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A note on Smale’s Global Newton Method
A. A. Goldstein*®

We have previously considered Smale’s [1] global Newton method in conjunction with
the Kantorovich inequalities in a simple setting. OQur object was to determine a class of
problems for which the method could be expected to be efficient. We now repeat this

project using Smale’s [2] estimates at one point instead of the Kantorovich estimate.

The power of Smale’s estimate stems not only from the fact that the information is con-
centrated at one point. A further advantage is that, in contrast with the Kantorovich
inequalities, no estimate of the norm of the inverse oi tiic derivative operator by itself is

needed. Newton step lengths can be small even if the derivative operator is nearly singular.

The algorithm below requires only local information for its implementation. To predict its
behaviour, however, certain global constants are needed. These constants can be estimated
on a thin evlinder containing a segment joining the origin and the initial value of the vector
valued function for which we are seeking the root. The iteration count for the algorithm

1s sensitive only to the parameter 34 defined below.

Theorem 1 (Smale 86 ) Assume F is an analytic map between real Banach spaces X
and Y. That is, the Frechet derivatives F'%(#) exist for all x € X and k=1.2.3...... Given

rg¢ € X. assume that the inverse of F'(r). which we denote by F',(z), exists. Set
Hag) = | FL (o) Fag)l| and

1 . 1
A(ro) = .~11p{HFF'_I(M)FW(IU)H Ak > z}

If
3(.1'0)’7(1'0) < 130707

then ry is an approximate root of F. That is the Newton sequence
Iiyy = — FL (2 F(xy)

is well defined and {z} converges to say &, a root of F at the rate:

)2 8(z0)

tO | =

l[x4r — xkll < 2(
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Moreover,

7 .
lex~ €l < ()" Bleo)

The next result is not given by Smale but it is readily calculated using his ingredients. In
what follows we shall often abbreviate §(z;) (and similar expressions) by f.
Remark 2

NE (i)l < 1.85]|F'(xo)ll k=1,2,3,.........

Proof. In [2], Proposition 2, we find the formula
ars1 < ap [(2af —4dap + 1),
where ar = Bryr < 1/8. Then axyy < (2 ax)?.  In Smale’s proof of Lemma 2 we

find 11— FL (20 F trksn) | € (1= ag)™ — 1. Whenee ||T~ FLy(re)Fllzgqn) | <
1 + (11/4)ay. Let Hi = F!(rx)F'(zx4y) then F'(z44y) = F'(zi) Hy. and

k
IF i)l < IF Gl [T+ (11/4) 200))
1=0

We can improve this result by using sharper bounds for 1=0 and for 1=1. namely, .306

and .138. respectively. Then

N’

1(,g<H(1 + (11/4)(200)*) ) < (11/4) /x(1/4)2’d1~ < 172
_ J1

[

Finally we have the estimate

H |Hill < 1.85.

Assunie the hypotheses of Theorem 1. Let
T={re X |NF)ll < [[F(zoll}

We assumne that 4(r). F(r) and J(r) are defined and can be caleulated throughout T.
Assumie the existence of nmumbers 4040 K and ¢ that bound J{&) () || F'(¢)| and
Fir)

air) = ”F—I('r)m”




on T. Let ]x[ denote the smallest integer > x.

Algorithm 3 Given z; € T, we define 7,41 as follows. Set t; = 1 — (8v;8,), where
vi = v(z;) and B, is defined similarly. Sei €] == r; and run the Newton sequence for G
starting at £). Let k be the smallest integer satisfying

G(&) < ||F(=i)]]/407:8,
Set Ti41 = 5“:

The algorithm can be run and terminated with a posteriori data, without any knowledge
of the values of tl.c constants 5, ~, o, and K. Morcover to verify a) and b) below we do
not use these constants. However the global behaviour of the algorithm as described in c)
and d) is given in terms of these constants. Let A; = 1.85 (| F(z;)||.

Claim 4
(a) T4, can befoundin § = ]log, (log, (80 K, ~, 82 /{|F(x,)||)){ steps.
(b) “F(IH—I)H S (1 - (1/1071/3:)) HF(Tx)H

(c) Let S = log,(log,(80 K yB0)). Givene > 0, ifk > ]1048S log,(1/¢)[
then (iF(zy)/{{F(x0)) <

(dy If k > ]1013Slog(8-/0)] then xx is an approximate root of F.

Proof. We show first that z,41 can be chosen as claimed. Let G'{x) =t,F(x,). Then

r, is an approximate root for G'. Hence if & = 7, and fk41 = & — F'(&)G (&) then
Pl o . S

£ converges to €', aroot of G'. We now prove (b)

We have that G'(z;) — GY(€') = G'z,) = (F(z;)/8B) = F(z,)— F(&). Also,
F(z) = F(zi41) = F(zi) = F(&) + G'(&) = G {ais1) = (F(2:)/88m) + G'(&") -
G'(z,41). Thus b) is true.

We now prove a) by counting the steps needed to ensure that
“GI(EI)“ S ”F(J‘n)“ /407131 = f,mp. Since G'(ét) = F,(éx)(gﬂ»l - El)

we may choose k to ensure that 21\"(%)2':[3(1‘,) < tmp

To prove ¢) replace 3, and 4, by 3 and 7, respectively. If k satisfies
Flog,(1 —(1/10+3)) < € then (||[F(xp)ll/[F(xo)]]) < e

To go from k to k+1 requires no more than S steps.

4




We now turn to d)

If [|F(x)] <
replace 1/¢in c¢) by 804

o then x is an approximate root for F. Thus we

Remarks 5
The method is sensitive only to the number vp !

Note that from the above proof F(€') = t, F(z;). Since r;4; lies near ¢' the global
constants need be estimated only on a slender tube surrounding the segment joining the
origin and F(zg).
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