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PREFACE
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Engineer, under direct supervision of Mr. Douglas G. Outlaw, Chief, Wave
Processes Branch (CW-P), CERC, and under general supervision of Mr. C. Eugene
Chatham, Chief, Wave Dynamics Division (CW), Mr. Charles C. Calhoun, Assistant
Chief, CERC, and Dr. James R. Houston, Chief, CERC. Mr. Peter J. Grace, Wave
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ing wave gages, collecting and reducing data, and preparing the report.
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the original directional wave simulation and analysis software and provided
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Secretary, assisted in preparation of the final report, and Mrs. Shirley A. J.

Hanshaw of the WES Information Management Division edited this report.




Commander and Director of WES was COL Larry B. Fulton, EN. Technical
Director was Dr. Robert W. Whalin,




CONTENTS

Page

PREFACE. .. e e e e e e e e 1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT....... 4
PART I: INTRODUCTION. ...ttt it imneisiianesanaenanaananns 5
PART II: SIMULATION AND GENERATION THEORY.....................cu... 9
Wave Information Studies Deepwater Storm Hindcast.............. 9
Numerical Transformation to Shallow Water...................... 13
Directional Wave Spectrum Parameterization..................... 20

Wave Elevation Realizations.................cciiiiiiiunnnennnnn 25
Transfer Functions............. . it 28

PART III: SPECTRAL ANALYSIS THEORY. ..........0tiiuiunnenennennnnanns 30
Time Series Analysis.......... ... . i i 30
Directional Spectral Analysis............... ... i, 31

RAO FUNCEIiomS. ... i i i i i ittt it tian i nnnn 36

PART 1IV: TEST SETUP. ... .. i it i it ittt eaanenens 39
Yaquina Bay Physical Model............ ... ... iiiiuinnnnnnn. 39

Wave Basin and Generator........... ... .ceiiiuinnnneenennnnenns 41

Wave Elevation Measurement System..............ccovenueiennnnnnn 41

Data Acquisition and Control System..................ovounn.... 43

Test Case Description........ ... ... i iiinnnnnnnns 45

Test Case Parameters.............. .ttt etinnrennnannenns 46

PART V: TEST RESULTS AND ANALYSIS...... ... ...t 49
Surface Elevation Time Series Plots................ccoiu.nun.n. 49
Frequency SPeCtra. .. ... .ciiiiiiiiine et teneennesnnectneenenas 49
Directional Spreading Functions................... .. .. .. ... .. 58

RAO Functions. ... ... ...t it ittt tneeeaaninaans 61

Peak Wave Periods.......... ...t ierennnnnens 61
Zero-Moment Wave Heights........... ... ... . . .. 65

PART VI: SUMMARY AND RECOMMENDATIONS. .............c.0iiiiiinnernn.n 70
REFERENCES . . .. i ittt i i ittt ittt et tanaanerannnanenns 75
APPENDIX A: LISTING OF SHALLOW-WATER WAVE SPECTRA................... Al
APPENDIX B: WAVE ELEVATION TIME SERIES..............ccttiiinnennnnn Bl
APPENDIX GC: MEASURED FREQUENCY SPECTRA...........cniiivirvnnenennenn Ccl
APPENDIX D: MEASURED DIRECTIONAL SPREADING FUNCTIONS................ D1
APPENDIX E: RAO TRANSFER FUNCTIONS. ...........0.iitiietinennnnnnnnns El
APPENDIX F: MEASURED PEAK PERIODS AND H,, HEIGHTS ................... Fl
APPENDIX G: NOTATION. .. ... ..ttt ittt sttt tneetnernaaenaaens Gl




CONVERSION FACTORS, NON-SI TO SI (METRIC)

UNITS OF MEASUREMENT

Non-SI units of measurement used in

(metric) units as follows:

this report can be converted to SI

Multiply By _
degrees (angle) 0.01745329
feet 0.3048
horsepower (550 foot-pounds 745.6999

(force) per second)

inches 2.54
knots (international) 0.5144444
miles (US nautical) 1.852
miles (US statute) 1.609437
pounds (mass) 0.4535924
square feet 0.09290304
square miles 2.589998

To Obtain

radians
metres

watts

centimetres
metres per second
kilometres
kilometres
kilograms

square metres

square kilometres




DIRECTIONAL SPECTRAL WAVE TRANSFORMATION IN THE NEARSHORE REGION

DIRECTIONAL SPECTRAL PERFORMANCE CHARACTERISTICS

PART I: INTRODUCTION

1. Irregular waves are routinely used in physical model tests of port
facilities and breakwaters. Real ocean waves are short-crested, however, and
have directional spreading which spreads energy over many directions. Sand
et al. (1983) measured diffracted wave energy in the lee of an entrance
breakwater for unidirectional and directional spectral waves. They found
larger waves for the directional cases. The directional spectral wave genera-
tor (DSWG) of the US Army Engineer Waterways Experiment Station’s Coastal
Engineering Research Center (CERC) provides a means to simulate real ocean
environments in a laboratory physical model by incorporating this directional
spreading. Thus, it appears that the inclusion of directional spreading can
have a significant effect in the design of port facilities and breakwaters.

2. This report describes a three-dimensional (3-D), physical model
study of a harbor entrance breakwater in Yaquina Bay, Oregon, using unidirec-
tional and directional spectral waves. The model consists of an entrance
channel protected by two rubble-mound jetties with a sloping bottom offshore
of the entrance. The site is characcerized by complex bathymetry, an offshore
reef, and numerous rock outcrops. Unidirectional and directional spectra,
representative of the most severe hindcasted storms in the past 20 years, were
selected for study. A range of spectral parameters, including frequency and
directional spreading, was modeled. Surface wave elevations were measured
offshore and near the jetty head for two water depths: a low water level of
-58 ft* mean lower low water (mllw) (+0 ft) and a high water level of -68 ft
mllw (+10 ft) representative of a +8-ft tidal height and a 2-ft storm setup.
Thus, effects of spectral parameters, including frequency and directional
spreading on wave transformation in the nearshore region, are presented and
compared. The study is divided into three phases, each contained in a

separate report.

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 4.




3. The first phase, contained in this report, documents the initial
calibration phase for verifying directional performance characteristics of the
hindcasted storms. A series of six storms was selected from the Wave Informa-
tion Studies (WIS) data base. They were multimodal in frequency and direction
with locally generated wind-sea and distant swell components. These spectra
were used as input to the numerical spectral wave model SHALWV (Hughes and
Jensen 1986) that includes all source/sink functions and finite depth mecha-
nisms such as refraction, shoaling, wave boiltom interactions, and depth-
related breaking. This numerical model transformed the deepwater spectra to a
shallow-water depth of 58 ft, corresponding to the location of the wave
generator in the model. The numerical model results were then used for
physical model control signal generation. Peak wave periods were 12.5, 14.3,
and 16.7 sec. Significant (zero-moment) wave heights ranged from 14.4 to
22.3 ft. For the unidirectional spectral cases, the overall mean wave
direction was selected as the direction of the swell component. Six equiva-
lent directional spectral cases were computed with peak periods of 14.3 and
16.7 sec and wave heights ranging from 15.4 to 23.0 ft. A description of the
WIS hindcast model and the shallow-water transformation algorithm is contained
in Part II.

4. The spectra were simulated as the product of a frequency spectrum
and a directional spreading function. The frequency spectrum was discretely
input at 20 selected frequencies of the numerically simulated spectra. For
the directional spreading function, an empirically derived, wrapped normal
spreading function was used for the unidirectional cases and discretely input
at 16 equally spaced angles for the directional spectral cases. Control
signals for each of the 61 paddles of the DSWG were created. Stroke time
series were simulated in the frequency domain using a double summation,
deterministic amplitude, random phase model (DSA method). 1In Part II, a
description of this generation process for directional spectral waves in
laboratory basins is presented.

5. Part III describes the theory of spectral ar.lyses of the measured
data. Included are frequency domain spectral, response amplitude operator
(RAO), and directional spectral analyses. Standard fast fourier transform
(FFT) techniques, including zero-meaning, windowing, and band averaging, are
used for the spectral analysis. Because of leakage around and under the DSWG,

electronic and mechanical losses, and basin response characteristics, the




original measured spectra did not usually reproduce the target spectrum. In
addition, a water depth of 50 ft instead of 58 ft was inadvertently used when
simulating the control signals. Thus, an RAO transfer function was calculated
for each control signal to compensate for observed variations in peak period,
wave height, and spectral shape. This RAO is the ratio of measured to
predicted spectra at each frequency. After a run was completed, the RAO was
calculated. It was then used to correct the control signal prior to making
another run. The process can be iterative with several corrections required
before a faithful reproduction of the desired spectral shape is obtained.
Finally, a method based on the fourier series expansion of the directional
spectrum was used for directional spectral analysis.

6. The purpose of the first phase was to verify the accuracy of the
wave spectra created for a depth of 58 ft. Thus, the first phase consisted of
three series of tests for each of the six unidirectional and six directional
cases. The first series of 12 tests was measured at a depth of 50 ft and, as
expected, the measured parameters turned out to be too small. The control
signals were then corrected using the RAO for the particular storm and run
again at the 58-ft level in series 2. Finally, the third series of 12 tests
was run with the same corrected control signals from series 2 at the high
water depth of 68 ft.

7. The second phase (Report 2) quantifies wave transformation between
the six unidirectional and directional spectral cases in the nearshore region
at the two water levels of 0.0 and +10.0 ft mllw. Three gages were used: one
as an offshore reference or input gage and two others near the jetty head.
Frequency response and coherence functions between the input and the two jetty
gages are calculated to illustrate wave transformation on the shape of the
frequency spectra. Effects of wave transformation on other spectral param-
eters are also presented and compared.

8. In the last phase (Report 3), the results from a parameter study on
the effects of frequency and directional spreading are given. Frequency and
directional spreading were varied within a prescribed range using the same
peak period, wave height, and mean wave direction of the original directional
spectra in phase 1. Low and high values of frequency and directional spread-
ing were v ~ 1.0 and 7.0 and o = 10 and 30 deg, respectively. Thus,

24 cases were simulated for phase 3. The control signals were first cali-

brated as in phase 1 using a seven-gage array. During the calibration




process, three to four runs of each of the 24 cases were run in an iterative
process to accurately reproduce the desired target spectra and ascertain the
effectiveness of repeated iterations. The final step, analogous to phase 2,
quantified wave transformation in the nearshore region for the 24 cases using
the three-gage setup. This phase of testing involved over 120 runs of the

24 cases.

9. In Part IV, dew.criptions are given of the test setup, including the
Yaquina Bay physical model, the direct.unal wave basin and generator, and the
wave elevation measurement system. Test cases are described, and test case
generation and analysis parameters are given. The directional wave basin was
lined with wave absorber frames to minimize reflections. Capacitance wave
gages with remote-controlled stepper motors were used. They were arranged in
a 2-3-1-7 linear array incorporated in a cross pattern centrally located 20 ft
in front of the DSWG about its center line. The unit lag spacing was designed
to optimize resolution within the lower and upper cutoff frequencies while
minimizing spatial aliasing.

10. Test results and analyses are preseated in Part V. Time domain
analysis results include time series traces of wave elevation for each test
case. Frequency domain results include comparisons of predicted and measured
peak wave periods, zero-moment wave height, peak wave direction, frequency
spectra, and directional spreading function. Also, RAO transfer functions as
a function of frequency for each test case are presented.

11. Finally, Part VI contains a summary of result: and recommendations
for future research and improvements. The recommendations of the Interna-
tional Association of Hydraulic Research (IAHR) (1986) List of Sea State
Parameters are followed wherever possible throughout this report and in the

computer software implemented for wave generation and analysis.




