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Preface

My thesis deals with topics in uncertainty reasoning, which is appropriate since for
most of the duration I was uncertain about just what my topic was. I spent many days
wondering just what I was supposedly doing. Although it could hardly be said that [
was apoplectic with apprehension, I was alternately concerned about, and oblivious to my
plight. Practicing avoidance and denial became a hobby, but unfortunately, as fate would
have it, the task before me never unilaterally abated. Many times the future of this thesis
seemed 80 very uncertain (at least to me)., However, In the end the work was done, my

mission completed.

My advisor, Maj Bruce W, Morlan, told me that he knew where [ was going (exis-
tentially, that is), To him, I give thanks; the type of thanks one gives a dentist after an
unwanted root canal. He gave me encouragement and, at times, fear, both of which proved

to be motlvational.

In retrospect, all that has passed has changed me, but all I really know is that 1
feel older now. The people around me, my classmates and friends, I am beholden too, I
thank my advisor, Maj Bruce W. Morlan, for those Interesting, frustrating, exasperating
debates which always strayed from their original convoluted course. I thank my reader, Lt
Col Skip Valusek, for questioning the things I took for granted, for catching the abundant
small errors, und most of all, for not keelhauling me for my lack of commuuication. For all
those who supported me in this endeavor, [ bubble with gratitude, You helped me by just

laughing with me and, at times, at me. I like most of you and will miss some of you.

Scott 15, Deakin
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Abstract

Incorporating techniques for coping with uncertainty in the decision support systems
has proven to be a fertlle environment for creative ideas. Representations of uncertainty
abound and no representation can be said to be inherently incorrect. From a theoretical
standpoint, a viable solution must be coherent and logically consistent. Probability theory

demonstrates these characteristics while, as of yet, other methods do not.

The purpose of this study was to investigate specific topics in uncertainty reasoning:
1) Probability ratio graphs us a representation of the probability model; 2) Dealing with
missing information when system parameters are left unspecified; 3) Investigating the
difference between probabllistic and causal independence; and, 4) Characterizing secondary

uncertainty as spurious evidence and including it in the inference process.

It was shown that probability ratio graphs are a viable method for representing
uncertainty, and a method for representing independence with probability ratlo graphs is
presented. Assuming probabilistic independence for missing information is shown to have
intultive and computational benefits; also shown is that where socondary uncertainty is
included in the inference process has great impact on the computational complexity of an

inference process,

viii




An Investigation and Interpretation
of

Selected Topics in Uncertainty Reasoning

I. Organization

I was to learn early in life that we tend to meet any new situation by reorya-
nizing... and a wonderful method it can be for creating the illusion of progress
while producing inefficiency and demoralization.

-Petronius (died A.D. 66)

The need for access to expert opinion and analysis when qualified experts arc a
scarce commodity s driving the development of artificial experts, These artificial experts
are known as expert systems, and through their use, expert opinion and analysis is ac-
cumulating, and becoming transportable and standardized. If these systoms are to be
useful they must address and meet certaln requirements. Some important requirements
are the capability for handling large quantities of information, dealing with uncertainty,
and heuristic control of the search space. Computer based expert systems provide the
important capability of rapidly handling large quantities of data. However, combining the
computer’s capabilities with experts’ experience and heuristic reasoning is proving to be a

formidable task subject to much debate,

Expert systems are complex automated checklists, Though the term ezpert system
sprang from the field of artificial intelligence (AI), they have existed in principle under
other names and in other forms. Artificial intelllgence provided an alternative to classical
operations research (OR) in solving complex problems; OR applies optimization techniques
to complex problems expressed in real numbers, whereas, Al applies heuristic search to
complex problems that defy classical OR techniques. Most complex problems, especially

those expert systems face, would benefit from a combination of both OR and Al techniques

(17:11): OR can provide probability and decision theoretic techniques for dealing with




uncertainty, and Al can provide heuristic control for managing the exponentlal explosion

to which probabilistic systems are vulnerable,

Researchers have recognized the usefulness of a symbiosis between OR and Al 'I'hey
are incorporating probability and declision theory into the development of expert systeins
(Kalagnanam and Henrion:1988, Breese and Fehling:1988, Heckerman:1988). Along these
lines, Hollenga codified a method for developing expert systems that utilizes the synerglstic
effect of combining OR and Al In his paper “A Decision-Theoretic Model for Constructing
Expert Systems,” he outlines a five step process that incorporates Buycsian reasoning in

the development of the expert system rule base:

1. A group of decision makers decides on strategy implementation.

2, The output of the first step s then translated Into a decision analytic framework
where hypotheses, evidences, strategles, probabilities, and utilities are identified.

3. From the second step, probability thresholds are identified. These thresholds indicate
the strategy with highest utllity.

4, Executable rules are then generated such that only the evidence is needed to detor-
mine an action.

5. The last step is encoding the executable rules Into a format that an expert system
can manipulate (8:3-8).

Hollenga's method involves using decision analysis to generate the expert system rule
base. In effect, the decision-analytic framework becomes the expert for rule development

(8:8).

1.1 Thesis Research

Hollenga's process is a conceptual model which needs an architecture for rescarch
into Ite practical feasibility, A research tnol that cnables research into the capability of the
aforementloned process goes far In supporting investigations into the implications of the

proposed method.

Morlan proposes probability ratio graphs as a method for manipulating relational

Information (13). Reprwented in this way, decisions and inferences depend on the relative




weight of the propositions. The odds-ratio structure presents a graphically appealing

method for user comprehension where conditional relationships are visually evident.

This thesls used Hollenga's proposed five step method as a starting point for research
into uncertainty reasoning. The development of a research tool for investigation into Ilol-
lenga’s proposed five step method (specifically, step three) provided a means for further
refining Morlan's concept of probability ratio graphs and generating questions about un-
certainty reasoning, Several interesting topics of concern arose: representing independence
in probability ratio graphs, generating missing evidence, the meaning of independence, and

sacondary uncertainty and spurious events,

1.8 Research Objective

The ob jective of this research was to investigate questions about uncertainty reason-
Ing and further refine the probability ratio graph concept. The methodology centered on
developing a PC-based research tool for investigating the nuances of Hollenga's five stop
method for isolating questions about uncertalnty reasoning and applying probability ratio
graphs. The resulting computer program |s a secondary deliverable; it is conceptually con-
cerned with the propagation and visual representation of probability and utility relational

information using an odds-ratio approach.

1.8 Research topics

During this research several topics arose that were of some interest. T'hese topics
spawned questions of interpretation where the answers were ill-defined and not immedi-
ately obvious, The design heuristics of decision support systems depend in part on the

interprotations that result from these considerations,

o When system parameters are unspeclfied, how should a diagnostic system deal with
the missing information?

¢ Under the common assumption of disjoint hypotheses, whal does hypothesis-evidence
Independence mean?

¢ What is the meaning of spurious evidence, and how does it affect the diagnostic
system?




1.4 Scope

There are many proposed methods for representing and coping with uncertainty
(certainty factors, fuzzy sets, Dempster-Sheafer, Bayesian inference); each method has
good and bad facets, As in any situation, the problem at hand drives the cholce of the
tool, Misapplication of a tool can have potentlally damaging effects which cannot always
be predicted,

This research uses probabilities for representing uncertainty due to demonstrated ad-
vantages: it provides well-known ways of incorporating empirical data, has well developed
methods for evaluating judged or computed probabilities by comparison with empirical
frequencies, and has heen shown that for any reasonable scoring rule, any scalar measure

of uncertainty is either worse than probability or is equivalent to it (7:2),

1,6 Summary

Growing interest in expert systems, specifically Incorporating probabllity and deci-
sion analytic techniques In the generation of expert systems, was the motivation for this
research effort, Hollenga's five step method for expert system generation and Morlan's
probability ratio graphs for probabilistic knowledge representation prosont two interesting
ldeas that address the problem of including uncertainty reasoning in such systems. P’ro.
gram development dealing with both of these areas uncovered the research toplcs deseribed
above, Chapter II presents a view of the current state of uncortainty representation and
reasoning; there does not seem to be a “correct” interpratation, in that the valldity of
one method does not rule out other methods. Chapter I1] addresses Morlan's probability
ratio graph concept and briefly describes the current state of the created software that
deals with probability ratlo graphs and Hollenga's five step method, Chapter IV presonts
the research topics on missing information, independence, and second order uncertainty.
Chapter V contains conclusions reached about the toplcs in this tLiesls, as well as possible

areas for further research.




II. State of Uncertainty Reasoning

2.1 Background

When problems become cven moderately complex the human mind founders in a
quagmire of information. Recognizing and reacting in situations when the avallable in.
formation la incomplete! or insufficient,? or filtering an abundance of data® for pertinent
information, can quickly overwhelm even the brightest among us. At such times wo In.
varlably search for help in making sense of this seemingly chaotic information. Managerial
sclences, operations research, artificial intelligence, statistics, decision theory..all of these
flelds’ purpose is to condition and massage an abundance of information into an organlzed
structure with a relatively small set of discriminating featurus so we can make sensa of tho
data and make rational declsions based on the data. In general, experts employ similar

conditioning and massaging schemes and either make decisions or advise those who do.

More complex and costly problems require more precise and accurate answers, Faced
with limlited experts and increasing demand, decislon makers have to rely on basic rules of
thumb and procedures provided by experts which may apply to thelr problem. For complex
problems these rules of thumb and procedures become inadequate causing the decision
maker to suffer from the information allments (Incomplete or insufficient Information, or
information overload); he is unable to process the avallable information coherontly and

thus, the decislon suffers.

Expert systems are an attempt to create automatad checklists that are capable of
handling complex prohlems, They flll a need for accesa to expert knowledge and judg.
ment when true experts aro a scarce commodity, Through the use of export systoms,
experts’ knowledge and judgment becomes transportable and cumulative, Knowledge en.

gineers distlll experts® knowledge and judgment, and condense it into a predefined structure

'ncomplete information-In many cases of decislon making the situation Is under specified. The avallable
information tay be elther {ll.defined (vague) or imprecinely defined. (9:666)

Nnuufficient Information-In these cases the additional information ls potentlally there, but & separate
and specific effort Is required to bring It out (projections, correlations), (9:608)

information overflow-This in the case of too much information. The declsion maker drowns in infor
mation which by far exceeds what he can process or comprehend at the time of decluion, (9:667)




(knowledge base) that an “inference engine”* can logically manipulate to arrive at the same
conclusion as an expert glven similar circumstances. Expert systems that rely on these
translated rules are heuristic in nature and are subject to translation errors resulting in

rules that do not capture the experts' true diagnostic process.

As outlined above, there are two facets to the problem of automation: 1) Conditioning
abundant Information to produce relatively fow measures that approximately deflne the
state of the world, and 2) Interpreting the resulting measures and making decisions based
on them. In developing systems with greater autonomy researchers must support these
facets, meeting the implied requirements of well defined scope, large inforination handling
capabilities, Information filter, projection or forecasting, recognize incomplete information,
handling uncertalnty, coherence and rationality, whila avolding the probloms of lmprecise
translation. These requirements call for both mathematical precision and heurlstic control.

Operations Research (OR) and Artificlal Intelligence (Al) are two flolds that are
concernad with the problem of supporting decision making by providing high lavel Inter.
pretation of the state of the world, Simon provides working definitlons of these two fields
with the understanding that both flalds are not bounded by these definitions.

Oparations research may be defined as the application of optimization tech.
niques to the solution of complex problema that can be expressed In roal num-
bers, The criterion function, which determines what Is to be optimlsed, must
also be quantitative, This definition in clearly too narrow to encompaas all
the things that operations research professionals do...but it charnctorizes the
predominant emphaals upon formal mathematical modols and optimization...

By contrast, artificial Intelligence Is the application of methods of heuristic
search to the solution of complex probloms that (a) defy the mathematics of
optimization, (b) contaln non-quantitative components, (¢) involve largo knowl.
adge bases (Including knowledge expressed In natural language), (d) Incorporate
the discovery and design of alternatives of choice, and (o) admit ll-specified
gouls and constraints,

This characterization of Al doos not sot very definite boundatles, It might
be regarded more ns a hunting license than as a proper definition, It emphasizos

“Inference engine - also known as contrel structure or conflict resolution: shmlilar to an algorithm but
mora general and less procise. The way [acts, rules, and parts of rules are manipulated s controlled by the
inference angine (16190},




the aspiration of Al to deal with all thie aspects of managerial decision making
that stretch beyond the limits of classical OR. (17:10.11)

Most problems have components that are best handled with OR methods and other
components that are better addressed with Al's heuristics, It is, therefore, advantagoous
to combine and synthesize OR and Al, supporting, reinforcing, and uxtending each othor
(17:11), Others have also rocognized the usefulness of o symblosis between OR and Al
One urea of interest is the incorporation of decision theory into the developmeut of oxpert
systems. Kalagnanam and Henrion, Broeso and Fohling, and Heckerman, to name a fow,
have produced research in this area, Combining OR and Al methods lius great potential
for producing more powerful declsion support and autonomoun systems. Though united in
the goal, renearchers are divided on the path and what final form theso symbiotlc expoert
systems should take.

