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ABSTRACT

In this note, we update some earlier results on the relationship of gen-
eralized hyperexponential (GH) distributions to other types of CDFs in the
Coxian family, particularly the phase types. Most specifically, we utilize
properties of these Coxian-type distributions to offer some new approaches
to determining when a given rational transform can be associated with a GH
distribution.



I
I

1 INTRODUCTION

S) Many authors have used distribution functions related to the exponential-
staging formulation introduced by Erlang (see Brockmeyer Pt. a]., 1948), with
primary modifications over the years by Jensen (1954) and Cox (1955). Much
of the current popularity of such distributions is due to the work of Neuts and
colleagues on the so-called phase-type family (see, e.g., Neuts, 1975a,b and
1981), exploiting relationships to the theory of Markov chains and putting the
theory to effective computational use in a large variety of stochastic models.

For purposes of clarity, we note the following relationships between these
classes of cumulative distribution functions (CDFs). Essentially, all of this
stems from Erlang's early idea of modeling a duration or lifetime as a sum3 of independent and identical exponential stages. Much later, Jensen (1954)
generalized Erlang's device to allow the stages to have non-identical]CDFs,
and indeed recognized the natural connection between Erlang's method of
stages and absorption-time distributions of finite Markov chains. / ' (

An important milestone came shortly thereafter in work by Cox (1955),
who further generalized to cover all distributions with rational Laplace trans-

forms, by involving a more complicated stage-to-stage movement, possibly
using negative and/or imaginary branching "probabilities" and scale param-
eters (with negative real parts). While such stages may not necessarily have3 a physical reality, the differential equations can be formed in the usual way
and the resulting CDF can well be legitmate. This class is commonly abbre-
viated as R& and it contains the class of all phase-type distributions, which,3 in turn, contains all of Jensen's generalized Erlangs.

Some recent work by the current authors, together with a number of
different coauthors, has focused on the generalized mixed exponential form

(called GH) of Coxian CDF (see Botta & Harris, 1986; Botta, Harris & Mar-
chal, 1987; and Harris & Sykes, 1987). These are linear, but not necessarily3 convex combinations of negative exponential CDFs:

nF(t) = I - E_,p, - , (e

A, ~> 0~; ZP, 1, 00 <. P, < 00, 0
I0

. fn-

3 By
Distribution/

Availability CodesI Avail and/or
I Dist Speolal



and
Al < A2 < ... < An (with noloss in generality).

Botta and Harris (1986) showed, critically, that the GH class is dense in
the set of all CDFs relative to an appropriate metric. Denseness is also a
property of both the PH and Coxian classes.

Shanthikumar (1985) worked with two classes of functions, which he
called generalized and bilateral phase types. The CDF of the generalized
phase type (GPH) is created from infinite mixing on the number of convo-
lutions. The bilateral phase type is defined over the entire real line in an
analogous fashion using Erlang mixing. It follows that a GPH distribution is
an ordinary PH whenever the mixing distribution has finite support or ha:,
an infinite phase-type representation. Ott (1987) renamed the GPH distri-
butions as almost phase types (APH) and employed the results in modeling
the G/G/1 queue.

An additional class of CDFs was offered by Sumita and Masuda (1987),
going back to the Cox idea of building on the nature of the transform and
then working backward to the form of the CDF. This is the class (called Q+)
of probability distribution functions which have Laplare-Stieltjes transforms
with only real negative zeros and poles. Clearly, all such transforms are ra-
tional and thus Q' E R. Since all the poles are real and negative, it appears
at first glance that such CDFs should also be generalized hyperexponentials
whenever these poles are distinct. However, such is not the case.

For a counterexample, consider the transform

6 2s 2 + 10s + 13
13(s + 1)(s + 2)(s + 3)'

which is easily inverted to be the GH density

f(t) =15(t) - 3(2r2t) + 1(3c -). (2)
13' 13 13

However, we see that f(t) is not in Q' since the roots of the numerator
of f'(s) are complex. Clearly, this is not a pathological counterexample,
for there are many examples of GH densities which have similar transform
constructs. Another illustration is Example 2.2.2 (page 124) of Botta, Harris
and Marchal (1987), namely,
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f(t) = 4(e-') - 6(2e - 2) + 3(3e-31).

The numerator of its transform is the polynomial (s2 -- s + 6), which also has
complex roots.

O'Cinneidem (1989) has recently introduced the properties of phase-type
simplicity and majorization as aids in understanding the class of phase-type
distributions. These results become useful when trying to determine when a
given phase-type distribution may have multiple, distinct representations of
the same Markov chain. But this search to learn how, where and why phase-
type distributions have non-unique representations is, of course, predicated
on their special nature, for non-uniqueness is not a property of all Coxian
subclasses. For example, it is easy to show by basic algebli aic properties that
each distribution in the GH class is truly unique.

