AD-A215 402

WRDC-TR-89-3093

PROBABILISTIC DAMAGE TOLERANCE METHOD
FOR METALLIC AEROSPACE STRUCTURE

Margery E. Artley
Structural Integrity Branch
Structural Division

september 1989

’inal Report for Period July 1984 - February 1989

Approved for Public Release; Distribution Unlimited

DTIC

ELECTE .

Py

FLIGHT DYNAMICS LABORATORY

WRIGHT RESEARCH AND DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

N




ROTICE

When Government drawings, specifications, or other data are usad for
any purpose other than in connection with a definitely Govermment-related
procurement, the United States Government incurs no responsibilitv or any
obligation whatsoever. The fact that the governmment may have formulated or
in any way supplied the said drawings, specifications, or other data, 1is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacturz, use, or sell any patented inventicn
that may iv any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the gemeral public, including
foreign nations.

This technical report has been reviewed and 1s approved for publica-
tion.

é?zé:%?(/44:<jé’hxéﬁfi;ﬂ

for MARGERY E. ARTLEY REQRGF D SENDLLVYI Act® Tach Mar

Project Engineer Fatigue, Fracture & Reliability Gp
Structural Integrity Branch

FOR THE COMMANDER

S L. RUDD, Chief
Stfuctural Integrity Branch
Structures Division

If your address has changed, 1f you wish to be removed from our mailing
list, or if the addressee is no longer employed by your orgarization please
not{fy WRDC/FIBEC, WPAFB, OH 45433-6553 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

N_

REPORT COCUMENTATION PAGE

Foim Approved
CMB No 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

ib RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNG RADING SCHEDULE

3. OISTRIBUTION/AVAILAB!.UTY OF REPORT o
Approved for Public Release, Unlimited
Distribution

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

WRDC-TR-89 -3093

62. NAME OF PERFORMING ORGANIZATION .
Fatigue, Fracture & Reliability

Gp; Flight Dynamics Laboratory

6b OFFICE SYMBOL
(If applicable)

WRDC/FIBEC

7a. NAME OF MONITORING ORGAN!Z,-TION

WRDC/FIBEC
Wright-Patterson AFB

6¢. ADDRESS (City, State, and ZIP Code)

7b  ADDRESS (City, State, and ZIP Code)

OH 45433-6553

ORGAN!ZATION

8a. NAME OF FUNDING / SPONSORING

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO
61102F 2307 N1 24

Probabilistic Damage

11. TITLE (include Security Classification)

Tolerance Methuds for Metallic Aerospace Structures

12. PERSONAL AUTHOR{S)
argery E. Artley

13a. TYPE OF REPORT
Final

13b. TIME COVERED

FROM Ju] 84 TOFeh 89

14. DATE OF REPORT (Year, Month, Day)
1989 September

15 PAGE COUNT
134

16. SUPPLEMENTARY NOTATION

Damage tolerance ana
the safety of flight
nature, but probabil
cases.

in crack growth rate
(Continued)

The purpose of this dissertation is to formulate probabilistic damage tolerance
analyses for metallic structural cemponents,
philosophy for slow crack growth and
. was conducted on probabilistic durabi
elements of the methods are covered;

17. COSATI CODES 18. SUBIECT TERMS (Continue on reverse if necessary and identify by block number)
;ELD GR?;P SUB-GROUP__J»Probabilistic Methods, Damage Tolerance, Metallic Structures
12 03 ~
19. ABSTRACT (Continue on reverse if necessary and identify by block number) P
ABSTRACT |

lysis, based on fracture mechanics, is an important tool for ensuring
of airframes. Traditionally, these analyses are deterministic in
istic methods have been applied to damage tolerance analysis in limited

based on U.S. Air Force damage tolerance

fail safe components. A survey of the literature

lity and damage tolerance methods. The important
including the initial fatigue quality, the variability
» and the probability of crack detection.

20 DISTRIBUTION/AVAILABILITY
Od unciassisiEo/unLMITED

OF ABSTPACT
O same as geT

21 ABSTRACT SECURITY CLASSIFICATION

O ovic users | Unclassified

223 _NAME OF RESPONSIBLE IND
Joseph G Burns

ViDUAL 22b TELEPHONE (include Area Code)

(513) 255-6104

22¢ OFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

N



r-I-IIIIllII-I-I-I--I-I----------I::“““‘*

19. Continued

A probabilistic damage tolerance analysis was performed with a deterministic crack growth
rate and then a stochastic crack growth rate, based on a probabilistic durability

method. Examples of slow crack growth and fail safe structures are presented.

As an example of a slow crack growth component, a lug from an aircraft subjected

to an 80-flight fightei/trainer wing lower surface spectrum was selected. A

stiffened panel from a lower wing skin of a tanker was selected as an example of

a fail-safe component. Crack arrest in the panel, followed by catastrophic failure

of the stiffener was considered as the failure mechanism.

The model formulated here can be used to decide on the frequency and quaiity cf
the inspection of a component needed to keep the probability of failure at acceptable

levels. Results of this study can serve as bases for decision making for inspection
maintenance and fleet management.

Accessien For

"NTIS GRA&I |
DTIC TAB

Unannounced O
Justification _________ }

By
Distribution/

Availability Codes

Avail and/or |
Dist Special

A L




PROBABILISTIC DAMAGE TOLERANCE METHODS FOR
METALLIC AEROSPACE STRUCTURES

Ry
o

Margery E. Artley

B.S.C.E. 1975, Purdue University,
West Lafayette, IN 47907
M.S.C.E. 1976, Purdue University
West Lafayette, IN 47907

A Dissertation submitted to

The Faculty of
The Scnool of Engineering and Applied Science of
The George Washington University in partial
satisfaction of the requirements for

the degree of Doctor of Science

February 20, 1989
Dissertation directed by
Jann-Nan Yang, Sc.D.

Professor of Engineering and Applied Science




Dedicated to

My Parents, Tom and Elesancr

iv




ACKNOWLEDGEMENT

The author wishes to express her great appreciation to
Professor J.N. Yang, dissertation research director, for his
valuable guidance, insightful suggestions, and needed
encouragement.

The author is sincerely grateful to Dr. Frank D. Adams
of the Air Force Wright Aeronautical Laboratories for his
coenstant encouragemeat and gentle prodding. Thanks also to
Dr. George P. Sendeckyj, AFWAL/FIBEC, for his helpful
suggestions and invaluable discussion.

The author is also grateful to the faculty of the
School of Engineering and Applied Science of the George
Washington University for providing the fundamental
engineering and mathematical tools necessary to perform this
study.

And finally, the author is indebted to the U.S. Air
Force Wright Aeronautical Laboratories, Flight Dynamics
Laboratory, Wright-Patterson AFB, OH, for funding this
program of study under the Long-Term, Full-Time Training
program and the structural integrity in-house work unit No.

2307N124.




ABSTRACT .
ACKNOWLEDGEMENTS
LIST OF TABLECS
LIST OF¥ FIGURES
Chapter

I INTRODUCTION

1.1 Objecti

TABLE OF CONTENTS

. . . . . . - . - - . . .

ves and Scope

1.2 Overview of Damage Tolerance Philosophy

II BACKGROUND
2.1 1Initial

2.1.1

2.1.2

2.2 Stochas

2.3 Probabi

2.4 Probabi

Fatigue Quality .
The Equivalent Initial Flaw Size

Distribution . .

Time-to-Crack-Initiation

Distribution . . . . . . . .
tic Crack Growth Model
lity of Detection . . . . . . .

listic Life Prediction

Page

ii

ix

IIT ANALYTICAL FORMULATION OF PROBABILISTIC APPROACH TO

LIFE PREDICTION

3.1 Determi

3.1.1

(%]
.
=
.
39}

nistic Crack Growth Approach
Analytical Crack Growth Approach

3.1.1.1 No Inspection

3.1.1.2 One or Multiple Inspections.

Master Curve Approach

3.1.2.1 No Inspection . . . .

vi




v

3.2
3.2.1
3.2.1.1
3.7.1.2
FXAMPLES
4.0 Introduction
4.1 Lug Exampile
4.1.1
4.1.2
4.2

3.1.2.2

One or Multiple Inspections.

Stochastic Crack Growth Approach

Analytical Crack Growth Approach

Deterministic Crack Growth Approach

No Inspection

One or Multiple Inspections.

CF »TCCHASTIC LIFE PREDICTION

Stochastic Crack Growth Approcach .

Stiffened Panel Example

4.

2.1

Slcw Crack Growth Approach

4.7
AN

=N
[

1.

1

Deterministic Crack Growth

Approach

Stochastic Crack Growth

Approach

Crack Arrest Approcach

4.2.2.1

[\

.2.

2.

.2,

Deterministic Crack Growth

Approach . . .

1.

1

General Master Curve

Approach

Special Case,

B(a)=1

Stochastic Crack Growth

Approach
2.1 General Master Curve
Approach
2.2 Special Case, Bla)=1
'll




VI

Al

4,3 Conclu ns

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

5.2 Conclusions

5.3 Recommendaticns for Future Research
REFERENCES

Appendix

AR TR




1,10

LIST OF TABLES

Parameters for the Aluminum Lug Example with a
Straight Shank without Bushings or Bearings

The Average Percentage of Repair for the Lug
Example usling Deterministic Crack Growth
Analysis for NDI Systems #1 and #2

The Average Percentage of Repair for the Lug
Example using Stochastic Crack Growth Analysis
for NDI Systems #1 and #2

Fail-Safe Structure Requirements for Air Force
Damage Tolerance [(from Ref. 1]

Values of Crack Length, Beta, and Residual
Strength for an 8 inch Stiffener Spacing

Parameters for the Stiffened Panel Example

Average Percentage of Repair for the Stiffened
Panel Example using Deterministic Crack Growth,
Visual and NDI System #1 Iispections, Critical
Crack Size = 6.061 inches

Average Percentage of Repair for the Stiffened
Panel Example using Stochastic Crack Growth,
Visual and NDI System #1 Inspections, Critical
Crack Size = 6.061 inches

Average Percentage of Repair for the Stiffened
Panel Example using Deterministic Crack Growth,
Visual Inspections, Critical Crack Size = 8.142
inches

Averaga Percentage of Repair for the Stiffened
Parecl Exampnle usling Stochastic Crack Growth,
Visual and NDI System #1 Inspections, Critical
Crack Size = 8.142 inches

1%

Page

4-3

=N
i

o

W

L
|
FeS
n

iy
]

wn

oS




LIST OF FIGURES

rigure rage
2.5 JompatigciilTy erweon 7.7 and EIFS .. . . . 2-4

2.2 Zrack Loengthn Versus CycC.ies for Cconstanc

Amplitude Data {from F2f. 27) . . . . . . 2-8
2.3 Predicted Cracy Langtn Versus (Cyc.es for

Constant Amplitude Da-a (frzn Ref. 20) « .. 2=
3.1 The "Leg-0dds' Function for Preobapility

of Detectlcon .o e e e e e .. 3-5
3.2 Calculazicn L 7_'Ti « .+« . . . . o .. 3-13
3.3 Urtilizaclon ¢f the Master (urve o« o+ . . . 2-15
3.4 Carculasicn of vix,kT) e . e e e . .. 317
4.1 Geomarr, ©f tne Lud . e e e e e . 4-4
3.2 Sample Crack Growth Rate versus Crack Longth

of a Lug (Sample S3-A-3 frcxw Ref. 73) . . . . 4-3
4.3 Critizal Crack Sizes fcor 15 Service Falled

Lugs {after Ref. 72V, . . . . . . . . . . . .47
4.4 Probability of Detection Curves fcr Twc NDI

Inspection 3vstems . . . . . . . 4 4+ . . . 4-8
1.3 The Cumulative Probapllity 2f Failure for

the Lug Example, with Deterministic Crack

Growth Methed, NDI System #1, 8000 Flights

and 0-3 Tnspectlons . .« .« o« v v e e e e eo.o.o4-11
3.6 e Cumvlatrive Probability of Failure for

zne Lug Example, with Det:rministic Crack

Jrcwth Method, NDI System #2, 80(C0 Flights

and 0-3 Inspectians . . « « « o« o« 4 0 ... =12
1.7 The Cumcliative Probability oo Fallure for

the Lug Example. with Stochastic Crack

Jrowth Mothod, NDI 3Sysctem #1, 4000 Flignts

and 0-4 Inspecticns . .. Ce e e . .« 4-15
4.8 The Cumuiative Probability of Failure for

~he Lug &xample, with Stschastic Crack

Growth Mpbhod NDI sSystem =0, 4000 ights

and 0-4 InsSpecTicns . . . .+ o« . .

