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Abstract

" A new time-domain method for the analysis of planar guided wave
propagation and scattering is developed in which an analytical process is incoporated
along one of the spatial dimensions. The method makes use of the Method of Lines
which has been applied to microwave problems in the time-harmonic cases.

The procedure and the formulation of the proposed method to calculate the
time history of a pulse scattered in a partially filled waveguide and a finned waveguide
are described in detail. The cutoff characteristics of the structures can be derived via
the Fourier transform of the time-domain pulse scattering data. The results are
compared with other available data.

The method is extended to characterize three-dimensional structures. The
procedure and the formulation of the three-dimensional analysis are explained. The
propagation and scattering data of a pulse in a planar transmission line with its
discontinuities can be obtained by using the three-dimensional analysis. From the
time-domain data, the frequency-domain characteristics for a wide range of
frequencies can be extracted by the Fourier transform. The important design
parameters such as the characteristic impedance and the propagation constant of a
uniform microstrip line and the scattering parameters of iis discontinuities (step-in-
width, open—‘end and gap discontinuities) are presented and con.; " with available

published data.
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Chapter 1

Introduction

1.1. Background and Goals of This Dissertation

A discontinuiity in a planar transmission line circuit is caused by an abrupt
change in the geometry of the strip conductor, as shown in Fig. 1.1. Therefore,
electric and magnetic field distributions are modified near this discontinuity. At low
frequencies, the discontinuity dimensions are much smaller than the wavelength. In
this case, the altered electric and magnetic field distribution can be approximated by
lumped element equivalent circuits. However, as the operating frequency increases,
accurate frequency-dependent scattering matrix representations associated with
discontinuities are necessary for a accurate design of a microwave and millimeter-
wave circuit. Especially, the present cut-and-try cycles in the Microwave Integrated
Circuit MMIC) / Monolithic Millimeter-Wave Integrated Circuit (MMIC) will be greatly
reduced if the accurate frequency-dependent characteristics of discontinuity can be
obtained.

In the early stages of the study of discontinuities, analyses were mostly done
by quasi-static methods [1~10]. In all these methods, the followiig assumptions are
implied: (i) the size of the discontinuity is small compared with the wavelength so that
the phase variation across the discontinuity can be neglected, (ii) the current on the

strip has no divergence and (iii) the strip conductor is infinitely thin.
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Fig. 1.1(a) The layout of a microwave amplifier using a gallium arsennide MESFET

device, showing discontinuities in the microstrip lines.
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Fig. 1.1(b) Various microstrip discontinuities appearing in microwave integrated
circuits. (i) open-end, (ii) gap, (iii) step-in-width, (iv) T-junction,

(v) cross-junction and (vi) bend




Because of these assumptions, quasi-static analysis is valid only up to a few
gigahertz. Therefore, fullwave analysis is required to determine the frequency-
dependence of various parameters needed for a complete characterization of the
discontinuity. The first fullwave analysis was done by using a planar waveguide
model [11,12], where the frequency dependent scattering parameters can be obtained
by matching the field in each waveguide at the discontinuity interface using the planar
waveguide model. The Spectral Domain Method / Transverse Resonance Technique
can also be used to obtain the frequency-dependent scattering parameters for various
discontinuities [13~16). More recently, the moment method has been used by several
investigators to characterize discontinuities, where radiation and surface wave effects
can be included [17,18].

All of the above mentioned approaches have been performed in the frequency
domain; that is, the data for the whole frequency range are calculated one frequency at
a time. This is an expensive anproach when the results over a wide frequency range
are sought. Since a pulse response contains all the information of a system for the
whole frequency range, it is natural to use a pulse to excite a planar circuit i a time-
domain approach. From the time-domain pulse response, the frequency-domain
characteristics of the structure can be extracted via the Fourier transform. Therefore,
the time-domain analysis of microwave planar transmission structures provides an
alternative to time-harmonic approaches, and it is also useful for studying the
behavicr of pulsed signal in such structures as high speed digital circuits. The
knowledge of time-domain propagation and scattering can be used for circuit

diagnosis by means of a fast pulse.




A typical time-domain analysis requires a discretization of the three-

dimensional space into the three-dimersional mesh, as shown in Fig. 1.2. Maxwell's

t = NAt t = (N+1)At
(a)
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Ex
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t = NAt t = (N+1/2)At
(b)

Fig. 1.2. Examples of the discretization scheme in (a) TLM method in two-dimensional

plane, and (b) FDTD in three-dimensional space.

equations can be discretized at these points, as in the case of Finite-Difference Time-
Domain method (FDTD) [19], or the wave phenomena can be modeled by networks,

as in the case of the Transmission Line Matrix (TLM) method [20] and the Bergeron's




method [21] These techniques have been applied by several inycstigators to
microwave planar transmission lines in order to study the time-domain pulse
propagation and scattering phenomena, and the frequency-domain data >have been
derived from the time-domain information. In [22] and [23], Bergeron's method was
used to obtain the qualitative results that graphically illustrate the pulse propagation
and coupling in the microstrip-bend and the crossing. In [24], the TLM method was
used to obtain some characteristics of fin lines. In [25] and [26], the FDTD method
has been used to obtain the behavior of a pulsed signal along a uniform microstrip line
with various discontinuities, from which the frequercy-dependent design information

for the uniform microstrip line and its discontinuities was extracted. Usually, large

amount of computer storage and long computation ame are

(c) (d)

Fig. 1.3. Several planar transmission lines used in MICs. (a) microstrip, (b) slotline,

(c) coplanar waveguide, and (d) coplanar strip.




required for these aforementioned time-domain analyses. An additional problem of
these methods is the difficulty in handling open boundaries. .

In this study, a new time-domain method is proposed, that originates from the
fact that most of the discontinuities in the planar transmission structure are loc °ted on
the substrate surface, and the space above and below this surface is uniform and
homogeneous as shown in Fig. 1.3. One wants to make use of this structural feature
and wishes to solve ine problem by discretizing the structure in only the two-
dimensional surface on the substrate instead of using the conventional three-
dimensional discretization. This is possible if the wave scattering phenor.ena in the
direction normal to the substrate surface can be derived analytically By using an
anaiytical solution in one direction, the dimension of the problem is effectively
reduced by one so that computer storage and computation time may be saved. The
presen: method actually incoporates this process and is essentially an extention of the
frequency-domain analysis called the Method of Lines.

The Method of Lines technique was developed by mathematicians in order to
solve partial di‘ferential equations[27]. The Method of Lines is simple in concept: for
a given system of partial differential equations, all but one of the independent
variables are discretized to obtain a system of o.dinary differential equations so that
the whole space is represented by a number of lines. This semi-analytical procednure
is apparently very useful in the calculation of planar transmission structures. This is
because these structures consist of regions, which are homogeneous in one direction
as shown in Fig. 1.3. Moreover, this method has no problem with so called "relative
convergence" phenomenon som:times encountered in mode-matching and Galerkin's

method.




The application of Method of Lines in microwave field anz!ysis was first
introduced in [28] for the calculaton of the propagation constant and the characteristic
impedance of microstrip lines. The method has also been extended to three
dimensional problems such as the calculation of the resonant frequencies of an
arbitrarily shaped planar resonator [29]. There have also been several publications in
which the Method of Lines was modified for the analysis of a quasi-planar structure
or for better performance [30]. Those papers, however, have always used the
Method of Lines to solve ime-harmonic Maxwell's equations.

This study describes a new time-domain method termed Time-Domain Method
of Lines (TDML). The goals of this dissertation are as follows.

(1) Development of the procedure and formulation of the new method.

(2) Verification of the method by solving several simple two-dimensional problems
and comparing the results with those obtained by other methods.

(3) Application of the new method to three-dimensional structures to obtain useful

design data.

1.2 Dissertation Organization

Following Chapter 1, Chapter 2 presents the basic discrete mathematics
related to the Method of Lines - boundary condition, discretization scheme, difference
operators and diagonalization matrix. In Chapter 3, the analysis of the two-
dimensional structure with a uniform interface boundary condition is formulated and
the behavior of an initial pulse inside the partially filled rectangular waveguide is
investigated using the present method. The cutoff frequency spectrum of the structure

is obtained via the Fourier transform of the time-domain data. In Chanter 4, the




procedure developed in Chapter 3 is modified to deal with problems where the
metalization exists on the suusuate surface. In this situation, a non-uniforr_n interface
boundary condition results. The procedure is used to calculate the cutoff frequency
spectrum of a finned waveguide by the Fourier transform of the time-domain data. In
Chapter 5, the formulation of the Time-Domain Method of Lines for the
characterization of the wave propagation and scattering property in the three-
dimensional problems is described in detail. The results of the time-domain data and
the derived frequency-domain characteristics for the uniform microstrip line and its
discontinuities (step-in-width, open-end and gap discontinuities) are presented.
Chapter 6 summarizes the contributions of this study and proposes some related

problems for future research.




Chapter 2

Preliminary

2.1. Outline of the Proposed Method

As pointed out in Chapter 1, the proposed method originates from the fact that
most of the discontinuites appearing in the planar transmission line structures are
located on the substrate surface, and the space below and above this surface is
uniform and homogeneous. One wants to use this structural feature and wishes to
solve the problem by discretizing the space only in the two-dimensional surface on the
substrate where the discontinuity is located. This is possible if the wave-scattering
information in the direction perpendicular to the substrate surface is available
analytically. The new method actually incorporates this process and entails
discretization of the structure by a number of lines perpendicular to substrate surface
as shown in Fig 2.1. At a specified time, the field distribution at each intersection of
these lines with the substrate surface is calculated by Maxwell's equations discretized
only in the x and z directions parallel to the substrate surface. The field informaton in
the y direction is obtained analytically at each point and time. This information can be
fourd from the inverse spatial transform of the solution of the frequency-domain
Helmholtz equation in the y direction.

One may wonder as to what is happening to the wave scattering phenomena

that are taking place everywhere in the waveguide, not only on the substrate surface.
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Fig. 2.1. The discretization scheme of the method of lines. The three-dimensional

space is discretized by a collection of lines parallel to the y-axis.

This question is natural, because in other time-domain methods the electromagnetic
fields at one mesh point interact with those at all six neighboring mesh points in the x,
y, and z directions. In the proposed method, the fields at any point on one
discretization line do not appear to interact with those on a similar point on another
line. It should be emphasized that this is not the case. As will be seen in the
formulation, a spatial transformation is introduced by which the field as a function of
(discretized) x and z is transformed to another discretized quantity which contains the
field quantities at all x and z values. The analytical information in the y direction is
then applied to this transformed quantity. Since analytical expressions are used for
the field variation in the y direction, this method can easily handle the case where the

top wall is removed and the structure is open in the y direction.
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2.2. Discrete Mathematics Related to the Method of Lines

As explained above, the proposed method is a "semi-analytical method"” for
solving the time-dependent Maxwell's equation in a planar waveguide structure so
that the discrete expressions as well as the analytical expressions need to be used in
the formulaton. Therefore, it is important to become farmilar with some discrete
mathematics related to the method of lines before the formulation of the method is
explained. This mathematics will be used to derive all the formulations described in

iater chapters.

