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Preface

This study is the latest step in a continuing a line of
research begun more than ten years ago. %his work has
continued the development of an algorithm for tracking
alrborne targets using measurements from an array of
infrared detector elements. Until now, the research has
only been concerned with passively acquired measurements.
This thesis effort expands this by considering the addition
of actively acquired measurements, i.e, measurements of
laser light reflected from the target. Jr 7 =
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AFIT/GE/ENG/89D-11
Abstract

This thesis is the latest extension of a line of re-
search begun over ten years ago. The purpose of this re-
search has been to develop an algorithm to track airborne
targets (aircraft and/or ballistic missiles) using forward
looking infrared (FLIR) measurements, as a means of aiming a
high energy laser.

This research deviates from past research in considering
the use of actively acquired measurements. Past research
has concentrated on the use of passively acquired measure-
ments, i.e. measurements of the target’s thermal intensity
functions (hotspots) from an array of infrared detector
elements. This research considered illumination of the
target by a low power laser. The measurement of the re-
flected laser light would then give information about the
hardbody location, and presumably an aiming point for the
high power laser.

Specifically, this thesis investigated a ballistic
missile in boost phase of flight. Measurements of the
missile exhaust plume thermal intensity from an array of
infrared detector elements were used by an enhanced cor-
relator/linear Kalman filter to produce estimates of the
FLIR image centroid location and velocity. These estimates
were then used to simulate the aiming of a low power laser

at the missile hardbody. The "pseudo-measurement'" output of

xiv




an optical sensor receiving the reflections from the missile
hardbody was then used by a second Kalman filter to estimate
the location of the missile mass center.

This thesis effort involved sensitivity and robustness
studies of the measurement noise variance in the filter
which estimates the missile mass center. These studies
indicated the filter’s relative insensitivity to changes in
the measurement noise variance; this parameter only affected
the transient time for the filter to reach the steady state
value of the mass center location. Other parameter studies
were conducted involving the dista.ice between the missile
mass center and the exhaust plume intensity center, and the
infrared sensor element resolution size. The first study
indicated decreased filter performance in locating the mass
center with increased distance. The results from the second

study were inconclusive and require further work.
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ENHANCED TRACKING OF BALLISTIC TARGETS USING
FORWARD LOOKING INFRARED MEASUREMENTS

WITH ACTIVE TARGET ILLUMINATION

1. Introduction

With the advent of the Strategic Defense Initiative
(SDI), research into the use of the high energy laser as a
weapon has intensified. The laser’s ability to concentrate
energy in a small area makes it especially attractive for
use against airborne targets (aircraft and/or ballistic mis-
siles). Any system using a high energy laser must have the
capabilities of autonomously tracking targets and accurately
pointing the laser at those targets. It is the requirement
for autonomous tracking that motivates this line of

research.

1.1 Background

The Air Force Weapons Laboratory (AFWL) at Kirtland Air
Force Base, New Mexico, is presently engaged in research
involving the use of high energy lasers against airborne
targets. In the system now under development, targets are
passively detected using a forward looking infrared (FLIR)

sensor, consisting of a 300 x 500 pixel array of detectors.




Each pixel, or picture element, detects infrared energy over
an area 15 microradians (azimuth) by 15 microradians
(elevation) sguare (14]. For this and previous work
[13,14], a subset of this array consisting of an 8 x 8 array
of pixels is used to process infrared energy for target
tracking. This subarray of pixels is defined as the track-
ing field of view (FOV) [13,14].

In the system under consideration, the laser and FLIR
sensor share a common optical aperture. The tracking
algorithm uses the incoming FLIR data to determine a
position offset between the target position and the current-
center of the FOV. A controller then zeros these offsets to
keep the center of the sensor FOV on the target. Because of
the shared aperture, centering the sensor FCV on the target
also insures the laser is pointing at the target.

In earlier research, the tracking function was accom-
plished via a standard correlation algorithm. This algo-
rithm compares the current target FLIR image with target
image data from the previous sample period. The correlation
between past and present image data is used to generate the
relative target position offsets, since a translation of the
target image in the FLIR sensor plane is assumed to repre-
sent a spatial translation of the actual target. This
algorithm has the advantages of relative real-time implemen-
tation ease, and of having relatively good tracking perfor-

mance against a wide range of targets, particularly




spatially distributed ones. However, the use of a
correlation algorithm does have some associated disad-
vantages.

First, an inherent time lag exists. This lag is due to
the time required for computation of target image correl-
ation as well as the lag associated with physical pointing
of the tracker at the target. Second, the correlation algo-
rithm is unable to distinguish between image spatial trans-
lation due to target dynamics and image translation due vo
other factors such as atmospheric jitter [10] and platform
bending/vibration [4]. Finally, the correlation algorithm
is unable to take advantage of information on target charac-
teristics, such as size or shape, which may be known a
priori or could be estimated in real time.

To overcome these disadvantages, Kalman filtering
methodology has been incorporated into the tracking algo-
rithm for the purposes of estimation and control [1-5,11-
18). By modeling *he effects of target dynamics, atmo-
spheric jitter, and platform bending/vibration, and includ-
ing them in the filter dynamics model, enhanced estimates of
target position can be produced. These estimates can then
be propagated forward to produce a position estimate at some
future time for use in laser pointing and target tracking,
thereby providing performance potential superior to that

accomplishable by a simple correlation algorithm.




1.2 Summary of Previous AFIT Research

Since 1978, The Air Force Institute Of Technology
(AFIT) has had a continuing line of research investigating
the use of Kalman filtering techniques in the AFWL high
energy laser pointing and tracking system. This research
has produced numerous theses and papers. Previous theses
[4,13,14] have summarized that body of work. That summary
is included here with modifications.

The first study, begun in 1978 by Mercier {10], com-
pared an extended Kalman filter (EKF) with a standard cor-
relator tracker. The targets were represented as point
sources of infrared energy, and the FLIR sensor image was
modeled as a Gaussian bivariate distribution with circular
equal-intensity contours. The four-state filter maintained
estimates of target position and atmospheric jitter states
in each of two FLIR plane coordinate directions. Both
position and jitter states were modeled as first order,
zero-mean, Gauss-Markov processes. For that effort, FLIR
measurement noise was modeled as consisting of background
clutter and internal sensor noise (thermal noise and dark
current). The measurement noise was also considered to be
temporally and spatially uncorrelated. The results showed
the EKF’s ability to outperform the standard correlator in
tracking long-range benign trajectory targets by about an

order of magnitude in rms tracking error.




Harnly and Jensen [2] expanded Mercier'’s work by ex-
amining target scenarios under less restrictive assumptions.
Target velocity and acceleration states were added to the
filter in order to handle less benign target trajectories,
and the FLIR plane target image was modeled with elliptical
rather than circular equal-intensity contours. Adaptive
estimation of parameters associated with the target shape
function was utilized to provide desired performance. The
measurement noise model was also modified to allow for
spatially correlated background noise. Adaptive estimation
of filter dynamics driving noise was also incorporated into
the tracking algorithm. The results indicated the filter’s
increased ability to track targets over a wider range of
maneuver scenarios.

The research conducted by Mercier, and Harnly and
Jensen had been based on the assumption that the target
image intensity function was known a priori to be composed
of a single hot spot and well modeled as a bivariate Gaus-
sian function. Singletery [16] and Rogers [15] pursued a
line of research which made no such assumption. The algc-
rithms developed used exponential smoothing of centered
target images, as an approximation to finite memory averag-
ing, to produce an estimate of the target image intensity
shape function, or template. Th:s shape function was then
used directly in the measurement model of an Kalman filter.

These algorithms were then tested using target scenarios in




which targets were represented as multiple hot spots, and
the results indicated performance comparable to that of
filters used previously on single hot-spot targets, in which
only parameters in an assumed bivariate Gaussian intensity
had to be identified rather than an entire intensity func-
tion.

Rogers also investigated an enhanced correlation tracker
which had "pseudo-measurements" as an output. The enhance-
ment was due to the current target FLIR image being corre-
lated with the intensity template described in the previous
paragraph, rather than with the previous image data. The
"pseudo-measurements" produced were position offsets between
the target FLIR image and the center of the FLIR FOV in each
of the two FLIR plane coordinate directions. These offsets
were then used as measurements provided to a Kalman filter.
The preprocessing of the FLIR data by the enhanced corre-
lator algorithm allowed the use of a linear Kalman filter
instead of the previously used EKF. This reduced the com-
putational loading when compared to the previously used EKF.
Performance was generally comparable in terms of rms track-
ing errors, with the correlator-linear Kalman filter having
lower mean tracking errors but higher standard deviations
than the EKF.

Kozemchak [3] and Millner [{ll1] continued the algorithm
development with investigations of both the EKF and Roger’s

enhanced correlator/linear Kalman filter, using more




realistic target trajectories. Both Gauss-Markov and
constant turn-rate models were considered for acceleration
representation within the filter. Because of the goal of
attempting to maintain tracking lock on harshly maneuvering
targets, the scheme used by Harnly and Jensen (2! for
adaptively estimating filter driving noise was also imple-~
mented. Both filtering schemes exhibited good tracking
performance for target maneuvers up to five g’s. However,
the abrupt onset of harsh maneuvers led to serious perfor-
mance degradation.

In attempting to solve the problem of tracking harshly
maneuvering targets, Flynn [1] proposed the use of a multi-
ple model adaptive filter (MMAF). Suizu [17], following up
on Flynn’s research, implemented a bank of two elemental
Kalman filters. One filter was tuned for benign target
maneuvers and accepted measurements from a narrow (8 X 8
pixel) FLIR FOV. The second filter was tuned for dynamnic
target maneuvers and used measurements from a wide (24 x 24
pixel) FLIR FOV. Using a Bayesian probabilistic weighted
average of the elemental filter outputs [7:129-136], the
MMAF tracker was able to maintain lock on targets whose
dynamics ranged from benign to 20-g pull-up maneuvers at 20
kilometers. The elemental filters were implemented using
both the EKF and the enhanced correlator/linear Kalman
filter. Performance results were comparable, with the

correlator/linear Kalman filter having smaller mean errors




and larger standard deviations than the EKF, as seen in
earlier work of Rogers.

Loving [5] expanded Suizu’s MMAF implementation by
adding a third elemental filter to the MMAF structure. This
filter was tuned for intermediate target dynamics and used
measurements from a narrow (¢ x 8 pixel) FLIR FOV. Loving
also compared a Maximum A Posteriori (MAP) MMAF scheme to
the Bayesian MMAF structure previously used. The MAP struc-
ture differs from the Bayesian structure in using only the
estimates from the elemental filter with the highest proba-
bilistic weight, rather than a weighted sum of elemental
filter outputs as in the Bayesian MMAF. The addition of the
third filter enhanced the MMAF tracking performance. No
significant difference in performance was found between the
Bayesian and MAP MMAF algorithms.

Netzer [12] continued further research into the three-
filter Bayesian MMAF algorithm. After examining the steady
state bias errors produced in the more benign of the two
FLIR plane directions when the target made a 20-g turn, he
determined the need to investigate an MMAF structure with
elemental filters tuned for target maneuvers predominantly
in either azimuth or elevation. This segregation of maneu-
ver direction into diff.rent elemental filters allows the
MMAF algorithm to distinguish maneuvers 1n these two direc-
tions. This enables the tracker to expand the FOV in the

critical direction on a harshly maneuvering target. The




tracker can then maintain lock on a maneuvering target 1in
the critical direction while still producing accurate esti-
mates in the direction of benign maneuvers. Netzer also
recommended the use of a constant turn rate process for
modeling acceleration at close ranges.

Tobin {18] further expanded the research into MMAFs
using Netzer'’s recommendations. He added two elemental
filters, tuned for maneuvers in azimuth and elevation, to
the three-filter bank. A comparison between constant turn
rate and Gauss-Markov processes as acceleration models in
the elemental filters was also made. Although the results
indicated smaller steady state errors for the constant turn-
rate model, the Gauss-Markov model filters had consistently
better transient error performance. The performance analy-
sis of the five-filter-bank MMAF indicated the tracker’s
ability to maintain target lock during a jink in elevation
while still producing superior tracking performance in the
azimuth direction over an MMAF without any directionally
tuned elemental filters. This was a preliminary feasibility
study, with an eventual goal of using an arbitrary direction
for maneuver acceleration, as opposed to strictly azimuth or
elevation.

Leeney [4! continued the MMAF investigaticn by adding
states to the truth model to account for bending/vibration
effects in a large space structure. Although bending/vibra-

tion states were not added to the tilter model, the




elemental filters were retuned using the updated truth
model. The retuned MMAF tracker exhibited satisfactory
tracking performance against targets undergoing dynamic (10-
g) maneuvers, provided that the values given to the para-
meters assoclated with the bending/vibration effects are on
the order to be expected. Leeney also examined the use of a
higher sampling rate (50 Hertz versus 30 Hertz), but found
the additional computational burden outweighed the
performance increase. A preliminary investigation into the
use of a rotating rectangular (24 x 8 pixels) field of view
(RRFOV), in which the elongated side of the FOV would be
aligned with the estimated acceleration direction, was done.
The rationale was to replace the two rectangular FOV
elemental filters of Tobin’s research with a single filter.
The initial investigation revealed that acceleration state
estimates were too noisy for accurately estimating the
maneuver direction:; tne more precise velocity estimates were
used instead, with the long side of the rectangular FOV
being aligned perpendicular to the velocity vector.
Leeney’s prelimirary work did indicate enough promise with
this idea for further exploration

Norton [13] implemented the RRFOV in his research. 1In
addition, he also considered the effect of filter dynamics
driving noise strength versus FOV size on ‘ilter perfor-
mance. His results showed that cholce of a larger dynamics

driving noise strength in the direction or maneuver was more

10




important than increased FOV size in improving filter per-
formance. By using an 8 x 8 pixel rotating FOV (instead of
an 8 x 24 pixel rectangular FOV) in combination with larger
values of dynamics driving noise in the direction of maneu-
ver, an improvement in performance was achieved. Norton
also investigated a means to rotate the dynamics driving
noise strength "Q" matrix mathematically so that the larger
"Q" values stayed aligned with the acceleration direction.
A scheme for simulating the physical rotation of the FLIR
sensor plane to keep one axis aligned with the acceleration
vector was also investigated. Preliminary results from
implementation of these various schemes into an MMAF algo-
rithm were encouraging.

Most recently, Rizzo [14] used Norton’s results to
investigate a ballistic missile tracking scenario. Inter-
ested in "pogo" phenomenon, where the missile exhaust plume
osciliates along the missile hardbody longitudinal axis, he
modeled this as a second order process. Two parameters,
natural frequency and oscillation amplitude, were studied,
and elemental filters from a four-filter bank were tuned for
different combinations of these two parameters. A compari-
son between a rotating FOV and a diagonal rotating FOV, 1in
which the maneuver direction was aligned with the FOV diaco-
nal rather than one of the FLIR plane axes, was also made.
The results indicated superior tracking performance using

the diagonal rotating FOV.
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For his research, Rizzo used Norton’s eight-state ele-
mental filters as benchmarks for comparison. These filters
were then augmented to ten states by the addition of two
states associated with "pogo" effects. Both the eight and
ten-state filters were then tuned against Norton’s l2-state
truth model, which was increased to 14 states by the addi-
tion of the same 2 "pogo'" states. After tuning both sets of
filters, Rizzo observed the performance of the eight-state
filters to be superior to that of the ten-state filters.
Since the ten-state filters had knowledge of the "pogo"
effects which were also included in the truth model, and
should have outperformed the eight-state filters which had
no knowledge of the "pogo" effects, a preliminary stochastic
observability analysis [6:243] was conducted to determine
possible causes for this anomaly. The analysis revealed
that target velocity and acceleration states were almost
unobservable for the specific class of missile targets he
was considering. Recommendations for future work included
reducing the order of the filter models, and remodeling the
velocity states as first order Gauss-Markov processes.
Because of the performance anomalies discovered, Rizzo did

not implement an MMAF structure.

