A TIGHT AMORTIZED BOUND FOR PATH REVERSAL

David Ginat
Daniel D. Sleator
Robert E. Tarjan

CS-TK-153-88

June 1988

October 6, 1988
A Tight Amortized Bound for Path Reversal

David Ginat

Daniel D. Sleator

Robert E. Tarjan

June, 1988

ABSTRACT

Path reversal is a form of path compression used in a disjoint set union algorithm and a mutual exclusion algorithm. We derive a tight upper bound on the amortized cost of path reversal.
A Tight Amortized Bound for Path Reversal

David Ginat

Daniel D. Sleator

Robert E. Tarjan

June, 1988

Let T be a rooted n-node tree. A path reversal at a node x in T is performed by traversing the path from x to the tree root r and making x the parent of each node on the path other than x. Thus x becomes the new tree root. (See Figure 1.) The cost of the reversal is the number of edges on the path reversed. Path reversal is a variant of the standard path compression algorithm for maintaining disjoint sets under union [5]. It has also been used in a novel mutual execution algorithm [2,6].

Figure 1. Path reversal. Triangles denote subtrees.

1 Department of Computer Science, University of Maryland.
2 Department of Computer Science, Carnegie-Mellon University. Research partially supported by DARPA, ARPA order 4976, amendment 19, monitored by the Air Force Aeronautics Laboratory under Contract No. F33615-87-C-1499, by the National Science Foundation under Grant No. CCR 8658139, and by AT&T Bell Laboratories.
3 Department of Computer Science, Princeton University, and AT&T Bell Laboratories. Research partially supported by NSF Grant No. DCR-8605962 and ONR Contract No. N00014-87-K-0467.
Suppose that a sequence of \(m \) reversals is performed on an arbitrary initial tree. What is the total cost of the sequence? Let \(T(n,m) \) be the worst-case cost of such a sequence, and let \(A(n,m) = T(n,m)/m \). We are most interested in the value of \(A(n,m) \) for fixed \(n \) as \(m \) grows. As discussed by Tarjan and Van Leuwen [5], binomial trees provide a class of examples showing that \(A(n,m) \geq \lceil \log n \rceil \), and their rather complicated analysis gives an upper bound of \(A(n,m) = O(\log n + \frac{n \log n}{m}) \). Gmit and Shankar [2] prove that \(A(n,m) \leq 2 \log n + \frac{n \log n}{2m} \). We shall prove that \(A(n,m) \leq \log n + \frac{n \log n}{2m} \). In the special case that the initial tree consists of a root with \(n-1 \) children, which is the case in the mutual exclusion algorithm, the bound is \(A(n,m) \leq \log n \).

To obtain the bound, we apply the potential function method of amortized analysis. (See [4].) Let the size \(s(x) \) of a node \(x \) in \(T \) be the number of descendants of \(x \), including \(x \) itself. Let the potential of \(T \) be \(\Phi(T) = \frac{1}{2} \sum_{x \in T} \log s(x) \). Define the amortized cost of a path reversal over a path of \(k \) edges to be \(k - \Phi(T) + \Phi(T') \), where \(T \) and \(T' \) are the trees before and after the reversal, respectively. For any sequence of \(m \) reversals, we have

\[
\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} (t_i - \Phi_{i-1} + \Phi_i) = \sum_{i=1}^{m} t_i - \Phi_0 + \Phi_m,
\]

where \(a_i \), \(t_i \), and \(\Phi_i \) are the amortized cost of the \(i^{th} \) reversal, the actual cost of the \(i^{th} \) reversal, and the potential after the \(i^{th} \) reversal, respectively, and \(\Phi_0 \) is the potential of the initial tree. Since \(\Phi_0 \leq \frac{n}{2} \log n \) and \(\Phi_m \geq \frac{1}{2} \log n \), this inequality yields

\[
\sum_{i=1}^{m} t_i \leq \sum_{i=1}^{m} a_i + \frac{1}{2} (n-1) \log n,
\]

which in turn implies

\[
A(n,m) \leq \frac{1}{m} \sum_{i=1}^{m} a_i + \frac{n \log n}{2m}.
\]

* All logarithms in this paper are base two.
We shall prove that the amortized cost of any reversal is at most \(\log n \), thereby showing that

\[
A(n, m) \leq \log n + \frac{n \log n}{2m}.
\]

When the initial tree consists of a root with \(n-1 \) children, the bound drops to

\[
A(n, m) \leq \log n,
\]

since then \(\Phi_0 \leq \Phi_m \), and the extra additive term drops out.

