-5 portray this coctroller,” Dep. Automat. Contr., Lund Inst. Technol., Lund, Sweden,
result CODEN: LU['FDZ/(TFRT—?Zéf}/l&QI(WB).
{11] A. A. Feldbaum, Optimal Control Systems. New York: Academic, 1965.
[12) R. Milito, C. S. Padilla, R. A. Padilla, and D. Cadorin, **Dual control through
V. CONCLUSIONS innovations,"" in Proc. 19th IEEE Conf. Decision Contr., Albuquerque, NM,
. Dec. 1980.
A new adaptive dual control solution with a two-step sliding horizon (3! ip'; Md":f;;mh:‘:’:;q“ m"grzc ’;‘;{m"& Cg:;’ %‘;?:;’rbﬁ
has been developed for an ARMA-MIMO system. The control faw is Vegas, NV, Dec. 1984. )
derived by solving the stochastic dynamic programming equation. This  [14) P. Mookegjee, Y. Bar-Shalom, and J. A. Molusis, *‘Dual control and preveation
solution utilizes the dual effect by performing a sccond-order Taylor of the urm-off phenomenon in a class of MIMO systems,™ in Proc. 24th IEEE
pans Conf. Decision Contr., Ft. Lauderdale, FL, Dec. 1985. ~
scgcs X 1on of thc cxpected future cost and does not need any ('unmg (151 G. Noether, Introduction to Statistics, A Fresh Approach Houghton Mifflia,
for any of the runs in the example. It modifies the cautious solution by 1971, .
explicit numerator and denominator correction terms. The controller inits  [16} J. Sternby, Topics in Dual Control, Dep. Automat. Contr., Lund lnst. Technol.,
present form is the first of its kind in @ closed form for a system with an g“_l‘_’ Smﬁm:mi"m“:gg” "‘35/&?77)' ol i
unkno se om cier, “*Wide-sense adaptive control for
wn parameters. The controller is tested on & MIMO system in a i tochastic systems,” IEEE Trans, Automat. Contr., vol. AC-18, pp.
systemanc Monté Carlo fashion. Conclusions are based on 500 Monte 98-108, Apr. 1973.
Carlo runs. .Analysis of the simulation runs has shown that this new dua/ {18} B. Wittcnmark, **An active suboptimal dual controller for systems with stochastic

cjon_lrol ._s'o{ut:_o_q applied to a multiinput multioutput model improves

solution. }

)
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ABSTRACT

The reversion in time of a stochastic difference
equation in a hybrid space, with a Markovian
solution, is presented. The reversion is obtained
by a martingale approach, which previously led to
reverse time forms for stochastic equations with
Gauss~Markov or diffusion solutions. The reverse
.time equations follov from a particular
non-canonical martingale decomposition, wvhile the
reverse time equations for Gauss-Markov and
diffusion solutions folloved from the canonical
martingale decomposition. The need for this
non-canonical decomposition stems from the hybrid
state space situation. Moreover, the non-Gaussian
discrete time situation leads to reverse time
equations that incorporate a Bayesian estiamation
step.

1. INTRODUCTION

This paper adresses the problem of time-reversion
of a hybrid state Markov process which is given as
the solution of a stochastic difference equation.
The desired result i{s a similar equation but
running in reverse-time direction while having a
solution that is respectively pathwise and {n
probability law equivalent to the solution of the
forwvard squation.

The motivation to study this problem steams from
twvo different kinds of application. The first is
to approach the solution of a nonlinear smocothing
problem by a merging of the estimates of two
nonlinear filters: one Cilter matches the original
model and is applied in the usual time direction
while the other filter matches the time-reversed
model and is applied in the reverse-tinme
direction. The second application is the
determination of a rate distortion theory lower
bound for a discrete-time nonlinear filtering
problea by the method of Galdos. This method is
based on Bucy's representation formula and
requires a Monte Carlo simulation in reverse-time
direction of model matching trajectories, starting
from a prespecified end point (Galdos, 1981;
Washburn et al., 1985). For both of these two
applications {t is necessary to have a
time-reversed difference equation for which the
Markovian solutions are in probability law
squivalent to the original solution.

This research has been supported by AFOSR Grant
84-00112, wvhile the first author wvas on leave at
the University of Connecticut.

Yaakov Bar-Shalom
University of Connecticut
Storrs, USA

Our problea falls in the category of how to
reverse a Markov process in time. The Markov
property {mplies that the past and the future are
independent under the condition that the present
state is known (Wentzell, 1981). This invariance
with respect to the time direction is the key
property used in time-reversion studies. There are
two types of studies that deal with this probleam;
a classical type and a systems-type. The classical
type of study assumes that the transition measure
or the generator of a Markov process is given and
then tries to characterize the transition measure
in revearse-time direction (Nagasawa, 1964; Xunita
and Watanabe, 1966; Chung and Walsh, 1969; Azéma,
1973; Hasegava, 1976; Dynkin, 1978; Williaas,
1979).
The systems-type of study assumes that a’
stochastic equation with a Markovian solution is
given for which it tries to characterize the
time-reversed equation. The first time-reversed
equations vere obtained by orthogonality
arguzents, for the linear Gaussian situation
(Ljung and Kailath, 1976; Lainiotis, 1976). For
general diftusions, it has already been pointed
out by Stratonovich (1960) how to obtain the
reversed-time equations by actually following the
classical approach: from a stochastic equation via
the generator and the time-reversed generator back
to time-reversed equations. A truly systems-type
of study has been started by Verghese and Kailath
(1979), by showing how for a linear Gaus:la..
system a more direct martingale approach leads in
a simpler way to time-reversed equations.
Moreover, by this approach it was possible to
obtain a reversed-time equation with a pathwise
equivalent solution. Early elaborations of these
ideas led, along different routes, to
tisa-raversed equations with pathwise equivalent
solutions (Anderson, 1982; Castanon, 1982;
Pardoux, 1983). During subsequent studies, quite
large Classes of stochastic differential equations
and their reversed-time aquations have been
fdentified (Elliott and Anderson, 1985; Pardoux,
1985; Elliott, 1986a, 1986b; Hausesmann and
Pardoux, 1986; Pardoux, 1986). Recently these
results have been extended by using the Girsanov
transformation of Brownian motion (Picard, 1986;
Protter, 1987). Obviously, this Girsanov approach
can not be applied to Xmcontlnuous or
discrete-time processes.
To give an idea of why there is an additional
problea in using a martingale approach to the
reversiZh of an equation with a discontinuous
solution, ve give a brief outline of the approach.
The martingale approach roughly consists of
checking if the time-reversed driving noise




sequence can be decomposed in a suitable
reverse-time martingale part and its complement
and next, i{f such a decomposition exists (Jagod
and Shiryaev, 1987; Jacod and Protter, 1588§;
selecting such a decomposition. The final step is
to characterize both the martingale part and ita
complement. In contrast with a continuous process
such a decomposition {s not unique for a
discontinuous process (see for axample, Jacod and
Shicryaev, 1987). This makes the selection of=a
suitable martingale decomposition far from trivial
in the hybr{d state space situation, because a
less ol choice yleids unnecessarily complicated
reverse-time equations. This complication is
presently unsolved, neither in continuous-time nor
in discrete-time. It will be solved in the sequel
for quite general difference equations in a hybrid
space. With that result ve subsequently reverse
the considered difference squation in time.

The paper is organized as follows. In section 2 we
define the hybrid state stochastic difference
equation that will be considered and shortly
compare its time-reversion with the time-reversion
of a linear Gaussian equation. In section 3 we
specify the time-reversion requirements. Next, in
sections 4 and S we consider, respectively, the
pathvise time-reversion and the in probability law
equivalent time-reversion. In section ¢ we discuss
the results obtained.

2. THE STOCHASTIC DIFFERENCE EQUATION CONSIDERED

The stochastic dlfference aquation we consider {n
the sequel is the folloving system, on an
appropriate stochastic basis and a discrete tize
interval (o0,T) & Nx(0,T], T<e,

Xeey = A(0¢eyebpiXe V), (1.a)
0tey = b(o0g,ve), (1.b)
Ye = c(0¢,Xp.VYe,Ye), (1.¢)

where (w¢), (up) and (ve) are i.i.d. standard
Gaussian sequences of dimension p, q and 1
respectively, the initial distribution of (xg,00)
has the density mass function P‘O"o' and

(¥e,Ve,ue) is {ndependent of (xg,0p). Further x,
6¢ and y¢ have respectively R"-, M- and R™-valued
realizations (with X a countable set), vhile a, b
and ¢ ars measurable mappings of appropriate
dimensions such that systeam (1) has a unique
solution for each initial (xg,84) with

Py o (x0,00)#0. The mappings a, b and ¢ are
090
time-invariant for notational simplicity only.

The second order deperndence of (l.a) on (0¢) is
quite uncommon (Blom, 198S5). Cbviously, (1l.a)
reducee to the more common situation of first
order dependence, only L€ a(#c,1.0¢,Xe.ve) is
invariant v.r.t. either ¢, or #¢4). The
interpretation of (1.a) as an equation with a
second order dependencs on (#,) suggests the
substitution of fe,18(0¢4y,0¢) in (1.a). On doing
this (1l.a) reduces to the more common equation,
and {t follows immediately that (8e) and (8¢, x¢)
are Markov processes. Hovever, as the state space

of gy is significantly larger than the state space
of 8¢, this is a rather brute force transtormation
of (1.a). A more elegant transformation of (1.a)
to the more common equation consists of
substituting (1.b) in (1.a), which yields an
equation of the following form,

Xeel ™ a' (.t,xt,Vc,Vt) .
Instead of a state space expansion, there appears
an additional noise term, ve. From the latter
representation, it follows immediately that the
processes (8¢,Xe) and !8.) a3 Markov procacsses.
The latter transformation clearly shows that (l.a)
is indeed more general than the more commonly
studied equation with first order dependence of
{6g). With the study of this more general
equation, we also anticipate the time-reversjion
results obtained. In the sequel it will turn out
that a reverse-time equation of (l.a) has, in
general, a second order depsndence on the
time-reversed (6.}, even wvhen a(d¢,y,0¢, Xy, Yt) is
¢c-invariant. In view of this, it is natural to
study the above more general form.

