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Feundations of a New Test Theory

Abstract

It is only a slight exaggeration to describe the test theory
that dominates educational measuremen’ today as the application of
twentieth century statistics to nineteenth century psychology.
Sophisticated estimatiova proccdures, new techn ques for missing-
data problems. and theoretical advances into latent-variable
modeling have appeared--all applied with psychological models that
explain problem-solving ability in terms of a single, continuous
variahle. This caricature suffices for many practical prediction
and selection problems because it expresses patterns in data that
are pertinent to the decisions that must be made. It falls shoit
for placement and instruction problems based on students’ internal
representations of systems, probtlem-solving strategies, or
reconfigurations of knowledge as they learn. Such applications
demand different caricatures of ability--more realistic ones that
can express patterns suggested by recent developments in cognitive
and educational psycliology. The application of modern statistical
methods with modern psychological models constitutes the

foundation of a new test theory.
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Introduction

Educational measurement faces a crisis today that would
appear to threaten its very foundations. The essential problem is
that the view of human abilities implicit in standara test
theorv--item response theory as well as classical true-score
theory--is incompatible with the view rapidly emerging from
cognitive and educational psychology. Learners increase their
ccunpetence net hy simply accumulating new facts and skills, but by
reconfiguring their knowledge structures, by automating procedures
and cihunking information to reduce memory loads, and by developing
strategies and models that tell them when and how facts and skills
are relevant. The types of cbservations ana the patterns in autl.
that reflect the ways that students think., perform, and learn
cannot be accommodated by traditional models and methods. To some
it would seem to some that psychometrics has little to offer in
the quest =“o apply this new knowledge to the practical educational
problems of the individual, the classroom, or the nation (Hunt and
Macleod, 1978).

I concur that the standard methods of test theory do not
suffice for solving problems cast in the framework of what we are
learning about how people acquire knowledge and competence, but I
cannot agree that psychometrics has nothing to offer.

Standard tect theory evolved as the application of
statistical theory with a simple model of ability that suits the
decision-making environment of most mass educational systems.
Broader educational options, based on insights into the nature of

learning and supported by more powerful technologies, demand a

broader range of models of capabilities--still simple compared to For
the realities of cognition, but capturing patterns that inform a 1 Es?

broader range of alternatives. A new test theory can be brought a
¥

about by applving to well-chosen cognitive models the same general {on

principles of statistical inference that led to standard test

theory when applied to the simple model. vistrjbution/
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The first halt of this paper sketches the evolution of
standard test theovv, highlighting the challenges that spurred
each new advance. The challenges that cognitive and educational
psvchology present today are then discussed, and a framework for
responding to that challenge iz outlined. Dircctions for needed

development are exempliiied with current work.

The Early Context of Educational Decisions
The kinds of decisions that shaped the evolution of classical
test theory were nearly universal in education at the beginning of
this centuryv, and dominate practice yet today. They were born of
the constraints educators encountered as they launched their
campaign to provide education on a broader scale than had ever

been attempted hitherto:

.the demand for tests arose during the period when
school attendance was made compulsory and when higher
education was developing its strengths. Educators taced
the unpic.cedented dilemma of dealing with the range and
diversity of abilities and backgrounds chat individuals
bring to schooling. They needed ways of determining
which children and youths would be able to profit from
some form of instruction as given in ordinary school and
college practices as designed essentially for the
majority of the population."” (Glaser, 1981, p. 924).

Educators were contronted with selection or placement decisions
for large numbers of students. Resources limited the information
thev could gather about each student, constrained the number of
options thev could offer, and precluded tailoring programs to
individual students once a decision was made.

A first example is selecting applicants into a college that
presents the same material in the same way to all students. There
is onlv one treatment, and the alternatives are to accept or
reject. The admissions ofticer would prefer to accept those who
are likelv to succeed. When resources permit more than one
decision option, the usual generalization of the accept/reject
paradigm is to offer a sequence of alternatives, each more

demanding than the next. Placing high school freshmen into
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academic tracks is an example of this latter type. Problems of
selection into a single program and of placement into a single
sequence are both decisions about "linearly ordered options."”

Exposing a diverse group of students to a uniform educational
treatment typicallv produces a distribution of outcomes (Bloom,
1976). An individual's degree of success depends on how his or
her uniaue skills, knowledge. and interests match up with the
equally multifaceted requirements of the treatment.