Note that O'Cinneidem's use of the term Coxian is inconsistent with the
model proposed by Cox (1955), as discussed above, by a restriction that
the mixing parameters be true probabilities on (0,1) and that the means
of the exponential stages to be positive, real values. Therefore, it clearly
follows that the Coxians so defined produce a class equivalent to that of the
mixed generalized Erlangs (MGEs). (We prefer the term MGE over MCE
for mixed convolutions of exponentials, because the latter would appear to
connote mixtures of self-convolutions.)

The object, of the present paper, then, is to clarify some issues relating
the important subclasses of the Coxian set and then to try to resolve the
major pending issue in the use of generalized hyperexponential distributions,
namely, the establishment of effective procedures for testing whether any
given linear combination of negative exponential functions is a legitimate
probability distribution.

2 THEORETICAL SUFFICIENT CONDI-
TIONS FOR GH

The major focus of this paper is the ability to use the results contained in all
of the foregoing pieces on Coxian-type distributions to get, a. better picture
of the basic makeup of the GH class. As noted, we are especially interested
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in learning how to verify that a given generalized mixed exponential form is
indeed a legitimate GH CDF. In this section, we shall employ the algebraic
and probabilistic properties of the R,, class and its subsets to derive some

tools for checking whether a particular generalized exponential mixture is in-
deed a proper distribution function. In the following section, we give strictly
computational and graphical approaches to sufficiency.

Some key clues to this are found in Sumita and Masuda (1987). The class

D' they have defined contains densities admitting Laplace transforms

n1'LI( I + 8/77,)
R (I (1 + s/O,)' (3)

(0 < m < n < oo; 1, 0, 77,,. > Oforalli,j).

(We assume that the numerator is 1 for m = 0.) Clearly, all such transforms
are rational and thus Q C R.; but, as we have already shown, Q' is not a
subset of the GH class.

Some of the major results of Sumita and Masuda (1987) have direct appli-
cation to the more general class R, and to the generalized hyperexponential
distributions. A prime example of these is their Theorem 1.2, which provides
a simple sufficient condition for f E GH when f is also in Q4 . We have been

able to extend their argument to derive a sufficient condition for f E GH
independent of whether it is in Q'.

The condition offered by Sumita and Masuda requires that there exists
an indexing of the {O,} and {7,} (assuming that r77 < m12 < ... < 71, and
01 < 02 < ... < Ot) in which 0, < 1 ,, 1 < I < m. A quick proof may be
constructed by writing the transform as the product of n quotients of linear
rational functions. The inverse transform of each of m factors is of the form

The requirement that 0, < r7 thus yields a mixture of an atom at the origin
and a negative exponential term. Each of the remaining n - m terms cor-
responds to an ordinary negative exponential. Since each of the total of n

terms corresponds to a legitimate probability distribution, the convolution
will yield a true distribution (without an atom since there is at least. one
purely exponential term in the convolution).
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Now suppose that the numerator polynomial of (3) can have complex

roots occurring in conjugate pairs. Without too much difficulty, using an

argument similar to the above, we can verify the following lemma, offered

here without proof. (Some of the prior material and the following lemma are

improved versions of material found in a prior report prepared under this

grant by Harris and Botta, 1988.)

Lemma 1: Suppose that a rational transform can be written for 0 < m <

n as

f(s) =j1](1 - s/rn)TI:,(1 4- s/O,)'

where the {J,} are real, positive and arranged in ascending order, and the
{rh} are either real and positive or occur in complex conjugate pairs with
positive real parts. Suppose (without loss of generality) that

Re(771) Re(n 2) 5 ... < Re(1m)

(where equality holds only in the case of complex conjugates) and that, for
i = 1,2,...,m, 0, < 77, when 77, is real and (0, + 0,+,)/2 < Re(r/,) when

(7h, 77t4) are a complex conjugate pair. Then the inverse transform of f*(s)
is a probability distribution.

To illustrate, consider the following examples. First, let

(1+ 3 )(1 + jq )P(s) 2+t 22

(I + s)(1 + s/2)(1 4 s/3) "

This transform does indeed come from a CDF since

01 + 02 3-- < Re(771) = 2.2 2

Alternatively, we can verify the result by computing the inverses of

fl* (s) _
(1 4-,)(I + s/2)

and
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f(s) = I( 1 3)

and then convolving. We find that

1 5 1.
F,(t) 1 4 -(1 - e- ) - (1 - 2t

4 4 2

I d + e-') 2 -- 2t)

and

F2(t) 1

The absolutely continuous part of Ft(t) is a legitimate distribution since
5c-I > 4 e-2t fot all t. Since F2(t) is a standard exponential CDF, it follows
that F(t) is a CDF.