2.8 Automating the Ezpert

Automation is the “automatically controlled operation of an apparatus, process,
or system by mochanical or electronic davicos that take the place of human organs of
observation, effort, and declsion,” When spoaking of automating a procoss, care must bo
taken to spocily to what degree the process In automated. Thore Is some automation in
every action that relies on a machlue or tool, T'he goal of automation is not to remove the
power of human self determination but to rellove the human from the burden of mundane
or information intensive tasks so that more worthy undortakings can be pursuod, It also

allows for the speed many operationn require and which humans cannot provide,

A major point of contention on achieving autotmation s the underlylng philosophy
of curront and proposed mothods, Export systems are proving valuablo in automating
daclslon support and process control. Howover, the quality of those oxpoert systoms is
questionable due to lImprecision, uncertalnty, and, in part, to the “discouraging obaorva.
tlon...that today's systema seom to bo succossful because they ure ‘hand crafted rather
than because they apply a set of proven techniques und mothods™ (10:750), ‘Ihose thand

crafted’ methods and ingenlous heuristics are the source of much philosophic debate on




the form that these systems should take. The methods for manipulating uncertainty come

under scrutiny as does expert emulation and rationality In the artificial decision maker,

28,1 Uncertainty Uncertainty Is generally characterized as resulting from stochas.
tic processes, linguistic vaguoncss, and subjective bellef, Stochastic uncertainty is usually
measured with statistica and arises when referring to random evants such as rolling a dlo, or
spurious events like accidents or faulty readings. Lingulstic vagueneas results from impre-
cise definition where terms have variable meanings; compare nuinbers which are discrete
and woll defined, and therefore, not vaguo (two, three,...), with “a few.” Zadeh developed
the concept of fuzsy sets to doal with such vagueness. Subjective bellels are tho pre-
dominant source of uncerta!nty; subjoctive uncertainty provails in one-of-a-kind situations
where someone makes an assessment. Bayesian statiaticians argue that it ls the only typo

since subjoctive interpratation Is involved in communication and data assimilation (18:8).

Whatever its source, a succossful export systom must he able to deal with uncertainty.
Probability is perhaps the method best known for reprosenting nncertainty, s Is classical
Bayesian inferonce, for reasoning under uncertalnty, It is valld and has a sound theorotlenl
foundation. However, classical Bayesian evidential reasoning hecomes so computationally
intensive as to be Intractable when applied to a non-ttivial declsion problem. “It requires
a detalled llsting of all possible scenarios which ls imrnssible. The apparent noed for [n]
huge distribution of casos is tho major objection to using Bayesian probubility theory fn a
roal expert system.” (18:8) Varlous mothods (certainty factors, fuzzy sot theory, Dompater-
Shoafor theory) arouse controversy when they avold Bayesian conditioning in an attempt to
skirt computational Intractability (12:271), Kyberg atates, “non-Bayeslan updating ylelds
more determinate bellof stuton as outcomes, but the bonefits afforded by non-Bayosian

updating are limlted and questionablo."(12:288)

All mothods for dealing with uncortainty must have some moasure which charactorizon
the amount of uncortainty there s in & proposition and some Intarpretation of that measure,

The following four methoda are some of the more well known theories for charncterizing

uncertainty,




£.8.1.1 Bayesian Probability theory Probability is an assossment ahout the
frequency of events. Ita roots lie in games of chance (dice, cards, roulette, etc...), where
the probablility of an event ia the number of possible occurrences of € divided by the total
number of possible outcomes S:

P(E)=-—t—o! &s

# of Ss

An example is the probability of drawing an ace out of a deck of cards:

A
P(A) = # of Aves =4 0.07802

# of Cards 82

Probability reasoning Is based on Bayes’ theorem?, which plays a contral role in ¢l
omentary probabllity. It ls a general rule for the computation of & posterior probability
P(Ay | B) from prior probabilities P(A;) and conditional probabilities (8 | A;) (Do-
vore:60), This theorem presents the mathematical equation for combining probabilistic

assessiments cohorontly and conslstently:

P(B| AP
pa| ) m ZELEHA
Bayos' theory Is based on conditional probabilitios and allows for probabilistle inferences
when ovidence v obgerved, For instance, in the card oxample above, the P(A) = 4/52
given that thore aro four acon in the deck, This is a conditional probubllity, us wre ull
moasuron of uncertaluty, being conditloned at least upon the sot of possible cards, All
avonts are conditional in that there n a set of conditions whother explicit or implicit that

oxits or defines the situation for which o proposition s valid.

There arc various arguments against using probabllity for rousoning with uncor.
talnty. 'I'wo Important arguments are that It doesn't refloct the way people reason and

that It bocomes computationally Intractable, Argutoents against probability spurred the

YBayes' theorem bs named after 1n eighteenth century orlginator, Reverend Thomas Nayos,




development of other methods for representing and reasoning with uncertainty,

£48.1.8 Certainty Factors Certainty factors originated from Bayes’ theorem.
They were developed to handle uncertainty in MYCIN® when the Dayesian inferential
method became intractable both computationally and with respect to data requirements.
In thelr book, “Rule-Based Expert Systems: The MYCIN Experiments of the Stanford
Heurlstic Programming Project,” Buchanan and Shortliffe explain the development of cer-
tainty factors (1),

Certalnty factors represent uncertainty as reasons of bellef using measures of bollef,
MB(H,¢); and disbelief, M D(H, &) where H is a hypothesis and & ia un evidence state,
These measuran are computed separately, and are then combined to represent the total
uncertainty as a certainty factor, CF(M, ) m MB(H,€) - MD(H, E).

The MB and M D both range between 0 and 1, giving the CF' a range of =1 to
1. A posltive CF Indicates more bellef than disbolief and, conversely, a nogative C/F
indicates more disbelief than bellef. A CF of 0 Indleates that there Is equal bellof in both
propositions M and not™ (4:561).

Some criticlsms levied againat cortainty factors are 1) that the combining rulos aro
arbitrary, 2) they assumo evidence Independence (5:9), and 3) thoy do not have a sound
theoretic basis (4:602). Although cortainty factors are derlved from probability theory,
they are not probabilistic. They abandon probabilistic rules in an attempt to reduce
the computational burden and data requirements, Thoy work quite well ns long as the
reasoning path is short and the inherent errors do not bulld up, Howaver, “it Is not difficult
to come up with an oxample in which, of two hypotheses, the one with the lower probabllity
would have a higher certainty factor... This fallure to rank according to probability I an

undesirablo feature of cortainty factors.” (1:269)

£.8.1.3 Fuszy Sct theory Fuzzy sots are sots whero the bordars aro not crisply
dofined (tall, fast, houvy, otc...), Linguistic uncortalnty comes from just theso types of

torms whore the meaning can vary from person to porson, The uncertainty arises from

*MYCIN is a rule-based expert system used for medical consultation,
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the interpretation of what someone else means when they use these terms. Fuzzy sots
attempt to represent sots as analog or continuous where conventional set Lheory is digital

or discrete,

With conventional set theory an item can bo in one of two states with respect to a
set: In or out. Probability would represent the uncertainty between these two states, The
degreo of membership is not in question; it Is either all in one or all in the other. With
fussy sets, ?he degree of membership Is In question: how much in or how much out, A

member :an, at the same time, be in both a act and its complement,

Zadeh used fussy set theory to extend two-valued sylloglstic reasoning to allow an
Indication of doubt in the premises or conclualon, He accomplished this by attaching

arbitrary predicates to each texm of the sylloglam:

Q1 A's are B
Q2 C's are D

Q3 ¢&'s are F's

where Q1, @2, and Q3 are numerlcal or, more gencrally fuzzy quantifiers (0.8, most,

many, otc.), and A, 8, ... are crisp or furry predicates.

Fuegzy sot theory lends itself 15 applications using a rule base. However, tho rules
are directional and Inflexible; they cannot take Into account factors that are not explicitly
stated in the rules, making them context insensitive (independent from conditions not
Included in the rule). Conversely, with Bayesian probability theory the connections are
directionloss and conditlonal independence Is oxplicit, not imposod by the formal structure
(18:8.10).

2.98.1.4 Dempster-Sheafer thcory With Dempator-Sheafor theory the uncer-
tainty in tho probability assossment is implicitly represonted as unattributod probability.
For Instance, given two mutually exclusive and collectivoly exhaustive events: A and not A,
P(A) = .6 and P(notd) = .1, the remaining .3 Is loft unspecified, The unspecified proba.

billty represents the subjective ignorance about the objective probability of A, which could
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lie anywhere between .68 and .9. The inclusion of the unspecified probabllity constitutes a
type of senaitivity analysis, It delineates the precision of the Information and the improve-
ment that may be possible in gathering further information about A, Probability theoty

can accomplish this same task by explicitly representing the subjective ignorance (18:9).

Today it seoms as If there were a conflict between the Bayesians and the
Shaferlans in the fleld of Al applications of probabllistic Infetence. True, this
neems rather to be the Bayesians' stand...The view of the other position is that
Shafer's theory I8 a generalization of Bayesian theory, thus seamingly implying
broader possiblility of applications...

The point here is that Dempster's rule can be understood as a generalization
of Buyea theorem, but it {s not the unique possible generalization, It is this
non.uniqueness that creates the justificution problem...

In gonoral, we can say that recont work in the fleld called, among philoso
phets, ‘probabllity kinematics'...has shown that there exists an entire class of
kinematies or gonoralized conditionals in the belief space given by all admissi-
ble probabilities in a frame of discernment, and that conditionals (both Bayes
and generalised) are nothing more than rules for combining posterior bodies
of avidonce with prior bodles of evidence, The bollef space la endowed with
certaln structuro and a particular operation: provided that differont conditions
hold, this operation reduces to different conditionals or different combinations
rules as {ts own particular cases, (2:709.710)

The cholce of which method to use {s not clear., Tho debato ssoms to loan in tho
favor of the Bayosiana, However, both methods claim a following, and the cholce of which

to support neems to depend on context, Garbolino goes on to suggost that,

There is no mechanical method for declding which probabillstic rules of
inference to apply In a given declslon problem, This decislon is a meta-decislon
which depends upon the Ingenuity of the decision-maker and his associatos in
analyzing the problem, upon the logical structure of the frame in which it s
possible to embed the problem, upon the ‘quality’ of the available ovidence
and upon the constraints in time and resources (even computational resourcoes)
which could prevent a refinement of the frame of discernmont, (2:718)

So the method Is left up to the decislon-tmaker and Is context dopendent, Still a
possible guldeline Is that the chosen method should adhere to logical cohoerence. With this

in mind, Garbolino provides a baais for cholco:
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The updating procedure for a knowledge-base is a two-step procedure; the
firet step is calculating the degree of support provided by the new evidence; the
second step is updating the process properly sald, that is, propagating the effect
of the new evidence through the knowledge-base, maintaining its coherence.
(3:738)

Bayesian updating accomplishes these two steps simultaneously; Shafer's updating
accomplishes the first one only and, if one Is Interested in coherence, it raises the nead to

supply to the inference engine a “coherence maintenance” mechanism (3:736),

It Is not clear that there Is a “correct” method for dealing with uncertainty. Applica-
tion determinas the tool that should be used, Of the four methods listed, fuzzy set theory
attempts to quantify lingulstic uncertainty and certainty factors are a heuristic derivation
of probability theory attempting to control computational and data burdens; probabllity
theory and Dempater-Sheufer theory attempt to describe general uncertalnty and support
it with a theoretical foundation,

Of the four methods ahove, Bayesian probability Is the only method that demon.
strates consistence and logicual coherence. The other methods, though are In some sense
appealing representations, are restricted due to their lack of demonstrated consistence and

coherence,

[hyberg concludes)...ii) That the treatments of uncertaln evidence In both
Bayesian and non-Bayesian updating are reducible to the corresponding treat-
menta of cortaln evidence, and ill) that non-Bayesian updating ylelds moro
determinate bellef states as outcomes, but that the benefits afforded by non.
Bayesian updating s limited and questionable, (12:283)

‘This doean't end tho debate, for the roal roots of controversy lle In the criticlsm that
people do not use probability for reasoning, and thus follows the disagreement betweon
those who support the normative view and those who support the descriptive view, This
disagreement over representation is more philosophlcal than methodologlieal. Probabllista
take the normative view, saying that uncertainty should be represented not as people sco it,

but as they should If they want to act conelstently and loglcally. Proponents subscribing to
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the descriptive view belleve that uncertainty should be represented in a manner conslstont

with the way people represent it (15:3).

£.8.2 Emulation When the expert system rule base is complled, knowledge engl-
noers attempt to capture the knowledge, Judgment, and diagnostic process of the expert,
Often the translation from the expert's framework into the rule base is imprecise, resulting
in rules that do not capture the true experience of the expart. This Is not surprising since
humans are not machines and do not think as computers process information. “The foun.
dation for human reasoning ls...rather vague, since on the whole the mind must still be
consldered as a black box" (10:745). Because the human reasoning process evades explicit
understanding, the task of emulating the expert Is practically impossible. The best that
can be hoped for is good pattern matching (9:676).

For uses where rational reasoning ls desired, attempting to emulato humans seems
to be misdirected. As Garbolino states, “a procedure which models natural reasoning
ylelds a conclusion based upon natural reasoning, not a reasonable conclusion bused upon
reasonable reasoning” (3:730). However, natural reasoning should not be abandoned just
yet, because, though we lack the quantitative skills to handle data efficlently, humans can
adapt and function In unknown territory:

Human reasoning is generally acknowledged to be Inefficlent In terms of
accuracy and speed, but highly eficlent in terms of versatility and the ability to
comprehend novel events... Artificial systems, on the other hand, must be told
everything beforehand. If the domaln is sufficiently simple and well-described,
an artificlal system may do well and may even surpass humans in terms of
sheer reasoning power (speed, endurance, precialon). But If the domain ls more
complex, and in particular If novel situations can arlse, the artificlal system
will probably encounter serlous difficulties, (10:743-746)

The strength of human reasoning lies in its adaptability; its ability to roason about
the unknown, If the fundamental mechunisms underlylng human thought can be captured
in a computer system, then artificial intelligence will no longer be an oxymoron. Capturing

the underlying process Is a worthy goal, but until the fundamental mechanlsi ls captured,
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attempts to emulate the human mind will remain empirical in nature and, therefore, be

restricted in applicability.

2.8.8 Rationality The importance of a rational decision maker in automated sys-
tems stems from the lssue of responsibility. *“Users often rely blindly on the programs
they use, e.g. large statistical packages, and the faults in these programs therefore have
potentially serious consequences” (9:676). To avold unpredictability, & system must ex-
hiblt logical coherence’. A systerm should reach the same conclusion when given the same

evidence regardless of the order in which it is presented®.

