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CHAPTER I

INTRODUCTION

1.1 Objectives and Scope

The purpose of this dissertation is to formulate a

probabilistic damage tolerance analysis for metal structural

components, which takes into account the statistical nature

of the initial fatigue quality of the component, the

variability in crack growth rates, the residual strength of

the fail-safe structure, and the reliability and frequency

of the inspection. The goal of this research is to develop

a probabilistic methodology which can be used to set

rational inspection and maintenance schedules for airframes.

This model will be useful to engineers in designing

airframes which will meet Air Force damage tolerance design

requirements to ensure safety and reliability during the

design service lifetime. The model can also be used by

maintenance managers in selecting levels of inspection and

inspection frequency in life extension programs. Examples

of slow crack growth and fail-safe components are presented.

1.2 Background: Overview of the Damage Tolerance Philosophy

Ensuring that metal airframes are damage tolerant is a

primary concern of airframe designers and owners. In

particular, military leaders have a need to ensure that

current and future weapon systems are damage tolerant.

Damage tolerance is an issue of safety of flight. There are
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approximately 20 to 200 damage tolerant critical components

r'er airframe. One of the most important problems in the

design and analysis of aircraft structures is the prediction

of fatigue crack growth in fracture critical components.

The Air Force damage tolerance design philosophy dictates

that assumed damage in the structure must not reach critical

crack size during two design lives.

Military specifications exist which address damage

tolerance for U.S. Air Force metallic airframes [1,2]. The

governing military standard dealing with structural

integrity is MIL-STD 1520A [3]. Extensive guidelines with

examples on how to perform a damage tolerant analysis

deterministically are given in [4].

The damage tolerance requirements address two distinct

types of design philosophies for structures, slow crack

growth and fail-safe. These requirements include both

analytical and experimental parts, and they are functions of

design concept and the degree of inspectability. Initial

flaw sizes are specified for primary damage for

non-inspectable and depot or base level inspectable

structure for both slow crack growth and fail safe

structures. Subsequent crack growth and residual strength

requirements are specified which must be met in the presence

of this assumed initial damage. The requirements depend on

the degree of inspectability designed into the component.

The USAF design philosophy dictates that the assumed damage

in the structure must not reach critical crack size during
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one-half of the structure's design life for slow crack

growth structure that can be inspected at depot or base

level. If the component is non-inspectable, then the damage

must not reach critical crack size during two design

lifetimes.

A parallel set of requirements exist for fail-safe

structures, with an addition of the residual strength

requirement. The damaged structure must be able to sustain

the expected maximum load which will occur in five

lifetimes, but the residual strength does not need to be

greater than 1.2 times the expected maximum load which will

occur in one lifetime. For the non-inspectable structure,

the residual strength must be greater than the expected

maximum load which will occur in twenty lifetimes. The

residual strength must be at least equal to the design limit

load, but need not be greater than 1.2 times the expected

maximum load which will occur in one lifetime. The residual

strength for the intact structure must be at least as great

as the design limit load but need not be greater than 1.2

times the maximum load expected to occur in one lifetime.

Beyond that requirement, the intact structure must resist a

ioad equal to Che design limit load or 1.15 times the

residual strength, at the instant of load-path failure or

crack arrest. The 1.15 is a factor which accounts for

dynamic effects.

A fail safe design can be classified as either

1-3



containing multiple load-path or crack-arrest features. A

structure desioned with multiple load-paths is a redundant

structuie. When one of.the elements fails, the remaining

elements are designed to carry the load for a specific

period of time which may be the time required to get it

repaired.

A structure containing crack arrest features is

designed so that a rapidly growing crack is stopped at a

stiffener or other crack arrest feature before complete

failure. The remaining uncracked structure, with assumed

continuing damage, should be able to carry the load until

the cracked section is repaired.

There are similar requirements for fail safe and

multiple load path dependent structures. The initial damage

consists of primary and continuing assumptions. This

initial damage must not result in failure of the intact

structure within one fourth of the design service life. The

intact structure must be able to sustain the maximum load

expected in five lifetimes. This load must be equal to or

greater cnan the design limit load, but not greater than 1.2

times the maximum load expected in one lifetime. At the

instant of load-path failure, the structure must be able to

sustain a maximum load of 1.25 times the maximum load

expected to occur in five lifetimes. The residual strength

need not exceed 1.38 times the maximum load expected to

occur in one lifetime. The initial damage assumed in the

remaining structure is the failed load path plus the
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continuing damage a.;;umed in the adjacent load path

structure in addition to the amount of the crack growth that

occurs before load-path failure. This initial damage must

not result in failure of the remaining structure within one

half of the design service life. The intact structure must

be able to sustain the maximur, load expected to occur five

lifetimes. This maximum load must be equal or greater than

the design limit ioad but need not exceed 1.2 times the

maximum load expected in one lifetime.

To date, no airframe in the USAF inventory has been

designed or qualified as a fail safe (multiple load path or

crack arrest) structure. Selected components of three

aircraft, however, are being managed as fail safe structures

as a result of durability and damage tolerant assessments.

As the above discussion implies, the current damage

tolerant requirements are presented in a deterministic

format; however, fatigue crack growth is a highly variable

phenomena which depends on the initial quality of the

component, the statistical characteristics of the fatigue

crack growth rate, and the random nature of the stress

history. An equally important factor is the reliability of

the inspection, which has to be regarded as another random

variable. Assessment of the quality of the structure at any

point in time is the basis of a fracture mechanics-based

design and life management program. A probabilistic

analysis can greatly improve the ability of the designer to
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ensure safety of flight of a damage tolerant critical

component.

In Chapter II, a review of the literature is presented

which describes a general deterministic damage tolerance

analysis for structures designed for slow crack growth or

for fail safety. Next, the probabilistic methods which have

been developed for durability analysis are presented, and

finally, the probabilistic method which have been performed

for damage tolerance life prediction are presented.

In Chapter III, twn methods for calculating the

probability of failure and probability of repair are

presented for slow crack growth and fail safe components.

One takes into account crack arrest, and the other does not.

In Chapter IV, an example of a structure designed to

withstand slow crack growth is presented in the form of a

lug attachment fitting. An example of a component designed

to be fail safe by arresting the crack is presented in the

form of a lower wing panel of a tanker aircraft. It is

shown that 'he probability of failure decreases as the

inspection and repair frequency increases. The improvement

depends on the quality of the inspection. Two different

levels of inspection are shown for the lug example. A

visual inspection and one level of nondestructive inspection

are shown for the lower wing panel example.

In Chapter V, the summary and conclusions are stated

and topics for future research are presented.
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CHAPTER II

BACKGROUND

The key to assessing the reliability of a structure is

to realistically describe (1) the initial fatigue quality of

the component, (2) the variability in the crack growth rate,

and (3) the reliability of the inspection. In this chapter,

some of the literature which addresses these three areas is

presented. The assumptions used in this methodology are

cited. This chapter concludes with a section on

probabilistic life analysis methodologies.

2.1 Initial Fatigue Quality

The initial fatigue quality can be described

statistically by (1) the equivalent initial fldw size (EIFS)

distribution or (2) the distribution of time-to-crack-

initiation. Both concepts are useful design tools for

making life predictions.

2.1.1 The Equivalent Initial Flaw Size Distribution

The direct determination of the initial flaw size of

the inherent flaws is not possible because the initial flaws

of a high quality structure are not detectable.

Furthermore, not all flaws are propagated from an initial

defect. For these reasons, the equivalent initial flaw size

concept was introduced by Gray and Rudd [5,6] and developed
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by Yang and Manning [e.g. 7-11] as an analysis technique to

be used to represent the initial fatigue quality of

structural details in the durability analysis.

The EIFS is defined by Manning and Yang [e.g. 10] as an

artificial crack size which results in an actual crack size

at an actual point in time when the initial flaw is grown

forward. It is determined by back-extrapolating fracto-

graphic results.

The general procedure for defining the initial fatigue

quality is summarized in the Air Force Durability Handbook

(121. The Weibull compatible distribution function proposed

by Yang and Manning [8,9] is reasonable for representing the

EIFS cumulative distribution.

Fa(0 )(x) = exp - _ln(_ _Xu ) ; 0 < x < xu (2.1)

= 1.0 ;x > x

in which Fa(O) (x) = P[a(0)<x], a(0) = EIFS = crack size at

time t = 0, xu = EIFS upper bound limit, and a. and p are

empirical parameters. The Weibull compatible distribution

is a derived distribution in the crack length domain. The

Weibull compatible distribution was selected to characterize

the initial fatigue quality for the method developed here

because of its success in reflecting initial fatigue quality

in similar situations [8-121.
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2.1.2 The Time-to-Crack-Initiation Distribution

The time-to-crack-initiation (TTCI) is another quantity

for assessing a material's resistance to cracking under

service load environments. A reference crack size is

selected, and the time it takes for a crack to develop and

grow to the reference crack size is recorded for a sample of

fatigue specimens. The time to crack initiation was

proposed in [17] as a random variable with an extreme value

distribution, such as a two-parameter Weibull distribution,

having a given characteristic life and a defined shape

parameter. Yang et al. [8] and Shinozuka [13] have

demonstrated the existence of compatibility between the

EIFSD function and the TTCI distribution function for the

Weibull arl lognormal distributions, as illustrated in

Figure 2.1. Figure 2.1 illustrates the time-to-crack-

initiation (TTCI) distribution as a Weibull distribution

with time as the independent random variable. A power law

was then used to refect the crack growth law which

transforms the distribution back to the y axis at time zero.

The resulting derived distribution is termed a Weibull

compatible distribution and the independent random variable

is crack length. The model developed and presented here

started with the assumption of the Weibull compatible

distribution. Since the distribution of TTCI depends on the

service loading condition, it can not be used to

2-3
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characterize the initial fatigue quality as that of the

equivalent initial flaw size.

2.2 Stochastic Crack Growth Model

The second component in life prediction is the crack

growth damage computation. The crack growth rate involves

statistical variabilities. The variability in crack growth

is due to a number of factors; 1) the random error in

measuring crack length, a, in the test, 2) the systematic

errors in the measurement of a, and 3) the inherent

statistical variation in the material crack growth

resistance, service loads, etc. The crack growth rate

calculation method used in data reduction affects the amount

of variability. Several studies have been conducted to

characterize the variability of the crack growth rate. They

are cited below.