At costs substantially lower than personal interviews or
performance samples, responces to multiple-choice test items
provide information about certain aspects of this matchup. What
is necessary is that each item tap some of the skills required for
success. Even though a single item might require only a few of
the relevant skills arnd offer little inforuwation in its own right,
a tendency to provide correct answers over a large number of items
supports some degree of prediction of success (Green, 1978). If
all candidates are administered the same items, and one wishes to
predict success in linearly-ordered options, their number-correct
scores can be used (Dawes and Corrigan, 1974). Even though the
several students at a given score level possess different
constellations of skills, abilities. and backgrounds, making the

same decision for all of them omong the available alternatives is

often about as well as can be done with the available data.

Once the test and the linearly-ordered options are specified,
making decisions from test performances requires nothing more
complicated than adding up numbers of correct responses. Two
different tests constructed for the same decision, however,
invariably line up examinees differently as they draw upon
difterent particular skills from the myriad of those potentially
informative. Additional statistical machinery is required to
puide one in constructing tests and evaluating their quality.

Classical test theorv was a first response to these needs.




Classical Test Theory

Charles Spearman (1904a, 1904b, 1907, 1910, 1913) is credited
with the central idea of classical test theory (CTT): a test score
can be viewed as the sum of two ccmponents, a "true" score and a
random "error" term. Two similar ("parallel") tests are
considered to reflect the same true score, but disagree about an
examinee'’'s observed scores because of the error components--the
variance of which can, under the assumptions of CTT, be driven to
zero by just making the tests long enough. Ideally decisions
would be based on true scores; in practice they must be based on
observed scores. "Reliability," the degree to which the
uncbservable true scores account for the variance in observed
scores, gauges the accuracy with which a test lines up a group of
examinees--a reasonable criterion for the quality of a test if ir
is assumed that the items tap appropriate skills and scores will
be used to decide among linearly ordered options.

Upon these notions was founded a practicable testing
methodology. Reliability became a paramount measure of the
quality of a test, although of course reliability had tc be
complemented with validity measures such as the correlation
between test scores and subsequent performance. Validity studies
had less influence on test construction, however, because they
arrive too late in the process--only after the test has been
administ.red and examinecs have been followed over time. To
ohtain high reliability, one use<s items that would be answered
correctly by about half the examinees, for example, and avoids
items that would have low correlations with the total test scores.

Note chat these dicta could guide test construction solely
from counts and patterns of right and wrong responses to candidate
test items--ignoring both the content of the items and the
contemplated decision alternatives. O0f course good test
construction does consider the knowledge, skill, and strategv
requirements of items. The point is that these considerations lie

outside the realm of the classical test theory. Test developers
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use them independently of, sometimes in contradiction to, what
test theory tells them.

Building upon Spearman’s foundation, psvchometricians
developed a vast armamentarium of techniques for building and
using tests (Gulliksen, 1950)., such as approximating reliability
from the internal consistencv of items within a test (Kuder and
Richardson, 1937) and estimating validity without knowing
subsequent performances of rejected examinees (Kellev. 1923,

Over time, a rigorous axiomatic foundatinn was laid for
statistical inference under the aegis of CTT (Lord, 14959: Novick,
1966; Lord and Novick, 1968). The simple partitioning of obsgerved
scores into true and error components was generalized to multiple
sources of variation from items. persons, and observational
settings, and the full power of analvsis of variance was biought
to bear upon decision-making prohlems usin, test scoves < Oronhach,
Gleser. Nanda, and Rajaratnam, 1972; Lord and Nowvick, 14Y68)

A source of dissatisfaction with CTT carly on was that its
characterizations of examinees, such ds total score and percentii.
rank. and of items, such as percent-correct and item-test
correlation, are confounded descriptions of the particular Items
that constitute a test and a particular group of examinees who
takes 1t (Wright, 1968). 1f one test consists of easier items
than a second otherwise similar test, examinces’' scores on the two
tests are not directly comparable and score distributions have
different shapes. If a test is administered to groups ot
examinees that differ in proficiencv, item percents-corrvect and
item-test correlations differ. When manv tests could be
constructed for the same purpose, differing perhaps in ditticultv
or length, should not there be a wav to charvactorice eominaes
independentiv of the test thev took, and items Independent]ly of
the examinees who took them?

In attitude measurement, where agreements to a topic are
analogous to correct answers to test questions, L.L. Thurstone
(1928) expressed the tollowing desideratum: “If a scale is to be

regarded as valid, the scale values of the statements should not
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be aftfected by the opinfons of the people "whose responcses Ll

to construct 1t Thurstone (1925 and E. L. Thorndike «Thorndib.
el al., 1926) pioneered efforts to relate test scores to

T ochological traits, using item percents-correct and assumpt fonen
about distributions of traits to transform scores from difteren:
tests onto the same scale.

