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A Study of Some Electromagnetic Problens

Relating to EMP Technology

This is the final report under Air Force Office of Scientific Research
Grant Mo. 77-3463% bearing the above title covering the period from 30 Sep-
tember 1977 to 23 Februarv 1978,

The research covers two main topics: the equivalent circuit representa-
tions of radiating systems and certain aspects of sensor characteristics.

The detaiied treatments have been writfen up and are attached as the appendices
to this report. The following is a brief summary of the research results.

For the equivalent circuit problem the development and the testing of a
nurerical technigue for racional functions have been accomplished. A network
modelling leading to a canonical ladder configuration is then formulated.
Finally the equivalent circuit representation of a thin biconical antenna is
constructed based on these methods. The research shows that transfer functianc
involved in radiating and scattering problems can be represented by such an
equivalent circuit representation. In contrast to the equivalent circuit rep-
resentation suggested by C.E. Baum [Single Port Fquivalent Circuits far An-
tenna and Scatterers, Interaction Note 295, Air Force Weapons Laboratory,
March, 19757 our method does not require explicit knowledge of the poles of
these transfer functions,

the second appendix treats the responses of a short dipole and a small
loop placed in a right-angle conducting corner. The work is intended to
correlate the open-circuit voltane of a <sersor with the local surface charge
density or surface current density on a scatterer. The right-angle corner
is a simple structure for which an exact formulation of the problem can

be 3iven. The results show the exact relationship between the open circuit




voltage and the local surface charge or surface current density on the corner.
The appendix also contains an investigation of the impedance functions of these
probes taking into consideration the proximity effect of the corner,

The research on the equivalent circuit representation was presented at
the MNuclear EMP Meeting held at the University of New Moxico, June 6-8, 1978.
The paper is entitled "A Network Model for the Biconical Antenna," by C.B. Sharpe
and C.J. Roussi. Qur work on the sensor research has just been completed
and will be submitted to the Air Force Y“eapons Laboratory Tor consideration of

publication as a note in the Sensor Series.
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Equivalent Circuit Representation of

Radiation Systems

by
C. B. Sharpe and C. J. Roussi

Radiation Laboratory
Department of Electrical and Computer Engineering
The University of Michigan

Ann Arbor, Michigan

December, 1978




Abstract

In this report the Siconical antenna is treated as a representative
scattering system. It is shown that at its input terminals the biconical
antenna can be modeled by a transmission line terminated in a cannonical LC
Jadder network. The real and imaginary parts of the input impedance of the
biconical antenna serve as useful test functions for studying the approxima-
tion of complex functions of frequency by raticnal functions. An effective
algorithmn for this purposs was implemented and evaluated. It is also snown
that over a Timited domain in the complex frequency plane the noles and zeros

of the system function can be recovered via the rational approxiration.
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1. Introduction

In developing egquivalent circuits for radiating systems we have
divided the problem intc two basic parts: the development of a rational
nction approximation technigue and the development of lumped network
svnthesls procedures appropriate to the system in question. Of course,
the first part nmust serve as a bhasis for the second. Typically the
tion will represent in analvtic fcrm the transfer admittance

r c
OL a svstem obtained by experimentally measuring the amplitude and gphase
o)

f the surface current as a function of freguency at some point on the
scattering object with reference to the incident electric field at scmw

by

4]
"

reference plane. In the general case all we can sav cLout the tran

0

function 1s that 1its poles must all lie in the clcsed leftf half-planc.
The zeros may lie in either half-plane. Among the parameters in the

are the polarization and aspcct of the incident field, the loca-
ticn and orientation of the current probe on the object and, of course,
the shape of the scattering body. An important guestion which remains

to be answercd 1s the nature of the dependence of the poles and zer

O

s
cf the transfer function on these parameters.

r to explore the above guestion, much of our initial effort
has be2n devcted to thz development and testing of a numerical approxi-
maticn technicue for rational functions. This technique and its appli-
catizsn 1n several representative approximation problems i1is described in
Secticon 2. 2As a preliminary exercise, a network modelling problem leacd-
ing to a cannonical ladder configuration was also investigated and com-
pleted.  This work is presented in the next section. Both of the above

tudies were centered around the biconical antenna. One reason for this

approacn 1s trhat the input impedance of the biconical antenna exhibits
many of the frequency response characteristics of more general scattering
structures, and 1s, therefore, a useful vehicle for test purposes.

2. A UYetworx Model for the Biconical Antenna

The biconical antenna offers an interesting example cn which to

test network modeling technigues because an exact analytical exprossion

(11

for the 1nput impodance is available. Tai has shown that the input
impedancne at the center of the biconical antenna can be represented
by a soction of uniform line terminated in a frequency-dependent admit-

4

tanco Yt(F?). This equivalent circuit is illustrated in Figure 1, where




K denotes the ch.racteristic impedance of the line. The following

expression was obtained by Tai for Yt:
Y, = O rop(2siy+e?tUtL(2:)-L(d42)+in 2)+e 2 (Lx 220y -in 27,
4-K”
(1)
where
X ) X ~t
L{(x) L-cost at o+ SR at

tes the compler conjug

c
¢ plotted in Figure [2

The objective of the work described in this section is to construct
a lumped network mcdel for the load admittance Y, of the cquivalent cir-
cult shown in Figure 1. Because Yt represents a positive real driving
int admittance, 1t 1s possible in nrinciple to synthesize a networkX
from the real part of Yt alone. From (1), the asymptotic behavior
o

£ YE(SL) at low frequencies is given by

. s 0 .. 4
.0 Re[Lt(;u)] = —x () '
6TK”
wher2 Z., 1s the characteristic impedance of free space. This suggests

that we look for a network having an input admittance Yn(j.) such that

j 1s a polyvnomial of the form

2 2 in
P ) ) = T + ‘ + PR s -
(.70 = py + pyu T Pyp®

It will now he shown that Yn(s) can always be realized as an LC ladder
terminated in a resistance if P(»7) > 0, all wu.
Suppose a lossless network 1s excited as shown in Figure (2] and
assume that the scattering coefficient SZl(S) has the form
S2
52 (s) = Bls) ' {3

where B{s) 1s a polynomial of degree 2n having all its roots in the LHP.