1.3 Objectives
Previous research at AFIT has been directéd toward the

goal of producing an autonomous tracker. The progressinn of
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past research shows a clear trend toward development of an
algorithm that tracks aircraft and ballistic missiles under
increasingly realistic conditions. These efforts have
concentrated on tracking targets using only passively ac-
quired infrared measurements. Unfortunately, by doing sco,
the filter has no information with which to estimate the
missile hardbody location, as separated from the exhaust
plume high intensity peak. This thesis effort will consider
using actively acquired measurements as well, in ordzr to
help resolve the hardbody itself.

Specifically, the scenario investigated will consist of
tracking a ballistic miscile in boost phase through the
atmosphere. The ground sensors will consist of a FLIR
sensor detecting exhaust heat and an additional optical
sensor that detects the returns from a low power laser
illuminating the missile hardbody. By observing the laser
returns, some additional information to help discern the
missile hardbody from the exhaust plume is provided to the
filter. The specific objectives of this thesis effort are

outlined below.

1.3.1 Observability Analysis. Based on Rizzo’s recom-

mendations |[l14)], a stochastic observability analysis [6:243]
will be conducted. Because of the observability-like prob-
lem encountered by Rizzo, Norton’s eight-state filter [13)

will be used for this study. The analysis will indicate

13




which states are least observable, and thus the candidates
for elimination in an order reduction effort to address this
issue. Rizzo [14:7-4] indicated target acceleration and
perhaps velocity as the two most likely candidates. Once
the appropriate reduced orcder filter has been determined, it

will be used as the benchmark filter for this investigation.

1.3.2 Active Illumination Modelling. In the scenario

considered for this thesis effort, illumination of the
missile hardbody 1is accomplished by sweeping a low power
laser up and down the estimated missile velocity vector,
starting from the estimated centroid of intensity. The
dithering of the laser would illuminate all or some part of
the missile hardbody. By viewing the speckle or other
properties of the return signal, there should be some indi-
cation of the line defining the boundary between the
hardbody and the spatial region outside the hardbody. For
this preliminary work, a modelling of the physical process
of target illumination by a laser will not be attempted.
This effort will instead concentrate on specifying the form
of the measurement data presented to the filter from this
process.

The rationale for using laser illumination is to provide
information to the filter about the location of the missile
center of mass (CM) relative to the FLIR plane intensity

image centroid. The measurement torm used in this thesis
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would present this as a measurement of the CM offset from
the image centroid along the estimated velocity vector. A
separate single state filter will be used to estimate the

offset distance, based on this measurement.

1.3.3 FLIR Filter. The reduced order filter from

Section 1.3.1 will be established as the basic filter used
for all investigations in this research. Before beginning

any of the parameter studies involving the single-state

filter, the reduced order filter will be tuned using Nor-
ton’s twelve-state truth model. The truth model will be
changed to reflect a ballistic missile target, rather than

the highly dynamic aircraft target used by Norton.

1.3.4 Single-State Filter Performance. Once the

filter from Section 1.3.3 has been tuned for best tracking
performance, a series of parametric studies involving the
single-state filter will be performed. A sensitivity study
will be conducted first to determine the effect of changinag
the laser reflection measurement noise level on the single-
state filter’s performance. For this sensitivity study, the
filter will be correctly informed of the changes made in the
"real world" tracking scenario. Once the sensitivity study
has been completed, a robustness study involving reflection
measurement noise level will be performed, in which the
filter will not be informed of changes in the '"real world".

A series of parameter studies, involving variation of FLIR

15




sensor sensitivity, and separation distance of image cen-

troid from missile CM, will complete the analysis.

1.4 Thesis Overview

This chapter has reviewed past research and enumerated
the objectives for this thesis effort. Chapter 2 considers
the truth model and develops the simulation model used in
this and past investigations. Chapter 3 presents the de-
tailed filter development. Chapter 4 develops the complete
algorithm used in this research and discusses the manner in
which the results of the analyses will be presented. The
results of the performance analyses follow in Chapter 5.
The final chapter summarizes the conclusions and makes

recommendations for future study.
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2. Truth Model

2.1 Introduction

A truth model is the result of an attempt to describe
the behavior of real world phenomena of interest in an
accurate mathematical form. In many cases, the complete
description of true cystem behavior may require an infinite
dimensional state space model. The number of truth model
states must, of necessity, be finite dimensional, capturing
enough of the dominant characteristics of system behavior
for an accurate representation, while at the same time not
becoming too large to be computationally unmanageable. In a
simulation, such as the one used in this thesis effort, the
truth model provides the basis for depicting the true '"real
world" dynamic behavior of a system. The truth model
becomes the standard against which the performance of the
Kalman filter is evaluated.

For this thesis, the true dynamics of the apparent
target image in the FLIR plane are due to the summed effects
of true target motion, atmospheric jitter, and hardware
vibration/bending. The dynamics are represented as changes
in the FLIR plane x and y coordinates (i.2., azimuth and
elevation) of the target intensity image. The position of

the target image at any one time 1is given by:

+ X (2=-1)

M Vf\ (2=2)
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image centroid coordinates

X

S
<
I

Xeo Vp = component of Xer Ve due to actual target dynamics
Xy, ¥, = component of x., Y, due to atmospheric jitter
Xpo Vy = component of x., Y, due to mechanical bending/

vibration of hardware

This chapter will describe the state space structure of
this truth model. The twelve-state dynamics model necessary
to account for the terms in Equations (2-1) and (2-2) will
be developed first, followed by the appropriate measurement
model. The chapter will then discuss the simulation space
used in this thesis effort. This discussion will include
descriptions of the coordinate frames, target models, and

derivations of all the measurement simulations.

2.2 Dynamics Model

The twelve-state dynamics model used for the truth model
consists of a two-state target dynamics model, a six-state
atmospheric jitter model, and a four-state mechanical vibra-
tion/bending model. This model is represented by the fol-
lowing first order linear, stochastic differential equation:

x(t) = Frag (L) + Brup (L) + wr(!) (2-3)
where:
Fr = 12 x 12 time-~invariant truth model system
plant matrix

B, = 12 x 2 time invariant truth model

18




input distribution matrix

X (t) = 12-dimensional truth model state vector
u-(t) = 2~dimensional truth model input state vector
wr(t) = 12-dimensional zero mean, white, Gaussian

noise vector with autoccorrelation function:
E(wy(£)Wh(t+7)1=0,8(7). (2-4)

The equivalent discrete-time model (6] corresponding to

Equation (2-3) is of the form:

X (L) = op(tig t)%p (L) + Brgurg(l) + wrglly) (2-5)

where the state transition matrix &t 10t;) is determined

by solving the differential equation [6:40-41):

der(¢,t;) _
g = Frep(t,t)) (2-6)
using the initial condition: or(t;,t) =1

The discrete-time input distribution matrix in Equation

(2-5) is:

t.
= -1 5
By = jt &y (t,.;, T)BrdT (2=7)
3

Finally, the vector gquantities in Equation (2-5) are:
X (t;) = l12-dimensional discrete-time truth model
state vector
ur () = 2-dimensional discrete-time input vector
Wyt = 12-dimensional discrete time, zero mean

white Gaussian nolse vector with covariance:
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Qrq = I;'l %-(tl-,,'r)QT@,T-(tz*,,T)df (2-8)

where Qf is defined in Equation (2-4).

As previously mentioned, the truth model consists of a
target dynamics position state, three atmospheric Jjitter
shaping filter [10] states, and two mechanical bending
states, in both x and y FLIR plane directions. In augmented
form, the truth model state vector becomes:

X1

v = | % (2-9)
%,

The discrete time truth model state transition matrix is:

QCI 232 0’2:(6 O'Z:w
& = 05z g, . Ousye (2-10)
Ofuz,Z) Ohxb ¢b

Bry = 0.z (2-11)

and the discrete-time truth model white Gausslan noise

process 1s given by:

w . P
w/‘d = da R (2-12)
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where:
= 2~dimensional target dynamics state vector

£

X, = 6-dimensional atmospheric jitter state vector
¥ = 4-dimensional bending/vibration state vector
W) = 6-dimensional discrete time, white Gaussian
noise related to atmospheric states
W (L) = 4-dimensional discrete-time, white Gaussian

noise related to bending states

After examining Equations (2-5) and (2-9) to (2-12), the
truth model state dynamics representation is observed to be
composed of three totally independent partitions. This
allows the dynamics, jitter, and bending models to be devel-
oped separately. The next subsections details the develop-

ment of these three models.

2.2.1 Target Dynamic States. For this and previous

thesis efforts [1-5,10-18], target dynamics are modelled as
they occur in the FLIR plane. The FLIR image plane is
modelled as being coincident with the array of FLIR sensor
elements, and perpendicular to the sensor-target line-of-
sight (LOS) vector. Since the sensor-to-target range is
large, the azimuth and elevation displacements from the FLIR
image plane origin are directly proportional to "pseudo"
azimuth and elevation angles. These "pseudo" angles, alpha’
and beta’, as well as the FLIR plane, are developed in

Section 2.3.4.
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To convert the 'pseudo" angle measurement units of
microradians to the displacement distances in pixels, a
pixel proportionality constant is used. This constant
represents the angular FOV of a single picture element, or
pixel. Continuing with Rizzo’s work [14], a value on the
order of 15 microradians/pixel was initially used in this
thesis work.

Using the assumptions that the azimuth and elevation
rates remain essentially constant over any sample period,

the discrete target dynamics model is:

Xe(li) = % () + ——— - (2-13)

- {2-14)

- { I 0 . .
a’(t) = Y%, measured in micro-radians/second and

constant over the time interval [(; ¢, ;]

. 13’ . . .

BTty = 2§>’ measured in micro-radlians/second and
constant over the time interval [{, ¢, ;]

At = sample time interval ¢, ,- ¢,

k, = pixel proportionality constant,

/

15 micro-radians/pixel

Note the minus sign in Equation (2-14). This 1s due to the
difference in the y axis orientations between the FLIR plane

coordinate frame and the inertial coordinate frame. l'hese
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coordinate frames are shown 1in Figure 2.1 and developed in
Section 2.3.1.

Arranging these equations in state space form yields:

(‘z/) [ ] (4 i, O & (¢, 2-15)
o : (2-15)
Vet o -1 By

Using the matrices of Equation (2-15) and the block form
of the overall truth model, the upper left hand block of

Equation (2~-10) is:

10
[ ] (2-16)
01

and the upper block of Equation (2-11) is:

| &8 ¢
“p
Brg = at (2=17)
0 -2t

and the deterministic input vector 1n Eguation (2-5) 1is:

ra(f 1

¢ 2-18

The truth model missile trajectory simulation is a
continuation of that used by Rizzo [l14]. The underliying
dynamics model [14:3-10] 1s that of a polnt mass intluenced
by a thrust force and a gravitational torce, with all other

external ftorces assumed negligible.




The formulation of the truth model target dynamics
states in deterministic state space fcrm such as Equation
(2-15) has some advantages. First, although the truth model
trajectory could have been stored as FLIR plane position
coordinates for each sample time in the simulation, rather
than inputting the angular rate inputs to produce such a
position time history, the present form is more flexible in
supporting a wide variety of missile trajectories. For
instance, if a stochastic, rather than deterministic, dynam-
ics model is desired, this can be implemented easily by the

addition of a noise term to Equation (2-15).

2.2.2 The Atmospheric States. Using power spectral

density characteristics, it can be shown that the atmos-
pheric jitter phenomena can be approximated by the output of
4 third-order shaping filter driven by white Gaussian noise
{10}]. The Laplace domain representation of the shaping

filter transfer function is given by [10:12]:

xa(s) K AB® ‘
ey T (2-19)
wqls) (s+A) (s+B)"
where:
X, = atmospheric jitter position in one direction of the
FLIR image plane, the output of the shaping filter
defined in Equation (2-19)
w, = zero mean, unit strength, white Gaussian noise

K, = gain, adjusted for desired jlitter RMs value

hS
I

break trequency, 14.14 rad/sec 10!

>
i

break trequency, 659.5 rad/sec |10
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The inverse Laplace transform of Equation (2-19) is a
third-order, linear differential equation. This can be
expressed as three coupled, first order, linear differential
equations in state space form. The atmospheric jitter ef-
fects can be modeled identically in both the x and y direc-
tions. The augmented six-state truth model for atmospheric
jitter expressed in Jordan canonical form is [10]:

X () = F %, (t) + Gyw,(¢) (2-20)
where:

X,(¢) = 6-dimensional state vector

il

F, 6 X 6 time-invariant plant matrix

W, (t) 2-dimensional, zero mean, white Gaussian
noise process with unit strength and inde-
pendent components, described as:

E(wa(t)] = 0

1 0
Elwo(t)ywh(t+1) = Q,8(T)= [O l]ém

The six atmospheric states in the state vector correspond to
the low frequency pole and the higher frequency double pole
in the x and y FLIR plane directions. The atmospheric plant

matrix is defined in Jordan Canonical form as [10:13]:

—-A 0 0 0 0 0 7
O -3 1 0 0 0
0O 0 ~8 0 0 v
| ) - (2-21)
a O 0O 0 -A 0 O
0O 0 0 0 -8 1
. 0O 0 0O U 0 =2 _J
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and the noise distribution matrix is [10:13~-14]:

— G, © -
Gj 0
G, = 2=-22
N G;
L. Y 63 -
where:
_ KaAB®
I (A-B)°
N K AB*
G, = —f——5=<
3 T (A-B)

The equivalent discrete-time model associated with
Equation (2-20) is the atmospheric jitter partition of

Equation (2-5) and 1is given by:

X{z(tv,]) = éq(tpjltl)xq(tz) + wdd(tl) (2_23)

Mercier [10] showed that the state transition matrix derived

from the time-invariant plant matrix of Equation (2-20) is:

m ., O 0 0 0 0
0 "’azz qj(ZZJ’ v v 0
o (D) = v 0ty v (2-24)
(Bf) = -
0 0 0 B, 4, 0
0 0 0 U 9,56 Py
0 0 0 0 0 b
- 200 .
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where:
bar1 = Pagq T SXP(-ALL)
Puon = Pus55 = €XP(-B4L)
b,03 = ®y545 = Blexp(-B8Af)
Pa33 T Paps = EXP(-BAL)

The six-dimensional, zero mean, discrete-time, white,

Gaussian noise W, (t,) has statistics defined as:

Flwg,(£,)] =0 (2-25a)