2.2.1. Lateral Boundary Conditions and Discretization Scheme

Let ¢ be a field component of interest. The boundary condition for ¢ is
always given by either the Dirichlet or the Neumann condition because the circuit to
be considered in this study is always enclosed by perfect electric walls. Since all the
space variables (x and z) except one (y) are discretized in the Method of Lines, the
original continuous space is approximated by a number of lines parallel to the y-axis
located only at discretized positions in x-z plane, as shown in Fig. 2.1. The locations
of these discretized points are determined by the boundary condition of the field
component, ¢. For example, if a boundary is known to be a Dirichlet-boundary to ¢,
the position of the first discretization point for ¢ is A§ away from the boundary where
A is the unit discretization length in § direction. On the other hand, if the boundary
is a Neumann-boundary, the first discretization position is A§/2 away from the
boundary. Figure 2.2 shows the difference of the discretization scheme between the
Dirichlet-boundary and Neumann-boundary . One thing to be noticed here is that the

two set of the discretization points are shifted by AE/2. This discretization scheme




reduces the discretization error and makes the second-order difference operator

- symmetric [28].

— AE— : 'é A&
i=0 1 2 3 1 2 3
(a) image lines (b)

Fig. 2.2. Different discretization schemes corresponding to the boundary conditions.

(a) Dirichlet-boundary, (b) Neumann-boundary.

Figure 2.3 shows the outer boundary of two typical structures to be
considered in this dissertation. One is a rectangular waveguide for the two-
dimensional problem and the other is a rectangular waveguide resonator for the three-
dimensional problem. The waveguide walls consist of perfect electric walls so that
the lateral boundary condition for ¢ along any axis is always given by either the
Dirichlet or Neumann boundary condition. Since there always exist two boundaries
along one axis, there are four combinations of the lateral boundary condition in one
direction. Figure 2.4 shows the diagrams of these combinations and the appropriate

discretization positions for each case, in which the axis is assumed to be x.
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' X X
(a) (b)
Fig. 2.3. The outer boundary of the structures considered in this study.
(a) rectangular waveguide, (b) rectangular waveguide resonator.
4 '
—»f Ax
| L X L= _»
1i=0 1 Nx  Nx+1 i=0 1 - Nx  Nx+1
(a) (b)
4 Y §
i ' , >
i=0 ) S Nx Nx+1 1=0 1 . Nx  Nx+l
(©) (d)

Fig. 2.4. Four cases of lateral boundary condition combination.

(a) D-D, (b) N-N, (c) D-N, and (d) N-D.
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So far, only the one-dimensional (along the x-axis) discretization scheme has
been discussed. However, the two-dimensional discretization (in the X-Z plane) is
required to solve the three-dimensional problem. In that case, both the x- and the z-
direction are discretized independently according to the discretization scheme
discribed above. A typical two-dimensional discretization example is shown in Fig.
2.5 where the N-D boundary condition is assumed along both the x-direction and the

z-direction.

Nz O o) o @) o ﬁ)

e e e Ol )
v \ D-boundary

X

Fig. 2.5. A two-dimensional discretization example where N-D boundary condition

is assumed along the x- and the z-axis.

2.2.2. Matrix Operators
In addition to the discretization of the space according to the boundary
condition of the field, the derivatives of the field with respect to the discretized

variable should be modified to a discrete form. In this section, the difference
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operators are introduced as a discrete form of a derivative, and the relation between

them will be derived.

2.2.2.1. First-Order Difference Operator
After the discretization of the space using the discretization scheme discribed

in Section 2.2.1, the original field defined in the continuous whole region can be

approximated by a collection of constituent field lines, ¢;(y), defined only at the

discretized position i. In the cases of Fig. 2.4,
o(x,y) ---> [0;(V)]' = [0y, O, .., ONI 2.1

where the i-th element represents the field of the i-th line.
Accordingly, the derivative with respect to the discretized variable, x, is
replaced by the difference operation of two consecutive lines using the central

difference scheme. That is,
00(x,y) / Ix ---> 00/ ox |y ={¢; - 0;.1] / Ax fori=1to N+l 2.2)

which can be represented in terms of the matrix.

11 r%

110 0

Sk ] I | I

-11
¢N+1 (23)




where [D,] is a matrix that acts as a difference operator with respect to x.

condition
boundary\ Dirichiet Neumann
left boundary dp=0 do =9
right boundary One1 =0 ON = ON+)

Table 2.1. Boundary conditions represented by the field values near the boundary.

The specific forms of the difference operator, which include the lateral
boundary conditions, can be derived by imposing the appropriate conditions (see
Table 2.1) on equation (2.3). The resulting first-order difference operators are
suuunarized in Table 2.2. Although the operators shown in Table 2.2 are derived
from the derivative with respect to x, they can also be used for derivatives with
respect to the other variables. From table 2.2, it is easy to find the relationship

between the operators which will be used in the later formulation.

D) = - (DPN}t (2.4)
[D™N] = - [DPP)! 2.5)

where the superscripts ND,DN,NN,and DD represent the specific lateral boundary
conditions(left-right) associated with the difference operator, and the superscript t
represents the transpose of the matrix.

One thing to be noticed here is that the values of the derivative obtained from

the difference operation are defined only at the mid-point between two consecutive

16




points (i.e. the central difference). That is, the actual position of the i-th line of 9¢ /

dx is at the center of the i- and (i+1)-th positions of ¢ in the equation (2.2).

boundary
conditions [D] [d] elements of [d]
(left - right)
[ -1 U - 07| dii=-2sin[G-05) n/
N-D \\ (2N+1)]
! J4Lo 3 (=1, N)
[ 1 [ 0 7| dii= 2sin[G-0.5)7/
D-N -1 k (2N+1)]
! 3 dl Lo . (i=1,., N)
1 —
B [ 0 0]
di+l,i = 2sinflin /
DD . (2N+2)]
, " i=1,...N)
g ad) L ]
- -11 ~. 0.
. di-1i = 2sinfin/
NN (2N+2)]
i 11 - 0 . i=2,...,N)

Table 2.2. First-order difference matrices in the original and the transformed domain

for the various boundary conditions.

17
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Therefore, the boundary conditions of the field obtained by taking a difference
operation of a original field, (d¢ / 9x), becomes dual condition of the boundary
condition of the original field, ¢. That is, if the boundary condition of tl_le original
field, ¢, is Neumann-Dinichlet along the x direction, the boundary condition of its
derivative with respect to x becomes Dirichlet-Neumann along the x direction.

In the two-dimensional discretization of the three-dimensional problem, as
shown in Fig. 2.5, the field of the whole region is considered as a collection of Nx *

Nz constituent line fields which is represented by an Nx by Nz matrix as follows.

( ¢1.1 . : ‘pl.NzT

0(x,y,2) ---> [9; {y)] =

Oner - - OnxNz

(2.6)

where the ¢; ; represents the field of the (i,j)-th line.

For the first-order derivative of ¢ with respect to the x-direction, one obtains

a¢(x,y,z) > a¢ _ ¢iﬂ,fq)i.j

3% - a; X =1AX =
=Gimaz AN 2.7

or, in matrix notation:
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Axg%--» - ' - |=Da,)
11 ' '

L ¢Nx,1 . . ¢Nx.Nz_ (2.8)

The difference matrix [D] depends on the lateral boundary condition for ¢.

As shown above, it has the same form of operator matrix as used in the case of one-
dimensional discretization. Here, it forms the difference between two successive
rows of matrix N’i,ﬂ-

Analogously, the difference operator for the first-order derivative of ¢ with
respect 1o the z-direction should form the difference between two successive columns
of the matrix [Q)iJ]. Thus, the difference matrix [D,], as taken from the Table 2.2 for
the N-D boundary condition with the size N = N,, will operate on the transpose of the

matrix [‘bi.jl-

3 .
sz —>lfe] (2.9)

or

.
n.)] oF (2.10)

The expression in equation (2.10) is compatible with the difference operators for the

x-direction. For example,

? (2.1D
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2.2.2.2. Second-Order Difference Operator
Using the central difference scheme, the second-order derivative with respect

to x is approximated by

3% o(x,y) s 3’0 0 m 20,40,

2 2 X=X 2
Ix ox” x=x, Ax fori=1toN (2.12)
which can be written in a matrix form,
1-21 0 %
1 -21 0,
23%(x,y)
T - Pule]

0 1 21 ;N

N+l (2.13)

where [Dy] represents the second-order difference operator wth respect to x. The
second-order difference operators shown in Table 2.3 are obtained by imposing the
boundary conditions of the field , Table 2.1, to equation (2.13).

The same results for the second-order difference operators can e easily
obtained by using the dual boundary condition property of the derivative operation

and equ-tions (2.4) and (2.5); that s,




Ax2

—-->1

>l

>
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32/ 3x2

(D2 [D2]fo = - [0 [DE¥]fo) =~ [pEE] o] (2.142)
b2 [DTN} 0=~ [DTN:I[D?N} [0]=- [Dfﬂ o] (2.14b)
o [p2[o]= - [ [p2[o] = - [0} @140
o202 ]o)=- [0} [0 =~ [22]]o] (2.14d)

Although the results shown in Table 2.3 are derived from the derivative with respect

to x, they can be used for the derivatives with respective to the other variables.

2.2.3. Diagonalization Transformation Matrix

Since the second-order difference operators with respect to x, [Dyx], are real

symmetric matrices as shown in Table 2.3, they can be transformed into the diagonal

matrices by means of orthonormal transformation matries [Tx]:

and

[TxPD]t [Dy D] [T, DD] = diag [dx,PP) (2.152)
[T VNt Dy NN] [TNN] = diag [dx VN (2.15b)
[TxPNJt [DyxPN] [TxPN] = diag [dyxPN] (2.15¢)
[TxNPJ! [DyxNP] [TxND] = diag [dyxP] (2.15d)

[TXDD]t [TXDD] = [TXNNJI [TXNN] = [TXDNJI [TXDN] = [TXND]t [TXND] = Ing

(2.16)




boundary .
conditions Dxx Tij
left-right
-1 -1
12 V 2/ (N+0.5) cos[(i-0.5) (-0.5) % /
N-D \ (N+0.5)]
-1 h (I,J = 1, ..... y N)
-2 -1
-1 2 -1 S
\j 2 / (N+0.5) sin[(i) (j-0.5) &/
D-N (N+0.5)]
-1 2 - ,j=1, ..., N)
2 -1
-1 2 -1
'\j 2/ (N+1) sin[(i) ) / (N+1)]
bD \ G,j=1, ..., N)
1 2 -
1 -1
-1 2 -1
N 2/ N cos[(i-0.5) G-1)® / N] ;1>1
N-N \\\ V2/N;j=1
1 2.
G)=1..,N)

Table 2.3. Second-order difference matrices and elements of the ransformation

matrices.

where Iy represents the Nx by Nx unit matrix, and "diag" means a diagonal matrix.
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As indicated in equations (2.15a~d), the transformation matrices are different
depending on the boundary condition of the second-order difference operator. The
formula for the calculation of the elements of the transformation ma-\trices are
summarized in Table 2.3 (see Apendix 1 for the derivation).