F—

Then 1f A(s) is another polynomial of degree 2n, Sll(s) will have the

form
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Thus, tne opeluronial P{OOT) ecan be identified with the product
)
o :u‘j ‘C’— ).
Finally, 1% oan be shown that the transmission furction given in {3) can
Do roal r¥ of the form shown in Figure (4] T 5

storage elements, 2n, corresponds to the

the two zeros of transmission regulred

at 3 = 0 are provided by Cl and Ll' It should be noted that this real-
lzation o7 5,,0s) 1s not unique.

s

The numerical ascect of the modeling problem involves the determir
4 .,

. . 2. C .
28 kne coofficiants of P(L7) by curve-fitting the functicon . P (.7)

-
Fh

Yo othe Tinsat reonrosontod by Re[Yt(;~)]. This can most readily be cdone

S o A P T T H
(S AN S HOUDEOLE IR OSSN0 N SISt I ur:c-ion

E L T I R (6)

where She o Wooare arbitrary welgnting coefflcients.  In the results that

1

€01 W, = 1, all i, and the normalization f=c was embloyed. The optimum




froquancy ransoe over which the data funciion was sampled is a function of

0f cours~2 the advantacge of employving a lcast-squares objective
ninimization of F with respech to

ctem of linear egquations for the

ecasilv implemented and th

tion Jcor the cocefficlents opresents no difficulty as long as the corres-
oDoniing matriy remains well-conditicned.  Chebwshev polynomial methous

Or meir mInimax  apnroMimations such as Lawson's algoriithm [27, an o2

es2d o avolrd the ill-conditioning that frequently occurs for larue

uoc
raluns 02 o, althovrh we did not find this to ze racessary. Once :Zhe
-
soteromial RYOTY le nrown U/ls) can bo recovered from
. 2, . ,
P57 ) = UlsiUi-g)
- N . . - - 2
TaTuorication LS , il . =) ook ool Ti-z).
Zoonose U(s; has tne form
3 2n
~ - +— 4 = + - —_ - ol
D O Alu + \_.«2“5 3
Tz j 1l. nave tho Form
2 - 2n-1
sl = S35 * casT - - - + Chpoys .
Tohe latsior noloncmial can be determined uniguely from U(s) by imgosing
o Tonilzian iven in (5). For instanrce, 1n the case »f n=3, the
it ions for o othe o, take the form,
i
_ — —_— — -
9 0 0 d -d e, ! 0
) 5 li !
N d -d. d -d o) 0
%6 5 4 3 2 | *
- - - i !
-1 a -d d ~-d ] = 0
(7' 4 3 2 1 3 ! E
! '
| =2 a -d d 0 c, | ll
b 2 ‘1 0 4: ;
-1, 4, 0 0 0 cg | o
L - ! L Z - 4

R Drocediurs 1s completed by expanding Yq(s) = W({s)/U(s) in
i
sl Ciraction and identifving the coefficients with the elements

GUomne Lavvior raetweorx. Thug, for the network of Figure 4, the expansion




Figures © and 6 1llustrate some typical results obtained by the
modeling technigue described above. In each case 90 = .01 radians. The
element wvalues for the approxinating network are calculated assumin

c=lm. It can be seen that the least-squares fit in the real part of the

U
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b
wn
[
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ctr
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©

tisfactory and thac the band over which the
apzromimazion is valid increases, as expected, with the order of the

om Figures 7 and 8 that the approximation in
the input impedance of the antenna,

in’

r
the rozl and imaginary parts of z.
o= as <ocd as that obtained for Y . This can be explained by noting

that =he orror in appreoximating Im[Yt] is not controlled in the present

procedurs and, thereisre, it contributes to the observed error in Zin
when transiarred through the transmission line. To aveid this effect,
it woulld be necessary to control both the real and imaginarvy parts of

[
.

-

j
)
w
0
W

:s 1nitial values in a computer-aided design procedure. In this

irear function minimization algorithm would be required.

®
0
3
(a3
3
Q
3
F—J

In conclusion, 1t has been shown that the biconical antenna can be

]
-
rh
[}
O
ot
b
o
—
3
¢}
~

icled by a transmission line terminated in an LC ladder
networx with a resistive load. It has been shown that the modeling
problem can be reduced to a straightforward numerical approximation pro-

cedure followed by a direct synthesis algorithm.

3. Avproximation by Rational Functions

3.1 Thaoor:s

It is of%Zen the case that one would like to express the transfer
function of a linear system as the ratio of two polynomials. This form
is preferred as 1t lends itself to linear transform methods of solutcion.
Of the technisucs that have been developed to fit experimental data by
such rational functions [3]-{4], the one by Levy 1is the most notable

(51~-[%] and forms the basis of the rational approximation method examined

This could he accomplished by using the ladder element values obtained




L= - N o £
A funchticon ©f the form
A 4 n
a,. + a (3 e+ a (3.)

0 1 m
is chosen to approximate (in the least-scuares sense) a giliven complex
set of data F. = F_. + jr, ., i=1, ... , N, where H(].) represents, for

i
r function cf a lumped network and F. the steadv-
i :

state data associated, for example, with the current at some point on a

[nd
scattaring okject The =5 and b, coefiicients are found by minimizing
i
2 DU
g o= F. - H{(3:.1) 7 = + ‘e, .