Let \(x_0, x_1, x_2, \ldots, x_k \) be a path that is reversed, and let \(A \) be the amortized cost of the reversal. For \(0 \leq i \leq k \), let \(s_i \) be the size of \(x_i \) before the reversal. The size of \(x_0 \) after the reversal is \(s_k \), and the size of \(s_i \) after the reversal, for \(1 \leq i \leq k \), is \(s_i - s_{i-1} \). We can thus write \(A \) as

\[
A = k - \sum_{i=0}^{k-1} \frac{1}{2} \log s_i + \frac{1}{2} \log s_k + \sum_{i=1}^{k} \frac{1}{2} \log (s_i - s_{i-1})
\]

\[
= k + \frac{1}{2} \sum_{i=0}^{k-1} \left(\log (s_{i+1} - s_i) - \log s_i \right)
\]

\[
= k + \frac{1}{2} \sum_{i=0}^{k-1} \log \left(\frac{(s_{i+1} - s_i)}{s_i} \right).
\]

For \(0 \leq i \leq k-1 \), let \(\alpha_i = \frac{s_{i+1}}{s_i} \). Note that \(\frac{(s_{i+1} - s_i)}{s_i} = \alpha_i - 1 \). We have

\[
A = k + \frac{1}{2} \sum_{i=0}^{k-1} \log (\alpha_i - 1)
\]

\[
= \sum_{i=0}^{k-1} \left(1 + \frac{1}{2} \log (\alpha_i - 1) \right)
\]

We now make use of the following inequality, which will be verified below: for all \(\alpha > 1 \),

\[
1 + \frac{1}{2} \log(\alpha - 1) \leq \log \alpha.
\]

From this inequality we obtain

\[
A \leq \sum_{i=0}^{k-1} \log \alpha_i
\]

\[
= \sum_{i=0}^{k-1} \log \left(\frac{s_{i+1}}{s_i} \right) = \sum_{i=0}^{k-1} \left(\log s_{i+1} - \log s_i \right)
\]

\[
= \log s_k - \log s_0
\]

\[
\leq \log n,
\]

since \(s_k = n \) and \(s_0 \geq 1 \).
This completes the amortized analysis. We verify the needed inequality by the following chain of reasoning:

\[0 \leq (\alpha-1)^2 \]
\[\Rightarrow 0 \leq \alpha^2 - 4\alpha + 4 \]
\[\Rightarrow 4 (\alpha - 1) \leq \alpha^2 \]
\[\Rightarrow \log (4(\alpha - 1)) \leq \log (\alpha^2) \]
\[\Rightarrow 2 + \log (\alpha - 1) \leq 2\log \alpha \]
\[\Rightarrow 1 + \frac{1}{2} \log (\alpha - 1) \leq \log \alpha. \]

We conclude with some remarks. The definition of the potential function used here has been borrowed from Sleator and Tarjan's analysis of splay trees [3]; it has also been used to analyze pairing heaps [1]. As in the case of splay trees, the upper bound can be generalized in the following way. Assign to each tree node \(x \) a fixed but arbitrary positive weight \(w(x) \). Define the total weight of \(x \), \(tw(x) \), to be the sum of the weights of all descendants of \(x \), including \(x \) itself. Define the potential of the tree \(T \) to be \(\Phi(T) = \frac{1}{2} \sum_{x \in T} \log tw(x) \). A straightforward extension of the above analysis shows that the total cost of a sequence of \(m \) reversals is at most \(\sum_{i=1}^{m} \log \left(\frac{W/w_i}{w_i}\right) + \Phi_0 - \Phi_m \), where \(w_i \) is the weight of the node \(x_i \) at which the \(i \)th reversal starts and \(W \) is the sum of all the node weights.

Choosing \(w(x) = 1 \) for all \(x \in T \) gives our original result. Choosing \(w(x) = f(x) + 1 \), where \(f(x) \) is the number of times a reversal begins at \(x \), gives an upper bound for the total time of all reversals of \(\sum_{i=1}^{m} \log \left(\frac{n+m}{f(x_i)}\right) + \frac{1}{2} \sum_{x \in T} \log \left(\frac{n+m}{f(x)}\right) \).

It is striking that the "sum of logarithms" potential function serves to analyze three different data structures. We are at a loss to explain this phenomenon; whereas there is a clear connection between splay trees and pairing heaps (see [1]), no such connection between trees with path reversal and the other two data structures is apparent. In the case of path reversal, the sum of logarithms potential function gives a bound that is exact to within an additive term depending only on the initial and final trees. It would be extremely interesting and useful to have a systematic method for deriving appropriate potential functions. The three examples of splaying, pairing, and reversal offer a setting in which to search for such a method.
Acknowledgement. The first author thanks D. Mount and A. U. Shankar for valuable discussions and useful comments.

References