Thurstone «and Thorndike scaling, despite allusions to an
underlving trait., remained essentially theories tor scores, alhbe
transformed (with the aid of untestable assumptions? to permis
comparisons across nonparallel tests.  Psvchological tralits per <
dppedi as explicit parameters in the models of Ferguson ol caiy
Lawlew 1943y and Tucker (1946). These rescarchers stwdicd tos:
construction problems within CTT by making an assumption bevond
those of OTT proper; namely, that aside from random factors. item
responses wete driven by a unobservable ability variable
second gencration of test theorv hegan to take form as attention
shitfred trom test scores as the object of inference, to

anobservable vartables hvpothesized to have produced them,

Item Response Theory

ltem rtesponse theorv (IRTY, or, "latent trait theorv," as it
was called then. appears as a test theorv in its own right in the
worre of Frederic Lord (1952 and Georg Rasch (1960) . Like
classical test theory, [RT councerns examinees’' overall proficiency
in o domain ot tasks.  But while CTT makes no statement about the
e chanisms that pive rise to performance, [RT posits a sinpgle,
unohsereable ) proficiency variable.

3t the heart of TRT is a mathematical model for the
probabilicy that a piven person will respond correctly to 4 given
It classical test theory offers o statistical model tor
test scores withont a pasvchological model, Cuttman’s (19455
sealine technigues offer g psyehological model without a
statisticd wodel . lmportant in the reconceptualization of the
pedaning of tent o ccores. o cutuman scale ¢nn be viewed as the

Pimiting case in IRT in which cach item s perfectly informative

dabons whether s examines s 2hility lies above orv below o specific

point on s abilisy continumum,




item, a function of that person’s proficiency parameter and one or
more parameters for the item. The item’'s parameters express
pr perties such as difficulty or sensitivity to proficiencv. Tin
item response, rather than the test score, is the fundamental unit
of observation. If an IRT model holds, responses to any subset of
items support inferences on the same scale of measurement

This conceptualizacion opens the door to solving many
practical testing problems that were difficult under CTT, such as:

Test construction (Birnbaum, 1968; Theunissen, 1985). It

item parameters are available for a collection of {tems, tests can
be constructed tor optimal performance in specific applications,
such as minimizing classification errors.

Adaptive testing (lord., 1980, Chapter 10; Weiss, [984). An

adaptive testing scheme selects the best item to administer next

to an examinee . based on the amount of information that various

available items would provide and a provisional estimate of the
'

examinee's proficiency from resnanses to items given thus far.

Educational assessment (Bock, Mislevy, and Woodson, 1982

Choppin, 1976; Messick, Beaton, and Lord, 1983). Assessments
gauge proficiencies at the level of populations rather than
individuals, to evaluate programs and monitor trends. IRT makes
it possible to establish a stable measurement scale while allowiuy
assessment instruments fo evolve over time,

This work assumed, for the most part, that the IRT model wis
Fnown and correct, and that true vilues or accurate estimates ot
ttem parameters were available.  Current JRT rescarch emphasises
inteprating IRT into the general ftramework of statistical
inference . and o uiring an understanding ot just when and how [ET

models dre appropriagte.

Statistical Inference in Item Response Theory

Early applications of IRT were desipned more to demonstrate
{ts potential than to =solve actual measurement problems. Data
were pathered with tests written according to CTT dicta; the sawme

long tests were adeinistered to many examinees, and each item had




passed CTT quality cnecks. Illistrative purposes were served
adequately by rough estimation procedures that treat point
estimates of examinee- and item-parameters as if thev were the
parameters themselves, ignoring the uncertainty a.sociated with
the estimates. These approximations break down when IRT is
applied bevond the usual limits of CTT testing, as when examinces
are presented only, sav, fifteen items in adaptive testing or five
in educational assessments (Mislevy, 1988). In response, IRT
researchers have rurned te two active lines c¢f research in
statistics: missing data methods and Bayesian escimation.

Missing cdata metnods are relevant because a latent variable
such as an IRT examiree proficiency parameter can be viewed as a
datum whose value is missing for everyone. General results on
estimating parameters when some data are missing, such as
Dempster, Laird, and Rubin’'s (1977) EM algorithm, have led to
methods of item parameter estimation that are at once rigorous and
ef icient (e.g.. Bock and Aitkin, 198C; Tsutukawa, 1984). Results
on statistical inforaation iu missing data problems yield insights
into the uncertainty structures of IRT parvameters (Mislevy and
Sheehan, in press; Mislevy and Wu, 1988) and offcr ways of
increasing accuracy by euploiting collateral information about
items and examinees (Mislevy, 1987, 1988a).