- 1 J H1 1

1=1 1=1

(‘uisn

The preblem with this formulation is two-fold: E is a nonlinear fun
of the unknown coefficients and the low frequency cata 1s not weighted
sufficiently. As a result, wide swings in the input data will cause

large apprcxinmating errors at low frequaencies. These prebloms nav be

remedied by defining a new error,
1-
e* _ DT{(3.)
= 5 e . ’
b -1 i
D (3.)

where the superscript % refers to the iteraticn nurker. If, after cach
lteration, cne refines the error estimate in this way and minimizes again,
a much better aporo imation 1s obtained. Sanathanan and Hoerner [7]
. oo k-1 T . .
have shown that D = D after a sufficient number of linear iterations.

wWizr =Zhils crhange, the object function now becomes

; . . . . . . 2
N A + . ; . . -2 V. N v . LT
Lo .,[Dp\(j 7.) jDI(wl)][FR(le)f P (w ) I= N (Gw ) +IN (W) ]
B S k-1, . \
1=1 D (Jw,) i
= ? { D, + 3D.1[F_, + JF_1 - [N_ + 9N ]’2 W.
iZa0 R I'''R I R I ] ik
whore Niv = »——l-vg-is a welcht function, and the subscripts R and I indi-

cate the roral and imacsinar, parts of the terms. The minimization of E*
at oeach iteration i3 now a lincar problem. To this end E* is partially
differentiated with respoct to oach of the polynomial coefficients and

£

cquatod to zero. This ywic lds the following matrix equation:




-7
[_“ s BRE e T
g Q =%, 0 %y T, S, T, S, . acw S,
0 \ 0 =%, 0 -5, T, S, -Tsg a; T,
By - A —
- 0 5 0 . T, S, T, Sg - - : s,
0 \4 0 —*6 0 --S4 T5 S6 —T7 . 13
T, -S, -T, S, T, u, 0 U, 0 b, 0
| S, T, -S, -7, S¢ - 0 U, 0 -Ug by U,
im - - - 1 -7
175 5, T, Se . U, O Ug 0 0
: T - -7 - U
%54 Ts 6 Ty S5 0 Uy 0 Us 3
, L : L R
where
E
= bW, ‘Nw
L w21 k kL
R
S.l = ‘Z wk Rkka
k=1
n
T, = ) .1
i WL TW
n .
U, = Jowl (R + I?)ka
1 k=1 e K K

Rk and Ik are the real and imaginary parts of the tfansfer function at
exrerimental points, and L is the iteration number. The coefficients
bl’ bz, evaluated at the L-1 iteration are used to refine the
weighting function W_ for the next iteration.

A FORTRAI prog;am has been written implementing the abovec complex-
curve fitting algorithm.

3.2 Applications

The aforementioned method was applied to the data generated by
the terminating admittance function Yt of the biconical-antenna model
as given by Tai [l]. The data is shown in Figure 2. A rational func-
tion witn eighth order numerator and ninth-order denominator was chosen
to fit this data over a range of normalized frequency 0 < 32 < 15. This
choice of transfer function was based upon the results of tests using

the same program to fit the input impedance of an ideal transmission-line




terminated in a resistance. The results of the Yt apprcximation are
shown in Figure 9 and Figure 10.

Another test was performed on data describing the input impedance
of the biconical antenna as shown in Figure 11. This example was
approximated by a ninth-order numerator and tenth-order denominator.
The results are presented in Figure 12 and Figure 13. It is seen by
comparing these results with Figure 11 that the approximated imaginary
part of Zin fails to f£it the data near 3i=f. This is due to a pole at
zero which the data contained that the rational approximating function
could not accomodate due to its chosen structure. This could have been
correctad by changing the data and reinserting the pole later, a tech-

nigue described by Levy [5].

The poles and zeros of the approximating function were extracted
by standard techniques and compared with those found by Tal and Cho via
grid search. The result is shown in Figure 14. The poles and zeros

reflect the closeness of the fit over the approximating rance.

3.3 Conclusion

The rational function approximation method employved here has the
advantage of being able to produce an analvtic representation of data
that 1s amenable to linear transform methods ¢f sclution. Furthermore,
the implementation of the method is straichtforward and computationally
efficient. For the accuracy achieved here, the typical run took 2 CPU
seconds (Amdahl 470) and cost $.50.

As a final remark, a more nearly mini-max approximation could be
obtairned by 1incorporating Lawson's algorithm [2] in the iterative pro-

cedura but our investigations to date do not indicate that this will be
c r
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ABSTRACT

This report deals with the surface fields or the surface charge and
cucrent densities on a right-angle cornor reflocter induced £y a nolarized
uniform plane wave. Equivalent circuit parameters of a short monopole
and a small semi-loop mounted on the wedge are derived and explicit
correlations between measureable quantities and local surface fields

are established.
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1. INTRODUCTION

The class of problems related to the measurements of the electromagnetic
field quantities have attracted the attention of many engineers engaged in
sensor research. The major difficulty encounterea in the measuring process
of any energy related physical guantity is the interaction of the measuring
device(s) with the physical field that always produces 2 perturbation of
the field. Therefore it is essential to have an apriori eétimate on the
amount of the extracted energy by the sensor and the extent of the pertur-
bation. In this report we will consider a cannonical probliem of this class,
narely the nroblem of measurement of surface fields on a right-angle corner
reflector. A good account of the previous work on closely related probiems
is given in [2].

The geometry of the problem is shown in Figure 1.1. The walls of the
wedge are perfectly conducting and the medium of propagation of the waves
is air with parameters {(z, u, o = 0). We will assume that the illuminating
polarized uniform plane wave is propagating in a plane normal to the axis
of the wedge. Furthermore only linearly polarized waves will be considered
with polarization of the E-field perpendicular and parallel to the axis of

the wedqe respectivelv,

. E‘]

Fiqure 1.1. Plane wave illumination of a corner reflector.




2. SURFACE CURRENT AND CHARGE DENSITIES FOR POLARIZATICON PERPENDICULAR

TO THE AXIS OF THE WEDGE

To obtain expressions for surface current density K and surface

charge density -
problem as shown in Figure 2.1.

stood throughout the report.