Clark and Hudak [18) reported on an extensive

interlaboratory program which was conducted to assess the

variability and bias associated with fatigue crack growth

rate testing. The results of the study showed that the

primary source of variability in fatigue crack growth rate

testing is the experimental procedure used to obtain the raw

rest data. The data pr,)cessing technique used to evaluate

the raw test dita also affected the reported variability.

The polynomial techniques produced da/dN data with

substantially lower variability than that produced by the
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secant methods. No in~dication of bias was present for any

specific data processing thIv;e .<scoricluded that

the data piocessing technique %,aoz- not found to be an

importdnt source o,- variabil~ty. Thcy found that the crack

growth process could bt- accurarely, characterized by a

lognormal distrihiitior1 .

Weibuil, ot al. [19) further investi-cated the role of

the experimental procedure in pzoducý-in variability in the a

vs. N data. Specifically, they looked at the effect of

measurement prec-isilon on the var~abiiity -n fati~gue crack

growth rate data. Variability in the derivied crack- growth

rate data was found to depend stronc~ly or) the magnitude of

the measurement interval relative -c, the -~easurement

precision. It was pointed out t-hat Lt ma,, oe incorrect to

assume that the observed scatter in the da/dN data is a

result primarily% of t-ha variat-ior in t'he !-riaterial

properties.

virkier, et a1- [201 considered six distributions to

describe '.inc variability in da,'dN. Tests were performed on

centeor-ar,-c-'ieJ panels of 2024-T34 aluminum under constant

amplitude loadlnq. The t1hree-parameter lognormal

distribution fiLt 3:evrahl n u-vc'. count data. the

best. They ~nreprnýd-.c- e ' crack o':o--wth data using a

onto Carlo simulation Tr~t'wto oif choosir',,, crack g:rowth rate

1 rn-crments. ThIis mero=):ý i7' ous t ,uming that the

'inderlyi nq pro~cess is-,m~ odo ~h t ie This

<ipproacnl -cs sum-s thitý oro-h -.i~a were spatially



uncorrelated. The mean of the life was predicted quite

well, but the variability was greatly underestimated, as can

be observed by comparing the actual data in Figure 2.2 to

the predicted data in Figure 2.3. These results highlight

that crack growth rate is not independent in the space

domain.

Artley et al. [21] directly evaluated the variability

in crack growth rate by applying a constant stress intensity

factor, K, flight-by-flight load history to a center-cracked

panel of 7075-T6 aluminum. The coefficient of variation of

the crack growth rates calculated by the secant method of

differentiation stabilized at approximately twelve percent,

while the seven-point polynomial method stabilized at six

percent. The polynomial methods smooth data by selecting

the best curve through the data and calculating the slope.

Yang et al. [22] showed that the scatter in da/dN could

be described by Lhe lognormal distribution for engine

materials. Variability in crack growth rate for engine

materials is further investigated in references [23,24,25].

Bogdanoff and Kozin [e.g. 26,27] have taken the

statistical variability of fatigue crack growth into account

by proposinq account by proposing that the crack size a(t)

is a discrete .iarkov chain. Their model is based on crack

size rather than crack growth rate, so it has only limited

appeal.

Lin and Yanq [2E,301 and Yang [e.g.22,31,32,33,34],

took the stati.-tical variability of the crack growth rate

into account by randomizing the crack growth rate equation,
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da(t) - X(t)Qa(t)b (2.2)
dt

where "a" is crack length, "t" is time in flight hours or

hours, da/dt is the crack growth rate, Q and b are constants

which depend on the material and spectrur loading

conditions, and X(t) is a non-negative stationary stochastic

process with a median value equal to unity. They proposed

that X(t) followed a general lognormal random process model.

As a special case of the lognormal random process model,

Yang et al. [e.g.31-39] considered that X(t)=X, where IY is a

lognormal random variable. The approximation has been found

to be extremely effective for reprpsenting crack growth from

fastener hole specimens und.er spectrum loadings. For this

reason it was used in the model developed here. A

deterministic crack grov"th rate model was also considered.

Various approaches have been suggested to solve the

general lognormal random process model including the method

of Monte Carlo simulation by Yang et al. [31,32], the

Poisson pu)se process by Lin and Yang [28-29], the cumulant

closure technique by Lin and Yang [30], the second moment

approximation by Yang et al. [31,323, the finite strip

method by Spencer et al. [40,41], etc. Finally, the random

process X(t) in time hbs also been considered as a random

process X(K) in stress inteibiLy factor K by Ortiz [42,43].

Yang et al. [22,25,44,45] has developed probabilistic

crack growth models for engine components. The lognormal

crack growth rate model was proposed for crack propagation

of engine components subjected to either constant amplitude
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load histories or block type spectrum loadings. The

hyperbolic sine (SINH) crack growth rate function developed

at Pratt and Whitney [461 was used for engine components.

2.3 Probability of Detection

The third element to be considered in developing a

probabilistic model to assess the current quality of the

airfiay'-7 -the r iubilitv of the inspection. Almost all

NDI data from aerospace components consists of indications

of whether flaws are present of not. The indication of the

presence of a flaw does not necessarily mean that a flaw or

crack is actually present.

There are four levels of crack indications as noted in

the C141 modification program [47]. Their definitions

follow. A suspect is a flaw-like condition obtained when

using the first primary non-destructive technique. An

indication is a rejectable condition for a flaw-like

indication which was previously categorized as a suspect

when obtained using the first backup NDI technique. If the

primary NDI technique is eddy current; this term applies to

an indication obtained after repeatedly cleaning the hole.

A confirmed indication is a rejectable condition which was

previously an indication and has been confirmed by

laboratory personnel, but was not determined to be

crack-like in nature. And finally, a confirmed crack is a

term used to describe a flaw which was previously

categorized as a confirmed indication when located by a
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laboratory personnel using enhanced visual inspection. The

challenge is presented to consider this approach and

definitions when devising a representation of the

reliability of the inspection.

If the flaw indication is positive, the hole is reamed

out at 1/64 inch and the NDI is performed again. If the

flaw indication is still positive, then the hole is reamed

out 1/64 inch again. This is done three times for a

straight hole ana four times tor a tapered hole. Atter tnis

procedure, if the flaw indication is still positive, a

repair is made according to a standard technical procedure

for that location. The data available from this kind of

inspection is either positive or negative, pass/fail of the

test. Results are presented as pass/fail for a given

discrete crack length.

Berens and Hovey [48-52] have offered an analysis

method for handling pass/fail data in such a way as to

devise maximum likelihood parameters for establishing the

probability of detection. This method is not exact because

it is difficult to obtain information on tpr true size or

existence of a flaw without the intensive investigation of

tear-down inspection results.

Several researchers [e.g.48,49,53-551 nave shown that

the probability of detection can be represented by a

"Log-Odds" function given by

FD(x) = Ii + exp _[ jln(x)-) (2.3)
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The "Log-Odds" function given in Eq. (2.3) can be

reparameterized to provide a linear form in transformed

variables

(x) exp(a +A lnx) (2.4)
D 1+exp(c +0 inx)

where a and 6 are constants derived from maximum

likelihood estimators. The parameters 4 and a in Eq. 2.3
and c and •in Eq. 2.4 are related by; * = -a and a

t/(�f/3). This representation of the inspection reliability

was selected for the illustration of the model presented

here because of its ability to reflect broad banded and

narrow banded inspection systems.

The use of multiple inspections to improve crack

detection probability is thoroughly investigated by Yang and

Donath (56,57) who showed that multiple inspections do not

always insure improved inspection reliability. They showed

that when the sequential inspections are done conditionally

that grave errors can result.

2.4 Probabilistic Life Prediction

Probabilistic life predictions based on fracture

mechanics have been developed for aerospace applications

over -he last twenty years. In particular several

researchers have developed stochastic models for life

prediction [e.g.32,44,45,58-651.

Manning et al. [e.g.64] have done extensive work in

formulating, validating and refining a probabilistic

durability analysis for the U.S. Air Force in support of
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their military specification for structural integrity of

aircraft structures [1].

Palmberg et al. [65] have presented a probabilistic

damage tolerance analysis which takes into account the

EIFSD, stochastic crack growth rate and the inspection

reliability. They use a stochastic process X(t) to account

for the variability in crack growth rate following Lhe

approach proposed by Lin anz Yang [29,30). In addition to

the probabilistic life prediction for structures under

scheduled inspection/repair maintenance cited above, the

probabilistic life prediction for structures under scheduied

proof test maintenance has also been investigated [66,67].
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CHAPTER III

ANALYTICAL FORMULATION OF PROBABILISTIC APPROACH

TO LIFE PREDICTION

3.1 Deterministic Crack Growth Approach

3.1.1 Analytical Crack Growth Approach

Suppose the crack growth rate can be represented by the

Paris type equation

da(t)/dt = c (AK)m (3.1)

in which a(t) = crack size at time t, t - flight hours or

flights, AK = stress intensity range, and c and m are

empirical constants. Solutions of AK for many geometries

are available in the literature. For example, the solution

for a center crack in an infinite panel is given by Equation

(3.2)

AK = Aa /2na (3.2)

where Ac is the amplitude of the applied cyclic stress. For

some variable amplitude loadings, as in the case of

flight-by-flight load histories, the Aa can be replaced by a

Aeff and K can be replaced by Keff for many variable

amplitude loadings. This expression is valid within regions

of AK especially the middle regions.

Substitution of Eq. (3.2) into Eq. (3.1) yields

da(t)/dt : Qa b(t) (3.3)
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in which b = m/2 and Q c [Ac],/ m. Q can take on values

QI' Q2, Q3, "'" Qn within segments of the crack growth rate

curve.

Equation (3.3) is a convenient form of the power law

and it has been suggeE) ed by Yang and Manning for durability

analysis of aircraft structures [8,10,12]. It will be used

here for the damage tolerance analysis.

Equation (3.3) can be integrated from t1 to t 2 to

obtain the relationship between a(t 1 ) and a(t2),

a(tI)
a(t 2) = - ~ ) 1c(3.4)

[l-ac(O) cQ(t2-t 1 )]I/c

or

a( t 2 )
a(tI) = a~ )(3.5)1 [1+a C(t) cQ(t 2- tl))]I/c

where

c = b - 1 (3.6)

For tI = 0 and t2 = t, Eqs. (3.4) and (3.5) become

a(0) = a(t) (3.7)
[l-ac(t)cQt]1/c

or

a(t) = a(0) (3.8)[l-aC(0)cQtlic(3 8

Equations (3.4) - 3.8) will be used in the methodology

to transform the distribution of the crack size from one

time instant to another in service.

