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I. INTRODUCTION

Tests show that the adaptive beamformer method, based on neural network tech-
nology, performs the desired function of directing a beam so as to enhance a target signal
and reject noise and interference. The interference-rejection performance of the method
has not yet been quantitatively compared with other methods, but it is clear from the tests
reported here that the beamformer is performing as expected. It has been noted, from
comparison of the test output values and a matched-correlator output, that the plotted
crossbar circuit energy function minima follow the shape of an inverted matched-filter
output. This makes sense if we look at how the connectivities and the currents are computed
from the signal, and their role in the energy equation.

The neurobeamformer has certain advantages of implementation and adaptability
over other methods. It is, in concept at least, implementable in analog circuitry with no
control code required. This allows a compact, simple, low-cost processor component to be
produced. Also, the method is not sensitive to array grooming as are some of the alternate
techniques.

When tested with available recordings from an undersea array and synthesized
target echoes, the beamformer points a beam, of width and character determined by the
array spacing and aperture, directly at the target and leaves it there for a period of time
approximately equal to twice the duration of the target echo. It does so for signal-to-
interference ratios (SIRs) as low as -15 decibels (ratio of mean square amplitudes in the
time domain, during the time of the target echo). Below this value there are problems
discriminating the target from the interference in the case where the target echo spectrum
is overlapped by the interference spectrum. This overlap happens, for example, when the
target is stationary. In the case where the target is in motion with respect to the medium
(approximately 15 knots in the general direction of the receiver), the beamformer performs
well down to an SIR of -30 decibels.

It is recognized that a straightforward adaptive beamformer cannot match the
interference-cancellation performance of more exotic methods, which include sidelobe
cancellers, etc. 1.2.3 Therefore, a neuroprocessor will be constructed which incorporates the
neurobeamformer as a component, and will provide for cancellation of sidelobes, enhanced
source discrimination, and angle estimation through interaction of beams. Plans for this
extended network were influenced by studies of the literature in biological sensory process-
ing, peripheral and central.

2. BACKGROUND

This report is mainly about the use of particular neural network techniques as tools
for signal processing, but it is appropriate that some discussion of the neural network
approach be inserted at this point, before getting to specific cases.

The computational neuroscience discipline stems from a recognition that the exper-
imental techniques and theoretical explanations of the neurobiological sciences have
progressed to the point where they will produce contributions to the hard computational
disciplines. Artificial neural networks (ANNs) are the models/tools which have been forged
by this discipline, for the purpose of engineering devices. If our devices can accomplish what
biological neural tissue accomplishes in the areas of information processing and control,
while retaining the advantages of our conventional computing machines, then certain areas
of application will benefit greatly.



Two areas which will benefit are (I) unmanned space exploration and (2) defense
(weapons). Both have the need for powerful information processing under conditions that
are adverse to humans and other biological systems. Except for the adverse conditions (no
air, small platforms, exploding warheads) an option would be to improve the interface
between man and machine, perhaps forming a direct interface between the brain and the
computer i.e., putting machines into man. But this combination does not work for auton-
omous weapons and spacecraft because it retains the weight, size, environmental require-
ments, and vulnerabilities of the biological system. Thus the alternate approach of putting
man (or elements of man) into machines, so to speak, is preferable.

In general, the role of ANNs in the applications arena will be that of tools residing
in the engineer's tool box, to be applied whenever the tools fit. The following items should
be held to be distinct from one another: (1) what can be accomplished by using the ANNs
which are presently defined and (2) what can be accomplished eventually through the
ANNs which will be produced by the computational neuroscience discipline.

The ANNs being applied to signal processing by the author can be described as
simplifying models, where underlying principles are taken from the study of real biological
neural networks. This approach is aptly described and contrasted with the in-detail model-
ing of the actual function of biological neural nets in a recent article by Sejnowski, Koch,
and Churchland. 4 An important point from that article is the following: "Because even the
most successful realistic brain models may fail to reveal the function of the tissue, computa-
tional neuroscience needs to develop simplifying models that capture important principles."
At the same time, it is recognized that simplifying models can be guilty of unwarranted
generalization (a human tendency). Each approach has positive and negative characteristics.

What are the principles underlying the work represented by this report? Clearly, the
computing power of highly interconnected processing elements (PEs) is represented in the
crossbar network, where each PE is connected to every other PE with constantly adapting
efficacy. As the connections change, the network moves toward a stable state.