The Bayesian perspective confronts uncertainty head on,
expressing what is known about parcrneters as probability
distributions. When these distributions are concentrated, the
expedicent of using point estimates as if they were the true
parameters can give acceptable results in subsequent analyses.

But when the distributions are diffuse, one must propagate the
uncertainty into subsequent analyses to obtain rorrec: inferences.
Statistical reasoning along these lines was propo-ed as far back
as 1927 by Kellev (1927), and championed by Novicwk in the 1470's
(e.g., Novick and Jackson, 1974), but only now are the ideas
gaining currency. In this framework, one can determine when the
standard., simpler, approximations suffice, but use (admittedly

more complex) correct analyses when they don’t. For examples in
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IRT estimation problems., see Bock and Aitkin (1981) oun item
parameters, Miclevy (1988b) on proficiency distributicns, and

Tsutakawa and Soltys (1888) on individuals’ proficiencies.

The Question of Model Fit

But of course the IRT model is never exactlv correc-. A
single variable that accounts for all nonrandomness in examinees'
responses 1s not a serious representation of cognition, but a
caricature that can solve applied problems when it captures the
patterns that are salient to the job. The pattern that CTT and
IRT can capture is examinees' tenaencies to give correct
responses, which can usefully inform decisions about linearlvy
ordered alternatives. IRT was a practical advance beyond CTT
because it provides information about overall protficiencies in
more flexible ways. It was a conceptual advance because it
provides a framework for detecting anomalies in the "overall
proficiency" paradigm.

This can be illustrated with Rasch’'s (1960) model for
right/wrong items, supposing for convenience all examinees are
presented the same test. Under CTT, all examinees with a pgiven
total score would he treated alike. Under the Rasch model, all
examinees with the same score would receive the same ability
estimate(, and might also be treated alike--depending on an
analvsis of mudel fit. Combining an examinee's proficiency
estimate with an item’'s difficulty estimate, the Rasch model
states how likelv a correct response would be if the single-
proficiency conception of abilitv were true. The items that high
scorers missed should usually be easv ones, and the items low

scorers got right should be easv ones. Finding that these

Under other IRT models such as the 2- and J-parameter
logistic models, examinees with the same total score need not
receive exactly the same abilitv estimate, but usually receive
similar estimates. Correlations between total scores and IRT
estimates in tvpical educational tests are usually above .95, and
few decisions would be made differently with any IRT model, or. if
evervone has taken the same test, even with CTT.




patterns hold supports making the same decisions about people with
same scores, because, to an approximation, they got the same

iteme< right and the same ones wrong. Total scores, and thus Rasch
ability estimates, convey nearly evervthing these data have to sav
about comparing these examinees.

To the extent that high scoring examinees miss items that are
generally easy and low scoring examinees get hard ones right,
neither total scores nor IRT ability estimates may be capturing
all the systematic information in the data. Analyses of an
individual's unexpected responses can reveal misconceptions or
atypical patterns oI learning (Mead, 1976; Smith, 1986; Tatsuoka.
1983). To understand these patterns one must look bevond the
simple universe of the IRT model--to the content of the items, the
structure of the learning area, the pedagogy of the discipline,
and the psvchology of the problem solving tasks the items demand.

Now, patterns in responses other than overall level
proficiency can have educational and psychological meaning, but
vet hold no salience for a particular decision. If overall
proficiency in a domain of items suffices for a particular
decision, as can be the case with linearly ordered educational
options, cross-current patterns constitute data variation that
need not be explicated. This is the essence of statistical
modeling: expressing the patterns that are dominant and meaningful
in terms of model parameters, and allowing for departures from
these patterns in terms of distributions of residuals. But if the
decision does depend on the cross-current patterns, in addition to
or instead of overall proficiency, neither CTT nor standard IRT
mav be the right tool for the job.

The issue of model fit, then, is more pragmatic than
statistical, since lack of fit must be judged in practice by the
nature and the magnitude of the errors it causes. An IRT model
might be satisfactory for selecting honors math students, for
example, if people with similar scores have similar chances of
success--even though examinees with similar scores have different

protiles of skills and knowledge. The profile differences could
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be modeled as "noise" without harm for the selection decision--but
probably not for advising individual examinees which topics to
study to maximally increase their scrres.

Measuring learning is one application where IRT models can
fail, because thevy accommodate only a highly constrained type of
change: an examinee’s chances of success on all {tems must
increase or decrease by exactly the same amount (i: an appropriate
metric). A single IRT model applied to pretest and posttest data
cannot reveal how different students learn different topics to
different degrees--patterns that could be at the crux of an

instructional decision.