The initial quality of a metallic structure can be

represented by the cumulative distribution at equivalent
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initial flaw sizes (EIFS), a(0), i.e., the equivalent flaw

size at time zero. The Weibull Compatible distribution,

proposed by Yang and Manning [8,9] will be used to describe

the equivalent initial flaw size distribution and is

repeated here: a U a

Fa(O)(x) = exp n( u/x)] (3.9)

where x u is the upper bound on the EIFS, a and (p are

empirical constants to be determined from the fractographic

data. Procedures for the determination of xu, a and D have

been described in details in Refs. [10,12)

3.1.1.1 No Inspection

We now have the two necessary ingredients to estimate

the probability of failure for no inspection, or just prior

to the first inspection using the cumulative distribution of

initial flaws and the deterministic crack growth equation.

The probability that the crack size a(t) at any service time

will exceed the critical crack size ac is given by

Pf(t) = P [a(t) > ac] (3.10)

Substituting Eq. (3.8) into Eq. (3.9), one obtains

Pf (t) = P [a(0) y c(t)) = 1 - Fa(0)[yc(t)) (3.11)

in which Fa(0)[Yc(t)] is defined in Eq. (3.9) and

Yc(t) [lxc 1/c (3.12)

[l-x cQt]
c

in Eq. (3.12), yc (t) is the value of the initial flaw which

will grow to critical flaw size in the given time interval

[O,t). The solution for the failure probability given by
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Eq. (3.11) is applicable to the first inspection interval,

or where no inspection is performed. The probability of

failure for the case where one or multiple inspections are

performed will be derived the following.

3.1.1.2 One or Multiple Inspections

In considering the effect of inspections on the

probability of failure, it becomes convenient to use the

probability density function to describe the flaw size

distribution rather than the cumulative distribution

function. The probability of detection, which is introduced

in Chapter II, is shown in Equation (3.13):

exp (a* + P in x) (3.13)
1 + exp (a + 0* ln x)

in which x is the crack size, and a and 3 are constants

depending on the capability of the inspection system.

Equation (3.13) is illustrated in Figure 3.1. The equation

accounts for the fact that nondestructive inspection (NDI)

systems are not capable of repeatedly producing correct

readings when applied to flaws of the same length.

The distribution of flaw sizes at any point in time

prior to any inspection can be found by transforming the

density function of flaw sizes, a(O), at time zero to the

flaw sizes a(t) at time t. This transformation can be made

using the relationship between the crack length at time zero

a(O) and the crack length at any other time, a(t), given by

Eq. (3.8). The probability density function f a(t)(x) of the

crack size a(t) at time t is obtained as
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af (x) = f a(Q[(Xt)]Idy(x,t)! (.14fa(t) (I d

= f a(0)[Y(X,t)]J(x,t)

in which it follows from Eq. (3.8) that

y(x,t) = x 1/(1 - xCcQt)I/c

and

J(x,t) = 1 1 / (3.15)
1 + xcQt

In Eq. (3.14), f a()(x) is the probability density

function of EIFS obtained by taking derivative of Fa(O) (x)

with respect to x, (-i ] a

f (x) = 2ý ln /) exp [1 ln( U/X)1 (16
L

With the above procedure for transforming the crack

sizes from one point in time to another, the expressions for

the density functions after several inspections can be

formulated. The probability density function of the crack

size right before the first inspection at T is given by Eq.

(3.14) with t = r, i.e.,

fa(T)(x) fa( 0 )[Y(XJ )] J(x,t) (3.17)

The probability of failure in the first service

interval [0,T) is given by

p(1) = J fa(-)(x) dx (3.18)

a
C

and the probability of repair during the first inspection

maintenance is given by
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a
c

G(1) = f a(-)(x) FD(x) dx (3.19)

0

in which FD(x) is the probability of crack detection given

by Eq. (3.13). It can be shown that p(l) given in Eq.

(3.18) is identical to Pf(t) in Eq. (3.10) with t = r.

After the first inspection maintenance at -, the probability

density of the crack size a(T +) is modified, because of

possible repair,

f a(+ )(x) = G(1)f a( )(x) + F (X)f a( )(x) ; x<ac (3.20)

in which the first term is contributed by the repaired

population and FD (x) is the probability of not detecting

(missing) a crack of size x during inspection,

FD(x) = W - FD(X) (3.21)

The density function of crack lengths after the second

service interval at 21 before inspection is obtained by

transforming Eq. (3.20) to the time 2T as follows

fa(2 )(x) = G(1)f a(D X a(2 ) (x) (3.22)

in which f a(2r)(x) is the probability density function of

the crack size a(2T) for the population originated at t = 0.

§ x) is obtained from Eq. (3.17) by setting t = 2r.

As a result, owing to crack propagation, the crack size

and its probability density increase as a function of

'orvice time2. Meanwhile, the probability density function

is subjected to modification during each inspection and

.epaii maintenance. Following a similar procedure described

ttove, the prhbability density function of the crack size,

3-7



a(nT), at nT right before the nth inspection maintenance,

can be obtained in a recurrent form,

(n-1 *
fa(n (x) W R [L(x;mr)] f a(T) [Y(x;nT)]J(x;nT)

m=1

n-1
E G(n-k)A k for n=2,3 (3.23)

k=1

in which the first term is contributed by the original

population introduced at t = 0, and the second summation

term is contributed by the repaired populations introduced

at n-kth inspection maintenance (k=l,2,...,n-l).

In Eq. 3.23, G(n-k) is the probability of repair at

(n-k)t, and
k-1 D

A k 11 F D [Y(x;mt)] fa(0) [Y(x;kt)]1J(x;kt) (3.24)
m=0

in which Y(x;mT) and J(x;kT) are given by Eqs. (3.15) and

(3.16), respectively. It should be mentioned that in Eq.

3.24,

k-i
1 FD[Y(x;mT,z)] = 1 for k = 1 and FD[Y] = 0 for Y>am=l 1

The probability of failure in the nth service interval

[(n-l)T,ni], denoted by p(n), is obtained as

P(11) f f a~nT) (x)dx for n=2,3,.... (3.25)

a
c

and the probability of repair, G(n) during the nth

inspection maintenance is given by
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a
C

G(n) = ffa(nt) (x)FD(x)dx for n=2,3,... (3.25a)

0

Equations (3.23) - (3.26) are recurrent solutions of n =

2,3,..., where the solutions for n = 1 are given by Eqs.

03.18) - (3.19).

The probability of failure in each service interval

p(n), n = 1,2,... has been derived in Eq. (3.25). The

probability of failure within m service intervals, i.e., in

the service interval [0,mT], denoted by pm' is obtained as

m
Pm = 1 - fl [1-p(n)] (3.26)

n=l

3.1.2 Master Curve Approach

In some instances, the crack growth rate equation

cannot be expressed analytically. For instance, Eq. (3.1)

does not hold for the entire region of crack size. This is

particularly true for a redundant structurp; where the crack

growth rate in a stiffened panel slows down and is arrested

as it approaches the stiffener. In this connection, the

._o-called master curve approach developed by Yang [81 will

be used in the following.

Both the crack propagation ana residual strength are

functions of the crack tip stress intensity factor, K. The

effect of stiffeners on the stress intensity factor in

redundant, built-up structures can be expressed as:

AK = Aajrta P(a) (3.27)
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where O(a), a function of crack size a(t), is a coriection

factor to account for the effect of geometry on the crack

growth. Substituting Eq. (3.27) into Eq. (3.1), one obtains

the growth rate equation as follows
da(t' - b I 2b

dt = Qa b(t) (a (3.28)

Unfortunately, the correction factor P(a) cannot be

expressed analytically as a function of the crack size a(t).

Swift [68] has reported discrete values of crack size and

P3a) for several stiffener spacings and areas. Thus, Eq.

(3.28) cannot be integrated to yield an analytical relation

for crack size, a(t), as a function of time, t.

Consequently, numerical integration should be used to obtain

the crack size-time relation.

In addition to the panel-stiffener system described

above, there are other situations where the analytical crack

size-time relation does not exist and a general computer

computer program, such as the MODGRO developed by the U.S.

Air Force [69] should be used. By use of numerical

integration procedures, the crack size a(t 2 ) at t 2 flight

hours can be expressed in terms of a(t 1 ) where t 2 > t1 as

follows

a(t 2 ) = a(t 1 ) + Ena(t.) (3.29)

in which Aa(t•) is the crack growth increment per flight
J

hour at t., where tI < tj < t 2 . The crack growth curve,

a(t) as a function of service time t thus obtained, is

referred to as the "master curve."
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Since the design loading spectra consist of many

repeated flights and missions, it is reasonable to assume

that the relation between a(t 1 ) and a(t 2 ) depends on the

difference of the service time t 2- t. Thus, only one master

curve for each maximum stress level is sufficient for the

determination of the crack growth damage. For the purpose

of mathematical derivation later, the analytical master

curve a(t) can be symbolically represented by

a(t 1 ) = W[a(t 2 ),t 2 -t 1) (3.30)

in which W is a general function representing the master

curve. It is a monotonically increasing function of t 2 -t I.

For instance, for a special case in which Eq. (3.3) is

valid, one obtains the function W after integration as

a(tl) = W[a(t2),t 2 -tl] = a(t 2 )/[l + ac(t 2 )cQ(t2-tl)]1 /c.

For the particular case where t = 0 and t2 = t,

Eq. 3.30 becomes

a(0) = W[a(t), t] (3.31)

In the present analysis, the master curve can be

obtained, starting from an arbitrary crack size that is

smaller than the EIFS, by using any crack growth general

computer program, such as the MODGRU program [69). In this

dissertation, since the panel-stiffener system is of major

concern, Eq. (3.28) will be integrated numerically to obtain

the master curve. The procedures using the cubic spline

method are described in Appendix A.

The probability of failure of a structural component

under scheduled inspection and maintenance using the master

3-11



curve approach described above will be derived in the

following (after Ref. 8).

