Title: NMR Measurements of Solvent Self-Diffusion Coefficients in Polymer Solutions

Authors: Frank J. Blum, Stephen Ickinup and R. Allen Waggoner

Abstract: The transport of solvents and other small molecules in polymer solutions is important in many areas such as reaction rates, drying of coatings, plasticizer loss, curing of resins, elimination of residual monomer, and controlled drug release. Some of the work done in our laboratory on the diffusion of small molecules in polymer solutions and dispersions is reviewed. The diffusion data was used to test the Vrentas and Duda's free-volume theory for self-diffusion coefficients; test the independence of the normalized solvent self-diffusion for several polymer-solvent systems; and predict the solvent loss curves for drying of coatings based on solvent self-diffusion coefficients.

Pages: 3

Subject Terms: Polymers, diffusion, NMR

Distribution/Availability: Approved for Unlimited Public Release

Document Number: UNR-FDB - 13

Report Date: November 28, 1989

Page Count: 3

Abstract Security Classification: Unclassified

Contact Person: Kenneth J. Wynne

Telephone: 202-696-4400

Office Symbol: ONR (Chemistry)
OFFICE OF NAVAL RESEARCH

Grant N00014-88-K0109

R&T Code 413m005

Technical Report # UMR-FDB-13

NMR Measurements of Solvent Self-Diffusion Coefficients in Polymer Solutions

by

Frank D. Blum, Stephen Pickup and R. Allen Waggoner

Department of Chemistry and Materials Research Center
University of Missouri-Rolla
Rolla, MO 65401

(314) 341-4451

Prepared for Publication in

Polymer Preprints

November 28, 1989

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
NMR Measurements of Solvent Self-Diffusion Coefficients in Polymer Solutions

Frank D. Blum, Stephen Pickup and R. Allen Waggoner

1Department of Chemistry and Materials Research Center
University of Missouri-Rolla
Rolla, MO 65401

2Department of Chemistry
University of Missouri-Columbia
Columbia, MO 65211

INTRODUCTION

The transport of solvents and other small molecules in polymer solutions is important for a variety of reasons. For example, small molecule transport in polymer solutions may control the rate of chemical reactions, the drying of coatings, the loss of plasticizer, curing of resins, elimination of residual monomer, and controlled release of drugs. The role of diffusion in different chemical systems has been reviewed(1,2) along with the measurement of diffusion coefficients in general(3-4).

In this paper we review some of the work which has been done in our laboratory on the diffusion of small molecules in polymer solutions and dispersions. The measured diffusion coefficients are shown to be useful for scientific studies as well as being predictive tools for industrial processes. For reference a number of reviews have been written on the technical aspects and applications of the technique (5-9). Some of these(5,8) have sections dealing with polymer systems.

PULSED-GRADIENT SPIN-ECHO NMR

The potential use of NMR to measure self-diffusion coefficients was recognized as early as the 1950’s. The basis of the technique is that the nucleus spins are tagged via their precessional frequencies. The precessional frequency of a nuclear spin, ω, is given by:

\[ω = -γH(x) \]

where γ is the magnetogyric ratio of the nucleus and H is the magnetic field strength which can be made to vary as a function of position, x. Normally, the magnetic field is uniform (homogeneous) over the sample volume so that all nuclei of the same type have the same resonance (precessional) frequency. If a magnetic field gradient is used (i.e. H varies with position), the precessional frequencies will vary with position and consequently the nuclear spins will be “tagged” by their position.

The basic technique currently used by most researchers is the pulsed-gradient spin-echo (PGSE) method based on the work of Stejskal and Tanner(10) as modified by Stilbs and Moseley(11). The pulse sequence is shown in Figure 1. It consists of a normal spin-echo pulse sequence with two magnetic gradient pulses added. During the spin echo (90°-Δ-180°-Δ-echo) sequence, normal spin-spin relaxation, T2, occurs during the time Δ after which the echo is formed. A series of spectra are then collected as a function of the duration of the magnetic field gradient.