PART II: SIMULATION AND GENERATION THEORY

Wave Information Studies Deepwater Storm Hindcast

12. WIS is a long-term wind wave hindcast program funded by the US Army
Corps of Engineers (USACE) to provide a 20-year wave climatology along all
United States coastlines. At the onset of the project, USACE recognized that
long-term gaging operations covering extensive coastal locations are extremely
expensive and too time consuming to quantify climatological changes in the
wave environment. Hence, a hindcast study was initiated employing historical
weather information as input to state-of-the-art numerical wind and wave
models. It is recognized that the synthesized wave climates are not perfect,
but from all comparisons to measured data sets, the hindcast results are found
to be relatively consistent.

13. The WIS study is divided into three primary parts: Phase I,
Phase 1I, and Phase IIl (e.g., Corson et al. 1987). The reasoning for the
division is based on a certain scaling constraint. The Phase I portion of WIS
relies on the construction of large-scale synoptic events that are on the
order of 100’'s of nautical miles, with temporal changes greater than 6 hr.
This includes creation of the wind fields which feed energy back into the wave
field. Phase II is based on much smaller scale features, incorporating the
Phase I wave information and secondary energy sources defined from the
specification of mesoscale events superimposed on the synoptic scale features.
The atmospheric response scales for this phase are on the order of 10's of
nautical miles, and temporal changes are on the order of 3 to 6 hr. The Phase
IIT portion of WIS defines the wave climate in the nearshore region. The
method of solution includes transformation of Phase II wave estimates to
shallow water where the mechanisms of refraction, shoaling, and nonlinear
transfers of energy describe the changes in the wave climate. Only the
Phase I and II portions of WIS were used in this study.
121 delin cedure

14. The procedure employed in the calculation of the deepwater
(Phase I) wave climate is threefold. Digital pressure field information is
obtained from Meteorology International, Inc., through the Fleet Numerical
Weather Center. These data sets are used to compute (Corson et al. 1980)

surface pressure fields for use in a Planetary Boundary Layer Wind Model




(Resio et al. 1982) to generate wind fields. The modeled region includes the

entire North Pacific Ocean (Figure 1). Ship observation wind data are then
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Figure 1. WIS Phase I model grid

blended into the simulated wind fields which are verified by existing data
sources. Finally, the wave modeling continues with the WIS discrete spectral
wave model (Resio 1982).

15. The wind field information is used as the governing input to the
discrete spectral wave model. In the area defined by the storm system, local
wind-seas are created. Energy from the wind field is directly transferred to
the water surface where it promotes wave growth. Nonlinear wave-wave interac-
tions (Hasselmann 1962) transfer packets of energy from frequency band to
frequency band, reestablishing a stable energy level. As the storm propagates
toward the east, the local wind-sea will, by the wave model's definition,
transform into swell conditions no longer capable of receiving additional
energy from the winds. Hence, a two-population wave system is simulated.

16. The Phase II portion of the study is analogous to Phase I, with an
additional source of wave input defined at its outermost boundary from the
Phase I hindcast effort. Also, the grid size is reduced from approximately
120 to 30 nautical miles (Figure 2). All wave and spectral estimates employed

10
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Figure 2. WIS Phase II model grid

in this study were derived from Phase II sta 42, located west of Yaquina Bay
(44.82° N 125.01° W).
Deepwater storm conditions

17. ‘.wenty years of hindcast information is generated at 3-hr inter-
vals, or 58,440 estimates of wind-wave and swell conditions. This time series
is then massaged into more usable products, summarized in the WIS data reports
for Phase I (Corson et al. 1986) and Phase II (Corson et al. 1987). Table 1
is an example from these data reports showing extreme wave heights in metres
for each storm condition tabulated on a monthly basis for Phase II sta 42.
The top five storms were selected as the most representative extreme condi-
tions. Also included were preliminary wave estimates from a WIS hindcast of
the 22-31 January 1983 storm sequence. Maximum conditions in the six storm
events were not always selected, however, to allow some variation of peak
periods. Table 2 lists zero-moment wave height H,, ,* peak period T, ,

principal wave direction, and wind speed and direction for the six deepwater

* For convenience, symbols and abbreviations are listed in the Notation
(Appendix G).
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wave conditions obtained from Phase I. Directions arc measured counterclock-

wise from east and are the directions from which the wind and waves come.

Numerical Transformation to Shallow Water

18. For each wave estimate tabulated by WIS, two-dimensional (2-D)
spectra are also provided. The spectra are defined for 20 frequency bands
(from 0.03 through 0.22 at 0.01-Hz intervals) and 16 direction bands (at
22.5-deg intervals). It was found that these estimates were representative of
deepwater conditions and not indicative of conditions existing at the wave
generator located in a water depth of 58 ft (1.29-ft model). The required
estimates for this depth were provided employing SHALWV, a time-dependent,
arbitrary water depth pseudo-discrete spectral wave model (Hughes and Jensen
1986) .

19. The computer program SHALWV, similar in structure to the WIS
deepwater discrete wave model (Resio 1982), solves the energy balance equation
using finite difference techniques. Information is stored in a discrete
matrix of frequency and direction bands for each computational point, but the
sources and sinks in the energy balance equation associated with energy input,
transfer, and dissipation are represented in a parameterized fashion. Wave
energy in each discrete frequency-direction band is propagated independently
using a first-order upstream scheme. This is a stepwise solution that
estimates for each discrete band the wave ray along which the energy contained
in that band must propagate to arrive at the grid point of interest by the end
of the time-step. An estimate of this energy is obtained by an interpolation
method that first projects the wave ray farther back in time until a grid
boundary is crossed. Finally, this estimated energy is propagated along the
wave ray as refraction and shoaling effects are estimated, reaching the grid
point at the end of the time-step. After the propagation sequence, energy is
added to or removed from each discrete energy band by the source terms. At
the end of the time-step, the directional spectrum at each grid point is the
sum of the independently propagated spectral elements and the changes in
energy caused by the selected source/sink mechanisms.

20. Although the input wave spectrum derived from the WIS data base and
SHALWV are both time-dependent, the physical model could not vary input condi-

tions to simulate a storm sequence. Hence, SHALWV was run in a steady state

13




mode. The required input spectral conditions (Table 2) were duplicated for
approximately 10 hr (prototype) to ensure that all input energy from the
boundary had sufficient time to reach the shallow-water locations. Also, a
representative wind condition was employed, derived from vector averaging each
3-hr wind occurring during the elapsed simulation period.
SHALWV modeling procedure

21. All SHALWV simulations were performed on a 5-nautical mile grid,
covering approximately 300 square miles (Figure 3). The width of the grid was
defined so that the WIS Phase II, sta 42, location and the output location

(for future physical modeling studies) would fall on a grid intersection. The
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north/south extent of the gril was selected so that bottom topographic
features to the southwest of Yaquina Bay were adequately resolved. All water
depth estimates, defined at each grid intersection, were based on an averaging
procedure accounting for the variation surrounding each point. In general, if
a shallow-water depth existed near the grid point, water depths were strongly
weighted with respect to the depth of the shallowest point in the region.

22. An accurate representation of wave climate in a study area is
strongly influenced by its input conditions. This is true for both physical
and numerical model studies. As the boundary information becomes more
representative of actual conditions, the results become more refined. For
example, one could describe input waves (assuming an irregular wave environ-
ment) in the form of H, , T, and (for the 2-D case) 3 . One could also
estimate the same input via empirical Joint North Sea Wave Project (JONSWAP)
(Hasselmann et al. 1973) spectral parameters defined by T, , Hy , and ;
as before and, in addition, a Phillips’ equilibrium constant a , a spectral
peakedness or peak enhancement parameter <y , and two spectral width param-
eters o, and o0, . A more complex and better description would be in terms
of a one-dimensional (1-D) frequency spectrum and an associated 3 of the
spectrum. Finally, one could define the directional distribution in addition
to the frequency distribution defining a 2-D spectrum, independent of external
assumptions governing each distribution. As the number of dependent variables
increases, the number of assumptions associated with a distribution decreases
(Table 3). Thus, if high resolution 2-D spectra exist, one should use them.

23. Three methods based on the input boundary conditions in Table 3
were used to transform each of the deepwater storm conditions to shallow
water. The amount of energy was kept constant in each. Test methods 1 and 2
were described by the actual WIS Phase II 1-D frequency spectra ¢ and an
assumed Cosine directional distribution about 6 . Test method 1 (swell
only) was simulated without additional wind sources and was a baseline for
comparisons of the net effect of local wind-wave generation. Method 2
incorporated wind-sea and swell components. Finally, method 3 used the full
hindcast frequency and spreading estimates from the WIS Phase II data base.
Shallow-water storm conditions

24, Table 4 lists the prototype shallow-water spectral parameters for
the six storm cases. Test methods 1, 2, and 3 results are labeled "swell

only," "wind-sea and swell," and "directional cases,” respectively.
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Table 3

Resolution of Input Spectral Conditions

Input Type

Parameters

Wave parameters

Spectral parameters

1-D spectrum

2-D spectrum

(Tp, Hoo, 8)

(Tp, @, 7,

g)

031 ab!

E(f), ¢

E(f,8)

—  Assumptions =

Frequency distribution
Directional distribution

Directional distribution

Directional distribution

None

Table 4

Shallow Water Prototype Wave Parameters

Method 1 Method 2 Method 3

Swell Only Wind-Sea & Swell Directional Cases
Storm TP Hao 6 Tp Hoo f T, Hyo 6
Year sec ft (m) deg sec ft (m) deg sec ft (m) deg
1969 14.3 16.7(5.1) 15 16.7 22.3(6.8) 34 16.7 23.0(7.0) 37
1970 14.3 15.1¢4.6) 9 14.3 19.0(5.8) 17 14.3 19.0(5.8) 18
1972 12.5 12.8(3.9) 19 12.5 14.4(4.4) 20 14.3 15.4¢4.7) 13
1973 14.3 15.4(¢4.7) 15 14.3 16.7(5.1) 17 14.3 17.1(5.2) 7
1974 16.7 15.7(4.8) 21 16.7 19.0(5.8) 17 16.7 20.3(6.2) 30
1983 16.7 16.7(5.1) 14 16.7 18.7(5.7) 16 16.7 20.3(6.2) 16
Figures 4a to 4f show the frequency spectra for each of the six storms. The

x-axis ranges from 0.02 to 0.24 Hz.

The y-axis is scaled from 0 to 90 m?/Hz.

As expected, the inclusion of wind effects drastically changes the energy

level in method 2 relative to the "swell only" method 1.

Estimating the 4

and the directional distribution by a Cosine® enhances the energy level within

three frequency bands centered on T, .

equilibrium state when the wind speeds are sufficiently high.

Also, the spectrum is forced to a new

The one

exception is for the 1972 storm (Figure 4c), where the difference between

method 1 and method 2 spectral shapes is unchanged at the peak but shows signs

of generating a secondary peak at 0.16 Hz.
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Figure 4. Shallow-water prototype frequency spectra (Sheet 1 of 3)
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25. Figures 5a to 5f illustrate the directional distribution for the
six storms. The x-axis is from O to 360 deg, with increments of 22.5 deg.
The y-axis ranges from 0.0 to 4.0 m?/rad. All are single peaked except for
the 1969 storm which indicates a secondary peak at 67.5 deg. In general, the
actual directional distribution (i.e. test method 3) deintensifies the peak of
the distribution and promotes a wider distribution. The differences in
directional distributions between the three methods of numerical wave trans-
formation vary according to the storm. The differences are slight in the
1973, 1974, and 1983 storms. In the 1969, 1970, and 1972 storms these
differences are appreciable.

26. These results are only indicative of these specific tests and
cannot be generalized to other input conditions. Based on this evaluation,
the method 2 results were used to model the unidirectional series cases and
the method 3 results for the directional series cases. Appendix A contains
complete listings of the frequency spectrum and directional spectrum for the

six unidirectional and six directional spectral cases.