3.1.2.1 No Inspection

The probability that a crack a(t) at any service time t

will exceed the critical crack size a is given byc

Pf(t) = P fa(t) > ac]

= I - P [a(0) < Yc(t)j (3.32)

= 1 - Fa( 0 )[Yc(t)]

in which Fa(Q)[Yc(t)] is distribution function of the

equivalent initial flaw size given by Eq. (3.9) and it

follows from Eq. (3.31) that

Yc(t) = W[ac,t) (3.33)

In Eq. (3.33), Y c(t) is the corresponding crack size at t =

0 when the crack size at the time t is a. With the masterc

curve numerically defined, Eq. (3.31), the value of YC (t) in

Eqs. (3.32) and (3.33) can be determined easily as shown in

Fig. 3.2.

3.1.2.2 One or Multiple Inspections

The probability density function of the crack size a(T)

right before the first inspection at T is obtained from that

of EIFS through the transformation given by Eq. (3.31) as

follows

fa(z)(X) = fa(0)fY(X'T)J J(x,vt) (3.34)

in which
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y(x,T) = W(xT)

J(x, ) = dy(xi) dT
=~x~t dt dx (3.35)

In Eq. (3.35), y(x,t) is the corresponding crack size

at t = 0 when the crack size at T is equal to x, i.e.,

a(T)=x. Furthermore, y(x,i) can also be interpreted as the

crack size at t = t2 - r, i.e., a(t 1 ) = y(x,T), when the

corresponding crack size at t 2 is equal to x, i.e., a(t 2 )=x.

With the crack growth master curve being defined

numerically, the determination of y(x,T), and slopes

dy(x,T)/d- and d-/dx can easily be made as shown in Fig. 3.3.

The probability of failure in the first service

interval [0,1) is obtained as

p(1) f f a( )(x) dx (3.36)

c

in which f a()(x) has been derived in Eq. (3.34). The

probability of repair during the first inspection

maintenance is given by

a

G(1) f ffa(T)(x) FD(x) dx (3.37)

0

In a similar manner, the probability density function

of the crack size a(n-) at the service time nT right before

the nth inspection maintenance is obtained [Ref. 31) as

n-i

f a(n )Ix) A n + Z G(n-k) Ak for n = 2,3,... (3.38)

k=1

• m m • •mm -1 AI
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in which An is the contribution from the original population

that has not been repaired, and the second summation term is

contributed by repaired population at each inspection

maintenance.

A1 = f a(0) XT')] J(x,T)

k-i *
Ak IT FD [y(x,mt)] fa() [y(x,kT)]J(x,kr) k = 2,3,...m-i (3.39)

where

Y(x,kT) = W[x,kT]

J(x,kT) = dy(x,kT) dx (3.40)dT dT

Again, y(x,kT) is the crack size at t = t - kT, i.e.,

a(t 2 -ki) = y(x,ki), when the corresponding crack size at t2

is equal to x, i.e., a(t 2 ) = x. Thus, given the crack

growth master curve, the crack size y(x,ki), and the slopes

dy(x,kT)/dT and dx/dT for k = 1,2,... can be determined as

shown in Fig. 3.4.

In Eq. (3.38), G(j) is the probability of detecting (-r

repairing) a crack of any size during the jth inspection

ac

G(j) f fa(jr)(x) FD(x) dx ; j = 213,... (3.41)

0

Thus, the probability of failure in the nth service

interval, i.e., [(n-l)T,nT], is obtained as

p(n) =J fa(nT)(x) dx (3.42)

a c

The probability of failure in n service intervals, i.e.,
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[0,ni], is given by

n
Pn = 1 - H [1-p(j)] (3.43)

j=l

3.2 Stochastic Crack Growth Approach

In the previous section, the crack growth rate

variability is not accounted for in the estimation of

probability of failure of the structure. This approach is

slightly unconservative, since the crack growth rate

variability tends to increase the failure probability of the

structure in service. It is mentioned that the distribution

of the equivalent initial flaw size (EIFS) is established by

back-extrapolation of experimental fractographic data to

time zero. When the back-extrapolation is conducted using a

deterministic crack growth model, the EIFS distribution, Eq.

(3.9), is referred to as the deterministic-based EIFS

distribution [Ref. 10]. When the back extrapolation is made

using a stochastic crack growth model, the EIFS distribution

is referred to as the stochastic-based EIFS distribution.

For the deterministic-based EIFS distribution, it has been

shown that the accuracy for predicting the crack growth

damage accumulation in service using the deterministic crack

growth approach is quite reasonable, although it is slightly

unconservative [Refs. 10,12,36,371. On the other hand, the

stochastic crack growth approach should be used if the

stochastic-based EIFS distribution is cmployed.

3.2.1 Analytical Crack Growth Approach
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In this section, the formulation for computing the

probability of structural failure will be presented using a

stochastic crack growth approach following Ref. 31. Various

stochastic crack growth models have been proposed in the

literature as described in Chapter II. Of all of the

stochastic crack growth models available, the lognormal

random variable model proposed by Yang [Refs. 31,32) shown

in Eq. (2.20) is the simplest for practical applications.

Likewise, such a model always results in a slight

conservative prediction for crack growth damage

accumulation. Consequently, it will be adopted in the

present study.

The lognormal random variable model for crack

propagation is repeated in the following

da(t) = Z Q[a(t)] b (3.44)
dt

in which Z is a lognormal random variable with a median of

1.0. Z is introduced to account for the crack growth rate

variability resulting from various sources [see Refs.

31,32,61,62], such as the variabilities due to material

cracking resistance, spectrum loading, crack geometry, crack

modeling, etc.

The probability density function of the lognormal

random variable Z is given by 2

fi(Z) = 771 exp I [ln ; z > 0 (3.45)fzz ) = 7- zoaz I -2 az-

in which a is the standard deviation of In Z.

3.2.1.1 No Inspection
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Integrating Eq. (3.44) from t = 0 to t = t, one obtains
a(0) = - - a(t)3 46

1l+aC(t~cQtz] i/c (1-6

or

a(t) = a(O) (347)

[~aC (O)cQtZji/c

Where c = b-i in Eq. %3.47), the crack size at any

service time t involved two random variables, a(0) and Z.

The conditional distribution function F a(t)(xjz) of the

crack size a(t) given Z takes a value z, i.e., Z=z, is

obtained from the distribution function of a(0), given by

Eq. (3.9), through the transformation of Eq. (3.46) as

follows

Faa ) (xlz) = Fa(0) [y(x,t,z)] (3.48)

in which it follows from Eq. (3.46) that

y(x,t,z) = x (3.49)

[l+xCcQzt]I/c

The unconditional distribution function of a(0) is obtained

from the conditional one using the theorem of total

probability

Fa(t)(x) Fa(0) [y(x,t,z)) fz(z) dz (3.50)

0

where fz(z) is the probability density function of Z given

by Eq. (3.45).

The probability of failure within the time interval

[O,t], denoted by pf(t), is given by
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Pf(t) = P[a(t)>ac] (3.51)

= l-P[a(t)<a ]-- C

1-Fa(t) (ac)

Substitution of Eq. (3.50) into Eq. (3.51) leads to the

following expression for the probability of failureC

pf t) F iFa(F ) [y(a ,t,z)j fz (z) dz (3.52)

i'n which it follows from Eq. (3.49) that
a

y(a ,t,z) c (3.53)
[l+a cQzt]i/c

The analytical integration for Eq. (3.52) usually is

not possible, hence a straight forward numerical integration

can be carriea out to estimate the probability of failure

Pf(t).

3.2.1.2 One or Multiple Inspections

The crack size at the end of the first inspection

interval a(T) can be obtained in term of the initial flaw

size a(0) from Eq. (3.47) by setting t=T as follows
a( 0)

a(t) = (3.54)
[ 1laC(0)cQTZ 1 /c

in which c b - 1. The probability density function,

f a(0(x), of a(T) is obtained from that of a(0) and Z

through the transformation of Eq. (3.54); with the results,

f a( )Wx) z•0 a( ) y ;Lz)jJ(x;rz)fZ (z)dz (3.55)
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in which fz(z) is given by Eq. (3.45), f a()(x) is the

probability density of a(0) given by Eq. (3.16) and

y(x;T,z) = x/[l+xCQZj]I/c

J(x;T,z) = I/[l+XCcQTz]l+1/c (3.56)

The probability of failure in the first service interval

(0,r), denoted by p(1), is equal to the probability that

a(T) is greater than the critical crack size a .

p(1) =( fa( )(x)dx (3.57)

ac

The probability of repairing or detecting a crack, during

the first inspection maintenance at T, denoted by G(l), is

given by

ac

G(I f f a(t) (X)FD(x)dx (3.58)

in which FD(x) is the probability of detecting a crack size

x given by Eq. (3.13).

After the first inspection maintenance at r, the

probabil ity density of the crack size a(T +) is modified,

because of possible repair

f a(+) (x) = G(1)fa 0) (x) + FD(X)f a( )(x) ; x<ac (3.59)

in which the first term is contributed by the renewal

population (repaired fastener hole): and FD(x) is the

probability of not detecting (missing) a crack of size x

during inspection,
*

F D(x) = 1 - FD (X) (3.60)
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Following a similar procedure presented in Section

3.1.1, the probability density function of the crack size,

a(nx), at iVL right before the nth inspection maintenance,

can be obtained in a recurrent form,

f a nr) (X) =f0 f a(nr) (xlz Z) (z()dz (3.61)

in which fa(nt)(xlz) is the conditional probability density

of a(nr) under the condition that Z=z,

f (xjz) E FD*Y(x;m•,z)] fa ly(x;nT,z)]J(x;nT,z)a~n-c) m=l DaC

n-i
+ E G(n-k)A ; for n=2,3,... (3.62)

k=1 k

in which the first term is contributed by the original

population introduced at t = 0, and the second summation

term is contributed by the renewal populations (repaired

lncations) introduced at n-kth inspection maintenance

(k=l,2,...,n-1).

In Eq. (3.62), G(n-k) is the probability of repairing a

crack at (n-k)T, and

k-1,*
k IT = FD[Y(x;mTz)] fa( 0 ) [y(x;kTz)]J(x;ki.z) (3.63)

m=l

in which y(x;rnT,z) and J(x;kt,z) are given by Eq. (3.56).

