A FORTRAN PROGRAM FOR CALCULATING CHEMICAL HAZARDS USING THE NATO STANAG 2103/ATP-45 ALGORITHM

by

Stanley B. Mellsen

PCN 351SP

October 1989

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD, RALSTON, ALBERTA
UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD
RALSTON, ALBERTA

SUFFIELD MEMORANDUM NO. 1275

A FORTRAN PROGRAM FOR CALCULATING CHEMICAL HAZARDS USING THE NATO STANAG 2103/ATP-45 ALGORITHM

by

Stanley B. Mellsen

PCN 351SP

WARNING
"The use of this information is permitted subject to recognition of proprietary and patent rights."

UNCLASSIFIED
TABLE OF CONTENTS

Abstract ... 4
List of Symbols .. 11
Introduction ... 1
The Algorithm .. 1
Table I Constants for Diffusion Parameters 3
Solution of the Algorithm ... 4
Computer Program ... 4
Results and Discussion .. 5
Conclusions ... 6

Figures 1-7 Dispersion Over Land for Stability Category 1-7
Figures 8-14 Dispersion Over Sea for Stability Category 1-7

Annex A - Listing of Fortran Source Code
ABSTRACT

A computer program has been written in Microsoft Fortran Version 4.1 to apply the algorithm of NATO Stanag 2103/ATP-45 Appendix E, First Preliminary Draft, April 1987. Downwind dosages obtained with the program by an IBM compatible personal computer are presented in graphical form.
LIST OF SYMBOLS

D (x,y,o) total dosage at ground level at co-ordinates x,y, downwind from a point source, mg min m⁻³

F₁, f₁, G, g, Fm, fm Constants used in calculating diffusion parameters

Q Effective initial source strength: input, kg, calculations, g

u mean wind speed: input, kn, (knots) calculations, m s⁻¹

Vd deposition velocity; specification, mm s⁻¹ calculations, m s⁻¹

x alongwind distance from point source: input, km, calculations, m

y crosswind distance from point source: input, km, calculations, m

r dimensionless parameter related to deposition velocity

σy diffusion parameter for crosswind horizontal direction, m

σz vertical diffusion parameter, m
INTRODUCTION

The Military Agency for Standardization (MAS) of the North Atlantic Treaty Organization (NATO) has issued a draft for the algorithm to be used in calculating the maximum downwind hazard distances after attacks with chemical agents. The algorithm is provided under Standardization Agreement (STANAG) Number 2103 [1] associated with the document entitled "Reporting Nuclear Detonations, Biological and Chemical Attacks and Predicting and Warning of Associated Hazards and Hazard Areas - ATP-45". The algorithm is stated in the First Preliminary Draft of Annex E, ATP-45, Volume II dated April 1987.

The purpose of this report is to describe a computer program written in Microsoft FORTRAN Version 4.1 to apply the algorithm to calculate a set of sample results for dispersion over both land and sea for all atmospheric stability categories. Another purpose is to present the results in graphical form for convenient use. The validity of the algorithms is not appraised herein, but the program and results provided can be used for familiarization and as aids in improving the algorithm if changes are suggested. The computer program was developed on an IDM Research T286 computer with an Intel 80287 Coprocessor from which results were obtained almost instantaneously after the calculations were started.

THE ALGORITHM

After an attack with chemical agents a certain amount of the agent will be dispersed in the air in the form of vapour or aerosols. This portion of the weapon payload is subject to atmospheric diffusion processes and will create danger to personnel downwind of the actual attack area. During actual cloud travel, portions of vapour and aerosol are removed from it by gravitational deposition, scavenging by
vegetation and chemical processes. These effects may be accounted for by a surface depletion model. The solution provided for point source surface releases neglecting gravitational settling is given by the following equation [1]:

\[
D(x,y,o) = \frac{G}{\pi u \sigma_y \sigma_z} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \left[1 - \sqrt{\pi} \frac{\gamma \exp(\gamma^2)}{\exp(1/\gamma^2)} \text{erfc}(\gamma)\right]
\]

(1)

with:

\[
\gamma = \frac{v_d x}{ug \sigma_z \sqrt{2}}
\]

(2)

\[
g = \text{exponent of } \sigma_z = G x^g
\]

\[
u = \text{representative wind speed}
\]

\[
v_d = \text{deposition velocity}
\]

\[
x = \text{downwind distance from source}
\]