The way that the connectivities are determined can, in the abstract, be related
to biological function. Neurobiologists have been studying an effect in biological neural
systems called "long-term potentiation (LTP)", an increased (reduced) efficacy of a synapse,
brought about by correlated (or uncorrelated) stimulation of the neuron or of neighboring
synapses on a dendritic tree. 5.6 Thus, the synaptic strength is a function of the correspon-
dence of inputs. Likewise, in the beamformer, the connectivities are dependent upon the
correspondence (correlation) of the inputs.

The neurobeamformer uses a matrix of covariances to determine the connectivities.
This is done through the control circuitry of the beamformer which augments the crossbar
circuit. The control circuit was developed out of the requirement for minimum mean
square error (M MSE) at the beamformer output. This is part of the artifice which is used
in the ANN, i e., the storage of covariance is abstracted to a mathematical procedure of
accumulated multiplications (the mathematical covariance) and, subsequently, the synaptic
efficacy is represented by the computed conductivities of the connections, which are
controlled according to the covariance values.

Covariance matrices have been used for similar purposes by signal-processing
specialists in the past. Interestingly, even if the technique being used is verified to correctly
represent what is happening in biological tissue, the final product which is used for signal
processing loses nearly all of its biological form. Yet the tcchnique retains the underlying
principle of operation through the mathematical abstraction of covariance, and by the way
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the covariance meets the requirement of the MMSE problem when a neurally inspired,
highly interconnected network of PEs is used to solve it. Thus, the precept of the simplify-
ing model is satisfied.

The use of the crossbar type of circuit for solving certain kinds of constrained
optimization problems was explored by Hopfield and Tank. 7 This work extends the
optimization operation to processing in the real domain, operating mostly, or entirely,
on the linear portion of the processing element response curve. The crossbar circuit is
connected to a linear combiner, forming a network controlled, adaptive linear combiner
or beamformer.

This adaptive beamforming method was deveioped by the author in the early part
of fiscal year 1987. Its performance has been tested by simulation and the results of these
tests are reported here.

In addition, the hardware design of these methods has been explored to the point
where we have confidence that the beamformer can be implemented in the form of an
analog circuit containing no control code. Thus we are able to realize experientially adap-
tive behavior out of the circuit architecture, obviating the need for software. Unfortunately,
funding levels have not been sufficient to pursue hardware implementation.

Work has continued on a neural signal processor, the neuroprocessor, which builds
upon the neurobeamformer, using it as a component in a larger network. Some elements of
peripheral biological sensory systems are incorporated for the effective encoding of infor-
mation. leading to enhanced spatial discrimination and adaptive cancellation of noise and
interference.

What are the applications for a beamformer, or a neuroprocessor for that matter?
The possibilities are many. Some examples are given in the Applications section. For the
antisubmarine warfare (ASW) applications, the compactness, simplicity, and low life-cycle
cost of these powerful circuits are strong motivations for further development.

3. CROSSBAR BEAMFORMING METHOD

3.1 BASIC COMPONENTS AND THEIR FUNCTIONS

The crossbar beamformer is composed of four major components (see figure I):

(I) Phase-shitting device for providing a phase-shifted (optimally quadrature) input
for each of the channels

(2) Controller which determines the input currents to a crossbar circuit and also the
connectivities of the crossbar circuit

(3) Crossbar network

(4) Combiner

3
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Figure 1. Adaptive beamformer.

3.2 DISCUSSION

The heart of the beamformer is the least square parameter estimator, which is a
device of general applicability. This is composed of the integrator and the crossbar network,
items 2 and 3 above, If an arbitrary signal time series and a set of n other time series are
input simultaneously to the estimator, then n parameter value series w](t) ... wn(t ) are
output. These parameter values are the appropriate ones to use to weight a linear sum of
the n input series to form a minimum mean square estimate (MMSE) of the signal time
series.

The technique of including the phase-shifted (optimally quadrature) input is a
general technique for allowing any network to shift the phase of one input relative to
another. In this instance, the technique is used with the parameter estimator discussed
above, for the phase-shifting of inputs typical in the beamforming application.

The combiner, on the output end, does the linear sum to form the beam output.
A thresholding operation could be added here, if a race for threshold with tither combiners
is required.8

3.3 NETWORK CONTROLLED COMBINER THEORY

The crossbar beamformer design was partially inspired by a papei by Hopfield
and Tank,7 where7in they solved an optimi-ation problem using an analog crossbar network.
The key additional ideas were to use the crossbar network outputs as weights in a liii,.a,
combiner and to establish a direct relationship between the beamforming error and the so-
called energy function of the circuit. This being done, the clicuit will endeavor to minimiie
its energy function, as it has been shown to do, and in the process also minimiie the aver-
age squared error at the output. In this way, the optimum solution to the beamforming
problem is found as the circuit converges to an equilibrium.
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Fi,,,re I is a diagram of the total circuit. It is constructed out of a combination
of five components: (I) a sensor array, (2) a device which forms a phase shifted (optimally
quadrature) output from the sensor array, (3) a module which does the computation of
the input currents and connection strengths, (4) the crossbar network, and (5) the linear
combiner.