Similarly, the first-order difference operators can be (quasi-)diagonalized by

using the same transformation matrices (see Appendix 2 for the derivation)

[TI:N][[D?DHT?D] _diag([)d?)] (2.17a)
[TXDD][[D:INMTxW]; 0 diag[dﬁN” (2.17b)
(207 (o212 = dieg a2 @170
[TxDN]x D} T37] = diaeg [dzm] (2.17d)

Comparison of equations (2.17a~d) with equations (2.15a~d) shows that the
diagonalization of the first-order difference matrix requires the pre-multiplication of
the transpose of the transformation matrix for the dual boundary condition. The
forms of the diagonalized matrices and the formula for the calculation of the diagonal
elements are shown in Table 2.2.

The diagonal elements of the diagonalized second-order difference matrices

can be calculated using equations(2.14a~d) and (2.16). That s,

diag [dxxPP] = [TxPPJ! [DxxPP] (TxPP]
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=- [TXDD]t [Dy VD]t [T NN][T,NNjt (D, DD] [TxPD]

= - [dPD]t [d,PP] (2.18a)

diag [dxxNN] = [TXNN]t [DxxNN] [TxNN]
=- [T)(NN]t [DXNN]t [TxDD][TxDD]t [DxNN] [TXNN]

= - [d,NN]t [d,NN] (2.18b)

diag [dxxPN] = [TxPN]t [Dy PN [T(DN)
- [TXDN]I [DXDN]t [TXND][TXND]‘ [DXDN] [TXDN]

= - [dxPNjt {d,DN] (2.18¢)

diag [dxxND] = [TxND]t [DxxND] [TxND]
=- [TxND][ [DxND]t [T)(DN][T)(DN]t [DxND] [TxND]
= - [dND]t [d,ND) (2.184)

2.3. Summary

In this chapter, the outline of the proposed method was described briefly and
the discrete mathetics related to the method of lines was explained. The proposed
method makes use of the structural feature of a planar circuit: that is, the spaces above
and below the substrate surface are uniform and homogeneous. As a result, the space
is discretized only in the two-dimensional substrate surface and an analytical solution
is used for the normal direction.

The descretization scheme used in the method of lines depends on the
boundary condition of the field of interest. This shifted descretization scheme reduces

the discretization error and makes the formulation symmetric. Also, the discrete
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forms of the first-order derivative and the second-order derivative were derived, in
which the side wall boundary conditions were incorporated. Finally, the
diagonalization of the first-order difference matrix and the second-order ditference

matrix were explained by orthogonal transformation matrices.




Chapter 3
Time-Domain Method of Lines Applied to a Partially Filled
Waveguide

3.1. Introduction

Since this is the first time the Time-Domain Method of Lines has been used in

the solution of the time-dependent Maxwell's equations, a simple problem will be r
used as a test case to check the validity of the method. The simplest possilble
structure to analyze is the homogeneously filled rectangular waveguide excited by an
electric field, Ez, infinite in length and uniform in the z (axial) direction so that a
simple two-dimensional problem results. However, the formulation to be described
in this chapter is for the partially filled rectangular waveguide structure shown in Fig.

3.1. This is appropriate because the solution to the homogeneously filled rectangular

T ‘ > X
£ a

Fig. 3.1 Structure of a partially filled rectangular waveguide.
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waveguide can be obtained as a special case of the partially filled waveguide by using

the same dielectric constant for region I and region II.

3.2, Formulation

As shown in Fig. 3.1, the problem is to find a behavior of an input pulse in a
partially filled rectangular waveguide excited by an electric field, E,, infinite in length
and uniform in the z (axial) direction. The structure can be reduced to a two-
dimensional one because of the input condition. The formulation for such a problem
is simple, yet it contains all the essential features of the proposed method. This
problem corresponds to finding the cutoff frequencies of various TM to z modes in
the frequency domain [31]. Such information can be extracted from the time-domain
data obtained by the method described below.

The starting point of formulation is the time-dependent Maxwell's equations

expressed in scalar notation; that is,

0Ez/dy - 0Ey/0z =- uoHx /ot (3.1a)
0Ex/0z-0dEz/0dx =- L dHy /ot (3.1b)
0Ey/dx - 0Ex / dy = - 1 dHz / ot (3.1¢)
0Hz/dy - dHy /dz= ¢&(y) dEx /ot (3.1d)
dHx/9dz- dHz/dx = €(y)dEy /ot (3.1e)
dHy / Jx - dHy /dy = €(y) dEz/dt (3.1f)

Because of the excitation, only Ez, Hx and Hy exist and @ / 9z = 0. Then,

equations (3.1a~f) are reduced to
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-H aHx / ot= aEz / ay (323)
- L 3Hy /9t = - 9Bz /9% (3.2b)
e(y) 9E; / 3t = dHy / 3x - 9Hy / dy " (3.2¢)

The time-dependent wave equation for the E7 field derived from Maxweli's equations

(3.2a~c) is
02 E;/9x2 +32E;/ 2y - pe(y) 92 Ez /3%t =0 (3.3)

Notice that the side wall boundary condition for E, and Hy is Dirichlet-

Dirichlet and that of Hy is Neumann-Neumann. Figure 3.2 shows the cross-sectional

Y
4

.i= 1 2 ¢ e s o0 l I EEEEREEREER] N+l

k4

lines for Ez and Hx

LTI LI T LTI T T Y T TT LT TR
k]

h - lines for Hy

—» X
1=l 2 L A l s e 0o 00 N a

Fig. 3.2. Discretization lines for Ez, Hx, and Hy incorporating the boundary

conditions.
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view of the structure shown in Fig. 3.1 with the appropriate discretized field lines

determined by the rule described in Section 2.2.1. Now the time-domain Maxwell's

equations and the wave equation are discretized in the x-direction only.

-1 9[Hx] / 9t = 3[Ez] / dy (3.4a)
-1 3[Hy] / 3t = - [DxPP] [F,} / Ax (3.4b)
£(y) A[Ez] / &t = [DxN] [Hy] / Ax - 9[Hx] / By (3.4¢)
[DxxPPI(EZ] / (Ax)2 + 02(EZ] / 9y? - pe(y) 32[EZ) /3t 2= 0 (3.5)

where [DxDPD], [DxNN] are the first-order difference operators and [DxxPP] is the
second-order difference operator, in which the side wall boundary condition is
incorporated as explained in Section 2.2.2. The variables [E;], [Hx] and [Hy] are
column vectors with elements which are actually functions of y and t. The i-th
element of the column vector represents the field along i-th line in Fig. 3.2.

If the solution for [Ez] is found using equation (3.5), the other field
components are obtained from the equations (3.4a~c). However, it is very difficult to
solve the wave equation (3.5) directly because the equation represents a set of coupled
partial differential equations due to [DxxPP]. Since [DxxPP] is a real symmetric
matrix, there exists a real orthonormal matrix [TxPD] that transforms {DxxPP] into a
diagonal matrix {dxxPP] as explained in Section 2.2.3.

Using equations (2.15a) and (2.17a and b), the coupled partial differential
equations, (3.4a~c) and (3.5), can now be transformed into a diagonalized form as

follows.
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H,| JE,
BT (3.62)
H 1 DDl 1=
- - d, ||E .
) —|a7](E) ) e
Ez 1 NNif—5~ Hx
- €(y) =—Id, |[{H,|-
y t Ax [ ][ Y] ay (3.6¢)
2= 2[=
—I—[di’?][E'Z]Jra B pey) 2 1E] =[0]
2 2 2
Ax dy ot a7

where ~ represents the transformed field corresponding to the real field without ~
The trans{>rmation of the real field is accompanied by the diagonalization of the first-

order and the second-order difference matrices.

[E]= [T?D]t E,] (3.8a)
()= 11, (3.8b)
ﬁ; E[T } Hy]= [ ?D][Hy] (3.8¢)

Notice that equation (3.7) represents a set of uncoupled partial differential equations.
That is, it can be solved independently along the i-th line. A typical equation

describing the transformed field along the i-th line is

2 d,??, 2
OB+ M pey) LEy = 0
at
oy Ax (3.9)

with the boundary conditions,
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E,(y=0)= E, (y=b)=0 (3.102)
E,{y=h) = E, {y=h" (3.10b)

Using the separation of variables technique, one can obtain the solution for the i-th

line

E,i(y.t)=

[ Zn (Ani cos nit + Bpj sin wnit) sin K1pi(b-y),

L Sn (Ani cos wnjt + Bpi sin @njt) (sin K1pid / sin K24ih) sin K2y
forregionII (3.11)

for region I

where Klpi, K2pi and wpj are determined by the characteristic transcendental

equations derived from the interface boundary condition (3.10b).

K1pj cos K1pid sin K2pih + K2pi sin K1pid cos K2pih =0 (3.12a)
@niZ = [(K1ni)? - dxxiPP / (Ax)2] / pe1
= [(K2pi) 2 - dxxiPP / (Ax)2] / pe2 (3.12b)

Notice that for a given n in equation (3.11), the underlined part constitutes the n-th

mode on the i-th line, Ezni (¥) |

E:n (y)=

[ sin Klpi(b-y), in region I

L (sin K1pjd / sin K2pih) sin K2piy , inregionll  (3.13)
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From this point on, there are basically two approaches. First, by knowing the
initial conditions for Ez, one can find Apj using the orthogonal property of the modes

[32].

f E,(t=0) L £(y) E,nfy) dy

A=

ni

2
f E,.{y) HEY) dy
o (3.14)

One way to determine Bpj is to use the causality condition for Hx and Hy,
which states

— At —~— At
H, ;(y,t=- 7—) =H;(y.t=-3)= 0

2 (3.15)

where At is the unit time interval in the sampling process. The expressions for Hyj

and Hyj can be found by integrating equations (3.6a and b) with respect to t.

1
H  ,=-— 21 dt
Ho y
1 f cos @t sin _t
_Il_zn\LKm T Pni AEATY cos Ky
0 w._. w_. /
‘ " " (3.16a)
aX [~
Hy () =-—3 E,,dt




d?? cos @t sinw_ ]
= Zn Kni —Bni +Ani sin Kniy
LLOAX mni Wp;

_(3.16b)

Imposing the causality condition. equation (3.15), to equations (3.16a and b), one

can obtain
Bni = -Anpj tan (tnj At/ 2) 3.17)

After A, and Bpj are determined, the solution at any point and time can be

found by using equation (3.11). Then, the real field can be obtained by the inverse

transform.

[E.(y:0]= [T?D] [E. (y.0)] (3.18)

Second, an alternative method is the application of a time-stepping procedure,

where equations (3.6a~c) are discretized in time:

— 1. — 1, At 9 — .

Hy (y:N+3)=Hy {y,N-5)-——E,; {y.N)
ko dy (3.19a)

DD

— 1 — 1. Atdy —~ .