>
]

16




&

.10

.1lla

.11b

.12

.13

.14

.19

The Cumulative Probability of Failure for

the Lug Example, with Stochastic Craczk

Growth Method, NDI System #1, 2000 Flights

and 0-4 Inspections . . . . « . . +« « « <« . . 4-18

The Cumulative Probability of Failure for
the Lug Example, with Stochastic Crack
Growth Method, NDI System #2, 2000 Flights,

and 0-4 Inspections 4-15
Residual-Strength Requirements for Air
Force Damage Tclerance (After Ref. 1) . . . . 4-23
Damage-Growth Requirements for Air Force
Damage Tolerance {(After Ref. 1) . . . . . . . 4-24
Geometry of the Stiffened Panel . . . . . . . 4-27
Residua. Strength of a Plate as a Function
of Cracx wength for a Center Cracked Panel
with Broken Center Stiffener . . . . . . . . 4-30
Residual strength of a stiffener and a plate
as a function of crack length for a center
crackec panel; stiffener spacing = 8 inches,
K =120 ksi1 4yin., F_ =82 ksi . . . . . . . . . 4-31
C tu
The Stress Exceedance Curve for a Lcocwer Aft
Panel and Sti:ffener . . . . . . . . . . . . . 4-35
The Probability of Detection Curve for a
Visual Inspection . . . + . « « « <« « o + « . 4~37
Residual Strength as a Function of Crack
Length for an Unstiffened Panel, K =120 ksi

c
Jin. e e e e e e e e e e e e e e T u e e o . 4-38

The Cumulative Probability of Failure for an
Unstiffened Panel, with a__=6.061 inches, the
Doterministic Crack GrowthH“ Method and 0, 4 and

> Visudli Inspectlcons .« o v ¢« . s . . . .. . 4-41

The Cumulative Probability of Failure for an
Unstiffened Panel, with a__=6.061 inches, the
Stochastic Crack Growth M&€hod and 0 and 5
Visual Inspections . . . .+ .+ . ¢ . 4 o . o . 4

44

The Cwrnulative Probability of Failure for an
Unstiffened Panel, with a__=6.061 inches, the
Stochastic Crack Growth M& hod, 0-5 Inspections

with NDI System #1 . . . . . « « . « + « . . 4-45

Two Ma.=er Curves, One with Crack Arrest, the

JENer WITIOUT & v v v v s e e o s e e e e v . 4-49
X1




.22

.24

.25

.26

The Crack Growth Model Showing the Crack
Growth of the Median Initial Flaw Size, the
Tenth Percentile, and the 90th Percentile
Initial Flaws e e

The Cumulative Probability of Failure for a
Stiffened Panel, with a__=8.142 inches, the
Deterministic Crack Groé%h Method, and 0-3
Visual Inspections e e e

The Cumulative Probability of Failure for a
Stiffened Panel, with a__=8.142 inches, the
Stochastic Crack Growth” ﬁethod and 0 and 5
Visual Inspections

The Cumulative Probability of Failure for a
Stiffened Panel, with a__=8.142 inches, the
Stochastic Crack Growth Method and 0-5
Inspections using NDI System #1

The Cumulative Probability of Failure for

a Stiffened Panel, with a__=8.142 inches, the

Stochastic Crack Growth Mé%hod 0 and 5
Visual and NDI System #1 Inspections.

xii




CHAPTER 1

INTRODUCTION

1.1 Objectives and Scope

The purpose of this dissertation is to formulate a
probabilistic damage tolerance analysis for metal structural
components, which takes into account the statistical nature
of the initial fatigue gquality of the ccmponent, the
variability in crack growth rates, the residual strength of
the fail-safe structure, and the reliability and f£requency
of the inspection. The goal of this research is to develop
a probabilistic methodology which can be used to set
rational inspection and maintenance schedules for airframes.

This model will be useful to engineers in designing
airframes which will meet Air Force damage tolerance design
requirements to ensure safety and reliability during the
design service lifetime. The model can also be used by
maintenance managers in selecting levels of inspection and
inspection frequency in life extension programs. Examples

of slow crack growth and fail-safe components are presented.

1.2 Background: Overview of the Damage Tolerance Philosophy
Ensuring that metal airframes are damage tolerant is a
primary concern of airframe designers and owners. In
particular, military leaders have a need to ensure that
current and future weapon systems are damage tolerant.

Damage tolerance is an issue of safety of flight. There are




approximately 20 to 200 damage tolerant critical compencnt
ror airframe. Ore of the most important problems in the
design and analysis of aircraft structures is the prediction
of fatigue crack growth in fracture critical components.

The Air Force damage tolerance design philosophy dictates
that assumed damage in the structure must not reach critical
crack size during two design lives.

Military specifications exist which address damage
tolerance for U.S. Air Force metallic airframes [1,2). The
governing military standard dealing with structural
integrity is MIL-STD 1520A [3]. kxtensive guidelines with
examples on how to perform a damage tolerant analysis.
deterministically are given in [4].

The damage tolerance requirements address two distinct
types of design philosophies for structures, slow crack
growth and fail-safe. These requirements include both
analytical and experimental parts, and they are functions of
design concept and the degree of inspectability. Initial
flaw sizes are specified for primary damage for
non-inspectable and depot or base level inspectable
structure for both slow crack growth and fail safe
structures. Subsequent crack growth and residual strength
requirements are specified which must be met in the presence
of this assumed initial damage. The requirements depend on
the degree of inspectability designed into the component.
The USAF design philosophy dictates that the assumed damage

in the structure must not reach critical crack size during




one-half of the structure's design life for slow crack
growth structure that can be inspected at depot or base
level. 1If the component is non-inspectable, then the damage
must not reach critical crack size during two design
lifetimes.

A parallel set of requirements exist for fail-safe
structures, with an addition of the residual strength
requirement. The damaged structure must be able to sustain
the expected maximum load which will occur in five
lifetimes, but the residual strength does not need to be
greater than 1.2 times the expected maximum load which will
occur in one lifetime. For the non-inspectable structure,
the residual strength must be greater than the expected
maximum load which will occur in twenty lifetimes. The
residual strength must be at least equal to the design limit
load, but need not be greater than 1.2 times the expected
maximum load which will occur in one lifetime. The residual
strength for the intact structure must be at least as great
as the design 1limit load but need not be greater than 1.2
times the maximum load expected to occur in one lifetime.
Beyond that requirement, the intact structure must resist a
icad equal to che design limit load or 1.15 times the
residual strength, at the instant of load-path failure or
crack arrest. The 1.15 is a factor which accounts for
dynamic effects.

A fail safe design can be classified as either




containing multiple load-pathn or crack-arrecst features. A
structure designed with multiple load-paths is a redundant
structuire. When one of.the elements fails, the remaining
elements are designed to carry the load for a specific
period of time which may be the time required to get it
repaired.

A structure containing crack arrest features is
designed so that a rapidly growing crack is stopped at a
stiffener or other crack arrest feature before complete
failure. The remalning uncracked structure, with assumed
continuing damage, should be able to carry the lcad until
the cracked section is repaired.

There are similar requirements for fail safe and
multiple load path dependent structures. The initial damage
consists of primary and continuing assumptions. This
initial damage must not result in failure of the intact
structure within one fourth of the design service life. The
intact structure must be able to sustain the maximum load
expected in five lifetimes. This load must be equal to or
greater than the design limit load, but not greater than 1.2
times the maximum load expected in one lifetime. At the
instant of load-path failure, the structure must be able to
sustain a maximum load of 1.25 times the maximum load
expected to occur in five lifetimes. The residual strength
need not exceed 1.38 times the maximum lcad expected to
occur in one lifetime. The initial damage assumed in the

remaining structure is the faliled load path plus the




continuing damage a:;ssumed in the adjacent load path
structure in addition to the amount of the crack growth that
occurs before load-rath failure. This initial damage must
not result in failure of the remaining structure within one
half of the design service life. The intact structure must
be able to sustain the maximur load expected to occur five
lifetimes. This maximum load must be equal or greater than
the design limit i1o0ad but need not exceed 1.2 times the
maximum load expected in one lifetime.

To date, no airframe in the USAF inventory has been
designed or qualified as a fail safe (multiple load path or
crack arrest) structure. Selected components of three
aircraft, however, are being managed as fail safe structures
as a result of durability and damage tolerant assessments.

As the above discussion implies, the current damage
tolerant requirements are presented in a deterministic
format; however, fatigue crack growth is a highly variable
phenomena which depends on the initial quality of the
component, the statistical characteristics of the fatigue
crack growth rate, and the random nature of the stress
history. An equally important factor is the reliability of
the inspecticn, which has to be regarded as another random
variable. Assessment of the quality of the structure at any
point in time is the basis of a fracture mechanics-based
design and life management program. A probabilistic

analysis can greatly improve the ability of the designer to




ensure safety of flight of a damage tolerant critical
component.

In Chapter II, a review of the literature is presented
which describes a general deterministic damage tolerance
analysis for structures designed for slow crack growth or
for fail safety. Next, the probabilistic methods which have
been developed for durability analysis are presented, and
finally, the probabilistic method which have been performed
for damage tolerance life prediction are presented.

In Chapter III; twn methods for calculating the
probability of failure and probability of repair are
presented for slow crack growth and fail safe components.
One takes into account crack arrest, and the other does not.

In Chapter IV, an example of a structure designed to
withstand slow crack growth is presented in the form of a
lug attachment fitting. An example of a component designed
to be fail safe by arresting the crack is presented in the
form of a lower wing panel of a tanker aircraft. It is
shown that :he probability of failure decreases as the
inspection and repair frequency increases. The improvement
depends on the quality of the inspection. Two different
levels of inspection are shown for the lug example. A
visual inspection and one level of nondestructive inspection
are shown for the lower wing panel example.

In Chapter V, the summary and conclusions are stated

and topics for future research are presented.




CHAPTER II

BACKGROUND

The key to assessing the reliability of a structure is
to realistically describe (1) the initial fatigue quality of
the component, (2) the variability in the crack growth rate,
and (3) the reliability of the inspection. 1In this chapter,
some of the literature which addresses these three areas is
presented. The assumptions used in this methodology are
cited. This chapter concludes with a section on

probabilistic life analysis methodologies.

2.1 1Initial Fatique Quality

The initial fatigue quality can be described
statistically by (1) the equivalent initial flaw size (EIFS)
distribution or {2} the distribution of time-to-crack-
initiation. Both concepts are useful design tools for

making life predictions.

2.1.1 The Equivalent Initial Flaw Size Distribution

The direct determination of the initial flaw size of
the inherent flaws is not possible because the initial flaws
of a high quality structure are not detectable.
Furthermore, not all flaws are propagated from an initial
defect. For these reasons, the equivalent initial flaw size

concept was introduced by Gray and Rudd [5,6])] and developed




by Yang and Manning [e.g. 7-11) as an analysis technique to
be used to represent the initial fatigue quality of
structural details in the durability analysis.

The EIFS is defined by Manning and Yang {e.g. 10) as an
artificial crack size which results in an actual crack size
at an actual point in time when the initial flaw is grown
forward. It is determined by back-extrapolating fracto-
graphic results.

The general procedure for defining the initial fatigue
quality is summarized in the Alr Force Durability Handbook
{12]. The Weibull compatible distribution function proposed

by Yang and Manning [8,9] is reasonable for representing the

EIFS cumulative distribution.

a
— - X .
Fa(o)(x) = exp [ln( ;/x)] ; 0 ¢ X < X, (2.1)
= 1.0 ;xle‘1
in which Fa(O) (x) = P[a(0)<x], a(0) = EIFS = crack size at

time t = 0, X, = EIFS upper bound limit, and a and ¢ are
empirical parameters. The Weibull compatible distribution
is a derived distribution in the crack length domain. The
Weibull compatible distribution was selected to characterize
the initial fatigue quality for the method developed here
because of its success in reflecting initial fatigue quality

in similar situations [8-12].