In the sequel we consider the time-reversion of
system (1) under the following assumptions:

Al

a(e,%,.,v) has an inverse a":XZxRMARPRM, such

that for any (0,|,v}€l2xxp,
a*(o,n,a(0,n,x,vf,w)=x; all xern, (2)

A2
b(.,v) has an inverse b":XxR-M, such that for any
vER,

b*(b(e,v),v)=¢; all eex. (3)

Assumptions A,l and A, 2 suggest to trahsform
(1.a,b,c) to the following time-reversed model,

|xc":(‘t~1:’t:*:+1:Vt)o

0e=b (0¢41,Ve),

Ye=C(0¢,Xp,¥e,Ug) .
Because (vp,Vy) and the future (= reverse-time
Past), e, = €((Yq,Xg.0g); SE(t+1,T)), are
dependent,; this is not the time-reversed system ve
should look for. Unfortunately, it is not clear
how to continue from here. To develop some
insight, we take a quick look at the

. time-reversion of a linear Gaussian systen.

Linear Gayssian example
Consider the followving linear Gaussian system
Xgey = Axp ¢ Bwe.
Assumption A.1 implies that A is invertible, *:*
which
Xp = A‘l (Xt¢1 - “t]'
Obviously wy and the future $¢,; are depandent,
wvhich requires a martingale decomposition of wg.
In this linear Gaussian case the canonical
martingale decomposition i{s the appropriate one.
It consists of decomposing vy in its reverse-time
psodictthlo part, E(ve|Seeyl, and its complement
w el
. We = E(WelSe4) ¢+ V't-
The problem is nov to write the predictable part
as a function of xp,q (if possible) and to
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characterize the covariance of v*.. As pointed out
by Verghese and Kailath (1979) it followvs readily
from orthogonality arguments that ..

E{vwelfeer) = E(WeliXeey), :
while the fundamental formula for LLSE estimation
yields

E(velxpey) = BTR™I(t41)xe,,,

Cov(w'y) = I- BTR"1(te1)B, N
vhere R(t+l) is the covariance of x¢,;. N
By & straightforvard substitution of these resGlts
ve obtain

xy = A1 (x¢4y - B BTR™I(t41jx¢qy - BY'e),
vhich yields the desired reverse-tixe system:

Re = A7L (Re,y - B BTRTI(tel)Reyy - BR).
The orthogonality arguments and the LLSE
estimation step, used in th= above procedure,
prevent a strafightforward extension of that
procedure to equation (1}. In the sequel ve
replace the orthogonality arguments and the LLSE
estimation step respectively by Markov duality
arguments and a Bayesian estimation step. Besides
this, we have to select an appropriate martingale
decomposition. Following the linear Gaussian case,
the canonical martingale decomposition seems a
good candidate:

(Ve ve)=(we* Ve "V +E( (W, Vi) 15¢e1) -
Unfortunately, this decomposition leads to very
complicated elaborations of the Bayesian
estimation step. To avoid these complications, we
use in this paper the following decomposition:

(Vt',Vg') = (Wg,ve) = (WeoVe) o
vith: V¢ & E{ve[$p41) and

Gt & E{we|%pqe1,Ve)-
The main step, that must be carried out, is to
prove that the latter is a martingale
decomposition, and to elaborate on the Bayesian
estimation step. For the presentation of these
results a constructive approach is taken, starting
with a precise description of the time-reversic-
objectives.

3. TIKE-REVERSION OBJECTIVES

We want to obtain a time-reversed version of

systea (1), such that its solutfon, (P¢,Re.¥¢), is
in some sense equivalent to (yg,X¢,0¢). To make
this objective explicit it needs both a
specification of vhat wve mean by a time-reversion
of (1), and a specification of the desired seanse
of process equivalencs.

BY a reverse-time systea we mean a stochastic
difference equation which starts at time T and
runs in negative time direction on the intarval
(0,T). We require from a time-reversion of system
(1) that it does not change the state space and
that the solution of the resulting reverse-time

(Ye,Re ). Nore

specificly, (P¢,R¢,¥¢) must be the solution of the
folloving system of stochastic difference
equations, all t€(0,T~-1]):

system repr ts the pr

Re = l(t'.tQI"tlthIIVt)' (4.a)
Fe = B(t, FeeyrRee1¥%), (4.b)
Yt - e(t,.t¢1,.‘,Rt¢1,!t,°t,“t): (4.c)

vhere &, B and & are deterministic mappings ot

sppropriate dimensfons and (@¢,%¢) is a noise
sequence to be specified. For a better
understanding of (4) notice that the substitutions
of (4.a) in (4.c) and of (4.b) in (4.a,c)
transform (4) to a reverse-time system of the more
common form:

Rt - ‘(t:,tqllitﬁllat'vt)'

’c - B(Cl'coloitollvt)l

Te = C(t¥¢eey,Ree1, ¢, Ve up) s ald tE(O,T-1).

To be a useful reverse-time system, (¥¢,V:) should,

as much as possible, be independent of the future
(~ reve-sed-time past) information field

;:41 o ((VgeRgo¥g, 5. ¥5,ug) 7 8E(L+]1,T]).
A minimal requirement is then, that the

conditional expectation of (¥¢,¥:), given ;t,l,

should be zero. Because ;t is a decreasing
saquence of sigma algebras, the latter can most
sasily be put in martingale language (see Elljott,
1982; Kumar and Varaiya, 1986; and the definitions
below):

(9, %) in (4) should be a reverse-tipe Martingale
Q’t‘g:gngg gequence v,r_.;, it‘

1_Definition
Assume {8¢; t€(0,T]) is an increasing sequence of
information fields, i.e. 84_31C8g; any s€[X,T}.
A random sequence (Ey) is said to be a Martingale
Difference sequence v.r.t. 8, iff for all te(o,T),
(1) oy is By -measurable,
(1) E(ltgl)<e,
(iiL) E(eelsg)=0 a.s.; for all &€(0,t~1].
2 _Definition
Assume {$¢: t€(0,T]) is a decreasing sequence of
information fields, {.e. $,C345._,: any s€(1,T}.
A random sequence (ty) is said to be a
xeverse-time Martingale Difference sequence w.r,t,
2¢ iff for all t€(0,T),
(1) ¢€¢ is $¢-measurabdle,
(14) E(leel)<e,
(118) E(teisg)=0 a.s. 3 for all s€(tel,T}.

Kaving eneci{f’y’ the dAsei-ad type of reverse~time
system, the next step is to specify the types of
equivalence of solutions of systems (1) and (4),
in which we are interested. For stochastic
processes several useful types of equivalence have
been defined and named in the past. We restrict
ourselves to the two most important types of
equivalence and their unambigquous names (Elliott,
1982; Jacod and Shiryaev, 1987):

- {ndistinguishable,

- equivalent in law.

Definitions are given below.

v




2 _DQefinjtion

Two processes (t¢) and (Etp, t€(0,T), are said to
be {ndistinguishable if they are defined on the

same probability space (2,3,P) and -
P( €ty = by , all te{o,T) } = 1. (5)
4_Dpefinition

- Y
Two processes (.} and (), t€{0,T), are said to
be gquivalent in law, if they have the same -state
space, K, and for all 0Lt <<, . . <ty <T,

P((‘t,"“'tk’de’ - P(((tx""(tk)de) . (6)
for any k and all measurable dxcEK.

For dizcrete-time processes (S5) {s satisfied if

and only Lf, for all t€(0,T), te=fy almost surely.
Our objective in the sequel is to obtain
time-reversed systems of type (4), with solutions

that are respectively jindistinquishable and
equivalent fn law w.r.t. the solution of (1}.

4 INDISTINGUISHABLE TIME-REVERSION

In this section we derive a type (4) version of
system (1), such that their solutions,

(Pe Re ¥} and (ye.Xe,0¢), are indistinguishable,
and {llustrate these results for a jump-linear
example.

The tirst step of our derivation consists of a
substitution of (2) and (3} in (1), to arrive at
the in section 2 discussed time-reversed systenm,

Xg = .:(°t010°t'xt¢1'“t)' (7.4)
6 = b (8¢4y,ve), (7.b)
Yt = ©(0¢,Xe, Wy, Uig). (7.¢c)

Although (7) and (4) look similar, one requirement
is not met: the driving noise {n (7) is not a
reverse-time Martingale Difference sequence w.r.t.
the future information field

’t = 0(()",!5.0;.V;.Vs:05)-' ‘E(C'T]’- (8)
Therefore our next step is to introduce a
particular reverse-time Martingale Difference
sequence, (w.",v."}, as followvs,

(we*sve®) = (weove) = (Fe.Ve) (9.a)
with
Ve & E(velS¢er). (9-b)

e = E(We (341, Vel all t€(9,T-1). (9.c)
and (wp',vp*)=0.
Notice that the definition of w. differs
signiticantly from the reverse-time predictablae
process E(wy(%¢.1]. As such the decomposition in
(9) is not the unique canonfcal decomposition (see
Jacod and Shiryaev, 1987). The introduction of
this non-canonical decomposition is a crucial step
necessary for obtaining the time-reversion of
hybrid state system (1).

In the sequel we verlfy that (ve*,v¢") is indaed a
reverse-time Martingale Difference ssquence w.r.t.
S¢. and thus also v.r.t. $,* & 3, U s((vg*,vg*);
8€E[(t,T]). Moreover ve show that, due to the

duslity of the Markov property, (e, ve) is
conditionally independent of $¢,; given
(Xgoye0eey) -

3 __Theorem

Assume (e, Ve, (We,ve) and (ve®,ve*) satisty (1)
and (). Then (we®,v;") {6 a reverse-time
Martingala difference sequence w.r.t. 3.%, wnile

Ve and vy satisfy:
at = E{welO0ps1/0e,%Xee1), (10.a)
Ve = E(VelOpsyokeqy), all G{0,T-1]. (10.b)

Proof: See Blom and Bar-Shalom (1989).

Theorea S implies that w, and V¢ can be written as
Gp = f(t,0¢41.0¢, %ee1), (11.a)

Qt = gt 0¢e1,Xee)- (11.b)
Substitution of (9.a) and (11.a,b) in (7.a,b,c)
yields

Xe = 8(Le0pey fp.Xeal oW el (12.a)
B¢ = B(L,0¢4y,Xee1V )y (12.9)
Yo = C(E,0pe) 0t Xeel Xe ¥ e 0, (12.¢)
with,
(t, 0,0, x,v*) = a* (0,0, x,w (L, 0,%,x)), (13.8)
B(t,8,x,v") = b*(s,v*+q(t,0,%)), (13.b)

S(t,8,%,x,2,%%,u) = c(n,z,v*«L(t,8,0,x),u). (13.€)
The above result is summarized by the following
corollary.