A perennial question concerns the level of rationality of the declsion maker,
hence the quality of the cognitive processes that must be described. It is gen-
erally acknowledged that declsion makers are far from being rational in any
normative sense. The question remains, however, whether decision makers
should be considered as inherently irrational-and accordingly in conflict with
established declsion principles-or rather as quasi-rational, l.e. striving to per-
form according to rational principles, but falling to do so (because of cognitive
limitations, etc.). (9:671)

The term quasi-rational is essentiully bounded rationality. Bounded rationality is
a model of how decislons are made. People make decisions based on maximizing utility;
limitations on the amount of information and the ability to process It coherently cause the

appearance of bounded behavior (14).

If your task s to bulld a machine for simulating [the] human mind, then
it is true that coherence is not relevant, and if you will succeed in building an
Incoherent machine, you will be a good sclentist indeed, But if your task is,
more modestly, to build a machine for “intelligent declsion support,” then, if
you do not care about the logical coherence of your machine, you are a new
Dr. Strangelove. (3:735)

"To be logically coherent, bellafs must not be self-contradictory; a knowledge-base must not contain at
the same time a proposition and its negation (3:729).

%This does not mean that sequence of occurrence in (rrelevant, However, if sequence is important then
it evidence that should be included for consideration.
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It seems the prudent course of action would be to apply artificial systems in ways that
they are officient and capable, helping the decision maker remain rational. This means ex-
ploiting their ability to keep track of large amounts of informution and the inter-relationship
of it, while keeping focused on the guiding principle of logical coherence throughout system

development.

2.8.4 Decision Analysis Docision analysis Is ideally suited for decision support If
logical coherence is a criterion for selection. Decislon analysis tackles rare problems that
are large and cumbersome, providing organization and methodology for logical reasoning
in decision making. Decision analysis has been employed for complex decision problems
becausae it is rational and logical, consistent, and can incorporate utility into the decision

process.

Decislon analysis (D/A) provides the techniques to allow for an explicit
representation and organization of the decision factors, such that logic can be
applied to identify the preferred decision strategy., The axioms on which it is
based provide a set of criterla for consistency among bellufs, preferences, and
cholces that “should” be adhered to by a rational decision maker. The D/A
methodology provides a systematic way to choose among alternatives by con-
sidering the problem structure, uncertainties, and relative utilities of pursuing
different options. Finally, the process of developing probablility and utility es-
timates ylelds a model that can be validated plecemeal, yet with a structure
that ensures a level of validity in the completed model, and a methodology for
validating the completed decision aid. (8:2)

The pursuit of a rational decision maker can succeed through the use of decision
analysis, Furthermore, because decision analysis uses Bayesian inforence for ovidence ma-
nipulation, it is coherent and therefore conforms to the philosophical requirements outlined
above, Recent research is lending suppo-t to the concluslons of this philosophical approuch,
Kalagnanam and Henrlon compared decislon analysls and oxpert rules for sequentlal diug.

nosis:

The results of this study clearly indicate that the test sequences providefd)
by the experts (In the task domain) are suboptimal. Unfortunately, there is
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uncertainty regarding the objectives which motivato the expert test sequences.
This restrains us from drawing firm conclusions about the efficacy of human
intuition for this task domain. But it Is important to remember that one of
the experts accepted the valldity of the C/p® sequence and felt that the results
are likely to be of practical interest. This suggests that the normative theories
of decision making are capable of obtaining results which go beyond current
expert opinlon, (11:211)

Heckerman relates a situation where an expert user noticed a marked improvement
in the performance of a diagnostic system when they changed the inference scheme from
one based on Dempster-Shafer theory of bellef to one based on a special case of Bayes’

theorem. In this study, Heckerman compared three inference approaches:

o a special cose of Bayes’ theorem

o an approach related to the parallel combination function in the certainty-factor (CF)
model

o a method Inspired by the Dempster-Safer theory of belief

Heckerman points out the observed superiority of the method based on the Bayesian
approach (6:158, 166-168).

To date, automated systems are still just computer code and cannot replace humans
for the chore of facing unique situations, The domaln of an artificial system must be
completely specified beforehand. “Put simply, unless the system knows about something,
it 18 unable to reason about it” (10:746). Decision analysis has proven to be a rational,
consistent decision maker. 'This makes it Ideally sulted for reasoning with uncertainty in
automated systems. Until a sound foundation for understanding human thought can be
quantified and codified, emulation of the human expert by computers is a fleld where smoke

and mirrors prevail and only systems endowed with artfully constructed heurlstica play.

%C/p refers to the algorithm used in the study, ‘C' refers to the cost of testing a component and ‘p’
refers to the probability of that component failing.
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83 Summary

This chapter presented a view of the present state of uncertainty reasoning and expert
systems from both an operational and a philosophical perspective, As presented abave, the
representation of uncertain knowledge has many possible paths that are intuitively pleasing
in presenting different concepts of uncertainty. Questions about applicabllity arise when
the methods are used for reasoning with uncertain information, The fact that the methods
are different isn't an Immedlate problem; the lack of consistency and logical coherence Is
a problem. Probability theory demonstrates these properties while the other methods do
not. From a theoretical standpoint, the lack of consistency and loglcal coherence is & major
litmus test: If a method does not demonstrate these properties they are basically empirical
in nature and have a restricted range of validity, For operational use an empirical method

is as good as a~:y as long as it operates within its valid range.

Though probability has & firm theoretical foundation, there remalins room for rep-
resentation and Interpretation of the probability model. Chapter III presents probability
ratio graphs which s & representation of the probabllity model. Chapter IV presents sev-

eral Interpretations on how probability deals or can deal with some differing facets of

uncertalnty.




[l1l. Probability Ratio Grapha: An interpretation

And what i3 a weed? A plant whose virtues have not been discovered.
~Ralph Waldo Emerson

The basic architecture addressed by the research tool ls an implementution of the
format described by Morlan in his paper “4 Decision Analytic Approach ta Building Ezperd
Systema.” In this paper Morlan develops a format based on odds-ratios for representing a
decision analytle framework with probability ratio graphs., He points out that the choson
representation for u mathematical model unly serves to clarlfy meaning for the modol
builder and has no effect on the underlying mathematics, (13:1) The odds-ratio formut Is
ideal for representing the information required for the decision analytic approach:

1. P(& | Hi) - the cunditional probabllities or likellhoods for the cvidence and hy-
potheses,

2. P(M) - tho prior probabilities for the hypotheses.
3, U(Ay | M) - the utllity information for the hypotheses und actions',

The information listed I8 needed for making optimal decislons under uncortainty.
Morlan shows that the relative utilities botween competing actlons Is Important, not the
absolute values. ‘Tho information needod for datermining those rolative utilitios Is contained
In the ra¥os bolwoen the hypothoses and actlons, (13:3) The following discunslon on
probability ratio graphs ls adapted from Morlan's work and ls only an overview of the

material contained thereind,

VPhis notatlon, U(Ax | i), represents the utllity of performing action A whon hypathesis H, Is the
true state of the world (13:23).

The forthcoming discussion ls & condensed, adapted version of Morlan's presentation. Some araas have
beon simplified and other aspects interpreted, For an in-cdepth mathematical presentation, the original
document should be solicited,



3.1 Probability ratio graphs

The research tool employs probability ratlo graphs for representing the likelihood,
prior, and utllity information necessary for using the decision analytic approach, There are
many approaches for representing probability (Venn diagrams, contingoncy tables, causal
nets, probability truos, to name a few), Probabllity ratio graphs present another face In
the crowd representing the same mathematics of probabllity, They are similar to Influence
dlagrams and causal nets, providing a method for decomposing ungainly probabliity models
into manageable configurations, Howover, probabllity ratie graphs offer advantages when
addressing the concerns of comploteness and validation, They also clarify Implications of
indepondence assumptions by explicitly mapping the transfor of statemonta nbout causnl
dependence Into the mathematics of probabllity disteibutiona.

The fundamental concept underlying probabllity ratlo graphas In that in declulon mak.
ing the discriminating foaturo botween compoting alternativos is their rolative measuto,

The ratio of thelr measures captures the importunt information in the decislon nnalytie
sonee,

The function of probabllity ratio graphs ls the representation and manipulation of
probabllity and utility relational Information, The representation lnvolves two buale con.
structat vertices and arcs, Tho manipulation function uses two baale proceduros: trinngu.
latlon and aggregation,

8.1, Repreaentation The first function of the probability modol In roprosenting
marginal and conditional probabllition, Flgure 1 shows how the two basic constructs ure
rolated in u compound probabllity ratio graph (@ will horaafter roprosont n probubllity ratlo
graph). Vatrlous combinations of thuso constructs can represent quite complex Buyoslan
Inferonce problems lnvolving many levels of disjolnt hypotheses and thelr corrosponding

evidence states. The following dofinitions will holp facilitate discussion:

Event: An assignment to u random varlable, or set of eandom varlublos,
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W

P(D) = P(A) + P(B) + P(C)

P(G) m P(E) 4 P(N)

u-% Y-

Vertex:

Aret

Graphi

Figure 1. A compound probability ratio graph,

An ovont and an embadded probability ratlo graph, ‘I'he ovent
could be n hypothoses roprosonting a possible atute of the world
or & possible avidonce state which la uaed to renson sbout the pos-
sible hypothoses. The embedded @ represents conditional prob-
abilitios, conditioned on the parent vartex.

A directod wolghted are connecting two vertices which are on the
same lovel, It has threo associatod puramoters: Hoad, Tuil, and
Ratlo,

(( N ead, T'ail), Ratio)

The head can bo thought of us where the are originatos; Hikewise,
the tail s whore the are endw. The ratio is the ratlo of the
probubilities, head to tail: %’ﬁ#.

A sot of verticon, V, and a oot of arcs, A, connocting those ver.
ticos, To be o logitimate probability ratio graph two conditions
must be met!

1, 'I'he wot of vortices, V, tuat form a set of mutunlly exelusive
ovents,

2, 'I'he arca, &, must form a minlmal spanuing tree (no cycles),
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3.1.8 Manipulation The second function of the probability model s implomonting
probability calculus conslstently, Probability ratio graphs use two busic types of functions
to perform probability calculus; 1) trlangulation, and 2) aggrogation und disaggregation.

X TLE e fgmdy

Flguro 2. A graphic dopiction of telangulation,

Triangulation:  Allows the computation of a missing third are, given the two
aren which togothor with the third are form a trelangle, Flgure 2
shows the function of trlangulation, [tx use will become ovidont
in later examplon,

[-Exlmph 3l rlangulation |
Glvon the situation na doweribod in figure 2, triangulate hotwoen vorticen from ¢! to
A

- I’M); N PC)
('Y ™ T
P(c) (l’(li)) ‘ (I’LC)) 1
TUPA \P@H/)\Pan) =5V
Note: 'Tho ares aro directional, If the telnngulation was from A to (', then,
PA) e n. 1
il 76 Md




anﬂﬁt I'UMH'-% “'ﬁ"f‘ "'T*‘T

Figuro 3. A graphlc dopiction of aggregation,

Aggregation:  Allows for the expansion of an embedded ¢ up one level while
maintaining the orlginal probabilistic rolationships, Aggroge.
tlon changes the probabllistic relationships of the embodded
graph from conditional probabilities into Joint probabilitios,
Figure 3 Is a graphic reprosontation of aggrogation.

[Example 3.3 Aggregation

Glven the situation as doscribed n figure 3, aggrogato the vorticen 4 and €' from kY

_IKALw'“I%HL'onl%E)
peYy'" oy P)

U )

I = P(A) -] m

Pe) o
il 1 R
Note: The orlginal connections and are diroctions detormine how the are wolghta
are combined,

Note: According to Morlan, the torm “aggrogation” refers to the transformation of
two graphs into one graph,
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"MW'W“'% a-n-(#)u'-c-(l+‘;)u'-n-(l+¢)

Flgure 4, A graphie depletion of disaggrogation,

Disaggregation: Allows for the collection of several vortices into ono vortex which
then occuples the disaggregated vertices placos in the original ¢
and containa the disaggrogated vertices aa an embedded ¢ in tho
new vortox, Tho reorganizing leaves the overall probability roln.
tlonships lntact while representing tho disaggregatod vorticos na
conditional probablilities,

[Example 3.3 Dlsaggregation

Ulvon the situntion as describod in figure 4, disaggregnte the vertices A and " Flest,
a triangulation muat be performed botweon A and €, the direciion of triangulation
in of no consequence,

Triangulate from A to C giving a = 2. (%)

- ﬂ&lg- M"- P C.)
ey " Byt " B

d - P(A) + P(C)
2(B)
) > !
s :mwnl.(‘*..)
Pn)
Note: The original connectionn and are directiona determine how the are welghts are com-
bined, However, the differences are just a matter of inverting the woights as nooded,

[ ]

-a-(l+%)
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Stagelt Prior—likelihood configuration,

W .
bt
Priovs P(H,)
LSRN
yo Bt ]}
: : Likelihoods P(E, | M)

Staga3: Disaggregation of prior vertices produces

‘ the ngnt grobublllq disteibution,

.
S EER
Ey } }

Joint "( ”“ “ )

Btaged: Aguregate the common evidence vertices
to produce thy prepouteriur—postetior configuration,

Wy, I
b bt
K} ¢ 4

PMropostetior  Posterlor

P(Ey) Pt k)

Figure 8. Simple application of Bayes® theorem using a probability ratlo graph compared
with tables, 28




3.1.8 Bayesian inference With the forgoing tools for representing and manipulating
probabilities, an example of Bayesian inference ls possible, Figure 8 Is a simple example of
a Bayesian cycle using probability ratio grapha with the corresponding tabular state. The
examplo In figure b shows that the @ transitions through three different configurations:
1) Prior—Likellhood configuration, 2) Joint configuration, and 3) Preposterior—Posterior
configuration.

3.1.4 Utility representation The utility representation follows the same path as
the hypotheses—cvidonce representation. Instead of conditional probabilities (likelihoods),
P(&; | M;), we have conditional utilities, U(Aj | M), which represont tho utllity of por
forming action A, given that Hypothesew H; has occurred. The process s oxactly the
same, excapt that instead of the posterlor probabllities, we are now after the propostorior
utility information,

Hy, H
i 2
Ullity Priora
A 10 |10
A 100 | 37
Condivional Utilitles

I'igure 6. Utllity ratlo graph ropresentation.