The time dependence e

Then:

Jut

iet us replace the above problem with an equivalent

[t 7

will be under-

with:
K = k(-oind x + -2089 2)
Y = é—
¢ = - H,
vig
k2
EZ
| “
H’)
£;
Fiqure 2.1.
|_g{ = k
{E 1 = E1 o] =
10 0

Equivalent problem obtained using image fields
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k2 = gwmd X - 088 Z \
ks = 3in8 x + o892
= -“"a + 208
k'i S1ns X 39 2 L
£ i o .
E = E (-2083 X 4+ sind z)
0 0
E = B, (-c029x - sing z
F20 Egol s )
E 5 - /
=t 223 X - 3ind Z
30 30< )
Eé@ - 540(;~3§x foain2 oz)
For surface current density we have:
K= nxH R -
! = = — + + k x E + k x E
‘ N X Hiotal nox n(k x B k, x £, ] ] . 4)
where:
no= J(u/z)

is the intrinsic impedance of air. On the surface x > 0, z = 0 we have:

)eJkXJine + (EZ X Eéo + £3 X E3O)e“JkX3in9

(Q xE ' +k, xE E

ARY = ooy L
K(R) z X o 1 20

Hi

_; 2H01(ejkxecna N e-JsztnB)

H
]
x>
ey
-
o
o
S
)
P
=
>
5}
\)
3
D
=

on the surface x = 0, z > 0 we have:

jkz.2nzd
ed

5'/(3) = X X ‘/ HO1(2 + Ze'JkZJ.’)Jie) = 2 4H01COS(kZJQJ’))

To obtain the surface charge density o we will make use of a boundary




condition derived from the continuity equation. UWhen one of the media

is a perfectly conducting surface this boundary condition reads:

<
|
1
]
<
13
[

Therefore, on the surface x > 0, z = 0, we have:

:(E) = d gy Tk 3 gin(kxoing)
W) 6]
_ (2.5)
s(R) = \j4r:EO1.?‘f‘?1:: sinlkxaing)
similarly on the surface x= 0, z > 0 we have:
5(R) = —j4aEO19039 sin(kzeoss) (2.6)
2.1. Surface current and charge densities for polarizations parallel
to the wedge axis
For this polarization as it is apparent from Figure 2.2 the following
changes should be made in the formulation of the previous section: _;
T l £
-2
/ A~
K, -
_ 9] /,’ H\
H2 P
~
X
l; .
3 ka
F3 Eq

Fiqure 2.2. Equivalent problem obtained by using image field.
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gg‘ = HO1(: : ; - oine 2)

N = ] - e NG . - SRR A

HZo Ho (-oc0s x o )

H. = H 1.(- s x4 7)

30 0 2082 X 317 V4

g = H 1.(?“‘; . + A)

10 o (2a0% % ntoz
K(R) = QjaHo st ain(kxeins) x>0, z=0 (2.7)
K(R}) = yj4Ho13i7:5 sii(kzoie) x=0,2z>0 (2.8)
s(R) = 0 foreitherx >0, z=0o0rx=20,2>0 (2.9)

3. OPEN CIRCUIT VOLTAGE OF A SHORT MONOPOLE MOUNTED ON THE RIGHT-

ANGLE CORMER REFLECTOR

The geometry of the problem and the significant parameters are shown

in Fiqure 3.1 ‘e assume thatjthe L obe is electrically small. We will

£
T——O i
7
. ~ k
N _
g -
> et~
e Ir
—
] // 5
e “L
ya
Fiqure 3.1. Short monopole mounted on a wedge.




considey only the non-trivial polarization of the incident field. As
a result of the image theorem, the induced current in the receiving antenna

is related to the open circuit voltage by:

where:

1" = current at the base of the receiving anterna
"1; = input impedance of two transmitting parallel dipole antennas
resulted by removing both conducting planes and using
the image probes.
VOZ = open circuit voltage of the receiving monopole

In this section we will deal with open circuit voltage only. The
input impedance problem vill be discussed in a separate section. Using

. L =t ;
the vector effective nheight h™ of an antenna, we can write:

The vector offective height of a short dipole {or equivalently a monopole

on a qround planej is given by:

) . <7 v
Loea el P




which corresponds to a linear current distribution:

17(z) = 1.0V - jzl/:i) 'zl < &, with ki << 1.

For the problem at hand we have:

i r = :_] X . pat ._i = - :
/oc £ (R') +h (R)f ) (-i5n 3)
Rz d, 2 =2 072 0)
S gkdates D kdeins
S0 T ' . 20
or
r 1

3.1. Open circuit voltage uf a semi-loop probe whose axis is caralle]

to the wedge axis

i

4 —

Fiqure 3.2. Small semi-Toop mounted on the wedge.
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The open circuit voltage for the probe shown in figure 3.2 is defined

as:

- . . . . . . =t . .
For a small loop with const current distribution h™ is given by:

oc S - T S
(R d, 5 0)
r T - 2. T ¢ 4 =1 jkdeins
Voo t fm(ka)fein 5 (- 2) 0 ©
T A S SR £ -jkds s
] ASRL ol L:w- 2 \ 4‘2/ 20
E1
Ul = - g2etke)® (2 ea(kdains)
= - 32 ( "az)‘ﬂ:f:c (kdz:m3) (3.4)

3.2. Open circuit voltage of a semi Toop probe whose axis is nerpendicular

to the wedge axis.

Fiaure 3.3 Small semi-loon nrohe with axis
perpendicular to the wedge axis.




The pertinant polarization of the incident field for this configuration
of probe is depicted in Figure 3.3. Following the same procedures of the
previous section and considering the direction of the current density of probe

we can write:

ro_ 7—1‘ =t
Yoc = -2

i
i
™o
£
=
ha
|
fe)]
[p]
—
jo
5
’)
I
=
a

(3.5)

RS v R

v
oc

4. INPUT IMPEDANCE OF THE PROBES

Equation (3.1) of section 3. indicates that for completion of the equi-
valent circuit narameters we need to evaluate Z?n’ which will be simply
referred as Z).n from now on, in each of the probing configurations considered
previously. Let us once more recall that Zin is the innut impedance of the
transmitting antenna in the presence of its images. With this in mind we
will begin deriving analytical formulas for the input impedance functions
involved in the problems at hand urider the assumptions imposed on electrical
sizes of the probes. The problem of determining the 1mpedgﬁce for the cases
considered here has been extensively explored previously, however most often
in the form of tables and curves. We will include here the complete express-

jons for these functicnes.