Testing and Learning

Good "macro-level” decisions to place students into
appropriate educational programs are important in increasing the
quality of education, but they are not sufficient. Tracking
students as they progress opens the door to finer grained "micro-
level" decisions to enhance learning along the way. Good
decision-making at this level requires an inferential framework
built around an understanding of how students learn.

A picture of a learner that is consistent with standard test
theory is that of a collector of facts and skills, adding each to
his repertoire more or less independentlv of others. Recent
developments in psvchology sketch a markedly different pilcture.
reflecting the astounding capabilities and the surprising
limitations of the mind--lightning fast recognition of stored
patterns and creative applications of heuristic strategies, on the
one hand; vet with short term memory capacities of only about
seven elements and an inability to perform more than one
attention-demanding task at a time. Performance is to be
understood through the availability of well-practiced procedurcs
that no longer demand high levels of attention ("automaticitv");
strategies by which actions are selected, monitored, and, when
necessary, switched ("metacognitive skills"); and the mental

structures that relate facts and skills ("schema"). Learning is
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to be understood through the automatization of procedures; the
acquisition and enhancement of metacognitive skills; and the
construction, revision, and replacement of schema.

Comparing the performances of novices and experts offers
insights into the nature of performance and learning. A first,
unsurprising, difference is that experts command more facts and
concepts than novices, and have richer interconnections among
them. Interconnections overcome limitations of short term memory;
while the novice may work with seven distinct elements, the expert
works with seven constellations that embody relationships among
many elements ("chunking"). Moreover, experts often organize
their knowledge in schemata possessing not simply more
connections, but qualitatively different ones. The advanced
conceptr that cellege phvsics students acquire, for example, can
be organized around informal associations or naive misconceptions
(Caramazza, McCloskey, and Green, 1981). These novices tackle
physics problems in less effective ways than expert physicists,
whose more appropriate schemata lead them to the crux of the
metter (Chi, Feltovich, and Glaser, 1981). Experts also differ
from novices by having automatized, through study and practice,
procedures that were once slow and attention consuming, allowing
them to focus on novel aspects of a problem, look from different
perspectives, and more efficiently monitor and guide their efforts
as they work (Lesgold and Perfetti, 1978).

The challenge to education is to discover what experiences
help a learner with a given configuration of propositions, skills,
and connections to reconfigure that knowledge into a more powerful
arrangement. Vosniadou and Brewer (1987) point to Socratic
dialogue and analogy as mechanisms that facilitate such learning.
To apply them effectively, one must take into account not simply
target configurations, such as the expert's model, but the
individual learners’' current configurations. The chtallenge to
test thecry is to provide models and methods to assess knowledge,

and to guide instruction, as seen in this new light.
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Teo what extent can standard test theory meet this challenge?
Recall that standard test theory characterizes performance only as
to overall level of proficiency, and learning only as to change in
overall proficiencv. Cronbach and Furby (1970} note the
inadequacy of such measures of change when applied with

conventional broad range educational tests:

Even when [test scores! X and Y are determined bv the
same operation le.g., scores under the same CTT or IRT
model], they often do not represent the same
psvchological processes (Lord, 1958). At different
stages of practice or development different processes
contribute to performance of a task. Nor is this merelv
a matter of increased complexity: some processes drop
out, some remain but contribute nothing to individual
differences within an age group, some are replaced byv
qualitatively different processes. (p. 76).

Standard test scores can be connected more closely with
cognition if thev summarize performance over onlv tasks that wre
very homogeneous In their requirements (Glaser, 1963). and this
specificity marked the criterion referenced testing movement of
the 1960’'s and 1970's. Merely defining testing areas very
narrowlv, however, is not sufficient to make test scores
instructionallyv relevant (Glaser, 1981). A list of scores in
narrowly defined areas ignores the interconnections among scores
induced by the knowledge, skills, and strategies thev tap in
pairs., in triples, or in hierarchies of the specific behaviors--
vet it is at just this level that instructional relevance must be

sought .

New Tests, New Test Theory
A learner’s state of competence at a given point in time is a
conmplex constellation of facts and concepts, and the networks that
interconnect them: of automatized procedures and conscious
heuristics, and their relationships to knowledge patterns that
signal their relevance: of perspectives and strategies, and the

management capabilities bv which the learner focuses his efforts.
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There is no hope of providing a complete description of such
a state. Neither is there a need to. The new pedagogy need
merely(!) identifv communalities among states of competence that
can be linked to instructional actions that facilitate changes to
preferable states. Distinctions need not be made among all
possible states, but onlv among classes of states with different
instructional implications. The new tests to inform instructional
decisions need merelv(!) present tasks that learners in the
different states are likely to carry out in observably ditierent
wavs. Not only correctlv as opposed to incorrectly, but at what
speed, with what intermediate products, or with wvhich incorrect
response; not simply as independent pieces of information from
distinct items, but in patterns of similarity, dissimilarity, or
independence across tasks that probe knowledge structures and
problem-solving strategies. The new test theory need merelv(!)

rovide models whoge parameters are capable of evnressing the

B!

salient patterns, and inferential procedures upon which to base
instructional decisions in the presence of uncertainty.