With the uthlity ratio graph, the same luterpretations are appliod to difforent ln-
formation, The “prior” Information Ix a scaling factor between the lsolntad conditionnl
utility information, Figure 6 shows that tho conditional utilitios for U(A; | Hy) = 10 and
U(Ay | Hz) = 10, and that the scaling factor botweon Hy and My is §. ‘T'his informution
states that porforming Ay If My has occurred ia worth twice as much as performing A, if
M, has occurred, becauso U{ Ay, Hy) = 10 while U(Ay,'H;,) = 20,
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3.1.6 Combining probabslity with utility Combining the probability and utility in-
formation takes place with the posterior probabilities, P(H; | £;), and the utility scaling
factors, U(M;). The poaterior probabilities are muitiplied with thelr respective acaling
factors and the utility ratio graph ls manipulated to produce the utility information con.
ditioned on the state of evidence, U(Ay | £5). Mathematically, this process is simllar to
the law of total probability:

U(Ay | &) = ;";vm M)+ P(Hy | €5) - U(H) 1)

Figure 7. Indepondence ropresontation with ratio graphs,

8.8 Independent evidence

According to the description of probability ratlo graphs, the vertices of a graph
ropresent disjoint events, This extends to the cvidence states that are contalnoed in a
hypotheses vertex as well, Requiring enumeration of disjoint evidence statos brings com-
binatorial explosion with Indopendent ovidences. The number of disjoiut evidence states

grows exponentially (2") with the number of Independont ovidences, T'hix Is cloarly an
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undesirable situation and combating this exponential growth requires a “tweak” in the

probability ratio graph concept.

Representing Independence In a probabllity ratio graph requires separate graphs.
In Morlan's description, he does not allow for the possibility of multiple (disconnected)
embedded graphs, however, this addition to the concept is a natural outgrowth of inde-
pendence. Figure 7 Is a depiction of two independent probability ratio graphs transitioning
into their joint representation. The mathematics of probability ratio graphs treat the ver.
tices In a connected graph as disjoint, collectively exhaustive atates, The semi-complex
graph in figure 7 also treats each separate graph in this way.

£ pfiitayis = pldy

Figure 8, Jolut occurrence of independent events,

Thore are two ways in which to use independent evidenco for developing the posterior
distribution using probability ratio graphs. One method uses the nesting approach shown
In figure 8, the other involves sequential probability updating., The first method is the
samo as combining the independent likelihoods then applying Bayes' theorem, Sequontial
probabllity updating involves using the posterior prohabilities to replace the priors and
continuing the Inference process. If the avidence states are independent then performing

sequential updating will produce an equivalent result to using the disjoint evidonco stato
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and performing the inference step once. Both methods apply only when the evidences are

independent.

Figure 9. Nesting independent events.

The independence representation described requires support which is not supplied
by Morlan's initlal concept. To represent independence, vertices must be able to have
multiple embedded graphs. This is an easy step to implement, it is merely a redefinition

to include the possibility for multiple embedded graphs:

Vertext An event and embedded probability ratio graphs, The event could
be a hypotheses rapresenting a possible state of the world or & pos-
sible evidence state which Is used to reason about the hypotheses,
An embedded ¢ represents conditional probabilities, conditioned

on the parent vertex, Multiple ¢'s represent independent event
states.

Supporting the mathematics assoclated with independence Is more involved. A “nest.
ing” procedure needs to be added to triangulation, aggrogation, and disuggregation. And
aggregation needs to be enhanced to account for the propagation, or replicatioun of the
remalning independent graphs in the aggreguted graph, A possible nesting procoedure is
dopicted in figure 9.
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3.8 Current Software

The software developed for this work is generally an implementation of Morlan's
probability ratio graph concept on a small scale (it does not include the independence
capability). It can support the simple probability functions of representing conditional
and joint probabilities, and can accomplish Bayes' theorem manipulations. The simple
features can also represent quite complex systems if a nested® approach is used. Vertices
on any level can contain embedded graphs. Using this approach, the graph s basically a
tree representation as shown in figure 10. The software limits the total number of vertices
that can be active at any one time, but conceptually there is no limit to the possible

number of levels.

Figure 10. Comparison of a compound vortex to a tree roprosontation,

The software divides the screen In four separate viewports, each viowport supporting
different aspects of the program. Figure 11 shows a typical screen with the four viewports
(clockwise from the top left corner): viewport 1, the prompting port for Input; viewport

2, the menu port; viewport 4, results port for typed output; and viewport 3, the graphles

3«Neated” in this context refers to the multiple layers of grapha, not multiple graphs {n a single layer.
“In this context “active® means all of the verticus which are specified at all lovelw In the syntem.
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port, The program can present a vertex in two ways: 1) as a large pie graph which shows
the relative probabilities of each embedded vertex as the angle subtended in the chart, or
2) as a small ple chart in the corner of the the graphics screen and i.s embedded graph
shown as a connected graph with each embedded vertex shown as a ple chart of its likewise
embedded graph. The net representation presents all the avallable information in a simple

probability problem showing two complete levels and their relative proportions at once.

viewport-1 viewport-2

viewport-3 viewport-4

Figure 11, Net presentation of a compound vertex.

The software has strayed from Mo+lan's description in several areas. The triangu-
lation functlon has been extended so that any two vertices in a common graph can be
connected regardless of their current connection path®. If two previously linked nodes are
trlangulated it either has no effect or it reverses the arc direction, the outcome of which
depen is on the original arc orlentation with respect to the new arc orlentation. The aggre-

gation function is “hot-wired” In that it figures the probabilities for the aggregated graph

bThis axtension equivalently triangulates beiween the vertices along the connection path.
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and uses their probability measure to reconnect the vertices on the now level. Appendix

A contains a discussion of the program's abilities, limitations, and use.

3.4 Summary

This chapter introduced an interpretation of Morlan’s probability ratio graphs with
possible enhancements. It also briefly introduced the PC-based tool that implements the

probabllity ratio graph concept on a restricted level,

The addition of the independence enhancement will increase probability ratio graph's
versatility and ability to represent complex decision problems. The current program la still
very deviopmentally orlented. It would , no doubt, benefit from code simplification and

technical modifications.
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IV. Missing Information, Independence, and Secondary Uncertainty

During software generation several interesting topics arose that spawned quertions
of interpretation,

o When system parameters are unspecified, how should a diagnostic system deal with
the missing information?
A related question Is, how does the difference between causal implication and condi-
tional probability affact likelilood generation?

» Under the common assumption of disjoint hypotheses, what does hypothesis.evidence
independence mean?

o What s the meaning of spurlous evidence, and how does it effect the diagnoatic
system?

The design heurlstics of declsion support systems depand In part on the Interpreta.
tlons that result from these considerations, If the Information describod above is estimatod
it {s Important to understand the impact of the original parametors so its offact can b

taken Into account in the estimation.,

4.1 Missing information

Morlan points out that durlng system development, “It cannot be guarantead that all
combinations of evidence will be generated for all hypotheses." (13:11) Undor this sltuation
the problem ls how to continue the decision procoss when pertinent information is avallable
but how it relates to some of the hypotheses under consideration is unknown, Cloarly It
is desirable to include all the available information as long an it is not o detriment to the
decislon process. The intent of this discussion is not to prove that a method ls corroct, but

merely to present a proposed method and its intuitive lnterpretation,

Morlan presents u method whereln the mlssing evidence-hypotheses information is

estimated under the assumption of probabilistic Independence.

P&

H) = P(£)
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This does not mean there is no causal link between 2 and £; in fact, It implies that there

Is a causal link between the two (see the section on Independence for a discussion of this
fucet).

Arnothor interpretation s that the lack of information Implies that M and £ are
causally Independent. Thia may be the case, but such an azsumption haa & potentlally
drastic effact on the posterior distribution, If the causality hetween X and € ls truly
unknown then an assumption of no link is & bold move,

Under the assumption of probabllistic independence, Morlan starts with the law of
total probabllity to develop an equation for determining the missing information, For o
case involving three hypotheses, with no information for P(£ | H;), estimate:

P(E | Hg)  P(Hy) + P(E | Hy) « P(Hy)

P(£|M,) = P(£) eyiEy

By using this assumption the posterior probabllity P(H; | £) oquals thoe prior prob.
ability P(M,) and the posterior probabilities for the other hypotheses change (unless thoy
too ave probabilistically independent). In offect, the observance of £ alters thoso hypothe.
ses wWhich have Information relating to £ and doss not affect the others. Figure 12 shows
a graphic interpretation of such a process,

Such an operation can bo scen as partitioning the hypotheses luto two sets: one set,
Mind, contalning the hypotheses which are probabilistically Independent of £, and one aot,
Mdep, containing the hypotheses which are probabillstically depondent on & Figure 13
shows such a partitloning, The probability condltioning takes place on the dependent sot,
Maep a8 if It were the entire hypotheses space. Then the two sets are recombined to provide
the final posterior distribution, P(H; | £).

"The process can be performod In this manner without actually genorating any missing

Information and the results are equivalent,
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Prior (My) Postetlor (£ | M,)

Figure 12, Graphle depletion of eatimating missing information as probablllstically Inde.

pendent,
[Example 4.1 "Mlunalng Tnformailon |
Glven the following Information,
Priors Likellhoada
PHy) = 3 P(€|H) = (missing)
PHy) = 4 P(E|MH3) = 6
P(Hy) w 2 P(E|Hy) = O
P(Hy) = .1 P(E|MHy) = 2
P(E) w  ELEPGLPCOIPENLPOPER) O
- 1
- ‘lgl‘l‘l"‘IF“’FI:*‘I!!L!}
= 020

Amsuming € and H,; are probabllistically indepondent, P(& | *,) = .020. Apply.
ing Buyes' theorom to the data ylelds the following postorior probabilitios,

P(Hy | &)= 3

P(Hp | &) = 482
P(Hy | &) = 286
P(Hy | &) = 032
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l N‘.' »?
Hing = 3

Ot

Inttial Prlors M, Partitioned Priom

Figure 13. Graphle depletion of applylng &£ by partitioning hypothesos with respoct to
probabillatic depundence.

Using the partitioning mothod, Bayes' thoorem s upplied only to the hypothesos
that are connected to &,

Priora Likellhoods
P(Hg) = PEIM) = 6
P(M3) = 2 PE&|lH) = 0
PHy) = 1 PEIMH) = 2

This dollvers the Intermediate posteriors,
P(Hy | &) = 848

P(My | &) w 400
P(Hi| &) = 048

Rocombination of the Indepondent hypothoses, Mg, with tho dependent hypothe.
son, Hap, Involves acaling the Intermediate posterlors with rospoct to tholr prior
probabilitles,

36




At

Hing = 3 Hingm 3

Initial
Partitioned Priore Partitioned Poateriorns Recombined Pouteriors

Flgure 14,  Graphic depletion of applying & by partitioning hypotheses with respoct to
probabilistic dependonce (continued).

P(Hdop) - 2?—2 P(M;)
us u" + '2 + cl
u T

P(Hi| &) m P(Ha | €)'+ P(Hap)
Giving the same postorior distribution as tho first method,

P(Hy | E) = .3
P(Ha | €) m (,400). (.7) = 280
"This examplo shows the intultive appoal of assuming probablllstic indopondence when
likelihood information Is misaing and thore are no grounds for making u subjoctive assvss-
ment, It seems beneficial to include Information when its avallability can serve to difforon-

tiate between some of the competing hypotheses, At tho same timo, It would seem folly to
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exclude hypotheses just because the connections are unknown or not understood!, Uning
the assumption of probabillstic indepondence, as presented by Motlan, seems to balance
the need to Include the avallable information without treating the apparently underdefined
hypotheses unfalrly.

4.8 Likelihoods

The relationship between hypotheses and evidence ls confused by the percelved equal.
Ity of causality with conditional probability, Only under highly constrained conditions ls
P(€ | W), the conditional probability, synonymous with P(€ |, H), the causal probability?,
(%" Indicatos causal probabllity, not conditional probability). Thia difference causes prob.
loms in systen development because in many situationa it is easier to think of and estimate
the probubllity that M caused &, P(€ | H), than it s to estimate the likellhaod, P(€ | H)3,
However, it is the likelihoods that are used in Bayesian Inforonce, not the causal linpli.
cations, QGenerating missing likelihond Information brings out the important differonce
between conditional probabllity and causal implication,

Tho conditional probabllity, P(€ | ®), ls information that ls usually supplied through
statistical analysis or oxpert opinion, Howaver, In the event that elther the exlsting data
baso is Insufficiont for valid statistical results, or the expert can, at bost, supply causal
implications, then likelthoods muat be estlinated, T'he likelihood P(& | 'H) Is equal to the
probabllity that M caused & plus the probabllity that £ happoenoad independently of H
glven that H did not cause £,

[Example 4.2 LikelThoods and causal informatlon |

Glven the sltuation described In figure 18, how do the conditional probabllition,
P(& | H;), relate to the causal probability, P(€ |, Hi)? The conditional probabilities
of Interest aro readily evident from the Vonn diagram in figure 15

"Excluding hypotheses because of Insufficient informntion In basically denylng thelr existonce due to
ignorance of the process.

The P(& |¢ H) is the probability that M caused £, where “|," indicates causal probability, not condi.
tional probability.