4.1. Impedance parameters of two identical, parallel, and short transmitting

dipoles.
The problem arising from the application of image theory to two antisymmetric-
ally driven antenna is shown in figure 4.1. Since the probe is assumed to be

thin and short (a << 2, k2 < 1), a linear current distribution is a suitable
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approximation and the induced EMF method can be applied successfully to
determine its input impedance. Tﬁ--\
For convenience we will proceed by

assuming a sinuscidal current distribution.

—-h

. . . . =4
At the final stages the results wirl be sim- «

plified 5y using the conditions imposed on

a, -, and o.

Based on filamentary current distri-

bution we have for the magnetic vector Figure 4.1
potential A(R): Two identical,parallel transmitting
antennas.
RE) =5 [ 6 (RR)IR) av' =
| v.
-3kR, -3kR,
_ - o 1y 8 _ e 3 l
Z 4= J. I(z'){ 7 a— dz
- 1 2

R1 and RZ are the instances from the observation point to the source points

on the axes of the dipoles. For R on the surface of one of the antennas we

have:

R, = V[(z - z')2 + a2] R2 = V[(z - z’)2 + 32] for o >> a. (4.1)

The electric field on the surface of right hand side antenna is given by:

9
7)) A= -2z jn;(] + lz 3—2) 4 <Z)

- ,
? k= 5z

il
{

]
(—f .
-

+

= - 2 VA7) (4.2)

whers a5 usual a slice generator has been assumed. Multiplying (4.2) by I(z)
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and integrating over the source region we obtain

o 1 3
V_oI(n) = 4= )z + 5 2 (5, - 6,) dzdz'
0 T f fz 2 2,2 ?
aro ' = - / ! - ———— -
where G1(z,z ) % Gd\z,z ) Rz

The first integration with resnect to z amounts for evaluation of z-component

of the near zone electric field due to current distribution of the form:

Therefore it is given by [5.1]:

S0 s 5 S,y dz = B g6(a,2) -
-2 k k

+ 6( - 2,2') - Zeosk? G(0,z')}
we then have:

Juul 2
Ziﬂ IZ(O) = —4_7—‘(_"1 f {G(Z,z') + G( - 7,,2')

7. =0 — [ 6(n.2) + 60 - 2,2) - 2 cosk2 6(D,2)3x
(0]

X gin k{2 - z) dz (4.3)
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Let us note that from the circuit relations for these antennas:

Let us define:

combining (4.3) - (4.5) we obtain:

Z = JT’]

cla)  Z, = —I (o) (4.6)
1 ZWSinzkﬂ 12 2 ’

2nsin ki
Therefore the problem of input impedance reduces to the evaluation of z(a),
and - (5).

~(a) has been previously evaluated by expressing it in terms of sine and
cosine-integrals [ 6] We will choose another approach which enables us to
obtain a series exp asion for 7(a), and 7{(p) and in particular to reduce the
results to simplified forms under certain assumptions on the parameters. We

have:




213-
7 2 -jk/(x2 + a2)
f G](-‘,,Z) sink (2 - z)dz = f 5 5 sinkxdx
0 o V(x% + a%)
f 22 e-jk/(x2 + 82)
G,(- ,2)sink(s -~ z)dz = atnk(21 - x)dx
o | J; /(x2 + a2)

2
¢

j"G](o,z)sink(z - 7)dz

(@)
@)
\
—_
>
[N
“+
[eY]
[A]
N

Therefore we are led to define:

7 —kv/(x2 + a2)
s(7,x) = f € 5 5 azinkxdx (4.7)
o Y{(x° + a%)
9 e-jk/(xz + a2)
c(z,.) = _[ R 2oskxdx (4.8)
o V(x°+ a“)

Then in terms of s(Z,a) and C{%,a) we can write:

“(a) = s(i,a) + zin2ke(C(22,a) - C{z,a)) +

2

- 2022ki(s(22,a) - s(2,a)) - 2sinklcoskiC(i,a) + 2 z08%ki s(i,a)

“(a) = 2 s(2,a) + (2 s{2,a) - s(22,a))eos 2k2 - (2C(2,a) - C{22,a)c :2k:

(4.9)

In order to evaluate s(%,a) and c(%,a) let us introduce the following dimension-

less parameters:

z:kz,,u:?—,gr/u+q2) (4.10)
Then:
T -3/ (%" + )
s(za) = [ s sinixdx = s(2,%) (4.7')
0 V(x5 + 4
1 i 8 d)
c(ia) = f g craixdx = ¢ (7,1) (4.8")
0 /(xS + 4%)
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with:
2 2
. 1 -l 2 1o -33/(x% +a7)
75 0 0 xS+ a%)
.2 2
1 _1;,(x o ) oy 2 ﬂ2 1
f s 5 cozixdx = - ] e IR/ + o )cosix -
0 (x° + 17) J 0
1 .2 .
1 f o3 (X7 + a%) ainixdx
b
Hence
. a2, 2 |1 Cian s
2= 1’, e d= T ) cosiX | = - 17 (e 33’33'35-8 Juz)
33 Js Jg
~ lo
similarly:
. 1 a2 2 T o35 Ax™ +a%)
;—S— = - ] f e-‘]—’Y(X + ) 2o3Exdx - f X€ 5 5 X sinixdx
2 5 o V(x%+af)
. 2, .2 1 Cirn
AT ]—-_ e”d" X7+ )ui/‘;ix = 17 e J“Jeini (4.12)
J 15 o I
We will proceed by finding a series expansion for %%—and %%. For the sake of
g dz

numerical compution we will develop two different series expansion depending

on the relative values of nuZ = ka.