Hy (y/N+3)=H, (y.N-3) +—X”—Ez,l(y.N)
Ho oX (3.19b)
DD

— —~— At dy; —~— 1 At ¢ —~— I

E, {yN+D)=E, (y,N) - — = Hy (y.N+3)-——H, (y.N+5)

e(y) Ax g(y) oy

(3.19¢)
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From the initial condition of Ez, one can find Apj at time t = 0 using equation
(3.14). We denote this quantity as ApjN with N = 0. The solution (3.11) at the sime

step N can now be expressed in the form

N

Ezi (y)=

[ Zn AniN sin Klpi(b-y), in region I

L =5 Ap;N (sin K1pja / sin K2pih) sin K24y, inregionI  (3.20a)

Similarly, for Hyj and Hy at the ime step (N + 1/2),

N+1/2
H,;, (y)=

[ Zn BniM*1/2 cos Klni(b-y), in region 1

L 3n BniN*172 (cos Klpid / cos K2,ih) cos K2niy, inregionI  (3.20b)

N+1R
Hyi ()’) =
[ Tn CniN*1/2 sin K1pi(b-y), in region I
L 31 CiN*172 (sin K1pid / sin K2pih) sin K2piy, integionIl  (3.20c)

Substituting the equations for the fields, (3.20a~c), intn equations (3.19a~c),
a leap-frog type iteration scheme [1€ can be implzmented to calculate the coefficients
of modal fields on the i-th line at any time step N.

N+1/2 N-12 At N
ni =Bni +_—KniAni

Ho (3.21a)

B




N+12_ N2 1 At b, N

Cni "Cni +— dx.iAni
Ko Ax (3.21b)
N+1 N 1 At NN _N+12 At N+1/2
Ani+ =Ani'—‘—'dx,icni+ '—_Kn.iBni+
e(y) Ax e(y) (3.21¢)

where Kpj becomes either Klpj or K2,; depending on the region. After the

coefficients at the N-th time step are determined, the transformed field can be obtained
by the equations (3.20a~3). The real field at the N-th time step can be obtained by
invoking the inverse transformation as described above to [EZ]N

After the history of pulse scattering is obtained in the time-domain, the cutoff
frequency spectrum of the structure can be extracted via the Fourier transform of the
time-domain data. If the time-domain data consists of N data points with unit
sampling time At, the resolution of the frequency dcmain information is Af = 1 / NAt
, and the maximum frequency range that can be obtained is NAf/2.

For comparison, the cutoff spectrum of the same structure can also be

calculated analytically by using the transverse resonance technique. For TM to z

mode (LSE mode), the eigenvalue equation is given by [32]

p tan (gh) = -q tan (pd) (3.22a)
p? =€, Wlpge - (nn/a)? (3.22b)
q2 =€, w2u080 - (mt/a)z, forn=1, ... (3.220)

3.3. Results and Discussion

3.3.1. Homogeneously Filled Rectangular Waveguide
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The structure considered has dimensions: a=2 [cm], b= 1 [cm], €] = 3, and
€2 = 3, Figure 3.3 depicts the E; field distributions in the waveguide cross-section
(x-y plane) at each time step after a pulsed E, excitation is imposed at t =0 at the
center of the cross section. Figure 3.4 shows the spectrum of the time signal of E,
where the waveguide cutoff frequencies are represented by the peaks. The cutoff
frequencies obtained by present method differ by less than one percent from the

analytical values.

3.3.2. Partially Filled Rectangular Waveguide

The structure is; a=2 [cm],b=1[cm],h=0.3 [cm], €] = 1, and €2 = 3.
Figure 3.5 depicts the E; field distributions in the waveguide cross section (x-y plane)
after a pulsed E, excitation is imposed at t = 0 at the center of the cross section.

Figure 3.6 shows the spectrum of the time signal of E, where the waveguide cutoff

frequencies are represented by the peaks. The cutoff frequencies obtained differ by
less than one percent from the analytical values.

It should be noted that the two approaches ( the modal expansion and the time-
stepping ) described above should be equivalent in principle. However, each has
advantages and disadvantages. For instance, if one deals with a time-dependent
excitaton, the time-stepping method would be simpler to implement. Otherwise, the
modal expansion method is more efficient as long as only the results at a particular
time are of interest. However, if any frequency-domain information is needed, the
time history needs to be found. The first method needs to be used at many time
instances. The time-stepping method automatically generates the time history.

Hence, the amount of computation would be about the same. In many cases, there
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Fig. 3.3 The Ez-pulse scattering in a homogeneously filled rectangular waveguide

(a=2, b=1 cm, € =3). (a) t=0, (b) t=20, (c) t=30 and (d) t=80 p-sec.
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Fig. 3.4 The cutoff frequency spectrum of the homogeneously filled waveguide
when the initial input is placed at the center of the waveguide.

(a) TM11, (b) TM31 and (c) TM51 modes
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Fig. 3.5 The Ez-pulse scattering in a partially filled rectangular waveguide
(a=2, b=1, h=3 [cm], €l=1, and €2=3).
(@) t=0, (b) =20, (c) t=40 and (d) t=60 p-sec
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Fig. 3.6 The cutoff frequency spectrum of the partially filled wavsguide when
the initial input is placed at the center of the waveguide.

(a) TM11, (b) TM31, (c) TM12 and (d) TM32 modes




are ambiguities in finding the initial condition for the time derivative. In such
instances, it may be simpler to use time stepping to generate the time history

required. Finally, it is also possible to switch from one method to the other.

3.4. Conclusions

A new time-domain technique is presented in which an analytical process is
incoporated along one of the spatial dimensions so that the dimensions of the problem
are effectively reduced by one. The present approach can be used to calculate the
cutoff frequency of other planar transmission structures and can be extended to
propagation problems. It has a number of potential advantages over many other time
domain methods. First, the method is believed to be efficient since much analytical
processing is used. Second, the problem can handle open boundaries in the vertical

(y) direction because of the analytical solutions used in y.
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Chapter 4 )
Time-Domain Method of Lines Applied to Finned
Waveguide

4.1. Introduction

A new time-domain method was studied for a partially filled rectangular
waveguide in the Chapter 3 in which the interface boundary condition is not changed
along one of the spatial dimensions (transformed direction). Therefore, the problem
could be reduced into a one-dimensional boundary value problem which requires only
one-dimensional discretization.

In the previous chapter, the feasibility of a new time-domain method was
shown by calculating the cutoff frequencies of the partially filled waveguide problem
accurately. In this chapter, the method will be extended to a structure which contains
a metallic strip at the interface boundary. This extension also makes use of the
Method of Lines and an analytical process can be incorporated along one of the spatial
dimensions. However, because of the non-uniform boundary condition in the
transformed direction, each line is not independent but related to each other in order to
match the required interface boundary conditions. Consequently, instead of
considering one-dimensional eigenmodes for each line as in the case of the uniform
interface boundary condition problem, two-dimensional eigenmodes should be

considered in this structure {33].
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4.2. Formulation

As shown in Fig. 4.1, the problem is to find the time-domain behavior of an
input pulse in a uniform rectangular waveguide excited by an electric ﬁcld- infinite in
length and uniform in the z-direction. The structure can be reduced to a two-
dimensional one because of the input condition. This problem corresponds to finding
the time-domain behavior of the pulsed input and the cutoff spectrum of the given
structure. The formulation is very similar to the partially filled waveguide problem

except for the treatment of the interface boundary condition.

Fig. 4.1 Structure of a finned rectangular waveguide.

Because of the excitation, only Ez, Hx and Hy exist and 9/ dz = 0. Also,
notice that the side wall boundary condition of the fields Ez, Hyx is Dirichlet-Dirichlet
and that of Hy is Neumann-Neumann. Since the structure is uniform in the space
above and below the y = h axis, the time-domain equations are discretized in the x-

direction only. Figure 4.2 shows the cross-sectional view of the finned rectangular




waveguide with the approprniate discretized field lines incoporating the boundary

conditions. Now, Maxwell's equations in (3.1a~f) are reduced and discretized to

Y
$

il= 1 2 e, Nx Nx+1
b * f
d
h |
> X

Fig. 4.2. The cross-sectional structure of a finned rectangular waveguide.

-u 0[Hx] /ot =d[Ez} / dy (4.1a)
-1 (Hy] / 9t = [DxPP] [EZ]/ Ax (4.1b)
€(y) 9[Ez] / ot = [DxNN] [Hy] / Ax - 9[Hx] / 9y 4.1c)

The govemning equation for E; is
[DxxPPI(Ez] / (Ax)2 + 32[Ez] / dy2 - pe(y) 92(Ez] / 32 = 0 (4.2)

with appropriate boundary conditions ;

[Ez(t,y=h+)] = [Ez(t,y=h-)], forall t and 1 (4.3a)




(Hx(t,y=h-)] - [Hx(t,y=h+)] = [Jz(t,y=h)], for all t and i
[Ez(t,y=h)] =0, foralltandion M
[Ez(t,y=0)] = [Ez(t,y=b)] =0, for all t and i

(4.3b)
(4.3¢)
(4.3d)

where [DxPD], [DxNN], [DxxPP] are difference operators in which the side wall

boundary condition is incorporated (see Tables 2.2 and 2.3). The variables [E;],

[Hx] and [Hy] are column vectors representing the fields along each line and are

functions of y and t. Notice that equation (4.2) is a system of a coupled partial

differential equations.

Since [DxxPP] is a real symmetric matrix, there exists a real orthogonal matrix

[TxDPD] that transforms [DxxPP] into a diagonal matrix [dxxPP]. We can now

transform the real field [E;] into a transformed field (E;] = [TxPP]t {E,] where the

superscript t stands for transpose. The transform of equation (4.2) is

1 [.oo[a1 9% [ 3%~
— {dxx Ez 1Lzl " __Ez=0
L7 E 5 (B vee S5 [E)- 0

with the transformed boundary conditions of (4.3a~d)

- R _
E(t, y=h )] = lEz(" y=h )], for all t and i

r

H,(t, y=h +)] - [?ﬁ(t, y=h.)] =- (T4t y=0)] for all vand

ELt, y=h)] =unknown ‘¢ 411t and i on M

Bt y=0)) = [Et. y=9)] =[0] gor a1 anas

4.4)

(4.5a)

(4.5b)

(4.5¢)

(4.5d)
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Notice that equation (4.4) is a set of uncoupled partial differential equations

related by non-uniform boundary conditions (4.3a~c). For the i-th line, equations

(4.4) ~ (4.5c) become

DD 2 2
dygi~— 0 —~ 0" —~

Z=E, i+ —Epi- He() — E, ;=0
A 2 ady at

X (4.6)
E, .t y=h") = E, (1, y=h) (4.7a)
Hy it y=h") - Hy (. y=h) =-J, (t, y=h) (4.7b)
é_:l(t, y=h) = unknown 4.7¢c)
E, {t,y=0) =E, {1,y=b)=0 (4.7d)

By means of the separation of variables technique, the intermediate solution on the i-
th line for the n-th mode which satisfies the transformed boundary condition, (4.5a

and d), is

Eonfty) =

(Api cos Wnjt + Bpj sin wpit) sin K1pi(b-y), inregionI

(Api cos Wpit + Bpj sin @pit) (sin Klgid / sin K2pih) sin K2piy, inregion II
(4.8a)

where K1pi, K2pi, and wnj are related by

K1pi2 = wpi2 pe] + dxxiPP / (Ax)2
K2ni2 = oni2 pe2 + dxxiPP / (Ax)? (4.8b)
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The modal current [Jzp] obtained from the discontinuity of the corresponding modal

magnetic field (Hxn] at y = h by using (4.1a) is

— f,.{v) sinK1
Jx.m(t’y=h) =" i) ot

K2,,c0s K2 h+ Kl cos Kl d

u SnK2.h
=Y. {ty=h) E, .{ty=h) (4.92)
where fni(t) = (Ani sin @npijt / ®nj - Bni cos wnit / ®ni) (4.9b)

—~ A,;sinw_t— B_;cosw_it
go=. L 1 Dni?T0nl 7 TaitPnl (K1, cotK1, d + K2, cotK2, )
H o, Ajcosw t— B ;sino ¢t

(4.9¢)
Now, the final boundary condition, (4.3b), is applied in the real field domain.