It should be mentioned that in Eq. (3.63),

k-i
H F Dy(x;mi,z)]=1 for k = 1 and FD[y]=0 for y > a .mz=1 D DY~C

The probability of failure in the nth service interval

[n-1)i,nT], denoted by p(n), is obtained as
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P(n) fffa(nt)(x)dx ; for n=2,3,... (3.64)

C

and the probability of repairing a crack, G(n) during the

nth inspection maintenance is given by

G(n) = f fa(nT)(X)FD(X)dx ; for n=2,3,... (3.65)

0

Equations (3.61) - (3.65) are the recurrent solutions for

n=2,3,..., where the solutions for n = 1 are given by Eqs.

(3.55) - (3.58).

The probability of failure of a critical location in n

service intervals (O,nt), denoted by P(nT), is given by

n
p(nT) = 1 - H [l-p(j)] (3.66)

j=1
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CHAPTER IV

EXAMPLES OF STOCHASTIC LIFE PREDICTION

4.0 Introduction

. In this chapter, examples of the analysis approaches

introduced in Chapter III will be presented. First, a lug

problem will be presented in which the probability of repair

and the probability of failure will be calculated using both

a deterministic crack growth approach and a stochastic crack

growth approach. Second, a stiffened panel problem will be

presented in which the probability of repair and the

probability of failure will also be calculated using a slow

crack growth analysis and a fail-safe crack-arrest analysis.

Both deterministic and stochastic crack growth approaches

will be used.

4.1 Lug Example

A lug attachment fitting was selected as an example of

a slow crack growth, damage tolerant critical structural

component. It is representative of the -ategory of single

load path damage tolerant components [70]. The lug is a

".•ghly stressed and nonredundant structural component whose

failure can be catastrophic 171].

A computer program was developed to calculate the

probability of repair and the probability of failure for

both stochastic crack growth and deterministic crack growth

approaches from an initial flaw size distribution. The

4-1



probability of repair represents the average percentage of

lugs in a fleet of aircraft that will contain detectable

cracks and require repair. The probability of failure

reflects the average percentage of lugs that will fail in a

fleet of aircraft.

The parameters used in this example for straight

aluminum lugs without bushing or bearings are summarized in

Table (4.1) after reference [72]. A discussion of how these

parameters were selected follows:

Test data were selected from those tabulated in

reference [73], in which the specimen number S3-A-3

represented a straight shank, axially loaded lug with no

bushing. The geometry of the lug is illustrated in Figure

(4.1). It was subjected to an 80-flight fighter/trainer

wing lower surface spectrum. The crack length versus flight

data were differentiated to obtain the crack growth rate

data, da/df, using the seven point polynomial method in

accordance with American Society for Testing and Materials

(ASTM) standard E-647 [74]. The da/df versus crack length

data are shown in Figure (4.2). A linear regression

analysis was performed on the natural logs of the da/df

versus "a" data as follows, Eq. 2.1,

da = Qb (4.1)

Taking the natural logs of both sides of Eq. (4.1), one

obtains

ln(da/df) = In(Q) + b-ln(a) (4.2)
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Table 4.1

Parameters for the aluminum lug example with a straight
shank without bushing or bearings.

Crack Growth Parameters

Q = 7.158E-4 Flight hours-
b = 1.393
a = 0.2158

z
a = 0.125 inchcr

Initial Flaw Size Parameters

a = 1.823
(P = 1.455
x= 0.03U

NDI Parameters

System #1 System #2
a* = 55.28 a* = 13.44

= 16.4 = 3.95
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Q and b are the slope and the intercept of the linear

equation as plotted on a log-log plot for pooled data sets.

Theoretically, Q and b should be estimated from crack growth

data of a large sample size. Unfortunately, only the crack

growth data for specimen S3-A-3 are available and they are

used to determine Q and b using a least squares fit

procedure; A.ith the results Q=7.158(E-4), b=1.393, and .=

0.2158. Based on the fiftieth percentile of 35 lugs failed

in service (after Ref. 72), the critical flaw size was

assumed to be 0.125 inches, see Figure (4.3).

The Weibull-compatible distribution described in

Section 3.2 was used to characterize the initial quality.

The distribution parameters obtained in the durability

analysis for 7000 series aluminum [e.g.35,39] were selected;

cx=1.823, (p=1.455 and xu=0. 0 3 . This x is a value which

might represent the capability of the NDI system. Any flaw

large than 0.03 inches would be found through the initial

inspection, and the part would be repaired prior to service.

The next assumption involved the levels of inspection.

Two levels of NDE systems were considered and the

probability of detection parameters, a and 3 were used in

Equation (2.4). These two levels were taken from reference

[39], and are identified in Figure (4.4) as nondestructive

inspection (NDI) systems #1 and #2. The respective values

for cL and 1 were 55.28 arid 16.4 for #1, and 13.44 and 3.95

for #2. Number 1 is representative of a narrow-banded NDI

system which exhibits little statistical uncertaintj in flaw

A r
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detection. This one misses all flaws less than

approximately 0.028 inches, and finds all flaws greater than

approximately 0.05 inches. NDI system #2 is representative

of a wide-banded NDI system, which exhibits significant

statistical uncertainty in flaw detection. This one misses

all flaws less than approximately 0.01 inch and finds all

flaws greater than approximately 0.1 inch. More small

flaws, but fewer larger ones are found for #2 than for #1.

Results for the probability of failure were investigated

using these two NDI systems.

4.1.1 Deterministic Crack Growth Approach

The lug example was analyzed using a deterministic

crack growth law, given by equation (4.1). The initial flaw

size parameters, the crack growth rate parameters, the NDI

system parameters and the critical crack size were

identified in the previous section. This analysis is

computationally easy, because it involves only one random

variable, the initial flaw size, and hence, involves only

single integrals for calculating both the probability of

repair and the probability of failure.

An inspection interval was desired which resulted in
-3

probabilities of failure smaller than 10 over the service

life of the airframe which is approximately 8000 flights.

The probability of failure is a function of service flights

and inspection reliability.
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Figure (4.5) and (4.6) illustrate the probability of

failure for no inspection, one, two, and three inspections

for NDI systems #1 and #2, respectively. NDI system #1

results in lower probabilities of failure throughout the

8000 flight life, when compared to #2. The probabilities of

failure for NDI system #1 are less than 10-3 for one

inspection, less than 10-6 for two inspections, and less
-9

than 10 for three inspections. One inspection at 4000

flights using NDI system #1 would be a possible choice for a

force management plan. The probabilities of failure using
-2

NDI system #2 are less than 10 for one inspection and less

than 10- for two and three inspections.

The average number of repairs in a fleet of 100 lugs

are shown in Table (4.2) for NDI svstems #1 and #2, with

one, two, three, and four inspections. NDI system #2

results in finding more flaws than system #1, but the tlaws

it finds are smaller. It misses some larger ones, leading

to higher probabilities of failure.

4.1.2 Stochastic Crack Growth Approach

Next, the variability of crack growth was taken into

account in the model. The crack growth model is repeated in

the following
da_ b
df ; Z Qab (4.3)

where Z is a lognormal random variable with median 1 and

standard deviation az. Q and b are the crack growth rate
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Table 4.2

Average percentage of repair for lug example
using deterministic crack growth analysis

a. NDI System #1

Service Interval 1 2 3 4 Total

4000 14.2 14.2
2667 7.4 14.3 21.7
2000 4.4 10.1 11.2 25.7
1000 2.8 7.4 8.8 9.2 28.2

b. NDI System #2

Service Interval 1 2 3 4 Total

4000 16.4 16.4
2667 10.7 15.2 25.9
2000 8.3 11.5 12.2 32.0
1000 7.0 9.4 10.0 10.1 36.5
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parameters as derived from Equation (4.2) and presented in

Table (4.1).

A design service life of 4000 flights was selected to

represent the life of the lug for reliable performance. The

probabilities of failure for no inspection, shown by the

solid curve to the left and top, and one, two, three and

four inspections, shown by the curves to the right and down,

are presented in Figure (4.7) for NDI system #1. The

probability of failure rises quickly from 10-9 to 10-2 as

the number of flights increase for no inspection. The

probability of failure for one and two inspections is

greater than 10 by the end of the service life. It is

less than 10 for three and four inspections throughout the

service life. The increased numbers of isochronal

inspections serve to keep the probability of failure from

rising as fast as the case of few or no inspections. The

corresponding probabilities of failure are presented in

Figure (4.8) for NDI system #2. The trend follows NDI

system #1; however, inspection and repair serves to lower

only slightly the probability of failure at longer lives.
-3

The probability of failure is greater than 10 for one, two

and three inspections. It remains less than 10 for four

inspectiois. For this example, only four or more isochronal

inspections will insure adequate levels of safety throughout

the expected life.

Next, the required service life was reduced to 2000

flights. The probability of failure with no inspection rose
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-9 -

quickly from 10 to almost 103. One possible decision

from this result would be to fully replace the part every

2000 flights without inspection. The probabilities of

failure were again calculated for the two inspection systems

and up to four isochronal inspections. Figures (4.9) and

(4.10) illustrate these results for systems #1 and #2,

respectively. This time the probabilities of failure for

four isochronal inspections remained below 10-6 through-out

the desired lifetime for NDI system #1, but not for #2.

The probabilities of failure for NDI system #1 remain below
-5 -6

10 for one and two inspections, below 10 for three

inspections and below 10-7 for four inspections. The

probabilities of failure for NDI system #2 remain below 10

for one inspection, below 10 4 for two and three

inspections, and below 10 for four inspections. Notice,

once again, that the probability of failure significantly

decreases as the time between inspections decreases.

These results highlight the differences in

narrow-banded and wide-banded inspection systems with

similar central tendencies. The wide-banded inspection

system found more smaller flaws, but missed more larger

flaws, leading to a larger probability of failure. The

consistency of detection characteristic of the narrow-banded

system lead to lower probabilities of failure, compared to

the wide-banded system.

The probabilities of repair for these two inspection

systems are shown for the four inspection intervals and a
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life time of 2000 flights in Table (4.3). As can be seen

from the table, the use of NDI system #2 results in the

detection of more flaws than NDI system #1.

This analysis highlights the significant difference in

accounting for a statistical variability of the crack growth

rate over a deterministic crack growth rate. It is

important to take into account the crack growth rate

variability in the life prediction of non-redundant

structures.