2.1.2 The Time-to-Crack-Initiation Distribution

The time-to-crack-initiation (TTCI) is another quantity
for assessing a material's resistance to cracking under
service load environments. A reference crack size is
selected, and the time it takes for a crack to develop and
grow to the reference crack size is recorded for a sample of
fatigue specimens. The time to crack initiation was
proposed in [17] as a random variable with an extreme value
distribution, such as a two-parameter Weibull distribution,
having a given characteristic life and a defined shape
parameter. Yang et al. [8] and Shinozuka [13] have
demonstrated the existence of compatibility between the
EIFSD function and the TTCI distribution function for the
weibull ard lognormal distributions, as illustrated in
Figure 2.1. Figure 2.1 illustrates the time-to-crack-
initiation (TTCI) distribution as a Weibull distribution
with time as the independent random variable. A power law
was then used to refect the crack growth law which
transforms the distribution back to the y axis at time zero.
The resulting derived distribution is termed a Weibull
compatible distribution and the independent random variable
is crack length. The model developed and presented here
started with the assumption of the Weibull compatible
distribution. Since the distribution of TTCI depends on the

service loading condition, 1t can not be used to
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characterize the initial fatigue quality as that of the

equivalent initial flaw size.

2.2 Stochastic Crack Growth Model

The second component in life prediction is the crack
growth damage computation. The crack growth rate involves
statistical variabilities. The variability in crack growth
is due to a number of factors; 1) the random error in
measuring crack length, a, in the test, 2) the systematic
errors in the measurement of a, and 3) the inherent
statistical variation in the material crack growth
resistance, service loads, etc. The crack growth rate
calculation method used in data reduction affects the amount
of variability. Several studies have been conducted to
characterize the variability of the crack growth rate. They
are cited below.

Clark and Hudak [18] reported on an extensive
interlaboratory program which was conducted to assess the
variability and bias associated with fatigue crack growth
rate testing. The results of the study showed that the
primary source of variability in fatigue crack growth rate
testing 1s the experimental procedure used to obtain the raw
test data. The data processing technigue used to evaluate
the raw test data also affected the reported variability.
The polynomial techniques produced da/dN data with

substantially lower variability than that produced by the

o
}
(Oa




secant methcds. No 1naicatvion of bilas was present for any
specific data processing techuargue. I was conciuded that
the data processing technique was nct found te be an
important source o! variability. They found that the crack
growth process could be accuraroly characterized by a
lognormal distribution.

Weibull, ot al. [19} further investigated the role of
the experimental procedure in psoducing variability in the
vs. N data. Specifically, they looked at the effect of
measurement precilsion on the variability :n fatigue crack
growth rate data. Varilability in the derived crack growth
rate data was found toc depend strongly on the magnitude of
the measurement interval relative <o the measurement
preclision. It was pointed out ‘that 1t may pe incorrect to
assume that the observed scatter in the da/dN data is a
result primariiy cf the varlaticn in the material
properties.

Virkler, et ai. {20] considered six distributions to

descripe “he variability in da/dN. Tesg«s were performed on

o

center-cracke

*h

i panels of 2024-~T34 aluminum under constant
amplitude loading. The three-parameter !ognormal
distribution f1f the variapllity 1n ¢vc'e zount data the
best. They then repredicted the crack growth data using a
“lonte Carlo simulation metinod of choosira crack growth rate
inarements.,  This mernnd 135 ana.oaous to assuming that the

underlying process is compoesed f white noise.  This

APPproacn assumes that the cracg arowth d4ra were spatially




uncorrelated. The mean of the life was predicted quite
well, but the variability was greatly underestimated, as can

be observed by comparing the actual data in Figure 2.2 to
the predicted data in Figure 2.3. These results highlight
that crack growth rate is not independent in the space
domatin.

Artley et al. [21] directly evaluated the variability
in crack growth rate by applying a constant stress intensity
factor, K, flight-by-flight load history to a center-cracked
panel of 7075-T6 aluminum. The coefficient of variation of
the crack growth rates calculated by the secant method of
differentiation stabilized at approximately twelve percent,
while the seven-point polynomial method stabilized at six
percent. The polynomial methods smooth data by selecting
the best curve through the data and calculating the slope.

Yang et al. [22] showed that the scatter in da/dN could
e described by the lognormal distribution for engine
materials. Variability in crack growth rate for engine
materials 1is further investigated in references [23,24,25].

Bogdanoff and Kozin [e.g. 26,27} have taken the
statistical variability of fatigue crack growth into account
by proposing account by proposing that the crack size aflt)
is a discrete Markov chain. Their model is based on crack
size rather than crack growth rate, so it has only limited
appeal.,

Lin and Yang [2&,30) and Yang [e.g.22,31,32,33,34],
took the statistical variability of the crack growth rate

into account by randomizing the crack growth rate equation,
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da(t) _ b
—dqt - X(t)Qal(t) (2.2)

where "a" is crack length, "t" is time in flight hours or
hours, da/dt is the crack growth rate, Q and b are constants
which depend on the material and spectrum lcading

conditions, and X(t) 1s a non-negative stationary stochastic

process with a median value equal to unity. They proposed
that X(t) followed a general lognormal random process model.
As a special case of the lognormal random process model,
Yang et al. [e.g.31-39] considered that X(t)=X, where ¥ 1is a
lognormal random variable. The approximati<i has been found
to be extremely effective for representing crack growth from
fastener hole specimens un-er spectrum loadings. For this
reason it was used in the model developed here. A
deterministic crack grovth rate model was also considered.
Various approaches have been suggested to solve the
general lognormal random process model including the method
of Monte Carlo simulation by Yang et al. [31,32], the
Poisson pulse process by Lin and Yang [28-29]), the cumulant
closure technique by Lin and Yang [30], the second moment
approximation by Yang et al. {31,32], the finite strip
method by Spencer et al. [40,41), etc. Finally, the random
process X{(t) in time has alsc been considered as a random
process X{(K) in stress inteusiiy factor K by Ortiz [42,43].
Yang et al. [22,25,44,45] has developed probabilistic
crack growth models for engine components. The lognormal
crack growth rate model was proposed for crack propagation

of engine components subjected to either constant amplitude
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load histories or block type spectrum loadings. The
hyperbolic sine (SINH) crack growth rate function developed

at Pratt and Whitney [46} was used for engine components.

2.3 Probability of Detection

The third element to be considered in developing a
probabilistic model to assess the current quality of the
airfiame is +the reliubilitv of the inspection. Almost all
NDI data from aerospace components consists of indications
of whether flaws are present of not. The indication of the
presence of a flaw does not necessarily mean that a flaw or
crack is actually present.

There are four levels of crack indications as noted in
the Cl141 modification program [47]. Their definitions
follow. A suspect is a flaw-like condition obtained when

using the first primary non-destructive technique. An

indication is a rejectable condition for a flaw-like

indication which was previously categorized as a suspect
when obtained using the first backup NDI technique. If the
primary NDI technique is eddy current; this term applies to
an indication obtained after repeatedly cleaning the hole.

A confirmed indication is a rejectable condition which was

previously an indication and has been confirmed by
laboratory personnel, but was not determined to be

crack-like in nature. And finally, a confirmed crack is a

term used to describhe a flaw which was previously

categorized as a confirmed indication when located by a




laboratory personnel using enhanced visual inspection. The
challenge is presented to consider this approach and
definitions when devising a representation of the
reliability of the inspection.

If the flaw indication is positive, the hole is reamed
out at 1/64 inch and the NDI is performed again. If the
flaw indication is still positive, then the hole is reamed
out 1/64 inch again. This is done three times for a
straight hole ana four times for a tapered hole. After tnis
procedure, if the flaw indication is still positive, a
repair is made according to a standard technical procedure
for that location. The data available from this kind of
inspection is either positive or negative, pass/fail of the
test. Results are presented as pass/fail for a given
discrete crack length.

Berens and Hovey [48-52] have offered an analysis
method for handling pass/fail data in suéh a way as to
devise maximum likelihood parameters for establishing the
probability of detection. This method is not exact because
it is difficult to obtain information on the *rue size or
existence cof a flaw without the intensive investigation of
tear-down inspection results.

Several researchers {e.g.48,49,53-55] have shown that
the probability of detection can be represented by a

"Log~-0dds" function given by

-1
F (%) = {1 + exp —[ﬁ(—l—"%ﬁﬁ” (2.3)
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The "Log-0dds" function given in Eg. (2.3) can be
reparameterized to provide a linear form in transformed

variables .

x *
FD(X) - exp(a +B 1nx) (2.4)

* *
l+exp(a +B 1nx)

where a* and B* are constants derived from maximum
likelihood estimators. The parameters p and o in Eg. 2.3
and a* and B* in Eq. 2.4 are related by; u = -a*/B* and o =
n/(B*JB). This representation of the inspection reliability
was selected for the illustration of the model presented
here because of its ability to reflect broad banded and
narrow banded inspection systems.

The use of multiple inspections to improve crack
detection probability is thoroughly investigated by Yang and
Donath [56,57] who showed that multiple inspections do not
always insure improved inspection reliability. They showed
that when the sequential inspections are done conditionally

that grave errors can result.

2.4 Probabilistic Life Prediction

Probabilistic life predictions based on fracture
mechanics have been developed for aerospace applications
over *“he last twenty years. In particular several
researchers have developed stochastic models for life
prediction [e.g.32,44,45,58~65).

Manning et al. {e.g.64]) have done extensive work in
formulating, validating and refining a probabilistic

durability analysis for the U.S. Air Force in support of




their military specification for structural integrity of
aircraft structures [1].

Palmberg et al. [65] have presented a probabilistic
damage tolerance analysis which takes into account the
EIFSD, stochastic crack growth rate and the inspection
reliability. They use a stochastic process X(t) to account
for the variability in crack growth rate following the
approach proposed by Lin ana Yang [29,30). In addition to
the probabilistic life prediction for structures under
~scheduled inspection/repair maintenance cited above, the

probabilistic life prediction for structures under scheduied

proof test maintenance has also been investigated [66,67).
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CHAPTER III

ANALYTICAL FORMULATION OF PROBABILISTIC APPROACH

TO LIFE PREDICTION

3.1 Deterministic Crack Growth Approach

3.1.1 Analytical Crack Growth Approach
Suppose the crack growth rate can be represented by the
Paris type equation

c (ax)™ (3.1)

da(t)/dt

l

in which a(t) crack size at time t, t - flight hours or
flights, AK = stress intensity range, and c and m are
empirical constants. Sclutions of AK for many geometries
are available in the literature. For example, the solution
for a center crack in an infinite panel is given by Equation
(3.2)

AK = A0 J2ma (3.2)
where Ao is the amplitude of the applied cyclic stress. For
some variable amplitude loadings, as in the case of
flight-by-flight load histories, the Ao can be replaced by a
Aoeff and K can be replaced by Keff for many variable
amplitude loadings. This expression is valid within regions
of AK especially the middle regions.

Substitution of Eg. (3.2) into Eqg. (3.1) vyields

da(t)/dt = oal(t) (3.3)




in which b = m/2 and 9 = ¢ [Aoy/n ]m. Q can take on values

Ql’ Q2, Q3, ce Qn’ within segments of the crack growth rate

curve.

Equation (3.3) is a convenient form of the power law
and it has been sugges'ed by Yang and Manning for durability
analysis of aircraft structures [8,10,12). It will be used

here for the damage tolerance analysis.

Equation (3.3) can be integrated from t1 to t2 to
obtain the relationship between a(tl) and a(tz),
a(tl)
alt,) = (3.4)
2 [1-a(0) cQ(t,-t,)]11/C
2 71
or
a(t2)
a(t,) = (3.5)
1 (1+a%(t) co(t.-t.)1%/C
2 71
where
c =b -1 (3.6)
For t1 = 0 and t2 = t, Egs. (3.4) and (3.5) become
_ a(t)
al0) = 7G (3.7)

(1-aS(t)cot]?

or
a(0)

a(t) =
[1-a(0)cot1/C

(3.8)

Equations (3.4) ~- 3.8) will be used in the methodology
to transform the distribution of the crack size from one
time instant to another in service.