§_ corollary
Under assumptions A.1 and A.2, the solytion

(g, 2y, ¥p) Of the reverse-time system (4) is
indistinguishable from the solution (yy,X¢,8¢) of
system (1) ir

(1) (91‘:9’]‘1,1') = (Yyr.%p.07) a.s.,
(I1) &, B and 2 satisfy (1l.a.b,c),

(III) (g, ) = (we* ve*) a.s. : all te(o,T-1},
vith v'¢ and v*. satisfying (9.a) and (10).

Jump-linear example
To {llustrate the results obtained so far, let us
consider the particular situation of a linear
system with first order Markovian switching
coefficients and observation noise independent of
the systea driving noise. Both a(e,w,x,vw) and
c(v,x,¥,u) are then linear in (x.,v)}, vhile the
tirst is w-invariant a;d the second {s v-invariant,
by which system (1) simplifies to,

Xeep = A(O0pe1)xe ¢ Bo0gay)ve,

ey = D(0¢,ve),

Ye - G(Ot)x‘ + H(oglug.
Then from Corollary 6 ve readily find the
indistinguishable time-reversed systesm,

Xe = A1(0g1) (xeay = BlOgey) (Setv'ed),

oy = B(0p g VetvTy),
Ye = G(O0¢)xe + H(0¢)ue,




wvhere (v't,v't) is the reverse-time MD~sequence of

Theorem S, We=f(t,0p,),0¢,Xea1), Ve=g(t, ¢ 1 iXpey)
and f, ¢ and b" are according to (11) and (13.b).
The difference equation for x, is similar to the

one for the Linear Caussian example {n section 2.

But due to w,, it may even be nonlinear in xgeg-
At the end of the next sectlion we will show that
there are some further simplifications possibie

for this exawple, {n case of in probablility law

equivalence.

5. EQUIVALENT IN LAW TIME-REVERSION

In this section we derive conditions under which
the solutions of (1) and (4) are equivalent in law,
and discuss these results for a jump-linear
example. So far our line of reasoning is quite
similar to the martingale approach ot
time-reversing a diffusion. However, things are
quite different now we rejuire equivalence in law
only. The reason is that while in the diffusion

situation this requires that d;t and dv, are
equivalent in law, no similar simple results hold
in the discrete-time situation. Instead of this,
wve identify the relation between conditional laws

of ;t and w, by a Bayesian estimation step. Next
wa characterize £ and the required law of v't.

2 eorem

Under assumption A.l the solution (¥¢,Ry,dy) of
reverse-time system (4) is equivalent in law w.r.t.
the solution (yy,xX¢,8¢) of system (1) if,

(1) P{(¥p,Rp,F7) €AX) = P((yrp,%p,0p)€EdX});
for any weasurable AXCR®xR\xM,

(ii) & and ¢ satisfy (13).a,c),

(i14) P(Fe=0|8py)=0,Ree1=x) =
= P(0c=n{0¢41%0.Xge1=X]),
(iv) P(P¢€dX| (Reay Teer Te)=(x,0,0) )=

= P(w'€dX| (Xee1 Oeer 0c)=(X,0.0)),
all (x,8,%,t)ER"xM2x({0,T~1} and measurable AXCRP,
with v*. and f satisfying (9.a), (10.a) and (1l.a).

Proof: See Blom and Bar-Shalom (1989).

Our remaining problem is the characterization of
the conditional law of w".. As this is actually a
discrete-time nonlinear filtering problem, it can
be done by applying Bayes farmula. We do this
under the folloving additional assumptions:

A.d. The a priori distribution of (x,6y)
permits a density-mass function for all te(o,T].

Add- a®(e,n,x,v) 1ls once differentisble In xer"
for all :
(6,%,v)eEN2xRP,

If the distributione {n (i{v) of Theorem 7 have
density-mpass functions then it can easily be
verified that (iv) implies,

(W].) =
p“.t"t#k"t'*t¢l

“ P ("Qtl‘)a

14,
Veldped . Xeey (144

where w, satisfies (10.a).

With this our remajining step is to characterize
the density at the right~hand side of (14.a) by
applying Bayes formula.

8__Propgsition

Under assumptions A,3 and A.4, the distribution {n
(lv) of Theorem 7 permits a density which s
characterized by (l14.a) and,

«.8m,x) = (9,8"T(e,n,x,.
pvtl.tﬁl"t'xt*l( Ve Ny . X )|
.c(8,n,x) Pvt(') pxtl’t(‘ (al‘lxl')ln)]l (14.b)

with ¢, the gradient and c¢ either a normalizing

factor or zero iff p (x]6,n)=0.
Xesyl0pe1. 0t
Moreover,

P(Be=n a8, Reqpy=x) = P(at-n|ot,1-e).

(x|o,n) p~ (x]e). (15)

.p
XeeylOreyofe XeeplOpey

Proof: See Blom and Bar-Shalom (1989).

Jump=]ipear example

For a linear system with first order Markovian
swvitching coefficients we arrived, in section 4,
at the following reversed-time equation:

xe = AT (0ce1) (Xpe1 = B(Opey) (Wetv'e)),
with w'y the reverse-time MD sequence and

“e=E{Wgl0¢41,8¢,Xpey). Bocause a' is linear §n
(x,w), its gradient w.r.t. x is w-invariant, by
wvhich proposition 8 yields

(Wia,n,x) =
p':1°t¢1r’t:*t«1 )

= cy(e,n,x)p_ ()P (A"1(o) [x-B(8)w]n).
we

xt|ot

In spite of the simplification this is a form
wvhich is in general quite complex, by which w,
still may be a noniinear function of xg¢.;-
Obviously, this type of complexity could have been
expected, as it is well known that a discrete-time
Bayesian estimation step leads to nonlinear
equations, unless the prior densities {nvolved are
Gaussian.

6 CONCLUDING REMARKS

We considered the problem of reversing the Markov
solution of a nonlinear stochastic difference
equation in time. The nonlinearities wers due to
nonlinear coafficients and a hybrid state space,
f{.e. a product of an Euclidean space and a
discrete set. For simplicity, it vas assumed that
the process in the discrete set satisfies the
Markov proparty. Subsequently we gave a precise
description of our time reversion objectives: the
development of time reversed difference equations,
of forms similar to the original equation, but
driven by reversed-time martingale

difference sequences, such that their solutions

are respectively indistinquishable from and in




probability law equivalent to the solution of the
original squation. Following this the derivation
0! “he indlstinguishable reverse-time equation was
performed. The main new theoretical rasult is the
introduction and evaluation of a non-canonical
(Jacod and Shiryssv, 1987) reverse-time martingale
decomposition, w'.ich is appropriate to tae hybrid
state space sftuation. In contrast with this, all
previous reverse-time equations are based on a
canonical martingale decoamposition. After that, it
was shown how the in probability law equivalent
tine reversed system can be obtained by
introducing an appropriate Zayesian estimation
step. As expected, this Bayesian estimation step
leads to closed form equations whose
dimensionality often complicates further
applications. In view of this, in Blouw and
Bar-Shalum (1989) we elaborate the Bayesian step
for linear systems with Markovian switching
coefficients (jump-linear systems), and apply the
the results to smoothing a trajectory with sudden
manoeuvers.
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A NEW CONTROLLER FOR DISCRETE-TIME STOCHASTIC SYSTEMS
WITH MARKOVIAN JUMP PARAMETERS
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wilh Markovian Jump parameters may have the switching paramelers {n tolh the
state and measurement equations. Fucthermore, both the system state and Lhe
jump states may not be perfectly observed. Currently the only existing
implementable controller for this problem (s based ypon a heuristic multiple
model pacrtitioning (MMP] and hypothesis pruning. In Lhis paper we present 3
stochastic control algorithm for stochastic systems with Markovian jumsgp
parameters. The control aigorithm Is derived through the use of stochastic
dynamlc programming and is designed to be used for realistic stochastic control
problems, {.e., with nolsy state observations. The state estimation and model
{dentification Is done via the recently developed Interacting Hultiple Model
algorithm, Simulation results show that a substanttal reduction In cost can be
obtained by this new control algorithm over the (MMP) scheme.

l Absiract. A realilstic stochastic control problem for hybrid systems

Keywords. Stochastic control: Oynamic programming; Hybrid syslems;
Multiple model partitioning; Hackavlan jump parameters.

1. INTRODUCTION More recently in [S2] a feedlorward/feedback
controtier was presented for the continuous-time
problem with a completely observed system state
and where the “modal indlcator™ is measured with
a high quality sensor. In [M6] the
contlinuous-time jump-ilinear problem {s considered
where the system state and “wmodal processes™ are
perfectiy observed. The optimal regulator was
obtained and notlions of stochastic

stabllizability and detectabllity were (ntroduced

fs the control of discrete-time stochastic
systems with parameters that may switch among a
finite set of values. [n this paper we present
the development of 2 controller for discrete-time
hybrid jump-linear Gaussian systems. Here the
state and measurement equations have parameter
matrices which are funcltions of a Markov
swilching process. The ;ump states are not

' An important problem of englneering concern

l observed and only the state Is observed in the lsc;’stil:“rzc':.e‘t;l:: ::‘:eblﬁ:‘e:?:l:( ll:emo;;ll‘l;:l
presence of nalse. continuous-time jump-linear problem with additive
Along with presenting a desirable practical and muitiplicative noises and nolsy measurements
control algerithm we also polnt out an of the plant state was considered with the plant
interesting theoretical phenomenon. We show that mode assumed perfectly observed.
there Is a2 natural connection between the In [E1] a sufficient stability test Is given
[nteracting multiple model (1MM) state estimation for checking the asympiotic behavior of the ercor
algorithm [Bl] and the control of jump-linear {ntroduced by the averaging of hybrid systems.
systems. Thus the |MM Is the state estimation In [M8] the continuous-time jump-linear problem
algorithm of cholce for use In these types of with non-Markovian reg'we changes was
control probiens. considered. A control scheme was presented for
Systems which pertain to the jump~-linear the case of perfect ovservations of the system
modelling methodology are found in many areas. state and plant regime.
. Systems of 3 highly nonlinear nature can be In (C3] a discrete-time Markovian Jump
approximated by a set of linearized models (M3, optimal control problem was considered. The
Vi, V2]. A fallure in a component of a dynamical caontroller is for the case of perfect system
system lor subsequent repair) can be represented state observations and known form process. They
by a sudden change In the systems parameters (82, derive necessary and sufficient conditions for
S1, V1]. Also economic problems, which can be the existence of optimal constant control laws
modelled by parameters that are subject to sudden which stabiiize the comrolled System as the time
changes due to shortages in important materials horizon becomes Infinite. Through examples they
(G2). And as iz noted In (HG] there aiso exist show the Interesting result that stabilizabiilty
l applications to the design of controf systems for of the system in each form is nelther necessary
large flexitle structures in space. nor sufficient for the existence of a stadle
There has been an extensive amount of work steady-state closed-loop system.
dane {n this ares and on the related problem of In (Y1] a discrete-time system with perfect
controlling stochastic dynamic systems with state and mode Information was considered. A
anknown, time-lnvariant parameters. Ve refec the controller was presented which is stabilizing in
reader to the (T3} and [G3) for a list of the mean squace exporential sense.
references and a discussion of thelr scope and As pointed out In [62), we generally cannot
applications, delermine the optimal jump-linear quadr-atic
Research sponsored under Grant AFOSR-88-0202. Gaussian closed-loop coatrol faw analytically
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even 101 & two-step problem. In order Lo compule
the optimal control extensive numerical search
methods must be employed and thus one would lke
to find simpler suboptimal control schemes.