Foundations of the new pedagogy are to be found in the union
of analvses of kev concepts in a substantive area, research into
the cognitive psvchology of the area, and detailed observations of
learncrs as they progress. Greeno (1976) argues that the tools
and the perspectives of cognitive and educational psychology have
developed to a point at which thev can be used to generate
instructional objectives in this manner. He provides detailed
illustrations in three substantive domains at increasing levels of
complexitv and sophistication: fourth-grade fractions, high school
geometry, oind college level audi*rry psvchophysice.

Fouiidations of the new theory of test construction are
similarly to be found in educational and cognitive psychology
(Embretson, 198%a; Messick, 1984). Standard vocabularv items
suffice to ascertain the breadth of a learner’'s familiarityv with
concepts in a substantive area. but tasks based on analogies probe
the interconnections among concepts. Speed ot response is more

intormative than correctness about the automaticity of procedures.
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hence a better guide to assigning additional practice on a
currently conscious process. Designing approvridte measures
demands familiarity with the substantive field, not just about the
knowledge structures of the expert but about the incomplete or
inaccurate structures novices often use. To see how the requisite
cogritive and substantive analyses might be carried out, and how
tasks that differentiate among learners at different states of
competence might then be cu.ztructed, the reader is referred to
Curtis and Glaser (12832) on reading achicverent and Marshall
(1985) on "story problems” in arithmetic.

Foundations of the new test theory are to be found in the
general principles that led to the development of item response
theory. The examinee will be characterized by parameters that
express tendencies to act in accordance with the various
continuous levels or discrete states in simplified wodels of
cognition. Tasks will be chardacterized by parameters indicate the
extent to which they tap different aspects of knewledge
structures, procedures, or strategies. As in IRT, individual
differences among evamirees that are not salient to the decision
will be modeled as random--not as a psychologically tenable

position. but as a practicallv useful expedient.

Beyond "Low-to-High Proficiency"”

The breadth of problems to which standard test theoretic
models have been usefully emploved, despite their limited low-to-
high conception of proficiency, suggests a certain robustness of
modeling. It is not necessary that models account ror all
possible wavs students might approach a test, but it is necessary
that they can capture instructionallv relevant patterns. A test
must be designed to highlight the pertinent patterns, and analyzed
with a model capable of expressing them.

The idea of building test items around cognitive principles
can be traced back at least as far as to Guttman's facet design
tests (Guttman, 19/0). cCuttman worked out analvtic methods for

analyzing data from such tests within the framework of classical
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test theory. Scheiblechner (1972) and Fischer (1973), with their
"linear logistic test model" expressed item difficulty parameters
in the Rasch IRT model as functions of psychologically salient
features of test items, but still characterized examinees in teruws
of overall proficiency. More recently, test theory models built
around patterns other than overall proficiency have begun tc
appear in the psychometric literaturec.

"Tectonic plate" models. Increasing competence in a

substantive area need not be reflected as uniformly increasing
chances of success on all tasks. Patterns of smooth increase mayv
be observed for certain people on certain sets of tasks, in
certain phases of development; standard test theory will give good
summaries of change in these neighborhoods. Discontinuous
patterns of change begin to appear as the scope of tasks becomes
broader, as the range of development becomes greater, and as the
range of experiences of examinees becomes more diverse. "Tectonic
plate" models generalize IRT by allowing for a limited number of
rrodetermined, theory-driven, discontinuities in item response
patterns. In tectonic plate geological models, points within a
given land mass, or plate, maintain their relative positions, but
the plates move with respect to one another. 1In tectonic plate
psychometric models, items tapping the same set of skills maintain
their difficulties relative to one another, but the difficulties
of the groups of items change with respect to other groups as
learners acquire new skills or concepts.

Wilson's (1985, 1989) "Saltus" model extends the Rasch IRT
model to development with discontinuous jumps. An example is
siegier’s (1981) rule-learning analysis of balance-beam tasks,
where students can increase their competence either by using the
rules they know more effectively (continuous change) or by
learning new rules (discontinuous change). Sometimes students who
learn a new rule begin tn miss a type of problem thev used to get
right, because their previous, less complete, set of rules gave
the right answers for the wrong reasons. This pattern flouts

standard test theory. The Saltus model assumes that each examinee
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is in one of a number of unobservable stages of development.