Directional Wave Spectrum Parameterization

27. A directional or unidirectional wave spectrum S(f,f) 1is usually
parameterized as the product of two parts: a 1-D frequency spectrum S(f)

and a directional spreading function D(f,§) as

S(f,0) = s(f) D(f,6) (1)

where
f = frequency
§ = wave direction

The frequency spectrum and spreading function are subject to the following

constraints:
2r
S(f) = [ S(f,0) dé (2)
0
2x
J ooy -1
0
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Detailed discussions of the frequency spectrum and spreading functions are in
the paragraphs below.
Frequency spectrum

28. The desired or target frequency spectrum may be input in one of two
ways. It can be calculated according to the formula for an empirical TMA or
Ochi-Hubble or input discretely from a numerical or field observation. Any
number of frequencies can be used, and the spectrum can be multimodal (i.e.
with multiple peaks).

29. The depth-limited TMA spectral form is a function of five param-
eters: fp , a, v, o, and water depth h . The first four parameters
are those associated with the JONSWAP spectrum. The peak enhancement factor
controls the peakedness of the spectrum and typically varies from 1 to 3.3 for
sea conditions to 7 and higher for swell waves. Both a and vy influence
the energy contained in the wave spectrum. Typical values for the left o,
and right o, spectral width parameters are 0.07 and 0.09, respectively.

Like the JONSWAP spectrum, a wide range of single peaked spectra may be
simulated by varying these five parameters.
Directional spreading function

30. The directional spreading function may be either an empirical
wrapped normal (Borgman 1984) or input discretely at even increments within
360 deg. Values of the spreading function between 181 and 359 deg are usually
set to zero to prevent the simulation of incoming or reflected waves. The
wrapped normal spreading function was used in this study. It is a function of
the principal direction 4§, and the spreading standard deviation ¢, . Both
are linear functions of frequency £ , consisting of a constant and slope com-
ponent. The fourier series representation for the wrapped normal spreading

function is

L L < -(Eam)Z]
D(f,6) -E +1r— z exp "—2‘— cos £(8 - 6,) (3)
£=1 -

where
Op = 09 + 0y(f - £))
0!!1 - 00 + 01(f - fp)
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The number of harmonic terms L 1is arbitrarily selected to adequately
represent the fourier series of the directional spreading function. It can be
of the order of 5, or as large as 6.0/0, . For the unidirectional cases,
both ¢, and o; were set to zero and o, to 1.

31. The wrapped normal spreading function falls off rapidly for a
unidirectional spectrum for differences in angle, # - 6, , greater than
O deg. Table 5 illustrates this effect. Thus, care must be exercised in
selecting the number of directional increments for simulating a unidirectional
spreading function. A minimum of 36 increments (i.e. 10-deg intervals) will

ensure that the angular difference never exceeds 5 deg.

Table 5

Falloff of Wrapped Normal
Spreading Function

8 - 6 D(£,8)
—deg 1/rad_

22.86
13.86
3.09
0.25
0.01
E-04
E-06
0.00

NoNuv WO

Wave Elevation Realizations

32. The psuedo-integral model for the unidirectional spectral surface

elevation time series 5 at paddle location (x,y) and time t |is

o 2n

ey 0) =2 [ [ A exp (-10) exp (1) ()
0 O

where
A(f) = amplitude function described below
® = independent random phase, uniformly distributed on (0,2r)
¢ = kx cos & + ky sin 4 - 2xftc
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k = wave number
# = direction toward which waves travel, clockwise from x-axis
i=/T
33. The model described by Equation 4 is a double summation model
(Borgman 1969) since both frequency and direction are independent variables.
Although this method is the preferred model to represent a directional sea, it
is phase locked or phase dependent since different directions are summed at
the same frequency. This phase locking gives a fluctuating RMS (i.e. variance
of the variance) which tends to go to zero, however, as the number of fourier
components becomes large (Pinkster 1984). Thus, a long time series should be
used. An alternate model to the double summation model is the single summa-
tion model. This model is sometimes preferred because less computer time and
space are required and possible phase locking is not a concern. In this
model, a single direction is randomly selected for each frequency component.
A procedure for selecting this single direction (Sand and Mynett 1987) is to
assign a cumulative directional distribution for each frequency and select a
value using a uniform random distribution U(0,1)
Frequency domain simulation
34. Realizations of the desired time series described in Equation 4 for
the specified directional wave spectrum are simulated in the frequency domain
using one of two methods and then fourier transformed to the time domain. The
first method is a DSA model, and the second method is a nondeterministic
(Rayleigh) amplitude, random phase (NSA) model (Hudspeth et al. 1983, Elgar
et al. 1984, Tucker et al. 1984, Isaacson 1985). Both methods are known also
by other names, including the Random Phase Method for the DSA method and the
Random Coefficient Method for the NSA method (Sand and Mynett 1987).
35. In the DSA method, the fcurier coefficients are calculated from the
target spectrum with the deterministic amplitude A constrained to be

A(f) = /(2 S(f,8) df d9) (5)

They are then coupled with random phases and inverse fourier transformed using
a "235" FFT to give the surface elevation time series. The length of the time
series N 1is the product of the integers 2, 3, and 5 raised to integer

powers, as follows:
N - 2K 3L M (6)
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In this method, the simulated spectrum always matches the target spectrum.
36. In the NSA method, Equation 4 is rewritten in an equivalent complex
fourier series form. The complex amplitude A 1is defined by

A(E) = U(f) - 1 V() (7)

where

U(f) = real amplitude component

V(f) = imaginary amplitude component
Both components are independent Rayleigh random variables with zero means and
variance S(f,f) df d¢ . These U and V components are obtained by firsct
generating Gaussian distributed, zero mean, unit variance random variables

which are then multiplied by the desired standard deviation, i.e.,

J(S(f,8) df df) . The inverse method of generating new random variables from
a normal distribution is used to obtain the U and V components. If the

normal or Gaussian probability function is defined by
X
N (_1:3)
P(x) = u by J-exp 5 ) dt (8)
- ]

then a new random variable x given by
x = P }(u) (9)
can be generated using the approximation from Abramowitz and Stegun (1970)

cg + ¢t + c,t?
X =t - 2 (10)
1 + d;t + d,t® + djt

where
- J[o(%)]
u?
cg = 2.515517 d, = 1.432788
c; = 0.802853 d, = 0.189269
c, = 0.010328 d; = 0.001308
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Again, an inverse FFT gives the simulated wave elevation time series. The NSA
method differs from the DSA method in that the simulated spectral estimates do
not exactly match the target spectrum, but vary statistically about the true
or desired spectral values. The variance of the variance is said to be more
realistic than with the DSA method.

37. 1If there are many frequency and directional components in the wave
train (i.e. of the order of 1,000 components), there is little difference
between the DSA and NSA options for the complex wave amplitude. Both are
asymptotically equivalent by the Central Limit theorem and behave very nearly
as a Gaussian process in that case (Rice 1944, 1945; Elgar et al. 1985).
However, with some increase in computer time, the addition of the Rayleigh
variable in the complex amplitude produces an exact Gaussian process. This
addition is particularly useful for wave trains which are very narrow banded
in both frequency and direction.

38. In summary, the least random simulations involve the single
summation model and the DSA method. The double summation model and NSA
methods produce greater variance of the variance of the synthesized record.
The procedures used in this study are predominantly the double summation model

and the DSA method of frequency domain simulation.

Transfer Functions

39. Once the wave elevation time series have been simulated for each of
the 61 DSWG paddles, they are converted to corresponding stroke time series
using a height-to-stroke transfer frnction. The 3-D form F; , which includes
directional effects (Sand 1979), was originally derived by Biesel (1954) and
is valid for all nondimensional water depths kh , where h is still-water

depth, and has the following form:

F. (£) 2 cosh (2kh - 1) (1)
3 cos § [sinh (2kh) + 2kh]

Figure 6 illustrates how F,; varies for frequencies between 0.05 to 2 Hz for

the range of § of -2 and -21 deg used in this study. The wave breaking
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Figure 6. Height-to-stroke transfer function

limit at the higher frequencies is also shown. The highest wave which can be

generated at the wave maker is

H, = 0.1 L tanh kh (12)

where L 1is wavelength.*

40. Finally, the stroke time-history is converted to a voltage time-
history using the conversion factor for the wave maker. For the maximum
stroke of 12 in., the DSWG has a peak-to-peak voltage of 20 V in 4,096 digital
units. Thus, the conversion factor is 341.33 A/D units/in. or a resolution of
0.00293 in. per A/D unit.

* Personal communication, 1986, John Ahrens, Wave Research Branch, Wave
Dynamics Division, Coastal Engineering Research Center, Vicksburg, MS.
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PART III: SPECTRAL ANALYSIS THEORY

41. Theoretical descriptions of the time series, directional spectra,
and RAO transfer function analyses are presented in this part. 1In all anal-
yses, i£ is assumed that the wave elevation time series is a discrete,
real-valued time sequence with equal time intervals t = nAt . The relation-

ship between the total length of the time series T, and the total number of

r
points N is T, = NAt . The vaiue of N , although even, does not have to

be a power of 2. The basic frequency increment is defined by Af = 1.0/T, .

Time Series Analysis

42. The time series analysis package performs both time and frequency
domain analyses of measured surface elevation data. Currently, the package
allows 12 different processes to be run on the data. Time domain processes
include time series strip charts of the raw data, zero upcrossing or down-
crossing, crest and trough height, and autocorrelation and cross correlation.
Frequency domain processes include autospectra or cross spectra, frequency
response between channels, coherence, and Goda reflection. Only two of the
processes were used in this study: surface elevation time series strip
charts and single channel spectral analysis. It is beyond the scope of this
report to give a detailed description of the theoretical development of each
process in the time series analysis.

43. The strip chart option plots the raw time series data for one or
more of the available gages. The time series have not been detrended. The
plots are cross-scaled to facilitate readability.

44, Spectral density estimates are calculated for individual gages
after preprocessing to detrend and window the time series. Detrend options
include removing the mean or a linear or second order trend. Window options
include 10 or 50 percent cosine bell or cubic polynomial. The data are
fourier transformed, band averaged between lower and upper cutoff frequencies,
and plotted. Measured spectral estimates for each gage are saved for later
use in calculating RAO estimates. Three different methods are used to
calculate the peak frequency and corresponding period. The single line method
gives the frequency having the largest energy content. The Delft method gives

the mean frequency of all frequencies having energy content greater than or
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equal to 80 percent of the maximum. The CERC method gives the center fre-
quency of the band of 11 consecutive frequencies having the largest total
energy density. Zeroth, first, and second moments are estimated. Goda's
(1970) peakedness parameter Q, is also calculated. Finally, the average

period from the zeroth and second moments is estimated.

Directional Spectral Analysis

45, Four different methods for estimating S(f,f) from an array of N
surface wave gages are available. These are (a) an eigenfunction procedure,
(b) a method based on the fourier series expansion of the directional spec-
trum, (c) the Maximum Likelihood Method (MLM), and (d) the Maximum Entropy
Method (MEM). Because of its simplicity, only the fourier method is used
here.

Spectral formulation

46. The fourier series method is based on the relation (Borgman 1979)
that the autospectra S;;(f) and cross spectra S;;(f) between all pairs of
wave elevation time series can be expressed as a linear combination of the
directional components of S(f,f) at that frequency. If the wave elevation
time series 1n is defined as in Equation 4, then a system of equations for

the spectral matrix of autospectrum and cross spectra in terms of S(f,d) is

2n
Sy (f) = .[ S(f,9) df (13)
0
2n
Sy;(f) = j- S(f,8) exp (iBy,) dé (14)
0

where
Bj; ~k X;; cos 6 + k Y, sin ¢
Xij = % - X%y
Yiyy = ¥1 -
X = x-axis gage coordinates at location i or j

y = y-axis gage coordinates at location i or j
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The cross spectrum is composed of real cospectra Cy; and imaginary quadra-
ture Q;; components.
Parameterization of directional spectra

47. The first step toward solving the set of equations above is to
parameterize S(f,f) as the product of a frequency spectrum and a directional
spreading function (Equation 1). The autospectral density S;;(f) for each
of N gages is estimated, and then a combined best estimate S(f) is

obtained using a harmonic mean.