The deposition velocity is:

\[
v_d (\text{land}) = 4 \text{ mm s}^{-1} \quad v_d (\text{sea}) = 3 \text{ mm s}^{-1}
\]

(3 a,b)

The diffusion parameters \(\sigma_y \) and \(\sigma_z \) are defined by the equations below [1].

\[
\sigma_y^2 = \sigma_y \text{inst}^2 + \sigma_y \text{meander}^2
\]

(4)

\[
\sigma_z = \sigma_z \text{inst} = G x^g
\]

(5)

\[
\sigma_y \text{inst} = F_1 x^{f_1}
\]

(6)

\[
\sigma_y \text{meander} = F_m x^m
\]

(7)
The stability categories, S, are defined as follows:

1. very unstable
2. unstable
3. slightly unstable
4. neutral
5. slightly stable
6. stable
7. very stable.

The constants used for obtaining the diffusion parameters in equations (4) to (7) are given in Table I [1].

TABLE I - CONSTANTS FOR DIFFUSION PARAMETERS

<table>
<thead>
<tr>
<th>LAND</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_1 = 0.2997 \exp(0.2621S)$</td>
<td>$= 0.4570 \exp(-0.0863S)$</td>
</tr>
<tr>
<td>$f_1 = 0.89 - 0.07S$</td>
<td>$= 0.7$</td>
</tr>
<tr>
<td>$G = 0.1229 \exp(0.3295S)$</td>
<td>$= 0.9740 \exp(0.1750S)$</td>
</tr>
<tr>
<td>$g = 0.97 - 0.09S$</td>
<td>$= 0.68 - 0.06S$</td>
</tr>
<tr>
<td>$u < 10$ kts</td>
<td>$1.538 u < 10$ kts</td>
</tr>
<tr>
<td>$F_m = 1.130 u \geq 10$ kts</td>
<td>$= 1.038 u \geq 10$ kts</td>
</tr>
<tr>
<td>$f_m = 0.7$</td>
<td>$= 0.7$</td>
</tr>
</tbody>
</table>
SOLUTION OF THE ALGORITHM

The solution of equation (1) to obtain total dosage at some downwind point \(x, y \) is straightforward with the exception of calculation of the complementary error function, \(\text{erfc}(\gamma) \). This function and the error function, \(\text{erf}(\gamma) \), are defined and tabulated for various values of the argument in Reference 2. Various mathematical relationships involving these functions are also shown [2]. The present solution consists of calculating the error function using a numerical procedure called Gauss-Legendre quadrature [3] and applying the following relationship.

\[
\text{erfc}(\gamma) = 1 - \text{erf}(\gamma) \tag{8}
\]

This equation can be written in terms of the defining integrals as follows:

\[
\frac{2}{\sqrt{\pi}} \int_{\gamma}^{\infty} e^{-t^2} \, dt = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\gamma} e^{-t^2} \, dt \tag{9}
\]

COMPUTER PROGRAM

A listing of the program which was written in Microsoft Fortran Version 4.1 is shown in Annex A, along with a set of input data and calculated results. The listing is annotated to describe the program step by step. The required units of the input data as described in the listing and shown in the output results conform to those listed in Annex E of the ATP-45 [1]. After the pertinent input data is read in knots, kilograms and kilometers, the units are automatically changed to meters per seconds, milligrams and meters. Next, the constants in Table I are calculated for the input stability category and choice of
land or sea. Then the diffusion parameters given by equations (4) to (7) are calculated, followed by calculation of r using equation (2).

The only quantity which remains to be calculated for substitution into equation (1) to obtain total dosage is the complementary error function, obtained through equation (8) from the error function. The error function is obtained by integrating the function e^{-x^2} using a function subprogram by which Gauss-Legendre quadrature is applied and multiplying the results by $2/\sqrt{\pi}$. The subprogram provides a choice of the number of Gauss-Legendre base points to be used in the calculation, depending upon the accuracy required. The choices available are 2, 3, 4, 5, 6, 10 and 15 points [3]. Further description of the method is shown in the program listing and in greater detail in Reference 3. After the error function has been calculated, the complementary error function is calculated using equation (8). Then the total dosage is calculated using equation (2) and the results are available for printing.