4.2 Stiffened Panel Example

A stiffened panel is representative of a fail safe

structure which is a second category of damage tolerant

structures. Structures are defined as fail safe if they

contain crack arrest features or they have multiple load

paths. Crack arrest structures are designed so that a

rapidly growing crack is stopped at a stiffener or other

crack arrester before complete failure. The remaining

uncracked structure, with assumed continuing damage is

designed to carry the load until the cracked section is

repaired. A good example of crack arrest structure is the

lower part of a transport wing skin or a fuselage. A

typical exampie is a skin-stringer structure, where the

primary damage assumed to exist following crack arrest of a

rapidly propagating crack is assumed to be two panels of

cracked skin plus the broken center stringer [1).
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Table 4.3

Average Percentage of Repair for Lug Example Using
Stochastic Crack Growth

a. NDI System #1

Service Interval 1 2 3 4 Total

1000 1.55 1.55
667 .62 2.46 3.08
500 .35 1.32 2.46 4.13
400 .24 .81 1.57 2.27 4.89

b. NDI System #2

Service Interval 1 2 3 4 Total

1000 6.68 6.68
667 5.30 6.82 12.12
500 4.73 5.57 5.97 16.27
400 4.42 4.92 5.10 5.37 19.81
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A multiple load path structure is a redundant

structure. When one of the elements fails, the remaining

elements carry the load for a specific period of time, such

as the time required to have it repaired. Many damage

tolerant critical parts are designed with redundancy or with

crack arresters, yet few analysts take advantage of this

fact when making fatigue life predictions because of the

complexity of the analysis. To date, no airframes in the

Air Force inventory have been designed or qualified as fail

safe structure.

The Air Force damage tolerance requirements [1] state

that the safety-of-flight structure must contain the growth

of the assumed initial damage for a specified period of

service while maintaining a minimum level of residual static

strength. This concept is illustrated in Figure (4.11a and

4.11b) [Ref.l]. The safe growth period is also dependent on

the scheduled in-service inspection intervals. Safety is

assured by assuming the presence of an initial fatigue

damage and subsequent growth, and the ability to detect and

repair this damage prior to a total loss of the structure

throughout a specified service usage interval. The

fail-safe requirements are summarized in Table (4.4) for

intact and remaining structure, after [Ref.1l.

The residual static strength requiremenL of the

remaining structure with depot or base level inspectability

is used as the failure criterion for the example presented

here. A stiffened panel was selected as representative of a
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fail-safe structure where analysis was possible. The

residual strength, as a function of crack length, was

available from the literature for several combinations of

stringer spacing and size [68]. An aluminum panel of 0.063

inch thickness, a str:inger cross-section area of 0.4113

square inch, a stringer spacing of 8 inches, and a fastener

spacing of one inch were selected for study. The stringer

was shaped as a Z. This example corresponds in-part to Case

8 in Reference [68], in which the initial damage is

represented by a 0.05 inch surface flaw over a broken center

stiffener. In this exampie, the center stiffener is

missing. This change in geometry was made so that

comparisons of stiffened and unsciffened panels could be

made directly. When the broken stiffener is present, it

acts to accelerate the crack at the beginning, yielding a

much shorter life when compared to a center crack in an

unstiffened panel. Without the center stiffener, the

beginning growth of the crack is the same for both the

stiffened and unstiffened cases, so the advantages of

stiffening can be observed. The stiffened panel is

illustrated in Figure (4 12).

As explained in Section 3.1, the stress intensity

factor, AK, in a redundant, built-up structure can be

expressed as

AK = Aojna O(a) (4.4)
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where 3(a) is a correction factor due to all geometrical

effects. It is a function of crack length and also includes

the following geometrical size effects:

* Stiffener spacing

* Stiffener section properties - area, inertia,

neutral axis location

* Stiffener elastic or plastic material properties

* Fastener displacement, either linear or nonlinear

* Skin thickness.

Swift [68] calculated P(a) using the displacement

compatibility method. The values of crack length, "a",

3(a), and residual strength of the plate and stiffener for

the eight inch stiffener spacing are presented in Table

(4.5). The relationship between residual strength of the

plate and crack length is illustrated in Figure (4.13) for

the same geometry. The relationship between the residual

strength of the plate and stiffener system and crack length

in the plate is illustrated in Figure (4.14). Here, the

initial damage assumptions are represented by a 0.05 inch

suiface flaw in the center of the plate, and a 0.05 inch

through flaw in the outer stiffeners.

These figures are a typical part of a damagr

tolerance-residual strength diagram. The part re±ating

flight hours to crack length is not shown here. These

figures clearly show the effect of the presence of the

stiffener on the residual. strength of the skin, as the crack

tip approaches the stiffeixer, thereby, lowering AK, the
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Table 4.5

Crack Length, D(a) and Residual Strength for an 8 Inch
Stiffener Spacing and Stiffener Area of 0.4113 Inch 2 .

Residual Strength

Crack
Length,a O(a) Stiffened Unstiffened Stiffener

Plate Plate

0.25 2.1827 62.03 ksi 156.35 ksi 78.76 ksi

0.50 2.0647 46.37 110.56 78.57
0.75 1.9363 40.37 90.27 78.34
1.00 1.8254 37.09 78.18 78.02
2.00 1.5560 30.97 55.28 76.23
3.00 1.4175 27.58 45.14 73.65

4.00 1.3252 25.54 39.09 70.22
5.00 1.2501 24.22 34.96 65.73
6.00 1.1763 23.50 31.92 59.89
7.00 1.0837 23.61 29.55 52.24
8.00 0.849 26.75 27.64 42.43
9.00 0.7102 31.78 26.06 35.18

10.00 0.6682 32.04 24.72 31.33
11.00 0.6571 31.07 23.56 28.84
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driving force of the crack. This phenomenon is reflected

numerically in the values of the residual strength of the

panel, as reported in Table (4.5), column 3. (after Ref.

68). As the crack tip approaches the stiffener, the

residual strength actually increases in the panel.

Fast crack growth occurs when the stress exceeds the

residual strength of the plate. The residual strength cf

the plate is represented by the solid line in Figure (4.14).

The propagating crack will be arrested at the stiffener, if

the applied stress is less than the residual strength of the

plate and stiffener system.

Failure will occur when the residual strength of the

plate-stiffener system is unable to resist the applied

stress. This level of resistance is represented by the

squares in Figure (4.14). The residual strength of the

panel was calculated directly from Equation (4.5) for crack

lengths significantly less than the stiffener spacing:

K
R(a) = c (4.5)

where R(a) is the residual strength of the plate, which is a

function of the crack length a, K is the fracture toughnessc

of the plate, and a is the crack length in the plate.

When the crack tip approaches the stiffener and ý(a)

becomes less than one, Equation (4.5) was modified by D(a)

for the residual strength of the plate, R:
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KR(a) c (4.6)

The tabulated residual strength values at discrete

values of crack length can be used to define failure. The

probability of failure can be defined as the probability

that the residual strength will fall below the required

residual strenqth associated with resisting Pxx' the load

calculated from the damage tolerant design requirements.

The residual strength R[a(t)) can be defined mathematically

as a function of the crack size "a" as R[a(t)] = g(a), where

g is a monotonic function. Then crack size "a" can be

expressed in terms of the residual strength as

a(t) = g 1[R(a(t))] (4.7)

where g 1 is the inverse of the g function. The function

can be partitioned and evaluated in segments. Then, the

probability of failure, Pf, can be defined as:

Pf = P[Pxx >R(a(t))]

= p P xx>gj[a(t)]} (4.8)
= x-P[a(t)<g 1 (Pxxx

or,

Pf = 1-F a(t)[1-!(pxx) (4.9)

in which g-I (P ) is nothing but the critical crack sizexx

associated with the load Pxx" If such a critical crack size
-1

is denoted by axx, i.e., g (Pxx = axx, then the

probability of failure of a panel in the nth service
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interval [(n-T), ni] is given by the probability of failure

of a panel in the nth service interval

P f fa(ni) (x) dx (4.10)
a

xx

An example for the calculation of the probability of repair

and failure for a redundant lower wing skin of a transport

aircraft will now be presented. The Pxx load must be used

which reflects the maximum average internal member load that

will occur once in M times the inspection interval according

to Mil-A-87221 [1]. Pxx should be at least equal to the

design limit load, but need not be greater than 1.2 times

the maximum load in one lifetime, if P is greater than the

design limit load. The base level inspection is typically

performed at 1/4 of the lifetime and M=20. The walk around

visual inspection is performed once every ten flights and

M=100.

P xx can be found from exceedance curves, such as

presented in Figure (4.15) for a component in the lower wing

skin of a medium range transport aircraft. Both the plate

and stiffener exceedance curves are shown in the same

figure. Once P xx has been selected, the critical crack

length is found from the P xx versus a relationship, either

Equation (4.5) or (4.6).

The equation for the probability of detection, FD(x)

(2.9), was modified to reflect a visual NDI system, which

was useful for longer critical crack sizes. The parameters

were adjusted to reflect a detection system, where cracks

4-34



10

1-20

I0

z_ \
S--\

w -O \STIFFENER
w

0 -

._7 PANEL \\ý

0 10

0 20 30 40
STRESS, S, KSI

50 75 100
STIFFENER PERCENT LIMIT LOAD, L

II I

50 75 00 125
AFT PANEL PERCENT LIMIT LOAD, L

Figure 4.15 The Stress Exceedance Curve for a Lower Aft

Panel and Stiffener

4-35



could be detected when they reached approximately two inches

in length. The parameters, c = -9.159, and 3 = 16.4 were

used in Equation (2.9) to reflect this level of inspection.

The function is plotted in Figure (4.16). The service life

of such a stiffened panel system is 60,000 flight hours.

4.2.1 Slow Crack Growth Approach

Suppose the fail-safe design feature of the

panel-stiffener system is disregarded. In other words, the

stiffener's ability to pick up loads from the plate as the

crack approaches the stiffener is neglected, so that the

plate is considered to be unstiffened. Therefore, the slow

crack growth approach should be used and the critical crack

size, axx, was defired at the point wnere the residual

strength in the plate fell below P as calculated from

Equation (4.5) and Figure (4.17). For this example, the

critical crack size was equal to 6.061 inches, corresponding

to a design limit stress of 27.5 ksi. The maximum expected

stress in the plate, as given by the exceedance curve in

Figure (4.19). was 22 ksi in 60,000 f7, - hours. Since

this stress is less than the design limit stress, the design

limit stress was used.