$The likelihood P(& | M) ia the probability that £ has o1 #ill occur given that M has occurred, It i
simply & conditional probabllity,
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Figure 18, Venn diagram for example 4.2,

PE|1H) = it
P(E|Hy) = prfher

However, the causal probabllitios, estimated by an export, are somothing other than

tho conditionals:
oy S PELM) S arfifm
eemiper S PElM) § ok

Tho problem arises from the fuct that P(€ |, M) and P(€ |o My) are known,
while the conditional probabllities (the reglons In the Venn dliagram) are unknown,
Without some further information on roglons A and C there Is no way of gencrating
the conditional probabilities,

A possible almplifylng assumption ix that roglons B and D are equal to the empty
sot. Thin ls the basic assumption of disjoint hypothesos. As long us & can only be
caused by the hypotheses under consideration (this lmplies that G Is also equal to
the empty set), thon the conditional probabilities and tho causal probabilities are
equsl:

P(E|H) = PE|LM) = zip
PEIM)) = P(E|oHy) = plfp

J9

D ey pa—
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This simplifying assumption has some appeal. However, adding spurious evidence
to the model is actually saying that there is a hypothesis, that is Independent of the
set of hypothoses of interest, which could cause E, In this case the problem becomon
difficult to visualize with a simple Venn diagram.

In most situations there is some probability that an evidence can occur without belug
caused by one of the hypotheses under consideration. This probabllity of independent oc.
currence increases the conditional probabilities and does not affect the causal probabilitios,
The problom of dealing with causal estimates when using a frequency inference mechanism
ls Important and not trivial,

4.8 Independence

In o Bayesian diagnostic system when an evidence and hypothoals are probabilistically
Independent It in generally true that they are causally dependont. The only way & and
» member of the disjoint hypothesos set, M,, can bo both probablllstically and causally
independent ia If every member of M, is causally indepandent of &. In such a situation &
in of no value aa avidence since it does not difforontiate botween the possible hypothenos,

Another way that a member of H, and & can be probabilistically independent Is if
the P(€ | H) happens to vqual the P(€) as glven from the law of total probubllity:

P(E) = ;":m | i) P(H,)
wi

Where H; are members of H,.

In such a situation, probabilistic independence In an Inturosting property but s of
littlo actual sigrificance, The Interesting proporty is that if H and £ are probabilistically
Independent then observing &€ does not alter the probability that M has occurred. It Ia
of no real significance because, as Morlan poluts out, “the important Information In u

situation Includes the relative probabllities of the possible states of the world and the

relative losses, Declslons between two actions can be made based on a computation of Lhe




relative expected losses.” (13:3) So, in & dacision situation the relative probabilities of the

hypothesas are important not their actual probabilitias,

4.4 Secondary Uncertainty

The term spurious came up quite often, mostly in conjunction with arguments about
independence, Spurious is a vague term which can sncompass a broad range of phenomena.,
According to the dictlonary spurious means false; however, in some situations it is applied
where it refers to various ideas: unknown origin, unimportant origin, and false indication,
The first two ideas, unknown and unimportant origin, apply when the event actually
occurred but why it occurred Is either unknown or unimportant, The last idea, false
Indlcation, applles when the Indicated event hasn't actually occurred, Tulse Indication
can happen In two ways: first, an Indication of an event that hasn't actually occutred,
and second, lack of an indication when an event has occurred, This false indication ia
a reporting problem, and its probability assessment is the uncertuinty In the ovidonco or
secondary uncerlainty,

False Indication can be characterised as the obuervance of some avent when the event
hasn't occurted. The probabllity of such an observance Is statod as the P(&, | note) and
P(noté, | £), or P(€ | notf,) and P(not€ | £,), where &, is the observed state and &
is the actual state. The confidence (uncertainty) in the obac ved data is the probability
that the obsarved state is tho samo as the actual state: P(&, | €) and P(noté, | not€),
or P(€ | &) and P(not€ | noté,). What wo seo and can gather Is the obsorved state, &,
and our decisions are basod upon observed information, Whether the assessment of the
uncertainty Is described ns P(€ | €,) or P(&, | €), the goal Is an assessmont of the postorior
probabllity P(M; | £,), where M; are the hypotheses under conslderation.

There are at lonst two possible methods for Incorporating secondary uncertainty in
a probabilistic Infarence problom: 1) Joffray's rule, which usos the assessmont of P(& | &£,),
and incorporates this information at the postorior level; and 2) an alternato method, which
involves the assessments of P(&, | &) and P(noté, | not€), and Incorporatos this Informa-

tion at the likellhood level. Both methods perforin the same type of mathematlcal trans.
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formation; however, there are potentielly great differences in the computational complexity

of a given problem.

4:4.1 Jeffrey’s rule Jeffrey’s ruleis a method for generating the probabllities P(H; |
£,) when the uncertainty assessment ylelds P(€ | £,). It is an application of the law of
total probability conditioned with the confidence in the report, P(€ | £,).

P(H|E,) = ﬁ;mt | E)P(E | &) (@)

Equation 2 ls a welghted average of the possible probabllity states P(H | £€) and P(M |
nott'), weighted on the uncertainty In the evidence state £, Graphically, Jeffrey's rule Is
simply & linear intarpolation between the possible pure evidence states welghted with the
uncertainty in the evidence states,

[Example 4.3 Jeffrey’s Rule with 1 Evidence |

Glven the following probabilities,

P(H|E) = 2
P(H|notf) = .8

With the confidence in £ at 80%,
P(E| &)= 8
then tha posterior probabllity of H glven the observed evidence £, becomes,

P(H|&) = P(M|E)P(E| L)+ P(H | not€)P(notf | &)
= 52)(-8)+(‘8)(.2)

This example is graphically depicted In figure 16,
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Figure 16, Graphic depiction of Jeffray’s rule.

If there are several evidence states, the result is the intersection of the Interpolations
conditioned on the evidences in question.

[Example 4.4 Jeflrey’s Rule with 2 Evidences |

In this example there are two evidences, each with some degree of uncertainty. Given
the evidence & Is the evidence from example 4.3, and the following probabilities,

PH| &, &) = .0
P(H | &y, notéy) = .2
P(H | noté,, &;) = 4
P(H | notéy,noté3) = B

With the confldence in & at 80%, and in &; at 30%,
P(£]&) = 8
P(£3|&) = 3

With above information the assessment of the posterior probability of ‘H glven
the observed state of the evidence, £,, becomes,
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Figure 17, Graphic depiction of Jeffrey's rule with uncertainty In two evidences.

P(H | &)

P(K | &1\ &) P& | o) P& | £)

+ P(H| &\ not&Q)P(E) | &) P(not&y | &)

+  P(H|notéy, &2)P(notéy | £,)P(Eq | &)

+ P(H | not&y,not&3) Pinoté, | €,)P(noty | £,)

(;%21(-3)(-3) +(:2)(:8)(.7) + (4)(:2)(.3) + (8)(.2)(.T)

This example Is graphically deplcted In figure 17. The value of at cach corner

of the graph is the “pure” posterior, conditioned on a combination of perfoct
information about the evidences,

4.4.2 Spurious Evidence Another method for Incorporating uncertainty in the ov.

idence ls to use the assessment of the P(€, | £) to generate new likellhood probabilitios

P(€, | H). Like Jeffrey's rule, it Is an application of the law of total probability, It Involvos
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conditioning on the confidence in the reporting system, P(E, | £).
P(&,) = P(E, | E)P(E) + P(E, | not€) P(notf) (3)

The effect of incorporating the uncertainty in the evidence in the likelihoods is to reduce
the range of values that the likellhood P(€, | H) can take.
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Figure 18, The effect of spurious evidence on likelihoods.

Example 4.5 Unsymeteric Spurious Evidence |

Glven that the probabllities for observing £ are,

P(ga I E) ] .9
P& | not€) =
and If the likelthoods are,
P(E M)
P(€ | notM;)
then by applying equation 3 the likelihoods for the observed avidence become,

P(&, | M) = .78
P(&, | notH;) = .54

b
an
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In this example, the range of the observed likelihoods, P(&, | M;), is between
.9 and .3, Figure 18 depicts the range of values that P(€, | H) can take. The
P(€, | H) will lie somewhere along the line depicted in figure 18,

Equation 3, when expressed in terms of the probability of seeing the correct statc of
the evidence, changes to,

P(E,) = P(E)[P(€, | €) + P(noté, | not€) = 1) + 1 = P(notf, | noté) 4)
If the spurious nature of the sensor is independent of the sensor's actual state then

P(E, | €) = P(noté, | not€), and s symmetric. When the probability of error ls sym-
metric, equation 4 reduces to,

P(€;) m P(E)[2P(E, | £) - 1] +1 - P(&, | €) (8)

N Sy eyl Greiadaian

B W eiterferiae vyl e
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P& | &)

l. L LRI E LR RER] LR AR EAR)
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e . O Y

P(Eo | notH;)

I
s /,-i

R CXEXTE TTOIY TRTTE SO

o a4 a2 A4 b s o a\.
P(E | notH,) P(E | Hy)
P(E)

Figure 19. The effect of symmetric spurious evidence on likellhoads.
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[Example 4.6 ~ Symmetric Spurious Evidence |

Glven the probabilities from example 4.5 except that the spurious probabilities are
symmaetric, and equal to,

P(SQ | 8) = .P(notgo Iﬂote) = .8
then the llkelihoods for the observed evidence become,

P(&, | Hi) = .68
P(E, | notH;) = .44

This example is graphically depicted In figure 19,

The worst situation would be to have the P(, | £) = P(noté, | not€) m 0.8, This,
in effect, I8 a random sensor with a uniform distribution over the possible states. In sucl
a case the P(&, | H) = 0.5, regardless of the P(£ | 7); this case is deplcted in figure 20.

1 1
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Figure 20, The effect of symmetric spurious evidence when P(¢, | £) = 0.5,
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4.4.8 Comparisons Lioth methods estimate the P(? | £,). However, they go about
it In different ways, With Jeffray's rule the conditioning takes place after applying Bayes'
theorem using the P(€ | &) and P(not€ | &), and the posterior probabilities P( | £)
and P(H | not€):

P(H | &)= ﬁpm | £)P(E: | £)+ P(H | not&)P(not&; | £,)

In the other method the conditioning takes place before applying Bayes' theorem
using the P(&, | £) and P(&, | not€), and the likellhoods P(£ | M;) and P(not€ | H,):

P& | H) m P(E | E)P(E | H) + P(E | not€)P(noté | H)

Since both methods are concerned with estimating the same posterior probabllisy P(H | &,),
(by conjecture) they should arrive at the same conclusion glven compatible Initial conditions?,
Howaever, because the methods Include the evidence uncortainty Information at different
levels In the Bayesian inferance process the number of assessments and calculations required
is difforent.

Examplos 4.3 and 4.4 show the effact of applying Jeffrey's rule. The posterior proba-
bilities for every combination of the set of evidences, £,, are needed to make an assessment
of the P(H | £). The problem grows exponentially with the number of evidences under
consideration, and linearly with the number of hypotheses, Example 4.7 is a comparison

of the assessments and calculations required by JefTrey's rule and the alternate method,

$Determining compatible initial conditions ls a formidable task in itwelf. Such a determination involves
the use of the marginal distribution on elther £, or £,
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| Example 4.7 7 Meathod Comparisons |

Starting with an inference problem that has the prior probabllities P(%;) and the
likelihoods P(€; | M;) already specified, how does Jeffrey’s rule compare to the
alternate method in assessing the posterlor probabilities P(M; | £,)?

[ Initilal conditions:  H;jim 1 to a

Eijmlton
n assessments of P(¢; | &,)
n asseasments of P(Z, | &;) Il uncertainty [s symmatric,
or

2.n | assessments If not saymmetric, n assessments of P(&, | noté;),
and n assessments of P(¢, | £;)

osterior probablilty calculations

a 3" calculations of the posterlor probabllities P(H; | noté)),
and P(N; | &)

a calculations of the posteriors P(H; | &5)

aonmt‘ona DTOE&E‘“W tl‘lﬂl!ﬂ"ﬂlﬂonl

a calculations of the posterlor transformation

P(Mi | &) m Y P(Mi | §)P(E) | E0)+P(Hy | not&y) P(not€; | &)
Jmi

an calculationa of the likelihood transformation
P(Eoj | M) = P(Eos | E)P(Es | M) + P(Eoj | not&y) P(notéy | My)

Table 1, Comparison of Jeflrey's rule with the alternate method,

Table 1 shows that using Jeffrey's rule for incorporating secondary uncertainty grows
exponentially in the number of posterlor probabilities required, If secondary uncertalnty
can be Incorporated in the likelihood information, then the inference problem grows linearly
with the evidences in calculating the likellhoods, and decresses the number of posterlor

probabllities to one for each hypothesis under consideration.

49




4.8 Summary

This chapter covered 1) a pomsible method for dealing with mlssing Information to
continue with the Infurence process, 2) the difference between causal implication and con.
ditional probabilities and how it affects likellhood generation, 3) the meaning of cuusal
independence and probabilistic independence in the context of a Bayesian inference model,
and 4) the effect of including secondary uncertainty in & Bayesian inference modal.

The foregoing dlscussion only begins to show the ramifications of each area. With
missing information, the assumption of probabilistic independence has Intuitive appeal
and ls enally Implemented. The difference between cuusal implication and conditlonal
probability can havae significant effects in the generation of the initial probabilities used in
probabllistic inference systems. The difference in the meanings of causal and probabllia.
tie Independence with respect to Bayesian Inference systems is an important distinction,
Causal Independence has an intuitive meaning where the independent parties have no con.
nection, Probabillstic independence is an Interesting phenomena but is of little use when
Interested in causality, Laastly, where secondary uncertainty ls included has a great effoct

on the computational complexity of probabilistic systems.