1) 42 <]
?_‘2 - _ {:I (e—J’(’:-]) + e-J§(3+])) _ e-Jle
a7 A
._\n-1
IR e TE I L CI DL S
n=1 n!

N D S L0 5 n n n 413
S(;,L) -ﬁ_ /1.1 —ﬁ—[‘n-‘—{(p-]) +(3+]) - 2} (.1 )

n:
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n
(4.14)
Similarly we have:
TR T I = A IPRTLINPIILE
FEE R A nto " g
n=1]
C(zra) - c(o.a) = - L7 LB sy Lo
S ] 2 L nn o]
n=1
Vg 2 200 |! 341
c(2,z) = J 55" = C (x + /(x° + g%)) = n =—=—
0 v/(X + n 0 o
B} _ .. 3+] 107 (-3¢ " ‘ n R n
C< ,J.) N 2 - 2 n%} n>!n {(3‘]) - (,,‘)'*’.l) } (4.15)
213(%)+1] oo N
(= - - - .C_('- = 2 - ] (-Jzﬁ)
ZC\jsML) C(zﬁa 2) n (Q+])2 + Ana nz-] n]n Cn
(4.16)

co= 2 M) < (e )™ - s -D)" - (™

The previous expressions are so far exact. Let us introduce

approximations under the assumptions:

1= o< ] £ o= ki << ]
then
Bu) = 1 + % 42 + O(u4)
20202+ 2 2
on 2—~2- = 2n 4(1 + C{—é + ) - 22n2(1 + %—— + ) = O(az)
(2(a)+1)
; =200 (" M-y - E (") 8™(%)x
" m=0 m=0 " 2
n-m l1-n n
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m 2m
A ) e A SRS AN A B S H
= (2170 - )+ o(ed)
n T-n n n-m 2
s DTN s DT - asy v 0(a0)
= (2P oy 2" s o(e?) = (2 - 2M)eas )+ 0(af)
where Snl is the Kronecker delta.
1-n n n m n-m n n m, o
c = -2 7o) 3 - (-1 oy () 85
i m=g " m=0 2
= (2" - 2) + 0(af)

Thus we have the following approximations:

@ vAa -\ N
S(2,2) = 3% cp 2 ey v o) (4.13")
n=1 )
2s(z,%) - s(2z, %) = 1 E (-jez)" (2" - 2) - 2412 (4.14")
2ot ) 23 " &y nin Jeszy :
v 0(a25) (4.14")
] - n
2c(2,3) - c(22, §) = ana - 5 [ LB (" Ly
n=1 :
-2, .
+ 0(a"2) (4.16")
Finally for ~7(a) we obtain:
i L el oo (-3es)n
s(a) = sin2zing + (3in2Z - JC’OSZQ)nz1 ( fun) X
®© PRI 1
x (27701 4 I LJ28 (2 4 cos2z)as + 0(n%2)
n= :
~(a) = 27 - g%(Zg)3 - 3af + s3in2ilno - E%(25)4 +
b0 lmar(22,0%2)) (4.17)




For this case we have Z=kl, u= Following the above formulations

we set:
S(2,x) = s(0,4) + e 3% [ o o (4.18)
n=0
I R f n
c(Z,4) = c{o,a) + 3% 7 ¢ = (4.19)
n=0
Then:
3s -J3Tx Of na L_n—] . -jin < . n _
= = e g - Jjae L, 8.& =
75 n=1 n n=0 n
= e O: -3y &) N =
e nﬁol J‘L"n + (n+1)‘4n+]]3
. o e T . n
1 -ja3 - -jzu e J5% (-Ji&)
= - — (e cczi - e Y77 ) el
\ = / ht
J, JZM) n:-l n!
x (3 -a-1D"+(z-a+r )M
. o n-1 . © N
oo mdiw oo (-3%) . o Jdia (-3%)
= e Z —— 0] = e Z g
N2 nt n n50 {n+17t “n+1
vhere we have defined:
com g e e - DT e (3 - )" n=0,1,2,. (4.20)
Therefore we have:
: on Tad
-in."n + (n+1)3n+1 = (-3) *(‘nﬁ*)—!—', n=0,1,2,3,... (4.21)
Recurrsion relation (4.21) starts off from s, = 0 which is an immediate
0
consequence of (4.18):
.;O =
177




o (-g)2 3 2, 2
557 v (3 7ot ey
. - (-3)"! (on oL Cn- L Tp-2 B L
n n! n n~-1 n-2 “ 9
n=1,2,3, (4.22)
Similtarly for 55 we have:
SCo_ -1 ? s N
= e Lo (=dacy # (n*l)e q)2
n=0
. S 0 i n
= l? e JeToin = - %T e Jd% ) ( ij) (2 - o - 1)"
Jj 2 n:] *
(e - a v )M
IS T 5 L
nﬁo'rf:TTT n+1 (4.23)
with:
R P I S (a.25)
Finally:
i + ( +'|) = (-)n D M "0 -] 2 (4 24)
Ju Cn n Cn+] ZT;]'TjT {n+], N=U,1 585, .. .
CO = 0
M
! e
N
¢ 7 a1 (3 )
. -1 Y oY
(-7 n n-1 n-1 n-1
Cn—T(T-—‘ﬁ*:—]—‘+....+(‘]) o {'1) (425)