The initial quality of a metallic structure can be

represented by the cumulative distribution at equivalent




initial flaw sizes (EIFS), a(0), i.e., the equivalent flaw
size at time zero. The Weibull Compatible distribution,
proposed by Yang and Manning [8,9]) will be used to describe

the equivalent initial flaw size distribution and is

a
1n{*u/x)
®

where X, is the upper bound on the EIFS, a and ¢ are

repeated here:

Fa(o)(x) = exp (3.9)

empirical constants to be determined from the fractographic
data. Procedures for the determination of X,r @ and B have

been described in details in Refs. [10,12)

3.1.1.1 No Inspection

We now have the two necessary ingredients to estimate
the probability of failure for no inspection, or just prior
to the first inspection using the cumulative distribution of
initial flaws and the deterministic crack growth equation.
The probability that the crack size a{t) at any service time
will exceed the critical crack size a, is given by

P (t) =P [a(t) > a_] (3.10)
Substituting Eq. (3.8) into Eg. (3.9), one obtains

Pc(t) = P [a(0) <y (t)] =1 - Fa(o)[yc(t)) (3.11)

in which Fa(o)[yc(t)] is defined in Egq. (3.9) and

X
vy (t) = < (3.12)
c [1~x§cot]1/c

in Eq. (3.12), yc(t) is the value of the initial flaw which
will grow to critical flaw size in the given time interval

[0,t]. The solution for the failure probability given by




Eq. (3.11) is applicable to the first inspection interval,
or where no inspection is performed. The probability of
failure for the case where cne or multiple inspections are

performed will be derived the following.

3.1.1.2 One or Multiple Inspections

In considering the effect of inspections on the
probability of failure, it becomes convenient to use the
probability density function to describe the flaw size
distribution rather than the cumulative distribution
function. The probability of detection, which is introduced

in Chapter 11, is shown in Eguation (3.13):
* %*
FD(X) . exp (a + B*ln xl
l +exp (@ + B 1n x)

(3.13)

in which x is the crack size, and a* and B* are constants
depending on the capability of the inspection system.
Equation (3.13) is illustrated in Figure 3.1. The equation
accounts for the fact that nondestructive inspection (NDI)
systems are not capable of repeatedly producing correct
readings when applied to flaws of the same length.

The distribution of flaw sizes at any point in time
prior to any inspection can be found by transforming the
density function of flaw sizes, a{0), at time zero to the
flaw sizes a{t) at time t. This transformation can be made
using the relationship between the crack length at time zero
a{0) and the crack length at any other time, a{t), given by

Eg. (3.8). The probability density function fa {x) of the

(t)
crack size alt) at time t 1s obtained as

A
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£ap) (%) = fa(o)[y(x,t)]ldy(gx[t)l (2.14)

= fa(o)[y(x,t)]J(x,t)

in which it follows from Eg. (3.8) that

X
vix,t) =
(1 - xccQt)l/C
and
1 1 + 1/¢c
J({x,t) = = (3.15)
1 + X ¢cQt

In Egq. (3.14), fa(o)(x) is the probability density

function of EIFS obtained by taking derivative of Fa(o)(x)

- [ln(xu/x)] a% (2.16)

with respect to x,

X a-1
_a_ In( u/xl:] exp

Faro)®) 7 4% s

L ®

With the above procedure for transforming the crack
sizes from one point in time to another, the expressions for
the density functions after several inspections can be
formulated. The probability density function of the crack
size right before the first inspection at v is given by Eqg.
(3.14) with t = 1, i.e.,

fa(t)(x) = fa(o)[Y(X,T)] J(x,T) (3.17)

The probability of failure in the first service

interval [0,1] is given by

<3

p(l) = J( fa(t)(X) dx (3.18)

a
C

and the probabilicty of repair during the first inspection

maintenance is given by




T —

a
C

G(l) = J.fa(t)(X) FD(x) dx (3.19)
0]
in which FD(x) is the prokability of crack detection given
by Eq. (3.13). It can be shown that p{l) given in Eg.

. {3.18) is identical to Pf(t) in Eq. (3.10) with t = 1.

After the first inspection maintenance at 1, the probability
, . +. . e

density of the crack size a{t ) is modified, because of

possible repair,

+(x) = G(1)f (x) + F;(x)f (x) ; x<a_ (3.20)

a(0) a(t)

in which the first term is contributed by the repaired

fa(t

*
population and FD(x) is the probability of not detecting
(missing) a crack of size x during inspection,
*
FD(x) =1 - FD(x) (5.21)
The density function of crack lengths after the second
service interval at 21 before inspection is obtained by

transforming Eq. (3.20) to the time 2t as follows
*

) = Gl1)f (x) + FD(x)f )(x) {3.22)

Eal2n) X a(2t

in which £

a(t)

a(zr)(X) is the probability density function of
the crack size a(2t) for the population originated at t = 0.

(») is obtained from Eq. (3.17) by setting t = 2t.

f ‘~‘;*.)
As a result, owing to crack propagation, the crack size
. and 1ts probability density increase as a function of
cervice tima., Meanwhile, the probability density function
is subjected to modification during each inspection and

repair maintenance. Following a similar procedure described

irove, the probability density function of the crack size,
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al(nt), at nt right before the nth inspection maintenance,

can be obtained in a recurrent form,

n-1
= f . v N .
fa(nr)(x) mgl FD (Y(x;mt) ] fa(O) [Y{(x;nt)]J(x;nT)
n-1 _
* o Gln-k)ry ; for n=2,3 (3.23)
k=1

in which the first term is contributed by the original
population introduced at t = 0, and the second summation
term is contributed by the repaired populations introduced
at n-kth inspection maintenance (k=1,2,...,n-1).

In Eq. 3.23, G(n~k) is the probability of repair at

{n-k)t, and

Ak = il FD [Y(x;mt)] fa(O) [Y{x;kt) ]I (x;KkT) {3.24)

in which Y(x;mt) and J(x;kt) are given by Egs. (3.15) and
{3.16), respectively. It should be mentioned that in Eqg.
3.24,
k-1 x

m FD[Y(x;mr,z)] = 1 for k = 1 and FD[Y] = 0 for Y>a_.
m=1 ¢

The probability cof failure in the nth service interval

[(n-1)t,nt), denoted by p(n), is obtained as

pl{n) = fa!nr)(X)dx ; for n=2,3,... (3.25)

a
Cc

and the probability of repair, G(n) during the nth

inspection maintenance 1s given by




a
c
G(n) = Jﬂfa(nr) (X)FD(x)dx ; for n=2,3,... [(3.25a)
0

Equations (3.23) - (3.26) are recurrent solutions of n =
2,3,..., where the sclutions for n = 1 are given by Egs.
(3.18) -~ (3.19).

The probability of failure in each service interval
p(n), n=1,2,... has been derived in Eq. (3.25). The
probability of failure within m service intervals, i.e., in
the service interval [0,mt], denoted by Prr is obtained as

m

P,=1-1 [1-p(n)] (3.26)

n=1
3.1.2 Master Curve Approach

In some instances, the crack growth rate equation
cannot be expressed analytically. For instance, Eg. (3.1)
does not hold for the entire region of crack size. This is
particularly true for a redundant structure, where the crack
growth rate in a stiffened panel slows down and is arrested
as it approaches the stiffener. 1In this connection, the
s30-called master curve approach developed by Yang [8] will
be used in the following.

Both the crack propagation ana residual strength are
functions of the crack tip stress intensity factor, K. The
ceffect of stiffeners on the stress intensity factor in
redundant, built-up structures can be expressed as:

AK = poJna Bla) (3.27)




where Bla), a function of crack size af{t), is a coriection
factor to account for the effect of geometry on the crack
growth. Substituting Eq. (3.27) into Eg. (3.1), one obtains
the growth rate equation as follows

datt’ - Qab(t)I.B(aﬂZb (3.28)
Unfortunately, the correction factor R(a) cannot be
expressed analytically as a function of the crack size af(t).
Swift [68] has reported discrete values of crack size and
B'a) for severa} stiffener spacings and areas. Thus, Eqg.
(3.28) cannot be integrated to yield an analytical relation
for crack size, a(t), as a function of time, t.
Consequently, numerical integration should be used to obtain
the crack size-time relation.

In addition to the panel-stiffener system described
above, there are other situations where the analytical crack
size-time relation does not exist and a general computer
computer program, such as the MODGRO developed by the U.S.
Air Force [69] shouléibe used. By use of numerical
integration procedures, the crack size a(tz) at t2 flight

hours can be expressed in terms of a(tl) where t2 > t. as

1
follows

a(tz) = a(tl) + zaa(tj) (3.29)
in which Aa(t,) 1s the crack growth increment per flight
J
hour at tj, where £, < tj <ty The crack growth curve,

a(t) as a function of service time t thus obtained, is

referred to as the '"master curve."
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Since the design loading spectra consist of many
repeated flights and missions, it is reasonable to assume
that the relation between a(tl) and a(t2) depends on the
difference of the service time tz-tl. Thus, only one master
curve for each maximum stress level is sufficient for the

determination of the crack growth damage. For the purpose

of mathematical derivation later, the analytical master
curve a(t) can be symbelically represented by

a(tl) = WIa(tz),tz—tll (3.30)
in which W is a general function representing the master
curve. It is a monotonically increasing function of tz-tl.
For instance, for a special case in which Eq. (3.3) is
valid, one obtains the function W after integration as
alt;) = Wla(t,),ty-t;] = alt,)/[1 + a®(t,)eot,-t,)11/C,

For the particular case where t1 = 0 and t2 = t,
Egq. 3.30 becomes

a(0) = wla(t), t] (3.31)

In the present analysis, the master curve can be
obtained, starting from an arbitrary crack size that is
smaller than the EIFS, by using any crack growth general
computer program, such as the MODGRU program [69]}. 1In this
dissertation, since the panel-stiffener system is of major
concern, Egq. (3.28) will be integrated numerically to obtain
the master curve. The procedures using the cubic spline
method are described in Appendix A.

The probability of failure of a structural component

under scheduled inspection and maintenance using the master




curve approach described above will be derived in the

following (after Ref. 8).

3.1.2.1 No Inspection

The probability that a crack a(t) at any service time t

will exceed the critical crack size a. is given by

pf(t) P [alt) > aCJ

1 - P [al0) < yc(t)J (3.32)
=1 - Filve®)]

in which Fa(o)[yc(t)] 1s distribution function of the

equivalent initial flaw size given by Eq. (3.9) and it

follows from Eq. (3.31) that

Yc(t) = Wla ,t] (3.33)

cf
In Eg. (3.33), Yc(t) is the corresponding crack size at t =
0 when the crack size at the time t is a.- With the master
curve numerically defined, Eq. (3.31), the value of Yc(t) in

Egs. (3.32) and (3.33) can be determined easily as shown in

Fig. 3.2.

3.1.2.2 One or Multiple Inspections

The probability density function of the crack size a(t)
right before the first inspection at t is obtained from that
of EIFS through the transformation given by Eg. (3.31) as

follows

fa(r)(x) = fa(o)[y(x,r)] Ji(x,t) {3.34)

in which
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vix,T) = Wix, 1)

dy(x,1) dt
dzt ax {3.35)

In Eg. (2.35), vi{(x,T) is the corresponding crack size

J(x,t)

at t = 0 when the crack size at Tt is equal to x, i.e.,
a{t)=x. Furthermore, yv(x,t) can also be interpreted as the
crack size at tl = t2 -1, i.e., a(tl) = y(x,T), when the
corresponding crack size at t2 is equal to x, i.e., a(t2)=x.
With the crack growth master curve being defined
numerically, the determinaticn of v(x,t), and slopes
dy(x,t)/dt and dt/dx can easily be made as shown in Fig. 3.3.

The probability of failure in the first service
interval [0,T} is obtained as

p(l) = fa(r)(X) dax (3.36)

a

C

in which £ )(x) has been derived in Eq. (3.34). The

az
probability of repair during the first inspection
maintenance is given by

a

G(1) = pra(r)(x) FD(x) ax (3.37)
0

In a similar manner, the probability density function
of the crack size alnt) at the service time nt right before

the nth inspection maintenance is obtained [Ref. 31)] as
n-1

fa(nr)(x) = An + & G(n-k) Ak for n = 2,3,... (3.38)
k=1
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in which An is the contribution from the original population
that has not been repaired, and the second summation term is
contributed by repaired population at each inspection
maintenance.