£ tywl (t = = [l ¢ G.0Glel (¢ d
[(WaaUEW (£ 1 = Quy = [57 84(t1.5, )GQ,GLE (¢, 5, VAT (2-25D)
L

2.2.3 Bending/Vibration States. Leeney [4] recently

added mechanical bending states to the truth model. These
states were added to account for vibrational effects in the
FLIR data that occur when the sensor is mounted on a moving
non-rigid platform. Based on AFWL-conducted tests, Leeney
concluded that bending effects in both the x and y FLIR
directions could be represented by a second order shaping
filter, driven by white Gaussian noise. The Laplace domain

transfer function of this shaping filter is represented by

(6:33]:
X (s) K, w:
(3] T et vt (2-26)
) STH2L W s Wiy
where:

xp = shaping filter output, the FLIR plane positional

offset due to bending/vibration
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w, = zero mean, unit strength, white Gaussian noise
with an autocorrelation of:
E{wy (E)wy(E+7)) = @8(L=1); Q@ = 1
Ky = gain adjustment to achieve desired root mean
square (RMS) bending output; Kg = 5x10 °°

(Note: Kg is given here because the strength of the
bending white noise is expressed in terms of this

parameter, rather than Kb)

9% damping coefficient, = 0.15

@np undamped natural bending frequency, w rad/sec

Leeney ({4:35] determined that the x and y directions could
be treated independently and augmented them together to form
a four-state model. The linear stochastic differential

equation describing the bending/vibration effects is:

¥ (L) = By (i) + Gw,(¢) (2-27)

where:
X (t) = 4~dimensional state vector
F, = 4 x 4 time-invariant plant matrix
wW,(t{) = 2-dimensional, zero mean, white Gaussian

noise process with independent components of

10
unit strength, Q = [ ]
01

4 x 2 noise distribution matrix

Gy

The bending plant matrix is defined as [4:142}:
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0 1 0 0
- 2 o
e - W, Zwa"Zb 0 0 ,
b 0 0 0 1 (2-28)
0 —Wnpt ~2wp

and the noise distribution matrix is [4:142]:

0
2
wnbkp 0
2
G Wnp kp

(Note that 4, is the pixel proportionality constant)

p

The equivalent discrete-time model for Equation (2-27) is
of the form:

¥ (Lig) = Rl b))% (L) + Wy (L) (2-30)
where:

" by by, O 0T
bpy Ppg O O

(2=31)
b1 P

L O O By Dy ]

and

o
5.
%1 = exp(—obAt)[cos(wat) + O—1)51n(wat)]

by = exp(-m%ﬂl)[gzsin(wat)]

o c .
Sy, = exp(—obu)[—l—(@%msm(wbm
T _ . i
®b4 = eXp(-ObAt)(cos(wa{) - %SLn(waf);

A = sample time interval (¢

e T b
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0, = real part of the root of the characteristic
equation in Egquation (2-26)
wp = 1lmaginary part of the root of the
characteristic equation in Equation (2-26)
The four-dimensional, zero mean, white Gaussian noise pro-
cess of Equation (2-30) has an equivalent, discrete-time

representation with statistics given by:

t}-
Elwg(t)Wh(t)1 = 0y = I;; @ (1,1, T)GQGL®) (¢, T)dT (2-33)

2.3 Simulation Space

In order to simulate the operation of a FLIR sensor
accurately, a "simulation space" has been developed for use
on a digital computer. This simulation space has two
purposes. First, the representation of a realistic target
trajectory through three-dimensional space can be achieved.
Second, the simulation space provides the means of
mathematically translating the target infrared image and
velocity vector in three-dimensional space onto the two-
dimensional FLIR image plane. These translations will be
discussed in this section. However, the coordinate frames
which provide the basis for these transformations will be

presented first.

2.3.1 Coordinate Frames. The following coordinate

frames are used in the simulation of the operation otf the
FLIR sensor on a digital computer [l4:3:23-24]:
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Inertial Frame:
Origin: location of the FLIR sensor

Axes: e, - due north, tangent to the earth’s surface,

defines zero azlimuth

- inertial "up" with respect to flat earth

ey

approximation

e, - vector completing right-hand coordinate set,

defines 90: azimuth

Note: The azimuth angle (a) is measured eastward trom e,.

The elevation angle (B) is measured "up" from the
horizontal plane defined by e, and e,.
Target Frame:
Origin: center of mass of the target
Axes: e, - along the true velocity vector
€y - out the right side of the target,
perpendicular to e,
€,y — vector completing the right-hand ™~
coordinate set
Note: ‘'u’ - along the velocity vector
‘ou’ - perpendicular to the velocity vector
‘ppu’ - perpendicular to both of the above

a - B - r Frame:
Origin: center of mass ot the target

Axes: e, - coincident with the true sensor-to-target

LOs vector.
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ey, ey ~ define a plane perpendicular to e,,
rotated from inertial e, and e, by the

azimuth angle (a) and elevation angle (R).

FLIR Image Plane:
This is the FLIR image plane defined by the e, and

ey unit vectors. Because of small angle approximations,

the "pseudo" azimuth and elevation angles, a‘and B’ as

shown in Figure 2.1, measured with respect to the FLIR LOS
vector, are linearly proportional to the x and y cartesian
coordinates on the FLIR plane. The x and y coordinates are
distances, in pixels, from the center of the FLIR FOV.
Observing the FLIR plane from the inertial origin, x is
positive to the right and y is positive down. This conven-

tion is used to maintain a right-handed coordinate system.

The inertial and target frames, as well as the FLIR image
plane, are illustrated in Figures 2.1. and 2.2. Note that,
for interpreting the projections in Figure 2.2, the e.
direction is not necessarily in the FLIR image plane; this

will be developed further in Section 2.3.3.

2.3.2 Target Model The basic target model used for

this and previous theses [14] is a planform with two inten-
sity functions. The spatial relationship between the two
intensity functions is shown in Figure 2.3. The displace-

ment of the two Gaussian intensity function centroids along

32




|LP;

(S

[nertial

Fooane

FLIP ptone

L=

Ve tag

Flgure 21 The FLIR Plane

33




o s
L -
-
ot
- -
~
———————
—>
[
P \
- -
T o
N
o -

—

L=

veotor

FLIR Plane
Figure 2 The Target bFrame

34




35

1
l
SN !
‘ |
i
]
!
!
A2 |
I
YR - t
CENTROID . |
e - E’P\.

R

2.
. B . . B = 5 - t ) - H 5 ~me t
(iaus<1an Llsplacemcnt Ulvpljcmnen [ 1spilacemsnt |
[ntensty cf Centrond of Centrord of Centrond J.
Functron Hl',.‘ll(_g N dll)lll‘é\ t:'[)\ ARERNIE)) h‘l‘}|\ “
: ! A meters Dometers .ometers !
| '
I — - o S - - - e - |
|
> - |
! SO meters DY et e o= o Lo s !
:
|

Frooure J 2 Gaussran Inrensrts Fan Lion Drstoabntions




the e. axis was based on the assumption that the dispersion
of the exhaust plume in the e.. direction 1s approximately 20
times the radius of the missile [14]. The centroid of the
first intensity function is located o5 meters behind the
center of mass of the missile. This distance was chosen tc
simulate the composite centroid of the exhaust plume being
close to the missile exhaust nozzle, using the assumption
that the distance from the missile center of mass to the end
of the missile is 20 meters. The second intensity function
is located 110 meters from the center of mass. The rela-
tionship between the missile center of mass and the centers
of these intensity functions remain fixed in the target
frame during a simulation, and is indicated in Figure 2.3.
As was previously indicated in Section 2.2.1, any external
forces acting on the missile other than thrust and gravita-
tional forces are assumed negligible. Therefore, sideslip
angle and angle of attack are considered to be zero. These
simplifications allow the semi-major axes of the elliptical
constant-intensity contours of each of the infrared inten-
sity functions to be aligned with the target’s velocity
vector, as illustrated in Figure 2.4. As noted in previous
thesis efforts [12], this yields a simplification of the
simulation space geometry while retaining the essential
features of the trajectory simulation necessary for the

pertormance analysis of the tracker.
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2.3.3. Target Image Projection onto the FLIR Plane.

During the simulation, as the target propagates through
three-dimensional inertial space, the output of the FLIR
detector elements in the array is simulated by projecting
the target’s two intensity functions onto the FLIR plane.

In this and previous research ([13,14], each of the intensity
functions remains fixed with respect to the target frame,
while the locations of the intensity functions in the FLIR
frame change as the target’s orientation relative to the
sensor also changes. For simplicity, the location of each
of the intensity functions (hotspots) is initialized in the
target frame as a displacement from the missile center of
mass (Figure 2.3). To orient the intensity functions in the
FLIR coordinate frame, they are rotated by the target orien-
tation angle o, (Figure 2.4).

Consider the geometry of Figure 2.5. This figure shows
the geometrical relationship between the current target
image and a "reference target" image in the FLIR plane
(Figure 2.3 or 2.4). The reference image 1is oriented to
correspond to the largest apparent planform at a given
range. Using Figures 2.4 and 2.5, the current single hot-

spot image is defined as [£:37]:

Opy = Upuo[r‘] (2=-34)
Oy = l, '( puo 00y = Oyyglcosy

! Voins L 1 e

= oyt Lo~ y  (AR=1) {2=35)
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where:

vor %00 the initial dispersion of the target

intensity function along e, and €y in the

target frame of the reference image

v Gy the current dispersions of the target image

initial sensor-to-target range of the
reference image

current sensor-to-target range

v = target inertial velocity vector

v = magnitude of v

V ;ps = projection of v onto the FLIR plane;

the component of v perpendicular to the

LOS vector

v.,0s = magnitude of Vv ;,¢i v pe=\& + B

Yy = angle between v and the FLIR plane
%o , .
AR = z=—: aspect ratio of the reference 1image
puUo

Equations (2-34) and (2-35) define the dispersion along the
principle axes of the intensity function’s constant-inten-

sity ellipses as seen by the FLIR sensor (Figure 2.4). Such

a description is accomplished for each of the two intensity

functions of Figure 2.3.

2.3.4. Veloclity Projection onto the FLIR Plane.

The deterministic input vector,lhd(m) = {d’(ﬁ) B’(Q)l’ in

Equation (2-5), is the projection of the target’s 1lnertial
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velocity vector onto the FLIR image plane. Harnly and
Jensen [2) demonstrated that this projection is based on the
geometry illustrated in Figure 2.6. From Figure 2.6, it can

be seen that:

a(t) = arctan [igi;] (2-36)
Taking the time derivative of Equation (2-36) and using
the fact that the sensor-to-target range is large so that
a(t) = a’(¢) yields:

G (1) = a(t) = x(t)uz(t)~z(t)ux££1 (2-37)
" () +22 (1)

where:

Uy,U, = components of the target’s inertial velocity

in the e, and e, directions

In a similar development:

_ y(t) _
B(¢) = arctan [’b(t) (2-38)
. . ra(E)u, () =p ()7 x(8)
Be(t) = Bty = 2V A (2-39)
re(t)
where:
. XD+, (L)
Tptl) = oty

c
i

y component of the target’s inertial velocity in

the ey, direction

Equations (2-37) and (2-39) define the deterministic input
vector uy,(!;) in the truth model dynamics difterence

equation, Equation (2-5).
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2.4 Measurement Models

The realistic modelling of measurements of real-world
phenomena is an important feature of any simulation. This
section of the chapter will describe the methed for simulat-
ing the measurement output from each infrared detector
element in the FLIR array which has been used in previous
efforts, as well as in this effort. The method for simulat-
ing the output from an optical sensor which receives low
power laser light reflected from the missile, as developed

for this thesis effort, will also be discussed.

2.4.1 Infrared Measurement Model Information on the

target is obtained by measuring the average intensity of the
infrared energy received by each detector element in the
FLIR array. The target’s apparent infrared image or "inten-
sity function" on the pixel array of detectors is the col-
lective sum of effects due to target exhaust plume infrared
radiation, background noise, and sensor noise.

Consider the energy radiated from a target with a single
intensity function. The infrared intensity function on the
FLIR image plane can be modelled as a bivariate Gaussian
distribution with elliptical constant intensity contours
[2]. This bivariate Gaussian intensity function is given by

the following equation [13]:

TGV i U Y i () T = ] €XPt=0.5[dxby 1P “[axdv]T 1 (2-40)

43




where:
Ax = (x—xpeak)coseT + (y-ypeak)51n67

BY = (V¥ peqi)COSOr = (X=Xp0q;)S1n0p

© = target orientation angle between the projection

of the velocity vector onto the FLIR plane

and the FLIR plane x axis; See Figures 2.5 & 2.7

x,y = reference coordinate axes on the FLIR plane

Xpmw'ypmm = coordinates of the peak intensity of the

single Gaussian intensity function

I max = Maximum intensity of the function

P = 2 x 2 target dispersion matrix whose

eigenvalues (o0, and Tpy) define the dispersion

of the elliptical constant intensity contours
(along the velocity vector and perpendicular
to the velocity vector) in the FLIR plane

(see Section 2.3.3)

The composite FLIR plane image intensity function,
represented as the difference between two individual inten-
sity functions for a missile exhaust plume, is shown in
Figure 2.7. To form the characteristic crescent shape of a
missile plume, the rear individual intensity function is
subtracted from the forward intensity function. Since the

intensity value from an FLIR sensor element cannot be nega-
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tive, the simulation software sets any calculated negative
intensity values to zero.

The intensity measurement produced by each sensor pixel
is the average infrared energy intensity on that pixel.
This intensity is the sum of the target’s intensity func-

tion, spatially correlated background noise, and FLIR sensor

noise. The output of the sensor pixel in the /' row

and &% column of the array at time ¢, is [14]:

1 .
(t) = o I,0x,v, ty, (¢,
Z it Aplplxegk< 10XV X peqpe (1)) Vpcakl( i)

'12[X,erpeak2(tg),Vpeakz(ff)J>dx dy
gt by () (2-41)
where:
2 (t;) = output of pixel jk, average intensity
on that pixel
Ap = area of one pixel

1,,i, = intensity function of the first and second
Gaussian intensity function (see Filgures 2.3

and 2.7)

coordinates of any point within pixel /&

x
AN
i

= coordinates of maximum intensity of the tirst

Gaussian intensity point

coordinates of maximum intensity of the second

it

Gaussian intensity point

n,. () = eftect of internal FLIR sensor noise on pixel Jjk
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%k(QJ = effect of spatially correlated background noise

on pixel jk

The sensor error gﬂxti) is the result of thermal noise

and dark current in the infrared detectors. This error is

assumed to be both temporally and spatially uncorrelated
[14].

The background noise %k(ﬂ) is represented as a
spatially correlated noise with radial symmetry, whose
correlation decays exponentially. Harnly and Jensen [2]
used a correlation distance of approximately two pixels in
the FLIR plane, and simulated this by maintaining non-zero
correlation coefficients between each pixel and its nearest
two neighbors in all directions.