In general (4.18) - {(4.20) together with (4.22), (4.23), and
(4.25) are compact enough to permit numerical computation of s{7,x)
and c(z,«). However we would like to discuss the approximation and

further simplification under the conditions:
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sions

with

Then

} -k 4. - . - -3,
() = edM e ey e gk ) T8 e 3k ) T
S Lzt )T e 0laa(2270, %0 (4.30)
(4.6) together with (4.17) and (4.30) we finally obtain expres-
for 11] and 212:
. 2 4
i} i~ 3 _Jn -2 i g -2 ;
AR S I (a) = 5o - *ts+ ) oxox(a)
" -2 ] 4
= J7 1 : -
It e T eosh)) e
= LJ,:_ — '\-] - ._2.. -l— by
Z]'} Z.T (4 6*)(2 / (9 + 2)(27) +
g -
22-t 7 inn - %7 (2;)2} + O‘wx(:J,xzi 1)3-
. = —?—, :_' =k (4.3])
_ g~ . S dn s, Sy
2-12 - 2__7‘;V2: ( ) 2 (—; + 3 + O(> ))ﬂ )
R S N N N -3
Zy, = 5 (23)° (k) + 33(k.) + 3(k.)
S e P e ois st T3 ()0

the input impedance for the problem at hand is given by:

z., =z -z 4.4

in 11 12 ( )

Let us npte that in (4.32), as in previous sections, we have

Inout impedance of two coaxial small circular loops in transmit:ing
mo e

For an electrically small loop we assume that its current distri-

bution is uriform when driven by a localized voltage. The conventional




induced EMF method will be applied to determine its impedance. How-
ever, the formation is much more complicated than the case for linear
antennas. Therefore assumptions imposed on the geometry of the probing
antennas justify adoption of simpier approximate methods in ad hoc
bases for evaluation of self and mutual impedances.

As can be seen from the application of the EMF method to the anten-

nas of previous the previous section the self impedance can be obtained

™~

Y i

P

Figure 4.2 Coaxial transmitting loop antennas

by removing the image of one antenna and evaluating the input impe-

darce of the isolated loop.

The input rosistance of a constant current loop may be simply
evaluated by an application of Poynting's theorem [9.2]. The result
is:

L 2,2
Rin S (+({ka)™)". (4.33)
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A rather simple way of obtaining a compact formula for the input
reactance of the loop is to make use of the reactance of the loop tased
on the circuit theory. According to Reference [9.1] the reactance of

the loop is given by:

. ~,74f1__ 2 _8__‘3__ 1 4
X0 “(L O) *owuizs 4 a(in 5 2) ] (4.324)

where Li is the internal inductance of the wire, LO is the so called
selected mutual inductance, and b is the radius of the wire of the

loop antenna. This result compares very well with the leading term
of the formula obtained for Xin by application of the wave theory as

discussed in [1]. Combining (4.33) and (4.34) we obtain the self

impedance of the locp:

" 2,2
zZ,, = R + ., =~ =—[7(ka +
1T 7 Tin S T (ka)™)
1 RER -
* Ju fgm v alin(—=) - 2] (4.35)
4.3 Mutual impedance of the two coaxial loop antennas

As for the case of monopole on a corner reflector, we will pre-
sent a simple and compact formulation for Z1s of two small coaxial
1egon antennas. We will use the EMF method again and therefore the
Frasnel field of a constant current loop is needed.

The Fresnel field nf a constant current loop antenna has been pre-
viously obtained in the form of a rapidly converging power series in

119.1), 18], [23), and [4]). We will obtain another series expansion

which closely follows the ones given in [8] and will prove more suita-
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ble in application of the EMF method.

Using the addition theorem for Legendre and spherical Bessel

=

Figure 4.3 Geometry of a constant
current circular loop antenna

functions the potential integral for A(R) is evaluated. For R > a

we have:

Jukal

Y 0y &

(-1)" N an+3) (2n) 1

X
nso 22"(ne1) (n1)?
L (ka)n ) erypl o (ose) (4.36)
20+ 2n+] pp41lc0a8 ‘
Let us set
TR = (e T 200000 (4.37)
‘/H'thi
/c + J.Z - RZ + aZ
oo o = aR.; i nn

comparing with:
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IR - R'] = V(R + a” - 2aR z:zov)
where: o205y = 2902 oo
We conclude that - is the angle between two position vectors = and '

with angular coordinates:

3 = ?, =0 5' = 5 2= 7
From (4.38) we have
3 1
Tos hRE e a® H(RE ¢ 2% - a(aReine)® )Y
; 2 , P
c= RE )0 E v - At
_ 2aR-ia= ~q
= vg@:;za <1 . (4.39)

Now we can use the addition theorem for the spherical Hankel function:

b2 kR - T =

and the addition theorem for Legendre polynomials:

n
{ 5 -y = annh 2038t (n m ! m A
Pn\,;u,) Pn(«uu~)Pn(v 38') + 2 z T;:E—T ( 0ef) X
x pM( 2006 Yeosm(a-3")
n
where 2:°% = 2023200820 4 3infaind cos(s- ¢') = e¢os4'. Following
analogous steps which led to (4.36) we obtain:
-jukal %0
TIHY - 0 4n+3 1 2
AL = ) L e Canety Pane (0017
. . 2
SEPR OB LIRS
PR (4.40")

Furthermore we have [7]:
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] ] 1
. Moo F(—' + = + —u)
PH(0) = 2= ]/289'?[;_7(,'”_ V)] 2 ? %
v F(] + = - _)
2 e
Therefore:
pl (o) = (-qynt? L2nel)r
Zn+] 22n(n,)2
Finally we have:
A(Ey= Jukalg 2 (4n+3)(2n+1) (2n)! .2
R I ) n+l 2n 21 7
n=0 ? (ﬂ!)