Po= [T (7) [T?D][[Ez.n] (4.10)

where [Yn(t,y=h)] is the diagonal admitance matrix with diagonal elements given by
equation (4.9¢c). Because Jzpj = 0 if i is on the non-metallic portion (D) and Eznj =0
if i is on the metallic portion (M), the characteristic matrix equation can be

derived.from equation (4.10).

Surdiono= T e oo

where “D" represents the non-metalization portion of the substrate surface as shown

in Fig. 4.2 and the subscript "red" represents the reduced matrix obtained from the




full matrix in { } by removing the rows and columns corresponding to the
metalization portion.

In order for the n-th eigenmode, [Ezp], to satisfy (4.11) at all tir—ncs with a
non-trivial solution, the time-dependent solution for each line should have the same

functional form except for a constant factor, and the determinant of the reduced matrix

should be zero. The final solution of the [Ezp] is

En(ty) =

[ (An cos wnpt + By sin wnt) Cpj sin K1pj(b-y), inregionI

L (Ap cos wnt + By sin wnt) Cpj (sin K1pjd / sin K2pjh) sin K2piy, inrtegion II

(4.12)
where o, is n-th eigenvalue of the characteristic equation given by
DD [ -1 [ .00 ’}
o [T 127} mo

and the coefficients, Cpi, can be derived from the eigenvector, [Ezn], of (4.11)
corresponding to the n-th eigenvalue. The procedure described above is very similar
to the frequency-domain method of lines [28§].

Finally, any real field can be expanded in terms of the eigenmodes in the

transformed domain

E ity =
[ 2n (An cos wnt + Bp sin wnt) Cni_sin K1pi(b-y), inregion I
L $n (An cos wnt + By sin wnt) Cni (sin K1nid /sin K2nih) sin K2niy
in region II (4.14)
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Notice that for a given n in equation (4.14), the underlined part constitutes the n-th

mode of the i-th line

é;i (y)=

r sin K14i®-Y) | in region 1 (4.15a)
sin Klnid .

| smk2, b o0 K2aiy

, inregion I (4.15b)

In equation (4.14), Ap can be found from the initial condition of

— t
[Ez(t=0,y)] = [T?D] [E£t=0.9)] ang orthogonality property

b

f [Ea=0.y) ]‘[l?;n(y)] dy

f [Eniv) ] [Euy)] dy

Also, the causality condition assumed by time iteration method [34] can be used to

find Bn

A =

n

(4.16)

Bp=Aptan(wp At/2),  where At<Ax/V2Chpax (4.17)

where Cppyax 15 the maximum wave phase velocity within the structure. The real field
at any time can be obtained by invoking the inverse transformation to the transformed

field, [Exty=yo)]

b

E)=|T7|[E] (4.18)
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4.3. Results and Discussion

The structure of the finned waveguide consideredisa =1 [cm], b = 2[cm], h
=0.5[cm], M =0.25 [cm], €1 = 3, and €2 = 3. To check the validity of the method,
the eigenfrequency of the finned rectangular waveguide for the cominant TE mode

was found and compared with Hoefer's result [24] in Fig. 4.3. Good agreement was

0.26

0.24 +

a/)\c 0.22'1

0.20-1
4

0.18

M T v T - T —————
0.0 0.2 0.4 0.6 0.8 1.0 1.2
M/a

Fig. 4.3. Cutoff frequency of the fined waveguide shown in Fig 4.2
with b/a=2, h=1.

( light squares ; present method, dark squares ; Hoefer [24] )

obtained. For further confirmation, the E; field distributions in the homogeneously
filled rectangular waveguide are calculated by the present two-dimensional method,
and the result is compared with that obtained by the one-dimensional method
described in the Chapter 3. Figure 4.4 shows the 1esult. Even though the ripple
seems to be higher than that of the one-dimensionai analysis, the result shows that the

wave scattering characteristics can be analyzed by the two-dimensional time-domain




method. The pulse propagation and scattering in the finned rectangular waveguide is
dipicted in Fig. 4.5.

2

\\
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¥ e \\ b eng
_"4'.\-:?“@ WL o‘-;‘,.“,,u.-auh s
D e

2%,

m (u)
Fig. 4.4 Pictures of a pulse scattering in a partially filled rectangular waveguide

with a=2, b=1, h=3, €1=1, €2=3. ([T} ; one-dimensional method,
O] ; two-dimensional method)

(a) 1=0, (b) 1=20, (c) =40, and (d) t=60 [p-sec]

4.4. Conclusions

In this chapter, it was shown that the two-dimensional Time-Domain Method
of Lines can be used to analyze planar transmission structures which have a non-
uniform boundary condition at the interface boundary along the transformed direction.
This is accomplished by the two-dimeasional eigenmode expansion concept instead of

the one-dimensional method used in the case of the uniform boundary problem.




Fig. 4.5. Pictures of a Ez pulse scattering in a finned rectangular waveguide
with a=1, b=2, h=0.5, M=0.25,and €1= E€2=3.
(a) t=0, (b) t=30, (c) T=40, and (d) t=60 [p-sec]
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Chapter 5 _
Characterization of Uniform Microstrip Line and its

Discontinuities using Time-Domain Method of Lines

5.1. Introduction

In the previous chapters, the TDML has been applied to the two-dimensional
problems to obtain the scattering data of the input pulse in the time domain. The
cutoff frequency spectrums of planar transmission lines were extracted from the time-
domain data via the Fourier transform. Although the cutoff frequency is an important
parameter characterizing a waveguide structure, the propagation characteristics are
even more important to the microwave circuit designer. In this chapter, it will be
shown that the TDML can be extended to the three-dimensional propagation
problems. The time-domain behavior of the input pulse in a planar transmission line
circuit can be obtained by TDML. From the time-domain data, the frequency domain
characteristics for a wide range of frequencies can be found via the Fourier transform.
The procedure and the formulation for the characterization of the three-dimensional
structure is presented [35]. The characteristics of a uniform microstrip line and its
discontinuities (step-in-width, open-end and gap discontinuities) are presented and

compared with available published data.
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input field
Er

Fig. 5.1 A general planar transmission line with discontinuity in

a shielded rectangular waveguide

5.2. Formulation
Let us consider a general planar transmission line with a discontinuity, as
shown in Fig. 5.1. In order to apply the TDML, electric or magnetic walls need to be
placed at both ends of the waveguide so that a resonant structure will result. Figure
" 5.2 shows the top view of the structure with discretization points for the y component
of the electric field, Ey. It is assumed that the structure has spatial symmetry in x-

direction so that the problem domain can be reduced by a factor of two.

5.2.1. Discretization
As shown in Fig. 5.2, the structure is discretized by field lines which are

properly placed to satisfy the boundary conditions on the side walls and the end
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side wall A and the Dirichlet condition on the side wall B, the Ey points are located

away from the side wall A by one half of Ax and away from side wall B by one Ax.

Also, it is important to choose the Ey nodes as the outermost nodes on the strip in

order to reduce the error in the calculation of the field distribution. After discretization

of the space, the original field in the continuous space is approximated by many field

lines parallel to the y-axis at the discretization points

(5.1)

= [Ey’l, Ey,27 ooy Ey,NXNZ][

Ey(x,y,z.t) ---> [Ey k(y,D]!

5.2)

1<i<Nx, 1<j<Ng.

where k =1 + (j-1) Nx,




5.2.2. Expansion of the Input Pulse
In the structure shown in Fig. 5.1 with end walls, a field distribution at any

time t, [Ey(y,t)], can be expanded by modal field distributions, [Eyn(y)] as follows;
[Ey(y.)] = Zn (An cos ont + Bn sin @nt) (Eyn(y)] (5.3)

where [ ] denotes a column vector whose i-th component represents the field value at
the i-th discretization line as shown in equation (5.1). Also the subscript n denotes
the mode number. One thing to be mentioned here is that if the structure and the
initial input support any static charge distribution, the DC-mode (wp = 0) should be
included in equation (5.3) to obtain the correct time- and frequency-domain data.

In the expansion of (5.3), the coefficients Ap can be determined by the input

field distribution, [Ey(y, t=0)] and the orthogonal property of the modal fields

b

f [Ey(y"zo)HEy.n(y)] dy

0

A=

b

f [Ey «D][Ey.Ay)]dy

0 (5.4)

Also, the B can be found by the causality condition used in the time iteration

method[19, 34]

Bn = Ap tan (o At/ 2) (5.5)
where At < min(Ax,Az) / Cmax V 3 (5.6)

and Cmax is the maximum wave phase velocity within the structure.
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In order to find the engenfrequencies and eigenmodes of the structure, a
technique used in frequency-domain Method of Lines [29] is borrowed. In this
technique, the characteristic equation is obtained by applying the mietallic boundary
condition to the metalization on the dielectric interface boundary. The equation is

given by (see Apendix 3 for details)

[E]] _[(G] -
HEX]_M -[GX]]M[p red 0] for static fields (5.7a)

[EJ] r[Gzz][sz]] [P d ’

=10
L{E Xl red L[G XZ][G "X] P "]]wd , for time-harmonic fields (5.7b)

In order to obtain a non-trivial solution of equations (5.7a and b),

det [G(t)] red =0, for time-harmonic fields (5.8)

where the sﬁbscript "red" represents the reduced matrix corresponding to the
discretization points on the metalization.

After the eigenfrequencies are found, equations (5.7a) and (5.7b) can be used
to obtain the charge distribution, [p]!, and the current density distributions,
{[321.{3x11t. The modal field distributions, [Eyn(y)], can be derived from these
quantities. It is found that the system of equations (5.7a) and (5.7b) need to be

solved by the QR method [40] to ensure stability of the results.