“-ems are classified so that all items in a class have the same
relationship to developmental stages. One set of item parameters
expresses relative difficulties among items within item classes,
which, like Rasch item difficulty parameters, are the same for
people in all stages. A second set of parameters quantifies
patterns that the Rasch model cannot express: differences in
relative difficulties between item classes for people in different
stages, such as the difficulty reversals mentioned above. Saltus
is effectively a mixture of standard Rasch models.

Mislevy and Verhelst (in press) have discussed mixture models
more generally, listing assumptions, laving out general models,
and suggesting estimation procedures. They emphasize situations
in which different subjects follow different strategies, pointing
out tnac instructional decisions can depend on how students solve
problems, not just how many they solve. The salient features of
items are those that can differentiate among users of different
strategies, mental models, or conceptions about key relationships.
An examinee is characterized by the probabilities that she
employed the various alternative strategies, and a conditional
estimate of proficiency under each. Measurement with such a model
caen indicate change that is either quantitative (e.g., the
examinee employed Strategy A on both occasions, but more
effectively at the second) or qualitacive (¢.g., she used Strategy
A before instruction but Strategy B afterwards).

Latent class modetis. Although models with continuous latent

variables have dominated educational measurement, Lazarsfeld
(1950) introduced models with categorical latent variables nearly
half a century ago. Most educational applications of latent class
models have been in "mastery" testing; one attempts to infer an
examinee’'s unobservable state--master or nonmaster--on the basis
of observable responses (Macready and Dayton, 1977, 1980). In the
more recent "binary skills" models (Haertel, 1984), examinees are
classified in terms of which of a set of skills they possess.

Thiis "true" classification is urobservable. Itewms are classified
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according to which ol the skills they require for solution. his
classification is known. Ideally, an examinee responds correctly
to only and exactly those items that require skills he or she
possesses. The st,chastic parameters c¢f the model reflect
departures from this ideal.

Except in the special case of mastery testing, computational
constraints have limited applications of latent class models to nwo
more than about ten items until recently. Information about skill
profiles in groups can be gleaned from such data, but individuals’
skills could not be inferred accurately. Improved computational
procedures have opened the door to applications with 50 or 60
items (e.g., Paulson, 1986; Yamamoto, 1987), and work with
structurally similar models in expert systems holds promise of
handling much larger problems (lLauritzen and Spiegelhalter, 1982).
Progress in this direction is vital to educational applications,
since these inferences demand more data thau low-co-high
proficiency inferences. Moreover, adaptive testing, which made
IRT measurement more efficient, will be able to make latent class
measurement practicable (Dayton and Macready, 1989:; Falmagne and
Doignon, 1988).

Componential models. The mcdels described above were

introduced with right/wrong test items, which, if construrted
carefully, vield response patterns that differentiate examinees
who tackle them in different ways. Richer information can be
accumulated if {t is possible to track intermediate products ot
solution. Consider, for example, a situation in which the binarv
skills model applies. Inferences about skill profiles can be
stronger if one can be see which subtasks were attempted and their
outcomes: overall correctness can result from one sequence of
correct operations or another, or a fortuitous mixture of correct
and incorrect operations; overall incorrectness can be caused bv a
poor plan of attack, or a flawed execution of a good plan. Early
implementations of these ideas have been worked cut bv Embretson

(1983, 1989b) and Samejima (1983).
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All of the models discussed above--tectonic plate, latent
class, and componrential models--exhibit the same cardiaal feature:
they support inferences about proficiencies other than just low-
to-high ability because, and only hecause, the user specifies
theoretically salient patterns of response other than just less-
to-more correct answers. Current implementations require
expertise in statistics as well as in the substantive area. Test
theory researchers must embed these approaches in generally
applicable computer routines, or shells so that a broader range
of users can put them into practice in the substantive areas.3
Beyond Right/Wrong, Multiple-Choice Items

Currently IRT is used alinost exclusively to draw inferences
about a low-tc-high proficiency variable from responses to
multiple-chcice test items. The preceding section discussed how,
even with muttiple-choice data, one can found inferences upon
radically different conceptions of proficiencyv. Inferences can be
made vet stronger, and decision-making more efticient, it
different kinds of data can be collected.