RESULTS AND DISCUSSION

Total dosages were calculated for various downwind distances for each of the seven stability categories for dispersion over both land and sea. The results are shown for land in Figures 1 to 7 and for sea in Figures 8 to 14. Vapour source strength, Q, divided by total dosage, D is plotted against downwind distance for various wind spreads appropriate to each stability category. Plotting the variables in this manner results in nearly straight lines on log-log paper for the most unstable atmospheric conditions, and lines of increasing curvature as atmospheric stability increases. Each wind speed has a range of wind speeds shown along with it, for which the graph can be used for quick estimations. At any downwind distance from the source, the dosage is assumed to be accumulated during the full time interval of the cloud passage.
In writing the program some thought was given to the possibility of using a programmable pocket calculator. The feasibility of this is mostly dependent on the availability of the error function. Some calculators have a facility for calculating this function. For example, the Hewlett Packard HP 41C has an error function program in its Math/Stat Pack. For effective field application of a pocket calculator, it should be able to produce accurate results with short computing time. The Gauss-Legendre method used in the Fortran program could possibly be applied. The six point quadrature produced accurate results for at least the lowest four values of \(S \). This was determined by experimenting with various numbers of points in the quadrature and comparing results to those of other workers [4]. However, the fifteen point quadrature was necessary to provide accurate results for the higher values of \(S \). For the lowest wind speed of two knots, and the highest value of seven for \(S \), the results are only accurate up to ten kilometers for both land and sea. Therefore, the graphs for these conditions are not plotted beyond ten kilometers as shown in Figures 7 and 14. For all other conditions the calculation method produced accurate results out to forty kilometers. Examination of the values of the error function shows why the results become unreliable for the lowest wind speed and highest value of \(S \). The value of the error function approaches one as distance increases. Therefore the value of the complementary error function which is used in equation (1) approaches zero. For these small values, a more precise calculation is required to keep the percentage error low.

CONCLUSIONS

A Fortran Program written for an IBM compatible personal computer applies the algorithms of ATP 45 to give quick and accurate calculations for distances up to ten kilometers, under all wind speeds and stability categories, and for all but the lowest wind speed in a
very stable atmosphere, for distances up to forty kilometers. However, one must remember that this paper does not intend to confirm how accurately the algorithms represent actual downwind cloud travel. It only provides a method for applying them as they are stated in Reference 1.
REFERENCES

1. NATO STANAG No. 2103, "Reporting Nuclear Detonations, Biological and Chemical Attacks and Predicting and Warning of Associated Hazards and Hazard Area - ATP-45", Annex E, First Preliminary Draft, April 1987. UNCLASSIFIED.

DOWNWIND CONCENTRATIONS FROM VAPOUR OR AEROSOL CALCULATED FROM ATP45 VOLUME II ALGORITHMS

THIS PROGRAM READS ATMOSPHERIC CONDITIONS AND STRENGTH OF A POINT SOURCE AND CALCULATES DOWNWIND DOSAGES OVER LAND OR SEA. THE ERROR FUNCTION WHICH IS NEEDED IS OBTAINED USING THE FUNCTION GAUSS TO COMPUTE THE NUMERICAL APPROXIMATION OF THE INTEGRAL OF FUNCTN(X)*DX BETWEEN INTEGRATION LIMITS A AND B USING THE M POINT GAUSS-LEGENDRE QUADRATURE FORMULA. THE PROGRAM PRINTS THE RESULTS, AND RETURNS TO READ A NEW SET OF DOWNWIND COORDINATES USING THE SAME INITIAL CONDITIONS.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
EXTERNAL FUNCTN
REAL S
OPEN (5,FILL='ATP45P.DAT')
OPEN (6,FILE='ATP45P.OUT')

M IS THE NUMBER OF POINTS TO BE USED IN THE GAUSS-LEGENDRE QUADRATURE LS = 1 FOR LAND. LS = 2 FOR SEA.
S IS ATMOSPHERIC STABILITY CATEGORY
1.0 VERY UNSTABLE
2.0 UNSTABLE
3.0 SLIGHTLY UNSTABLE
4.0 NEUTRAL
5.0 SLIGHTLY STABLE
6.0 STABLE
7.0 VERY STABLE
U IS WIND SPEED IN KNOTS
Q IS VAPOUR OR AEROSOL SOURCE STRENGTH IN KILOGRAMS
READ (5,100) M, LS, S, U, Q