4.2.1.1 Deterministic Crack Growth Approach

The equivalent initial flaw size distribution

parameters, NDI system parameters and critical flaw sizes

are summarized in lable (4.6). The deterministic crack
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Table 4.6

Parameters for the Stiffened Panel Example

Q = 1.504E-4
b= 1.10

.1267

a = 6.061 inches for slow crack growth approach
acr = 8.142 inches for fail safe approachxx

Initial Flaw Size Parameters

a = 1.823
S= 1 .928

x = 0.03u

NDI Parameters

System #1 Visual

a* = 55.28 •. = -9.159
= 16.4 = 16.4
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growth rate model presented in Eq. (4.1) was used and crack

growth rate parameters, Q=1.504E-4 and b=1.10 were selected

for the purpose of illustration.

The results of the deterministic crack growth analysis

are presented in Figure (4.18). The solid curve at the top

of the figure, as denoted by zero, represents the

probability of failure without inspection maintenance. The

critical crack size was 6.061 inches. The next curve down

in Figure (4.18) represents the probability of failure for

four isochronal visual inspections at 12,000 flight hour

service intervals, as denoted by 4. The next curve

represents the probability of failure for five isochronal

visual inspections, occurring at 10,000 flight hour service

intervals, and denoted by 5. The probability of failure for

one, two and three isochronal visual inspections differed

little from the no inspection case, and were therefore not

included on the figure.

These probabilities of failure may be too high to be

acceptable for a primary structure. A visual inspection

alone will not ensure safety. A more reliable NDI system is

necessary to bring the probabilities of failure down to an

acceptable level. NDI system #1 was used and the results

yielded a probability of failure of 2.378E-8 at 60,000

flight hours for one inspection at 30,000 flight hours.

More inspections resulted in no probability of failure,

because of the upper bound of the Weibull compatible

distribution for the equivalent initial flaw size, as well
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as the nature of the deterministic crack growth. These

examples illustrate the importance of using the proper NDI

system for the force management plan.

The probabilities of detection and repair are shown in

Tables (4.7a) and 4.7b) for the NDI system #1 and the visual

inspections. The NDI system finds more flaws than the

visual inspection, and the more often the inspection, the

more total flaws are found.

4.2.1.2 Stochastic Crack Growth Approach

The slow crack growth example was rerun, using the

stochastic crack growth approach as represented by Equation

(4.5). The probability of failure for no inspections and

five visual inspecticns is shown in Figure (4.19). The

results for five visual inspections is very close to that

for no inspections, indicating that very little gain in

safety is seen by relying on a visual inspection. However,

with the application of NDI system #1, the probability of

failure reduces significantly as illustrated in Figure

4.20), which shows the results for one to five inspections.

The difference between ýt two approaches presented above is

that the stochastic crack -rowth approach results in higher

probabilities of failure; as expected, because of the

possibility of fast crack growth. The probabilities of

repair are presented in Tables (4.8a) and (4.8b) for both

visual and NDI system #1 inspections. As expected, the NDI
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Table 4.7

Average Percentage of Repair for Stiffened Panel Example
Using Deterministic Crack Growth Analysis

and a = 6.061 Inchesxx

a. Visual Inspection

Service Interval 1 2 3 4 5 Total

30,000 1.60E-6 1.6E-6
20,000 2.55E-15 7.00 7.0
15,000 2.53E-19 1.60E-6 20.9 20.9
12,000 1.22E-21 '.18E-12 0.5 26.1 26.6
10,000 3.59E-23 2.55F-15 1.6E-6 7.0 27.8 34.8

b. NDI System #1

Service Interval 1 2 3 4 5 Total

30,000 77.4 77.5
20,000 51.9 56.0 117.9
15,000 35.0 54.7 51.0 140.7
12,000 24.4 45.2 43.7 26.1 156.8
10,000 17.7 37.3 38.2 37.4 37.4 168.8
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Table 4.8

Average Percentage of Repair for the Stiffened Panel Example
Using Stochastic Crack Growth and axx " 6.061 Inche3

a. Visual Inspection

Service Interval 1 2 3 4 5 Total

30,000 6.0 6.0
20,000 .32 18.9 19.2
15,000 .15E-! 6.0 24.7 30.7
12,000 .77E-3 1.4 13.5 27.5 52.4
10,000 .46E-4 .31 6.0 19.0 28.8 53.1

b. NDI System #1

Service int.rva. 1 2 3 4 5 Total

30,000 10.0 10.0
20,000 65.4 93.3 158.7
15,000 43.3 70.1 45.4 158.8
12,000 30.0 55.4 42.0 41.4 178.8
10,000 21.6 44.9 38.5 39.1 24.2 158.3
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system #1 inspection finds more flaws than the visual

inspection.

4.2.2 Crack Arrest Approach

Next, the stiffened panel example was rerun taking

advantage of the presence of the stiffener. In this

scenario, the crack will grow through the plate and arrest

over the stiffener. The critical crack size, axx, in this

case is approximately equal to, or larger than, the

stiffener spacing, so the visual NDI system seemed

appropriate to investigate. As the flaw in the plate grows,

the residual strength of the stiffener degrades with flight

hours and failure is dependent on the residual strength of

the stiffener as its proportion of the load is increased.

In other words, failure occurs when the crack grows

throughout the plate and the residual strength of the

stiffener is exceeded by the applied stress. Thus, the

probability of failure is equal to the probability of the

crack size exceeding 8.142 inches multiplied by the

probability of the stress in the stiffener exceeding 41 KSI.

The probability of stress exceedance for the stiffener was

found to be 1.0 x 1010 per flight from the stress

exceedance curve of Fig. (4.15). This value was multiplied

by the number of flights in the service interval to obtain

the probability of stress exceedance for the stiffener in

that service interval.
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4 2.2.1 Deterministic Crack Growth Approach

4.2.2.1.1 General Master Curve Approach

The general master curve approach was considered for

the crack arrest case because it could account for the

decreasing crack growth rate as the crack approached the

stiffener. The difference between the general master curve

approach which accounts for arresting crack growth and the

special case which does not, i.e., O(a)=l, arc presented in

Figure (4.21). The solid curve was calculated directly from

Equation (3.7), whereas, the dotted curve represents the

numerical integration of Equation (3.24) using the cubic

spline interpolation of the crack length and 0 values from

Table (4.5). Note that there is no difference in crack

growth between the two models until the crack length reaches

approximately eight inches, the stiffener spacing. As a

result, the general master curve approach was not pursued in

any detail, other than to check results of the special case

in which O(a) is set to be unity.

4.2.2.1.2 Special Case 0(a)=l

The problem was formulated by corniecring thn- fatigue

crack growth follows Eq. (3.7) until the crack size reaches

8.0 inches, at which point the crack was arrested. After

that failure of the system occurred when the residual

strength of the stiffener was exceeded.

4-48



0~CD

%~00

% C)

0- 0

cr-4

0

(0 F-M
0

00

Cl)

-00

C~j 0 o C~S

(S3HNO HONT A3V,.I

.1 -. 1 U



With the deterministic crack growth rate equation, the

distribution of flaw sizes did not spread significantly as

it grew forward. This is illustrated in Figure (4.22),

where the growth of the median crack size of tne initial

distribution is represented by the solid curve, the growth

of the 90th percentile flaw is represented by the dotted

curve on the left, and the growth of the tenth percentile

flaw is represented by the dotted curve on the right. It is

observed from Fig. (4.22) that there are only 19,000 flight

hours difference between the time it takes a large flaw,

represented by the 90th percentile flaw, to reach 8.142

inches of the crack arrest structure. As a result, the

probability of failure is negligible until such time as the

0.03 inch flaw (upper bound limit of the equivalent initial

flaw size) has had time to grow to 8.142 inches. Then the

probability of failure increases rapidly as the rest of the

population reaches 8.142 inches. Another important

characteristic of this panel stiffened system is that the

probability of failure is negligible until a majority of the

design service life had been expended. This feature is due

to the closed upper end of the initial flaw size

distribution in conjunction with a deterministic crack

growth rate.

The effect of the visual inspections on the cumulative

probability of failure is shown in Figure (4.23). In Figure

(4.23) the solid curve at the top is the probability of

failure for no inspection; beneath it, the probability of

failure for one visual inspection, two isochronal visual

4- 50



Q)

- 0 ;i:C)

0 a4

OOd

'44

00
00

ua)0L1-4

% 04-3 -

0 04f r-

U-H-

a: )

or aa
(S3H~~~3NI)- -1IN1 1VZ

4-511 4



-6

4x10

2x106
! X !" 6 '" 2

!" -7
_ 4xlO ," / -

...7 - 7
cn , //
0L 0r U -7n nIxlO/ / /-

>I

-18
- Ii I I

D 2xO,

D -18

4 x 10_9,C) xI

2xO 9 I0
-9IIxlI"-O

_ _ _ _ _ II I
40 50 60

FLIGHT HOURS (1000)
Figure 4.23 The Cumulative Probability of Failure for a

Stiffened Panel with axx =8.142 inches, the
Deterministic Crack Growth Method, and 0-3
Visual Tnspections

,-52



inspections, and at the bottom, three isochronal visual

inspections over the service lifetime of 60,000 flight

hours. Each additional inspection lowers the probability of

failure. The case for no inspection resulted in

probabilities of failure less than 10-5 throughout the

design service life. The cases of two and three inspections

lower the probability of failure to less than 10-6. These

results emphasize that designing with fail-safe features can

be a great aid in service life management.

Table (4.9) contains the average percentage of repair

for the stiffened panel which uses the master curve for the

special case of P(a) = 1. This table highlights the fact

that the probability of finding a flaw visually in the first

30,000 flight hours is extremely small. From 40,000 flight

hours on, flaws have more chance of being found with a

visual inspection. Consideration of the crack arrest

feature of the design lowered the probability of failure at

60,000 flight hours by a factor of 10-6 for the

no-inspection case.

4.2.2.2 Stochastic Crack Growth Rate

4.2.2.2.1 General Master Curve Approach

The general master curve approach was not considered

for the stochastic crack growth approach because the effect

of O(a) on the fatigue crack growth damage accumulation is

insignificant, as shown previously. Hence, the crack
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Table 4.9

Average Percentace of Repair for the Stiffened Panel Example
Using Deterministic Crack Growth and axx = 8.142 Inches

a. Visual Inspection

Service Interval 1 2 3 4 5 Total

30,000 1.60E-6 1.6E-6
20,000 2.60E-15 7.0 7.0

15,000 2.37E-19 1.60E-6 22.0 22.0
12,000 1.74E-22 6.28E-12 5.0E-1 29.8 30.3
10,000 3.65E-23 2.60E-15 1.6E-6 7.0 27.8 34.8
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retardation feature near the stiffener can be neglected and

S3(a) = 1 is reasonable. Thus, the analytical stochastic

crack growth approach presented in Chapter III can be

applied conveniently.