Currently the only existing Implementable
cantroller for this problem (switching parameters

In the system state and measurement equations and
nalsy state observations), (s the one discussed

In {T3] and Is of the OLQF class. This algorithm
is based upon a heuristic multlple model
partitioning (MMP) and hypothesis pruning. The
MNP approach, being simple and straightforward to
implement, Is a reasonable cholce for the unknown
parameter problem (L], 3and as shown in (T3] It
works well for applications tnvolving switching
parameters in the stale measurement equation
only. For the non-switching parameter problem
the operating mode s determined to a high
probabllity In a relalively short pericd of time
and the MMP approach glves the linear quadratic
Gaussian optimal control.

for switching parameter problems a different
sltuation exists. Here because of the switching
the operating mode may not be determined to a
high praobabllity. The proposed approach to
deriving a suboptimal control scheme {s to start
with the solution to the optimal control problem
via the use of stochastic dynamic programming.
By wutllizing dynamlic programming and making
appropriate suboptimal assumptions the use of
numerical search methods has been avoided. Ve
thus have developed a multiple model control
scheme which has the followling desirable
properties: (a) 1t gives the optima! final
control, {b] the ailgorithm utilizes the MM state
estimation scheme, and (c} It has the same
property as the MMP approach in that It gives the
optimal linear quadratic control under the
assumption of a perfectly known mode! history
sequence {which is however an unrealistic
assumption for this class of problems).

For comparison purposes we implement the
“switching parameters in the system state
equation” controller, proposed (but not lested)

{n [T3]. We show via example that a
statistically significant reduction fn cost can
be achieved through the use of our conlroller
which also belongs to the OLOF class.

The paper Is outlined as follows. In section
2 the problem formulation Is given. In section 3
an Interesting connection between the MM state
estimation algorithm and the control of multiple
model systems (s shown to exist. In sectlon 4 we
obtain the control algorithm. A new “full-tree”
control ailgorithm Is derived which utllizes all
possible future parameter history sequences. In
section S we use simulations to compare the HMP
control algorithm with the full-tree controller.

2. PROBLEM FORMULATION

The problem to be solved, is discussed next.
Ve took the pragmatic approach of starting with
the avallable mathematical and statistical tools
found to yleld success In solving similar
problems of this type in the past {le, use Is
made of the stochastic dynamic programming method
and the total probabllity theorem, etc.). As we
shall see, not only does this practical
engineering approach yleld an (mproved multiple
model control algorithm, but It also leads Lo the
interesting theoretical observation of 3 direct
connection between the IMM state estimation
algorithm and jump-linear control.

[t is desired to find a sequence of causal
control values to minimize the cost functional

Je c{ctol}-c{xmrommmo'f [xtk)atkix()
(1]

culk)R(kJu(k) |} (2.1)
where U(kJ20 for each k=0,1,..N and and It Is
sufficlent that R(k}»0 for each ke«0,1,.. N-1.

The discrete-lim. system state and
measurement modellng equations are

x{k) = FIM{k)Ix(k-1) * G[M{K)ulk-1)
+ vik-1.H(k]} (2.2a)

zlk) o K{M{k]Ix(k] e+ w{k M(k]] k=0,1.2.. (2.26)

where x(k] Is an nx! system state v ctlor, u(k) is
an px{ controf {nput, and z(k}] {s an mx! system
state observation vector. The argument M(kl
denotes the model “at time k™ - in effect during
the sampling perfod ending 3t k. The process and
measurement nofse sequences, v(k-1M(k}] and
w(k HM(k}], are while and mutually uncorrelated.
The model at time k Is assumed to be among a
finite set of r models

Mk) € (1.2,..r} (2.3)

for example

FIM(KI=]) = F, (2.4)
vik-LH(k}=j] ~ Kl V] (25]
wiKH(K)=[] = NN V] (2.6)

i.e.. the structure of the system and/or the
stat(stics of the nolises might be different from
model to model.

The model switching process to be considered
here is of the Markov type. The process is
specified by a transition matrix with elementg._

p.]' Let .
* 2 (2(0),z(1)....z(k)u(0)u(1],...ulk-1]] (2.7

denote the information available to the

controller at time k (l.e. the control is
causal).

3. THE LAST STAGE CONTROL AND THE CONNECTION
WITH THE IMM ESTIMATOR

An Integral part of any control algorithm for
this class of problems {s the system state
estimator. In this section we show that there
exists an Interesting connection between the
control of multiple model stochastic systems and
the [MM system state estimator {B81]. To this end
we start by solving for the time N-1 optimal
control. The optimal control at time N-{, {s the
vaiu> of u(N-1) which minimizes

J(N-11 = E{x(N-11"QIN-1)x(N-1)*u(N-1)'R{N-1]u(N-1)

<x(N)-Q(NIx(NI|1*71)

r

= % E{X(N-11"Q(N-1)x(N-1)su(N-11'RIN-1)u(N-1)
¥

+x(N)'QIN)x (NI 1" HIND = )

<PIM(N]=§It™] (3.1)
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ININ-1} & PIHIN}=i* Y]

and use the state equation (2.2a) and (2.4),
{2.5) In (3.1) to get

- - 3 efx(N-t1[ain-11oF raeniF fx(n-1)
*2ulN-1)'G/QINIF x{N-1] +u(N-1)'|RIN-1}+GQINIG ]
- ulN-)|* "L HIND =i (NIN-1)

',).:1 LrIQINIV, D (NIN-1) (3.3)

Now taking the partial of (3.3) w.r.t. u(N-1) and
setting it to zero ylelds

r . -1
w(N-1) = -[RIN=1)+3 G,Q(NIG (NIN-1)]
K ]

E GNIF £ (x(N-1[1* N1 =)
- (NIN-1) (3.4)
Notice that
E{x(N-1)[1* " HINyag) - Zl e x(N-D|* 1N =},

HIN=1)=1) PEMIN=1)=1IMIN) =11} (3.5)

where, since M{N)=j (n the first conditioning is

{rrelevant, the expectation inside the summation
is

E{xIN-D|" " 1(N)=3) % (N-1IN-1)u, (N-1IN-1)

r
izl

i

2Y(N-1IN-1) (3.6)

which is the IMM mixed initial estimate [B1].
Thus using (3.6} In (3.4) we get

r o, -1
u(N-1] = -[nm-nozsp(mu,mm-n]
=i
4 . N
- ZEANIF X HN-1IN-1)u (NIN-1) (3.7)
F i

4. THE CONTROL ALGORITHM

Ve will derive a full-tree contro! algorithm
(FT) which computes contro! values by taking Into
account 3l possible future mode) histories. As
will be seen by our example this method offers
improved performance over the existing scheme
(T3]

The 1-th future Af(story of models is
denoted as

MY e (M(K)el,,. HIN)el,) al,.. e (4.1)

where | Is the model at time { from
history | and

15), sr Iek..N (12)

3——_

(3.2)

s

S'(k0'1 & min €[ x (k1 QKIx (R eu(k)RIK)uLK)

o Piren i) (4.3)

where J'(k.I') §s the optimal cost-to-go from
time k to the end. Now applying the total
probabllity theorem to (4.3) ylelds

M2
Sy ema 3 (e{xkratkxik) « ulk)RIKu(K)

o SRt et gt (4.4)

The control that minimizes an approximatfon
to (4.4) is derived In the Appendix, and Is given
as

’N-Io2

£1 . T ol
Wikl == (Rl e F 6 Pkt Gy wNIket]]

(T3
Nt

© TG, Pkenf STkl INIKet] (45)
=1

and again we see the natural way the IMM mixed
initial estimates show up.

Note that the control parameters P'(k]
(model-history-conditioned optimal cost matrices)
are computable off~line.

5. SIMULATION RESULTS

The FT controller developed in Sec. 4 is used
to control the state trajectory of the system.
The performance of this algorithm, 3s determined
by (2.1), Is compared to the cost obtalnable by
using the MMP controller discussed In [T3}]. In
order to obtaln a meaningful comparison we use
the r{gorous statistical analysis technique
presented in [BS, W3]

The control of a double Integrator system
with process and measurement nolses is consldered
with a gain fallure. The two possible models are
given by the following system equation

e« [ 07 ] o - [ o ] u(k)

2
. [TT’Z] vik) 1=1,2 (5.1}

wilh measurement equation
z(k} = (1 0) x'(k) + wik] (5.2)

The models differ in the control gain parameter

b, The process and measurement noises are
mutually uncorrelated with zero mean and
variances given by

Elv(k} villl = 0.16 &, (53)
and
Elwlk) w(})) = & (5.4)

The control gain parameters were chasen to be
b'e2 and b’e0.S.

The Martkov transition matrix was seleclted to
be




Lot o5l (5:5)

For Lhis example N=7, and Lhe cosl parameters
R(k) and Q{(k), (see (2.1)), were selected as

R(k) = 5.0 kel 2, . N-1 (5.6)

(o] [88 887
at) &8 %8
al2) 38 88
os | | 43 93 .
ar4) 38 28 '

ats) §8 23
ate) 38 28

L9V ] L% 88

where the last matrix, Q(7), reflects our desire
to drive x,(7) vigorously lo zero. Also note
that for this example Te1.0.

The real system was (nitialized with
x{0)=130.0, 0.0]° and a random selection was done
for choosing the inltial model with
P[{M(0)={]=0.5, i=1,2. The Kalman fliters each
recelved an Initial state covariance of

. 1.0
r(olo) = [ i g 2.0 (5.8}

and the initial state estimate was selected as

x,(0l0) z(0)
- - [ (5.9)
x,(0(0) z(0) - z(-1)

where z{-{] = 30.0 + w(-{} and z{0} = 300 «

w(0).