OUTPUT HEADINGS AND INPUT DATA
WRITE(6,200)
WRITE(6,201) M, LS, S, U, Q
WRITE(6,202)
WRITE(6,203)

X IS ALONGWIND DISTANCE FROM SOURCE
Y IS CROSSWIND DISTANCE CENTRE FROM ALONGWIND DIRECTION
1 READ (5,101,END=999) X, Y

CONVERT INPUT PARAMETER UNITS TO METRES, SECONDS AND MILLIGRAMS
UMS = 0.5144*U
QMG = 1000000.0*Q
XM = 1000.0*X
YM = 1000.0*Y
IF (LS .GT. 1) GOTO 11

CONSTANTS FOR LAND

FI = 0.2997*EXP(0.2621*S)
FFI = 0.89 - 0.07*S
G = 0.1229*EXP(0.3295*S)
GG = 0.97 - 0.09*S
FFM = 0.7
FM = 1.577
IF (U .LT. 10.0) GOTO 10
FM = 1.130

10 VD = 0.004
GOTO 20

CONSTANTS FOR SEA

11 FI = 0.4570*EXP(-0.0863*S)
FFI = 0.7
G = 0.9740*EXP(0.1750*S)
GG = 0.68 - 0.06*S
FFM = 0.7
FM = 1.538
IF (U .LT. 10.0) GOTO 15
FM = 1.038

15 VD = 0.003

STANDARD DEVIATIONS OF PLUME

20 SIGYI = FI*XM**FFI
SIGYM = FM*XM**FFM
SIGY = SQRT(SIGYI**2 + SIGYM**2)
SIGZ = G*XM**GG

UPPER LIMIT OF ERROR FUNCTION INTEGRAL

GAMMA = VD*XM/(SQRT(2.0)*UMS*GG*SIGZ)

COMPLEMENTARY ERROR FUNCTION

A = 0.0
B = GAMMA
AREA = GAUSS (A, B, M, FUNCTN)
PI = 3.14159265358979323846264
ERF =(2.0/SQRT(PI))*AREA
ERFC = 1.0 - ERF

DOWNWIND DOSAGE
D1 = QMG/(PI*UMS*SIGY*SIGZ*60.0)
D2 = EXP(-YM**2/(2.0*SIGY**2))
D3 = 1.0 - SQRT(PI)*GAMMA*EXP(GAMMA**2)*ERFC
U = D1*D2*D3
QD = Q/D

OUTPUT RESULTS
WRITE (6,204) X,Y,D,QD
GO TO 1

 .. FORMATS FOR INPUT AND OUTPUT STATEMENTS ..
100 FORMAT (215,F5.1,2F10.3)
101 FORMAT (2F10.3)
200 FORMAT ('1',20X, 'DOWNWIND DOSAGES'/)
201 FORMAT (20X,'M =',I3/20X,'LS =',I3/20X,'S =',F5.1,/
 120X,'U =',F5.1,2X,'KNOTS'/20X,'Q =',F7.3,2X,'KG'/)
202 FORMAT (/,12X,'X',14X,'Y',12X,'D',14X,'Q/D')
203 FORMAT (7X,'KILOMETERS',6X,'KILOMETERS',4X,'MG MIN/CU M',
 13X,'KG/(MG MIN/CU M)'/)
204 FORMAT (/42X,'X',14X,'Y',12X,'D',14X,'Q/D')
999 CLOSE (5)
 CLOSE (6)
STOP
END

FUNCTION FUNCTN(X)

 .. THIS FUNCTION RETURNS EXP(-X**2) AS ITS VALUE ..
DOUBLE PRECISION X, FUNCTN
FUNCTN = EXP(-X**2)
RETURN
END

FUNCTION GAUSS(A, B, M, FUNCTN)