50




V. Conclusions and Recommendations

Ian't it sad how some people’s grip on their lives is 30 precarioua that they'll
embrace any preposterous delusion rather than face an occasional bleak truth?
Calvin and Hobbes (comic strip) -Bill Waterson

Thle thesin was concerned with the ~epresentation und interpretation of uncertainty,
Chapter II presentud a view of the present state of uncertalnty reasoning from an opor.
ational and a philosophical perspective. Chapter III examined probability ratio graphs us
a representation of the probability model, Chapter 1V dincussed several topics of concern
in uncertainty reasoning: 1) missing information and likellhood genoration, 2) the mean.
ing of Independence from a Bayesian context, and 3) Including secondary uncertalnty and
spurious indlcations, This research was motivated by the current interest In Incorporating
uncertainty reasoning into expert systems, The following are the conclusions resulting
from this research,

8.1 Conclusions

Non-uniqueness of Uncertainty Representation, The ropresentation of uncertain
knowledge can take many forms, none of which can be sald to be an exclusively “cor.
rect” method. While operationally any method s applicable if used within its valld range,
for theoretical acceptance they must be consistent and loglically coherent, Probability the.
ory exhibits both characteristics and has a sound theoretical foundation while the other
methods do not. This does not preclude research into the other methods; howaver, It doos

show that they have limited applicabllity as they now stand,

Probability Ratio Graphs as a Representation of Probability. Probability ratio graphs
are an appealing method for representing the probabllity model. It Is casily rendered in
a graphical format where conditional and marginal probabilities are readily evidont and
are intultlvely meaningful., As Morlan describes them, probability ratio graphs cannot

represent probabilistic independence. The proposed method for adding an Independence
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capability enhances probability ratio graph's ability to represent the probability model,

and therefore Increases thelr versatility for representing complex decision problems,

Missing Information and Likelihood Generation, The method of assuming proba-
billstic independence for generating missing likelthood information offers several benefits:
1) it has an intuitive appeal since it seems beneficial to include all the avallable relevant
information in a glven declsion problem, 2) it appears detrimental to the decision problem
to exclude hypotheses through ignorance, 3) Morlan's assumptlon of probubilistic indepon-
donce seums to balance the need for including avallable Information while not excluding
hypotheses through ignorance, and 4) it obviates the need to generate any information
since applying Bayes' theorem to the partitioned dependent hypotheses and recombining
produces equivalent results,

The distinction between causality and conditional probability has ominous implica.
tlons when experts make subjective eatimates of conditional probabilities, Probability is a
reapresentation of relative frequencies, not causality. This Is important because In many alt.
uations it Is easier to think about and estimate causality than it is to estimate conditlonal
probability, However, since Bayuslan inference ls probabilistic, it treats the Information as
relative frequencles, not causality, If experts’ subjective causal assessments are to be used

they must be transformed from a causal representation into a frequency representation.

Causal Versus Probabilistic Independence. In a Bayeslan inference context, proba.
bilistic independence Is a colncidence of little significance to the declsion problom, Causal
independence, on the other hand, Is of great significance since It Is u strong lmplication

when elther an evidence state ls present or absent,

Including Secondary Uncertainty, Secondary uncertalnty ls a product of the reporting
system, It Is termed secondary uncertalnty because it is a characteristic of the evidence
which ls used to reason about the state of the world. It Is thus secondary because it is
not part of the primary uncertainty problem, Chapter 1V presents Joffrey's rule and an

alternate method for including secondary uncertalnty in the reasoning procoss, Jeffrey's
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rule includes the secondary uncertainty at the posterior level, whereas the alternative ls to
include the secondary uncertainty at the likellhood level, In a relatively simple example, it
was shown that the alternate method, as compared to Jeffrey's rule, produced significant
reductions in the computational complexity of including secondary uncortainty!,

5.8 Areas for Future Research

Probability Ratio Graph Implementation. The probability ratio graph concept Is
maturing, With the conceptual addition of independence it has become capable of rep-
resenting the full probability model, The developed program ls capable of handling the
restricted probabllity ratio graph modal; however, it is atill a fledgling research tool which is
not computationally efficlent. A next step would be to streamline and simplify the present
coding, and implement the full probabllity ratio graph concept Including the Independence
capability and the utility section.

Analysis of the Missing Information Assumption and Likelihood Generation. Ap-
plying the assumption of probabilistic independence to missing Information is Intultively
appealing and easily implemented from a calculation standpoint?, However, ease of lmple-
mentation and being Intuitively pleasing are not vigorous tests for validity, Other methods

should be developed and then compared with this assumption to establish a baals for
validity.

The generation of likelihood information 's related to the mlasing Information prob-
lem. As presented in this thesls, generating likellhood information from causal information
necessitates an analysis of the underlying doclslon problem: specifically, asscasiung the pos-
sibllity of the independent occurrence of evidence. Further research involving the likelihood

genoration scheme presented in chapter IV would provide & greater understanding of the

!By conjucture, given compatible initial conditions both mothods should produce equivalent resulis
since they are estimating the same posterior probability, However, detormining those compatible initial
conditions v {tself a difficult undertaking,

1Under the aasumption of probabllistic Independence no missing information needs Lo be gensrated to
continue the inference process,
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subjective assessment processes and may explain the irrationality of some expert assess.
ments when they occur,

Including Secondary Uncertainty. Including secondary uncertainty involves trans.
forming a conditional probability invalving the evidence, £, Into a conditional probability
Involving the obeerved evidence, £,. As shown In Chapter 1V, where in the Inference cy-
cle this transformation occurs has a great influence in the computational complexity of
the overall problem. Chapter IV only introduces the concept of including secondary un.
certainty In the likellhood information; the preliminary indications are that this method
greatly reduces the calculations required as compared with Jeffrey's rule. It was conjec.
tured that Jeffrey's rule and the alternate method should produce equivalent estimates.
This conjecture must now be substantiated or disproved whichever the case may be,

5,8 Summary

Uncertainty reasoning has proven to be fertile ground for creative minds, There ix
always room for further interpretation of uncertainty and how to objectively deal with
it. This thesls dealt with several toplcs involving the representation and interpretation of
varlous facets of uncertainty. Further research into the toples introduced in this thesis may
prove frultful for using a probabllistic model of uncertainty. However, probabllity Is only

one method for representing uncertainty; other methods may prove superior if they can

solve the problems of conslstency and logical coherence,




Appendix A, Probability Ratio Graph Software

This appendix contains a discussion of the probability ratio graph software created as
part of this thesls effort. Turbo Pascal Is the supporting language due to its 1) avallability,
2) graphics capability, and 3) programming support. Another important point ls that my
advisor was familiar with Turbo Pascal, s0 help was avallable. The purpose of this software
Is to provide a beginning for encoding probability ratio graphs, The first section will cover
the system structure, and the second section will cover program use,

A.1 Structure

Most of the program Is support for information management functions and usor
interfacing. Tho software Is separated into five units, each containing related functions,
and one driver program,

nit urpose

st ontains procedures for list manipulations.

Ports | Contains procedures for screen formatting, interfac-
ing, and control.

"Parta | Contalns program specific procedures for generating,
loading, saving, and managing node and arc Informa-
tlon,

Show | Contalns program specific procedures for graphics
display and probability ratio graph manipulations.
"Menu | Contalns procedures for program control and user [n-
terfacing.

Note: 'The driver program is "test.pus.” Its only purpose is to Ini.
tiate the program and hand over control to the menu unit,

Table 2. Program units and thelr purpose.

The program uses record variables to represent the two data structures Involved In
probability ratio graphs, arcs and nodes (the term “node” Is synonymous with “vertex" for
purposes of discusslon.), The operations are carried out by procedures (which, incidentally,
do not necessarily go by the same names as described In Chapter 11; the differances will

be discussed when the need arises.). This discusslon covers the general program concept

88




and function. The individual procedures are listed in appendix B with specific information
relating to there use and purpose.

A.1,1 Lst Unit The Lat unit contains procedures for manipulating list structures,
Turbo Pascal does not readily support list structures!; however, there are some data struc.
tures In this program which are best represented with lists, The procedures in this unit

provide a means for using Turbo Paacal’s string varlables as lists.

There are two types of list structures: 1) lists where the membars are separated by
commas, and 2) lists where the members are separated by blank spaces. The two types
came about because the first lists were separated by commas and the majority of the
program was written toward that end; the second list type was a late-comer, it grew from
a need for dlsplaying text in the different screen viewports (word wrapping In different
port widths, and different screen modes-EGA, VGA),

This unit is independent of the specific program purpose; that is, it can be used in

other applications where data structures are represented as lists,

A.1.8 Ports Unit The Ports unit contains procedures for screen formatting and
interfacing. An important part of the program's function le the presentation of the In.
formation contained In probabllity ratio graphs, and to provide for easy user interfacing.
Tike the Lat unit, this unit Is not program specific. The procedures can be used with other

applications.

Some procedures in this unit provide the capability for separating the screen into four
areas (viewports), each providing a means for presenting different types of Information?,
There are procedures that change the active viewport and perform the administrative
overhead (malintaining last cursor position, changing color settings to the current viewport

colors, etc...).

ILISP is an example of a languago that relies on lists for the data structures.

There are no procedures that specifically control the type of information displayed in the differcnt
viewports. Any Information cun ba displayed in any port; where the information is displayed is up to the
programmer,
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Several procedures control the input and output of typed information. These specific
procedures are necessary because Turbo Pascal does not have the capability for displaying
text and graphics windows simultaneously, For presentation continuity the screen is In
the graphics mode at all times. To provide for typed interaction, speclal procedures were

needed.

A.1.8 Parts Unit The Parts unit contains the procedures that control the creation,
deletion, identification, retrieving, and saving of the specific data types used by the pro-
gram, It is program specific (meaning that the procedures relate to this specific application
only). This unit specifies the record data types for the nodes and arcs, and declares global
variables used for system data control,

A.1.4 Show Unit The Show unit contains the procedures that create the graphic
representations and the procedures that implement the manipulation functions of proba.
bility ratio graphs. The majority of this unit ls devoted to the graphics support function.
The manipulation functions are encoded in three main procedures: 1) triangulate (trian-

gulation), 2) explode (aggregation), and 3) cluster (disaggregation), This unit is program
spacific,

Graphics support. The graphlcs support provides for two ways of viewing the
system: 1) The nodes can be viewed individually as a ple chart where the ple
sections represent embedded nodes. 2) The nodes can be viewed as a connected
graph of miniaturized ple charts. The span of the arcs in each ple chart reflects
the relative probability of the nodes conditioned on the parent node. The
connected graph representation shows the parent node as a minlaturized ple
chart in the lower right corner of the graphles viewport, and the connected
graph shows the arc connections between the embedded nodes. The connected
graph representation has the advantage of presenting more information at one
time, while the ple chart has more resolution,

Triangulation. The triangulation procedure is an extended form of the trian-
gulation function described in Chapter II1, It can triangulate between any two
nodes in a connected graph regardless of the current connectlon path. It does
this, In essence, by automatically performing repeated triangulations along the
connection path until the two goal nodes are connected. If the two specified
nodes are currently connected, then the triangulation function elther reverses
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the arc direction or does nothing., It reverses the arc direction If the original
arc direction is opposite the specified direction. If the original and specified
orientationa are the same, then triangulation has no effect,

Aggregation. The ezplode procedure accomplishes the aggregation function,
This procedure is “hot-wired”" because instead of using the arc ratios directly to
create the joint representation, it uses the arc ratios to calculate the conditional
probabllities, and these probabilitios to reconnect the arcs, forming the joint
representat’ -1,

Disaggregation, The cluster procedure accomplishes the disaggregation func.
tion, This procedure uses the arc ratios for forming the conditional representa.
tion. However, it can only collect two nodes at & timea and in doing so it creates
a new parent node. That I, there is no direct way to add an existing node to
an embedded graph. To include a node in an embedded graph one must, 1)
clustor the object node, N,, with the parent node containing the target embod.
ded graph, Np; (this creates a new parent node, Npj, containing N, and Ny,
as a two eloment embedded graph.); then 2) explode Ny; which connects N, to
the original target embedded graph,

A.1.6 Menu Unit The Menu unlt contains the procedures for program control and
user interfucing. This unit is program specific in that the menu proceduros are geared
toward the procedures in this program, However, the overall menu format works with the
screen structure defined by the Ports unit, and can be used for any application. If used
for a different application, or even an extended version of the current program, tho specific

menu procedures would have to be rewrltten or upgraded to reflect the change.

A.1.6 Nodes and Arcs In this program the nodes are the major objects (or dutn
structures), and therefore have many attributes. Some of the attributes are used solely for
graphics support, Table 3 liats the attributes associated with nodes,
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l Varlable | Type lﬁrpou !
Index String | The array element polnter which delineates where the

data relating to the node resides in heap memory.
"Name | String | The label supplied by the user.

Children | String | A 1ist of the node's embedded nodes,

| Parent éirlﬁg— The node In which this node is embedded.

| ConArc_|[ String | A list of the arcs which are connected to the node.

Prob Real The node's conditional probability, conditioned on the
parent node,

Color Tnteger | The color of the node (used for graphics).

Xpos Integer | The “X" position of the center of the node (used for
graphics).

Ypos Tnteger | The “Y" position of the center of the node (used for
graphics),

Rad Tnteger | Lhe radius of the node (used for graphics).

Table 3. Node record attributes,

Like the nodes, arcs also have various attributes. However, unlike the nodes, arcs do
not need any parameters specifically for graphics support. Because they connect nodes,
they use the nodes’ parameters for the graphics information, Table 4 lists the attributes

assoclated with arcs.

Purpose

Index | -' The r ‘element pointer which delineates where the
data relating to the arc resides In heap memory.

Head String | The node at which the arc originates,
Tall String | The node at which the arc terminates.
Ratlo Real | The ratio of the nodes’ probabilities, Ratio = fp({ﬁ%;?

Table 4. Arc record attributes.

A.1.7 QGlobal Variables This program uses many global variables for defining the
state of the systetn. They provide a means for access to system status, and for information

transfer ncross procedures. The important system global varlables are listed in Table &

(these global variables deflie the state of the system).




"

Purpose
Array | This Is the array for the node record pointers, The “In-
dex” parameter for the nodes is derived from this polnter,

A ' Array | This (s the array lor the arc record pointers, 1he “Index”
paramneter for the arcs is derlved from this pointer.
Ni Integer | An index which is incremented when a new node is cre-

ated. Tho term “new node” as used In this context refors
to a new node record. Once a record is created it Is never
destroyed. When a node is deleted its index is added to
the inactive node list so when a new system node is cre.
ated the heap memory space can be recycled, “Ni” equals
the number of nodes In the active and inactive node liats.
Al Tnteger | Performs the same functlon for the arcs as *Ni” does for
the nodes,

ActiveN | String | A list of the active nodes’ indices. An active node is any
node that represented in the system.