To beto- understand the meaning of beamforming error, recall that in the Widrow
adaptive co- ziner the output(y) of the circuit (the beam output) is compared against a
desired signal (d). Let the set of connection strengths w = ( wI , w2. .  w2n ) be repre-
sented in matrix form by the symbol W, and the set of inputs x = (x1 , x,. x,n ) by the
matrix X. The error (t) is the difference

Ek=dt-yk =dk-IWr Xk . (I)

where the subscript, k, denotes the kth time sample of the input series. In the continuous
case, it would represent the kth time. Also. the sums that are used in this discussion will be
replaced by integrals in the continuous (analog) case.

The squared error is

i2 W,,TvvTt (2)

k k -2dkWXk+I'x k

We wish to minimize the expectation value of the squared error, E(f 2),

t=E[E21 = E[d 2]+ I¢RW-2Wrp (3)

where

R-E[XkX k ]

P = E[dkXk] (4)

Now consider the crossbar circuit in figure 2. The energy function for the circuit is

2 to/ (5)

To have the output of the crossbar circuit determine the weights(w) of the linear
combiner (as shown in figure I), let w, = v,. i = 1.2n . The input currents, I, and connection
strengths. T, for the circuit shown in figure 2 are chosen so that the circuit outputs, v, are
consistent with the equations above. Equating t# and the error, and requiring minimization
of the same, results in the following expressions for the Is and Ts:

TI/- [x,xj]. i. T.,=O0

1I (6)/I = E{ ax, 2- tvE x,]

These values continually change as the circuit adapts to its input. They will be relatively
slowly changing, however, compared to the circuit time constants since the' are the inte-
grated expectation values. Thus we expect that the circuit energy function will track
minima values closely when the desired signal (d) is present in the input. The following
material in this section gives the detailed derivation of equation (6).
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Figure 2. Hopfield crossbar circuit.

Theoretically, the crossbar beamforming device seeks the optimum least square
weight matrix, W*, in the form of voltages across the outputs of the crossbar circuit. A
mathematical expression for this matrix is found analytically by taking the derivatives
of the squared error, equation (3), with respect to the weights and setting them to zero.
Taking the derivatives, get

""= -o "', =2RW-2P. (7)
a W Ldwo awl w1

Setting the derivative equal to zero, get

optimum Is/ = W'= R-1 P. (8)

To complete the process. a gradient descent method is used to solve equation (8).

The circuit in figure 2 is constructed so that the energy function for the circuit
(equation (5)) is a Lyapunov function. That is, as the circuit equilibrates, a minimum in
the energy ( [EQN -psi"]) is achieved. To assure stable behavi'r. the connections are kept
symmetric, i.e., Tij = Tji, and the direct feedback connections are eliminated (Tii = 0)
although it is not clear that this would be necessary in all cases.

To simplify, define the following quantities:

(doubled) 2V(net)=- ZTv,u,-2 uI (9)

101 I

(rmodified) E[d 2 ]= 1'/T R W - 21,/T p. (10)

Since the expected value of the desired signal remains fixed, minimization of the
modified error also leads to minimization of the squared error (41). Next. equate the modi-
fied error and the circuit energy:

6



- ZyTqWaW-2LwI = VTRW-2W P (ll)

and expand the right-hand side:

WTrRW =ZZEX'X1 W 1 ,+ Z w.E[4I' (12)

-2W/TP=-2ZwE[dx.] . (13)

The stated results for Tij and Ii, equation (6), are arrived at by equating terms.
With these values, the circuit will seek a minimum value for the circuit energy and conse-
quently minimize the squared error. Although the values for the Ts and Is are constantly
changing, they are averages and consequently change slowly with respect to the time
constant ot ,..e circuit.

4. ASSOCIATED NEUROMORPHOLOGY

4.1 GENERAL ORGANIZATIONAL TRENDS IN BIOLOGICAL SENSORY
SYSTEMS

In general, a lot of processing is happening at the very peripheries of sensory
systems, i.e., in the ini mediate vicinity of, or within, the sensor and supporting structure,
where the data are encoded or translated, into the language of the neuropile. In the process,
relevant information is preserved, and what is relevant is determined by feedback from
processing. The adaptive beamforming operation is quite analogous in this respect.