THE FUNCTION GAUSS USES THE M POINT GAUSS-LEGENDRE QUADRATURE
FORMULA TO COMPUTE THE INTEGRAL OF FUNCTN(X)*DX BETWEEN
INTEGRATION LIMITS A AND B. THE ROOTS OF SEVEN LEGENDRE
POLYNOMIALS AND THE WEIGHT FACTORS FOR THE CORRESPONDING
QUADRATURES ARE STORED IN THE Z AND WEIGHT ARRAYS
RESPECTIVELY. M MAY ASSUME VALUES 2, 3, 4, 5, 6, 10, AND 15
ONLY. THE APPROPRIATE VALUES FOR THE M POINT FORMULA ARE
LOCATED IN ELEMENTS Z(KEY(I))...Z(KEY(I+1)-1) AND
WEIGHT(KEY(I))...WEIGHT(KEY(I+1)-1) WHERE THE PROPER
VALUE OF I IS DETERMINED BY FINDING THE SUBSCRIPT OF THE
ELEMENT OF THE ARRAY NPOINT WHICH HAS THE VALUE M. IF AN
INVALID VALUE OF M IS USED, A TRUE ZERO IS RETURNED AS THE
VALUE OF GAUSS.
IMPLICIT DOUBLE PRECISION(A-H, O-Z)
DOUBLE PRECISION GAUS, A, B, FUNCTN
DIMENSION X(J), Y(J), Z(24), WEIGHT(24)

..... PRESET NPOINT, KEY, Z, AND WEIGHT ARRAYS
DATA NPOINT / 2, 3, 4, 5, 6, 10, 15 /
DATA KEY / 1, 2, 4, 6, 9, 12, 17, 25 /
DATA Z / 0.577350269, 0.0, 0.774596669, 0.339981044, 0.861136312, 0.0, 0.538469310, 0.906179846, 0.238619186, 0.661209387, 0.932469514, 0.145874339, 0.433395394, 0.67940956, 0.865063367, 0.973906529, 0.0, 0.201194094, 0.394151347, 0.570972173, 0.72441773, 0.84820659, 0.937273392, 0.987992518 /
DATA WEIGHT / 1.0, 0.888888889, 0.555555556, 0.652145155, 0.347854845, 0.568888889, 0.478628671, 0.236926885, 0.467913935, 0.360761573, 0.171324493, 0.295524225, 0.269266719, 0.219086363, 0.149451349, 0.066671344, 0.202578242, 0.198431485, 0.186161000, 0.166269206, 0.139570678, 0.107159221, 0.070366047, 0.030753242 /

..... FIND SUBSCRIPT OF FIRST Z AND WEIGHT VALUE
DO I=1,7
 IF (M.EQ.NPOINT(I)) GO TO 2
CONTINUE

..... INVALID M USED
GAUSS = 0.0
RETURN

..... SET UP INITIAL PARAMETERS
2 JFIRST = KEY(I)
JLAST = KEY(I+1) - 1
C = (B-A)/2.0
D = (B+A)/2.0

..... ACCUMULATE THE SUM IN THE M POINT FORMULA
SUM = 0.0
DO 5 J=JFIRST,JLAST
 IF (Z(J).EQ.0.0) THEN
 SUM = SUM + WEIGHT(J)*FUNCTN(D)
 ELSE
 SUM = SUM + WEIGHT(J)*(FUNCTN(Z(J)*C + D) + FUNCTN(-Z(J)*C + D))
 END IF
CONTINUE
C MAKE INTERVAL CORRECTION AND RETURN
GAUSS = C*SUM
RETURN
C
END

4 1 1.0 2.0 1.0
1.0 0.0
5.0 0.0
10.0 0.0
40.0 0.0

<table>
<thead>
<tr>
<th>X (KILOMETERS)</th>
<th>Y (KILOMETERS)</th>
<th>D (MG MIN/CU M)</th>
<th>Q/D (KG/(MG MIN/CU M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.000</td>
<td>0.28161</td>
<td>3.55098</td>
</tr>
<tr>
<td>5.000</td>
<td>0.000</td>
<td>0.02066</td>
<td>48.41128</td>
</tr>
<tr>
<td>10.000</td>
<td>0.000</td>
<td>0.00667</td>
<td>150.00835</td>
</tr>
<tr>
<td>40.000</td>
<td>0.000</td>
<td>0.00069</td>
<td>1457.16011</td>
</tr>
</tbody>
</table>
Figure 1