Statistical tests were made on the results of
S0 Monte Carlo runs. Sample means and variances
of the Monte Carlo costs C, defined in {2.1}
wrre computed for the FT, MMP, and “"known
mcdel-history” (f.e. optimum linear quadratic]
controllers.

Table | contains the results. The FT
algorithm shows a clear reductlon in cost as
compared with the MMP scheme. However {n order
to provide a rigorous argument that the actual
performance {s ordered as Table | indicates we
apply the statistical test presented in [BS, V3]

Tabie Il contains the resuits. The sample

standard devlation 9; of the mean of

the cost differences, C:‘“'-Cf’, are shown.

The hypothesis that the FT controller is better
than the MMP scheme can be accepled only if Lhe
probability of error a ts less than, say, 1
percent. Then the threshold against which we
compare the test stalistic B/o; s
¥=2.33. This test statistic has Lo exceed the
threshold In order to accept the hypothesis.

TABLE |

SAMPLE AVERAGE COSTS AND STANODARD DEVIATIONS

Hodaq?lrsnlory FT MMP

Sample Mean 2,647 6,063 19,519
Sample Standard

Beviation 8.096 3.96ES  1.12€7

the fT controller performs betier than the MMP
controller for this problem. The estimated
improvement (decrease in cost) of 70% s
statistically significant.

TABLE 11

STATISTICAL TEST FOR ALGORITHH COMPARISONS

Test Estimated
Statlstic {mprovement
a % as0; x
FT-MMP 13,456 3,316 4.1 70

6. CONCLUSION

The development of a3 new cuntrol algorithm
for discrete-time hybrid stochastic systems with
Markovian jump parameters has been presented.
This contoller was derived through the use of
stochastic dynamic programming and by taking Into
account all possible future “historlies of
models”. This scheme uses the IMM state
estimation algorithm. We show that there Is an
Interesting connection between the iMM state
estimator and control of jump-linear hybrid
systems. This new controller is of the OLOF
class and has off-line computable control gain
parameters.

From the example It is seen that this scheme
can achieve a statistically significant reduction
in cost when compared to the multiple model
partitioning approach.

APPENDIX

I. Derivation of (4.5)

Note that given the future Aistory of

models MY  the optimal cost-to-go
J(k+1.*") (s easily computed and s
denoted.

ke t.1') 2 E{x (ko 1P kot (ko ]t )

. ql(koll (A1)

where the notation from [B4] is used for P(kel]
and a(kei).

Since Lhe expectation in {4.4) is conditioned
on M"Y we obtain our of approximation
by replacing J(ket,I*') inside the
expectation with [(A.1], and (4.4) becomes

Moo

rfr=mn T (efxtk)arkixix) « ulkRIKIuEK)

ulh Yl

o € x(ko1) P'{ket)x (ko)1 1]

. a'(ml]n"”".l'}u,lleou] (a.2)
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where
u(Nlket] & PIH* LY (A.3]

Now use (2.2a) and apply the smoothing
property of expectation to (A.2) to get

Moke2

ricty = win ¥ [E[x(k)‘olk)x(kl v u(k)'RK)u(k)
wik It

. [Fl‘.lx(k)ocl“lu(k) . "“‘"-'w']lp'lk‘ll[-]

. a’(mlln"“‘-',l'}ulmlkoll] (A.4]

Take the partilal w.r.t. u{k) of (A.4) and set to
zero Lo solve for

Noke2

* = - 4 ! . - -
u'(k)==[R(K] E G PketlGy wNIke]]

PLEILS

© B G PR ElxIH N ket (AS)

Ve still need to evaluate the expectation In
(A.5). This is done as follows. Note that
x(k) Is independent of M(i), 1=ke2 . N (f
HM(k+1) [s known, thus

E{x (k)M < e {xika]tken) = 1,,,.1) (A.5)

But (A.6) Is x“(klk], the IMM mixed
initial estimate (see (3.6)). thus using (A.6) in
(AS), we get (4.5).
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FROM PIECEWISE DETERMINISTIC TO PIECEWISE DIFFUSION MARKOV PROCESSES
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ABSTRACT

Piecewise Deterministic (PD) Markov processes form a as they provide pathwise representations witn a

remarkable class of hybrid state processes because,
in contrast to most other hybrid state processes,
they include a jump reflecting boundary and exclude
diffusion. As such, they cover a wide varilety of
‘{mpulsively o1 singuiarly controlled non-diffusion
processes. Because PD processes are defined in a
pathwise way, they provide a framework to study the
control of non-diffusion processes along the same
lines as that of diffusions. An important
generalization is to include diffusion in PD
processes, but, as pointed out by Davis, combining
diffusion with a jump teflectin? boundary seems not
possible within the present definition of PD
processes. This paper presents PD processes as
pathwise unique solutions of an Ité stochastic
differential equation (SDE), driven by a Poisson
random measure. Since such an SDE permits the
inclusjon of diffusjion, this approach leads to a —-
large variety of piecewise diffusion Markov

processes, represented by pathwise unique SDE
solutions.

1. INTRODUCTION

Because many of the stochastic processes that we
meet in nature have a state space that is a product
of a continuous space and a discrete set, we often
need pathwise models on such a hybrid state space.
As a result, several classes of hybrid state space
models have been developed, such as systems with
Markovian switching coefficients, doubly stochastic
counting processes and Markov decision drift
processes. These models are used in ite different
fields of applications, by which their studies have
often evolved separately. One reason to study hybrid
state space processes within a common framework is
that their martingale parts are in general
discontinuous. Thils property has attracted a lot of
attention, and is by now very well documented
(Jacod, 1979; Cinlar et al., 1980; Bremaud, 1981;
Elliott, 1982; Bensoussan and Lions, 1984; Ethier
and Kurtz, 1986; Jacod and Shiryaev, 1987). It is
quite clear from these results that, to study hybrid
state Markov processes along the same lines as
diffusions, we need both pathwise representations
and strong Markov (martingale) characterizations of
those processes. Unfortunately, for hybrid state
Markov processes there is presently a lacuna of
pathwise representations with strong Markov
characterlzations. This lacuna is apparent if we
depict the main classes of hybrid state Markov
processes in the form of a Venn-diagram (fig. 1).

There exist pathwise representations with strong
Markov characterizations of counting processes with
diffusion intensity (Snyder, 1975; Marcus, 1978), of
diffusions with Markovian switching coefficients
(Wonham, 1970; Brockett and Blankenship, 1977) and
of Piecewise Deterministic (PD) Markov processes
(Davis, 1984). For many other Markov processes in
figure 1, there exist only strong Markov
characterizations (Kingman, 1975; Anulova, 1979,
1982;: Bensoussan and Llons, 1984; Belbas and
Lenhart, 1986). Actually, PD Markov processes seem
the most interesting of all processes in tigure 1,
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the author visited the University of Connecticut,
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strong Markov characterization of all major non-
diffusion Markov processes. As such, PD Markov
processes provide a [ramcwork to study Markov
decision drift processes (Hordijk and Van der Duyn
Schouten, 1983; Yushkevich, 1983) along the same
line as diffusions (Vermes, 1985). With this, an
interesting generalization is to extend the spectrum
of hybrid state Markov processes by including
diffusion into PD Markov processes. As the present
definition of PD processes does not seem to have an
opening left for that inclusion (Davis, 1984), we
need a different approach.

- S~
Pt Plecewise ~
Ve Diffusion ~
Markov N
Counting Processes Diffusions \
/ Processes with
with Markovian |
| Diffusion Switching |
\ Intensity Piecewise Coefficients
Deterministic /
Markov

Processes

Fig. 1. Main clagéé; of H;B;1d~kﬁgte Markov
processes.

The approach that overcomes this difficulty,
presented in the sequel, is to assume a stochastic
differential equation (SDE) in a hybrid space and to
construct a large class of plecewise diffusion
Markov processes from it. ®With.respect to the state
space we restrict our attention to a hybrid subset
of a Euclidean space. Then the most general SDE is
of It8 type, driven by Brownian motion, w, and a
Poisson random measure, p on (0,=)xs,

dEg = a(ke)dt + B(Ee)dwy + 6 ¥(Eeo,u) p(dt,du).

The path of a solution of this SDE is fight
continuous and has left hand limits: k4. = k*s Erep-

If p generates a multivariate point (t,u¢), then the
path of ¢ has a discontinuity:

g = Eeo *+ ¥(Ep.,ue).
In the sequel we shall gocus on pathwise unique
solutions. The classical result for the existence of
such solutions requires that ¥ {s sufficiently
continuous (Gihman and Skorohod, 1972), which
restricts the SDE essentially to systems with
Markovian ewitching coefficients. However, there are
some non-classical pathvise uniqueness results that
allow a discontinuous ¥ (Lepeltier and Marchal,
1976; Jacod and Protter, 1982; Veretennikov, 1988).
Taking these results as a starting point, we
introduce and evaluate a particular structure for ¥
in section 2. This structure poses hardly any
restrictions on the possible solution of the SDE,
while it enables a separate evaluation of an
unbounded jump intensity and a hybrid gtate space
situation. In view of this separation, we first
congider, in sections 3 and 4, the modelling of a
jump reflecting boundary in gh through an unbounded
jump intensity, and after that, in section 5, we
consider the hybrid state situation.
Assume an open subset 0 of R" with jump reflecting
boundary 920, which means that (f.) undergoes an

— R —



—————‘

instantaneous jump into the interior of © If (&g}
tries to cross or to travel through 20. To mode

this with the above SDE, the Poisson random measure
p should instantaneously generate a point when {Eg¢)
enters 30. However, this ?s not possible as a
Poisson random measure generates almost surely no
point at an entrance time. To overcome this problem,
we briefly discuss the following three approaches:

1. Replace p by a random measure, wlth almost

surely one point at an arbitrary time.

Assume a ¥ such that p generates an active point
during an infinitesimal small time interval
after entering 20.

3. Assume a y such that p generates an active point
during an infinitesimal small time interval just
before entering a0.

Approach 1 adequately solves the instantaneous jump
problem but creates many new problems, because if p
is not a Poisson random measure, then the SDE can
not be analysed within the powerful Ité framework.
Approach 2 {s the well known approach of randomized
stopping (Bensoussan and Lions, 1984). As this
approach allows (&t} to cross or to travel through
29 thz reoulting poscoss is ol bes . a modlrication
of a PD Markov process. Approach 3 is the desired
solution. However, the problem with approach 3 is
that it is in general not known how to carry it out.
A constructive answer to this will be given in the
sequel. It is clear that approach 3 needs a kind of
prediction of the time that (&.} might, othervise,
enter 20. Actually, PD Markov processes are
presently the only processes for which this
prediction problem is solved (Davis, 1984). As such,
we first formulate that solution in an SDE set up in
section 3. Next, in section 4, we present a soluticn
of the prediction problem for the situation with
diffusion,

2.