As a second illustration, consider F(I)= 1 - e- 4- c- 2t - ' e ,- , with

(1 4 1-3-1 4
(1 + s)(2 + s)(3 + s)

By taking

3 + v/3i_
771 2 r_ r-i 90 1, 02 : 2 ;

2

w- have

01 + 02 _ 3 (- - : Rc(7h ) = 3,
2 2

so that the condition of the iemma is satisfied and this is also a CDF.
As a test for whether or not a linear combination of exponentials is a

probability density, the above procedure is somewhat awkward (though pow-
erful) since the transform must. first bp established. A more direct, sufficient
condition was established by Bartholomew (1969) (following the work of Ze-
manian, 1959, 1961), based on the function's behavior at, the origin. For the
three-term model,
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f(a) -a e + a2e A2 + a3 c- A3 t (A, < A2 -<'A3),

the conditions are

0 <- f(0)
0 < A f(o)) + P'(O)
0 < A3 A2f(O) + (03 + \ 2)f'(0) + f"(0)

To illustrate, let us consider the second of the two (potential) densities
of the previous section, namely,

f(t) = C - 2c2 3 (4)

Applying the above conditions, we get:

* f(0) = 2 > 0;

* A,3f(0) -4- f'(0) = 6 - 6 = 0 -- 0; and

" A3A2 f(0) 4- (A 3 4 A2)f'(0) 4 f"(0) = 12 -- 30 20 = 2 -- 0.

Thus the second, and simpler test also works for this case.
However, neither of these tests is necessary as well as sufficient. To show

this, consider the GH density offered as a Coxian example in O'Cinneide
(1989), page 257, namely,

f(t) = 2(e - t ) - 3(2e - 2t) + 2(3est). (5)

To check against, the first set of conditions, we note that the numerator
polynomial would have roots (-1 - \/2i), and thus R_(q,) ± 1. The scale
parameters are 01 - 1,02 = 2,02 3. Hence,

Gi 4 62 3 R ( 7- - Rc(i1l) - 1,
2 2

and the condition is violated.
For the other set. of conditions, we see that the second requirement is also

violated, since
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A3f(0) + f'(0) = 6 -8 < 0.

Furthermore, for a density as simple as

f(t) = 3(e-) - 3(2e - ) + (3e-3t),

the first set of criteria is not even applicable since the numerator polynomial
is the constant 1; all three of the requirements for the second set are, however,
passed.

Next, we offer (as Lemma 2) another easily computed sufficient condition
for determining whether a linear combination of exponentials (assumed to
integrate to 1) is indeed a legitimate density function. For this, we need to
partition the purported density f(t) into two other functions depending on
the sign of the specific a,: p(t) for those which are positive and q(t) for those
which are negative, such that f(l) = p(t)-q(l), where both new functions are
completely monotone sums of exponentials with positive multipliers. Then
we have the following result.

Lemma 2: The generahzed hyperexpon-entl fun cion f(t) winll bc a den-
sity if In (Aq(0)/a, A)/(A2 - Al) < 0 where =nin{A. : a, > 0}.

Proof. It is clear that, for very large t, f(t) approaches aiAic - ' . Fur-
thermore, we can observe that p(t) > a1 A)le - 't and q(t) < q(O)Ae - . So if
we can find a value I such that aAle = q()-e - - t, then p(t) > q(t) for
all t greater than that value (call it s). It is easy to show that

n (Aq(0)/a1 A1  (6)

A2- A,

The lemma f} '2n follows when s < 0. (Note the useful observation that the
function f(t) cannot have a root, that is, cannot intersect the t-axis, for any
value larger than s even when s > 0.) 0U

Even with this result, we need better ways to test. As we have seen,

proper CDFs can fail to be picked up. No set of necessary and sufficient con-
ditions has been found to vajidate, for example, such borderline possibilities
as the function
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f(t) = 2(e-') - 6(2e2-2) + 5(3 3t)

I At first glance, this linear combination would seem to be a satisfactory
PDF. However, as can be seen in its plot in Figure 1, the function does indeed
dip below the horizontal axis and is thus not legitimate. This experience
suggests that plots can be very useful ways in performing the kind of analysis
necessary. More on this in the next section.I

I
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Figure 1. Density Plot, I-3
f (t) =2(e-') - 6(2e-") + S(3&3t

4
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3 COMPUTATIONAL NECESSARY AND
SUFFICIENT CONDITIONS

In this section, we offer some further thoughts on determining whether a lin-
ear combination of negative exponential functions is a proper density func-
tion. This will be done here through combined graphical and numerical
means.

First, we repeat the old adage that "a picture is worth a thousand words."
As we have noted with Figure 1, it is often quite easy to pick up density
violations with carefully arrayed plots.