5.2.3. Time-Domain Data and Frequency-Domain Characteristics
Once the procedures described in Sections 5.2.1 and 5.2.2 are carried out, all

the constants in equation (5.3) are determined so that the field value at any point and




time can be calculated. Therefore, the characteristics of a circuit can be obtained by
observing the propagation and scattering of the input pulse in the given circuit. In this
chapter, four structures will be tested, namely, the uniform microstrip line and three

commonly encountered discontinuities (step-in-width, open-end and gap).

Fig. 5.3 Top view of a uniform microstrip line with two observation planes

and inital input puise.

5.2.3.1. Uniform Microstrip line
Figure 5.3 shows a uniform microstrip line with two observation plares. In

this case, the transfer function can be found from
exp[-Y(@)L] = V--ra 7=1 V/ Vy(w,2=0) (5.9)

where Y(w) = a(w)+jB(w) = propagation constant of the uniform microstrip line.
Vy((n,z=0) = Fourier transform of {Vy(t,z=0)] at a fixed x.

Vy(w,z=L) = Fourier transform of [Vy(t,zzL)] at a fixed x.
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Vy(t,z) is a voltage defined as the line integral of Ey from the microstrip to the

ground plane.

0
Vy© = [ Eyty)dy, a fixedxandz
h (5.10)

where the integral was evaluated by using the 4-th order Gaussian quadrature. Stable
results can be obtained by using this choice of voltage definition for the calculation of
the frequency-domain characteristics.

The effective dielectric constant can be derived from the calculated phase

constant, B, by
eeff(w) = B2(w) / w2pgeg (5.11)

The voltage-current definition is used for the characteristic impedance

calculation.
Z(w) = Vy((n,z=0) / 1z(w,z=0) (5.12)

where the current is found by a line integral of the H-field around the microstrip line

at z=0.

fo ‘Hx(y=yb) dx +f, Hy(x=x1) dy +j: H,(y=y,) dx 5.13)

5.2.3.2. Discontinities
Figure 5.4 shows a general two-port discontinuity with a uniform microstrip
line connected to each port, where two reference planes and two observation planes

are indicated. In order to obtain the frequency-dependent scattering parameters of the




< | —> /\

Fig. 5.4 General two-port discontinuity with a uniform microstrip line connected
to each port, where two reference planes and two observation planes are

indicated.

discontinuity, the incident wave, Ey inc, and the reflected wave, Ey ref, should be

calculated at some point on the input observation plane and the transmitted wave,

Ey s, at the corresponding point on the output observation plane. Then,

S11(w) = [Vy,ref(®,21) / Vy,inc(®,z1)] / exp[-2Y1(w)z]] (5.14)
$21(w) = [Vy trs(@,22) VZ01(®) / Vy,inc(@,22) VZ2(w) 1/ expl-Y1(@)z1-
2(w)z2)] (5.15)

where y](w), Y2(w) are the propagation constants of the uniform microstrip lines
connected to each port of the discontinuity. Note that only S exists for a one-port

structure, such as an open-end.

5.3. Results and Discussion
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In this chapter, four sfructures on alumina subtrate (€ = 9.6, h = 0.635 or 0.7
mm) shielded by a rectangular waveguide (a = 2, b = 10, and ¢ = 45 mm) were
studied. These are a uniform microstrip line, a step-in-width, an open-end and a gap.
In the calculation of the field variation in the time domain, the following number of
discretization points were used.

number of discretized points in x-direction = 20 (Ax = 0.095 mm)

number of discretized points in z-direction = 100 (Az = 0.445 mm)

number of modes = 19
As a rule of thumb, the number of discretized points is chosen so that the
discretization length is approximately one-tenth the length of the smallest wavelength

to be considered.

Fig. 5.5 Ey configulation beneath a uniform microstrip line (a=2, b=10, h=0.635,
W=0.635 mm) (a) t=0, (b) t=40, (c) t=80 and (d) t=120 p-sec.
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Figure 5.5 shows the pulse propagation along the uniform microstrip (h =
0.635, W=0.635 mm) in the time domain. In order to check the convergence of the
method with respect to the number of modes, the effective dielectric constant is
calculated using a different number of modes. As shown in Fig. 5.6, convergent

results can be found by using more than seventeen modes for the tested structure.
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Fig. 5.6 Convergence of the method with respect to the number of modes.
A=19, B=17, C=15, D=13, E=11 and F=curve fit formula [36]

Figure 5.7 shows the propagation constant, {3, obtained by using the Fourier
transform of the time-domain data shown in Fig. 5.5. The results agree well with

those from the curve-fit formula {36]. Figure 5.S shows the calculated transmission
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coefficient which is supposed to be one. The deviation from the exact value is less

than 1 %.

beta [rad/cm])

freq [GHz]

Fig. 5.7 Dispersion relation for the uniform microstrip line ( a=2, b=10, h=.635
[mm], €1=1, and £2=9.6) obtained by TDML.

—&— TDML, —*— curve-fit formula [36] (open structure)

Figure 5.9 shows the characteristic impedance (Z() of the structure from both

the TDML calculation and the closed form formula given in reference [36]. The
difference between the two results is about 6 % and it is believed to be caused by the

side wall effect which is known to reduce the characteristic impedance [37].
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Fig. 5.8 The transmission coefficient (T) of the uniform microstrip line obtained
by TDML.
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Fig. 5.9 Characteristic impedance for the uniform microstrip line shown in Fig. 5.5.
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Fig. 5.10 Ey configuration beneath a step discontinuity (a=2, b=10, h=0.635, Wi=

1.27, W2=0.635 mm) (a) t=0, (b) t=40, (c) t=80 and (d) t=120 p-sec.
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Figure 5.10 shows the scattering of the pulse at a microstrip step discontinuity
in the time domain. Using equations (5.14) and (5.15), the frequency-domain
characteristics can be extracted from the time-domain data. Figure 5.11 shows the
frequency-depencent scattering parameters of the given structure with published data
[26].

Figures 5.12 and 3.13 show the scattering of a pulse at a microstrip (h=0.7,
W=0.7 mm) open-end and a gap (s=0.35 mm) in the time domain, respectively. The
frequency-dependent scattering parameters derived from the time-domain data are
shown in Figs. 5.14 and 5.15. Also plotted in these figures for comparison are the
FDTD results reported in [26]. The results agree reasonablely well with [26],
although they do show some undulation due to discretization errors. It is believed
that this error can be reduced by using a non-uniform discretization scheme without a
significant increase in the computation time. Finally, this method can be easily

extended to other types of planar transmission structures shown in Fig. 1.3.

5.4. Conclusion

It has been demonstrated that the time-domain method of lines is a reliable and
- efficient method which is capable of dealing witi: pulse piopagation and scattering in
discontinuity problems in planar trar smission lines. This is an extension of the two-
dimensional results described in the previous chapters. It has been found that the DC-
mode should be included in the modal field calculation to obtain correct results. The
field can be described accurately by the proper placement of the discretized Ey field
points near the edge of the microstrip lire. Also, the frequency-domain characteristics

obtained from the time-domain data have been made more stable by applying the QR
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algorithm in the eigenmode calculation and by using the integrated field quantities in
the extraction of frequency-domain parameters. The method can be appiied to other

planar structures.
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(a)

e

(c) (a)

Fig.5.12 Ey configuration beneath a microstrip open-end discontinuity (a=2,b=10,
h=0.7, W=0.7 mm) (a) t=0, (b) t=80, (c) t=120 and (d) t=160 p-sec.

(c) (d)

Fig. 5.13 Ey configuration beneath a microstrip gap discontinuity (a=2, b=10, h=0.7,
W=0.7, s=0.35 mm) (a) t=0, (b) t=40, (c) t=80 and (d) t=120 p-sec.
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Fig.5.14 The magnitude and phase of S11 for the microstrip open-end
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Chapter 6

Conclusion

6.1. Achievements

A new time-domain method, termed the Time-Domain Method of Lines, was
proposed for the analysis of microwave and the millimeter-wave planar transmission
lines and their associated discontinuities. This method makes use of the Method of
Lines technique in solving the time-dependent Maxwell's equations. The unique
structural feature of planar circuits, i.e., the space above and below the interfacing
surface is uniform and homogeneous, can be incorporated. Therefore, three-
dimensional structures are discretized only on the two-dimensional substrate surface
and an analytical solution is used along the normal direction, Because of this semi-
analytical property of the method, it has a number of potential advantages over many
other time-domain methods. First, memory and computation time can be reduced
since analytical processing is employed. Second, this method can handle an open
boundary in the vertical (y) direction easily because of an analytical solution used in
the y-dire~""»n.

With this new method, the accurate cutoff frequency spectra of a partially
filled rectangular waveguide and a finned rectangular waveguide were found from the
impulse response of the structures. Also, the method was extended to three-
dimensional problems such as pulse propagation and scattering in planar transmission

lines with discontinuities. The characteristic impedance and the propagation constant
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for a microstrip line and the scattering parameters of its discontinuities (step-in-width,
open-end and gap discontinuities) for a wide range of frequencies were obtained from

the time-domain data.

6.2. Future work

In future research, the proposed method needs to be applied to the analysis of
other discontinuities in many planar transmission line circuits. The radiation effect of
a discontinuity can be analyzed by the solution of an open boundary probiem in the y-
direction by using the proposed method.

The method itself can also be modified to improve the accuracy of the results
without a significant increse in the computation time. This is possible through the use
of a non-uniform discretization scheme [33].

Since most of the computation time in this method is spent on the calculaiion
of the eigenfrequencies and the corresponding eigenmodes, it is desirable to devise a
scheme to avoid that calculation. The two-region approach is a candidate for a new
scheme, where the original problem is divided into two regions (above and below the
substarte surface) and solved in each region with the equivalent magnetic current
source on the interface boundary [38]. For example, Fig. 6.1 shows the equivalent
two-region problem, where the original inhomogeneous problem shown in Fig. 4.1 is
divided into two homogeneous structures with equivalent source on the aperture

region.

IVI=EXE (6.1)
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Fig. 6.1 An equivalent two-region problem of the probem considered in Chapter 4.

Also, Fig. 6.2 shows the another equivalent structure derived from Fig. 6.1
applying the image theorem [39]. Notice the structure 6.2 is a simple to solve
because it is homegeneous and every discretized line is really independent each other
so that the procedure described in the chapter 3 can be used. In this approach, the
problem is to find the accurate equivalent magnetic current on the aperture at each time
step. It can be obtained by applying the finite difference scheme around the aperture

regicn in Fig. 6.1.

70




71

M 2M

Fig. 6.2 An equivalent structure of Fig. 6.1 using the image theorem.

N+1,. . N.. N-1...
E, (j)=2E,(ij)-E, (i)
czAt2
: - (E’f(m,j)-2E§‘(i,j)+E§(i-1,j))
Ax
czAt2
+ S8 [ENagen - 28N0p) + o)
Ay 6.2)

where superscript N represents the N-th time step.

The difficulties encountered in this approach were in the representation of the
pulse in terms of continuous basis functions on each line accurately and in the

reproduction of original wave in terms of sampled pulses.