During neural encoding, the stimulus is transformed in various ways to reveal and
separate patterns and features. Studies of vision in monkeys indicate the existence of segre-
gated pathways, differing in their selectivity for color, stereopsis, movement, and orienta-
tion, 9 beginning at the earliest peripheral stages in the visual system and persisting into the
higher levels, where memory, modeling (generalization), and control occur.

Studies of the auditory system in cats reveal encoding which forms in at least three-
dimensional representation of the stimuli. These are suggested by Geisler I(' to be average
discharge rate, temporal disch -8e pattern, and tonotopic place. Greenberg It suggests
rate,( place, synchrony, place, syncnronyi quasi-place, and synchrony,' place-independent as
bases for neural encoding.

4.2 AUDITORY CROSS-CORRELATION MODELS

Auditory systems in animals extract information from a varict\ of sounds, from
machinery noise, to music and speech. Several models of binaural auditory information
processing have included computation of cross-correlation and covariance. 12,13.14.15.16

Deng, et. Al., 17 include what they call cross-channel correlation in their model of monaural
speech processing.

In applying these models of auditory processing of speech-induced signals to sonar
signals, one presumes that the neural encoding schemes represented in the models are not
specialiied to speech exch.iaely. This is probably a safe assumption because of require-
ments for efficient use of neural matter in these systems.
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Many of the effects which the sonar signal processor must account for are also
considerations in auditory processing in humans, cats, dolphins, and bats. For instance, the
effects of multipath on hearing have been studied, '8 and so has the reduction of recognition
performance in the presence of masking noise.

5. SUGGESTED EXTENSIONS

5.1 A DEMONSTRATOR

Some preparations have been done to build a demonstrator using the combination
of a microphone array and the neurobeainformer simulator as a starting point. A micro-
phone array with nine separate input channels has been acquired and the ANZAs (Zenith
386 machines containing the Hecht-Nielsen 68020-based coprocessor boards) have been
outfitted with analog-to-digital conversion devices. It remains to be seen if the ANZAs will
have sufficient power to make the demo istrations realtime enough for presentation at a
meeting. If not, a faster processor will be found or the demonstrations can be videotaped.

It has been proposed that this demonstrator could also serve as a testbed, where
pieces of the simulator would be replaced with hardware in a step-by-step manner in order
to keep problems isolated. The first configuration would have a microphone array inter-
faced via the preamplifiers to the neurobeamformer simulation. During this phase, the
correct operation of the array and successful processing of its signals by the digital imple-
mentation could be verified.

Next. a hardware version of the integration for establishing the covariance matrix
could be constructed and introduced between the array and the computer. A portion of the
digital code would be displaced and the demonstrator would be speeded up. With the
operation checked out just prior to the change, any problems would be associated with the
new piece or the way that it was interfacing. Also, previously recorded intermediate values
could be compared with the outputs of the newly introduced hardware.

This process can be continued by introducing a crossbar very large scale integration
(VLSI) chip. and displacing another portion of the digital implementation. At this point
the digital computer would be used as merely a data acquisition device. Finally. the
microphone array itself could be replaced with hydrophones for tests at-sea.

5.2 NEUROPROCESSOR

The "neuroprocessor" is a proposed extended network which builds upon the adap-
tive beamformers. One simple extension is to impose a layer of neurons between the sensor
quadrature inputs and the parameter estimator and between the inputs and the combiner.
Thus. the inputs to the estimation process are a coarse sampling of the phase pattern space.
The coarseness is determined by the beamwidth of the individual input neurons.

There is an information-coding scheme known as the "coarse-coding scheme", and
it is found, for instance, in the auditory system. Figure 3 shows the overlapping frequency
response curves for individual neurons in the peripheral auditory system as an example.
These overlapping filters can be thought of. by analogy. as beams in frequency space.

Figure 4 shows analogous, overlapping cookie-cutter beam patterns. By applying
Boolean logic to these, regions are defined by a pattern of combined responses. The region
AABAC is illustrated.

8
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Figure 4. Venn diagram of beam patterns.
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In the real case, the beams will have sidelobes, which makes the logic more complex.
But, we will also have an adaptive combiner to determine the correct mix, i.e., figure out
the coarse coding. The weights, which compose the mix, form patterns. A backpropagation
network will be trained to associate the patterns with a direction estimate. Thus, a coarse-
coding scheme will be utilized to achieve a high degree of resolution, although the individ-
ual beams, due to their width, do not resolve very well.