InActiveN | String | A list of the nodes that have been deleted, Once deleted
the node's record space becomes available for reuse.
Therefore, the indices of and the memory for the deleted
nodes are recycled,

ActiveA | String | Performs the same function for the arcs as “ActiveN"
_does for the nodes.
InActiveA | Siring | Performs the same function for the arcs as “InActiveN”
doss for the nodes.

Table 5. System defining global variables,

There are many more global variables which are used as temporary information
storage for information transfer across procedure boundaries. The specific purpose of

these additlonal variables is described in appendix B.

A.1.8 Data files The data files contaln just enough information to reconstruct the
system state when it was saved®, The information needed to reconstruct the system state

involves 1) system global variables, 2) node parameters, and 3) arc parameters,

1. System global variables
o ActiveN

3 A data file could be created without saving a previously created system, howevor, this may cause syntax
problems that would cause the programn to crash while loading the data file.
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o ActiveA
¢ InActiveN
o Ni

2. Node parameters
¢ Index*

¢ Name
o Parent

3. Arc parameters

¢ Head
o Tall
¢ Ratio

The structure of the data flles follows this order?,

1. ActiveN

2. Node parameters (Name, Parent)
3. ActiveA

4, Arc parameters (Head, Tall, Ratio)
8. InActiveN®

6. Ni

A.2 Program Use

To run this program you will need Turbo Pascal, version 4.0 or later, and at loast
the following files” : 1) Test.pas, 2) Lst.pas, 3) Ports.pas, 4) Parts.pas, 5) Show.pus, and
6) Menu.pas. There are also data files assoclated with this program that are ready to be
loaded for an example of how the system worke®: 1) SCOT'T, and 2) ERIC,

To inltiate the program, ensure that all of the necessary files above are present in the
same directory, load “test.pas”, and press <ctrl>F9 This will compile the main program

and all of the necessary units®,

“The index is contained in the “ActiveN” liat.

"o see the order of & data file, simply view one—they are ASCII files.

°1f the inactive node list is empty then this parameter is set equal to “NONE.”

"The “.pas” files are the original code. The “.tpu” files for 3-8 are actually needed to run the program.
These files will be created when the main program, “test.pas”, is compiled,

$These data files are not neceasary to run the program,

If the “.tpu” files for the necemsary units do not already exist, <ctrl»>F9 will create them.
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Figure 21, Screen format.

The screen will be split up into four separate areas as shown in figure 21, Viewport 2
is the menu viewport; all the main program options are displayed within viewport 2 using

sevaral different menus. The program currently has six avallable menus:

1, Malnmenu - the top level menu procedure from which the other menus originate,
2. Setupmenu - submenu of mainmenu, offers options for basic system configuration.

3. Graphmenu - submenu of malnmenu, offers options for viewing the system and per-
forming probabllity ratio graph manipulations.

4. Crentemenu - submenu of mainmenu, offers options for creating the system objects
(nodes and azca).

5. Altermenu - submenu of setupmenu, offers optione for altering ob ject paramaters.
6. Alterarcmenu - submenu of altermenu, offers options for altering arc paramaters.

Because the program is in the development mode, the menus are somewhat chaotle
and over-redundant, As the program develops the menus should mature into a well defined

structure which separates the optlons in & meaningful way.
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A.8.1 Menus Each menu can display up to six of the avallable options!®, The
listed options can be selected by either pressing the assoclated number or first letter of
the option. There are three options that can be selected whether they are listed or not:
1) “Back", returns to the menu one level up; 2) “Main Menu”, returns to the main menu;
and 3) “Quit”, terminates the program. If they are not listed, these three options can be
selacted by pressing the firat letter (B, M, or Q). If they are listed, they can be selected by
either the number or the first letter.

A.8.1.1 Main Menu The main menu Is the top level control procedure, The
available options and thelr purposes are defined in table 6.

Option Purpose

1) Setup Initiates the setup menu,
2) Create Initiates the create menu.
3) Graph Initiates the graph menu,

4) Initialize* This optlon initlalizes the system parameters. All of
the active nodes and arcs are added to their respective
_ inactive lists and the active lists are set to nil,

5) Bit Image | This Is a non-functioning option, It was to use Turbo
Pascal's ability to save a blt image so the graphics
could be printed. However, this may not be possible.

8) Quit Terminates the program.

*Note: The initialise option does not prompt the user before resetting
the system parameters. Currently, there is no way to recover lost data
whether inadvertent or not.

Table 6. Maln-menu's options and thelr purpose.

As with all the menu procedures, the malnmenu procedure uses u while loop and a
case statement to control the option selections. The the while loop provides for errors in

selection (an accidenta! selection will not crash the program).

A.8.1.8 Setup Mcnu The setup menu provides the optlons for loading data

files and saving current system information to a data file (there are ather options but their

19A 4 “available” option is an option that can be initiated from the current menu,
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functions are somewhat limited.). The available options and their purposes are listed in

table 7.
ption Purpose ] 7
1) Load Data rovides the capability to load a data file containing

a previously constructed system configuration.

2) Save Data rovides the capability for saving a system configu.
tation for use at another time.

3) Initialize Same option as listed in the main menu,

4) Alter Brings up the alter menu.
: B) Maln Menu | Returns control to the main menu,
-' 8) Quit | Terminates the program.

Table 7. Setup-menu’s options and thelr purpose.

A.8.1.8 Graph Menu The graph menu provides the options for viewing the
system and performing probability ratio graph manipulations, The available cptions and
thelr purposes are listed in table 8.

l Option !T’urpon |
1) Ple Displays the specified node as a plo chart where the

sections represent the conditional probabilities of the
embedded nodes.

2) Net Displays the specified node’s minlaturized ple chart In
the lower corner and the embedded nodes as a con-
nected graph.

3) Explode Performs the aggregation functlon on the specified
node and displays the parent node's resulting con-
figuration in the net representation.

4) Cluster Performs disaggregation on the two specified nodes
and displays the parent node’s resulting configuration
in the net representation.

8) Find path | Finds the connection path between the two specified
nodes.

6) Lriangulate | Performs triangulation with the two specified nodes.

Table 8, Graph-menu's options and their purpose,




A.8.1.4 Create Menu The create menu provides the options for creating sys-
tem objects (nodes and arcs) and setting thelr parameters, The avallable options and their

purposes are listed in table 9,

Purpose
| Creates a node and prompts the user for the

node's parameters.

2) (No option currently available)

3) Arc Creates a new arc and prompts the user for the arc's
parameters,

4) (No option currently available)

5) Main Menu T_l'aturm control to the main menu.

6) Quit Terminates the program.

Table 8. Create~menu’s options and their purpose.

A.8.1,5 Alter Menu The alter menu was intended to provide options for al-
tering the objects’ (nodes’ or arcs') parameters. As It now exists, only arc parameters
can be altered through this menu, The available options and their purposes are listed in
table 10,

Purpose

urrently, this option has no purpoae.
Tﬁvldence (Currently, this option has no purpose.)
3) Arc Initintes the alter-arc menu.
4) Cluster Performs disaggregation on the two specified nodes

and displays the parent node's resulting configuration
In the net representation (same option as In the graph

menu).
5) Main Menu | Returns control to the main menu.
8) Quit Terminates the program,

Table 10. Alter-menu's options and thelr purpose.

A.2.1.6 AlterArc Menu The alterarc menu was intended to be one of three

submenus which would provide options for altering the objects’ parameters. Currently, it
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is the only one of these submenus which exists, and it really has no value in the current
system. The available options and thelr purposes are listed in table 11,

2) Reverse Reverses the specified arc's orientation (this function
can be accomplished with the triangulation option
and, in any case, is of little practical use.).

3) Change Ratlo | (Currently, this option Is non-functioning)
4) (No optlon currently avallable)

8) Main Menu Returns control to the main menu,
6% Qult Terminates the program,

Table 11. AlterArc-menu's options and their purpose.

A.8.8 Starting Out Once the program is loaded and running, the main menu should
mysteriously appear in viewport 2. At this point you can elther load a file or begin from
scratch, To load a file choose the “Setup” option to Initlate the setup menu; from the
setup menu, choose “Load Data.” You will be prompted for the name of the data file to
load. If you enter nothing then the program will return and you can continue as if nothing
happened. However, {f you enter a file, then that flle must exist and contain information
in the correct syntax for the program to use or the program will crash (there Is no errar
checking Involved with loading data). To begin from scratch choose the “Create” optlon
to initlate the create menu, To create system all that is needed is the “Node" option In
the create menu, Using the node option will prompt for all the information needed during
creation, Several system aspects are important: 1) A parent node must contaln at least
two nodes to be a parent (a node cannot contain & single node). 2) A node must be part
of a connected graph (a node has to be connected to another node by an arc). The node

optiun prompts for all the necessary information.

The best way to become familiar with the process is to create and run through an
example. Figure 8 in Chapter III show a simple example; you may want to use this figure

to check your results.




Appendix B. Procedure and Function Reference Lookup

This appendix contains the descriptions of the global variables, and the procedures

and functions contained In table 12, The global variables are arranged by units, and the

procedures and functions are arranged alphabatically.

B.1 Global Variables

[Ports

Global variables |

GraphDriver Used to detect the system type.
GraphMode Used to detect the system graphics mode.
MaxX, Used for relative positioning within different viewports.
MaxY
BC, FC These are the current port background and text colors respectively.
cp ‘The current port number is stored here.
c¢pX1, epY1l  Current cursor position for port 1.
cpX4, cpY4  Current cursor position for port 4.
X132, X3, X4  Horlzontal scaling variables for separating the screen into the four
viewports,
Y3, Y3 Vertical scaling variables for separating the screen into the four view-
ports,
xAsp, YAsp  Horizontal and vertical screen resolutions.
AspectRatio  Screen aspectratio used for graphics.
{{ Menu Global variables |
Quit Used for menu control between and within menu procedures,
[Parts Global varlables ||
N, A Arrays for the “node” and “arc” pointers,
Ni, Al Counters to keep track of the total number of nodes and arcs that

have been created.

IMost of the procedures from the Menu Unit have been omitted because they ate of the sume [ormal
and serve as control mechanisms, They are not generally applicable procedures.
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Col
ActiveN
ActiveA

InActiveN
InActiveA
VisAre

VisNode

Problst

Lnode
Onode

Used to assign nodes different colors as they are created.
List of active system nodes.
List of active system arcs.

List of deactivated nodes,

List of deactivated arcs.

List of the visible arcs so they are only displayed once,

List of the visible nodes so arcs are only displayed between visible
nodes.

List of the nodes whose “Prob” parameters have been set so they are
only set once during an iteration.

The last created node, used to automatically create new arcs,

If there are two newly created nodes that have not yet been connected
by an arc, then this is the othar node.

TShow

Global variables ||

Goal
Path

Carcs

Used in triangulation, this is the goal node.

List variable used to bulld the path between two nodes, Used for
trlangulation.

List of arcs connacted to a node. Used in for triangulation.
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B.8 Procedures and Functions

“Probabllity Ratlo Graph Software Procedures

Append Lst {| Makenode Parts
AppendT Lst | MakePath Show
Cholce Ports || Mem!lst Lst
Cluster Show || Minlst Lst
Common Lst | Net Show
Connected Show || NewArc Parts
Delmem Lst || Newnode Parts
DrawArc Show || Nummem Lst
Drawpie Show || OtherNode Parts
Explode Show || Out Ports
FigNet Show || OutT Ports
FigProbs Show | Ple Show
FigRatlo Show || Rest Lat
FillBk Ports || RestT Lst
FindPath Show || ReverseArc Show
First Lst || Savedata Parts
FirstT Lat || SetPort Portis
Growup Show || SetProbs Show
HideArc Show || ShowAre Show
InitParts Parts | Showmenu Menu
InitPorts Ports || Sum Show
Loaddata Parts || Triangulate Show
Makearc Parts || Which Parts

Table 12, Procedures used in probability ratio graph software.

The procedure and function look-up follows the order in table 12, They are llsted in

the following format (only the relevant items are listed with each entry).

[ Semple procedure Unit contained in |

Function What it does
Declaration  How it's declared
Result type  What it returns if it's u function

Remarks General Information about the procedure
Restrictions  Things to be aware of
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See also
Example

Related procedures/functions
Sample program or code fragment

This guide only lists procedures and functions contained in the units Lst, Ports,

Parts, Show, and Menu, A Turbo Pascal gulde should be referenced for procedures and

functions contained in the original Turbo Pascal software.

["Append Tunction

Lst |

Function
Daclaration

Raesult type
Remarks

Restrictions

See also
Example

Returns the concatenation of X and Y In list format,

append(X, Y : String)

String

This function joins the two specified sttings in list format. That is,
with a comma separating the two strings.

The final string length Is limited to 288 characters. If the two spec-
ifled strings lengths are greater than 284 when added together (254
because & comma Is inserted between the two strings), then the re
turned string will be truncated at the 258th character.

AppendT

X = ac0,f;

Y :m g,thadf,v;

S :m append(X, Y);

in this example, S = a,c,0,{,g,th,adf,v

| AppendT' function

Lst |

Function
Declaration
Result type
Remarks

Restrictions

Concatenates two strings separated with a blank space.

appendt(X, Y : String)

String

This function joins the two specified strings In In sentence format.
That {s, with a space separating the two strings. It is used for sup-
porting the word wrapping capabllity while in the graphics mode.
String lengths cunnot exceed 265, This Is a limitation of Turbo Pascal
string data types. If the two string lengths exceed 254 when added

(254 because a space is inserted between them), then the resulting
string will be truncated at the 285th position.




See also

Append, FirstT, RestT

Example X i= "This unit is";
Y := 'made up of...":
S := appendt(X, Y);
In this example, S = '"This unit is made up of...’