Appendix 1 )

Determination of the Eigenvalues and Eigenvectors of

Second-Order Difference Matrix

The diagonalization matrix can be obtained from the eigenvectors belonging to

the eigenvalues of the real symmetric matrix [Dxx].
2
([Dyo- 2 ID[X]=0 (A1)
where [Dyy] is given by equation (2.14) and the subscript k means the k-th

eigenvalue and eigenvector.

Since [Dyx] is a tridiagonal matrix, equation (Al.1) actually represents N second-
order difference equations

2
(k) x) (k)
X+ (2-2 )X 'Xi+1=0,i=1,2,...,N (Al.2)

where the subscript i means the i-th element of the k-th eigenvector.
Using the solution of the form,

the characteristic equation can be obtained from (A1.2), which has the characteristic
root

2
Ay=2(1-cosg,) (Al.4a)
or
2 .2
).k=431n (Pk/?. (A14b)
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where @y depends on the boundary conditions and are determined by using the

boundary conditions shown in Table 2.1.

(1) Neumann - Dirichlet Condition
Assuming the number of the discretized lines is equal to N, the first and the

last equation become

XK -x, (k) =0 (Al.53)
Xna1 &) =0 (A1.5b)
or
Joy R 2
l1-e 1-= A, 0o
cJ’(N+ 1o, e-j(N+ 1) o, B,
(Al.5¢)
In order to have nontrivial solutions,
k-1/2
=e———m, k=1,2,...,N
P ENTTT (A1.6)
Using the first row of equation (A1.5) and the equation (A1.3),
(1-e A =-(1-¢7*)B, (Al.7a)
cjwk/ 2Ak=e-j(pk/ sz (A17b)
K )
X (M= Apcos(i-1/2) 9, (ALS)

After normalization, the formula for the elements of the transformation matrix can be

obtained.
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[ 2 i-1/2)(k-1/2)n .
TNp,ix = N+172 o8 N+1/2 ,1,k-1,2,...,N(A1'9)

(ii) Dirichlet - Neumann Condition
Assuming the number of the discretized lines is equal to N, the first and the

last equation becomes

Xy = 0 (A1.10a)
X + X K = 0 (A1.10b)

or

: 1‘ : : ‘ Ax =0
eJN(pk(e J‘pk_ 1) C'JN‘pk(e 'J(pk_ 1) Bk (Al 1OC)
In order to have nontrivial solutions,
_k-1/2 _
(pk—mﬂ, k-—l,Z,...N (Al.ll)
Using the first row of equations (A1.10c) and (A1.3),
Ak =-Bg (Al1.12a)
(k) ..
Xi =Agsini@ (A1.12b)

After normalization, the formula for the elements of the transformation matrix can be

obtained.

. 3 Ci(k-1/T)m
Twow=yY 717z " N7173 0 Wk L20N (A1.13)




(111) Dirichlet - Dirichlet Condition

Assuming the number of discretized lincs is equal to N, the first and the last

equation become

X8 = 0
XN+1(k) =0

or

[ 1 1 A
JIN+1), _-j(N+1) o, [Bk]=o
le e k

In order to have nontrivial solutions,

kn
qjk:_I\Tﬁ_’ k= 1,2,...,N

(Al.14a)
(Al.14b)

(Al.14c)

(A1.15)

Using the firs: row ¢ equations (Al.1-°¢) and (A1.3),

Ak‘:'BK

k .
x§ )=Aksm1(pk

(A1.16)

(A1.17)

After normalization, the formula for the elements of the transformation matrix can be

obtained.

T _ 2 . itkm .
pD.ik =Y N3 T ST NrT ]

(A1.18)

75




(iv) Neumann - Neumann Condition
Assuming the number of the discretized lines ‘s equal to N+1 to be consistant

with the D-D case, the first and the last equation become

XK - x,®=0 (A1.192)
Xnga ) - Xy (=0 (A1.19b)

or

[

1 1 (1-e'*9 A,
. ‘ _ =0
JIN+1)o, -j(N+1)e, l T
¢ © (1-e 7By (A1.19¢)
In order to have nontrivial solutions,
kn
¢, =v—r k=0,1,2,...,N
KON+ (A1.20)
Using the first row of equations (A1.19¢) and (A1.20),
(l-ejw")Ak=- 1-C-jwk)Bk (Al.21a)
02 _ o2
e Ag=e " "By (A1.21b)
k) )
X =Agcos (i-1/2) 9, (A1.22)

After normalization, the formula for the elements of the transformation matrix can be

obtained.

1
T = N+1

2 (i-1/2km o
TNN.ik+1_ N_”1\,05 N+ 1 ,1—1.2,...,N+1,k—-1.‘.....,N

(A1.23)




Appendix 2
Calculation of the Quasi-Diagonal Matrices [dx] of the First-

Order Difference Operator [Dy]

The matrix [dy] is defined as a product of the first-order difference matrix
[Dy1 with the corresponding transformation matrix [Tx] from the right and with the

transposed matrix ['1"xd]t of the dual boundary value problem from the left.
[dx] = [Tx9]t [Dy] {Tx] (A2.1)

where the superscript 'd" drnotes the dual boundary condition. Before [dy] is
determined, one result may be anticipated. The eigenvalue matrix [A2] results from

the product

[dy ]t [dx] = [Tx]t [DyIt [Txd? 'TxdJt [Dy] [Tyl = [Tx]t [Dy]t [Dy] [Ty] = [A2]

(A2.2)

where the equations (2.16) and (2.14) are used. Therefore, the relatio: between [dy]

and [17-] 1s anticipated.

(1) Boundary Conditions DD and NN
For the boundary condition DD, the first-order difference matrix [DyPDP] is

given in Table 2.2. The corresponding [dPP] is

[dxDP} = [TxNN]t [DP] [T PD) (A23)
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If we multiply [T,NN]t by [D4PD], we find that the first row of the result vanishes
because all the elements of the first column vector in [TxNN] are the same. The

remaining part of the resulting matrix can be written as a product of [App] and
[Ty PP], where [App] is the diagonal matrix formed by the positive square roots of

(App 21. Therefore,

(A2.4)

Since [T¢PP] is a symmetric matrix, {TxPP] = [TxPP]t. Consequently {dxPD] is

given by

A
[ DD] (A2.5)
Thus [dyPP] is a quasidiagonal matrix.

Using the equation (2.5), it can be shown easily that

[deN] _ [deD] (A2.6)

for the boundary condition NN.

(i1) Boundary Condition DN and ND

For the boundary condition DN, the first-order difference matmx is given in

Table 2.2. In that case, the corresponding [dyPN] is given by

[dxDN] = [TNDJ [DPN] [T, DN (A2.7)
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Using the procedure described previously, we can find that
[dxPN] = (ANl = [dNP] " (A2.8)

where the k-th diagonal element of [Apy], Ay, is given by the positive root of kkz.




Appendix 3

Calculation of Modal fields in three-dimensional problems

(I) Time-Harmonic Case

In three-dimensional problems shown in Fig. 5.1, all the six field components
should be considered to satisfy the boundary conditions. Usually, two scalc-
potentials, ¥€(x,y,z,t) and ‘I’h(x,y,z,t), are introduced to simplify the formulation
instead of considering all six field components. The fields can be derived from the

solution of two scalar potentials. The equations for the potentials are given by

92We/ox2+92We/3y2 +92\We /922 -92¥e /a2 =0 (A3.1a)
02 wh/ax2 + 92 wh/9y2 + 92 wh /972 - 32 wh /912 =0 (A3.1b)

Using the separation of variables technique, ¥(x,y,z,t) = y(x,y,z) T(1), the

time-dependent solution is of the form

T(t) = A cos(wt) + B sin(wt). (A3.2)
The space-dependent equations are given by

32 e/ 9x2 + 92 € / 3y2 + 02 €/ 922 + wlpe(y) W€ =0 (A3.3a)
02 yh /9x2 + 92 yh/9y2 + 92 yh /922 + wlue(y) yh =0 (A3.3b)

with the boundary conditions,
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yve(x,y,2) =0,aty=0,b (A3.4a)
owh(x,y,z) /oy =0,aty =0, b (A3.4b)
Aty=h,

az e 3 h 82 e 3 h
5 Vi Vi . Vit

Exq-Exm= i ) -0
M joegdxdz 9 jeegxoz O (A3.4¢0)
19 2 .
Ea-En=—— (v e,0 hgg vi- ——*—“"“0’30’“’"‘0
Jeegy oz e 32
(A3.4d)
2 b ¢
N LA (A1 a‘*’u a“’" _
xI™ = jou, dxodz oy JoiL oz dy Z (A3.4e)
1 32 2 L B 2 i
H;_I'H;_n=,_—(_—2_+0)l105reo)wl_. (—-2-+0)u0€0)\lfu=]x
oy 3z 0y 9z
(A3.41)

where subscripts I, II represent the regions shown in Fig. 5.1.
The first step of analysis is the discretization of the equation according to the

rvle explained in Chapter 2, which gives

o N 3 A R P W
dy : i

Ax Az (A3.5a)
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g2

9 Wh + [D'“DN\ [\Vh} + iwh} [DXXDNE + 0)21»15()’) [‘Vh] = [0]

2 2 2
% Ax Az _(A3.5b)
with the boundary conditions
[yl =0,aty=0,0 (A3.6a)
ayh) /3y =0,aty=0,b (A3.6b)
Aty=h,
ND € NDl h ND e ND{ h
1 {Dx ] Vi {Dl ] GRS 1 [Dx ] Vi [Dz ] alwy
- - + =[0]
JuE£q Ax Az Iy  jue, Ax Az dy
(A3.6¢)
e ol elr o)
1 {Wl [Du} 2 € 1 WIJ [Dzz} 2 e
——d e o pEqU) ——— g T O HE vy =[0]
JUEEq Az JaEq Az
(A3.6d)

TN T T
1 [ Zl} +E.® uoei\v‘]) - - ( “{ - ] + O ugs({\V[{})z[Jx]
Jolg Az

(A3.6)

Since the matrices [DxxNPJ, [DxxPN. [DzZNP], and [DzzPN] are real

symmetric matrices, they can be diagonalized by appropriate transformation matrices




(see Table 2.3). The potentials can also be transformed into the "transformed

potentials”,
[U] = [TxND]t [y€] [TND) (A3.7a)
[V] = [TxDN]t [yh] [T,PN) (A3.7b)

Then, equations (A3.6a,b) are transformed into

ND ND
87[1;21]_‘_[‘1“ l [ J + o us(y) [ ]
dy Ax Az (A3.82)
t
21v], [dxxDNl M, MLdEDNl + o pe(y) vI=0]
> 2
dy Ax Az (A3.8b)

with the transformed boundary conditions,

[Ul=0,aty=0,b (A3.9a)
3[V1/dy=0,aty=0,b (A3.9b)
Aty =h,
4 t
N 01 Cog A I i T
JOEE,  AxAz 4 J'OJEO Ax Az Y (A3.9¢)
r ND t ND t
1 [Ug ] 2 1 [Un [du] 2
( +o - A +0 pEeJU) =10
joeg,  AzZ° FE) joey Az #{Uip=[d