By concatenating all 64 values of %k (corresponding to

an 8 x 8 pixel field of view) into a 64~dimensional vector
b(¢;), the spatially correlated background noise is

modelled as [14]:

b(t;) = "AR b’ (¢;) (2-42)

R = 64 x 64 correlation matrix of the discrete,
zero mean, white Gaussian vector noise process b(¢;)
b’ (¢,) = 64-~dimensional, discrete, zero-mean, white
Gausslan vector noise process with the

correlation matrix | S

= Cholesky square root
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A detailed development of this spatially correlated
noise process as well as the FLIR sensor noise process can
be found in the work of Harnly and Jensen {2]. It is
mentioned here only for completeness in describing the truth
model. The actual parameters used for the sensor error and

the background noise will be detailed in Chapter 4.

2.4.2 Laser Reflection Measurement Model For this

initial effort, no attempt was made to model the physical
phenomena involved with laser light reflected from the
missile hardbody being received by an optical sensor. Since
the purpose of reflected laser light would be to provide
information on the location of the missile center of mass,
an attempt was made to model the information about the
center of mass which would be derived from reflected laser
light.

The scenario for development of the missile center of
mass measurement is a continuation of that used by Rizzo
[14]). A ballistic missile in boost phase is tracked using
measurements from the FLIR sensor. The "pseudo" measure-
ments derived from the FLIR sensor measurements and enhanced
correlator are input to a Kalman filter, which provides
position and velocity estimates of the infrared image cent-
roid of the exhaust plume. The enhanced correlator will be
described in Chapter 4. These estimates are then used to

aim a low power laser along the filter estimated velocity
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vector from the estimated center of intensity. Any reflec-
tions received from the missile provide information about
the missile center of mass. By observing the characteris-
tics of the return signal from the laser being swept along
the velocity vector, one can anticipate getting an indica-
tion of when the laser passes the interface between the
hardbody and just background, at both ends of the missile
hardbody. Since the image intensity centroid position and
velocity estimates are in terms of FLIR plane variables, a
decision was made to simulate the mass center measurement in
the FLIR plane also. With this decision, the problem of
simulation then becomes a problem involving plane geometry.
The first phase of the simulation involves the projec-
tion of the three-dimensional missile hardbody onto the two-
dimensional FLIR plane. For simplification, a rectangle was
chosen to represent the shape of the missile hardbody pro-
jection. With the assumption that the longitudinal axis of
the missile hardbody is aligned with the velocity vector,
the geometry for projection of the missile’s three-dimen-
sional length onto the FLIR plane is shown in Figure 2.5.
The geometry is described by:
LengthF[/R = cosy Lengthg, .., (2-43)
where:
Lengthy,;» = FLIR plane projection of missile length
vy = angle between v and the FLIR plane (radians)

Length, ,,.; = true missile length in pixels
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Since the missile is cylindrical, the projection of the

missile diameter onto the FLIR plane is equal to the missile
diameter. Once the projection of the missile’s dimensions
orto the FLIR plane is accomplished, the rectangle repre-
senting the missile is located on the FLIR plane by offset-
ting the rectangle’s center from the truth model image
centroid along the FLIR plane truth model velocity vector.
The offset distance was chosen by using the intensity func-
tion displacements in Figure 2.3.

The next step in the simulation involves the determina-
tion of the missile center of mass measurement. This is
accomplished geometrically. The path along which the laser
would be dithered is represented by a rectangle (a rectangle
rather than a line was used to acsount for the laser beam
width). If the laser hits the missile, some form of reflec-
tion is obtained. This reflection is geometrically simula-
ted by having the two rectangles overlap as shown in Figure
2.8a. The coordinates of this overlap area are determined by
finding the intersections of the line segments representing
the sides of the rectangles. These intersection points, as
shown in Figure 2.8b, (representing the corners of some
enclosed area) are used to determine the centroid of the
area of intersection (and presumably reflection). Once the
center of mass measurements coordinates have been calcu-
lated, the offset distance from the filter estimated image

centroid is determined. In the simulation, if the combina-
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tion of estimated intensity centroid position and estimated
velocity vector orientation is not accurate enough to cause
the two rectangles to overlap, then no "reflection'" occurs,
and no measurement update occurs 1in the filter. In this
case, the filter simply propagates the estimate until a
reflection does occur. A complete development of the geome-
trical sSimulation of the mass center measurement is detailed
in Appendix A.

The offset measurement which is available for filter use
is modeled by adding measurement noise. The output of the

sensor at time Q-is:

where:
Z(t;) = sensor output at time ({;)

l

Loffw#(ﬂ) = offset of center of mass from filter estimated
FLIR image centroid along the filter-estimated

velocity direction in the FLIR plane

vit,) = discrete, zero mean, white Gaussian
measurement noise with statistics Ffivit,) =0,
Frv(favit, )y =Ret,), 1=/, 0 otherwise

[he simulated measurement developed 1rn this section will be
related to the linear filter measurement model 1n Chapter 3.
['he parameters used tor the measurement noise strength will

be discussed 1n .hapter 5.
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2.5 Summary

This chapter has developed the truth model dynamic
system as the augmentation of a deterministic target trajec-
tory component, a stochastic component due to atmospheric
jitter, and a stochastic component due to mechanical bend-
ing/vibration. 1In order to simulate the operation of a
tracker on a computer, a simulation space with various
coordinate frames and a target model was developed.

Finally, a measurement model for the output of the infrared
detectors in the FLIR array and a model for the output of
the optical sensor receiving returns from the reflected

laser light were developed.
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3. Filter Models

3.1 Introduction

This chapter presents the filter models used in this
thesis effort. Section 3.2 develops the six-state filter,
based on FLIR measurements, which consists of target dynamic
states and atmospheric jitter states. Section 3.3 develops
the single state filter, based on the processing of low-
power laser returns, which estimates the offset distance
between the image centroid and the missile center of mass.
The measurement models used in each of the filters are also

developed.

3.2 FLIR Filter

The filter initially used at the beginning of this
thesis was based on the eight-state benchmark filter used by
Rizzo {14]. Based on the results of the observability
analyses (see Chapter 5), the target acceleration states
were deleted from the filter. For the remainder of this
thesis work, a six-state linear Kalman filter was used to
provide state estimates for the FLIR image position and

velocity, as well as estimates of atmospheric jitter.

3.2.1 Dynamics Model. Previous AFIT research has

considered two different models for representing target

dynamics. The first model represents target acceleration as
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a zero mean, first-order Gauss-~Markov process; the second
describes acceleration using a constant turn-rate r.odel.
With the deletion of acceleration states from the previously
used eight-state filter, a new representation for target
velocity was needed. A decision was made [8,14] to repre-
sent target velocity as a zero mean, first-order Gauss-
Markov process. This is because time-correlated physical
states such as position, velocity, and acceleration can
often be well represented by an exponentially time-corre-
lated first-order Gauss-Markov process. The state vector
for the six-state Kalman filter used in this research is

defined as:

= X; ] ~ Xp T
*2 e
X v
3 X
= (3-1)
o Yy
X5 X(Z
- YO —d L y(l -

where the states are:

Xy = % (l1.e., azimuth) component of FLIR image centroid
position due to target dynamics
Vi =¥ (i.e., elevation) component of FLIR image

centroid position due to target dynamics
v, = x component of FLIR image velocity

v, = y component of FLIR image velocity

x, = x component of atmospheric 7jitter
v, = v component of atmospheric jitter
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Each element in Equation (3-1) 1s coordinatized in the
FLIR plane. Note that the atmospheric jitter model has been
reduced from the six-state form in the truth model (see
Section 2.2.2) to the two-state model seen here. The effect
of the higher frequency double pole was negligible [13] and
was disregarded to reduce the filter order. Also note the
omission of any bending/vibration states. Leeney [4] tested
the omission of bending states from a similar filter, and
found no significant degradation in filter performance. The
filter model is described by the following time-invariant,

linear stochastic differential equation:

Xp(8) = FpXp(t)+Gpw p(t) (3-2)
where:
X (t) = six-state filter state vector of Equation (3-1)

F; = time-invariant system plant matrix

Gy = time-invariant noise distribution matrix

W,(f) = zero mean, white Gaussian noise vector of
strength Q,
and
— 0 O 0 0 0 7
00 0 1 0 0
L
00 -f 0O 0 0
- 1 -
F, 00 o0 -7, O 0 (3=3)
oo o o =} 0
! 1
00 0 0 0o =
- a -
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and
[~ O
0
_ 1
Gf = 0
0
| O
with
2
Qf =
where:
Txr Ty =
Tq =
% 9 =
o

v

correlation times for the target x and y

velocities

C O+ C O O

S = 0O 0 O O

= O o O O O

(3-4)

(3-5)

correlation time for the atmospheric jitter

position process
variance and mean-squared value for

the target x and y velocities

atmospheric jitter position process

- variance and mean-~-squared value for the

The parameters used for the filter correlation times and

variances will be described in Chapter 5.

The filter state estimate and error covariance matrix

are propagated forward over a sample period using the

following equations

(6:171-172]:




A - N -
Xp(t.7) = &p(B)Xp(1)) (3-6)
Pr(t. ) = ®p(MYP ()8l (At) + Q (3-7)
where:
Q}(Q) = filter estimate of 6-dimensional state vector
P.(¢;) = filter covariance matrix (6x6)

—
o~
~,
e
I

time instant before FLIR measurement is incorporated

into the estimate at time Q

—~
.
~,
~—
|

= time instant after FLIR measurement is incorporated
into the estimate at time ¢,

¢p(l) = time invariant state transition matrix for

propagation over the sample period: ot=t; ; = &,

and Qy; is defined as:

£t
= 1 7 &7 .
Qur = I'ET 4p(t,; 1)GQpGOs(8, , T)dT (3-8)
4
with
1 0 ¢, 0 O 0 7
0 1 0¢.,0 O
0 0¢,, 0 0 O
$.(AF) = (3-9)
£
0 0 0¢,, 0 O
0O 0 0 0O b5 0
_O 0O 0 0 o0 b5 |
where:
- _ _At
¢,, = Ty(l-exp( TX))
_ _ At
¢, = Ty(l exp( Ty))
_ _At
(D)) = exp( TX)
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_ At
vg4 = @XP(=7)
_ _ _at
G, = O, exp( Ta)
and
T Yarr O Ygey OO 0 ]
O Tgr20 © Ygp0q © 0
df = ~10)
O Yara2 O 9apqq O 0
°© 0 0 0 ypss O
L 0 0 0 0 0 Gy
where:
. by LT 241
Yarzr = 20}7x[6t‘27x(l-exp(-%))+*§X(l-exp(— 7, )
: Y/ Ty 208
G apay = 2007 [DE=2T7 (l-exXp(-7 ) )+ s (l-exp(-5"-))]
df22 yTyl ¥ p T, 2 p(="7,
= 20° At Tx 248
Tar1; = 20x[27(1-exp(=7 )) = 3 (l-exp(=T7 ))]
: At Ty 2A¢
Igrrg = 20}[21y(l-exp(‘?;)) - 5 (l—exp(——ﬂ/))J
Yar20 = Yarn
o 24¢
Yarzs; = Ox(17eXp(=7 "))
Tira2 = Y9624
24¢
Yirgs = OplLl=exp(=77 1))
- i 280
qdf'm - qdfoo - Ufl(l exp( L ))

The pointing contro
studies is idealized.
tions,

12} demonstrated that

such as servo lag and inertia,

ller used for this and previous
Physical 1mplementation considera-
are neglected. Netzer

Lii@ use ot an

any errors generated by
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idealized controller are small and are interpreted by the

Kalman filter as atmospheric jitter. Following the filter

propagation cycle, the estimates Qi”éJ) and QJ(tL]) are

used to generate control signals to point the FLIR sensor

optical centerline at the target.

3.2.2 Measurement Model. As an alternative to the 64-

dimensional, non-linear measurement model of Equation (2-
41), Rogers [15] developed an enhanced correlation algorithm
to provide two "measurements'" of centroid offsets in the
FLIR plane to a linear Kalman filter measurement model. The
correlation algorithm enhancement occurs in several ways
[187].

First, the current FLIR data frame is correlated with a
template (an estimate of the target’s intensity function),
instead of being corre.ated with the previous FLIR data
frame. This template will be developed in Section 3.2.2.1.
Second, instead of outputting the peak of the correlation
function, the enhanced correlator outputs the center of mass
of that portiun of the correlation function that is greater
than some predetermined lower bound, a technique known as
"thresholding". Therefore, the enhanced correlator does not
suffer the problem of distinguishing global peaks from local
peaks, as do many conventional "peak-finding" correlation
algorithms. Third, by using the enhanced correlation al-

gorithm, the FLIR/laser pointing commands are generated via
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the Kalman filter propagation cycle rather than as the "raw
measurement" output of a standard correlation algorithm.
Finally, the Kalman filter state estimate is used to center
the template, so that the offsets seen in the enhanced
correlator algorithm should be smaller than in the conven-
ticnal correlator. This increases the amount of "overlap"
between the actual FLIR data and the stored template, thus
improving performance.

The outputs of the enhanced correlator are the two FLIR
plane x and y offsets of Equations (2-1) and (2-2). It is
these &nhanced or "pseudo-measurements'", rather than the raw
FLIR data, which are used in the linear Kalman filter mea-
surement update cycle. An overview of the enhanced corre-
lation process is presented next. For a more detailed
development, see Rogers [15].

3.2.2.1 Template Generation. The template de-

scribed in this section is part of an overall data process-
ing algorithm, shown in Figure 3.1. The following discus-
sion of the template refers to the "Form Smoothed Template"
block in Figure 3.1.

The template (an estimate of the target’s intensity
tunction) 1s generated by averaging the N most recent cen-
tered intensity functions observed by the FLIR sensor. The
intensity functions are centered on the FLIR plane by use of
the "shifting" property of the Fourier transform, since the

frequency domain i1s where the correlation is being
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determined. The value of the memory size N is determined by
the dynamics of the target intensity function, with more
dynamically changing functions requiring smaller values of
N.

For online filter applications, the use of true finite
memory filtering techniques causes difficulties with con-
straints on computer memory. To avoid these difficulties,
"exponential smoothing" was used to approximate the averag-
ing. The properties of exponential smoothing are very
similar to finite memory filtering [7], but with the ad-
vantage of only redquiring storage for the FLIR data from the
previous sample instead of N previous samples. The exponen-
tial smoothing algorithm maintains the template by the use

of the following equation:
A A L
I(t,) = yI(¢,) + (1-v) I({ ) (3-11)
where:

I(t,) = "smoothed estimate" (template) of target’s

intensity function

(s

o~

~—
]

"raw" intensity function from the current FLIR

data frame

y = smoothing constant; 0 < y < 1

The smoothing constant’s value is comparable to the value
selected for N. Larger smoothing constant values emphasize

the current FLIR data and correspond to small values ot N.
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Based on previous studies [(3,5,11,13,14,171, a value of 0.1

will be used for the smoothing cnnstant.

Figure 3.1 details the structure of the overall enhanced
correlation/linear measurenent model data processing al-
gorithm. This structure deals with an algorithm which uses
data from a non-rotated FLIR field of view. For this thesis
work, the algorithm was modified to use a diagonally rotated
FLIR field of view. That modification will be presented in
Chapter 4. Wnen the incoming FLIR data is received, a
transformation to the Fourier domain by a fast Fourier
transform is done. ‘The FLIR image data is then centered in
the FLIR plane by use of the shifting property of the Four-

ier transform. The filter computed shift is equal to:

X,—i':’.;’t(tl') = ’/Y\L‘(rl) + ’Q(l(tl) (3-_[.2)

A r
vty + vy (1) (3-13)

<
—_
Lt N
=
N
Il

where Qz' Qa, Qt’ and Oa are the estimates of the states

defined in Equation (3-1).