. 1/N

S(E) =| M Sy (F) (15)
i=1

The directional spreading function is initially approximated by a truncated
fourier series expansion of L harmonics. Usually, a value of L =5 is
sufficient, although a larger number may be used. Also, the value of L used
may be substantially different from the value used to create the spreading
function, thus affecting the measured shape. (See Directional spreading

function, paragraphs 30-31.)

L
D(E,0) = 3= + 2 ay(£) cos (£6) + by(£) sin (£6) (16)
=1

where
ay(f) = real fourier coefficient of the spreading function

by(f) = imaginary fourier coefficient of the spreading function

Spectral estimation of measured data

48. The next step is to calculate measured autospectral and cross-
spectral density estimates for each gage and each gage pair, respectively. A
10 percent cosine bell window is applied in the time domain, and the cross-
spectral matrix is calculated using the "235" FFT.

49. A Gaussian smoothing function is then used to smooth the estimates.
This procedure is like "band averaging" since raw spectral estimates are
smoothed in the frequency domain. However, it tends to give a smoother

transition since it is more of a weighted moving average in that overlapping
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is used. The Gaussian smoothed line spectra §; for each frequency maAf is

defined as

J
Z W So-y
I
Sam 3 (17)

where w; is a weighting function defined below, and S, ; is the raw
autospectral or cross-spectral estimate at frequency (m-j) Af . The weights
are defined over an integer number of spectral lines J equivalent to 3¢

standard deviations of a Gausgian curve,

jat)?
Wy = exp [- 52552—] (18)

Since the area under a Gaussian curve equals J/(2n)o , an equivalent rectangle
having the same area has a height of 1.0 (at x = 0) and a bandwidth b
defined by

b

J(27)

g =

(19)

50. For Gaussian smoothing the number of bands averaged in each
smoothed spectral estimate is considerably greater than a comparable frequency
domain band averaging procedure. In band averaging, the resolution bandwidth
b 1is the product of the number of bands averaged and the basic frequency
increment Af of the line spectra. In Gaussian smoothing the number of bands

M 1in the smoothed average is given by

M=— (20)
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Solution procedure
51. The S;; for each gage are inserted into the left-hand side of

Equation 13. They are also substituted into Equation 15 to calculate S

The gu are calculated for each pair of gages and substituted into the
left-hand side of Equation 14. The estimate for S and the parameterized
directional spreading function D(f,f) is substituted into the right-hand
side of Equation 14 for S(f,8) . Thus, for N gages, a set of N2 simul-
taneous linear equations (i.e. N autospectral equations of the form of
Equation 13 and N(N - 1)/2 pairs of cross-spectral equations of the form of
Equation 14) can be solved for the fourier coefficients of the spreading
function. However, since some of these equations may be theoretically zero,
the number of available equations is usually less than N? . The matrix form

of this set of equations is
{SPECTRA)} = [TRANSFER] * (DIR) (21)

The vector (SPECTRA} consists of the measured §S;; estimates. The vector
{DIR}) 1is composed of the fourier coefficients for D(f,i) at frequency f

and is to be estimated. The mactrix [TRANSFER] 1is therefore

2x | cos cos
[TRANSFER]) = ]- (BU) (L8) de (22)

0 sin sin

52. For an array of surface gages, Equation 22 could be expressed in
the form of Bessel functions of order 1 (Borgman 1969, Borgman and Panicker
1970). Since the number of available equations (i.e. N2) is greater than the
number of unknown fourier coefficients (i.e., 10 coefficients for five har-
monics), a least squares fourier transform method for numerical integration is
used. The first step is inversion of the [TRANSFER] matrix to solve for the
ay and by spreading coefficients contained in the vector (DIR} . The
technique for doing this is based on the vector linear regression model, as

follows:

{Y) = [X] * (B} + (€} (23)
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where
{Y} = n-component vector of dependent variables
[X] = n X k matrix of independent variables
{B) = k-component vector of regression coefficients
{e¢) = n-component vector of prediction errors
The least square solution for (B} 1is given by the solution to the "normal

equations"”

({X]" * [X]) * (B} = [X]' * (Y} (24)

where the prime denotes the matrix transpose. Principal components regression
is used to invert Equation 21 based on the development of the Moore-Penrose
generalized inverse from the eigenvector analysis of (X’ * X) (Searle 1982).

53. The advantage of the fourier method is its simplicity. The
disadvantage is the arbitrary truncation of the fourier series at L (=5)
harmonics where this number of coefficients (i.e. 2L + 1) is considerably less
than the number of equations available. Stepwise regression tends to minimize
this truncation effect. Jennrich (1977) specifies this least squares proce-
dure which sequentially selects the "best" first harmonic coefficients. Next,
"best” second harmonic coefficients are added and another least squares
iteration is performed with all coefficients. This procedure continues with
"best” higher order harmonic coefficients being added one at a time until
little improvement is realized after a least squares iteration.

54, The use of eigenvalue analysis helps to overcome the disastrous
effects of an almost singular (X' * X) matrix in Equation 24. It provides a
number of eigenvalues which are significantly nonzero as an upper limit on the
number of coefficients which can be estimated with the stepwise regression
technique.

55. The D(f,f) given in Equation 16 results in a distorted estimate
of the true spreading function due to the truncation. This estimate is
improved by fitting a parameterized wrapped normal formula (Equation 3) to the
spreading function (Borgman 1979). Assuming that the lower order fourier
coefficients are the least distorted by the truncation, they are used in the
parameterized model to obtain estimates of the higher order coefficients. A
new set of fourier coefficients (both lower and higher order) is calculated

using an iterative procedure until convergence is reached.

35




Principal direction and directional spread
56. If the wrapped normal spreading function is defined as in Equa-

tion 3, the full-circle fourier coefficients ay and b, are

2n
ay(f) 1 cos
= - J- D(f,8) (£9) de (25)
by(f) n 0 sin

The corresponding coefficients for the first harmonic a; and b; are then

a,;(f) 1| cos -2
- — 6, exp z (26)
b(£)| 7 {sin 2
Therefore, the principal direction 6, at frequency £ is
b, (£)
6,(f) = arctan | — (27)
a, (£)

The mean of all 4§, over all frequencies for all selected gages equals §
57. Taking the magnitude of Equation 26 and rearranging gives the

directional spread or standard deviation o, at frequency f

o (f) = [[-24n {x\[[a%(f) + bf(f)]% (28)

58. At each frequency (N - 1) independent estimates of each fourier
coefficient are obtained. Various methods, including a weighted average or
least squares, could be used to select a "best" choice. A simple average is
if the

used. A similar set of equations could be obtained for 4, and o,

second or higher order harmonic coefficients were used.
RAOQ Functions

59. The height-to-stroke transfer function discussed in Part II is
based on theoretical, ideal hydromechanical aspects of wave generation.

Because of leakage arcund and under a "wetback" wave maker, electronic and
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mechanical losses of the DSWG, and basin response characteristics, the desired
wave spectrum is usually not faithfully reproduced. Although the differences
in spectral shape, peak period, and wave height may be slight, it is necessary
to correct the control signal for accurate reproduction in future runs. Thus,
an RAO transfer function is calculated.

60. The raw measured S;; for each gage and predicted S, spectral
estimates are first Gaussian smoothed (see paragraph 50) to a desired band-
width which must be equal to or greater than Af . The RAO is then calculated

in the frequency domain at each smoothed frequency as

RAO, (f) = /%E—? i=1,2,3,...N (29)
P

An average of all points within each band or the midpoint in each band may be
selected for each band. In addition to RAO’s for individual gages, an average
of all or a selected number of gages may be calculated. The RAO is set equal
to 1.0 for those frequencies outside lower and upper cutoff frequencies (IAHR
1987) because of low signal-to-noise ratios. Also, RAO’s greater than 10.0 or
less than 0.1 are set to tl.ese respective upper and lower limits.

61. The stroke control signals s, for each of the 61 paddles which
produced the measured spectra are fourier transformed to the frequency domain
for correction. The real and imaginary fourier coefficients U and V are
divided at each frequency mAf by the appropriate value of the smoothed and
averaged RAO. The RAO for an individual gage or an average of selected gages

can be used. The fourier transform relationship is

N-1
U(m) i V(m) At E (nAt) ex - i2mmn (30)
- m - S ———
¢ P N
n=0

The corrected fourier coefficients are then inverse fourier transformed to the

time domain to give the new control signal
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N-1
s.(nAt) = Af Z (U(m) - iV(m)] exp |—ormm (31)
c P\

m=0

The square root in Equation 29 is necessary because spectral estimates are

squared quantities of the fourier coefficients
S = = [@ + @] i-1,2,3,...¥ (32)
r

62. The maximum crest and minimum trough digital values are 2,048 and
-2,047, respectively. The digital control signals for the DSWG are low-pass
filtered and converted to analog form at run time. If the slope on a crest or
trough is too steep near these maximum values, the paddles tend to overshoot,
and protective displacement sensors shutdown the system to prevent damage.
These system limits pose a problem for spectra with long peak periods and high
wave heights. If the maximum crest and minimum trough values are reduced, a
buffer zone is created to compensate for this overshoot without shutting the
system down. Too small a value will not help the overshoot phenomenon. Too
large a value will cause an excessive number of crests and troughs to be
reduced, causing more overshoot and excessive low-frequency energy content. A
value of #50 digital units, or 2.5% of the total stroke (i.e. 50/2,048), was
used in this study. The new maximum and minimum values were 1,948 and -1,947
units, respectively. The effect of this compensation on the resulting

spectra and transfer functions is expected to be minimal.
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PART 1IV: TEST SETUP
Yaquina Bay Physical Mode

63. Yaquina Bay is an estuary located on the Oregon
110 miles south of the mouth of the Columbia River (Figure
mound jetties protect the 40-ft-deep, 400-ft-wide entrance

passes through a narrow opening in an offshore reef. This

coast approximately
7). Two rubble-
channel which

basaltic reef lies

3,500 ft seaward of river mile 0.0 and extends northward for approximately

17 miles from a point 2,500 ft south of the channel. The parallel jetties

were constructed on an azimuth of S62°W and offer excellent protection against

waves from the west and northwest.

2 g
< zzﬂ
W < o,
O 2 |.__YAMHILLcO
o - e/ POLK CO
L] AIVER
SILETZ A“‘H‘ 3
BAY\ =
-4
g DALLAS
z m
P
Qf\'\/
DEPOE B\

'S
e
vaauma [EHP g VERH

BAY L '

W
{ =
c
] 3
ALSEA ALSEA ) R 5
BAY/ /} r— R'E g
4 /¢ m
o x
l: A LINCOLN cgi__ssNTON co
w — LANE ¢O ) \ . )
Q
< SCALE
[ = = coweses ]

Figure 7. Yaquina Bay, Oregon, location map
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64. A 3-D physical model was constructed at an undistorted scale of
1:45, model to prototype, based on several factors, including (a) DSWG size
and capabilities, (b) required nearshore bathymetry, (c) available stone
sizes, and (d) preclusion of scale effects. Thus, it was not possible to
model the entire entrance channel, nearshore bathymetry, and inner harbor.
Since the main focus of the study was on the jetty head area, only 32 ft of
the north jetty and 21 ft of the south jetty were modeled. The nearshore
bathymetric features and offshore reef were duplicated to the extent that
further wave transformation prior to interacting with the channel entrance was
properly modeled. Thus, the DSWG was located at a depth corresponding to
58 ft mllw prototype (1.29-ft model). Figure 8 is a schematic of the wave
basin illustrating the complex bathymetry modeled in this study. The north

jetty was meticulously constructed to ensure accurate as-built conditions.
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Figure 8. Schematic of DSWG basin, model
contours, and gage locations
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The interested reader is referred to a report by Grace and Dubose (1988) for a

detailed description.