(A3.9d)
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B [de]tIVIJ[d?D]+a[Ul]_ ) {d?D]ILVu][d?D]_a U"__m

Joi Ax Az dy JopL, Ax Az Y (A3.9e)
t t )
P vlad 2 1 [Vild] 2 =~
([ ']LE : ] + HOE,E({VIP - - ([ "][ : ] +O LloE({VIIP=[Jx]
z J

JopLg Oy Az
(A3.9f)
Now equations (A3.8a,b) are uncoupled so that the general solution of the ik-

th line which satisfies the boundary condition (A3.8a,b) can be obtained

Upix= Apiksinh xy ¥ (A3.10a)
U ix=Amixsinh xp  (b-y) (A3.10b)
Viik=Bprixcoshny v (A3.10¢)
ViLix=Byikcosh Ny (b-y) (A3.10d)
where
KLik? = - [dxx,iNP / Ax2 +d272 kNP / Az2 + w2pieceo] (A3.11a)
KILik2 = - [dxx,iND / Ax2 +dz7 JNP / Az2 + w2ugq)] (A3.11b)
N2 = - [dxx,iPN/ Ax2 +dzz kPN / Az2 + wueeo) (A3.11c)
ik = - [dxx iPN / Ax2 +dzz kPN / Az2 + w2peq] (A3.11d)

By means of these solutions, the derivatives of U and V with respecttoy aty

= h can be represented by the valuesof Uand V aty = h.

dUpik = KpLik U
&Y unhk, b
KLik ,aty=h (A3.12a)
dUpp ik K11,ik
dyl = =— Ui

ahKppd sy =h (A3.122)
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dVv;
= tanh N h Vg
dy N ' T, at y= h (A3123)
dV“'“‘=-_n tanh 1, .. d Vi
dy Lik Lik II,lk’ aty =h " (A3.12a)

Now the equations (A3.9c~f) have six unknowns Uy ik, Uik, VLik, V1I.ik,
Jx,ik and Jz jk at y = h. Therefore, the continuity equations in (A3.9¢c~f) can be used

to solve for the potentials, Uy ik, Urrik, V1ik and Vip ik at y = h in terms of the current

densities, Jx ik and Jz jx.

Uil _ ! C22b1-Ci2b7 12 Tx
ViJik S11€22-C12€21{cyby-ca1by -C11 A

(A3.13a)
where
ND
d
( ZE HeEEo
1 dx.idz.k Az
C11= L-
jweg, Ax Az ok, 2
\ 7 T O K
Az (A3.13b)
e
+OUEE
Az
C12= - M anh Ny gh - Ny i tanh Ny e d N
dzz.k 2

/ (A3.13c)




D
dzz.k 2
8r( _E'+ W LL(]EO) }
Az (A3.13d)
DN
dzz.k 2 \
N DN ( S TOHEE
1 dx,i dz‘k AZ
Cop=————1 1-
: DN
Jo, Ax Az d,, . wzuos
0
\ Az / (A3.13e)
) 1
by =-jwo Ny tanh My d N
22,k + uOEO
Az (A3.130)
DN DN
by = dx.i dz.k 1
,=-
Ax Az dqu 2
0 uE,
Az (A3.13g)

Then, the field values at y = h can be found by using the following relations evaluated

aty =h.
ND ,ND
- _ 1 X 1dz.k
E,idy) = - Udy) - M, tanh Thkh Vidy)
Joe(y) Ax Az (A3.142)
ND DN
— 1 d,x 0 dy.i
Ey ay) = ——— 2 - Uly) - = Viy(y)
joely) az %Y Ax (A3.14b)
ND
—_— 1 d 2
Eily) = ——( "'Zk + o pe(y) ) Ujy)
joey)

(A3.14¢)




—_— K'k 1 dm\I IX;I(
H, iy) = ———Uy) + — 2225 Vi(y)
tanh x;, h JoH Ax Az (A3.14d)
ND DN -
—_— d, - 1 d,x 9
Hy ) = - L Uply) + —— Az"‘ 5y Vi)
Ax W0t B2 (A3.14e)
DN
—_— 1 d 2
H, ) = —— (57 + 0 pe()) V)
jou
0 Az (A3.14f)

From this point on, we change the two-dimensional arrays for fields and
currents into one-dimensional arrays for convinience of formulation according to the

rule
n=i+(k-1)Nx, I<i<Ng, I<k<Ngz (A3.15)

Then, the two-dimensional Nx by Nz matrices become NxNz column matrices and

equations (A3.14a,b) can be expressed in the following form:
2|22

[g} [ﬂ[ﬂ”a (A3.16)

where [Z]'s are diagonal matrices.

Before the final boundary condition is applied, a useful matrix operaten, the

Kronecker product, is introduced

aj(B] . . ay{B]
[A]l®[B]=] '
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Two important properties of the Kronecker product are

([A]®[B]) ([C1®[D])=([A][C])® ([B][D]) - (A3.18a)
([A] ®[B])t=[A)'® [B}t (A3.18b)

Now, the final boundary condition is that the tangential electric fields should
be rero on the metalization part of the substrate surface. In cider to apply this

condition, we have to go back to the oniginal domain using the inverse transformation

relation
Edp=[12"] [Nz]zo[T?D]t ~>[E)= (1] [T [E] (A3.19a)
o= [PEL[] == e [TDE] 0
Bao=[T27) [2]29[T?D]! —>)= (e [T)[F] (A3.19¢)
Pbp= [T?N] [l >0 ("Me 7] (A3.i9d)

where the subscript 2D means the two-dimensional matrix considered up to equation

(A3.14). The equation (3.15) can be inverse transformed into

'E,] _ [Zu][sz]] [J] _10
lEmed [[Z"ZJLZX’JM T frec 3 (A3.20)

where 'red' represents the reduced matrix made by deleting the rows and columns
corresponding to the non-metalization lines from the full matrix. Equation (A3.20)
will have nontrivial solutions at the resonant frequencies of the structure only. The

resonant frequencies are founa from the determinant equation
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ol 2 -
‘ [[zu][zu]L y (A3.21)

At resonance, the modal current distribution can be found as an eigenvector in
(A3.20) by using the QR algcrithm for the stability of the solution.

One inportant thing to be mentioned in the calculation of the roots is the
elimination of poles present in the matrix element in order to obtain the correct roots.
One way to remove the poles in the determinant calculation is by the pole
multiplication method, in which all the elements are multiplied by the common
di.ominator. In this case, the pole extraction is performed in equation (A3.16), not in
equation (A3.2!). This is because the poles in equation (A3.16) can be easily found. H

The process 1s as follows:

N ]
b1 N, D,
_ i
N .
N, | TIIp NnDyn
1 -
L D].J l (A3.223)
where
N
D,= I D
i=Li=i (A3.22b)

After the values of the potentials, Uy ik, Uil ik, Vi,ik, Vi1ik at y = h are known
from the modal current density distribution obtained in the previous step. the
coefficients Ap ik, By ik, Aqp,ik and By jk in equations (A3.10a~d) can be determinea.
Therefore, the transformed modal fields of the given structure can b= obtained by

equations (A3.14a~f).




90

(ID Static Case

In this case, the governing equation is the Laplace's equation with proper

bounda.y cond:itions:
2
V v=0 (A3.23)
and at vy = h,
C g Vi avn
KT T X T (A3.24)
ATEAE T T e T (A3.24b)
_ vV, vy
ey Eyn=-&oot 5 =-p (A3240)

where the subscripts I and II reprzsent the regions shown in Fig. 5.1.

Using the discretization ru'e described in Chapter 2, equations (A3.23) and

(A3.24a~c) can be discretized as follows :

{
-B_EM + I—Z[D:ﬂ V]+ %[V][D?] =0
dy Ax Az (A3.25)
aty=h

1 ND 1 ND
- — Dx [V ] + — I)x [V = O

[0 v+ [y araen

1, N1 DN

— V/iD -—|VyllD =0
V[P - = v [p .
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dy (A3.26¢)

where [ ] represents a matrix whose ij-th element represents the potential at the ij-th

line.

Since the second-order difference matries [Dy,NP] and [D,,PN] are real

symmetirc matrices, they can be diagonalized by using the ransformation matries (see

Table 2.3)

[TNPJt [DxxNP] [Ty ND] = diag [dyxNP]

[TZDN]t [DZZDN] ['rZDN] = diag [dzzDN]
The potental [V] is also transformed into a transformed potential [U],
[U] = [TNDP]t [V] [T,PN]

Then, equations (A3.23) and (A3.24a~c) become

(A3.27a)
(A3.27b)

(A3.28)

(A3.29)

(A3.30a)

(A3.30b)

(A3.30c)
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The solution of equation (A3.29) which satsfies the top and bottom boundary

condition can be written as

sinhx. vy
. k
Upix= Apixk—————
Kik | inregion]l (A3.31a)
sinhx;, (b-y)
UnLix= Anik 1
Kik ,in region II {A3.31b)
where
ND DN
K 2 _ dxx,i dzz.k
ik T 7T
Ax Az (A3.31¢)

By means of these solutions, the derivative of the potentials with respect to y

aty = h can be represented in terms of the potential at v = h.

=Ki cothx. . hU i ( =h)
oy y=h ik i UL &y (A3.32a)

oUry i

=~ x., coth X..d Uy (y=h)
dy y=h ik id Unac(y (A3.32b)

Now, the boundary conditions, (A3.30a~c), can be solved for [Uy jx] and
(U, ik] at y = h in terms of the charge density [p].

Pik
€, KikCOthKikh + Ky cothxikd

Uy idy=h) = Uy ;dy=h) =
(A3.33)

Then, the field values at y = h can be found by using the following relations evaluated

aty =h.
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ND
"I::' _ dx.i
x.il&y) =" Uik(y)
Ax _(A3.34a)
DN
=~ dz.i
Ez.ik(y) =- Uik()')
Az (A3.34b)

From this point on, the two-dimensional field arrays are changed into the

corresponding one-dimensional vectors for convenience of formulation according to

the rule described in equation (A3.15). Then, the two-dimensional Ny by N, matrix

becomes an Nx*Nz column vector and the relations (A3.34a and b) can be expressed

SR

where the [pr] and [Gzp] are diagonal matrices.

(A3.35)

The final boundary condition is that the tangential electric field should be zero
on the metal strip. In order to apply this condition, we have to go back to the original

domain using the inverse transformation relation

EJ= (e [T [E] (A3.362)
E)= ([T e[ [E] (A3.36b)
[p]= ([TEN ] ® (TTD] ) [5] (A3.36c)

where ® is the Kronecker product defined by (A3.17).




R I

where the subscript 'red’ denotes the reduced matrix obtained by deleting the rows
and columns corresponding to the non-metallic discretization points. The static

charge distribution can be calculated trom cguation (A3.37) by using the QR

algorithm. After the values of the potentials, Uj ik and Uy jx at 'y = h, are found
from the static charge distribution, the coefficients Aj jx and Afj jk in (A3.31a and b)
can be obtained by evaluating the potential values at y = h, from which the electric

field distributions can be calculated by equations (A3.34a and b).
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