The subject weights which form the pattern for direction estimation are also used
for combining the beams into a composite beam for enhancing the desired signal and
rejecting interference.

5.3 TARGET LOCATOR

The target locator overview plan is shown in figure 5. It will include the functions
performed by the neuroprocessor discussed above and, in addition, do target recognition.
That is, there are some echo-signature techniques and signal-decomposition techniques that
can be utilized to determine the identity of the signal/echo source.

Figure 6 shows a more detailed diagram of how the networks may be permuted and
combined to perform the recognition function. This includes a form of lateral inhibition and
a signal decomposition according to a set of basis functions. The lateral inhibition allows
for a partitioning of the input space, where neighboring beams claim inputs and exclude
other beams from training on them.

Target Locator

Phase Adaptive Temporal Pattern to
Sensor Pattern Noise Pattern Direction
Array Detection' Cancellation' Recognition Association

: competition

phase
shift ,

Figure 5. Overview plan for the target locator.
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Adaptive Beamformer recognizer
Desired __I's

Correlation Ttu Network

Array \' "Signo)(d

phase Bea Crossbar

components

pattern
Figure 6. Lateral interaction technique for target locator.

6. DISCUSSION OF TEST RESULTS

6.1 THE SIMULATOR

To do the tests, simulation code was written on the ANZA. Data preparation, such
as merging reverberation and SEG outputs, was accomplished on a VAX/780 and the files
were subsequently downloaded to the ANZA (figure 7).

6.2 THE DATA

The data used for these tests are taken from nine summed rows of an array, which
was immersed 30 meters deep in Dabob Bay and traveling at 15 knots. The bay depth was
approximately 200 meters.

Ultimately, it was realized that the data files received from Marine Physical
Laboratory (MPL) have been altered by a rotatory tion of the complex samples. The data
were de-rotated to eliminate the change in the data spectral characteristics.

Additional (surveillance) data are available and have been successfully read
and converted for testing the neural networks. Analysis using the Dabob data has suited
required testing up to this point. Test results on surveillance data will appear in a later
report.

II



TESTING SYSTEM

SEG REVGEN REVMOD Sea - lest
( TSSP ) ( APL ) ( ARL/PS, Data
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IIR

Signal~wr Processing

(Neurocornputer)

Figure 7. The testing system.

6.3 THE RESULTS

Tests indicate that the adaptive beamformer method, based on neural network
technology, performs the desired function of directing a beam so as to enhance a target
signal and cancel noise and interference. The interference-cancelling performance of the
method has not yet been quantitatively compared with other methods, but it is clear from
the tests reported here that the performance is good.

It has been noted, from comparison of the test output values and a matched-
correlator output, that the plotted crossbar circuit energy minima follow the shape of an
inverted matched-filter output. This makes sense if we look at how the connectivities and
the currents are computed from the signal, and their role in the energy equation. The
energy is

1

-- 2 goL -. JU, 1  (14)

where the connectivities are related to the autocorrelation matrix

T= -E[ x , x,] (15)

and the input currents are related to the cross-correlations of the channels with the desired
signal (d) and the weighted autocorrelations

I,- E[dx,]-.w,E[x ]. (16)

If we combine the equations to get the expanded energy equation, we get

2 ~ VE[2 x,] Z
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It appears that during the target return the second term above can dominate. It
is the only term which is not multiplied by the square of the outputs, vj, which are often
small.

The neurobeamformer has certain advantages of implementation and adaptability
over other methods. It is, in concept at least, implementable in analog circuitry with no
control code required. This allows a compact, simple, low-cost processor component to be
produced. Also, the method is not sensitive to array grooming as are some of the other
available methods.

To summarize the results of the tests, for synthesized target echoes, the beamformer
points a beam, of width and character determined by the array spacing and aperture, directly
at the target and it leaves it there for a period of time approximately equal to twice the
duration of the target echo. It does so at SIR as low as -15 decibels. Below this value, there
are problems discriminating the target from the interference in the case where the target-
echo spectrum is overlapped by the interference spectrum. This overlap happens, for exam-
ple, when the target is stationary. In the case where the target is in motion with respect to
the medium of approximately 15 knots in the general direction of the receiver, the beam-
former performs well down to an SIR of -30 decibels.