There are several reasons for performing a Fourier
transformation on the FLIR data. First is that the correla-
tion described in Section 3.2.2.2 is readily done in the
Fourier domain. The second is that this form ot the al-

gorithm allows for implementation of optical processing
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The shifts of Equations (3-12) and (3-13) (the "X-Y
Phase Shift" block of rigure 3.1) are performed using the
shifting property ot Fourier trans<orms. This property
allows translation shifts in the spatial domain to be accom-

plished by performing a linear phase shift in the Fourier

domain ({15]. The phase shift is expressed as:
Flg(e=x_y. .o vy ) = Gy, fylexpt—jem(fyx. ..+, y )1 (3-14)
where
g(x,y) = 2-dimensional spatial data array
F, .y = Fourier transform operator
G(fx,fy) = FLg(x,¥)!

After centering, the data is incorporated into the
template using the exponential smoothirg technique of Iqua-
tion (3~11). It is this template which is now stored and
used for correlation with the next FLIR data frame to pro-
duce the "pseudo-measurement" used by the filter.

3.2.2.2 Enhanced Correlation "Pseudo-Measurements'".

The template, as developed in the previous section, serves
as the filter’s best estimate of the shape of the target
intensity function prior to receiving 3 new FLIR data frame.
The correlation of the incoming FLIR data with the template
provides the position oftset of the target intensity func-
tion from the center of the field of view. This cross-cor-

relation, performed in the Fourier domain space, is ccmputed
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by taking the inverse fast Fourier transform of the follow-

ing equation [15]:

Fig(x,v) Ux,y)1 = G(4y, f L (f, 1)) (3-15)
where:
F{y = Fourier transform operator
g(x,y) lx,y) = cross correlation of g(x,y) and 1l x,p)
g{x,y) = measured target intensity function
1(x,y) = expected target intensity function (template)
G(fyify) = Fra(x,v)i
L' (fy,f,) = complex conjugate of F{1l(x,v)}

After the inverse fast Fourier transformation has been done,
the values of the correlation function gix,y) I{x,y) are
modified so that any value in the correlation function less
than 0.3 [14] of the function’s maximum value is set to
zero. This "thresholding" technique is used to eliminate
false peaks in the correlation function that occur due to
noise and other effects. As 1ndicated in Figure 3.1, the
output of the inverse fast Fourier transform is the ofiset
of the "thresholded" FLIR intersity function from the center
ot the FLIR field of view. This offset is assuwed to be the
result of the summed effects of target dynamics, atmospheric
jitter, and measurement noise. Expressed in terms of the

2

filter astates of Equation (3-1), the offset measurement 1n

pixels ig:
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These two measurements can then be represented in state

space form as:

Z(t,) = Hpxp(L,) + Ve(L)) (3-18)
where:
z(t) = [Xoffset'yoffset]r
xk(gq = state vector of Equation (3-1)
H, = 2xX6 measurement matrix
vy(@) = 2-dimensional, discrete-time, zero-mean, white

Gaussian measurement nolise of covarianhce Rf

The measurement matrix, Hf, is

H_[lOOOlD] i-1o
£ 010001 ( )

and the covariance matrix R; is [9,15]:

. [ 0.00363 0 ] oo
f = o 0.00598 \ )

The measurement vector and measurement dlstribution
matrix are then used in the llinear Kalman filter update
eguations. It is assumed the reader already has a knowledge
of linear Kalman filter theory, so the equations will not be

repeated here.

5.3 Center of Mass Offset Filter

The main thrust of this theslis work is to consider the

use ot additional measdrements to aid in determination of
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the missile hardbody location. The purpose of the second
filter developed in this effort is to estimate the offset
distance between the filter image intensity centroid es-
timate and the missile hardbody center of mass. The deci-
sion [{8] was made to orient the offset distance angularly
using the filter estimated FLIR plane 1mage centroid velo-
city vector. This decision was based on the desire to use
Aany information already available to aid in determining the
missile center of mess location. The six-state filter
already provides estimates of the FLIR image velocity, and
this should be reflective of the missile hardbody velocity
vector. Figure 3.2 shows the physical representation of the

filter’s estimate of the offset distance.

3.3.1 Dynamics Model. For this effort, the offset

between the filter FLIR image centroid and the missile
center of mass was represented as a bias. The decision was
made [8] to represent this offset bias using a model of an
integrator driven by white Gaussian noise (actually pseudo-
noise for filter tuning: an undriven integrator yields a
bias as an output). 7The single state representation of the

linear, time-invariant, stochastic differential equation is:

Ko affort 0D = Wy oo 1) (3=21)

where:

> (1) = state representing ottset distance between

I/ NN

nissile cm and FLIR 1mage centroid
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wuntﬂfwi(t) = Zero mean, white Gaussian noise with
strength Q
The scalar representation of the filter propagation
Equations (3=-6) and (3-7) are:

A -

X t = t
Xem offset (L) = X orrset (1) (3=22)

Pcm offser(QFZ) = Pcm offset(ti) + Qd cm offent (3=23)

3.3.2 Measurement Model.

One of the reasons for the method in which the center of
mass offset measurement simulation was developed in Chapter
2 was to preserve linearity in the filter equations. Other
formulations (such as separately estimating the x and y
components of the bias) were considered, but involved non-
linear measurement models. The use of a single state, repre-
senting the magnitude of the bias, allowed a linear filter
formulation to be used. This allows the scalar measurement

model to be expressed as:

Zem offmd(tf) = Xem nffvﬁ([!> T Vo offm%(lz) (3-24)
where:
Zunlwfum(ﬂJ = the mass center otfset measurement
at time ¢,
Vo affag (8 = discrete-time, zero mean, white Gaussian

measurement nolse with varilance Run4u15%

This chapter has presented models upon which the two

Kaiman tilters used 1In this thesls eftort are based. T'he
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six-state filter includes models to estimate target dynamics
and atmospheric jitter. The measurement model included the
development of '"pseudo-measurements", which are created by
correlating the current FLIR data frame with a template
representing the target’s expected infrared intensity fu.ac-
tion shape. The second single state filter provides es-
timates of the offset of the missile hardbody center of mass
from the six-state filter estimated FLIR image centroid.

The offset was modeled as bias, the cutput of an undriven
integrator, and the white driving noise was added to allow
for filter tuning. The offset distance is oriented using
the six-state estimate of the FLIR plane FLIR image velocity
vector. The measurement model for this filter presented the
measurement as a direct representation of the offset state

plus measurement noise.
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4., Tracking Algorithm and Performance Evaluation Tools

4.1 Introduction

The purpose of this chapter is to present an overall
description of the tracking algorithm used in this thesis
effort. Modifications to the material presented 1n Chapter
3 to accommodate a diagonally rotated FLIR field-of-view
will be presented. The truth model and filter model para-
meters used in this work will also be detailed. Finally,
the evaluation tools for measuring filter performance will

also be shown.

4.2 Tracking Algorithm Overview

The main objective of this thesis research is to develop
an algorithm which can accurately track the center of mass
of a ballistic missile (in boost phase) using both passively
(FLIR) and actively (low power laser reflection off missile
hardbody) acquired measurements. This involves development
of two separate filters and of the simulation of the active-
ly acquired measurement.

Figure 4.1 details the overall algorithm. The raw FLIR
measurement is input into the enhanced correlator data-
prccessing algorithm. This algorithm 1s contained within
the dotted lines of Figure 3.1 in the previous chapter.
After the '"pseudo-measurements" are produced, they become

linear measurements entered into the six-state linear Kalman
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filter. The filter produces estimates of the FLIR plane
FLIR image centroid position and velocity vector. These
estimates are used by the mass enter measurement algorithm
to produce a "pseudo-measurement" representing the output of
an optical sensor receiving reflected laser light from the
missile hardbody as the laser is swept up and down the
velocity vector direction from the estimated centroid loca-
tion. This output, in the form of an offset distance, 1is
then used by a second filter to produce an estimate of the
target center of mass position. This estimate would then be
the primary means of aiming a high energy laser at the

missile hardbody.

4.3 Field-of-View Rotation

In field-of-view rotation schemes, the FLIR sensor field
of view 1is rotated so that the target’s filter-estimated
FLIR plane velocity vector is aligned with one of the FLIR
plane axes or with some other appropriate direction in the
FLIR plane. The ides, first investigated by Leeney [47, was
an attempt to maintain lock on highly dynamic targets that
could *jink" in either of the two FLIR plane directions.
Norton {13 extended Leeney’s preliminary work by examining
the use of a rotating field-of-view 1n an MMAF scheme. Most
recently, Rizzo {141 investigated the performance of identi-
cal filters with different FOV rotation schemes. He com-

pared non-rotating, rotating (aligning the principal axls of
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the field-of-view with the estimated velocity vector), and
diagonally rotating (aligning the diagonal of the field-of-
view with that estimated velocity vector) fields of view.
The filter using the diagonally rotated fleld-of-view
(DRFOV) had the lowest mean tracking error and standard
deviation. Based on Rizzo’s [14] work, it was decided tc
use a DRFOV 1in conjunction with the six-state filter.

As previously mentioned in Chapter 3, the use of a
rotating field of view causes some modifications to be made
to the data processing algorithm of Figure 3.1 of the pre-
vious chapter. These modifications are shown in Figure 4.2
with the addition of the "rotate" blocks. These modifica-
tions will be described briefly here; for a complete devel-
opment see Rizzo [14].

The basis for the rotating FOV is the filter estimated

target FLIR plane velocity vector orientation. This is
glven by:
A
n -VV
©, = arctan n (4-1)
v

where 6, 1s shown 1in Figure 3.2

Note that the terms 1in Equation (4-1) ave the third and
fourth states in the six-state filter defined in Equation
(3=-L). This allows the tilter to provide the arientation

control dir2ctly to the FLIR zensor for on-line application.
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The negative sign in the numerator of Equation (4-1) keeps
the orientation angle positive in the counterclockwise
direction from the FLIR plane X axis when viewed from the
inertial frame origin. This also allows a direct comparison
with the truth model velocity orientation angle, facilitat-
ing the calculation of the error statistics.

To simulate the physical rotation of the FLIR sensor,
the incoming FLIR data is rotated before entering the data
processing algorithm of Figqure 4.2. This is sinulated by
performing a negative rotation, based on the positive orien-
tation angle, on the location and orientation of the in-
dividual Gaussian intensity functions described in Section
2.4.1. This corresponds to a positive rotation of the FOV
and aligns the FOV with the positive orientation angle.
Mathematically, this is done by first rotating the intensity
function peaks defined by Equation (2-40) using the follow-
ing rotational transformation matrix, first produced by
Norton [1s7]:

x’ A A X
peak cosef -Sln@f *peak

14

y! LA A ) ,
peak Sin®, CosO, peax

Note here that the primed variables are in the rotated

coordinate system. The inta2nsity function of Equation (2-

40) (refer to Figure 2.4) then becomes:
/[X"y’'/\’,zmnu'((t)’V,,“e(zk(’f)1 = Jpax®Xpi=0.508x Ay "7
P CAxray’ iy L4-3)
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Bx’ = (X'=X' .., )COSAG + (y'—y’peak)sinA@
Ayt = (y’—y’peak)cosae - (x’—x’peak)sinAG
0@ = difference between the truth model velocity
orientation angle and the filter computed
orientation angle, i.e. 40 = &y - éf
xf, y’ = rotated coordinates from the original FLIR

coordinate frame via Equation (4-2)

Once the incoming FLIR data has been rotated, the data
processing algorithm generates the template in the same
manner as was done in Figure 3.1.

Recall that the incoming data was centered in the FLIR
plane via the shifting of Equations (3-12) and (3-13).
However, these shifts were computed in the unrotated filter
coordinate system, while the current FLIR data image is in a
rotated frame. To implement the algorithm properly, the
translational shift is accomplished in the rotated frame by

the transformation:

A oA
[: X" shist ] B cos®y -sindy l: Xshift —l e
’ N N
V' shift sine, cosO, Vmet

where x_, ¢ and Vonirs 2re given in Equations (3-12) and (3-13).

This transtormation is accomplished by the "rotate"

block tollowing the tracking algorithm block. With this
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transformation, both the current image data and the template
are in the same coordinate frame.

The final modification to the algorithm occurs with the
"rotate' block after the "IFFT" block. The outputs of the
IFFT block are the linear offsets between the current image
data and the centered template. However, these offcsets are
in a rotated frame, while the states in the filter are in
the original unrotated frame. To insure compatibility, the
cffsets are rotated back into the original frame by the

transformation:

A A
25 cos@, S1NO . 24!
= (4=5)
7 - . N N Z',
Z -sine, cose; 2
where the primed and unprimed coordinates are in the

unrotated and rotated courdinate systems, respectively.

4.4 Truth Model Parameters

Sincz the scenario used for thisc thesis was a cortinua-
tion of that used by Rizzo, the truth model parameters are
the same. The rationale for the choice of these parameters
is fully detaiied by Rizzo [141; it will not be repeated
here. For the nominal ballistic missile trajectory studiedq,
the initial conditions for the target inertial frame (see

Sectioin 2.3.1) position and velority vectors are:

e, - 20,000 meters

e, = 103,000 meters
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e, = 2,000,000 meters
_ meters
Vy = —2500 second
- meters
Vy = 4330 second
v, = meters
z second

The maximum intensity value for each of the intensity
functions of Equation (2-40) is 20 intensity units. The RMS

value of Viks which is the sum of spatially correlated
background noise (%k) and FLIR sensor noise (%k) in

Equation (2-41), 1s one. This yields a signal-to-noise ratio

of twenty, which is typical of many tracking scenarios [18].

In his investigation of plume "pogo" effects, Rizzo
(14] desired to have the exhaust plume in the FLIR plane
contained within a 5 x 5 pixel window. This value was
chosen so that the maximum plume "pogo!" oscillation wquld
"fit" within an 8 x 8 pixel FOV. To represent the reference
ellipsoid hotspot dispersion of Figure 2.4, the hotspot
dispersion along the e, direction of the target frame (Equa-
tion 2-35) was chosen to be 1 pixel, and the dispersion in
the e. direction as 1.5 pixels. The pixel proportionality
constant was initially continued from Rizzo’s value of 1.5
micro~radians/pixel. Although the "pogo!” phenomenon was not
considered in this research, the desire to keep the missile

hardbody center of mass and the missile plume centroid in
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the same 8 x 8 pixel FOV prompted the continued use of the
same values to describe the hotspot dispersion.

The variance and mean squared value for the atmospheric
jitter, in both x and y directions, was continued from
previous theses [13,14,18] as 0.2 pixels’. The truth model

bending/vibration parameters are in Section 2.2.3.