A1 = fa(o)[y(x,t)] J(x,T)

k-1
A, = n F. {yi{x,mt)]); £ [v(x,kT))J(x,kt) kX = 2,3,...
K fm-1 D a(0) (3.39)

where

Yix,kt) = W[(x,kt]

_ dy(x,kt) dx

Jix,kt) e aT (3.40)

Again, y{(x,kt) is the crack size at tl = t2 - kT, i.e.,

a(tz—kt) = y(x,kt), when the corresponding crack size at t2
is equal to x, i.e., a(tz) = x. Thus, given the crack
growth master curve, the crack size y(x,kt), and the slopes
dy(x,kxt)/dtr and dx/dtr for kX = 1,2,... can be determined as
shown in Fig. 3.4.

In Egq. (3.38), G{(j) is the probability of detecting {-r
repairing) a crack of any size during the jth inspection

a
C

G(3) =.{ fa(jr)(X) FD(X) dx ; J = 2,3,... (3.41)

o

Thus, the probability of failure in the nth service

interval, i.e., [{(n-1)t,nt), is obtained as

pin) =.[ fa(nr)(X) dx {3.42)
a

C

The probability of failure in n service intervals, i.e.,
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[0,nt]), is given by

[1-p(3)) (5.43)

o]
I
—
1
=9

3.2 Stochastic Crack Growth Approach
In the previous section, the crack growth rate

variability is not accounted for in the estimation of
probability of failure of the structure. This approach is
slightly unconservative, since the crack growth rate
variability tends to increase the failure probability of the
structure in service. It is mentioned that the distribution
of the equivalent initial flaw size (EIFS) is established by
back-extrapolation of experimental fractographic data to
time zero. When the back-extrapolation is conducted using a
deterministic crack growth model, the EIFS distribution, Eq.
(3.9), is referred to as the deterministic-based EIFS
distribution [Ref. 10]. When the back extrapolation is made
using a stochastic crack growth model, the EIFS distribution
is referred to as the stochastic-based EIFS distribution.

e
For the deterministic-based EIFS distribution, it has been
shown that the accuracy for predicting the crack growth
damage accumulation in service using the deterministic crack
growth approach 1is gquite reasonable, although it is slightly
unconservative [Refs. 10,12,36,37]). Cn the other hand, the
stochastic crack growth approach should be used if the

stochastic-based EIFS distribution is emploved.

3.2.1 Analytical Crack Growth Approach




In this section, the formulation for computing the
probability of structural failure will be presented using a
stochastic crack growth approach following Ref. 31. Various
stochastic crack growth models have been proposed in the
literature as described in Chapter 1I. ©Of all of the
stochastic crack growth models available, the lognormal
random variable model proposed by Yang [Refs. 31,32] shown
in Eg. (2.20) is the simplest for practical applications.
Likewise, such a model always results in a slight
conservative prediction for crack growth damage
accumulation. Consequently, it will be adopted in the
present study.

The lognormal random variable model for crack

propagation is repeated in the following

da(t)
dt

in which 2 is a lognormal random variable with a median of

= 2 ola(t))P (3.44)

1.0. 2 is introduced to account for the crack growth rate
variability resulting from various sources [see Refs.
31,32,61,62], such as the variabilities due to material
cracking resistance, spectrum loading, crack geometry, crack
modeling, etc.

The probability density function of the lognormal
random variable 2 is given by

£,(z) = L exp | - %—[l“ Z] iz >0 (3.45)

n 20
VA

in which o, is the standard deviation of 1n 2.

3.2.1.1 No Inspection
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Integrating Eq. (3.44) from t = 0 to t = t, one obtains

a(0) = ——— alt)
fl+a (t)cQtz)

1/c (3.46)

or
al(0)
[1-a%(0)cotz)?t

a(t) 7o {3.47)

Where ¢ = b-1 in Eg. (3.47), the crack size at any
service time t involved two random variables, a{0) and 2.
The ~onditicnal distribution function Fa(t)(x]z) of the
crack size a(t) given 2 takes a value z, i.e., =z, is
obtained from the distribution function of a(0), given by

Eg. (3.9), through the transformation of Egq. (3.46) as

follows

Fa(r)(XIZ) = Fa(o) (yvix,t,z)] (3.48)

in which it follows from Eq. (3.46) that

_ X
vix,t,z) = TG 13.49)

[1+chta]1

The unconditional distribution function of a(0}) is obtained
from the conditional one using the theorem of total

probability

Fa(t)(x) = Fa(O) (y(x,t,z)) £,(z) dz (3.50)
0
where fz(z) is the probability density function of Z given
by Eg. (3.45).
The probability of failure within the time interval

[0,t], denoted hy pf(t), is given by




i

pf(t) P[a(t)zac) (3.51)

l-P[a(t)gaC]
= l-Fa(t)(ac)
Substitution of Eqg. (3.50) into Eg. (3.51) leads to the

following expression for the probabiiity of failure

pf(t) =1 - Fa(O) [y(ac,t,z)J fz(z) dz (3.52)
Y0
in which it follows from Eg. (3.49) that

— ac
,t,z) = (3.53)

[l+acccQz’c]l/c

The analytical integration for Eg. (3.52) usually is
not possible, hence a straight forward numerical integration

can be carried out to estimate the probability of fallure

pf(t).

3.2.1.2 One or Multiple Inspections

The crack size at the end of the first inspection
interval a(t) can be obtained in term of the initial flaw
size a(0) from Eq. (3.47) by setting t=t1 as follows

a(t) = al0) (3.54)

[1-a%(0)cotz)t/C

in which ¢ = b - 1. The probability density function,

fa(t)(X)’ of a(t}) i1s obtained from that of a(0) and 2

chrough the transformation of Egq. (3.54); with the results,

o

fa(r)(X) = fa(o)[y{x;x,z)}J(x;r,z)fz(z)dz {3.55)




in which fz(z) is given by Eg. {3.45), fa(o)(x) is the
probability density of a{0) given by Eg. (3.16) and

vix;t,z) = x/[l+xcchz}l/c

J(x;1T,2) = 1/[1+x%corz)1T1/C (3.56)

The probability of failure in the first service interval
(0,t), denoted by pl(l), 1is equal toc the probability that

a(t) is greater than the critical crack size a.,

p(l) = fa(T)(x)dx (3.57)

a
C

The probability of repaliring or detecting a crack, during

the first inspection maintenance at 1, denoted by G(1l), is

given by
a
c
G(1) =-[ fa(t)(x)FD(x)dx (3.58)
0

in which FD(x) is the probability of detecting a crack size
X given by Eg. (3.13).

After the first inspection maintenance at t, the
probabil ity density of the crack size a(r+) is modified,
because of possible repair

f +(x) = G(1)f

*
a(th (x) + FD(x)f

a(0) (x) ; x<a_, (3.59)

in which the first term is contributed by the renewal

al(t)

*
population (repaired fastener hole). and FD(X) is the
probability of not detecting (missing) a crack of size x

during 1inspection,

*
FD(x) =1 - FD(X) {3.60)
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Following a similar procedure presented in Section
3.1.1, the probability density function of the crack size,
a(nt), at at right before the nth inspection maintenance,

can be obtained in a recurrent form,

<

fa(nr)(x) = fa‘nt)(xlz)fz(z)dz (3.€1)
0
in which fa(nr)(x,Z) is the conditional probability density
of a(nt) under the condition that 2=z,

n-1

%
= . ' HEY X e T \
fa(nt)(xlz) mil FD[Y(erT'Z)]s f.(0)l¥{x;inT,2)13(x;n7,2)
n-1 _
+ ¥ G(n-k)A ; for n=2,3,... (3.62)
k=1 k

in which the first term is contributed by the original
population introduced at t = 0, and the second summation
term is contributed by the renewal populations (repaired
locations) introduced at n-kth inspection maintenance
{k=1,2,...,n-1).

In Eg. (3.62), G{n-k) is the probability of repairing a
crack at (n-k)t, and

k-1

Ak = il FD[Y(x;mr,z)] f

)[Y(X;kT,Z)]J(x;kt.z) (3.63)
m=1

al(o

in which y{x;mt,2) and J(x;kt,z) are given by Eg. (3.56).
It should be mentioned that in Eg. (3.63),
k-1 *
T F.lylx;mt,z))=1 for k = 1 and F_[y]=0 for vy > a_.
m=1 D D ¢

The probability of failure in the nth service interval

['n-1)1,nt)], denoted by p(n), is obtained as
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p(n) = fa(nt)(x)dx ; for n=2,3,... (3.64)
ac
and the probability of repairing a crack, G{(n) during the

nth inspection maintenance is given by

G{n) = Jt fa(nt)(X)FD(X)dx ; for n=2,3,... (3.65)
0
Equations (3.61) - (3.65) are the recurrent solutions for
n=2,3,..., where the solutions for n = 1 are given by Egs.

(3.55) - (3.58).
The probability of failure of a critical location in n
service intervals (0,nt), denoted by P{(nt), is given by
n

p{nt) =1 -1 [1-p(])] (3.66)
j=1




CHAPTER IV

EXAMPLES OF STOCHASTIC LIFE PREDICTION

4.0 Introduction

In this chapter, examples of the analysis approcaches
introduced in Chapter III will be presented. First, a lug
problem will be presented in which the probability of repair
and the probability of failure will be calculated using both
a deterministic crack growth approcach and a stochastic crack
growth approach. Second, a stiffened panel problem will be
presented in which the probability of repair and the
probability of failure will also be calculated using a slow
crack growth analysis and a fail-safe crack-arrest analysis.
Both deterministic and stochastic crack growth approaches

will be used.

4.1 Lug Example

A lug attachment fitting was selected as an example of
a slow crack growth, damage tolerant critical structural
component. It is representative of the ~ategory of single
1nad path damage tolerant components [70]}. The lug is a
tignly stressed and nonredundant structural component whose
failure can be catastrophic [71].

A computer program was developed to calculate the
prcebability of repair and the probability of failure for
both stochastic crack growth and deterministic crack growth

approaches from an initial flaw size distribution. The




probability of repair represents the average percentage of
lugs in a fleet cf aircraft that will contain detectable
cracks and require repair. The probability of failure
reflects the average percentage of lugs that will fail in a
fleet of aircraft.

The parameters used in this example for straight
aluminum lugs without bushing or bearings are summarized in
Table (4.1) after reference [72]. A discussion of how these
parameters were selected follows:

Test data were selected from those tabulated in
reference [73], in which the specimen number S3-A-3
represented a straight shank, axially loaded lug with no
bushing. The geometry of the lug is illustrated in Figure
(4.1). It was subjected to an 80-flight fighter/trainer
wing lower surface spectrum. The crack length versus flight
data were differentiated to obtain *he crack growth rate
data, da/df, using the seven point polynomial method in
accordance with American Society for Testing and Materials
(ASTM) standard E-647 [74]. The da/df versus crack length
data are shown in Figure (4.2). A linear regression
analysis was performed on the natural logs of the da/df

versus "a" data as follows, Eg. 2.1,

da _ b
&= Oa (4.1)

Taking the natural logs of both sides of Eg. (4.1), one

obtains

ln(da/df) = in(Q) + b-+ln(a) (4.2)




Table 4.1

Parameters for the aluminum lug example with a straight
shank without bushing or bearings.

Crack Growth Parameters

Q = 7.158E-4 Flight hours *
b = 1.393
o = 0.2158
v
acr = 0.125 inch
Initial Flaw Size Parameters
a = 1.823
¢® = 1.455
xu = 0.03
NDI Parameters
System #1 System §2
* >
a, = 55.28 a, = 13.44
B = 16.4 B = 3.95
4-3
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Q and b are the slope and the intercept of the linear
equation as plotted on a log-log plot for pooled data sets.
Theoretically, Q and b should be estimated from crack growth
data of a large sample size. Unfortunately, only the crack
growth data for specimen S3-A-3 are available and they are
used to determine Q and b using a least squares fit
procedure; Jith the results Q=7.158(E-4), b=1.393, and c, =
0.2158. Based on the fiftieth percentile of 35 lugs failed
in service (after Ref. 72), the critical fiaw size was
assumed to be 0.125 inches, see Figure (4.3).