It is recognized that a straightforward adaptive beamformer cannot match the
interference-cancellation performance of more exotic methods which include sidelobe
cancellers, etc. 1.2.3 Therefore, a neuroprocessor will be constructed which incorporates the
neurobeamformer as a component that will provide for cancellation of sidelobes, enhanced
source discrimination and angle estimation through interaction of beams. The plans for this
extended network were influenced by studies of the literature in biological sensory process-
ing, peripheral and central.

6.4 EXAMPLE TEST OUTPUTS

The example test runs show two major cases (I) the target echo is not overlapped
with the reverberation ridge and (2) the target echo is completely within the reverberation
ridge.

In the first case, the target has an up-Doppler shift representing approximately 15
knots of target speed. Figures 8a, 8b, and 8c show time-Doppler contour plots of the inter-
ference, the target echo, and target plus interference respectively. The target echo is essen-
tially a point target return. The pulse duration is 180 milliseconds.

Figures 9a and 9b show time histories of the beamformer sensitivity versus angle
and the crossbar network "energy" (defined in equation 5 and expanded in equation 16) for
when the interference only is process, J by the network.

Figures 10a and 10b are similar to figures 9, except that the target echo is present at
-30 dB SIR. The target is a point target traveling at 15 knots toward the receiver. Notice
the pronounced dip in the energy function values as compared to the figure 9b. Also notice
the increased sensitivity at the target angle and reduced sensitivity at other angles

Figures I Ia, I lb. and I Ic are similar to figures 8, showing time-Doppler contour
plots for interference only, target echo, and target plus interference. Its Clearly, the target
echo and interference overlap. The SIR is 0.0 decibel. The following figures are for this
case of a stationary target with commensurately overlapped interference and target-echo
spectrograms.
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Figure s. Spectrograms of down-translated signals: (a) Interference only,
(b) target only, speed = 15 knots, (c) target & Interference, SIR = 0 dB.
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Figure 9. Sensitivity and crossbar energy histories for case of no target,
interference only.
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Figure 10. Sensitivity and crossbar energy histories for case of point target,
SIR = -30 dB, speed = 15 knots; Interference same as figure 9.
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Figure 11. Spectrograms of down-translated signal:a interferences only,
(b) target only, speed = 0 knot, (c) target & Interference, SIR = 0 dB.
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Figures 12a and 12b show the time history for the beamformer sensitivity versus
angle, for this case of a stationary target. The beamformer is again becoming attentive to
the target angle. The author has noticed that there seems to be more training on the inter-
ference in this case. There is yet no explanation to this phenomenon.

Figures 13a and 13b show the crossbar network energy. It dips to a minimum
when the desired signal is present. Figure 14a shows the beam output and one of the
corresponding input channel time series. Figure 14b shows the matched-filter output,
produced by correlating the desired signal with the streams shown in figure 14a.

Figures 15a and I 5b show snapshots of the evolving beam, plotted in a polar
format. The beam is initialized to look in the forward direction (the black curve). Subse-
quently, as the environmental echo comes in, the beam thrashes about in the color red,
which signifies a crossbar energy. When the target echo comes in, the color changes to
blue, signifying a dip in the crossbar energy, and the beam is seen to be well-formed in
the proper direction. Figure 16 shows some of the connection strength histories corre-
sponding to this run. The rest of the set is contained in appendix A.

Figures 17 and 18 show the histories for input currents I through 18 shown in the
crossbar circuit diagram, figure 2. The currents show an oscillatory nature, which can be
understood by inspection of equation 16. The first term is related to the cross-correlation
of the input with the desired signal. In this case, both of the series contain Doppler ripple,
resulting in the oscillation. If both series had been frequency-shifted to compensate for the
platform motion (which is often done in signal processing schemes), then the currents
would show less oscillation.

Figures 19a and 19b show bargraphs of the ranges of the connection strength values
and the current values respectively. These ranges are important when considering hardware
constraints. The connection strength values are shown as conductivities (mhos), and indi-
cate that the variable connections must operate in the range of open circuit to approxi-
mately 25 ohms resistivity.

Figure 20 is the first in the set for an SIR equal to -15.0 decibels. It shows the
sensitivity history. Figures 21 through 24 show the crossbar energy, polar beam plots, beam
output, and connection strengths respectively. It is evident that the target echo is indistin-
guishable from the interference by visual inspection alone and if one did not already know
where it was. However, when watching the evolving polar plots, the author found it inter-
esting that the beam was more well-formed, in terms of its width and sidelobe characteris-
tic, during the target return that during the interference. The beam color only reaches
yellow in this case, making it more difficult to distinguish from the previous patterns on
the plot.