Wave Basin and Generator

Wave basin

65. The study was conducted in CERC's 96-ft-long by 121-ft-wide
directional spectral wave basin. The basin has a unique beach/wave absorption
system. The perimeter was lined with wave absorber frames consisting of 2-in.
layers of rubberized horsehair installed between two layers of expanded sheet
metal. Flume tests by Briggs and Barnes* (unpublished) for a range of wave
periods and heights demonstrated the effectiveness of the frame design. The
average measured reflection coefficient of 12 percent is equivalent to a
comparable gravel beach with a slope of 6 to 11 deg which could be installed
in the basin. Additional wave absorption was provided behind the beach
segments by two rows (4 ft) of horsehair extending through the water column.
Directional spectral wave generator

66. The directional spectral wave generator (DSWG) is an
electronically controlled, electromechanical system. It is 90 ft long and
consists of 60 paddles in four modules of 15 paddles each. Each paddle is
1.5 ft wide and 2.5 ft high. The paddles are independently driven in transla-
tional motion at each of the 61 joints by 0.75-hp electric motors. In each
joint is a flexible-plate seal to provide continuity and minimize the intro-

duction of spurious waves (Outlaw and Briggs 1986).

Wave Elevation Measurement System

Gage arrangement

67. Seven capacitance wave gages were used to measure surface wave
elevations in the basin. They were mounted in aluminum frames to minimize
interference due to support legs and arranged in a directional array.

Embedded in this array was a five-gage linear array patterned after the larger
linear array design of Oltman-Shay at CERC's Field Research Facility (Crowson
et al. 1988). The linear array provides superior resolution capability for

wave components at or near the same frequency and slightly different

* M. J. Briggs and L. Barnes, 1987, "Passive Wave Absorber Design for Labora-
tory Basins" (Unpublished).
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directions. This capability results if the waves are directional or have been
refracted.

68. A well-designed linear array must have a total length equal to the
largest wavelength (i.e. lowest frequency) at the largest angle expected. It
also must be short enough to avoid aliasing the higher frequency, smaller
wavelength components. Spatial aliasing occurs when half the wavelength of
the highest frequency wave does not exceed the distance between sensors. When
this happens, it is impossible to discern the smaller wave from the longer
wave. Thus, there is a classic tradeoff in that we want the longest array to
optimize resolution of the low-frequency components and the shortest spacing
to minimize aliasing of the high-frequency waves. The secret to this tradeoff
is to select a minimum distance between two sensors which minimizes aliasing
at the high-frequency cutoff desired while simultaneously providing an overall
length which optimizes resolution at the low-frequency cutoff. By clever
arrangement of a limited number of gages, both objectives can be achieved.
Rather than the gages being spaced a uniform distance apart, they are spaced
at multiples of a unit lag length based on the criteria above. Thus, all
wavelengths between the smallest and longest are covered by combinations of
various gages. For the 2-3-1-7 array (i.e. gages spaced 2 lag lengths, 3 lag
lengths, etc.), wave periods with half wavelengths equal to 1, 2, 3, 4, 5, 6,
7, 8, 11, and 13 lags are discernible.

69. The procedure consists of calculating the depth-limited wavelength
for the low- and high-frequency cutoffs desired. The y-axis wave number

component k, is calculated as
k, = k sin (33)

where a maximum wave direction to the linear array of §# =~ 21 deg was
assumed. The orientation of the x- and y-axes is shown in Figure 8, and the
wave direction is measured clockwise from the x-axis. The corresponding

y-axis wavelength component L, is then

L - (34)

Finally, the array length capable of resolving this wavelength is equal to
one-third to one-half of L, . Based on this procedure, a lag spacing of
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24 in. (2.0 ft) was selected for this study.

70. The two remaining gages (#l and #7) were positioned in front of and
behind the linear array for redundancy and possible reflection analysis.
Gage #7 was not available for use during all of the tests. Table 6 summarizes
the x- and y-axis coordinates of each of the seven gages in the directional
array. Figure 8 illustrates the gage locations for the seven gages relative

to the DSWG and the model contours.

Table 6
Directional Array Coordinates

Gage No, X-axis, ft Y-axis, ft
1 5 45
2 10 31
3 10 45
4 10 47
5 10 53
6 10 57
7 20 45

Gage and depth calibration

71. The measurement rods on the gages had an overall length of 12 in.
They were calibrated over an 8-in. range each day prior to conducting tests.
A Jordan controller stepper motor was used to automatically raise and lower
the rod through a series of 11 steps to obtain calibration coefficients using
a least squares linear or quadratic fit. This averaging technique, using
21 voltage samples per gage, minimizes the effects of slack in the gear drives
and hysteresis in the sensors. Table 7 lists the quadratic fit, maximum
deviation calibration coefficients (in units of feet times 107°) for each gage
for each day of testing. The water depth was maintained within #0.001 ft of
the desired level by an automatic water level float and solenoid control

valve.
Data Acquisition and Control System

72. An automated data acquisition and control system (ADACS) is used to
create wave generator control signals for each of the 60 wave paddles, monitor
wave paddle displacement feedback, and collect and analyze time series
experimental data from the wave basin. The ADACS is controlled by a DEC VAX
11/750 central processing unit with capability for digital control signal
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output through an IEEE 488 interface and 120 channels of analog to digital
input (Briggs and Hampton 1987). The DSWG control signal is updated at a rate
of 20 Hz.

Test Case Description

73. The numerically transformed shallow-water storms described in
Part I1 (Table 4) were converted for use in the DSWG using the 1:45 scale.

Table 8 summarizes the model parameters for the six unidirectional and six

Table 8
Target Model Wave Parameters*

- Approximate
Storm Period Height 6 On
1D sec in. deg ol deg a
Unidirectional Series
1969 2.49 5.95 -15 1.6 1 0.01290
1970 2.13 5.07 -9 1.9 1 0.01300
1972%%* 1.86 3.85 -19 31.0 1 0.00001
19731 2.13 4.46 -15 27.0 1 0.00100
1974 2.49 5.16 -21 2.2 1 0.00950
1983 2.49 4,99 -14 2.7 1 0.00834
Directional Series

1969 2.49 6.12 -10 1.6 30 0.01290
1970 2.13 5.07 -2 1.9 20 0.01300
1972%* 2.13 4.11 -11 31.0 20 0.00001
1973t 2.13 4.55 -4 27.0 20 0.00100
1974 2.49 5.42 -21 2.2 10 0.00950
1983 2.49 5.42 -9 2.7 10 0.00834

* All cases used o, = 0.07 and o, = 0.09 except 1972 and 1973 cases.
*% 1972, o0, =0.99 and oy, = 0.35 .
t 1973, 0, =0.99 and o, = 0.25 .

directional cases. These 12 cases consisted of three different periods with
unique H,, and ¢ values for each case. The value of # used in the
unidirectional cases was selected based on the swell direction from the
hindcasted cases. The values of y and a 1listed in the table are approx-
imate, based on a TMA spectral shape (Vincent 1984). The value of o, was
visually determined from plots of the target directional spectra.

74. These cases were inadvertently generated for a water depth of
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1.11 ft (i.e. 50-ft prototype). The required water depth at the DSWG was
actually 1.29 ft (i.e. 58-ft prototype). Thus, the contrul signals were run
initially at a depth of 1.11 ft (series Ul and Dl), corrected using the RAO
transfgr function, and rerun at the correct depth of 1.29 ft (series U2 and
D2). The corrected control signals were then run at the deeper storm depth of
1.51 ft (series U3 and D3). Table 9 summarizes the 18 unidirectional and 18
directional test cases run in this calibration phase. The first series was
generated without the model contours in place (i.e. flat bottom). A gain
factor of 0.95 was required for the 1969 and 1983 storms in the D2 and D3

series because of DSWG stroke and velocity limitations for the long periods.

Test Case Parameters

Simulation and generation phase

75. The DSA method of frequency domain simulation was used for all
cases. Discrete values of the scaled frequency spectrum were used for both
unidirectional and directional spectral cases. For the unidirectional cases,
a wrapped normal spreading function was calculated with a directional incre-
ment of 5 deg (i.e. 72 increments). Discrete values from the WIS shallow-
water spectra at 22.5 deg (i.e. 16 increments) were input for the directional
spectral cases.

76. The D/A rate for the DSWG is 20 Hz (i.e. time increment of
0.05 sec), so 61 time series of 12,000 points, or 600-sec record length, we:e
generated. This record length corresponds to an even frequency increment of
0.00167 Hz or 1,171 frequencies between the lower and upper cutoff frequencies
of 0.05 to 2.0 Hz.

Data collection and analysis phases

77. Data collection, After a waiting time of 25 sec (35 sec for U2
series only) to allow slower traveling high-frequency components to travel
beyond the farthest gage, wave elevation data were sampled at 10 Hz (i.e. time
increment of 0.1 sec). A minimum of 200 waves at the peak period was col-
lected as recommended by Goda (1985). Table 10 lists the record lengths,
number of points collected in a record, and the frequency increment for each
of the three peak wave periods.

78. Frequency spectral analysis, The complete data records were

zero-meaned, tapered by a 10 percent cosine bell window, and band averaged
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Summary of Test Cases

Table 9

Test
Code

69U1
70U1
72U1
73U1
74U1
83U1

69U2
7002
7202
7302
7402
83u2

69U3
70U3
7203
73U3
7403
83u3

69D1
70D1
72D1
73D1
74D1
83D1

69D2
70D2
72D2
73D2
74D2
83D2

69D3
70D3
72D3
73D3
74D3
83D3

Test
ID

¥S69022
YS70022
¥S72021
Ys73021
YS74022
YS$83022

YS6903S
YS7003S
YS7203s
YS7303S8
YS74038
YS8303s

YS69032
YS70031
YS72031
YS73031
YS74031
YS83031

YD6903
YD7003
YD7203
YD7303
YD7403
YD8303

YD69036
YD70036
YD72036
YD73036
YD74036
YD83036

YD69037
YD70037
YD72037
YD73037
YD74037
YD83037

Storm
Year

Unidirectional Series

1969
1970
1972
1973
1974
1983

1969
1970
1972
1973
1974
1983

1969
1970
1972
1973
1974
1983

1969
1970
1972
1973
1974
1983

1969
1970
1972
1973
1974
1983

1969
1970
1972
1973
1974
1983

Depth

ft

11
.11
11
.11
.11
11

N e

.29
.29
.29
.29
.29
.29

-

.51
.51
.51
.51
.51
.51

e

Directional

.11
.11
.11
.11
.11
.11

e e

.29
.29
.29
.29
.29
.29

-

.51
.51
.51
.51
.51
.51

— e e b s

Series

No.
Gages

NN N NN DN~ NN NN NN N NN

NN NN~

NN

Contours

No
No
No
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

O P MO e e e N i T I e i e e e L

O - O

.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00

.95
.00
.00
.00
.00
.95

.95
.00
.00
.00
.00
.95
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within the lower and upper cutoff frequencies of 0.2013 and 1.476 Hz, respec-
tively. Table 10 lists the frequency dependent frequency spectral analysis
parameters. A different number of spectral bands was averaged to achieve the
same resolution bandwidth of 0.0671 Hz in each case.

79. Directional spectral analysis. The data were again zero-meaned,

tapered by a 10 percent cosine bell window, and smoothed with a Gaussian
smoothing function with an effective width of 0.0671 Hz between the same lower
and upper cutoff frequencies. Because of the limitations of the "235" FFT,
not all of the data for the 1.86- and 2.49-sec peak period cases were ana-
lyzed. Table 10 also lists the relevant parameters for the directional
spectral analysis. The directional spreading increment used was 22.5 deg
(i.e., 16 increments). This is the same increment generated by the WIS
hindcast model. The predicted values were calculated without tapering the

control signals.