Finally, in section S, we explicitly consider the
hybrid state space situation. The most interesting
effect of the hybrid state space assumption is that
it leads to a particular type of jumps: jumps in the
continuous state component of (Ey} that anticipate a
simultaneous transition of the discrete component of
{E¢}). This type of jumps have been introduced by
Gnedenko and Kovalenko (1968) for piecewise linear
processes and by Sworder (1972) for systems with
Markovian switching coefficients. For short we refer
to these anticipating simultaneous jumps as hybrid
The SDE framework of this paper provides an
elegant way of representing the hybrid iumps of PD
Markov processes and their piecewise diffusion

generalizations.

Some other interesting generalizations of PD Markov
processes, not considered in the sequel, are the
inclusion of continously reflecting or sticky
boundaries. The inclusion of a continuously
reflecting boundary, while preserving pathwise
uniqueness, seems possible if that boundary is
smooth enough (Chaleyat-Maurel et al., 1980; Menaldi
and Robin, 1985; Frankowska, 1985; Saisho, 1987).
The inclusion of a sticky boundary without loosing
pathwise uniqueness seems difficult if not
impossible, but strong Markov characterizations are
possible (Kingman, 1975; Anulova, 1979, 1982).

R* = (0,q) and R™ = (-=,0),

Ry =~ R*%(0) and R_ = r-+{0).

z = {(..,-2,-1,0,1,2,..),

N = (1,2,3,..).

13 = Col(&y,..,kn) 1f € = Col{%y,..,tp)

1012 = izj ”ijz , if ¢ is a matrix

r

lo12 = { ,iz , if ¢ is a vector

el i-th component of process .

20 boundary of the closure of get 0.

Int(x) ¢ integer part of x.

X ¢ X(True)=1 and X(False)=0.

CADLAG : right continuous with left hand limits

ck(0) the set of all real-valued functions that
are k times continuously differentiable on
0. The superscript is deleted i{f k=0. If k
is followed by b, then f and {ts first
derivatives are bounded on 0.

D(4) : domain of operator 4.

2 _THE SDE OF LEPELTIER AND MARCHAL

We assume a stochastic basis (2,%,P,P), endowed with
an m-dimensional standard Wiener process, éu;), and
a Poisson random measure, p(dt,du) on xR (Jacod
and Shiryaev, 1987, p. 70), with intensity measure
dtxm(du), and consider the follouing stochastic
differential equation (SDE) in R xRT,

dEg = a(kg)dt + B(ke)dwy + [ g ¥(Eg-,u) q(dt,du) +

+ R+{Rd W(Et-:u) p(dt,du) , (1)

where 7 is the martingale measure of p, tg is an
$o-measurabl. random variable, while a, 8 and ¥ are
measurable mappings of appropriate dimensions.

The classical reference for equation (1) is Gihman
and Skorohod (1972). Significant exi.«r.-ions of their
results have been obtained by Lepeltier anc :farchal
(1976) in thelr study of the relation between an
integro-differential operator and an SDE of type
(1) . Their particular SDE can easily be obtained
from (1), by ingr?ducing homeomorphism gappings of
R™XRG {nto (ueRC*1;o<|ui<1) and of R*xRY into

{uen **;1<|u|<w), anu subsequently transforming m
and ¢ correspondingly. Consequently, the results of
Lepeltier and Marchal can immediately be used in the
present study of (1), while allowing the intensity
of the active points in R* to be unbounded ocutside
some known Borel set 0/CRP,

assumptions

Al ghere is a_constant K such that, for all EE&“,
fa(E) (2 + 18(8)12 + .1 dq l¥(E,u) “m(du) < K(1+[E[“).
R7xR
A2 For all kEN there exists a constant Ly such
that, for al] t and y in the ball By=(u€R"; [u[ %<k},
fa(E)-a(y) < + [8(E)-8(y)1° + 2 2
+ R-)I(Rd |¢(E,u)-v(y,u)[“m(du) < LplE-y|<.

A’.,3 0’ is a known Borel subset of RD,
R*ﬁnd X( ¥(£,u)#0 )m(du) is uniformly bounded on 0-,

and [:+¢{t,u)] € 07, for all EeRD, uerd*l,

A’.4 For all k€N there exists a constant
that, with By the ball of A,2:
a. for all EE€ByNno/,
R*&Rd I¥(E,u)| m(du) < M.

b. for all EEBkn(R"—o:),
z fa lv(E,u) ] m(du) < My,

given that, for all uer*xrd,
¥(E,u) = ¢(t,u+Col(1,0,..,0}).

¥y, such

al.>

For all r€N there is a constant N, such that
E( § glpd X( ¥(Es-,u)=0 ) p(ds,du)) < N,.

2.1 Proposition

Given m(du)=duyx«(dy) and assumptions A,1, A.2,
4.3, A’.4, A’.5 are satisfled. Then equation (1)
has for any €p€0’ a pathwise unique solution, (&¢).
Moreover (t¢) is then a right continuous Markov
process.

Remark: Proposition 2.1 is a version of Theorem III,
of Lepeltier and Marchal (1976), in the sense that
they considered the situation of 0/= RN,
Nevertheless, for the proof we can almost follow
Lepeltier and Marchal. Another recent extension of
Theorem III, of Lepeltier and Marchal is to the
situation o% a non-Lipschitzian a in turn of a
sufficient non-degeneracy assumption on 8
(Veretennikov, 1988).

Proof: :
If (1)’s fourth right hand term vanishes, then it is
wall known that A,]1 and A,2 are sufficient
conditions (Gihman and Skorohod, 1972). As such, we
have to show that (1)‘s fourth right hand term does
not change that situation, under 7A’,3, A’.4 and

’

Due to A‘,3 and the definition of Its integration a
solution of (1) is CADLAG. Due to A’,5, the
discontinuities in (k¢), that are caused by (1)'s
fourth riiht hand term, are countable. Therefore we
can assoclate with each discontinuity a time, Ty,
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and a multi-varlate polint, un such that
0<T;<Ty<..<Ty<.. and }32 Ty = @. Due to the latter
and {¥y) being CADLAG,

§ ket #(ammip@@tian) = o g oo vy w0

If (1)’'s first three right hand terms vanish, then
the latter sum is finite (a.s.) for all t€R,, due to
A’.4 and A’,S5. With this result {t {s sufficient to
show that (1) has a pathwise unique solution on an
arbitrary finite time-interval [0,T). For the
existence of a solution, see the proof of Th. III,
of Lepeltier and Marchal (1976; pp. 82-85). We
already know that a solution is unique and

3y -measurable on {0,Ty). Because §, is CADLAG and ¥
is measurable, T; is &T ~measurable. Then, by the

PN 1l
definitiun of a Poisson random measure {Jacod and
Shiryaev, 1987, pp. 65-66) L is ST -measurable =
1 1
= + ~measurable and, due to
[Tl ET - HET _,uT y is 9 me rabl nd,

1 T
A’.3, t_ €0 =

1
Pathwise uniqueness holds true on
“l
[0.Ty} and iT €0. Due to the latter, we can repeat

1 :
the procedure to show that pathwise uniqueness holds
true on [T;,T3) and iT €0, and so on for the

countable sequence of l.atervals. Q.E.D.
The interesting aspect of propositicn 2.1 is, that
the coefficients of (1)’s fourth right hand term may
be discontinuous in ¢. This is exactly what we need,
to construct a class of hybrid state Markov
processes that is larger then the class of solutions
of systems with Markovian switching coefficients.
The first step towards this construction is
replacing ¥(%,u) by

v (E,u) = v(k,u) X( [ug<a(g)) U [Fét)‘ol )., (2.a)
where F is a measurable mapping of RF into (0,1}, ¥
and A are measurable mappings of appropriate
dimensions, while the range of A is Ry. With this
(1) becomes
dEy = a{Eg)dt + B(ky)dwy + R-4rd ¥ (Ee- ) q(dt,du) +

+ R*iad ¥ {ig-,u) p(dt,du). (2.b)
sumptio
a nefine 0+ = (£¢€ERD; F(t)=0},
(E+¢(E,u)] € 07, for all feRP, uerd+l,
A".4 Given, for all EeRPM-0¢ and ueR*xRrY,
A(E)=1,
v(E,u)=vy(f,u+Col{1,0,..,0)}),
and for any k€N there exists a constant ¥y,
such that
A
gz)ﬁd {¥(E,u)] m(du) < My, for all EEBy.
a%.5
3. A(E) is on 07 uniformly bounded and continuous

in k.
b. (E¢), t€R,, exits 0’/ at most a countable
number of times.

2:2 Theoren

Given m(du)=duyxx(dy) and assumptions A,l, A.2, A.3,
A".4, A".,5 are satisfied. Then equation (2.a,b) has
for any tgE0’ a pathwise unique solution (k¢).
Moreover ?Et) is then a Markov process, of which the
sample paths are measurable on the stochastic basis
(a,%,7,P).

Because, on 0/, A(t) is continuous in t (due to
A",5.a) and §(u1<k’), A’ER, defines a measurable
mapping of R into (0,1) = X(u;<A(t)) defines a
measurable mapping of Rx0’/ into (0,1). Because the
range of F is (0,1), we can write

X{ (uy<A(E}] U (F(E)*O0] ) = X{( uy<A(E) )} Vv F(t),
of which both right hand terms are measurable. This
implies that the supremum is measurable, which
combined with the measurability of ¢, makes that y°
is measurable. This ensures that (2.b) is a special
case of (1), with ¢ replaced by ¥’ according to
(2.a). With this we are left to verify that A,3,
A",4 and A",5 guarantee that A’,3, A’.4 and A’.5 are
satisfied, which is straightforward. Q.E.D.

Having theorem 2.2, we are prepared to consider a
Jump reflecting boundary (in sections 3 and 4) and
the hybrid state space situation (in section 5). But
first we give a strong Markov characterization of
(€¢j 1f there is no reflecting boundary.