Thus electric field intensity can be obtained as:

E(F) = -Jul1 % 15 77-) K = ~5uF -
\?
(ka}“HI o
_ 2 0 4n+3 1 2
=l 4a ) nZO (n+1)(2n+1)[P2n+1(0)] %
Joner (keI g (k) ot (4.47)

Mote that in obtaining the expression (4.41) we have used the follow-
ing relation:

13

R.:i:= 5%

-]

I=|

Mow we are in a position to obtain the mutual impedance of the
antennas shown in Figure 4.2. Application of the reciprocity theorem

to one of the two antennas, say antenna 2, yeilds [5.2].

yroooo L i ghgt gy
t .
I v
vihere
VA open circuit voitage of antenna 2 in receiving mode
It = current of antenna 2 in transmitting mode
[ incident electric field when antenna 2 is removed
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jt

Noting that:

2=0

we can equivalently write:

zZ = - ___.f 'E—'l.j (R‘,)dvl
21 I]IZ VI 2
where:
L]—— (§l> - :I 125(3:;j|> C(R ‘a)

2 o
) (ka)“ny = 4n+3 1 2
21 = - 0 ) Lottty Pene (010
: Covn(2) o e Ay S(R'-a)
X Jpnyq kot dhs s AP IEEEE ) R X
x R'Z5:mg dR"ds da
(ka)ln ; a3l )2
21 ba Lo TnsT)(2Zn*T7) Hl2ns
ot '(2) ! s 5(?'—&) 12"
X JZnil(k‘ )n2 +](k ) '5( cedt) R R'“s
\Y
we have:
7 - "-:/l/a)ﬁ © dnt3 [PI (O)]Z %
21 T o Ly TnaT)T2n+T) * 2n+]
: ety
aneq (ko Mgy (ko)
For 'ka| <-1 and a << o we have:
;= 2aR:"iny _ 232 o
R2 + az 02 + 2a2

= current density of antenna 2 in transmitting mode.

(4.42)

(4.43)
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I+

i+

o=

Let us note that [111:

m(n+m)l

n+2m+1 )1

(-1)
m 2

The asymptotic expansion for for large argum

(2)

2 (2) (2)

-ilz-(n+1)3)
n

2z (z)

1
*2~8

. o £1)
ILT1 ( ﬂ/m(ﬂ Vi

) +0(z7 ")
m=0 m!(-2jz

>m

We conclude from the above that under the conditions

the first term of the series (4.43) will be sufficie
[0 22-I
; 2, 1 2. . 2
2,0 = matka) Sel o) %y (e n B ey
F 0 (ka)2 (ko ) (k)T
3- L (2) (ka)®
2,4 * q2~(ka) J](k, )h] (ko) + 0 i) }

2m

ent z reads:

imposed on a and -

nt for computation

(4.45)




+ 0{(&%} (4.46)

Let us once more recall that the impedance which should be used
in (3.1) can be obtained from (4.35) and (4.46) by means of:

Z. = 2 -

in 11 7 %12 T %y ¢

11 21

and changing < to 2d.

4.4 Input impedance of two antisymmetrically driven identical coplanar

circular loop antennas.

The self impedance for this configuration of loops under assumptions
imposed on the geometry of the antennas in section 3.1 is identical with
the input impedance of a single loop antenna and can be obtained from
(4.35). The mutual impedance can be obtained in exactly the same man-
ner as followed in section 4.3, however the integrals appearing in this
case are a little involved and for the purpose of the problem at hand
it suffices to use an asymptotic formula for 212 which is developed in

[10.2) based on effective heights of the transmitting antennas:

v

Figure 4.4 Coplanar loop antennas




-jkP e—jkP
21 = 30 g hythp) = dn S x
J.- 2 .z d 2. . o
X [k (ka) s ]]:]:1 X [k (ka) up792]32:1 ('2.52)
2 2
-JkP
N T 4 7
2y, = -3 7 n(ka) = (4.47)
5. Correlation of the unperturbed surface fields to the equivalent

circuit parameters of the probes.

In previous sections an attempt was made to completely describe
the eaquivalent circuit parameters of the different probes mounted on
a corner reflector. Since any physical measurement performed by the
probes can be described completely in terms of the open circuit voltage
and the innut impedance of the sensors, we will attempt to relate the
surface field quantities in the absence of the sensors to the eguivalent
circuit parameters of the sensors, or in other words to the measur-
abie guantities.

In section 2 it was shown that for a plane wave illumination of the
wedge with electric field polarized perpendicular to the wedge axis

surface current and charge densities are respectively given by:

VIR) = ~x 4Hé soa(kx s ing) X

N
(@]

z=0 (2.3)

1 sinasdn(kxoing) x >0 z=0 (2.5)

PYER
5 (R) I

1}

<o
Eey
m

On the other hand the open circuit voltage of a short monopole mounted

on the wedge was found *o be:

yroo= j2iEl.

‘oc (J 'J,(ky\-""«) (33)

Comparing {(2.5) with (3.3) we establish that:
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The unperturbed surface charge density is therefore related to
the open circuit voltage of the probe by an equivalent capacitance per

unit area:

1
™~
)

Farad/m2 ) (5.2)

c
€q

)

Equation (5.1) is the manifestation of the electric coupling of the

monopole probes and further justifies the name of 'charge probes' given

to this kind of sensors.

Similarly the VJC for a semiloop whose axis is parallel to the

wedge axis was found to be:

ur R 7 Y ;
oc = -j2.(:7a )HO,VO(kxOVWV). (3.3

Comparing (3.4) with (2.3) we have:

Jroo_ s u7a
joc jo 5 kX ] (5.3)

That is the equivalent inductance relating Vgc to unperturbed current

density is given by:

—

Leq = 5 u(vaz) Henry m. (5.4)
It is obvious that the coupling of the probe to the electromagnetic

field in this case is of magnetic type. Let us finally note that for
the nlane wave whose electric field is polarized parallel to the wedge
axis the surface currents and the corresponding surface magnetic field

can be detected by a semiloop sensor whose plane is parallel to the

current Tines. From (2.7) and (3.5) we obtain for this case:
2
“Y' = ‘:jl
/s Joo ky . (5.5)

That 15 to zay the eqguivalent inductarce for this case i1s also given
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Let us conclude from the above results that as long as our sen-

sors are electrically small low frequency elements relating the open

circuit volta-e of the probes to the surface fields only depend on

the gecmetrical characteristics of the probes and are independent of

the

characteristics of the source.
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