Table 10
Collection and Analysis Parameters

Peak Period, sec

Description T, = 1.86 T, = 2.13 T, = 2.49
Data Collection
Record length, sec 373 432 507
No. points in record 3,730 4,320 5,070
Frequency increment, Hz 0.0027 0.0023 0.0020
Frequency Spectral Analysis
Record length, sec 373 432 507
No. points in record 3,730 4,320 5,070
Frequency increment, Hz 0.0027 0.0023 0.0020
Smoothed bandwidth, Hz 0.0670 G.0671 0.0671
No. frequency components analyzed 476 552 647
No. frequency components smoothed 25 29 34
Regrees of freedom 50 58 68
Directional Spectral Analysis
Record length, sec 364.5 432 500
No. points in record 3,645 4,320 5,000
Frequency increment, Hz 0.0027 0.0023 0.0020
Smoothed bandwidth, Hz 0.0671 0.0671 0.0671
No. frequency components analyzed 466 553 640
No. frequency components smoothed 59 69 80
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PART V: TEST RESULTS AND ANALYSIS

80. 1In this part, test results are presented and discussed for surface
elevation time series, frequency spectra, directional spreading functions,
response amplitude operator, peak wave periods, and zero-moment wave heights.
The 1974 storm is representative of the six storms and is used throughout as
an example. For the unidirectional series, cases 74Ul, 74U2, and 74U3 are
used. Similarly, cases 74D1, 74D2, and 74D3 are used for the directional
series. Results from both series for the other five storms are contained in

Appendices B-F.

Surface Elevation Time Series Plots

81. The measured wave elevation time series for the three unidirec-
tional cases are shown in Figure 9. The directional cases are shown in
Figure 10. Plots for the other 17 unidirectional and 17 directional cases are
included in Appendix B. Only gages 1, 3, and 4 are shown because they are
least affected by the bathymetry. The x-axis length is 500 sec for all cases,
and the y-axis scales have increments of 0.60 ft.

82. The effect of the RAO correction can be seen by comparing the size
of the trace between Ul and U2 series (Figures 9a and 9b) and D1 and D2 series
(Figures 10a and 10b) cases. The effect of the deeper water depth of 1.51 ft
can be seen by comparing the second and third series plots (i.e., Figures 9b

and 9c for the unidirectional and 10b and 10c for the directional series).

Frequency Spectra

83. Figure 11 illustrates the measured versus predicted frequency
spectra for the three unidirectional cases: Ul, U2, and U3. The correspond-
ing graphs for the directional series D1, D2, and D3 are shown in Figure 12.
Plots of the other cases are included in Appendix C. The x-axis is from 0 to
2.0 Hz. The y-axis ranges from O to 0.08 ft?/Hz. The dashed line is the
predicted spectrum for a depth of 1.29 ft, and the solid line gives the
measured average spectrum for gages 1, 3, and 4.

84. Although the target spectral shape of all series 1 unidirectional
and directional cases was measured, the spectral amplitude was smaller than

the desired target value. The series 2 plots show the effectiveness of one
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Figure 9. Measured wave elevation time series
for unidirectional series (Sheet 1 of 3)
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iteration of the RAO compensation. Agreement between the desired and measured
spectra is very good in the 1974 storm for both unidirectional and directional
cases. The 1973 and 1983 unidirectional cases and the 1972 and 1973 direc-
tional cases were slightly larger than desired, however. The 1969 directional
case was slightly smaller in the high-frequency region because large angles of
spreading caused energy to be unmeasurable by the gage array. The series 3
plots show an increase in the measured spectra due to the increase in water

depth to 1.51 ft.
Directional eadin unctions

85. The measured directional spreading function estimates for the
unidirectional series Ul, U2, and U3 are shown in Figure 13. Figure 14 shows
the measured versus predicted spreading functions for the three directional
cases D1, D2, and D3. All spreading values are at the peak frequency for a
directional increment of 22.5 deg to correspond to the directional series
input. Measured values are the average of gages 1, 3, and 4 and the predicted
values are for all 61 paddles. The x-axis ranges from -180 to 180 deg, while
the y-axis scale is 0.0 to 3.0 rad™!. Spreading functions for the other cases
are included in Appendix D.

86. Predicted values are not shown on the unidirectional plots because
the directional increment of 22.5 deg was not fine enough to show the true
shape of the predicted spread. (See paragraph 31, Part II.) The idealized
value would be a Dirac delta function or spike at the particular direction
corresponding to the 6 . The truncation of the fourier series tends to
produce negative side lobes as an artifact of the fourier transform method.
Thus, negative spreading function estimates can sometimes be produced at wave
directions on either side of § . These negative values have been suppressed
and set to zero on these plots. Use of higher resolution methods such as the
MLM or MEM methods would probably eliminate this effect. Future studies are
planned to investigate these two methods.

87. Agreement between the measured and predicted spreading functions
was excellent for the unidirectional and directional 1974 storm cases. The
spreading appeared to intensify for the unidirectional case after the RAO
correction was applied. For the directional D2 case, the agreement also

improved. Not much change was evident for the series 3 cases. The same
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comments generally are true for the other five storms in both unidirectional
and directional series 2 and 3. Exceptions were the 1970 and 1983 unidirec-
tional storms in series 3. A noticeable smearing of the directional spreading
was evident. In the directional series, the 1973 storm was slightly underpre-
dicted for all three series. Agreement between measured and predicted 6 is

generally excellent for all cases.

RAO Functions

88. Figure 15 presents semi-log plot of the RAO transfer function for
the 1974 unidirectional and directional cases. The RAO’s for the other cases
are included in Appendix E. The RAO's for each gage and the average for
gages 1, 3, and 4 are shown. The RAO estimates were Gaussian smoothed to
0.0671 Hz, and all estimates within contiguous 0.0671-Hz bands were averaged.
Values less than 1.0 indicate that the spectrum must be increased at a
particular frequency. Likewise, values greater than 1.0 indicate the opposite
trend. As discussed previously, the RAO was used to adjust the control signal
to compensate for DSWG and basin characteristics. The effect of one iteration

on the measured spectral characteristics was excellent.
Peak Wave Periods

89. The peak wave period was calculated using the CERC method (see
Part III). Appendix F contains tabular listings and plots of measured periods
for each gage for each of the three unidirectional and directional test
series. The tabular listings also contain averages of (a) gages 1, 3, and &
and (b) all seven gages. The average values for gages 1, 3, and 4 from these
appendix tables are listed in Table 11 for each storm for the three test
series. These values are normalized by the target period for each storm and
reported in Table 11. Averages of these normalized values for the six storms
are also given.

90. Figure 16 illustrates the influence of depth on the normalized peak
periods for the unidirectional and directional series, respectively. The
average values are also shown. Normalized period is plotted against water
depth. For the unidirectional series, the periods tended to decrease due to
the RAO correction and the increase in depth from 1.11 to 1.29 ft. The one

exception is the 1972 storm, which increased. The increase in depth from
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Table 11

Measured and Normalized Wave Peak Periods Versus Water Depth

Target Depth = 1.11 ft Depth = 1.29 ft Depth = 1.51 ft
Storm Period Avg 1,3 & 4 Avg 1,3 & 4 Avg 1,3 & 4
Year sec sec Normal* sec Normal sec Normal

Unidirectional Series

1969 2.49 2.51 1.01 2.46 0.99 2.47 0.99
1970 2.13 2.24 1.05 2.22 1.04 2.20 1.03
1972 1.86 1.74 0.94 2.22 1.19 2.04 1.10
1973 2.13 2.30 1.08 2.28 1.07 2.26 1.06
1974 2.49 2.51 1.01 2.49 1.00 2.53 1.02
1983 2.49 2.53 1.02 2.51 1.01 2.53 1.02
Avg 1.02 1.05 1.05
Directional Series
1969 2.49 2.48 1.00 2.49 1.00 2.49 1.00
1970 2.13 1.90 0.89 2.01 0.94 2.10 0.99
1972 2.13 2.35 1.10 2.52 1.18 2.53 1.19
1973 2.13 2.49 1.17 2.52 1.18 2.51 1.18
1974 2.49 2.29 0.92 2.56 1.03 2.57 1.03
1983 2.49 2.47 0.99 2.47 0.99 2.47 0.99
Avg 1.01 1.05 1.06

* Normal = Avg 1,3, and 4/Target.

1.29 to 1.51 ft caused the periods to decrease except for the 1974 and 1983
storms. For the directional series, the periods tended to increase between
both depths, except for the 1969 and 1983 storms which remained unchanged.

91. Figure 17 shows the influence of directional spreading and depth on
peak period transformation for the two depths of 1.29 and 1.51 ft. Normalized
directional peak period is plotted against normalized unidirectional peak
period for five of the storms. The 1972 storm is not plotted because it lies
off the edge of the plot. The left-most, or lower, symbol represents the
lower water depth. A 45-deg line is shown to indicate equivalence between
unidirectional and directional periods. A value above the line implies that
the directional period is larger than the corresponding unidirectional period
for the same depth. Conversely, a value below the line indicates the opposite
relationship. A horizontal line between points on the graph for a storm
indicates a constant directional period which is unaffected by changes in

water depth. Likewise, a vertical line between points indicates a constant
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unidirectional period. The 1983 storm is interesting because the directional

period decreased, while the unidirectional period increased with the increase
in depth.
92.

values within an average of 5 percent for all storms.

In general, after correction the periods matched their target

For the unidirectional
series, the low normalized period was 0.99 for the 1969 storm, and the high
was 1.19 for the 1972 storm.
the 1970 storm, and the high was 1.18 for the 1972 and 1973 storms.

the low was 0.94 for
The

For the directional series,

periods appeared to be more invariant for the directional series than the

unidirectional for an increase in depth from 1.29 to 1.51 ft.

Zero-Moment Wave Heights

93.

zero-moment wave heights for each gage for each of the three unidirectional

Appendix G also contains tabular listings and plots of measured

and directional test series. The tabular listings also contain averages of

(a) gages 1, 3, and 4 and (b) all seven gages. The average value for gages 1,

3, and 4 from these appendix tables is listed in Table 12 for each storm for
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Table 12

Measured and Normalized Wave Heights Versus Water Depth

Depth = 1.11 ft Depth = 1,29 ft Depth = 1.51 ft

Target Avg Avg Avg
Storm Height 1,3 & 4 1,3 &4 1,3 &4 Ratio
Year in. in. Normal* in. Normal in. Normal 1.51/1.29

Unidirectional Series

1969 5.95 4.01 0.67 5.79 0.97 6.43 1.08 1.11
1970 5.07 3.83 0.76 4.98 0.98 5.66 1.12 1.14
1972 3.85 2.40 0.62 3.86 1.00 4.34 1.13 1.13
1973 4,46 2.78 0.62 4.91 1.10 5.53 1.24 1.13
1974 5.16 3.17 0.61 5.10 0.99 5.58 1.08 1.09
1983 4.99 3.20 0.64 5.40 1.08 6.07 1.22 1.13
Avg 0.65 1.02 1.15 1.12
Directional Series
1969 6.12 4.10 0.67 5.37 0.88 5.91 0.97 1.10
1970 5.07 3.79 0.75 4.99 0.98 5.61 1.11 1.13
1972 4,11 2.70 0.66 4. 44 1.08 5.16 1.26 1.17
1973 4.55 2.71 0.60 5.35 1.18 5.99 1.32 1.12
1974 5.42 3.74 0.69 5.48 1.01 6.14 1.13 1.12
1983 5.42 3.52 0.65 6.06 1.12 6.75 1.25 1.12
Avg 0.67 1.04 1.17 1.13

* Normal = Avg 1,3, and 4/Target.

the three test series. These values are normalized by the target wave height
for each storm and reported in Table 12. Averages of these normalized values
for the six storms are also given.