Comparison of figures 24 and 16 shows that the connectivity histories are very
similar for the runs with SIRs of --15 decibels and 0 decibels respectively. Note the scale
change.

Figure 25 is the first figure of output for the case where the target is a multiple
highlight target. Figures 26 through 29 are for the same case. The main difference from the
point target case, at the same SIR, is that there is a secondary broad energy minimum. This
may be due to the spatially extended nature of the target. It is not known why the beam
trains strongly at the beginning of the run.
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Figure 12. Sensitivity history for point target at SIR = 0 dB, speed = 0 knot.
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Figure 13. Crossbar network energy history for point target at SIR = 0 dB,
speed = 0 knot.
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(a)

(b)

Figure 15. Snapshots of evolving/adapting beam: (a) before target echo return
(b) after target echo return. Red is high energy, blue is low energy.

29/3



Connection Strength (conductivity, S)
(a) black 81,82

blue 81,03

red HI .I" -' ..... .. . . t illt* 0 1 ,08'

ye I low 81,09

\ ,A

-.04

,05 (b) black 01,10
blue 01,11

J"i'ld 01. , 16:
• "" !jr, ! ll i 1 .14

Sy ellow 01,17

-. 04

05 W black 81,18

blue 82,83

Yel low 82,89

1 8 11. 201. 381 481. 501. 681. 701. 881. 981.
iterat ion

Figure 16. Connectivity histories for case of point target and SIR = 0 dB (Iteration - 0.8 ms)
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Figure 18. Input currents (continued from figure 17.
Iteration 0.8 ms).

34



(a) Connection Strength Limits (S)
,85

.04

1. 181. 281. 301.
connect ion

(b) Current Limits (amps)
.30

E

0. 2. 4. 6. B. 10. 12. 14. 16. 18.

CURRENT INDEX
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Figure 20. Sensitivity history for case: point target, SIR = -15 dB,
speed = 0 knot.
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Figure 21. Crossbar network energy history for case: point target,
SIR = -15 dB, speed = 0 knot.

3997



(a)

(b)

target
_.v direction

Figure 22. Snapshops of evolving/adapting beams on polar scale for: (a) before target echo
return, (b) after target echo return. Beam Is yellow because the SIR Is -15 dB and the energy
does not go as low as for the case, SIR = 0 dB. Target is at 26 degrees.
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Figure 23. (a) Beam output and input stream for channel 1.
(b) Matched-filter/cross-correlation values.
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Figure 25. Sensitivity history for case: distributed target, SIR =0 dB,
speed = 0 knot.
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Figure 26. Crossbar network energy history for case: distributed target,
SIR = 0 dB. speed = 0 knot.
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(a)

(b)

Figure 27. Snapshots of evolving/adapting beam on a polar scale for case: distributed target,
SIR = 0 dB, speed = 0 knot.
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Figure 28. Connection strength histories for case: distributed target. SIR = 0 dB,
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Figure 29. (a) Beam output and input stream for channel 1. (b) Matched-filter cross-correlation
values case: distributed target, SIR = 0 dB, speed = 0 knot.
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7. GENERAL CONSIDERATIONS AND CAPABILITIES

7.1 OVERVIEW

The investigation covered by this report emphasizes the crossbar method of beam-
forming. This method essentially effects control over a crossbar network in order to opti-
mize the beam output in the least squares sense. This causes experiential adaption to occur.
i.e., there is no supervised learning necessary, the beamformer adapts "on-the-fly", continu-
ally looking for the "desired signal" to appear within the inputs.

The parameter estimator, described in the section 7.2.4, is combined with the signal-
processing technique of using phase-shifted input to allow the network to operate on phase.
It can be shown that it is not necessary to use quadrature pairs in order to achieve the
adaptive phase shifting of inputs, but it is more efficient to do so.

It has been suggested that a differentiator be used to effect the phase shift. This
method would account somewhat for the bandwidth of the signals, shifting the spectral
components by 90 degrees. Another way to increase the bandwidth of the beamformer is
to filter the input into separate bands. This could be used in combination with the
differentiation.

In the previous report on the neurobeamformer 1 9 a second method was reported,
called the bivector beamformer.* This method introduced the modified Kohonen learning
rule and competitive learning, it is now realized that some of the characteristics of this
method can be realized within a networked crossbar beamformer configuration. They can
be made to compete, for instance, which would allow them to track several objects simul-
taneously as mentioned below in "Maneuvering among obstacles or landmarks".