We have mentioned the possibilitv of exploiting the identitv
of incorrect responses to multiple-choice items, for when
particular misconceptions are probed in more than one item and we
wish to infer how an examinee is approaching tasks. IRT models
that distinguish among incorrect alternatives have been discussed

by Bock (1972)., Masters (1982), Samejima (1979). and Thissen and

Similar diffusion processes have already occurred in twn
area related to test theory. The first is IRT itself. In the
1960's, only a handful of mathematicallv talented researchers
could use IRT; now IRT is widely used by practitioners by virtue
of production programs such as LOGIST (Wingersky, Barton, and
Lord, 1982), BILOG (Mislevy and Bock, 1983), and BICAL (Wright.
Mead, an” Bell, 1980). The second area is that of linear
structural reiationships among variables with measurement errvor.
Proposing such a model and solving the equations was once
practically grounds for a Nobel prize in economics; now anvone
with access to the LISREL computer program (Joreskog and Sorbom,
1986) can routinely carry out analyses undreamed of a few decades
ago.
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traditional tests and the wholely uustructured observation of
performance in natural settings.

The most wo.k in this area a3 been carried out in the arena
¢f medical education in the form >f "patient management problems, ”
or PMPs (Assmann, Hixon., and Kacmarek, 1979). A simulated patien:
(through a written or oral dialogue, or as a live actor or a
computer model) presents the examinee witn initial svmptoms; the
examinee requests tests, considers their results, prescribes
treatments. and monitors their effects, generally attempting to
identify and treat the initiallv unknown disease. Despite their
appeal as evocators of critical problem-solving skills, FMFs do

-

not seem to provide reliable data from the perspective of standard
test theorvtic techniques (McCuire, 198%).  For the same amount ol
testing time, reliabilitv coefficients of PMP scores prove
disappointingly low compared with multiple-clioice tests.

A possible explanation of this result is that standard test
theory analvses of PMP data are not looking for the vight
patterns. Thev look at simple additive combinations of single
outcomes, rather than relationships that might sugges:

dssoclations amonyg facts in examinees’ schema, or indicate the e

of effective or ineffective problem-solving strategies. A
dictinet stream of medical research, however, does address thes

'

relationships: "expert svstems” that help health care workers wish
diagnostic problems (e . g., Pope, 1981 Shortlitfe et al.. 19 i

An expert svstem representation of a health care area is
build around associaticns amony, unobservable disease states,

observable svmptoms and test results, and outcomes o treatwent s

SoTe expert svstems express thess associations throush "tunow

logic" (Zadeh, 1983) or "belief functions™ (Shatev., 19 no . bhut b
ores tha* use conditional probabilities (Spiegethalter, e Lr
extensions of the latent class models discussed above. I oan

cducarional setting, associations would be delineated amony
substantive concepts, strategies, observable outcoomeg  gud

presceribed instruction (Clancev, 10880




There are two levels at which expert systems could be
implemented in educatioral settings. The first appears more
amenable to end-of-course or macro-level decision-making, while
the second seems better suited to an ongoing instructional svstem.

In the first. simpler, approach, an expert system is built
only for a "correct” model. An examinee’'s responses are evaluated
in terms of their efficacy at each decision point as compared with
the best possible action given present information. If scores
were also available from a standard multiple-choice test of
knowledge, one could distinguish performance problems caused by
strategic errors from those caused by knowledge deficiencies.

In the second, more ambitious, approach, not only woulid a
correct expert system be built, but examinees’ possibly "inexpert
svstems" would be inferred. Perhaps the best known example of
this type is Anderson’'s (Anderson and Reiser, 198%S) computer
programming tutor. Although more individualized instructional
prescriptions can be made in this way, inferring even selected
aspects of examinees’ schema and strategies requires far more data
than does comparing performance to a fixed expert model. A
successful system of this type would probably require a more
constrained problem space and more extensive interactions of the

learner with the simulation.

Conclusion

Einstein's theory of relativity revolutionized physics, but
it extended rather than supplanted Newton's laws of motion.
"lassical mechanics still works just fine, thank you, for building
bridges, planning billiards shots, and figuring out how to stand
up from a overstuffed easy chair. And as long as educators are
called upon to make the macro-level, linearly-ordered decisiouns
that engendered standard test theorv, standard test theorv will
continue to be useful, and will continue to be used. Recent
developments in technology, however, provide opportunities for
decision making at the micro-level more frequently and tor larger

numbers ot students . an ever before:; recent developments in

Ry




education and psychology give us conceptions of competence and
learning that can be used to guide these decisions.

Researchers in education and psychology have begun to lay the
theoretical groundwork to link testing with the cognitive
processes of learning. Meznwhile, researchers in measurement and
statistics have made breakthroughs in inferential procedures for
the models of standard test theory. To inform modern educational
decisions requires drawing together the insights from these two

strands of research--the twin foundations of a new test theory.
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