94. Figure 18 illustrates the influence of depih on the normalized wave
heights for the unidirectional and directional series, respectively. The
average value is also shown. Normalized height is plotted against water
depth. For the unidirectional series, heights increased sharply due to the
RAO correction and the increase in depth from 1.11 to 1.29 ft. The 1970 storm
increased but less rapidly. The increase in depth from 1.29 to 1.51 ft caused
the heights to increase at a rate to be expected because of the increase in
water depth. For the directional series, heights increased between both
depths in a similar fashion to those in the unidirectional series. The 1969
and 1970 storms, however, increased at a slower rate between 1.11 and 1.29 ft

than the others.
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95. Figure 19 shows the influence of directional spreading and depth on
wave ! 2ight transformation for the two depths of 1.29 and 1.51 ft. Normalized
directional wave height is plotted against normalized unidirectional wave
height for all of the storms. The left-most symbol represents the lower water
depth. A 45-deg line is shown to indicate equivalence between unidirectional
and directional heights. A value above the line implies that the directional
height is larger than the corresponding unidirectional height for the same
depth. Conversely, a value below the line indicates the opposite relation-
ship. A line parallel to the 45-deg line indicates that there was no change
in the relationship due to the increase in depth. The 1969 storm exhibited
this behavior. A decrease in the line connecting two depths indicates an
increase in the unidirectional height relative to the directional height in
going to the deeper water depth. The 1970 storm was an example. Finally, an
increase in the line shows an increase in directional height due to an
increase in depth (1972 and 1974 storms). The directional wave heights were
larger than the equivalent unidirectional heights in all cases except for the
1969 and 1970 storms.

96. 1In general, after correction the heights matched their target

values within an average of 4 percent for all six storms. For the
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unidirectional series, the low normalized height was 0.97 for the 1969 storm,
and the high was 1.10 for the 1973 storm. For the directional series, the low
was 0.88 for the 1969 storm, and the high was 1.18 for the 1973 storm.

Heights increased for all cases with the increase in water depth from 1.29 to
1.51 ft.

97. Table 12 also lists the ratio of the normalized height at 1.51 ft
divided by the value at 1.29 ft. The average increase for both unidirectional
and directional cases was 12 to 13 percent. The 1972 and 1974 directional
cases tended to increase more than their corresponding unidirectional cases.

Other directional cases increased slightly less than the unidirectional cases.
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PART VI: SUMMARY AND RECOMMENDATIONS

98. The DSWG provides a means to simulate real ocean enviromments in a
laboratory physical model by incorporating directional spreading. Inclusion
of this spreading has been found by previous researchers in the coastal
hydraulic community to have a significant effect on the design of coastal
structures, including port facilities, harbors, and breakwaters.

99. Effects of frequency and directional spreading on wave transforma-
tion in the nearshore region were investigated using a 3-D physical model of
Yaquina Bay, Oregon. The 1:45 (all units reported here are prototype values)
scale model consisted of an entrance channel protected by two rubble-mound
jetties with a sloping bottom and submerged reef offshore of the entrance.
Unidirectional and directional spectra, representative of the most severe
hindcasted storms in the past 20 years, were numerically transformed to a
shallow-water depth of 58 ft. These storms had peak periods of 12.5, 14.3,
and 16.7 sec and zero-moment wave heights ranging from 14.4 to 23.0 ft.
Surface elevation measurements were made at two water depths: 0.0 and
+10.0 mllw,

100. This study is divided into three phases. Phase 1, reported
herein, is a calibration of the performance characteristics of the six
unidirectional and directional spectral cases chosen for study. A total of 36
cases was required to measure and correct the control signals for the two
water depths. Phases 2 and 3 will be reported in separate volumes at a later
date. In phase 2, 24 runs were made to quantify wave transformation of the
12 calibrated unidirectional and directional conditions from phase 1 at two
locations near the north jetty head. The third phase is a parameter study on
the effects of frequency and directional spreading on wave transformation near
the jetty head. The same peak period and wave height values from the phase 1
directional cases were used to create 24 new directional wave spectra with a
range of frequency and directional spreading parameters. These cases were
calibrated, iteratively corrected several times, and measured in the same
nearshore region near the jetty head.

101. The purpose of the first phase was to verify the accuracy of the
wave spectra created for a depth of 58 ft. Thus, this phase consisted of
three series of tests for each of the six unidirectional and six directional

cases. The control signals for these 12 cases had inadvertently been created
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for a water depth of 50 ft instead of 58 ft. Thus, the first series of 12
tests was measured at this shallow depth and, as expected, the measured
parameters were smaller than desired. The control signals were then corrected
and run again for each unidirectional and directional case at the correct
depth of 58 ft as series 2. Finally, the third series of 12 tests was run
with the same corrected control signals from series 2 at the deeper depth of
68 ft (i.e. +10 ft mllw).

102. The spectra were simulated as the product of a frequency spectrum
and a directional spreading function. The frequency spectrum was discretely
input at 20 frequencies between 0.02 and 0.22 Hz using the shallow-water
results from the numerical transformation. For the directional spreading
function, an empirically derived wrapped normal spreading function was used
for the unidirectional cases, and it was discretely input at 16 intervals of
22.5 deg for the directional cases. A stroke time series for each paddle was
simulated in the frequency domain using a DSA random phase model. A total of
67.08 min or 12,000 points between cutoff limits of 0.01 and 0.30 Hz were
generated for each case. A height-to-stroke transfer function was then used
to convert the signals to the appropriate strokes. Finally, they were
converted to analog voltage signals.

103. One assumes that the use of hindcasted storms more accurately
models extremal conditions for a particular site than an assumed empirical
frequency spectral shape (i.e., Pierson-Moskowitz, JONSWAP, TMA, etc.) and
spreading function (i.e. Cosine®, wrapped normal, etc.). If the discrete
directional spectrum is available, it is better to use it if a directional
spectrum is required. For the unidirectional conditions of this location, the
wind-sea and swell procedure (method 2) worked better relative to the swell
only procedure for shallow-water transformation. The WIS sea and swell
procedure (method 3) was more appropriate for the directional cases.

104. 1In phase 1, measurements were made at seven locations within the
basin by capacitance wave gages. The gages were arranged in a 2-3-1-7 linear
array embedded in a directional array in the shape of a cross. It was
centrally located 20 ft in front of the DSWG along its center line. A unit
lag spacing of 2.00 ft was selected to optimize resolution while minimizing
spatial aliasing.

105. A minimum of 200 waves at the peak period was collected with a

sampling frequency of 10 Hz. Spectral, directional spectral, and RAO analyses
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were performed for each case. Although all seven gages were used in these
analyses, an average of only three is reported. These three gages, numbers 1,
3, and 4, were close together and least affected by the contours of the model.
The one exception was that all seven gages were used for the spreading
function analysis.

106. Standard fast fourier transform techniques, including zero-
meaning, windowing with a 10 percent cosine bell, and band averaging between
lower and upper cutoff frequencies of 0.02 and 0.22 Hz, respectively, were
used for the frequency spectral analysis. The same resolution bandwidth of
0.01 Hz was used for all cases by averaging different numbers of adjacent
bands.

107. Directional spectral analysis was based on the fourier series
expansion of the directional spreading function. The measured surface data
for each gage was zero-meaned, windowed, fourier transformed with a "235" FFT,
and Gaussian smoothed with the same bandwidth and cutoff limits as before to
obtain the cross-spectral matrix of autospectra and cross spectra. This
matrix is substituted into the parameterized spreading function to obtain a
set of N? simultaneous, linear equations. A least squares fourier transform
method for numerical integration is used to invert a matrix of independent
variables to solve for the fourier coefficients of the spreading function.

The technique for doing this is a linear, stepwise regression model.

108. Because of leakage around and under the DSWG, electronic and
mechanical losses, and basin response characteristics, the measured spectra do
not usually reproduce the target spectra. The height-to-stroke transfer
function only compensates for an ideal wave maker. 1In addition, a water depth
of 50 ft instead of 58 ft was inadvertently used to create the control
signals. Thus, an RAO transfer function was calculated for each spectral
control signal to compensate for observed variations in peak period, wave
height, or spectral shape. The RAO is the ratio of measured to predicted
spectral density for each gage at each frequency. After the initial run of
each case in series 1, the RAO was computed and used to correct the control
signal for future runs in series 2 and 3. Phase 3 of this study will report
on the relative effectiveness of multiple iterations with the RAO.

109. 1In general, the shape of the measured unidirectional and
directional frequency spectra agreed very well with the predicted values after

the RAO corrections. The 1973 and 1983 unidirectional cases and the 1972 and
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1973 directional cases were slightly larger than desired, however. This is
not critical because measured values are normalized by the actual incident
conditions rather than the desired conditions. The 1969 directional case was
slightly smaller in the high-frequency region because large angles of
spreading caused energy to be unmeasurable by the gage array.

110. Agreement between the measured and predicted spreading functions
and ¢ was generally excellent for all cases. The spreading appeared to
intensify for the unidirectional cases after the RAO correction was applied.
For the directional cases, the agreement also improved. A significant
transformation of the directional distribution of energy occurred in the 1970
and 1983 unidirectional cases in the water depth of 68 ft. This increase in
depth produced a noticeable smearing of directional energy. In the direc-
tional series, the 1973 storm was slightly underpredicted for both water
depths.

111. At the time of these experiments, the WIS and SHALW programs only
generated a directional grid of 16 increments at 22.5 deg. Finer grid spacing
of 5 to 10 deg would be more useful for future physical model comparisons,
especially for unidirectional waves.

112. Measured peak wave periods were normalized by their target values.
In general, after RAO correction they matched their target values within an
average of 5 percent for all storms. They tended to decrease for the
unidirectional cases due to increase in depth. For the directional cases, the
opposite trend occurred. For most cases, the normalized directional periods
were larger than their corresponding unidirectional counterparts. For the
unidirectional series, the low normalized period was 0.99 for the 1969 storm,
and the high was 1.19 for the 1972 storm. For the directional series, the low
was 0.94 for the 1970 storm, and the high was 1.18 for the 1972 and 1973
storms. The 1972 storm was difficult to achieve for both unidirectional and
directional cases. The periods appeared to be more invariant for the
directional series than the unidirectional series for an increase in depth
from 58 to 68 ft.

113, Measured zero-moment wave heights were also normalized by their
target values. An increase in depth caused all cases to increase ir. height, a
result to be expected according to linear wave theory. Generally, the
unidirectional cases had larger heights than the directional cases. The one

exception was the 1970 storm. 1In general, after the RAO correction the
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heights matched their target values within an average of 4 percent for all six
storms. For the unidirectional series, the low normalized height was 0.97 for
the 1969 storm, and the high was 1.10 for the 1973 storm. For the directicnal
series, the low was 0.88 for the 1969 storm, and the high was 1.18 for the
1973 storm. The 1973 storm could have been reduced using an overall gain
factor lower than 1.00 during runtime.

114, To quantify the effect of an increase in water depth on a
projected storm height, the ratio of measured height at 58 ft was divided by
the measured value at 68 ft. The average increase for both unidirectional and
directional cases was 12 to 13 percent. The 1972 and 1974 directional cases
tended to increase more than their unidirectional counterparts. The other
directional cases increased slightly less than the unidirectional cases.

Thus, the increase or decrease in wave height for a particular storm at a
particular location is dependent on all of its parameters, not just the amount

of directional spreading.
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APPENDIX A:
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APPENDIX B: WAVE ELEVATION TIME SERIES
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APPENDIX C: MEASURED FREQUENCY SPECTRA
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APPENDIX F:

MEASURED PEAK PERIODS AND H,, HEIGHTS




o

Measured Tp Peak Periods
Calibration Phase, Series 1 (H=1.11 Ft.)