Given F vanishes everywhere and the assumptions of
theorem 2.2 are satisfied. Then for all EoERM, (&}
is a semi-martingale strong Markov process, and ifs
aextended generator, 4, is given by:

df = 2f + §7f + 3%, for all fec2.b(gny,
where

- T
Le(e) iglui(z)fzi(z)+x1’§_1(a(z)s(t) UCLINOY
(4)
(f((+()—t(()-iglfifti(t)) S™(E,d),

(5)
(6)

(3)

7LD =onl o)

TG =pnl o) (ECE+O)-2(E) ] S*(e,ar),

and for all Borel ACRR-(0},
ST(E,A) Ei‘énd X{ ¢(E,0)€EA ] m(du) , (7)

stea) = o1 fa X0 w(wen ) auy waw . (8

Due to A,3, A".4, A".S and 0/=R", the ¥y~predictable
part of € is

e = Jategas + § sl w0 mcawas.

Obviously, (A¢)} is of finite variation on any finite
tine-interval, while (t ~Ay) is a local martingale =
(E¢) is a (special) semimartingale (Jacod and
Shiryaev, p.43, Def. 4.21). This immediately implies
that (&¢) is a s“rong M>~k-v process. Because {Eg)
is a semimartingale, the generator 4 follows from
It$’s differentiation rule for discontinuous

serimartingales (Elliott, 1982). E.D.

3. PIECEWISE DETERMINISTIC MARKOV PROCESSES

In this section, we represent PD Markov processes as
solutions of an SDE. Therefore, ge consider (2.a,b)
with 8=0 and ¢ vanishing on R7™xR9;

die = a(fg)dt +n+§kd ¥(Eg_,u). -

SX( (uy<A(t])j U [F(&)#=0) ) p(dt,du),
Our goal is to introduce a particular mapping
F:R"=(0,1), such that (9) has pathwise unique
solutions vhich are PD Markov processes. The present
definition of a PD Markov process (Davis, 1984)
works without such a mapping F. Instead, there is
given an open subset 0 of RI!, with a jump reflecting
boundary 20, such that (&) instantaneously jumps
into the interior of 0 just before it would,
otherwise, cross or travel through 30. For the
definition of a PD Markov process from (9) an
appropriate F.has to be constructed from 0 and a.
The construction of F will be based on the following
differential equation, on (0,o)xRRD,
dt't - a(!'t)dtl te(o,=), (10)
which has pathwise unique solutions, assuming that «
satisfies conditions A,l and A.2. From this, we
define 20 as the set containing all elements of 20
that are directly accessible by (t’y)} from 0:
20 = (€20 ; 3 r€(0,o) and &/(E0 such that
B, =t A €7, _€0}.

(9)

(11)

Next we introduce the following distance function,
d.(€,20) = inf (r20 ; Ero=t A £’ €20), (12)
which is, under the above mentioned conditions on a,
a measurable mapping of RP? into R. With this we

define, for i€eN,

05 = (E€0 ; dg(E,20) 2 1/1), (13)
whicé are then Borel sets, and which form the Borel
set

r=

[ ~igl 0. (14)

Nov we define our particular F as follows:
F(t) =1 , if gerh-p-,
-~ 0 , else. (15)

Due to the above construction, F is measurable, by
vhich theorem 2.2 yields:

Given an open subset 0 of R", and a mapping F,
defined by (10) through (15). Then, under the
assumptiors of theorem 2.2, equation (9) has for any




t0€0/ a pathwise unlque solution (£¢). Moreover,
(E¢) 1s then a Markov process, of which the sample

paths are measurable on the stochastic basis
(a,3,7,P).

Next, we come to the main result of this section,
which implies that (t¢) is a Piecewlse Deterministic
Markov process.

3.2 Theorem
With probabllity one, the process (k¢), of corollary
3.1, exits 0UQQ zero times on (0,w}.

Proof:

By the definition of F, all points of p in RY become
active as soon as (k¢) has exit 0. This situation
holds on until (t¢} reenters 0/. The reentering may
occur due to drift or due to a jump generated by a
point of p in R*. Obviously, the cases that (&)
veenters 0/ by drift without exit of 0U2Q do not
cause any difficulties. In all cther cases, the
probability of exit 0U2Q by drift is

Z exp(~s/r} ds = v exp{-«/r},

with k=inf(1/i ; i€N} and 1/v the intensity of

points of p in RY. Because {&¢) exits 0/ at most a

countible number of times, vhe probability of exit

0U29 at least once is then r/& exp(-¥/r})}. If all

points of p in Rt are active, then because k€N,
}}3 T/k exp(-k/r} = G,

which means a zero probability to exit 0U2Q on

{0,o). Q.E.D.

3.3 Theorem
The process (t¢), of corollary 3.1, is a
semimartingale strong Markov process, and its
extended generator, 4, is given by:
4f = ¢f + 7%f for all fed(d),

where ¢ and 3% are given in proposition 2.3 with
8=0, while the gogaxn of 4 is:

D(4) = (£ € cl/P(o)ncP(oug0); 2¥£(k)=0, all E€l0).

Proof:
Define a process Ay as follows:

Ag = z a(kg)ds + Z X(Eg_€07) A(zs')ﬁd ¥(Eg_, u).

m(awds + &} g #(Eg, o) dupxu(dw)
with Sy the $¢-adapted times that {&¢) jumps from
RM-0¢ Into 0/, i21 and Sy%0,

8; = é&é {e > 857 i Eg_ERP-07 A §c€07 ).
Obviously, (A¢) is of fin.te variation on any finite
time-interval, while (k¢~A¢) is a lucil
S$¢-martingale. Subseyuently, (¥+) is a
semimartingale. Application of Its’s differentiation
rule for discontinuous (piecewise de&erministic)
semimartingales to f(t¢), with £ € ¢*, yields:

2
£(Ee) = £(Eg) + igl E Fe7 flEs-) [des)y +
* ocEst ptira [E(8s-*¥(Rgoim)) - £(kg.) +
= i=1 2. f(‘s—) [*(Es—lu]i] p({s}),du),
up to indistinguishaéility.
Substitution of A%.4,
p(ds,du) = g(ds,du) + dsxm(du),
dig = dA. + d(local martingale),
n(gu) - ﬁuéfuédn), b
Do)y n cP(oupg), yields

L
&) § st tategr1gas + §

,A(ES-) fd [f(Eg_+¥(kg_,u)) - £(Eg-)) dsxdujxu(du) +

and using £ €

f(ky) = £(Eg)+ X(kg-€0")

+ 151 z ‘d [f(Esl_+w(£si_,u)) t(zsi_)] duyxu(dy) +
+ d(local martingale),
up to Lndistingu?shability.
Next we use the property that

gt (e) = 0, all t€30.
Because a is of linear growth and (&y} is locally
bounded, {a(t¢)} is locally bounded. This implies
that (&) does not increase while travelling through
0-0* to 20, as this takes a time interval of zero
durgtlon. The latter and the assumptions that
feCP(0U20) and £ (E)=0 for all t€2Q, imply that
$Y€(Eg)=0 for all €4-€0-0+. With this,

4__...............---lllllllllllllllllllllllIIlIlllIlIlIIlllllIIIIII

f(ke) = £(kg) + Z tr(Eg) ds + d(loégf_mﬁrtinqale) +

+ Z “(28-’£d (£(Eg+¥(Eg,u)) ~ £(Eg)] dsxdujxu(dy).
Substitution of 7% yields

£(ky) = £(kg) + Z 4f(kg) ds + d(local martingale),

which {mplies that (t,) is a strong Markov process
with extended generator (4, D(4)]. Q.E.D.

4. PIECEWISE DIFFUSION MARKQY PROCESSES

Having obtained PD Markov processes as solutions of
an SDE, the next step is to include diffusion.
Therefore we consider the following SDE:

dEy = a(kg)dt + 8(k¢)dwe +R+£Rd ¥(Eg..,u).

SX( [ug<a(E)] U (F(E)=20] ) p(dt,du),
which corresponds to (II.a,b) if % vanishes on R™xRY,
Initially we assume that 8(t)8(%t)' is positive
definite for all t€RD, but relax this assumption
further on.

Now we construct F, starting from the following
differential equation, on (0,=)xR%,

dE’e = a(E/g)dt + B(E’¢)dwy, te(o, o},
which has paghwise unique solutions under
agsumptions A,1 and A,2, and which defines a family
of homogeneous Markov processes with a measurable
transition function

(16&

(17)

Pre(r,A) = P{E/ EA|E’g=E), all Borel A. (18)
Because 88* is positive gefinite, any element of 20
is accessible by (t’¢}) from 0. Therefore we
initially use the toElowinq Euclidean distance
function,
dg(t,90) = inf {|k-y| ; y€a0), (19)
vhich, obviously, is 2 measurable mapping.
Next, we define the Borel sets 0; as follows,
0; = (EE0 : dg(k,20) 2 1/i), i€N, (20)
and %rou this the Borel set
’r=
0= Yy 05. (21)
Ms before, we cdefine cur particular F as follows:
F(E) =~ 1 , if terP-o0-,
=0 , else. (22)
Obviously, F is measurzble, by which theorem 2.2

yielas:

Given an open subset 0 of =P, znd a mapping F,
defined by (17), (18), (1%¢), (20), (21) and (22).
Then, under the assunptions of theorem 2.2, eguation
(16) has for any £g€O’ a pathwise unique solution
{t¢). Moreover, (&y} is then a Markov process, with
sample paths being measurable on the stochastic
basis (¢,%,P,P).

Next, we come to the characterization of the
boundary behaviour and the strong Markov property or
(E¢) -

4.2  Theorem
With probability one, process (&},

‘f corollary
4.1, exits OU20 zero tixzes on (0,=).

Proof:

By the definition of F, all points of p become
active as soon as (tt) has exit 0/,say at moment T,
which situation continues until (€¢} has reentered
0/, say at moment T+4. The exit may occur due to
diffusion or due to a jump generated by a point of p
in R*. obviously, the cases that (ty) exits 0-0r by
diffusion without entering 20 do not cause any
difficulties. In all other cases we know from the
proof of theoream 3.3 that A has an exponential
distribution of which both the mean and the standard
deviation equals v-0+. ¥ith this, it follows that,
for any t€0’, the probability of entering and
exiiing 30 within 1/r {is;

r~Lpr (7, w-0-00) <+l ops (e, (yerD ¢ je-y) > 0 ),
with e=inf(1/4 ; ieN).

Because (ty) 18 a diffusion and ¢>0, the right hand
side is of order v (Gihman and Skorohod, 1972, p.
64). As this situation may occur a countable number
of times, we have to divide by x, ylelding order
(v/t), of which the limit, +10, is zero. Q.E.D.