DISPERSION OVER LAND STABILITY CATEGORY $S = 1$

a: $u = 2 \text{ kn} \ (0.4 \text{ kn})$

b: $u = 7 \text{ kn} \ (5.9 \text{ kn})$
Figure 2

DISPERSION OVER LAND STABILITY CATEGORY $S = 2$

a: $u = 2 \text{ kn (0.4 kn)}$

b: $u = 7 \text{ kn (5.9 kn)}$
Figure 3

DISPERSION OVER LAND STABILITY CATEGORY S = 3
Figure 4

DISPERSION OVER LAND STABILITY CATEGORY S = 4
Figure 5

DISPERSION OVER LAND STABILITY CATEGORY S = 5

a: $u = 2$ kn (0.4 kn)
b: $u = 7$ kn (5.9 kn)
c: $u = 12$ kn (10.14 kn)
Figure 6

DISPERSION OVER LAND STABILITY CATEGORY S = 6
Figure 7

DISPERSION OVER LAND STABILITY CATEGORY S = 7
Figure 8

DISPERSION OVER LAND STABILITY CATEGORY S = 8
Figure 9

DISPERSION OVER LAND STABILITY CATEGORY S = 9

a: $u = 2 \text{ kn (0.4 kn)}$

b: $u = 7 \text{ kn (5.9 kn)}$
Figure 10

DISPERSION OVER LAND STABILITY CATEGORY S = 10

a: u = 2 kn (0-4 kn)
b: u = 7 kn (5-9 kn)
c: u = 12 kn (10-14 kn)
Figure 11
DISPERSION OVER LAND STABILITY CATEGORY S = 11

a: u = 2 kn (0.4 kn)
b: u = 7 kn (5.9 kn)
c: u = 12 kn (10-14 kn)
d: u = 17 kn (15-19 kn)
Figure 12

DISPERSION OVER LAND STABILITY CATEGORY $S = 12$

a: $u = 2 \text{ kn} (0.4 \text{ kn})$
b: $u = 7 \text{ kn} (5.9 \text{ kn})$
c: $u = 12 \text{ kn} (10.14 \text{ kn})$
Figure 13
DISPERSION OVER LAND STABILITY CATEGORY S = 13

a: u = 2 kn (0.4 kn)
b: u = 7 kn (5.9 kn)
Figure 14
DISPERSION OVER LAND STABILITY CATEGORY S = 14
Document Control Data

1. **Origina**tor (the name and address of the organization preparing the document. Organizations for whom the document was prepared, e.g., Establishment sponsoring a contractor's report, or tasking agency, are entered in section 8.)

DRES

2. **Security Classification** (overall security classification of the document, including special warning terms if applicable)

Unclassified

3. **Title** (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, CR or U) in parentheses after the title.)

A FORTRAN PROGRAM FOR CALCULATING CHEMICAL HAZARDS USING THE NATO STANAG 2103/ATP-45 ALGORITHM

4. **Authors** (Last name, first name, middle initial. If military, show rank, e.g., Doe, Maj. John E.)

STANLEY B. MELLESEN

5. **Date of Publication** (month and year of publication of document)

October 1989

6. **Descriptive Notes** (the category of the document, e.g., technical report, technical note or memorandum. If appropriate, enter the type of report, e.g., interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

SUFFIELD MEMORANDUM

8. **Sponsoring Activity** (the name of the department project office or laboratory sponsoring the research and development. Include the address.)

9. **Project or Grant No.** (if appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant)

PCN 351SP

9b. **Contract No.** (if appropriate, the applicable number under which the document was written)

10. **Originator's Document Number** (the official document number by which the document is identified by the originating activity. This number must be unique to this document)

SM 1275

10b. **Other Document Nos.** (Any other numbers which may be assigned this document either by the originator or by the sponsor)

11. **Document Availability** (any limitations on further dissemination of the document, other than those imposed by security classification)

[X] Unlimited distribution
() Distribution limited to defence departments and defence contractors; further distribution only as approved
() Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
() Distribution limited to government departments and agencies; further distribution only as approved
() Distribution limited to defence departments; further distribution only as approved
() Other (please specify):

12. **Document Announcement** (any limitation to the bibliographic announcement of this document. This will normally correspond to the Document Availability [11]. However, where further distribution (beyond the audience specified in 11) is possible, a wider announcement audience may be selected.)

UNCLASSIFIED

Security Classification of Form

DC003 2/06/87
A computer program has been written in Microsoft Fortran Version 4.1 to apply the algorithm of NATO Stanag 2103/ATP-45 Appendix E, First Preliminary Draft, April 1987. Downwind dosages obtained with the program by an IBM compatible personal computer are presented in graphical form.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloging the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select unclassified terms which are unclassified, the classification of each should be indicated as with the title.)

DISTRIBUTION MODELS
ATMOSPHERIC DISPERSION
VAPOUR-DISPERSION