[Cholce function T - Ports |
Function Accepts user input without disrupting the graphics mode.
Declaration  cholce
Result type  String
Remarks This function enables the system to read, echo, and delete characters

during Input In the graphics mode without disturbing the graphics
environment,
[ Cluster procedure Show |
Function Performs the “disaggregation” fuuction of probability ratio
grapha,

Declaration  cluster

Remarks This procedure gathers two nodes (vertices) in to one node. After
performing all of the necessary administrative functions on the sys.
tem variables it redisplays the new system configuration In the net
representation,

See also Explode, Triangulate

[ Common function “Lat |

Function Checks {f there any common members in the two specified
lists,

Declaration  common(lst1, 1st2 : String)

Result type  Boolean

Remarks This function operates on lists where the members are delineated
with commas.

See also Memlst

Example Istl := 'as,d,f";

16t2 1= 'w,r,t,d,q";
common(lstl, 1st2);
In this example, common = true

n




[CTonnected function Show |

Function Checks if two specified nodes are connected by an arc.
Declaration  connected(nodel, node2 : String)
Result type  Boolean
Remarks This function checks the two specified nodes’ connected arc (ConArc)
llsts for common members.
Delmem function ~ Lat]
Function Deletes all instances of X from the list Y,
Declaration  delmem(X, Y : String)
Result type  String
Remarks This function operates on lists where the membars are dolineatad
with commaa,
Example X 1w g
Y 1m ag,fir,t,0,d;
§ im delmem(X, Y);
In this example, S = a,f,r,t,d
[DrawArc procedure Show
Function Draws the specified arc In the apecified color.
Declaration  drawarc(S : String; K : Integer)
Remarks ‘This procedure porforma the calculations and Initiates the graphics
for displaying arcs.
See also ShowAre, HideArc
[ DrawPle procedure Bhow
Function Draws the specified node as a ple chart,
Daclaration  drawple(S : String)
Remarks This procedure displays the specified node us » ple chart with the
ple slicos representing the nodea in the embedded graph.
See also Ple, Net, I'igProbs
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[ Explode procedure Show |

Funection Performs the “aggregation” function of probability ratlo
graphs.
Declaration  explode(S : String)
Remarks This procedure replaces the specified node with its embedded graph.
The embedded graph's conditional representation is transformed into
a joint representation,
See also Cluster, Triangulate
u|| FigNet procedure Show ||
Function Sets the “Prob” relative to the arc ratios.
Declaration  fignet(C, S : String)
Remarks This procedure sets the “Prob” values of the members of a connected
graph relative to the ratlos of the arcs connecting the graph.
See also FigProbs
[ ¥igProbs procedure Show ||
Function Initiates the update of the node “Probs” tc reflect the con-

nacting arc ratios.
Declaration  figprobs(S : String)

Remaurks This procedure ls used in conjunction with FigNet, Sum, and Set.
Probs to update the probabilities of a connected graph.
See also FigNet, Sum, SetProbs
" FigRatio function Show ”
Function kigures the ratlo between two specified nodes. connecting arc
ratios,

Declaration  figratio(H : String)
Result type  Real

Remarks This function uses the path generated by FindPath/MakePath to
i figure tho ratio between two nodes, It Is used in the triangulation
procedure,
See also FindPath, MakePath, Triangulation
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[ FIBk procedure ”7”” Ports |

Funetion Displays a filled polygon with a border,
Declaration  filllbk(X1, Y1, X2, Y2, BC, TC : Integer)
Remarks This procedure is used for setting up the different viewports, and

scrolling functions and clearing viewports. X1 and Y1 are the top
right coordinates of the polygon, and X2 and Y2 are the lower left
coordinates of the polygon. BC is the background color and TC ls
the border and text color.

See also Out, InitPorts
[FindPath procedure | Show |
Function Finds the path between two nodes,
Declaration findpath
Remarks This procedure is used in conjunction with MakePath in the Trian-
gulate and Cluster procedures. The two nodes must be members of
the same connected graph.
See also MakePath, Triangulate, Cluster
[First Tunction Let ||
Function Returns the first member of a list.

Declaration  first(X : String)
Result type  String

Remarks This function’ operates on lists where the members are delineated
with commas,

See also FirstT, Rest, RestT

Example X = a,8,d,f
S = first(X);

In this examnple, S = a

[ FirstT function Lat ||

Functlon Returns the first member of the specified liat.
Declaration  firstt(X : String)
Result type  String

Remarks This function operates on llsts where the members are delineated
with hlank spuces.
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See also

See also RestT

Example X i= 'the node is not active...”;
S 1= firstt(X);
In this example, S = 'the’

[ Growup procedure ' Show |

Function _Changes the “Parent” of embedded nodes to their Grandpar-
ent, '

Declaration  growup(C, P : String)

Remarks This procedure is used in conjunction with the explode procedure.

See also Explode

~ [ HideAre procedure Show |

Function Removes an arc from the screen,

Declaration  hidearc(S : String)

Remarks This procedure draws over existing arcs In the background color ren-
dering the invisible,

See also DrawAre, ShowAre

|| InitParts procedure Parts ||

Function Initializes systom variables,

Declaration  inltparts

Remarks This procedure initializes the systern variables. If used while the
system has data, the will be lost, It gives no warnings.

[ TnitPorts procedure Ports |
Function Initializes the system screen and sets the output variables,
Declaration  initports
Remarks This procedure initiallzes the screen and the output variables that

deal with the screen parameters.
FilIBk




| Loaddata procedure Parts ||

Function Reads a specified data file and recreates the system as read
from the file.

Declaration loaddata

Remarks This procedure retrieves data from the specified file and creates the
nodes and arcs specified in the flle, The specified file must be in the
proper format or it will cause a runtime error. \

See also Savedata

| MakeArc procedure Parts ||

Function Controls the input and output functions for creating a new

arc. siblings.
. Declaration  makearc |
Remarks This procedure handles the input and output information gathering
' function for arc creation. It checks the nodes to ensure that they

share the same parent. It will accept the ratio as a single number or
as a fraction (.5 or 1/2).

See also MakeNode, NewArc

[MakeNode procedure Parts |

Function Controls input and output for creating a new node.

Declaration  makenode

Remarks This procedure handles the input and output information gather.
ing function for node creation. It querles for the needed initial pa-
rameters, checks for valld parenthood, and ensures the node will be
connected to a sibling node.

See also MakeArc, NewNode, OtherNode

[MakePath procedure Show |

Funetlon

Declaration
Remarks

See also

Creates a list which reprosents the connection path between
the specified nodes,

makepath(H, T, Sa : String)
This procedure bulld a list of arcs which connects the specified nodes

(H and T). This Is a recuraive procedure and “Sa” ls a parameter
used for controlling the recursion.

FindPath
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| Memlst function Lst ||

Function Determines whether a string, X Is a singular member of the
list, Y.
Declaration  memlst(X, Y : String)
Result type  Boolean
Remarks This function operates on lists where the members are delineated by
commas, If X or Y are empty, then the value of memlst is falsa,
See also Common
Example X = o
Y = c,d,as,n
If memlit(X, Y) then...
else,..;
In this example, memlst = true
[ Minlst function Lat |
Function Returns the specified list with all repeated members deleted.
Declaration  minlst(X : String)
Result tyye  String
Remarks This function operates on lists where the members are delineated
with commuas.
Example X im a,d,8,c,8,¢}
S := minlet(X);
In this example, S = a,d,c,s
[Net procedure Show |
Functlon Displays the specified node's embedded graph as a connected
graph of ple charts,
Declaration  net(S : String)
Remarks ‘This procedure calculates the positions of the children nodoes of “S*
and diaplays the childron as ple charts connected with arcs,
See also Ple
[NewArc procedure ~Parts
Function Initialiges & new arc pointor and sets the new arc’s parame-

ters,

"




Declaration  newarc(H, T ; String; R : Real)

Remarks This procedure creates a new arc and initializes the arc’s parameters
and echos the arc's creation to vlewport 4. “H" s the head, “T" Is
the tall, and “R" ls the ratio between them.

See also MakeArc, NewNode
[ NewNode procedure ~ Parts |
Function Initializes & new node pointer and sets the new node's pa-
rameters.
Declaration  newnode(Na, P : String)
Remarks This procedure creates a new node, initializes the node’s paramaters,

and echos the node’s creation to viewport 4. “Na” Is the node's name
and “P" ls Its Parent.

Se¢ alvo MakeArc, NewArc
[Nummem function ' — Lt |
Function Returns the number of members in a list,

Declaration  nummem(S : String)
Result type  Integer

Remarks This function operates on lists where the members are delineated
with commas.
Example S im asdf;

I i= nummem(S);
In this example, | = 4

[ OtherNode procedure Parts |

Function This procedure is called by MakeNode when the specified
parent contains no childron,

Declaration  othernode(P : String)

Remarks This procedurs ls called whon a node Ia created and the purent is
otherwlse childless, Parent nodes must contaln at lonst twa children,
See also MakeNode
[Out procedure “Ports ||
Funetion Outputs a llst atring with word wrapping to the current port,
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Declaration  out(S : String)

Ramarks This procedure outputs the string “S", which is a list where the
members are separated with commas, to the current port and enables
text wrapping while in the graphies mode.

See also OutT

[OutT procedure Ports |
Function Outputs a text string with word wrapping to the current port,
Declaration  outt(S : String)
Remarks This procedure outputs the string “S", which Is a list where the

members are separated with spaces, to the current port and enables
text wrapping while in the gruphics mode,

See also OutT
[ Ple procedure Show |
Function Sets the position und size parameters for displaying a large
ple chart,
Declaration  ple(S : String)
Remarks This procedure sets the position and radius for a lurge ple chart and
calls drawple to draw the actual chart,
See also Drawple, Net
Rest Tuncilon Tat ]
Function Returna the apecified llst with the first inember deletad,

Declaration  rest(X)
Result type  String

Remarks ‘I'his function operates on lista where the membors are delineatod
with commaa,

See also ReatT, Flrst, FlentT

Example X 1w aud,f;
8 1= rest(X)
In this examplo, 8 = aydl,f

[RestT Tunction Tt ]
Funetlon Roturna the specifiod list with the first member deloted,

; "




Declaration

restt(X : String)

Result type  String

Remarks This function operates on lists where the members are delineated
with blank spaces.

See also FirstT

Example tm 'the node s not active...;

8 tm restt(X);
In this example, S = 'node Is not active...’
[ReverseArc procedure Show |

Function Reverses an arc's orientation,

Daeclaration  reversearc(S : String)

Remarks This procedure hides the specified are, roverses its parameters, and
shows the new arc,

See also HideArc, ShowArc

[ Savedata procedure Parts |

Function Writes current systom data to the specified file,

Declaration  savedata

Remarks This procedure writes the active and inactive node llsts, the active
arc list, the node index, the nodes' namoes and parents, and the arcs’
parameters to an indicated file,

See also Loaddata

[ SetPort procedure “Porta |

Function Chungon the active graphice pott,

Declaration  sotport(l 1 Integer)

Remarks This procodure changon the active viewport te the apecifiod port, It
handlos all the edministrative overhead Involved with switching the
active output port.

[SetProbs procedure Show |

Function Normalises the “Prob” values over a connected graph,

Declaration  setproba(8 : String)

&0




Remarks This procedure is used in conjunction with FigNet, Sum, and Fig-
Probs to update the probabilities of a connected graph.

See also FigNet, Sum, FigProbs
[ShowArc procedure ' Show |
Function Draws the specified arc in the color of the head node.
Declaration  showarc(S : String)
Remarks This procedure ensures that the specified arc is connecting two nodes

that are indeed visible. If the two nodes are visible, ShowArc draws
(by calling DrawArc) the arc In the head node’s color and outputs
the ratlo to port 4.

Ses also DrawAre, HideArc

[Showmenu procedure Menu |
Function Outputs the specified menu options to the menu port (2).
Declaration  showmenu(S : String)
Remarks This procedure outputs the specified menu options to port 2. “S" lsa

list with six elements. The elements represent the displayed options
for » particular menu.

TSum function Show |

Function Sums the “Prob" values for a connected graph,
Daclaration  sum(8 : String)
Raesult type  Real

Ramarks ‘This procedure la used In normalizing the “Prob” values of & con-
nected graph. It calculates the sum of the “Prob" values.

See also FigProbs, FigNet, SetProbs

[Tilangulate procedure Show |

Funetion Performas the “triangulation” function of probability ratlo
graphs,

Declaration  triangulate

Remarks This procedure prompta for the node betwoen which to trlangulate.

It uses FindPath and MakePath and presents the path so the user
can choose which arc to replace.
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See also

Cluster, Triangulate

['Which Tunction Parts |

Punction
Declaration
Result type
Remarks

Example

Returns the numerlcal value of the specified index.
which(S : String)
Integer

‘This function is used in the identification of the nodes and arcs. The

nodes and arcs are indexed in an array format and by retrieving the

numerical indox the record values can be retrleved and manipulated.
tm ‘N12'

T := which(8)

In this example, T = 12,
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-

S Incorporating techniques for coping with uacertainty in the decision support systems
has proven to be a fertile environment for creative ideas. Representations of uncertainty
abound and no representation can be said to be inherently incorrect. From a theoretical
standpoint, a viable solution must be coherent and logically consistent. Probability theory

demon@trates these characteristics while, as of yet, other methods do not.

The purpose of this study was to lrivestlgate‘ specific topics in uncertainty reasoning:
1) Probability ratio graphs as a representation of the probability model; 2) Dealing with
missing information when system parameters are left unspecified; 3) Investigating the
difference between probabilistic and causal independence; and, 4) Characterizing secondary

uncertalnty as spurious evidence and including it In the Inference process.

It was shown that probability ratio graphs are a viable method for representing
uncertainty, and a method for representing independence with probability ratio graphs is
presented. Assuming probabilistic independence for missing information is shown to have
intuitive and computational benefits; also shown is that where secondary uncerta.‘int,\' is

included In the inference process has great impact on the computational complexity of an

inference process.