4.1 Proposition

Given the assumptions of theorem 4.2 are satisfied.
Then for all ¢y€0’, (ty) is a semimartingale strong
Karkov process, and its extended generator, 4, is
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given by: —
4f = ¢ + 3%¢ for all fen(d4),
where ¢ and 7% are given in proposition 2.3, while
the domain of I-H
2(4) = (£ € c</P(o)ncP(ovan); 7¥L(E)=0, all £€30}.

Proof: Similar to the proof of proposition 3.3,
except that now $*f(fg)=0, for all Eg€0-0’, follows
from fEC(0U3O). Q.E.D.

Finelly, we consider the more general situation with
8(£)8(E)T being positive semidefinite. The
construction of F works according to equations (17),
(18), (20), (21) and (22), but with distance
function:

dg(€,20) = inf (r20; (20 N E Y={) 1}, (19)
where 20 is the subset of 20 tﬁéE is accessible by
(¢’¢) from 0, ()} is the empty set and E¢ is the
closure of an n~dimensional ellipsoid, viEh centEe
t+a (k)7 and shape defined by covariance 8(t)8(%) ‘.
Obviously, dg(.,20) is measurable, by which the 0;’s
and 0/ are Borel sets and F is measurable, and we
get:

GCiven an open subset 0 of RM, and a mapping F,
defined by (17) through (22). Then, under the
assumptions of theorer 1.2, oguation (1IV) has for
-y £g€0’ a pathwise urique solution {E¢}. Moreover,
(Ec) s then a Markov process, with sample paths
belng measurable on the stochastic basis (o,%,F,P).

Next, we come to the main result of this section.
4.5 Theorenm

With probability one, the process (&}, of corollary
4.4, exits 0UPQ zero times on (0,@).

Proof: . . +

By the definition of F, all points of p in R bgcome
active as soon as (k¢} has exit 0/. This situation
holds on until (%4} reenters 0’. The reentering may
occur due to drift and/or diffusion or due to a jump
generated by a point of p in RY¥. Obviously, the
cases that (k) reenters 0/ by drift and/or
diffusion without exit of 0UR0 do not cause any
difrfficulties. Of those cases where 20 is accessible
through drift only, we follow the proof of theoren
3.1. say is the subset of 20 that can only be
entered by (t’y) due to drift. For all other cases
we then notice that a strictly positive type (19)
distance dg at the moment of exit 07, corresponds
with a strgctly positive Euclidean distance from
20- . due to the local boundedness of |a(fy)| and
IB(t¢} 1. Subsequently, we may follow the proof of
theorem 4.2 for these cases. Q.E.D.

Given the assumptions of corollary 4.4 are
satisfied. Then for all to€0/, (k¢) is a
semimartingale strong Hargov process, and its
extended generator, 4, is given by:
Af = ¢f + 3%, for all f€D(4),

where ¢ and §* are those qiven in proposition 2.3,
whiie the domajin of 4 is:

D(4) = (£ € c2.Pro)yncP(oupe);: #*E(E)=0 all k€20).

Proof: Similar to the proofs of theorem 3.3 and
proposition «.3.

2. THE HYBRID STATE SPACE SITUATION

In this section we explicitly consider the hybrid
state space sitration for a system of the form
(2.a,§), in such a way that there is no need of
assuming a particular ¥ or A. As such, all jump
reflecting boundary results cf the former sections
fit into the results of this section. Por ease of
notation and interpretation, we rewrite the SDE form
(2.a,b) by replacing the Poisson random measure, p,
by a multivariate counting process, v., such that
the pathwise uniqueness of (2)’s solu&ion is
prese;xed. We do that by defining, for all Borel

UCR*x
ve(U) = Z 6 X( (uy<A(kg_)] U [F(tg.)=0) ) p(ds,du),

{23.2)
and then rewriting (II) as

dbe = a(kg)dt + B(E¢)dwy *r-fgd ¥(Ee-,u) q(dt,du) +

9

+ n*ixd ¥(Ee_,u) dre(du) . (23.b)
The main objective of this section is to show that
the last term of (23.b) generates a particular type
of jump: a jump in (E,) that anticipates a
simultaneous switching of (tl¢). For short we refer
to this type of jumpe as . Notice that
these are in some sense unexpected, as
all coefficients of (23.a,b) are non-anticipating.
To show these explicitly, we need some
preparation.

2.1 Lemma

Under assumptions A, 1, A.2, A".3, A".4 and A",5, the
pair of equations (23.a,b) has for any £g€0’ a
pathwise unique solution (kg,v¢}, where v, is a
multivariate counting process on R+xR*de of &
predictable intensity, Ag=A (ke ). Moreover both
(Et,v¢) and (f¢] are then semimartingale strong
Markov processes, of which (t.} is indistinguishable
from the one in theorem 2.2.

Proof:

It follows from theorem 2.2, that the system of
equations (2.a,b) and (23.a) has, for any Borel U, a
pathwise unique solution (E¢,r¢(U)}. With this,
system (2.a,b), (23.a) has a pathwise unique
solution (&¢,r¢}. Obvicusly all Eotentially active
points of p, that are in R xR*xRY, are collected by
v¢ in a predictable way, by which we can write

R*énd ¥ kg, 0) X( [u3<A(Ee)) U (F(teo)®0) ).

.p(dt,du) = ptlpd ¥(fg-,u) dve(du)

up to indistinguishability. This implies that the
solution of (2.b) is indistinguishable from the
solution of (23.b). Q.E.D.

Now we are prepared to consider the hybrid state
space situation. Therefore we assume that the first

component of ky is M-valued, with MCN=(1,2,..}), and
that we can write the first scalar equaticn of
(23.?) as follows:

dete = oefod ¥ilEe-o,u) dvg(du), (23.c)

with ¥, a mapping of RPxR*xR4 into the integer
lattice, z.
Next we assume that ¥ satisfies, for all u;E(0,A ()],

1. ; ~
(e =g, x[ 1 e < up < igo‘(""} o(n,E,u),

(24)
where_¢ is a measurable mapping of MxRPxRY into
ZxRN~1, and 1 'is a measurable mapping of NxRP into
Ry, such that A(i,.)=0 for all ieN-¥, and

iéN A(1,€E)= A(E).
Moreover, we assume that for all neN, t€zZxRM™1 and
uerd,

Pi(n,E,u) = -k, ,
which, together witﬁ (24

(25)
i and r»(i,.)=0 for all
iEN-M, implies that if E*g€K, then (E ¢} in RyxXM.
Substitution of (24) and {25) in (23.b,c) and
subsequent evaluation yield

1, . A=l R *
ale = [ 2 x[ (E (i Ee) § utel < igox(i,zt_)].
. . .(-tle) dvg(duyxrd),
with: u'g = uj-ka(kg), .
for some integer k such that 0 < u < A(Eg),
die = a(Ee)dt + B(Eeddve + S g k(Fe,w) q(dt,au) +

+ fa (el Be_,u) dve(RYxdu), (26.b)

(26.a)

ve(U) = z G X [uySa(g ) JU(F(k5-}=0] ) p(ds,du),

(26.c)
all Borel UCR*de, where underlining of a vector
refers to all, but the first, components of that
vector.

Assumptions

A.4 Glven, for all t€RM-0¢ and ueR*xRr9Y,
AR) = LA (LG =1,

e1(n, E,4) = n-gy,

m}du) = duyxx{cy).
For all k€N there exists a constant My, such
that for all zeag.

afy MVE) UIn-by ] ¢ fg le(n Eu) | s (dR) ] S M.
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For all k€0/,
A(i,t) is continuous in &,
A(i,E)=0 for all i{€EN-H,
A(E) = iéu A({,t) is uniformly bounded.

D. (Ey), tERy, exits 0’ at most a countable number
of times.

2.2 Theorem

Given the hybrid space 0/ = 0+/n(MxRM""L),

Under assumptions j,]1 through A,5, the system of
equations (26.a,b,c) has for any E460‘ a pathwise
unique solution (€¢,ry}. Moreover €¢) is then a
semimartingale strong Markov process in Ryx0‘.

Proof:

Due to A,3 and A.5.,a, (24) defines ¥ as a measurable
mapping (see proof of theorem 2.2), by which
(26.a,b,c) is a special case of (23.a,b,c). Next we
show that A.4 implies a",4, by which lemma S.1 and
(24) imply that the solution of (23.a,b,c) is
indistinguishable from the solution of (26.a,b,cC).
To arrive at A“.4, we start from A.4 and
subsequently use A,5.a, interchange order of
integration and substitute (24). Q.E.D.
Due to its extensive form, equation (26.a,b,c) hides
the results for which the above analysis has been
carried out. Therefore, we take a closer look at it
in case that p has no points in R”™. Then, (26.b)
becomes

dEe = g(E¢)dt + B(Eg)dwye + &d @y, beo, u)dv e (RYxdu)

(27.a)

Moreover, to avoid the use of equations (26.a,c), we
go over to the common descriptive way of formulating
{r¢) and (E1 )}
{ve) is a muftivariate counting process
characterized by the 3i-predictable intensity, Iy,

Te = A{Ep) [1 + F(Egpl) }}8 /7], (27.b)
and a deterministic jump measure u(dy).
(¢'¢} is a process with a countable state space, N,
and wiEh an 3t-piedictab1e rate, Tij, tr of jumping
from Ety_=j to Ele=i, i#j, !
rij,e 2 31, (3,ke-)) (1% F( L Ee) Lig /70,

while lgj Tij,t S Ty

(27.¢)

From this formulation, we_easily notice the
interesting effect that t'y appears in the
coefficient, @, of (27.a)’s third right hand term.
This mians that e(k%¢,t¢.,u) anticipates a switching
from E+4y_ to & g« an thus a jump of (E¢}
anticipates a simultaneous transition o% (ele).
Verify that the antl:cipating coefficient g a&ready
appears in (26.a,b,c), while there is no
anticipating coefficient in equation (23.a,b,c). As
the solutions of both equations are
indistinquishable, we conclude that (23.a,b,c) is
the canonical representation of a system with hybrid
jumps, while (26.a,b,c), with the anticipating
coefficient, is the representation that is more
useful when it comes to the realization of Markov

models with hybrid jumps.

If 2 (.,(%y,k)) is g-invariant, then (kly) is
a countable state Markov process. In this case
(27.a) can straightforwardly be obtained from a
classical system like (1) of which all coefficients
are continucus. For the situation that (k) is
continuous, i.e. =0, see Brockett and Blankenship
(1977). For some applications with
i.e. ##0, see Sworder (1972), Blom (1984) and
Mar{ton (1987).

W
The author is grateful to Professor Yaakov
Bar-Shalom for stimulating discussions and his
hospitality at the University of Connecticut.
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