4.5 Filter Parameters

For the first analysis of the problem involving use ~f
actively acquired measurements, it was decided to concen-
trate solely on the problem of tracking, rather than acqui-
sition and tracking. Therefore, in the simulation used for
this research, the six-state filter is initialized with zero
errors in the position and velocity at time t=0. The atmo-
spheric jitter states are also initialized to zero. The
initial state covariance matrix is identical to that used by
Rizzo, for states which are common to both filters. With

this condition, the matrix becomes:

10 0 © 0 0 0 ]
0 10 0 0 0 0
0 0 2070 0 0 0
P(l) = (4-6)
0O 0 O 2000 O 0
0o 0 © 0o 0.2 0
. 0 0 © 0 o 0.2
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For the initial conditions on the single state filter,
both the state and the covariance were set to zero. It must
be noted that using these initial values will have a signif-
icant effect on the initial transient performance of the
filter. The values for the dynamics and measurement noise
strength were the subjects of analysis in both filters, and

these will be discussed in Chapter 5.

4.6 Tracking Algorithm Statistics

The performance of the tracking algorithm is evaluated
using Monte-Carlo simulation techniques [6]. Previous
research has shown that ten Monte-Carlo runs demonstrate
sufficient convergence to the actual statistics obtained
fron an infinite number of runs [17,18)]. Based on these
previous efforts, ten Monte-Carlo runs were used to analyse
tracker performance in this research.

The sample mean errors of the tracking algorithm’s
estimates are calculated as [17]:

R

Es(ty = 3 S Usralty) - S palt)] (4=7)
where:
ES(QJ = sample mean error of state estimate at time ¢,
averaged over ¥ runs
an(g) = state estimate at time ¢, during simulation =
srp(t,) = truth model state value at time ¢, during

simulation n

¥ = number of Monte~Carlo runs
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The sample variance of the error is given by:
1 X

o5 = yor = (Lspalty) = Spu(tp0) = gl Es () (4-8)

These two statistics are calculated for the target x and
y positions and velocities due to dynamics, and the FLIR
image centroid x and y coordinates. The performance of the
filter in estimating the centroid location, as well as
velocity is of primary importance in generating the mass
center offset measurement used by the single state filter.
The same error statistics are also calculated for the offset
estimate. All the error statistics are in units of pixels,
and calculated for both before and after measurement update.

For further simplification, the above statistics are
temporally averaged over the seven second simulation. These
temporal averages, when used in conjunction with the plotted
time histcries of the error statistics, provide some indica-

tion of trends during the simulation.

4.7 Performance Plots

Thirteen plots are used to assess filter performance in
this study. The first ten plots are used to describe the
performance of the six-state t° * r. They are:

1. True x position rms error vs. filter-computed x position
rms error
2. True y position rms error vs. filter-computed y position

rms error
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3. Mean < target position error one o at all time ..

1+

4. Mean y target position error one ¢ at all time ¢,

I+

5. Mean x target position error one ¢ at all time ¢/

I+

6. Mean y target position error one o at all time ¢

I+

i+

7. Mean x centroid position error one o at all time ¢,

1+

8. Mean y centroid position error one ¢ at all time ¢

1+

9. Mean x centroid position error one o0 at all time ¢

1+

10. Mean y centroid position error one o at all time ¢

Examples of plots 1, 3, 7, 9, 11, and 13 are shown in
Figures 4.5 through 4.8. The first two plots indicate the
adequacy of the filter tuning Ly direct comparison of the
actual true rms error vs. the filter computed rms error.
Note that in Figure 4.3, the constant graph is the filter
computed error and the graph with the peaks and valleys
represents the actual error. The degree of overlap between
the two graphs indicates how well the filter is tuned
against the truth model. Plots 3 through 6 indicate how the
tuning is affecting the filter’s ability to estimate the
portion of the image position due strictly to target dyna-
mics. Plots 7 through 10 provide primary tracking perfor-
mance information, since the location of the image centroid
is used in the determination of the hardbody center of mass.
Plots 11-13 assess the performance of the filter which

estimates the offset distance between the FLIR image
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centroid and the missile hardbody center of mass. The error
for this filter is determined in two steps. First, the
filter ec_imated location of the center of mass is computed
using the filter estimated offset length, the estimated
velocity vector orientation angle, and the estimated image
centroid location. The error is then calculated as the
difference between the estimated center of mass and the
truth model center of mass. As previously mentioned in
Section 2.4.2, there may be sample times in the simulation
when no measurement occurs. In this case, the last filter
estimate based on a measurement update is used for error
computation until the next measurement update occurs. The
filter error plots are:

11. True offset rms error vs filter offset rms error

12. Mean offset error, * one g, at all time t,

13. Mean offset errcr, * one g, at all time Qf

Similar to plots 1 and 2, plot 11 indicates the adequacy of
filter tuning. Plots 11 and 12 are the primary indicators
of filter performance, indicating the filter’s ability to

locate the missile center of mass.

4.7.1 Plot Designation Codes. The first tzn plots have

four fields in the graph label. The first field, labeled
"TX, TY", indicates the correlation time constant (in

seconds) used for the velocity model in the x and vy
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directions. The second field, lak<led "TAF", 1s the time
constant (in seconds) usead for the atmospheric jitter model,
and is equal in both x and y directions. The third field,
labeled "VD'", is the variance of the discrete driving noise
for the velocity states in pixels’/seconds’, and 1s assumed
equal in both the x and y directions. The fourth field,
"va", is the variance of the driving noise associated with
the atmospheric jitter, and is also assumed equ.l in both
the x and y directicns. It also has units of pixels'-
/seconds‘. The last field, "BND", simply indicates the
inclusion of bending states in the truth model.

For the three plots associated with the offset filter,
there are five fields in the graph label. The first, "FLT
DN", indicates the variance of the filtner discrete-time
dynamics ariving noise, in pixels’. The next field, "MN",
indicates the variance of the filter measurement noise, also
in pixels’. The third field, " TR MN", indicates the mea-
surement noise variance .n the truth model generation of the
offset measurement used by the filter. The fourth field,
"OFF", is the true offset distance, in meters, between the
missile center of mass and the truth model image centroid.
The last field, "PC", indicates the pixel proporticnality
constant, in micro-radians/pixel. The values given to these

parameters will be discussed in Chapter 5.
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4.8 Summary

This chapter has presented the overall trackiny algo-
rithm used in this research by combining the results of
Chapters 2 aud 3. An overall view of the algorithm was
presented, along with modifications to the algorithm caused
by the inclusion of a diagonally rotated FLIR field of view.
The truth model and filter parameters used in this research
were then detailed. Finally, the statistical tools used for

the filter performance evaluation were shown.
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5. Performance Analysis

5.1 Introduction

This chapter presents the results of the evaluation of
the performance characteristics of the algorithms discussed
in Chapter 4. Section 5.2 details the observability analys-
is conducted to determine the states which were used in the
six-state filter. Section 5.3 then presents the analysis of
the tuning process for that filter. Once tuning of the six-
state filter was accomplished, a parameter study involving
the single state filter for estimating the mass-center-to-
intensity-centroid offset was undertaken. Section 5.4
presents the results of the sensitivity study, in which the
parameters of truthi wodel and filter measurement noise
variance were altered. Section 5.5 shows the corresponding
robustness study results, in which the filter was not in-
formed of parameter changes in the real world. Section 5.6
and 5.7 then pr sent the results from the parameter studies
involving the truth model offset distance and pixel propor-

tionality constant.

5.2 Filter Observability Study

Rizzo [14], in his research, discovered an observa-
bility-like problem in the filter models used to describe
the "pogo" phenomenon he was investigating. He compared the

performance of an eight-state benchmark filter (modelling

94




FLIR plane image position, velocity, acceleration, and
atmospheric jitter in both x and y directions) to a ten-
state filter (modelling the same eight states plus the two
"pogo" states, pogo effect position displacement and velo-
city) which also included modelling for "pogo" effects. The
performance of both filters was measured against a l4-state
truth model which also included "pogo'" effects modelling
(the same 12-state model described in Section 2.2 plus the
two "pogo" states). In examining the results, he discovered
a performance anomaly, in that the eight-state filter out-
performed the ten-state filter. Since the higher order
filter had "knowledge" of the '"pogo" effects in the truth
model and the lower dimensioned filter did not, this was the
opposite of the results to be expected. In investigating
this anomaly, he performed a stochastic observability test
[6] on both the eight- and ten-state filters. The velocity
and acceleration states were found to be weakly observable,
particularly the acceleration states. Rizzo [14:7-5] recom-
mended that alternate acceleration models be considered in
the future, or that the acceleration states be dropped from
the filter completely, in order to address this difficulty.
For this research, it was decided {8] to reduce the
filter order by dropping acceleration, and possibly velocity
states, from the eight-state filter. To determine the final

order of the filter, the observability was reexamined. The
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stochastic observability condition to be examined is given

by the following relationship [6:2437]:

! . .
al < s df(t,tl.)ﬂf(t-)R (EH(E e, t) < BT (5-1)
Joi N1 J / / J /

where the summation term in Equation (S5-1) is the
stochastic observability Grammian matrix. If there exist
positive numbers a and B, and 0 < a < 8 < o, and a posi-
tive integer ¥ such that, for all / > ¥, the above relation-
ship holds, then the system is said to be stochastically
observable. Because of numerical precision problems
involved with exponential terms within the Grammian matrix,

¥ = 13 and 7 = 14 were used in the test.

The observability Grammian matrix (diagonal terms) for

Rizzo’s eight-state benchmark filter is:

— 3856 - - - - - - - 7
- 2341 - - - = ~ -
- - 310 - - - - -
- - -188 - - - -
- - - -11.2 - - -
- - - - - 6.8 - -
- - - - - - 244146644 -
. - - - - - - - 148202729

The order of the states in the observability Grammian
matrix is: position (x and y), velocity (x and y), accelera-
tion (x and y), and atmospheric jitter (x and y). It is
necessary to note that the observability matrix was not a

diagonal matrix: for the purpose of clarity and emphasis,
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only the diagonal terms are shown. By observation of the
size of the diagonal terms, states with potential obser-
vability problems can be distinguished by their small mag-
nitude relative to the other diagonal entries. For determi-
nation of system model observability, the Grammian matrix
eigenvalues must be examined. The eigenvalues for the
eight-state filter are:
B 1673 =
2756
14.97

24 .66
.03037

.0501
148203577

. 244148042

Of the eight eigenvalues, the third through the sixth
are smaller by three to five magnitudes than the next
smallest eigenvalues. Here, eigenvalues three and four
correspond basically to the velocity states, and five and
six to the acceleration states. Particularly the accelera-
tion state eigenvalues, being almost zero, indicate almost
complete unobservability. This, in combination with the
relatively small diagonal values from the observability
matrix, led to the decision to delete the acceleration
states from the model. Even though the velocity states were

much less observable than either the position or atmospheric
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jitte - states, the decision was made to keep these states in
the model. The need for a filter estimate of the velocity
vector orientation angle as a means of aiming the low power
laser necessitated this decision. With the deletion of
acceleration from the eight-state model, and the remodelling
of velocity, the six-state model detailed in Chapter 3
became the basis for the filter used in this research to

estimate FLIR plane target parameters.

5.3 Filter Tuning Process

The purpose of this section is to describe the tuning
procedure and results obtained during the tuning of the six-
state filter for the benign trajectory used for this re-
search. The tuning parameters used in this study are the
variances (in both the x and y directions) of the first-
order Gauss-Markov representations of the target velocity,
and the variances (in the x and y direction) of the atmo-
spheric jitter position processes. This decision was made
after conducting an initial tuning study involving the
variances and correlation times of both the target velocity
and jitter position processes. This study revealed the
sensitivity of the filter mainly to changes in the varian-
ces. Additionally, in previous research [13,14,18], a value
of 0.707 seconds had been shown to be representative for the
atmospheric jitter correlation time constant, and the deci-

sion (8] was made to remain with this value throughout the
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tuning process. A value of 8.5 seconds was used [8! for the
correlation time constant of the velocity process, and was
alsc kept constant throughout the tuning process. This
value was selected based on the fact that the dynamic maneu-
vering expected from a ballistic missile in boost phase
would be somewhat less than that expected from a large
manned bombher (with a correlation time of approximately six
seconds).

Table 5.1 lists the variation of the two tuning para-
meters, the target dynamics velocity and jitter position
variances, for the tuning process. For the first tuning
run, the dynamics variance was set at 5, and the jitter
variance was set at 0.2. The time averaged statistics are
listed in Table 5.2 and the performance plots are given in
Appendix B, Figqures B.1-B.10. The plots in Figure B.1l and
B.2 indicate the filter is underestimating the error varian-
ces on target position estimates in both the x and y direc-
tions. The dynamics state errors in Figures B.2-B.6 also
indicate the need for further tuning. The centroid plots,
Figures B.7-B.10, are very important. In this research, the
need for the filter to provide an accurate estimate of the
FLTIR image centroid is critical to the aiming of the low
power laser and resulting estimation of the missile center
of mass ( velocity estimation accuracy 1is also important, in
order to establish the estimated orientation angle of Equa-

tion (4-1) that indicates the angular orientation of the
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center of mass from the intensity centroid). Here, par-
ticularly in the plots for the centroid position error after

update (Figures B.9-B.10), there is an increasing error over

time.

Table 5.1. Tuning Run Parameters

RUN # o;mf[égﬁé] 0, (pixels™)
1 5 0.2
2 50 c.z
3 200 0.2
s 800 0.8

Table 5.2. Run 1 Temporally Averaged Statistics

Error in Estimate of: Mean 1 Signma
X(t;) -1.4587  .94001
y(t) 2.5274 1.02790
Xt -1.2958  .90143
y(t,) 2.2610  .98574
X (6) -.0126  .98152
QC(Q‘) 1.4844  .93751
X0t -.1263  .28028
y (L) .5154  .19054

For the second run, the target dynamics model velocity
variance was increased to 50, while the jitter variance was

Kept at 0.2. The tuning results are presented in Figures
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Table 5.3. Run 2 Temporally Averaged Statistics

Error in Estimate of: Mean 1 Sigma
Rt -.56178 1.05820
yit,) .75109 1.10460
Rty -.47145  .99714
vt ) 61261 1.04780
N -
R () -.33741 1.00710
V() .44683  .95115
Xt -.12905  .29073
() .11751  .18595

o

B.11-B.20 and Table 5.3. Although some improvement in
matching the filter-computed error variance to the actual
error variance has been made, the improvement is not sig-
nificant. A significant improvement in the target dynamics
position state error and especially in the centroid error
has been achieved, as indicated by Figures B.13-B.20. In
comparing Figures B.9 and B.10 to B.19 and B.20, note the
mean error line slope has been significant'y reduced in the
x channel. The y channel has also improved, but not to the
same degree. This is due to the fact that the R matrix of
Equation (3-20) in the measurement model weights the y axis
FLIR plane measurements more heavily than the x axis, and
thus the filter y axis estimates respond less to changes in
the dynamics driving noise strength. The increase in the
error over time indicates that filter divergence would

eventually become large enough to cause loss of tracking.
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However, a target reacquisition algorithm {18! has been
previously developed in past work as part of the simulation.
If the errors did become large enocugh, the simulation uses
this algorithm in a target acquisition, rather than a target
tracking mode. This would prevent total divergence from
occurring.