4.2.2.2.2 Special Case, O(a) = 1

The stochastic crack growth approach was considered for

the special case D(a) = 1. The results of the probability

of failure are presented in Figure (4.24) for no and five

visual inspections. The visual inspections do not lower the

probability of failure significantly over the non-inspection

case. This result is true because the cracks accelerate as

they grow longer, and this happens between inspections.

The results of the probability of failure are presented

in Figure (4.25) which reflect no, one, two, three, four,

and five inspections with NDI~system #1. The probability of

failure is kept below 10-10 for three or more inspections

with repair. This level of safety is not necessary for a

non-life threatening situation. The probability of failure

is kept below 10-12 for four or more inspections. This

level of safety is adequate for a situation involving loss

of human life.

Table (4.10a,b) contains the average percentage of

repair for the fail safe case with stochastic crack growth.

Part a contains the results for one through four visual

inspections. Part b contains the results for the same

isochronal inspections using NDI system #1. As expected,
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Table 4.10

Average Percentage of Repair for Stiffened Panel Example

With Stochastic Crack Growth and axx = 8.142 Inches

a. Visual Inspection

Service Interval 1 2 3 4 5 Total

30,000 6.8 6.8
20,000 0.35 23.0 23.4
15,000 1.61E-2 6.9 30.8 37.7
12.000 8.28E-4 1.6 16.3 34.8 52.7
10,000 5.01E-5 0.35 7.0 23.4 36.2 67.0

b. NDI System #1

Service Interval 1 2 3 4 5 Total

30,000 100.0 100.0
20,000 62.9 89.2 152..
15,000 39.8 65.1 41.9 146.8
12,000 26.0 50.0 37.5 3 .. 149.2
10,000 17.4 39.0 33.2 32.2 19.7 141.5
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the NDI system #1 found many more flaws than the visual

inspection.

Finally Figure (4.26) illustrates the effect of the

effectiveness of the inspection system on the probability of

failure for the stochastic crack growth analysis. The zslid

curve in Figure (4.26), denoted by "0", represents the

probability of failure with no inspection, axx = 8.142

inches. The squares, denoted by "visual", represent the

probability of failure for five visual inspections. The

circles, at the bottom and denoted by "#W", represent the

probability of failure for five inspections using NDI system

#1. This figure emphasizes the significant effect that the

type of inspection has on the probability of failure of the

systenm.

4.3 Conclusions

The results of this analysis dictate that the safety of

a structural system is very dependent on the sophistication

of the NDI system used. The probabilities of failure were

also dependent on the crack growth model that was used. The

stochasrtic crack growth model gave higher probabilities of

failure and hence it was more conservative.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Probabilistic damage tolerance methods were formulated

for slow crack qrowth and fail-safe analyses of U.S. Air

Force airframes. The two methods were applied to two

components; a lug which represents a slow crack growth

structure, and a stiffened panel which represents a

fail-safe, crack arrest structure. The general master curve

approach is very flexible because it can !e used whenever

the crack growth can be represented discretely. This is

particularly helpful in a fail-safe structure because it can

accommodate atypical crack, including crack-arrest. The

stochastic crack growth approach is more conservative than

the master curve approach because it considers the

variability in the crack growth rate, and in these examples,

did not handle crack arrest. The underlying assumptions of

the models, as formulated here, will now be covered.

The master curve approach employs a Weibull compatible

distribution to describe the initial flaw size distribution.

A deterministic, discrete master curve was used to reflect

the crack growth law. The variability of the crack growth

rate was not considered in this method. For slow crack

growth structures, the critical crack size was selected from

the literature, for the lug example, or calculated from a

power law, based on the residual strength of the plate, for

5-I



the stiffened panel example. For fail-safe structures,

either a stress exceedance curve for the component in

consideration, or the equation for turbulence from the

military specification [1,, can be used to select the

maximum expected stress in the service interval, in

accordance with the Damage Tolerance requirements for

fail-safe structures. A crack length was then calculated

which corresponded to the point at which the residual

strength of the remaining structure was lower than that

required for safety of flight until a return to base,

maintenance depot, or other specified time interval. The

residual strength versus crack length relationship was

considered in a deterministic, discrete form.

Interpolations were performed using a cubic spline method

from IMSL [All. The derivatives necded for the

transformation of variables were obtained directly from the

cubic spline equations at the specified flight hours. This

method could accommodate any arbitrary crack growth, and

hence, component geometry. The probability of failure and

repair involved numerically integrating singie integrals,

because the only random variable considered was the crack

length. The log-odds function was used in these equations

to ic-resent the non-destructive inspection systems.

Parameters were selected to reflect the attributes of either

a narrow-banded or a wide-banded NDI system or a visual

inspection.



The stochastic crack growth approach also used the

Weibull compatible distribution as the initial flaw size

distribution. A power law was used to describe the crack

growth law. A lognormal random variable was used to account

for the variability in crack growth rate. Thus, the crack

growth rate was modelled as fully correlated. A

deterministic value was chosen as the critical crack length.

Because the probability of failure calculation included two

iandom variables, a double integral resulted. This double

integral was inteqrated numerically using Simpson's

one-third rule. The non-destructive inspection (NDI)

systems were rmpresented by the log-odds function, with

parameters selected to reflect a two automated and one

visual NDI systems. These NDI systems are the same as used

with the master curve approach. These functions were also

incorporated into the calculation for the probability of

failure, with no new introduction of variables.

The results for the selected slow crack growth example

were presented in terms of the probability of failure for no

inspection, one, two, three and four isochronal inspections,

for the two different NDI systems and the visual inspection.

The probability of repair was also calculated for the same

NDI systems and intervals. Comparison of results was made

on the effect of the inspection interval on the probability

()f fii lure and repair, and the type of inspection system.

Both the special case of the master curve approach and the

special case of the stochastic crack growth approach were
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investigated. Field data from an Air Force technical report

[73] were used to set input values.

The results for the selected fail safe example were

presented in terms of the probability of failure for no

inspection, and one to five isochronal visual and

narrow-banded NDI system inspections, using both the

stochastic crack growth approach and the master curve

approach for comparison. The probability of repair was

presented for the same NDI systems and intervals.

Comparison of results was made on the effect of the

inspection interval on the probability of failure and

repair, and the type of crack growth model used.

5.2 Conclusions

The methodology formulated here can be used for a

probabilistic dariage tolerance analysis. In particular, the

generalized master curve approach is extremely useful when

analyzing structures designed to be fail safe. This

approach can be a great asset when analyzing any component

for which the crack growth law may not behave expornentially.

The cubic spline interpolation scheme was used to transform

crack lengths from one service time to another.

The methodology formulated in this dissertation can be

used to wisely select inspection methods and inspection

intervals for damage tolerant critical components. The

advantage over deterministic methods is apparent; the force
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management schedule can be designed to keep the probability

of failure at an acceptable low level, and at the same time

lower the cost of repair by omitting unnecessary inspections

and repairs.

5.3 Recommendations for Future Research

The damage tolerance analyses performed in this

investigation have been at the component level. The next

important step is to perform the analysis at the systems

level. It is extremely important to understand competing

modes of failure, load distribution and sharing among

members, especially for fail safe structures, and to

guarantee that the level of safety among the damage tolerant

critical components is at a consistent, or at least,

identifiable level in a structure.

The analysis methods can be improved for the fail-safe

structure by considering the time delay that takes place at

the fastener holes, as the crack meets a hole, and initiates

at the other side. The sensitivity of the initial flaw size

assumptions need to be investigated so that the importance

of material quality can be rightfully weighed in

relationship to its impact on the reliability statement of

the system.

The random nature of the crack growth rate needs to be

understood at the material (micro-structure) level. This

knowledge can be used to great advantage in improving the

accuracy of the stochastic crack growth method. It should
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also be incorporated in the master curve approach to reflect

the possibility of a fast crack. With this in mind,

experiments need to be performed on fail safe structures, so

that the crack growth can be better modelled in terms of the

mean trend, as well as the variability in crack growth and

arrest.

Finally, a probabilistic risk analysis should be

developed for airframes, in the context of the total weapon

system. The probability of failure should be considered in

the view of the consequence of failure. The failure of a

component may not be catastrophic by itself, but may cause

damage to critical hydraulic lines or aerodynamic surfaces,

which yield catastrophic results. The consideration of the

seriousness of the outcome is every bit as important as the

ability to calculate the probability of occurrence; and the

two concepts should be considered jointly.

This research represents a small step in the large

process of making military and civilian flight as safe as

possible. This process will continue as better quality

control of material processing and fabrication progress and

better inspection methods and practices emerge.
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APPENDIX A

The Cubic Spline Method

The cubic spline method was used tu iriLtrpulu% vdlues

in the master curve. A subroutine called ICSCCU was

selected from the IMSL library [Al]. ICSCCU computes the

coefficients of N-i cubic polynomials to be used to

interpolate a set of N points from a single-valued function.

The N-i by 3 matrix provides the spline coefficients to a

cubic spline produced is continuous and has continuous first

and second derivatives.

The IMSL library subroutine ICSEVU was used to evaluate

the value of the function at the required point of

evaluation. The value of the spline approximation, S, at y

is:

S(y) = C(I,3)D + C(I,2)D + C(I,I)D + t(I) (A.1)

where X(I) is less than or equal to y and y is less than

X(I+l), and D = y-X(I). The X(I) is less than X(I+I).

The cubic spline method insures that the derivatives

exist and are continuous. This property becomes useful when

using the density functions to transform the variables

discretely from one point in time to another. The

derivative at a point can be found analytically by taking

the derivative of the cubic equation given in (A.1) and

substituting in the proper value for the argument. The

chain rule is employed in the transformation in which dy/dx

= [dS(y)/dt]/dS(x)/dt]. The values for both the numerator

and the denominator of this expression are found
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analytically using the C(I,J) matrix coefficients from

ICSCCU.
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