A more formal approach can be established by going back to our earlier
decomposition of the potential generalized hyperexponential density f(t) =
p(t) - q(t). We provide a variation of Newton's method to find a root of f(t) if
it exists (i.e., to determine whether or not f(t) ever violates the requirement
that a PDF stay nonnegative). We do this by constructing a series of line
segments which are both less than p(t) and greater than q(t) and eventually,
together, move to the potential intersection of p(t) with q(t), that is, to a
root of f(t).

We begin from the calculation of the upper bound s of Lemma 2, beyond
which there can be no roots to f(t) = 0. We start our Newton-like steps
at the origin and move to s, with the procedure intended to locate any root
which may exist along the way. If no root is found by s, then we would claim
that the function is indeed a satisfactory PDF.

Specifically, a segment tangent to p(t) with slope p'(t) will always be less
than p(t), while a segment through the points t and s on the function q(t)
will be above the q(t) over the range of interest. (See Figure 2.)

For any particular t, the two lines so constructed will have the following
representations:

{ y(X) = p'(X)(x- t)+p()
(7)

y(.,) = rn(x - t) + q(t)

where m.n- jq(s) - q(t)j/(.i - t). Solution for the point. of intersection leads
to the recursive equation

13



4- p(t.) - q(t.)
r - '(t.)  (8)

where m,, = [q(s) - q(t,)]/(s - t,). Though this iteration is close to that of
Newton's method, the step sizes here are actually somewhat smaller and we
have a guarantee that no root is passed over at any step, with the iterants
always staying to the left of the root. We quit when a 1, exceeds s.

By way of illustration, let us consider three examples, namely, those given
earlier in Equations (2), (4) and (5). For the first case, we find that the upper
bound is s = in (2/5) < 0, and thus the function can have no roots over the
positive real line and must be a density.

The second case has s = 1n 3 = 1.099, and the iterations follow as:

-o 0
tl = 0.239

t 2 = 0.492
t3 = 0.797
14 = 1.276

Thus this function is (once again) shown to be a legitimate density.
The third case has iterations (again with s 1.099)

to = 0
tj = 0.132

t2 = 0.253

t3 = 0.368
t4 = 0.483
ts = 0.610
'6 = 0.772

t7 = 1.058
t8 = 4.858

We have therefore been able to verify that (5) is a true density, something
which we were unable to do with the conditions of the prior section.

However, our procedure will fail if the purported density is tangent (or
very close to being so) to the time axis at a point less than the value of the
computed upper bound s. Then the iterations will simply converge to the
point of tangency and not go beyond.

14



So if the scanning procedure we have proposed should terminate before
the value s is reached, we are not yet sure whether the function is a PDF.

To deal with this we could then initiate a second scan from the right or
positive side of the function, and a procedure analogous to the first scan can
be applied.

Consider the point s. Construct a line tangent to p(t) with slope p'(t)3 through s. This line will be below the function p(t). Construct a second
line through the points q(t 1 ) and q(s), where tj is the value at which the
first scan from the left appeared to terminate. This line will be above the
function q(t) in the range of interest.

Since p(s) > q(s), the first line is above the second one at s and over
some range to the left of s. Find the point of intersection. If it is to the
right of s, then the first line is above the second throughout the range of
interest and p(t) > q(t). If the intersection point is to the left of s, then we
know that f(t) has no root between the intersection point and s. So we can
successively scan from the right.

If the scanning from the right terminates at a value t2 significantly dif-
ferent from ti, then the function f(t) must not be a PDF. This could be
confirmed by computing f'(ti) and f'(12 ). If f'(t1 ) < 0 or f'(t2 ) > 0, then
f(t) is not a PDF. On the other hand, if tj and t2 are reasonably close, f(i)
may simply touch the axis at that point and still be a PDF. This could be
confirmed by computing f"(t,) = f"(t2 ). If f"(t) = f"(t2) > 0, then f(t)
simply touches the axis without going below it.

In the scan from the right, the two equations [written in a form like that
of Equation (7)] are:

{ = ,x) p'( - 8)+)P(S)

y(X) m1 (x - s) + q(s)

where 7n1., = (q(; -q(t, )]/(s - t, ). Solution for the point of intersection leads
to the recursive equation:

s+1 -- s, 4 lp(-;) q('.,)I/fm, -P'(S,)I,

where n = q(s.) - q(t )1/(sn - tl),q 7: s.

15



Figure 2. Iterative Scheme Illustrating Convergence
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Figure 2. Iterative Scheme Illustrating Convergence
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4 CONCLUDING REMARKS

We are now able to determine more completely whether given functions are
true GH densities. Though our approach is partly numerical and thus not
fully analytic, its implementation is very simple, and we have performed the
necessary calculations on both '286- and '386-based desktop computers. In
a sense then, this paper combines the latest in computational and. graphic
techniques with a theory which has evolved over many years beginning from
the original work of Erlang.
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