Several interim runs were performed, in which the target
dynamics velocity strength was systematically increased
while keeping the jitter variance constant. A final value
of 200 was used for the target dynamics velocity variance.
The results of that run are shown in Figures B.21-B.30 and
Table 5.4. As can be seen from Figures B.21 and B.22,
changing the target dynamics velocity variance does not
significantly affect the match between the filter-computed
error variance and the actual error variance. However, the
errors in the dynamics states and particularly in the cen-
troid location have been significantly reduced. Note
Figures B.29 and B.30. The error in the x=-axis centroid
location is essentially zero. The y-axis centroid error,
while not zero, is less thaen 0.2 pixels at the end or the
simulation.

The next step was to discontinue the tuning via the
target dynamics error variance, and to continue the tuning
using the jitter variance. When tuning via the Jjitter
variance, a counterproductive result was noted. As the

jitter variance was increased, the match between the filter-
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Table 5.4. Run 3 Temporally Averaged Statistics

Error in Estimate of: Mean 1 Eiéﬁé
—— S
R(t,) -.30019 1.2293
V(L) .53239 1.1514
X(t,) -.23704 1.1340
y(t;) .43096 1.0550
N
Rt -.09359 1.0376
Pt .30553  .98254
X (1) -.01949  .31303
vt .12094  .18187

computed error variance and the actual error variance in-
creased, but the error in the target dynamics position and
centroid locations also increased. It was then necessary to
increase the target dynamics velocity variances in compensa-
ticn. This increase in the target dynamics velocity var-
iance then resulted in an increase in the mismatch between
the filter-computed error variance and the actual error
variance. After several iterations, a final value of 800
was selected for the target dynamics velocity variance and
0.8 for the jitter variance. The final tuning run results
are shown in Table 5.5 and Figures B.31-B.40. Note that
there 1s a good match between filter-computed and actual
error scatistics, as evidence by Figures B.31 and B.32. The
tuning to achieve accuracy in locating the centroid location
has also been preserved, as shown by the centroid x and y

mean errors after update in Table 5.5 and Figures B.39 and
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Table 5.5. Run 4 Temporally Averaged Statistics

Error in Estimate of: Mean 1 Siémé
R(1,) ~.22712 1.1871
Vi, ) .41019 1.1526
X)) ~.21384 1.0945
Q(Q‘) .31213  1.0663
X0t -.15671 1.0236
QL(Q ) .17855  .95695
Xt -.04210 .21210
AC
V(L) .00110  .18875

B.40. Comparing the results in Table 5.5 to the prior
tuning run results, the tuning process seems to benefit the
error means more than the one sigma values. At this point
the filter was considered tuned and further tuning was

discontinued.

5.4 Mass Center Offset Filter Sensitivity Study

The main thrust of this research is to examine the
performance of a filter designed to estimate the offset
between the missile hardbody center of mass and the filter
computed image centroid, and the effects on this performance
of variations in parameters that define the tracking scen-
ario. Before describing the results of these parameter
studies. some background material will be presented.

For this work, it was decided to continue using the same

size missile used by Rizzo 14°. The missile used in the
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simulation had a length of 40 meters and a diameter of 3
meters. As was previously mentioned, it was decided to
apprcximate the shape of the missile in the FLIR plane as a
rectangle. With the trajectory used in this work, such that
the missile is basically orthogonal to the line of sight,
the rectangle dimensions were approximately the same as the
missile dimensions.

The next item of consideration was the choice of beam-
width for the low power laser used to generate the '"measur-
ement" of the distance between the image centroid and the
missile center of mass in the simulation. The desire to
choose a beamwidth realistic for the range used in the
simulation (approximately 2000 kilometers) versus the need
for simplification in the initial simulation of this problem
led to a tradeoff study. For ease of implementation of the
software simulating the reflection of the laser, it was
decided to use a beamwidth less than or equal to the missile
diameter. To allow beamwidths wider than the missile dia-
meter would have caused a large increase in the amount of
software necessary for the beam simulation. It was also
desired to have as large a number of simulated reflections
during the simulation as possible. This 1is & function of
the accuracy of estimating the image intensity centroid and
target velocity (to establish tiie line along which to sweep
the laser), the true offset between the intensity centroid

and missile center of mass, and the laser beanwidth. A
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study was then conducted to examine these tradeoffs. Al-
though the details of this study will not be presented, a
value of 2.75 meters was finally selected as the beamwidth
value at the target location to be used in the study.

The sensitivity study examined the effect of simulta-
neously changing both filter-assumed measurement noise
variance and the truth model measurement noise variance.

The variance of the filter discrete-time noise was set at
four meters’ [8] for the entire study. With no prior
knowledge of the physical parameters associated with the
"real world" offset, a value equal to ten percent of the
missile length was used. Three measurement error levels
were examined, representing high, medium, and low levels of
accuracy. The measurement error standard deviation levels
studied were 0.2, 2, and 20 meters. For this study, two
meters is considered the nominal error [8]. The results of
the study are¢ presented in Table 5.6 and Figures C.1-C.9.

As was previously mentioned in Chapter 4, the error reported
in both the time averaged statistics and the performance
plots is the error between the truth model center of mass
location and the estimated center of mass location which was
determined using the filter-estimated offset distance, the
estimated velocity vector orientation angle, and the es-
timated image intensity centroid location. In Table 5.6, the
measurement error levels are in meters and the statistics

are in pixels.
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Table 5.6 Sensitivity Study Time Averaged Statistics

Measurement Noise Center of Mass Mean 1 Sigma
Standard Deviation Error Statistic

0.2 Rem error(t;) .68248  .20311
Rem error(ti) .09571  .18694
2.0 Rem error(ti) .74503  .22147
Xem error(ti) .10714  .14196
20 Rem error(t; ) 1.2707 .39839
Xem error(ti) .19072  .14516

In examining the statistics for the first two measure-
ment precision levels, as well as Figures C.2, C.3, C.5, and
C.6, several observations can be made. First, the mean
error (particularly after update) changes only approximately
ten percent for an order of magnitude change in the measure-
ment precision level. Observing Figures C.2 and C.4, it is
apparent that with increasing measurement noise strength,
the filter takes longer to learn the underlying dynamics and
reach the steady state mean error level, as would be ex-
pected. The third measurement precision level had much
poorer statistics. 1In this case, the filter is still learn-
ing the underlying dynamics and never does reach the steady
state mean error during the simulation time interval. This
is well illustrated by Figure C.8. Also note that there is
little difference in the standard deviations between the two
and twenty meter measurement precision levels. This indi-

cates that increasing the value of measurement noise var-
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iance predominantly affects the amount of time the filter

needs to estimate the offset, and not the accuracy of that
estimate. Also note the effect of using an initial filter
covariance of zero, especially in the case of the 20 meter

measurement precision level.

5.5 Mass Center Offset Filter Robustness Study

In a robustness study, the truth model is given para-
meters different irom those in the filter, and the perfor-
mance of the filter analyzed. This analysis indicates the
degree of filter robustness when the parameters assumed by
the filter models differ from the "real" world as represen-
ted by the truth model. In this robustness study, the
measurement error level was also the parameter varied.
Filters with the three immeasurement error levels ( measure-
ment noise standard deviations of 0.2, 2, and 20 meters)
were studied. 1In each case of filter-assumed measurement
precision, the two remaining error levels were consecutively
used in the truth model, and the performance of the filter
analyzed. As in the sensitivity analysis, the variance of
the filter driving noise was held constant at four meters-
for all cases considered in the rcbustness study. The
results are presented in Table 5.7 and Figures D.1-D.18.
The parameter values and statistics from the sensitivity
study are included as a reference. The units for Table 5.7

are the same as Table 5.6.
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Table 5.7

Robustness Study Time Averaged Statistics

Measurement Noise

Mass Center

Standard Deviation Error
Filter Truth Model Statistic Mean 1 Sigma
0.2 0.2 Rem error(t;) .68248  .20311
Rem error(ty) .09571  .18694
0.2 2.0 Rem error(ty) .67927  .20276
Rem error(t) .09551  .19553
0.2 20 Rem error(fy) .78159  .44836
Rem error(t) .10935  .25052
2.0 0.2 Rem error(t;) .74923  .22217
Rem error(t;) .10745  .14231
2.0 2.0 Rem error(t) .74503  .22147
Rem error(t]) 10714 .14196
2.0 20 Xem error(t;) .72303  .26899
Rem error(t) .10539  .22603
20 0.2 Xem error(t; ) 1.21810  .40208
Rem error(ti) .19252  .14554
20 2.0 Rem error(t; ) 1.28010  .40172
Rem error(ti) .19235  .14487
20 20 Rem error(t; ) 1.27070  .39839
Xem error(t) .19072  .14516

For the first case,

performance with increasing value«s of

variance in the truth model.

the trerd is

This is

the mismatch between filter and truth

increasing measurement noise variance.

for decreasing
measurement noise

to be expected since
model increases with

However, the in-

creases 1in the mean error are only 13 percent for an order

of magnitude increase in the truth model noise standard

deviation.
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the measurements so heavily that, even with the increased
uncertainty in the truth model measurements, the filter is
quickly able to learn the value of the offset. Note also in
Figures D.5 and D.6 the significant reduction in the stan-
dard deviation after update for the case where 20 meters was
used in the truth model.

The second case is interesting because it shows the
effect of having both larger and smaller measurement noise
variances in the truth model as compared to the filter.
Here, the mean errors (both before and after update) are
smaller when the truth model measurement error level exceeds
the filter measurement noise variance, but with higher error
standard deviations. This can be seen in both in Table 5.7
and Figures D.8, D.9, D.11, and D.1l2.

The third case considers the performance of a filter
which has low confidence in the measurements it receives.
Note that the long transient for the case of the filter with
the 20 meter error standard deviation shows clearly the
deleterious impact of using zero as the initial value for
the covariance. Here the mean error is approximately twice
that in case one and two. Particularly note Figures D.1l4,
D.15, D.17, and D.18. Again, similar to the third case
considered in the sensitivity study, the filter is still
learning the value of the offset state, and does not reach
the steady-state value during the simulation. However, the

standard deviations in the two variations considered here
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are very close to the first part of case two. This situa-
tion is similar in that the filter-assumed measurement noise

variance was greater than that in the truth model.

5.6 Pixel Constant Study

The next parameter to be investigated is the pixel
proportionality constant. The main purpose of this study is
to determine the FLIRlsensor element resolution necessary
for implementation of a tracking scheme involving active
illumination of the target. In this study, the variance of
the filter discrete-time noise was continued at a value of
four meters’. Four meters’ (corresponding to the nominal
error standard deviation of two meters) was used as the
measurement noise variance in the mass center offset filter.
The same value was also used for the measurement noise
variance in the truth model. The performance of the offset
filter was examined as the value of the pixel proportion-
ality constant was varied between 7.5, 15, and 30 micro-
radians/pixel. The variation involving the 15 micro-radian-
/pixel value has already been presented in the sensitivity
study, but is repeated here to aid in the comparisons. The
results are presented in Table 5.8 (in units of pixels) and
Figures E.1-E.9.

To compare the results in terms of constant pixel size,
the statistics in Table 5.8 for the 7.5 micro-radian/pixel
case were determined by multiplying the mean and standard

deviation from that analysis by two. 1In a similar manner,
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Table 5.8 Pixel Constant Study Time Averaged Statistics

Pixel Constant CM Error Statistic Mean 1 Sigma
7.3 Qcm error(¢; ) 2.57560 1.27740
Qcm error(t;) 1.14648 .34514
13 Xem error(t;) 74503  .22147
Qcm wvmit[) .10714 .14196
30 ’Qcm error(tl'i) .39447 .24665
Rem error(t;) .01208  .03493

the statistics in Table 5.8 for the 30 micro-radian/pixel
case were computed by dividing the mean and standard devia-
tion from that analysis by two. After converting to a
constant pixel size (30 meters by 30 meters, for the nominal
15 micro-radian/pixel case at a target range of 2000 kilo-
meters), several observations can be made. First, in ob-
serving Table 5.8, the mean center of mass position error
decreased with increasing pixel size, both before and after
update. The same trend was true for the standard devia-
tions, except in comparing the 15 and 30 micro-radian/pixel
preupdate standard deviations. These results seem to be
contrary to the expectation of increasing filter performance
with increasing sensor resolution (i.e, a smalier pixel
constant). However, a different trend is apparent in Fi-
gures E.1-E9. Plots E.1 through E.6 appear to echo the
trend seen in Table 5.8 when pixel scale factors are con-

sidered. Figures E.7~E.9 indicate a much different trend.
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Here the actual error is increasing with time as shown in
Figure E.7. Figure E.8 echoes this, as the standard devia-
tion about the mean offset value is also increasing with
time. The peaks and gaps in Figure E.9 (caused by the fact
that the filter may go for extended periods without receiv-
ing a measurement update) would seem to indicate that, at
this level of resolution, the ability of the six-state
filter to provide information about the location of the
image centroid and the target velocity orientation angle is
seriously degraded. With this degradation, the number of
times a reflection occurs (a 10 Monte~Carlo run average of
8.6 reflections for a seven second simulation, with 210
reflections possible) is reduced, and the offset filter

performance suffers accordingly.

5.7 Offset Distance Study

The final study conducted examined the mass center
offset filter performance as a function of the actual offset
distance between the missile center of mass and image center
of intensity. The expectation was that, as offset distance
was increased, the performance of the filter estimating the
offset distance would suffer. This is due to the fact that
the error in the six-state filter estimate of the velocity
orientation angle used to aim the laser increases linearly
with offset distance. As the error increases, there are

fewer reflections which can be used to update the filter.
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The filter and truth model noise parameters are
identical to those in the pixel constant study. The nominal
value of the pixel constant, 15 micro-radians/pixel, was
also used in the study. The two offset distances considered
were 86 and 172 meters. These were selected as multiples of
the nominal 43 meter value used for all the other analyses,
and because these values would allow both the missile and
the FLIR image to be contained in an 8 x 8 pixel field of
view.

The time averaged statistics are presentcd in Table 5.9
and the performance plots in Figures F.1-F.6. In Table 5.9,
the offset distance is in meters and the statistics are in
pixels. Although not part of this study, the statistics for
the nominal 43 meter value are included in Table 5.9 for
reference.

The statistics in Table 5.9 confirm the expectation of
decreasing filter performance with increasing offset
distance. Both the offset mean and standard deviation
increase with increasing offset distance. The performance
plots also confirm this idea. In comparing Figures F.1-F.3
to F.4-F.6, note that the filter using the 172 meter offset
is taking much longer to reach steady state performance.
This is due to the fact that there are fewer measurements (a
ten Monte-Carlo run average of 23 reflections per 7 second
simulation for the 172 meter offset against an average of

28.9 for the 86 meter offset case and 32.6 for the 43 meter
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Table 5.9 Offset Distance Study Time Averaged Statistics

Offset Distance Error Statistic Mean 1 Sigma
43 Qcm error(t;) .75403 .22147
Qcm mvw*t{) .10714 .14196
86 Qcm error(t;) .98793 .24490
Xem error(ti) .11227  .22204
172 Xem error(ty) 1.61800  .66766
Rem error(ty) .12636  .29407

offset case) for the filter to learn the state. In examin-
ing Figures F.4 and F.5, note the large change in the fil-
ter’s performance at approximately three seconds. To deter-
mine the reason for this, the times at which measurements
occurred were examined for all ten Monte-Carlo runs. For
two of those runs, only one measurement was received by the
filter in the first three seconds. Additionally, for sev-
eral of the runs, a very small percentage of the total
number of measurements in the simulation occurred before
three seconds. With only 10 runs, these anomalies have a

significant impact on the statistics plotted.