The Weibull-compatible distribution described in
Section 3.2 was used to characterize the initial quality.
The distribution parameters obtained in the durability
analysis for 7000 series aluminum [e.g.35,39] were selected;
a=1.823, ¢=1.455 and xu=0.03. This X, is a value which
might represent the capability of the NDI system. Any flaw
large than 0.03 inches would be found through the initial
inspection, and the part would be repaired prior to service.

The next assumption involved the levels of inspection.
Two levels of NDE systems were considered and the
probability of detection parameters, a* and B* were used in
Equation (2.4). These two levels were taken from reference
[39], and are identified in Figure (4.4) as nondestructive
inspection (NDI) systems #1 and #2. The respective values
for a* and B* were 55.28 and 16.4 for #1, and 13.44 and 3.95
for #2. Number 1 1is representative of a narrow-banded NDI

system which exhibits little statistical uncertaint: in flaw
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detection. This one misses all flaws less than
approximately 0.028 inches, and finds all flaws greater than
approximately 0.05 inches. NDI system #2 is representative
of a wide-banded NDI system, which exhibits significant
statistical uncertainty in flaw detection. This one misses
all flaws less than approximately 0.01 inch and finds all
flaws greater than approximately 0.1 inch. More small
flaws, but fewer larger ones are found for #2 than for #1.
Results for the probability of failure were investigated

using these two NDI systems.

4.1.1 Deterministic Crack Growth Approach

The lug example was analyzed using a deterministic
crack growth law, given by egquation (4.1). The initial flaw
size parameters, the crack growth rate parameters, the NDI
system parameters and the critical crack size were
identified in the previous section. This analysis is
computationally easy, because it involves only one random
variable, the initial flaw size, and hence, involves only
single integrals for calculating both the probability of
repair and the probability of failure.

An inspection interval was desired which resulted in
probabilities of failure smaller than 10"3 over the service
life of the airframe which is approximately 8000 flights.
The probability of failure is a function of service flights

and inspection reliability.




Figure (4.5) and (4.6) illustrate the probability of
failure for no inspection, one, two, and three inspections
for NDI systems #1 and #2, respectively. NDI system #1
results in lower probabilities of failure throughout the
8000 flight life, when compared to #2. The probabilities of
failure for NDI system #1 are less than 10“3 for one

inspection, less than 10-6 for two inspections, and less

than 10_9 for ~hree inspections. One inspection at 4000
flights using NDI system #1 would be a possible choice for a
fcrce management plan. The probabilities of failure using
NDI system #2 are less than 10"2 for one inspection and less
than lO_3 for two and three inspections.

The average number of repairs in a fleet of 100 lugs
are shown in Table (4.2) for NDI svstems #1 and #2, with
one, two, three, and four inspections. NDI system #2
results in finding more flaws than system #1, but the tlaws

it finds are smaller. It misses some larger ones, leading

to higher probabilities of failure.

4.1.2 Stochastic Crack Growth Approach
Next, the variapnility of crack growth was taken into

account in the model. The crack growth model is repeated in

the following

da _ b
4t ° 2 Qa (4.3)

where 2 is a lognormal random variable with median 1 and

standard deviation g, - © and b are the crack growth rate
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Table 4.2

Average percentage of repair for lug example
using deterministic crack growth analysis

a. NDI System #1

Service Interval 1 2 3 4 Total
4000 14.2 14.2
2667 7.4 14.3 21.7
2000 4.4 10.1 11.2 25.7
1000 2.8 7.4 8.8 9.2 28.2

b. NDI System #2

Service Interval 1 2 3 4 Total
4000 16.4 16.4
2667 10.7 15.2 25.9
2000 8.3 11.5 12.2 32.0
1000 7.0 9.4 10.0 10.1 36.5




parameters as derived from Equation (4.2) and presented in
Table (4.1).

A design service life of 4000 flights was selected to
represent the life of the lug for reliable performance. The
probabilities of failure for no inspection, shown by the
solid curve to the left and top, and one, two, three and
four inspections, shown by the curves to the right and down,

are presented in Figure (4.7) for NDI system #1. The

9 2

probability of failure rises quickly from 10 ° to 10 ¢ as
the number of flights increase for no inspection. The
probability of failure for one and two inspections 1is

greater than 10_3 by the end of the service life. It is

less than 1073

for three and four inspections throughout the
service life. The increased numbers of isochronal
inspections serve to Keep the probability of failure from
rising as fast as the case of few or no inspections. The
corresponding probabilities of failure are presented in
Figure (4.8) for NDI system #2. The trend follows NDI
system #1; however, inspection and repair serves to lower
only slightly the probability of failure at longer lives.
The probability of failure is greater than 10-3 for one, two
and three inspections. It remains less than 1()—3 for four
inspectioi's. For this example, only four or more isochronal
inspections will insure adequate levels of safety throughout
the expected life.

Next, the required service life was reduced to 2000

flights. The probability of failure with no inspection rose
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guickly from 10—9 to almost 10_3. One possible decision
from this result would be to fully replace the part every
2000 flights without inspection. The probabilities of
failure were again calculated for the two inspection systems
and up to four isochronal inspections. Figures (4.9) and
(4.10) illustrate these results for systems #1 and #2,
respectively. This time the probabilities of failure for
four isochronal inspections remained below 10_6 through-out
the desired lifetime for NDI system #1, but not for #2.

The probabilities of failure for NDI system #1 remain below

-3 for one and two inspections, below 10-'6 for three

7

10

inspections and below 10 ' for four inspections. The

probabilities of failure for NDI system #2 remain below 10-3

4 for two and three

for one inspection, below 10~
inspections, and below 10_5 for four inspections. Notice,
once again, that the prébability of failure significantly
decreases as the time between inspections decreases.

These results highlight the differences in
narrow-banded and wide-banded inspection systems with
similar central tendencies. The wide-banded inspection
system found more smaller flaws, but missed more larger
flaws, leading to a larger probability of failure. The
consistency of detection characteristic of the narrow-banded
system lead to lower probabilities of failure, compared to
the wide-banded system.

The probabilities of repair for these two inspection

systems are shown for the four inspection intervals and a
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life time of 2000 flights in Table (4.3). As can be seen
from the table, the use of NDI system 42 results in the
detection of more flaws than NDI system #1.

This analysis highlights the significant difference in
accounting for a statistical variability of the crack growth
rate over a deterministic crack growth rate. It is
important to take intoc account the crack growth rate
variability in the life prediction of non-redundant

structures.

4.2 Stiffened Panel Example

A stiffened panel is representative of a fail safe
structure which is a second category of damage tolerant
structures. Structures are defined as fail safe if they
contain crack arrest features or they have multiple load
paths. Crack arrest structures are designed so that a
rapidly growing crack is stopped at a stiffener or other
crack arrester before complete failure. The remaining
uncracked structure, with assumed continuing damage is
designed to carry the load until the cracked section is
repaired. A good example of crack arrest structure is the
lower part of a transport wing skin or a fuselage. A
typical exampie 1s a skin-stringer structure, where the
primary damage assumed to exist following crack arrest of a
rapidly propagating crack is assumed to be two panels of

cracked skin plus the broken center stringer [1].




a.
Servi

1000
667
500
400

b.

Servi

1000
667
500
400

Table 4.3

Average Percentage of Repair for Lug Example Using

Stochastic Crack Growth

NDI System #1

ce Interval 1 2 3 4
1.55
.62 2.46
.35 1.32 2.46
.24 .81 1.57 2.27

NDI System #2

ce Interval 1 2 3 4
6.68
5.30 6.82
4.73 5.57 5.97
4.42 4.92 5.10 5.37

Total

1.55
3.08
4.13
4.89

Total

12.12
16.27
19.81




A multiple load path structure is a redundant
structure. When one of the elements fails, the remaining
elements carry the load for a specific period of time, such
as the time required to have it repaired. Many damage
tolerant critical parts are designed with redundancy or with
crack arresters, yet few analysts take advantage of this
fact when making fatigue life predictions because of the
complexity of the analysis. To date, no airframes in the
Air Force inventory have been designed or qualified as fail
safe structure.

The Air Force damage tolerance requirements [1] state
that the safety-of-flight structure must contain the growth
of the assumed initial damage for a specified period of
service while maintaining a minimum level of residual static
strength. This concept is illustrated in Figure (4.11a and
4.11b) [Ref.1]. The safe growth period is also dependent on
the scheduled in-service inspection intervals. Safety is
assured by assuming the presence of an initial fatigue
damage and subsequent growth, and the ability to detect and
repair this damage prior to a total loss of the structure
throughout a specified service usage interval. The
fail-safe requirements are summarized in Table (4.4) for
intact and remaining structure, after [Ref.l].

The residual static strength requiremenc of the
remaining structure with depot or base level inspectability
is used as the failure criterion for the example presented

here. A stiffened pranel was selected as representative of a
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fail-safe structure where analysis was possible. The
residual strength, as a function of crack length, was
available from the literature for several combinations of
stringer spacing and size [68). An aluminum panel of 0.063
inch thickness, a stringer cross-section area of 0.4113
square inch, a stringer spacing of 8 inches, and a fastener
spacing of one inch were selected for study. The stringer
was shaped as a 2. This example corresponds in-part to Case
8 in Reference [68], in which the initial damage is
represented by a 0.05 inch surface flaw over a broken center
stiffener. In this exampie, the center stiffener is
missing. This change in geometry was made so that
comparisons of stiffened and unsciffened panels could be
made directly. When the broken stiffener is present, it
acts to accelerate the crack at the beginning, vielding a
much shorter life when compared to a center crack in an
unstiffened panel. Without the center stiffener, the
beginning growth of the crack is the same for both the
stiffened and unstiffened cases, so the advantages of
stiffening can be observed. The stiffened panel 1is
i1llustrated in Figure (4 12).

As explained in Section 3.1, the stress intensity
factor, AK, in a redundant, bullt-up structure can be
expressed as

AK = pogma Rla) (4.4)

u =26
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where B(a) is a correction factor due to all geometrical
effects. It is a function of crack length and also includes
the following geometrical size effects:

* Stiffener spacing

* Stiffener section properties - area, inertia,

neutral axis location

* Stiffener elastic or plastic material properties
* Fastener displacement, either linear or nonlinear
* Skin thickness.

Swift [68] calculated B(a) using the displacement
compatibility method. The values of crack length, "a",
Bla), and residual strength of the plate and stiffener for
the eight inch stiffener spacing are presented in Table
(4.5). The relationship between residual strength of the
plate and crack length iz illustrated in Figure (4.13) for
the same geometry. The relationship between the residual
strength of the plate and stiffener system and crack length
in the plate is illustrated in Figure (4.14). Here, the
initial damage assumptions are represented by a 0.05 inch
suiface flaw in the center of the plate, and a (.05 inch
through flaw in the outer stiffeners.

These figures are a typical part of a damagr
tolerance-residual strength diagram. The part reiating
flight hours to crack length is not shown here. These
figures clearly show the effect of the presence of the
stiffener on the residual strength of the skin, as the crack

tip approaches the stiffener, thereby, lowering AK, the




Table 4.5

Crack Length, B(a) and Residual Strength for an 8 Inch
stiffener Spacing and Stiffener Area of 0.4113 Inch2.

Crack
Length,a

0.25
0.50
0.75
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00

Bla)

2.
2.
1.
1.
1.
1.
1.
.2501
.1763
.0837
.849

.7102
.6682
.6571

QO OOHKKF

1827
0647
9363
8254
5560
4175
3252

Residual Strength

Stiffened

Plate

62.03 ksi

46.37
40.37
37.09
30.97
27.58
25.54
24.22
23.50
23.61
26.75
31.78
32.04
31.07

Unstiffened
Plate

156.35 ksi
110.56
90.27
78.18
55.28
45.14
39.09
34.96
31.92
29.55
27.64
26.06
24.72
23.56

Stiffener

78.76 ksi
18.57
78.34
78.02
76.23
73.65
70.22
65.73
59.89
52.24
42.43
35.18
31.33
28.84
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driving force of the crack. This phenomenon is reflected
numerically in the values of the residual strength of the
panel, as reported in Table (4.5), column 3. (after Ref,.
68). As the crack tip approaches the stiffener, the

residual strength actually increases in the panel.

