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A note on Smale's Global Newton Method

A. A. Goldstein*

We have previously considered Smale's [1] global Newton method in conjunction with

the Kantorovich inequalities in a simple setting. Our object was to determine a class of

problems for which the method could be expected to be efficient. We now repeat this

project using Smale's [2] estimates at one point instead of the Kantorovich estimate.

The power of Smale's estimate stems not only from the fact that the information is con-

centrated at one point. A further advantage is that, in contrast with the Kantorovich

inequalities, no estimate of the norm of the inverse of the derivative opelatur by itself is

needed. Newton step lengths can be small even if the derivative operator is nearly singular.

The algorithm below requires only local information for its implementation. To predict its

behaviour, however, certain global constants are needed. These constants can be estimated

on a thin cylinder containing a segment joining the origin and the initial value of the vector

valued function for which we are seeking the root. The iteration count for the algorithm

is sensitive only to the parameter 3; defined below.

Theorem 1 (Smiale 86 ) Assume F is an analytic map between real Banach spaces X

and Y. That is, the Frcchet derivatives F(i"(j) exist for all x E X and k=1.2,3 ..... Given

.7( C X. assume that the inverse of F'(.r). which we denote by F!1 (x), exists. Set

,(xuo) j1F'_i(xo)Fo)Fx ) a d

(1 . Fu{ IT,! (_(o)F (k)( -  •j k k > 2}

If
3 (,ro)>(xo) < .130707

then .ru is an approximate root of F. That is the Newton sequence

Xk+l = Xk - F'l(Xk)F(Xk)

is well defined and {Xk } converges to say , a root of F at the rate:

12k,

IIXk+l - XkJI < _ 2( 1
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Moreover,

k S7 -1 ) 2 - 1 ()

The next result is not given by Smale but it is readily calculated using his ingredients. In
what follows we shall often abbreviate /3(xk) (and similar expressions) by ilk.

Remark 2

IF'(xk)I < 1.85jjF'(xo)I k = 1,2,3,. ........

Proof. In [2], Proposition 2, we find the formula

Ok+i < Ok /(2a. -40k + 1),

where Ok =-Yk < 1/S. Then ak+ < (2 ok)2. In Sinale's proof of Lemma 2 we

find jI-F',(xk)F'(Xk+)j <- (1 - Ok) - 2 - 1. Whence I1- F' (xk)F'(Xk+l Q

I + (11/4)0,k. Let 1 1 k = F'L(.rk)F'(Xk+l) then F'(xk+l) F'(Xk)Hk. and

k

IF'(" 'k+ 1)l < F'(xo)11l I(1 + (11/4) (21,0)2
)

i=0

We can improve this result )y using sharper bounds for i=0 and for i=1. namely, .306

and .13S. respectw-ly. Then

lo( ( + (11/4)(20)2)) < (11/4) (1/4)2 dx < .172

Fii we 1V('hav t estitliate

17 IIHkII < 1.85.

Assume the hypotheses of Theorem 1. Let

T = C X IIF(x)j 5 IIF(xo)jj}.

WC a -siiiie that 0(.r). F(.) and 3(.r) are defined and can be calculated throughout T.

Assuir me the existentc( of lii nbei(rs 3. I*,- mrid (7" that bound 3(-), (x). JIF'(.r)ll and

F( .r)
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on T. Let ]x[ denote the smallest integer > x.

Algorithm 3 Given xi E T, we define xj+ 1 as follows. Set t = 1 (8-/3 1f)-', where

7 (xi) and fl1 is defined similarly. SeL ' .i and run the Newton sequence for G

starting at '. Let k be the smallest integer satisfying

G(k) < JjF(x,)/40yO,

Set xi+=

The algorithm can be run and terminated with a posteriori data, without any knowledge

of the values of t~c constants c, "y,, o, ard K. Moreover to verify a) and b) below we do

not use these constants. However the global behaviour of the algorithm as described in c)

and d) is given in terms of these constants. Let Ki 1.85 IIF(x,)II.

Claim 4

(a) x,+1 can be found in S = log 2 (log 2 (80 K, , ,3, /jJF(x,)jj))( steps.

(b) IIF(x,+,)I < (1 - (1/101y,,))! IF(x,)Il

(c) Let S = log2 (log2(80Ky a)). Given E > 0, if k > ]1Oy3S log2 (1/)[

then (!iF(xk)/jIF(xo)) < c.

(d) If k > ]10-"ySlog(8-'a)[ then xk is an approximate root of F.

Proof. We show first that x,+, can be chosen as claimed. Let G'(x) = t,F(x,). Then

X, is ain approximate root for G'. Hence if &o= x, and k+i = k - F'( k)G(Ick) then

&k cmneig,-s to '. a root of G'. We now prove (b)

We have that G'(x,) - G'( ') = G'(x,) = (F(x,)/83 ,',) = F(x,) - F( ,). Also.

F(x,) - F(x,) = F(xi) - F( ') + G(&') - G'(x,+) = (F(x,) /8 3()) + G'( ')

G'(x1 +i). Thus b) is true.

XWe now prove a) by counting the steps needed to ensure that

JIG'( ')Ji _ JJF(x,)l /40 -,,3, = tmp. Since G'( ,) = F'( ,) ( ,+ -

we may choose k to ensure that 2 K(1)2 k3(X,) < trap

To prove c) replace 31, (md -, by /3 and '1, respectively. If k satisfies

k log 2(1 - (1 / 10 --;)) < f then (IIF(xk)ll / (jF(.ro)[) < C.
To go from k to k+1 requires no more than S steps.
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We now turn to d) If JJF(x)Il <5 then x is an approximate root for F. Thus wve

replace 1 / cn c) by Sc-,

Remarks 5

The method is sensitive only to the number -,

Note that fromn the above proof F(s') =t, F(xj). Since xi+1 lies near ' the global

constants need be estimated only on a slender tube surrounding the segment joining the

origin and F(xo).
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