![Figure 1. The PGSE pulse sequence](image)

pulse, δ. The resulting intensity can then be represented by:

\[I = I_0 \exp(-2ΔT_2) \exp(-γG^2Δ^2(D/15)) \]

where G is the magnetic gradient field strength and D is the self-diffusion coefficient. Other complicating terms have been omitted. Typical G values used range from 1 to 100 G/cm. It is important to note that if the experiments are done at fixed Δ the diffusion coefficient can be probed independently of T2, however the value of T2 still has an important effect in the attenuation of all of the spectra. In practical terms this means that as the diffusion coefficient gets slower (this usually corresponds to smaller T2), larger gradients are needed to measure self-diffusion coefficients.

SOLVENT DIFFUSION AND FREE VOLUME

Shown in Figure 2 is an example of the results of PGSE experiments on toluene in polystyrene solutions(12) as a function of temperature. These results show that the solvent self-diffusion coefficient varies over two orders of magnitude from 0 to 100% polymer. These measurements were made on JEOL FX-90 and FX-100 instruments with field gradients of about 5 G/cm. To obtain self-diffusion coefficients at higher concentrations of polymer a larger gradient is needed such as that used by von Meerwall (5,7). These data are adequately described by the free-volume based theory of Vrentas and Duda (13) using their covolume approach which requires that two parameters to be fitted to the experimental data.

![Figure 2. Self-diffusion coefficients of toluene in polystyrene solutions(12).](image)
divided into loss controlled by volatility, at early times, and evaporation, SOLVENT DIFFUSION AND DRYING diffusion coefficient is complicated because contributions from the solvent Figure 3. Normalized self-diffusion coefficients of toluene in poly styrene solutions.

There are a variety of mechanisms which can be used to rationalize the apparent superposition of diffusion coefficients including obstruction(12) and also free volume effects(17). Regardless of the cause of this phenomena, it can still be used for its predictive nature. An example, of this was demonstrated in the diffusion of toluene in swollen polystyrene beads(18). In this system it was found that the self-diffusion coefficients of the solvent within the beads could be predicted on the basis of the solution diffusion coefficients plus knowledge of the solvent uptake from the swelling ratio. In this case the actual measurement of the diffusion coefficient is complicated because contributions from the solvent inside and outside the beads, plus exchange, must be considered.

SOLVENT DIFFUSION AND DRYING OF COATINGS Solvent self-diffusion coefficients have been shown to be useful for prediction of physical phenomena such as the drying of coatings. Solvent loss curves for coatings systems usually show behavior which can be divided into loss controlled by volatility, at early times, and evaporation, at later times(19). In the diffused controlled region, the mutual diffusion coefficient of the system should control the transport of solvent to the surface of the coating. The NMR experiment provides a measurement of the self-diffusion coefficient. Fortunately, in the regime of interest (high solids contents) the two measurements approach each other, being identical in the limit of zero solvent content. An example of a comparison of data for the toluene-poly styrene system at 110 °C is shown in Figure 4. The self-diffusion coefficients were interpolated from data at temperatures higher and lower than 110 °C and the mutual diffusion data was from the literature(20). As can be seen from the figure, the two sets do approach each other at high concentrations of polymer.

Shown in Figure 5 are the curves for the loss of toluene as a function of time along with our predictions(21). To simulate the drying curves a finite difference model was used(21) along with the evaporation rate of pure toluene, the Flory-Huggins interaction parameter, and solvent self-diffusion coefficient data(12). The solvent self-diffusion data were extrapolated and interpolated with the use of the Vrentas-Duda theory(13). As can be seen in the figure, the agreement between the experimental and predicted diffusion curves is excellent, particularly considering that no adjustable parameters were used.

CONCLUSIONS

The NMR technique for measuring self-diffusion coefficients has been applied to a variety of solvent-polymer systems. There are a variety of important problems which can be solved or understood using this type of data. In the future, more and further-reaching applications are expected.

REFERENCES
12. S. Pickup, F.D. Blum, Macromolecules, in press.

ACKNOWLEDGEMENTS

The financial support of the Office of Naval Research is gratefully acknowledged.