-

Fast crack growth occurs when the stress exceeds the
residual strength of the plate. The residual strength cf
the plate is represented by the solid line in Figure (4.14).
The propagating crack will be arrested at the stiffener, if
the applied stress is less than the residual strength of the
plate and stiffener system.

Failure will occur when the residual strength of the
plate-stiffener system is unable to resist the applied
stress. This level of resistance is represented by the
squares in Figure (4.14}. The residual strength of the
panel was calculated directly from Equa*ion (4.5) for crack

lengths significantly less than the stiffener spacing:

K
C

R(a) :7??-&1' (4.5)

where R(a) is the residual strength of the plate, which is a
function of the crack length a, Kc is the fracture toughness
of the plate, and a is the crack length in the plate.

When the crack tip approaches the stiffener and B(a)
becomes less than one, Eguation (4.5) was modified by B(a)

for the residval strength of the plate, R:




K
= <
Rla) = Ta Bia) (4.6)

The tabulated residual strength values at discrete
values of crack length can be used to define failure. The
probability of failure can be defined as the probability
that the residual strength will fall below the required
residual strength associated with resisting Pxx' the load
calculated from the damage tolerant design requirements.

The residual strength Rfa(t)] can be defined mathematically
as a function of the crack size "a" as Rl[a(t)] = gl(a), where
g 1s a monctonic function. Then crack size "a" can be
expressed in terms of the residual strength as

alt) = g T[R(alt)))] (4.7)
where g"1 is the inverse of the g function. The function
can be partitioned and evaluated in segments. Then, the
probability of failure, Pf, can be defined as:

Pf = P[PXX>R(a(t))]

i

P{Pxx>g[a(t)]} (4.8)

Il

1—P[a(t)<g-l(Pxx)J

or,

- 1. -1
Pf =1 Fa(t)[g (Pxx)] (4.9)

in which g-l (Pxx) is nothing but the critical crack size

associated with the load Pxx' If such a critical crack size

ie., g (P ) = a

%X X%’ then the

is denoted by Ay

probability of failure of a panel in the nth service

[;~'33




interval [{n-1), nt)] 1s given hy the probability of failure

of a panel in the nth service interval

oo

Pf(nt)=g{ fa(nr)(X) dx {4.10)
XX

An example for the calculation of the probability of repair
and failure for a redundant lower wing skin of a transport
aircraft will now be presented. The Pxx load must be used
which reflects the maximum average internal member load that
will occur once in M times the inspection interval according
to Mil-A-87221 [1]. Pxx should be at least equal to the
design limit load, but need not be greater than 1.2 times
the maximum load in one lifetime, if Pxx is greater than the
design limit load. The base level inspection is typically
performed at 1/4 of the lifetime and M=20. The walk around
visual inspection is performed once every ten flights and
M=100.

pxx can be found from exceedance curves, such as
presented in Figure (4.15) for a component in the lower wing
skin of a medium range transport aircraft. Both the plate
and stiffener exceedance curves are shown in the same
figure. Once Pxx has been selected, the critical crack
length is found from the Pxx versus a relationship, either
Equation (4.5) or (4.6).

The equation for the probability of dectection, FD(X)
{2.9), was modified to reflect a visual NDI system, which
was useful for longer critical crack sizes. The parameters

were adjusted to reflect a detection system, where cracks
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could be detected when they reached approximately two inches
in length. The parameters, a* = -9,159, and B* = 16.4 were
used in Equation {(2.9) to reflect this level of inspection.
The function is plotted in Figure (4.16). The service life

of such a stiffened panel system is 60,000 flight hours.

4.2.1 Slow Crack Growth Approach

Suppose the fail-safe design feature of the
panel-stiffener system is disregarded. 1In nther words, the
stiffener's ability to pick up loads from the plate as the
crack approaches the stiffener is neglected, so that the
plate 1s considered to be unstiffened. Therefore, the slow
crack growth approach should be used and the critical crack
size, a, .+ Was defired at the point wnere the residual
strength in the plate fell below Pxx as calculated from
Equation (4.5) and Figure (4.17). For this example, the
critical crack size was equal to 6.061 inches, corresponding
to a design limit stress of 27.5 ksi. The maximum expected
stress in the plate, as given by the exceedance curve in
Figqure (4.15), was 22 ksi in 60,000 £Y3i- _ hours. Since
this stress is less than the design limit stress, the design

limit stress was used.

4.2.1.1 Deterministic Crack Growth Approach
The equivalent initial flaw size distribution
parameters, NDI system parameters and critical flaw sizes

are summarized in Table (4.6). The deterministic crack
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Table 4.6

Parameters for the Stiffened Panel Example

Q = 1.504E-4
b =1.10
o = .1267
z
a,, = 6.061 inches for slow crack growth approach
aix = 8.142 inches for fail safe approach
Initial Flaw Size Parameters
a = 1.823
¢ = 1.928
x = 0.03
u
NDI Parameters
System #1 Visual
* *
a, = 55.28 a, = -9.159
B = 16.4 B = 16.4
4-~-39
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growth rate model presented in Egq. (4.1) was used and crack

growth rate parameters, Q=1.504E-4 and b=1.10 were selected

for the purpose of illustration.

The results of the deterministic crack growth analysis

are presented in Figure (4.18)

. The solid curve at the top

of the figure, as denoted by zero, represents the

probability of failure without inspection maintenance. The

critical crack size was 6.061

inches. The next curve down

in Figure (4.18) represents the probability of failure for

four isochronal visual Inspections at 12,000 flight hour

service intervals, as denoted
represents the probability of
visual inspections, occurring
intervals, and denoted by 5.

one, two and three isochronal
little from the no inspection

included on the figure.

by 4. The next curve

failure for five isochronal

at 10,000 flight hour service
The probability of failure for
visual inspections differed

case, and were therefore not

These probabilities of failure mav be too high to be

acceptable for a primary structure. A visual inspection

alone will not ensure safety.

A more reliable NDI system is

necessary to bring the probabilities of failure down to an

acceptable level. NDI system

#1 was used and the results

vielded a probability of failure of 2.378E-8 at 60,000

flight hours for one inspection at 30,000 flight hours.

More inspections resulted in no probability of failure,

because of the upper bound of

the Weibull compatible

distribution for the equivalent initial flaw size, as well
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as the nature of the deterministic crack growth. These
examples illustrate the importance of using the proper NDI
system for the force management plan.

The probabilities of detection and repair are shown in
Tables (4.7a) and 4.7b) for the NDI system #1 and the visual
inspections. The NDI system finds more flaws than the
visual inspection, and the more often the inspection, the

more total flaws are found.

4.2.1.2 Stochastic Crack Growth Approach

The slow crack growth example was rerun, using the
stochastic crack growth approach as represented by Equation
(4.5). The probability of failure for no inspections and
five visual inspecticns is shown in Figure (4.19). The
results for five visual inspections 1s very close to that
for no inspections, indicating that very little gain in
safety is seen by relying on a visual inspection. However,
with the application of NDI system #1, the piobability of
failure reduces significantly as illustrated in Figure
4.20), which shows the results for one to five inspections.
The difference between '« two approaches presented above is
that the stochastic crack _rowth approach results in higher
probabilities of failure; as expected, because of the
possibility of fast crack growth. The probabilities of
repair are presented in Tables (4.8a) and (4.8b) for both

visual and NDI system #1 inspections. As expected, the NDI




Table 4.7

Average Percentage of Repair for Stiffened Panel Example
Using Deterministic Crack Growth Analysis
and Ayy = 6.061 Inches

a. Visual Inspection

Service Interval 1 2 3 4 5 Total
30,000 1.60E-6 1.6E-6
20,000 2.55E-15 7.00 7.0
15,000 2.53E-19 1.60E-6 20.9 20.9
12,000 1.22E-21 £.18E-12 0.5 26.1 26.6
10,000 3.59E-23 2.55F-15 1.6E-6 7.0 27.8 34.8

b. NDI System #1

Service Interval 1 2 3 4 5 Total
30,000 77.4 77.5
20,000 51.9 56.0 117.9
15,000 35.0 54.7 51.0 140.7
12,000 24.4 45.2 43.7 26.1 156.8
10,000 17.7 37.3 38.2 37.4 37.4 168.8

&=
|
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Table 4.8

Average Percentage of Repair for the Stiffened Panel Example

Using Stochastic Crack Growth and Ay x

a. Visual Inspection

Service Interval 1 2
30,000 6.0
20,000 .32 18.
15,000 .15E-1 6.
12,000 .77E-3 1.
10,000 .46E-4

b. NDI System #1

Service Intcrval 1 2
30,000 10.0
20,000 65.4 93,
15,000 43.3 70.
12,000 30.0 55.
10,000 21.6 44.

W OWw

O > = W

45.4
42.0
38.5

27.
19.

41.
39.

6.061 Inches

5 Total

19.
30.
52.
28.8 53.

owum
.
o I N O

5 Total

10.
158.
158.
178.
24.2 158.

SIS
Wom~oO
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system #1 inspection finds more flaws than the visual

inspection.

4.2.2 Crack Arrest Approach

Next, the stiffened panel example was rerun taking
advantage of the presence of the stiffener. 1In this
scenario, the crack will grow through the plate and arrest
over the stiffener. The critical crack size, Ay in this
case 1s approximately equal to, or larger than, the
stiffener spacing, so the visual NDI system seemed

appropriate to investigate. As the flaw in the plate grows,

the residual strength of the stiffener degrades with flight

hours and failure is dependent on the residual strength of
the stiffener as its proportion of the load is increased.

In other words, failure occurs when the crack grows
throughout the plate and the residual strength of the
stiffener is exceeded by the applied stress. Thus, the
probability of failure is equal to the probability of the
crack size exceeding 8.142 inches multiplied by the
probability of the stress in the stiffener exceeding 41 KSI.
The probability of stress exceedance for the stiffener was

found to be 1.0 x 10 10

per flight from the stress
exceedance curve of Fig. (4.15). This value was multiplied
by the number of flights in the service interval to obtain

the probability of stress exceedance for the stiffener in

that service interval.




4 2.2.1 Deterministic Crack Growth Approach

4.2.2.1.1 General Master Curve Approach

The general master curve approach was considered for
the crack arrest case because it could acccunt for the
decreasing crack growth rate as the crack approached the
stiffener. The difference between the general master curve
approach which accounts for arresting crack growth and the
special case which does not, i.e., B({a)=1l, are presented in
Figure (4.21). The solid curve was calculated directly from
Equation (3.7), whereas, the dotted curve represents the
numerical integration of Equation {3.24) using the cubic
spline interpolation of the crack length and B values from
Table (4.5). Note that there is no difference in crack
growth between the two models until the crack length reaches
approximately eight inches, the stiffener spacing. As a
result, the general master curve approach was not pursued in
any detail, other than to check results of the special case

in which B{a) 1is set to be unity.

4.2.2.1.2 Special Case B(a)=1

The problem was formulated by consildering that fatigue
crack growth follows Eq. (3.7) until the crack size reaches
8.0 inches, at which point the crack was arrested. After
that failure of the system occurred when the residual

strength of the stiffener was exceeded.
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With the deterministic crack growth rate equation, the
distribution of flaw sizes did not spread significantly as
it grew forward. This is illustrated in Figure (4.22),
where the growth of the median crack size of the initial
distribution 1s represented by the solid curve, the growth
of the 90th percentile flaw 1s represented by the dotted
curve on the left, and the growth of the tenth percentile
flaw 1is represented by the dotted curve on the right. It is
observed from Fig. (4.22) that there are only 19,000 flight
hours difference between the time it takes a large flaw,
represented by the 90th percentile flaw, to reach 8.142
inches of the crack arrest structure. As a result, the
probability of failure is negligible until such time as the
0.03 inch flaw (upper bound limit of the equivalent initial
flaw size) has had time to grow to 8.142 inches. Thea the
nrobability of failure increases rapidly as the rest of the
population reaches 8.142 inches. Another important
characteristic of this panel stiffened system is that the
probability »nf failure is negligible until a majority of the
design service life had been expended. This feature is due
to the closed upper end of the initial flaw size
distribution in conjunction with a deterministic crack
growth rate.