The bivector beamforming method is still of interest to us because of its ability
to search for statistically "stable" phase patterns within the signal space. not requiring a
desired signal to be fed in. Sometimes one does not know what the mission-relevant signal
is going to be, so the most effective approach is to lock on to relatively persistent returns
and noise-cancel them in order to get as clean a signal as possible for comparison with a
database of known signals.

7.2 APPLICATIONS

Some brief examples follow.

7.2.1 Guiding Weapons to their Mission Targets

Guiding weapons to their mission targets is an important military application. The
function of the neurobeamformer in this case, is to find a signal which is characteristic to
the target from within noise and interference and enhance the signal relative to noise and
interference.

The target signal is detected by the special processing technique already mentioned
and outlined in detail in a later section. The circuit increases target SIR by directing a
beam in the correct direction. Since the sensitivity to other directions is reduced, noise and
interference are reduced. Thus, the candidate target signal is more easily
recognized J classified.

*NOSC Technical Notes (TNs) are working documents and do not represent an official policy
statement of the Naval Ocean Systems Center. For further information, contact the author.
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Interference rejection can be further enhanced and cancellation introduced by
incorporating multiple neurobeamformers into a network. This allows beam-to-beam inter-
action which increases the ability to resolve spatial sectors and cancels sidelobes, thereby
enhancing interference cancellation with respect to what can be achieved with a single
beam. It also has additional features, which are discussed in a previous section on the
neuroprocessor.

7.2.2 Maneuvering Among Obstacles or Landmarks

For an autonomous vehicle maneuvering along the ocean bottom, one would like
for it to avoid obstacles and keep track of its location as it moves along. It can do this by
pinging upon its surroundings and tracking individual objects.

One step in the process of tracking the objects is to use an adaptive beamformer.
Although the echoes received from objects at nearly equal ranges are temporally over-
lapped, the beamformer would partition the individual object returns into separate chan-
nels, and a track kept for each one. As the platform moves, the beams adapt to keep the
objects on main response axes. To achieve this effect, a network of beamformers are made
competitive.

7.2.3 Image Processing

In sensor systems which detect electromagnetic radiation in the visible range, the
sensor outputs are, loosely speaking, representative of average intensities. The frequencies
are very high, and the waveform is not analyzed in detail.

However, if we take a raster scan of an image as in video applications, then the
individual pixel intensities, taken in sequence, form temporal patterns. We can then utilize
the neurobeamformer's capability as a temporal pattern recognizer. These raster scan pat-
terns can be fed into the neurobeamformer as separate channels while scan lines represent-
ing the object of interest (01) are fed in also. The action of the network is to recognize the
desired pattern from within the image scan and select the proper scan lines which contain
the 01.

If orthogonal scans are simultaneously processed, then the selected rows and
columns indicate the position of the 01 within the image. If a lens has focused the subject
image onto the sensor, then the position of the 01 within the image indicates the direction
to the Ol in the reference frame of the lens-sensor system.

The specific application could be looking for a particular word or phrase in a page
of text, finding a flying object in the visual field, or controlling the proper placement of a
part on an assembly line.

7.2.4 General Least Square Parameter Estimation

At the heart of the subject devices is the technique for controlling the crossbar
network in order to form an experientially adaptive, least square parameter estimator. This
means that, given a set of basis functions and incoming data, the device finds the correct
weights to apply to the basis functions to form an estimate of the incoming data with
minimum mean square error.

An example application of this general capability is to use it to do a Discrete
Fourier Transform (DFT). This is achieved by using sinusoids as the basis functions, i.e.,
sin wt, cos w t, sin w 2t, cos w2 t, . . . etc. Use of more complex basis functions, for the
purpose of target recognition, has been explored by Altes. 20
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9. GLOSSARY

amps amperes
ANN artificial neural network
ANZA Zenith 386 machine with Hecht-Nielson 68020-based

coprocessor board
APL/PS Applied Physics Laboratory, Penn State Univ.
ASW antisubmarine warfare
dB decibels
deg degrees
DFT Discrete Fourier Transform
Freq frequency
Hz hertz
kcps kilocycles per second (now kHz)
kHz kilohertz
LTP long-term potentiation
MMSE minimum mean square error
MPL Marine Physical Laboratory
ms millisecond
01 object of interest
PE processing elements
S Siemens
sec second
SEG standard echo generator
SIR signal-to-interference ratio
TSSP target strength standardization program
VLSI very large scale integration
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APPENDIX A-
Connection Strength Plots
Point Target, SIR =0 dB

(Iteration =g0.8 ms)
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