Channel Channel
Storm Target Channel Number Average Average
Year Period 1 2 3 4 5 6 1,3,4 1-7

"o~

Unidirectional Cases

1969 2.49 2.49 1.94 2.52 2.52 1.50 2.40 2.45 2.5 2.26
1970 2.13 2.30 2.20 2.20 2.20 1.76 2.20 2.26 2.23 2.16
1972 1.86 1.86 1.69 1.69 1.69 1.86 1.86 1.69 1.75 1.76
1973 2.13 2.26 2.26 2.3 2.32 2.32 2.32 2.2 2.30 2.29
1974 2.49 2.45 2.61 2.5 2.56 2.56 2.56 2.5 2.51 2.54
1933 2.49 2.47 2.33 2.56 2.56 2.33 2.33 2.22 2.53 2.40

1969 2.49 2.49 1.87 2.49 2.46 2.50 2.50 2.49 2.48 2.40
1970 2.13 2.0 1.90 2.01 1.67 1.26 1.90 2.12 1.90 1.84
1972 2.13 2.17 1.74 2.46 2.44 1.90 1.90 1.66 2.35 2.04
1973 2.13 2.51 2.03 2.48 2.48 2.13 2.1 2.53 2.49 2.32
1974 2.49 2.16 2.46 2.56 2.16 2.49 2.44 2.56 2.29 2.40
1983 2.49 2.47 2.46 2.46 2.46 2.49 2.49 2.54 2.46 2.48

* Note: All measurements in seconds.
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Measured Tp Peak Periods
Calibration Phase, Series 2 (H=1.29 Ft.)

Channel Channel
Storm Target Channel Number Average Average
Year Period i 2 3 4 5 é 7 1,3,4 1-7

Unidirectional Cases

1969 2.49 2.52 2.40 2.43 2.43 2.46 2.43 2.54 2.46 2.46
1970 2.13 2.25 2.20 2.20 2.20 2.20 2.20 2.25 2.22 2.21
1972 .86 2.22 2.22 2.22 2.22 1.69 1.69 1.69 2.22 1.99
1973 2.13 2.26 2.26 2.26 2.32 .26 2.26 2.26 2.28 2.27
1974 2.49 2.52 2.56 2.47 2.47 2.52 2.52 3.36 2.49 2.63
1983 2.49 2.56 2.56 2.47 2.51 2.51 2.51 2.51 2.51 2.52
Directional Cases
1969 2.49 2.49 2.54 2.49 2.49 2.50 2.50 2.52 2.49 2.50
1970 2.13 2.01 2.22 2.01 2.00 2.10 1.90 2.14 2.01 2.05
1972 2.13 2.54 2.54 2.51 2.5 2.59 2.59 2.54 2.52 2.55
1973 2.13 2.53 2.57 2.51 2.51 2.57 2.56 2.53 2.52 2.54
1974 2.49 2.56 2.50 2.56 2.56 2.16 2.16 2.56 2.56 2.464
1983 2.49 2.47 2.56 2.47 2.47 2.49 2.50 2.55 2.47 2.50

* Note: All measurements in seconds.
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Measured Tp Peak Periods
Calibration Phase, Series 3 (H=1.51 Ft.)

Channel Channel
Storm Target Channel Number Average Average
Year Period 1 2 3 4 5 6 7 1,3,4 1-7

Unidirectional Cases

1969 2.49 2.52 2.40 2.45 2.43 2.52 2.52 2.61 2.47 2.46
1970 2.13 2.20 2.20 2.20 2.20 2.20 2.20 .- 2.20 2.20
1972 1.86 2.22 2.22 1.69 2.22 1.69 1.69 ---- 2.04 1.96
1973 2.13 2.26 2.32 2.26 2.26 2.32 2.22 2.26 2.26 2.27
1974 2.49 2.56 3.25 2.51 2.5 2.54 2.51 3.n 2.53 2.
1983 2.49 2.56 2.56 2.51 2.51 2.56 2.51 - 2.53 2.54

1969 2.49 2.49 2.60 2.49 2.49 2.50 2.50 2.49 2.49 2.51
1970 2.13 2.01 2.22 2.14 2.14 1.95 1.91 2.07 2.10 2.06
1972 2.13 2.54 2.20 2.51 2.564 2.59 2.59 2.46 2.53 2.49
1973 2.13 2.51 2.57 2.51 2.5 2.50 2.56 2.53 2.51 2.53
1974 2.49 2.56 2.50 2.56 2.57 2.16 2.16 2.32 2.56 2.40
1983 2.49 2.47 2.56 2.47 2.47 2.51 2.52 2.55 2.47 2.51

* Note: All measurements in seconds.
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Measured Hmo Wave Heights

Calibration Phase, Series 1 (H=1.11 Ft.)
Channel Channel

Storm Target Channel Number Average Average
Year Height 1 2 3 4 5 6 7 1,3,4 1-7

Unidirectional Cases
1969 5.95 3N 4.37 4.17 3.96 3.78 3.98 4.01 4.01 4.03
1970 5.07 3.7 4.13 3.99 3.80 3.62 3.87 3.62 3.23 3.82
1972 3.85 2.3 2.82 2.56 2.34 2.30 2.20 2.44 2.40 2.42
1973 4.46 2.68 3.17 2.94 2.7 2.63 2.90 2.95 2.78 2.85
1974 5.16 2.99 3.52 3.45 3.06 2.99 2.93 3.20 3.17 3.16
1983 4.99 3.09 3.59 3.4 3. 2.96 3.32 3.29 3.20 3.25

Directional Cases
1969 6.12 4.03 3.89 4.31 3.97 3.83 3.89 3.44 4.10 3N
1970 5.07 3.81 3.63 3.93 3.63 3.64 3.65 3.35 3.79 3.66
1972 6.1 2.64 2.92 2.84 2.61 2.73 2.76 2.7 2.70 2.74
1973 4.55 2.59 3.08 2.92 2.63 2.85 2.78 2.61 2.7 2.78
1974 5.42 3.61 3.66 3.9 3.69 3.61 3.51 3.39 3.74 3.63
1983 5.42 3.38 3.75 3.80 3.37 3.41 3.55 3.58 3.52 3.55

* Note: All measurements in inches.
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Measured Hmo Wave Heights

Calibration Phase, Series 2 (H=1.29 Ft.)
Channel Channel

Storm Target Channel Number Average Average
Year Height ] 2 3 4 S 6 7 1,3,4 1-7

Unidirectional Cases
1969 5.95 5.70 5.89 5.97 5.71 5.67 5.58 5.31 5.79 5.69
1970 5.07 4.96 5.20 5.05 4,92 5.16 4.99 5.06 4.98 5.05
1972 3.85 3.80 4.31 3.9 3.83 3.85 3.7 4,10 3.86 3.94
1973 4.46 4.74 5.01 5.11 4.87 4.77 4.69 4.74 4.9 4.85
1974 5.16 5.06 5.80 5.22 5.03 5.07 5.02 5.15 5.10 5.19
1983 4.99 5.25 5.41 5.58 5.37 5.27 5.12 4.92 5.40 5.27

Directional Cases
1969 6.12 5.46 5.86 5.33 5.32 5.17 4.95 4.86 5.37 5.28
1970 5.07 4.86 5.30 5.02 5.10 4.83 4.67 4.78 4.99 4.94
1972 4.1 4.15 4.95 4.64 4.52 4,44 4.30 4.52 4 .44 4.50
1973 4.55 5.21 6.15 5.58 5.25 5.31 5.38 4.94 5.35 5.40
1974 5.42 5.59 5.89 5.47 5.39 5.52 5.54 5.25 5.48 5.52
1983 5.42 5.89 6.42 6.14 6.16 5.89 5.85 5.50 6.06 5.98

* Note: All measurements in inches.
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Measured Hmo Wave Heights
Calibration Phase, Series 3 (H=1.51 Ft.)

Channel Channel
Storm Target Channel Number Average Average
Year Height 1 2 3 4 5 é 7 1,3,4 1-7

Unidirectional Cases

....................

1969 5.95 6.34 6.65 6.66 6.16 6.50 6.43 5.95 6.39 6.38
1970 5.07 5.65 6.15 5.80 5.53 5.95 5.89 ---- 5.66 5.83
1972 3.85 4.23 5.02 4.57 4.22 4.28 4.36 ---- 4.34 4.45
1973 4.46 5.37 5.86 5.82 5.41 5.42 5.60 5.47 5.53 5.56
1974 5.16 5.46 6.81 5.80 5.49 5.51 5.84 6.08 5.58 5.86
1983 4.99 5.93 6.30 6.61 5.86 6.19 6.03 ---- 6.07 6.12
Directional Cases
1969 6.12 6.06 6.57 5.86 5.80 5.72 5.69 5.54 5.91 5.89
1970 5.07 5.52 6.09 5.68 5.63 5.42 5.20 5.51 5.61 5.58
1972 4.1 4.87 5.60 5.39 5.22 5.13 5.04 5.07 5.16 5.19
1973 4.55 6.04 7.14 6.14 5.80 6.04 6.39 5.74 5.99 6.18
1974 5.42 6.23 6.75 6.24 5.96 6.14 6.20 6.20 6.14 6.24
1983 5.42 6.63 7.30 6.88 6.74 6.76 6.81 6.46 6.75 6.80

* Note: All measurements in inches.
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APPENDIX G:

NOTATION




a I &

my

Real fourier coefficient of spreading function
Deterministic spectral amplitude

Resolution bandwidth

Imaginary fourier coefficient of spreading function
Dummy variable for directional spectra
Co-spectral density estimate

Directional spreading function

Vector of directional fourier coefficients, frequency
Frequency

Lower cutoff frequency

Spectral peak frequency

Upper cutoff frequency

Three-dimensional wave height transfer function
Gravitational constant

Water depth

Wave height

Maximum prebreaking wave height at wave maker
Cutoff or threshold wave height

Mean wave height

Zero-moment wave height

Imaginary unit number

Summation index

Wave number

Nondimensional water depth

Wave number at frequency mAf

Y-axis component of wave number

Integer exponent for factor 2 in 235 FFT

Space domain summation index

Linear, shallow-water wavelength
Number of harmonics in directional spreading function
Integer exponent for factor 3 in 235 FFT

Wavelength associated with peak frequency f
Y-axis component of wavelength

Frequency domain summation index

Zero moment

Equivalent number of bands for Gaussian smoothing
Integer exponent for factor 5 in 235 FFT
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Qp
Qy;(£)
RAO,
Sc
S(£f)

S(f)

Sa

S(f,4)
$;:(£)

Sy (£)
{SPECTRA)
t

(TRANS: ER]
U(E)

Um

V(f)

(B}

af
Lt

Time domain summation index

Total number of data samples
Number of harmonics in fourier series
Number of wave gages

Goda's spectral peakedness parameter

Quadrature spectral density component

Response amplitude operator function for gage i
Stroke control signal

Frequency spectrum

Harmonic mean of autospectral density estimate
Gaussian smoothed spectral density at frequency mAf
Directional wave spectrum

Autospectral density estimate

Cross-spectral density estimate

Ve-tor of measured autospectra and cross spectra, frequency f§

Time

Wave period

Spectral peak period

Length of time series

Matrix of directional spectra terms at frequency f§
Real amplitude component of A(f)

Real fourier coefficient of control sigral at maAf
imrginary amplitude component of A(f)

Imagirary fourier coefricient of rontrol signal at maf
Weighting functicn for Gavssian smoothing

X-axis coordinate
Randn 1 variable

Matrix of independent variables in regression analysis
Distance between gage i & i along x-axis

Y-axis coordinate

Dependent variables vector in regression analysis
Distance between gage 1 & j along y-axis

Spectral paiaweter

Fegress.on coefficinnts vector

Peak enhancement factor

Bisic frequency increment

Time interval

GhH




{e}
n(x,y,t)
]

Prediction errors vector

Water surface elevation time series

Wave direction, angle of wave propagation
Principal or mean wave direction at frequency maf
Constant term of 4
Slope term of 4

Overall mcan wav

3.14159

(¢}

direction for all frequencics

Directional spreading standard deviation
Left spectral width parameter

Right spectral width parameter

Mean spreading standard deviation
Constant term of o,

Slope term of o
Directional spectra dummy variable

Independent, random phase
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