The effect of the visual inspections on the cumulative
probability of failure 1s shown in Figure {4.23). 1In Figure
{4.23) the solid curve at the top is the probability of
failure for no inspection; beneath it, the probability of

failure for one wvisual inspection, two 1sochronal visual
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inspections, and at the bottom, three isochronal visual
inspections over the service lifetime of 60,000 flight
hours. Each additional inspection lowers the probability of
failure. The case for no inspection resulted in
probabilities of failure less than 10 ° throughout the
design service life. The cases of two and three inspections
lower the probability of failure to less than 10_6. These
results emphasize that designing with fail-safe features can
be a great aid in service life management.

Table (4.9) contains the average percentage of repair
for the stiffened panel which uses the master curve for the
special case of B(a) = 1. This table highlights the fact
that the probability of finding a flaw visually in the first
30,000 flight hours is extremely small. From 40,000 flight
hours on, flaws have more chance of being found with a
visual inspection. Consideration of the crack arrest
feature of the design lowered the probability of failure at
60,000 flight hours by a factor of 107% for the

no-inspection case.
4.2.2.2 Stochastic Crack Growth Rate

4.2.2.2.1 General Master Curve Approach

The general master curve approach was not considered
for the stochastic crack growth approach because the effect
of B(a) on the fatigue crack growth damage accumulation is

insignificant, as shown previously. Hence, the crack




Table 4.9

Average Percentace of Repair for the Stiffened Panel Example

Using Deterministic Crack Growth and dyn =

a. Visual Inspection

Service Interval

30,000
20,000
15,000
12,000
10,000

W N

1

.60E-6
.60E-15
.37E-19
. 74E-22
.65E-23

7.0
1.60E-6
6.28E-12
2.60E-15

8.142 Inches

3 4 5 Total
l1.6E-6

7.0

22.0 22.0
5.0E-1 29.8 30.3
1.6E-6 7.0 27.8 34.8




retardation feature near the stiffener can be neglected and
B(a) = 1 is reasonable. Thus, the analytical stochastic
crack growth approach presented in Chapter III can be

applied conveniently.

4.2.2.2.2 Special Case, B(a) =1

The stochastic crack growth approach was considered for
the special case B(a) = 1. The results of the probability
of failure are presented in Figure {4.24) for no and five
visual inspections. The visual inspections do not lower the
probability of failure significantly over the non-inspection
case. This result is true because the cracks accelerate as
they grow longer, and this happens between inspections.

The results of the probability of failure are presented
in Figure (4.25) which reflect no, one, two, three, four,
and five inspections with NDI(system #1. The probability of

failure is kept below 10710

for three or more inspections
with repair. This level of safety is not necessary for a
non-life threatening situation. The probability of failure

is kept below 10712

for four or more inspections. This
level of safety is adequate for a situation involving loss
of human life.

Table (4.10a,b) contains the average percentage of
repair for the fail safe case with stochastic crack growth.
Part a contains the results for one through four visual

inspections. Part b contains the results for the same

isochronal inspections using NDI system #l1. As expected,
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Table 4.10

Average Percentage of Repair for Stiffened Panel Example
= 8.142 Inches

Wwith Stochastic Crack Growth and axx

a. Visual Inspection

Service Interval

30,000
20,000
15,000
12,000
10,000

b. NDI System #1

Service Interval

30,000
20,000
15,000
12,000
10,000

1 2
6.8
0.35 23.0
1.61E-2 6.9 30.8
8.28E-4 1.6 16.3
5.01E-5 (.35 7.0
1 2
100.0
62.9 89.2
39.8 65.1 41.9
26.0 50.0 37.5
17.4 39.0 33.2

~r -
S

32.2

36.

19.

Total

6.8
23.4
37.7
52.7
67.0

Total

100.0
152.4

146.8
149.2

- o -

141.5




A

the NDI system #1 found many more flaws than the visual
inspection.

Finally Figure (4.26) illustrates the effect of the
effectiveness of the inspection system on the probability of
failure for the stochastic crack growth analysis. The 5clid
curve in Figure (4.26), denoted by "0", represents the
probability of failure with no inspection, Ay = 8.142
inches. The squares, denoted by "visual", represent the
probability of failure for five visual inspections. The
~ircles, at the bottom and denoted by "#1", represent the
probability of failure for five inspections using NDI system
#1. This figure emphasizes the significant effect that the
type of inspection has on the probability of failure of the

systen.

4.3 Conclusions

The results of this analysis dictate that the safety of
a structural system is very dependent on the sophistication
of the NDI system used. The probabilities of failure were
also dependent on the crack growth model that was used. The
stochactic crack growth model gave higher probabilities of

failure and hence it was more conservative.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Probabilistic damage tolerance methods were formulated
for slow crack growth and fail-safe analyses of U.S. Air
Force airframes. The two methods were applied to two
components; a lug which represents a slow crack growth
structure, and a stiffened panel which represents a
fail-safe, crack arrest structure. The general master curve
approach 1is very flexible because it can bLe used whenever
the crack growth can be represented discretely. This is
particularly helpful in a fail-safe structure because it can
accommodate atypical crack, including crack-arrest. The
stochastic crack growth approach is more conservative than
the master curve approach because it considers the
variability in the crack growth rate, and in these examples,
did not handle crack arrest. The underlying assumptions of
the models, as formulated here, will now be covered.

The master curve approach employs a Weibull compatible
distribution to describe the initial flaw size distribution.
A deterministic, discrete master curve was used to reflect
the crack growth law. The variability of the crack growth
rate was not considered in this method. For slow crack
growth structures, the critical crack size was selected from
the literature, for the lug example, or calculated from a

power law, based on the residual strength of the plate, for




the stiffened panel example. For fail-safe structures,
either a stress exceedance curve for the component in
consideration, or the equation for turbulence from the
military specification [1,, can be used to select the
maximum expected stress in the service interval, in
accordance with the Damage Tolerance regquirements for
fail-safe structures. A crack length was then calculated
which corresponded to the point at which the residual
strength of the remalning structure was lower than that
required for safety of flight until a return to base,
maintenance depot, or other specified time interval. The
residual strength versus crack length relaticnship was
considered in a deterministic, discrete form.
Interpolations were performed using a cubic spline method
from IMS™ [Al]. The derivatives necded for the
transformation of variables were obtained directly from the
cubic spline equations at the specified flight hours. This
method could accommodate any arbitrary crack growth, and
hence, component geometry. The probability of failure and
repair involved numerically integrating single integrals,
because the only random variable considered was the crack
length. The log-odds function was used in these egquations
to rcgresent the non-destructive inspection systems.
Parameters were selected to reflect the attributes of either
a narrow-banded or a wide-banded NDI system or a visual

inspection.




The stochastic crack growth approach also used the
Weibull compatible distributicn as the initial flaw size
distribution. A power law was usad to describe the crack
growth law. A lognormal random varlable was used to account
for the variability 1in crack growth rate. Thus, the crack
growth rate was modelled as fully correlated. A
deterministic value was chosen as the critical crack length.
Because the probability of failure calculation included two
random variables, a double integral resulted. This double
integral was integrated numerically using Simpson's
one-third rule. The non-destructive inspection (NDI)
systems were renresented by the log-odds function, with
parameters seclected to reflect a two automated and one
visual NDI systems. These NDI systems are the same as used
with the master curve approach. These functions were also
incorporated into the caicuvlation for the prcbability of
failure, with no new introduction of variables.

The results for the selected slow crack growth example
woere presented in terms of the probability of failure for no
inspection, one, two, three and four 1sochronai 1lnspections,
for the two different NDI systems and the visual inspection.
The probability of repair was also calculated for the same
NDI systems and intervals. Comparilson of results was made
cn the effect of the inspection interval on the probability
of failure and repairr, and the type of inspection system.
Both the special case of the master curve approach and the

special case of the stochastic crack growth approach were




investigated. Field data from an Air Force technical report
[73] were used to set i1nput values.

The results for the selected fail safe example were
presented in terms of the probability of failure for no
inspection, and one to five isochronal visual and
narrow-banded NDI system inspections, using both the
stochastic crack growth approach and the master curve
approach for comparison. The probability of repair was
presented for the same NDI systems and intervals.
Compariscon of results was made on the effect of the
inspection interval on the probability of failure and

repair, and the type of crack growth model used.

5.2 Conclusions

The methodology formulated here can be used for a
probabilistic damage tolerance analysis. 1In particular, the
genecralized master curve approach is extremely useful when
analyzing structures designed to be fail safe. This
approach can be a great asset when analyzing any component
for which the crack growth law may not behave exporcentially.
The cubic spline interpolation scheme was used to transform
crack lengths from one service time to another.

The methodology formulated in this dissertation can be
used to wisely select inspection methods and inspection
intervals for damage tolerant critical components. The

advantage over deterministic methods is apparent; the force




management schedule can be designed to keep the probability
of failure at an acceptable low level, and at the same time
lower the cost of repair by omitting unnecessary inspections

and repairs.

5.3 Recommendations for Future Research

The damage tolerance analyses performed in this
investigation have been at the component level. The next
important step is to perform the analysis at the systems
level. It is extremely 1important to understand competing
modes of failure, load distribution and sharing among
members, especially for fail safe structures, and to
guarantee that the level of safety among the damage tolerant
critical components is at a consistent, or at least,
identifiable level in a structure.

The analysis mathods can be improved for the fail-safe
structure by considering the time delay that takes place at
the fastener holes, as the crack meets a hole, and initiates
at the other side. The sensitivity of the initial flaw size
assumptions need to be investigated so that the importance
of material quality can be rightfullv weighed in
relationship to its impact on the reliability statement of
the system.

The random nature of the crack growth rate needs to be
understood at the material (micro-structure) level. This
knowledge can be used to grecat advantage in improving the

accuracy of the stochastic crack growth method. It should




also be incorporated in the master curve approach to reflect
the possibility of a fast crack. With this in mind,
experiments need to be performed on fail safe structures, so
that the crack growth can be better modelled in terms cf the
mean trend, as well as the variability in crack growth and
arrest.

Finally, a probabilistic risk analysis should be
developed for airframes, in the context of the total weapon
system. The probability of failure should be considered in
the view of the consequence of failure. The failure of a
component may not be catastrophic by itself, but may cause
damage t> critical hydraulic lines or aerodynamic surfaces,
which yield catastrophic results. The consideration of the
seriousness of the ocutcome 1s every bit as important as the
ability to calculate the probability of occurrence; and the
two concepts should be considered jointly.

This research represents a small step in the large
process of making military and civilian flight as safe as
possible. This process will continue as better guality
control of material processing and fabrication progress and

better inspection methods and practices emerge.
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APPENLDIX A
The Cubic Spline Method

The cubic spline method was used tou interpolace values
in the master curve. A subroutine called ICSCCU was
selected from the IMSL library [Al]. ICSCCU computes the
coefficients of N-1 cubic polynomials to be used to
interpolate a set of N points from a single-valued function.
The N-1 by 3 matrix provides the spline coefficients to a
cubic spline produced 1is contiﬁuous and has continuous first
and second derivatives.

The IMSL library subroutine ICSEVU was used to evaluate
the value of the function at the required point of
evaluation. The value of the spline approximation, S, at y
ils:

S(y) = C(I,3)D + C(I,2)D + C(I,1)D + t(I) (A.1)
where X(I) 1s less than or equal to y and y 1s less than
X(I+1l), and D = y-X{(I). The X{I) is less than X(I+1l).

The cubic spline method insures that the derivatives
exist and are continuocus. +This prorerty becomes useful when
using the density functions to transform the variables
discretely from one point in time to another. The
derivative at a point can be found analytically by taking
the derivative of the cubic equation given in (A.1) and
substituting in the proper value for the argument. The
chain rule is employed in the transformation in which dy/dx
= [ds(y)/dt}/4dS(x)/dt]. The values for both the numerator

and the denominator of this expression are found




analytically using the C(I,J) matrix coefficients from
ICSCCU.
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