5.8 Summary

This chapter presented the results of this thesis
research. The observability analyses and filter tuning
process used to develop the six-state FLIR data filter were
presented first. Then, using this filter’s outputc as the

means to produce "measurements" of the low-power laser

115




returns from the missile hardbody, the studies involving the
mass center offset filter were then described. These stud-
ies included 2 censitivity and robuctness Aanalysis of the
filter itself, and studies involving variations of the pixel

constant and truth model offset distance.
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6. Conclusions and Recommendations

6.1 Introduction

This chapter summarizes the conclusions reached in this
thesis and recommends topics for further study. Section 6.2
draws conclusions based on the analyses of Chapter 5.
Section 6.3 continues with suggestions for continued
research in the area of FLIR tracking of ballistic missiles

aided by active low power laser illumination.

6.2 Conclusions

Various conclusions have been made in Chapter 5. These

conclusions will now be brought together and presented.

6.2.1 Six-State Filter Tuning. Tuning the filter via
the target state dynamics driving noise and the atmospheric
jitter driving noise proved adequate. The final tuning
yielded a filter that could accurately identify the location
of the FLIR image centroid. However, the development of the
simulation of the laser reflection measurement required an
accurate estimate of both the image centroid location and
the velocity vector. 1In estimating velocity, the filter’s
performance was less than adequate. The initial goal 78]
was to be able to aim the laser accurately enough to receive
a reflection measurement better than 35 percent of the

simulation time. The percentage of measurements actually
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received was on the order of 15 percent, much less than
anticipated. Comparison of the truth model image centroid
and velocity orientation angle to the filter estimates of
these parameters showed the errors in the filter-estimated
velocity orientation angle to be the reason for the low
percentage of reflections received. This problem will be

discussed further in Section 6.3.

6.2.2 OQffset Filter Sensitivity Study. This study

examined the effects of different sensor measurement noise
levels on filter performance. The analysis indicated that
the steady-state mean error in the offset length is insensi-
tive to measurement noise variance. The standard deviations
reported were also relatively independent of measurement
noise variance. The measurement noise variance does strong-
ly affect the amount of time the filter takes to reach the
steady-state error level. The conclusion from this is that
sensor accuracy may be a secondary consideration in system

design trade-off studies, for the models used here.

6.2.3 0Offset Filter Robustness Study. In a robustness

study, the primary area of concern is the filter’s perfor-
mance when the "real world", as represented by the truth
model, is different from the filter’s internal world model.
The parameter used in this study was the measurement noise
variance. Three filters, with high, medium, and low assumed

measurement noise variances were studied. In each case, the
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filter’s performance was analyzed when the truth nmodel was
given a measurement nolse level different from that in the
filter. The results indicated that the filter’s pertformnance
was fairly robust to changes in this truth nodel paranmeter.
These results lead to the conclusion that single filter
performance is adequate and a multiple model adaptive filter
algorithm or other form of filter that adapts to this para-

meter 1s not necessary.

6.2.4 Pixel Proportionality Constant Study. The re-

sults of this study are not conclusive. The general expec-
tation for FLIR tracking systems is that increased sensor
resolution should lead to increased tracking accuracy.
However, the results did not support this in all respects.
The intermediate sensor resolution gave the best filter
performance. No immediate explanation was found for this
result. Since the six-state filter was tuned using this
value, it is unknown whether or not this introduced a bias
in the results. No conclusions were reached; this topic

will be will addressed further in Section 6.3.

6.2.5 Offset Distance Study. The final study in this

research examined the effect of increasing the offset dis-
tance between missile hardbody and infrared intensity cen-
troid. The offset distances studied were selected to allow
both the FLIR intensity image and the reflections trom the

missile hardbody to occur within an 8 x 8 pixel tield ot
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view. The results support the conclusion that, as offset
distance increases, filter performance decreases: the amount

of degradation was quantified.

6.3 Recommendations

The recommendations made here are to suggest possible
lines of research to clarify problems uncovered in this
research or to expand preliminary investigations started in

this work.

6.3.1 Six-State Filter Modeling and Tuning. Based on

Rizzo’s recommendations [14], a reduced order six-state
filter was finally implemented by removing acceleration
states frcm the filter design model. However, Rizzo also
recommended remodeling the acceleration states using a
constant turn rate instead of a first-order Gauss-Markov
model. This suggestion was not implemented in this re-
search. Remodeling the acceleration states, retuning the
filter, and then doing an observability analysis, represents
an alternative approach to addressing the observability pro-
blem. This approach might also yield a filter which better
estimates the velocity orientation angle. It cannot be
emphasized enough that accurate velocity vector estimation
is crucial to the viability of the algorithm in it‘’s present
form.

The second recommendation is to retune the six-state

filter to yield better velocity estimates. The tuning
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accomplished 1n this research paid close attention only to
the filter’s performance with regard to estimating the FLIR
intensity image centroid location. The filter should be
retuned for both accurate centroid position and velocity
vector estimates. For active illumiration of the target to
be a viable concept, both the image centroid and the
velocity vector must be accurately estimated.

Direct examination of jitter position plots would also
benefit the tuning process. 1In this effort, the jitter
position state tuning response could only be examined in-
directly by looking at the image centroid plots. By direct-
ly examining plots of both dynamics and jitter position
states, a clearer understanding of the effect on filter
tuning of changing parameters in these two processes could
be achieved.

6.3.2 Illumination Modeling Improvement. For this

thesis research, a simple geometrical approach was used to
model the laser illumination of the target. Many effects
were neglected. For future work, a more accurate model is
needed. This model should include more accurate
representation of the missile’s three-dimensional shape.

The simulation of the laser reflection itself should include
missile shape effects (laser reflecting off cylindrical
object rather than flat surface), and the effects of atmo-
spheric distortion in the reflected laser light. Aalso, the

dynamics of sweeping the laser up and down the estimated
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velocity vector direction from the intensity centroid should
be incorporated. Alternate search patterns, in which the
laser is swept both along and perpendicular to the estimated
velocity vector in a sinusoidal pattern, should be crn-~
sidered. This would increase the probability of reflection
by increasing the search area, as well as reducing the
dependence of the algorithm on an accurate velocity vector
estimate. The increased accuracy of illumination modeling
will significantly enhance the credibility of the simulation
and conclusions drawn from it.

6.3.3 Different Initial Filter Parameters. With no

previous knowledge of the initial errors involved with
pointing a laser at a missile, the initial value for the
offset filter mean and covariance were set to zero. As was
evident in the sensitivity and robustness studies, this had
a significant effect on filter performance. Based on the
steady state filter errors found in this research, it is
recommended that the analyses be performed again using an
initial mean of 0.1 pixels and covariance of .05 pixels to
confirm the results found here.

6.3.4 Pixel Proportionality Constant Filter Tuning.

The results of the pixel constant study were inconclusive.
To resolve the issue of sensor resolution, the six-state
filter should be separately tuned using the two pixel con-

stants studied in Section 5.6. After tuning, comparison of
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the performance of the three filters should help resolve
this issue.

6.3.5 Mass Center Error Resolution. The error between

the filter estimated center of mass and the truth model
center of mass used in the analysis was calculated as the
scalar length between two coplanar points. To aid in future
work, this error should be resolved into a component along
the estimated velocity vector, and a component perpendicular
to the velocity vector. By doing this, it should be pos-
sible to determine the contribution of the offset distance
estimate (along velocity vector component) and the estimated
velocity vector orientation angle (perpendicular to velocity

vector component) to the total error.
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Appendix A. Mass Center Measurement Simulation

As presented in Section 2.4.2, the mass center measure-
ment simulation is developed in terms of plane geometry.
The projection of the missile hardbody shape onto the two-
dimensional FLIR plane is represented by a rectangle. To
simulate the reflection of the laser, and the mass center
measurement derived from that reflection, the path the laser
takes as it is dithered along the velocity vector had to be
simulated. It was decided to represent the laser’s path as
a rectangle in the FLIR plane also. The width of the rec-
tangle was chosen to approximate the laser beamwidth at the
target. For this study, a beamwidth of 2.75 meters was
used. The length of the rectangle was determined using
three times the truth model offset distance between the
missile center of mass and the FLIR image centroid. This
was done to insure that the rectangle was long enough for
intersection with the rectangle representing the missile to
occur.

The rectangle representing the laser path is located on
the FLIR plane using the filter estimated image centroid
location and velocity vector orientation. This is shown in
Figure A.1. One end of the rectangle is located coincident
with the image centfoid location. The coordinates of the

opposite end of the laser path rectangle are located using
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the filter estimated velocity vector orientation angle. The

calculations for the endpoint are as follows:

Xendpoint ~ Xcentroid * 1678th cos 8 (A=1)

y =y length sin 6, (A-2)

endpoint centroid ~

where:

Xemﬁmnn' yemﬁmww = the FLIR plane coordinates of the

rectangle endpoints

X = the FLIR plane image centroid

centroid’ ycentroid
coordinates
length = desired rectangle length, in pixels

8, = filter estimated velocity vector

orientation angle

Once the endpoints have been determined, the coordinates of
the corners of the rectangle are determined by offsetting
half the beamwidth distance from the endpoints along a line
perpendicular to the velocity vector.

The simulation of the laser reflection and the correspo-
nding center of mass measurement is done in several steps.
First, the laser beam striking the missile and reflecting is
simulated by determining the area of intersection between
the missile rectangle and the rectangle representing the
laser beam path, as shown in Figure A.2. This area of

intersection is determined using plane geometry. Figure A.3
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shows an expanded view of the area of intersection. Note
that, for this example, two of the ccrners of the perimeter
of the intersection area are determined by the intersections
of line segments representing the outline of the missile and
laser path rectangle. The determination of the intersection
coordinates is a matter of plane geometry. For example, the
determination of the x and y coordinates of point 1 is made
as follows:

The slope of the line segment between (x.,y ) and poini two
is m,, where m, = tan 6;; the equation of this line is
Y = m;(x—x.“) + v (A-3)

Likewise, the slope of the line segment between (X_

/Y_) and

1

point three is m,, where m, = - EEE~§;7 and the equation of

this line is

y = my(x=x)) + Y (a-4)
Setting Equation (A-3) equal to Equation (A-4) and solving
for x yields:

m'_x'_ - mlx:t + ym - Y.

x = R : (A-5)

Solving Equation (A-5) and substituting this value into
either Equation (A-3) or (A-4) ylelds the coordinates of
point one in Figure A.3. The coordinates for point two, or
for any other intersection point, are determined in a simi-
lar manner. One area of concern is that Equations (A-3)-(A-

5) involve the equations of lines, not line segments.
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Therefore, in the simulation, the software checks the value
of the x intercept point to determine if it is between the x
coordinate of point three and x,. If this condition is
true, then the line segments do intersect, some portion of
the laser beam rectangle falls on the missile rectangle, and
reflection occurs. If this condition is not met, then the
intersec*ion peoint occurs beyond the line segment endpoints.
In this case, no portion of the laser rectangle and the
missile rectangle are in common. This constitutes a "miss",
and no reflection occurs.

Assuming reflection has occurred, the next step is to
determine the center of mass. Since the entire purpose of
using low power laser reflections is to obtain information
about the center of mass of the missile, the center of the
intersection area is equated to the "measured" center of
mass. For the example of Figure A.3, the area defined by
points one, two, and three is triangular. Approximating the
center of this area is basically approximating the center of
a triangle. The center of a triangle would normally be
determined by the intersection of three lines, each line
running from a corner to the opposite side, and that line
bisecting the angle at that corner. This intersection is
approximated by first taking a point one third the distance
from point one to two along that line segment. At that
point, a perpendicular line segment is run to the line

segment between points two and three. The center 1is
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approximated by a point halfway along the perpendicular line
segment. The distance between this center point and the
FLIR image centroid of Figure A.l1 becomes the offset length
measurement of Equation (2-44). If the area of intersection
is rectangular or trapezoidal, then the calculations for the

center of the are made accordingly.
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Appendix B. Plots for Six-State Filter Tuning

Discussion in Section 5.3

Run #1 Figures B.1-B.10
Run #2 Figures B.11-B.20
Run #3 Figures B.21-B.30

Run #4 Figures B.31-B.40
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Appendix C. Plots for Sensitivity Study

Discussion in Section 5.4

Error Level .2 meters Figures C.1-C.3

Error Level 2 meters Figures C.4-C.6

Error Level 20 meters Figures ¢.7-C.9
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Appendix D. Plots for Robustness Study

Discussion in Section 5.5

Filter Error .2 meters, Truth Model Error 2 meters
Figures D.1-D.3

Filter Error .2 meters, Truth Model Error 20 .aeters
Figures D.4-D.6

Filter Error 2 meters, Truth Model Error .2 meters
Figures D.7-D.9

Filter Error 2 meters, Truth Model Error 20 meters
Figures D.10-D.12

Filter Error 20 meters, Truth Model Error .2 meters
Figures D.13-D.15

Filter Error 20 meters, Truth Model Error 2 meters

Figures D.16-D.18
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Appendix E. Plots for Pixel Constant Study

Discussion 1n Section 5.6

Pixel Constant (Micrc-radians/Pixel)

7.5 Figures E.1-E.3
15 Figures E.4-E.6
30 Figures E.7-E.9
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Appendix F. Plots for Offset Distance Study

Discussion in Section 5.7

Offset Distance (Meters)

86 Figures F.1-F.3

172 Figures F.4-F.6
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The purpose of this line of research has been to develop
an algorithm to track airborne targets using forward looking
infrared (FLIR) measurements, as a means of aiming a high
energy laser.

Past research has concentrated on the use of passively
acquired measurements, 1i.e. measurements of the target’s
thermal intensity functions (hotspots) from an array of
infrared detector elements. This research deviated from this
by considering active illumination of the target by a low
power laser. The measurement of the reflected laser light
would then give information about the hardbody location, and
presumably an aiming point for the high power laser.

Specifically, this thesis investigated a ballistic missile
in boost phase of flight. Measurements of the missile exhaust
plume thermal intensity from an array of infrared detector
elements were used by an enhanced correlator/linear Kalman
filter to produce estimates of the FLIR image centroid
location and velocity. These estimates were then used to
simulate the aiming of a low power laser at the missile. The
"pseudo-measurement" output of an optical sensor receiving the
reflections from the missile hardbody was then used by a
second Kalman filter to estimate the location of the missile.

This thesis effort involved sensitivity and robustness
studies of the measurement noise variance in the filter which
estimates the missile location. These studies indicated the
filter’s relative insensitivity to changes in the measurement
noise variance; this parameter only affected the transient
time for the filter to reach the steady state value of the
missile location. Other parameter studies involved variation
of offset distance between missile and exhaust plume, and
variation of infrared sensor resolution. The first study
indicated decreased filter performance in locating the missile
with increased offset distance. The results from the second
study were inconclusive and require further work.




