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1. Introduction

After many years of development of the hardware, the airborne gravity gradiometry has
reached the operational stage. The test flight was taken in the Texas-Oklahomu area and the test
results were published (Brzezowski, et al., 1988). The test area is very smooth, so the
wpographic effect was neglected. In the future, the airbome gravity gradiometry will be used for
the rough mountain area. The effect of the topography has to be taken into account in more rugged
topographic areas. For many years this problem has been studied by different authors (Chinnery,
1961; Dorman et al., 1974; Hammer, 1976, Tziavos, et al., 1988). All studies had a basic idea -
thev intended to eltminate the effect of the topography by removing the mass above the geoid. The
gradients of the attractions of the muss above the geoid were subtracted from the aerial gradient
data. and the gravity disturbances could be determined on the geoid by processing the reduced
aenal gradient data.

If the gravity disturbance is determined on the earth's surface, other methods can be used.
One of the methods was suggested by jekel: (1987). He used a surface integral to determine the
disturbing potenual on the earth's surface and avoided using the topographic reduction.
Theoretically, this method is perfect but it is difficult to realize in practice, because the inclination
of the topography, which 1s ill-defined, is needed at every computation point.

An alternative solution (1bid., p.239) which is difficult but simply defined is the use of the
analytical continuation method. Assume that the denvatives of the disturbing potential T, such as
T,.T,,. Tssz. ... can be well determined at a mean plane through the topographic surface. By
analvucal downward contirnuation, the gravity disturbance can be determined on the topographic
surtace by using Tavior's senes.

[t was shown (Schwarz, 1979; Rummel, et al., [979; Neyman, 1985; Ilk, 1988) that
downward continuation 1s an improperly posed problem. An improperly posed problem may have
a solution but 1t does not depend on the data continuously. A small error in data, e.g. a random
measurement error, can cause a significant deviation in the solution. It is expected that the second
derivatives of the disturbing potential T, such as Tz, Tyx, Txy, ... are rough at the flight altitude.
The problem 1s, how can we downward continue these rough functions to a mean level?
Furthermore, how can we absorb the useful information from such data to determine even higher
derivatives of the disturhing potential on the mean level? Sometimes it looks like it is impossible,
but if the gradient duta 1s accurate and in good distribution, the reasonable results can always be
expected. In order 10 avoid the instability of the computations and get a reasonable smooth
solutton, there are different methods that can be used, e.g., least squares collocation,
rzzulanzanon, or smoothing (filtening). These methods have the same property: they filter out the
hich frequency ot the data and make the re<ults stable and smooth. We will show that the three
methods are identical under some conditions .

The gral of this study is 1) tind methods for the determination of the gravity disturbance on
the topographic surfuce by processing the aenal gradient data. The numerical computation will be
camed nut to gain an idea about the use of the methods.

Because the gradient data can be obtained at regular gnd points, the very efticient numerical
camputatien method - Fast Founer transformation (FFT), is used. We will study the problem in
the spectral domain and use FFT in the numencal computations.

Solution of the Anaovtical Downward Continuation for the Airbome Gravity Gradiometry

The, wection presents the formulas of the analytical downward continuation for the airborne
aras ity gradiometry




Because the airbonre gravity-gradiometry is taken in a local area, the flat-earth approximation
is suitable for the processing the aenal gravity gradient data (Jekeli, 1985).

At first we consider the analytical downward continuation of the aerial gravity-gradient data to
the mean elevadon level. The geometry of the airbome gravity-gradiometry is drawn in Figure 1.
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Figure {. Geometry of the Airbome Grudiomery

Assume that the Runge's theorem (Moritz, 1980, p. 67) is valid also for the plane approximation,
one can say that there is a function which is harmonic on and outside the mean elevation level and
this function approximates the disturbing potential on and outside the earth's surface as good as we
wish. We assume this function can be approximated by the analytically downward continuing the
disturbing potential of the earth from outside the earth's surface to the mean elevation level.

Therefore we assume that the disturbing potential T and its derivatives, such as T;, Ty 1,) =
I. 2. 3 corresponding to the subscripts x, y, z respectively, are analytically downward continued
inside the earth and are harmonic above the mean elevation level.

The Poisson’s integral gives the relationship between a solid harmonic function and its values
at the mean elevation level (cf. Heiskannen and Moritz, 1967, p. 239):

z
Tl ¥Ypo z,j=——}if T‘x"v’d,\(dy
2n 1 ;3

(1)

where 1 = [(x-xp)2 + (y-yp)2 + 241172, is the distance between the current point on the mean
elevation level tand the point P at the flight level; zy is the height of the flight Icvel above the mean
elevation level. Eq. (1) is valid for any harmonic function. For the derivatives of the disturbing
potential T,, T}y we have:




Zy : TX(K, Y)
T“xp, Yo 2= »~~jf —3 dx dy
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1' hj=1.2,3 (3)
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The second derivatives of the disturbing potential T,; are given on the flight level, the
derivatives of the disturbing potential T, such as Ty, Tiy, TL,M and even higher terms will be
determined on the mean elevation level. We consider this process in two steps: first the
components of the gravity disturbance T; are computed at the flight level by processing the second
denvatives of the disturbing potential T The formulas can be found in (Jekeli, 1985)

x v') .
Tz_(X-H:" f ]) ————dx’dy
0
=T x',v'.
TxiX‘Y):'_l_ff s }dX'dy'
2n Iy

- (8)

(4)

(6)
=T x/,\")
T x.yl= ]-ff ‘“”tl —Sinadddy
3
2n - 0 ()
iy ff ,-_—_L—— cos a dx’ dy’
(8

2 - . . ’ ’ . .
where 1§, = (x-x")¢ + (y-y )2 and « is the azimuth of the point (x’, y') with respect to the point
((,:v”}.

The second step 1s to downward continue the derivatives of the disturbing potential Tj, Tig,
T,,, W the mean level by using the Poisson's integral. 1f T, Ty,, T,;, are determined on the mean
level, then we can get the gravity disturbance on the topographic surface by using Taylor's series:

2
T =T [Pl an ® vl
ah hre 2 o
oh h=hm
o)
:Tl(p”+ t\hlw/(P" '(Ah) Tlll(P,,
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where Ah = QP = hQ - hin, the height of the topography referenced to the mean elevation level.

The role of the mean elevation level is like the point level in the analytical downward
continuation solution of the Molodensky's problem (Moritz, 1980). Instead of the point level in
the solution of the Molodensky's problem the mean elevation level is being used, so that Tj, Ah
T,,. 1/2 (Ah)2 Ty,, should have a similar magnitude and property as Ag, g1 and g2 of the solutio..
of the Molodensky's problem. For more derails about the numerical properties of g1, g2 and
higher terms see (Wang, 1987).

In the following discussion we consider how the gravity disturbance and its derivatives can
best be dewermined on the mean elevation level. First we consider the use of least squares
collocation to process the acrial gravity-gradient data.

3. Processing the Aenal Gravity-Gradient Data by Using Least Squares Collocation in a
Conunuous Case

It the data are dense and regularly distnibuted as in the case of airborne gradiometry, least
squares collocation can be considered in a continuous case. The advantages are that the problem
can be solved in the frequency domain easily and the efficient numencal computation method - Fast
Founier ransform can be used.

Generally, we consider the operator equation
g7 = A g7e G, feF (10)

where Ar F — G, a linear operztor which maps the normed space F into the normed space G. In
arrbome gradiometry A can be any integral or differennal operator. A specific example is: A is the
upward continue operator defined by the Poisson’s integral (formula (3)); f is the second derivative
of the disturbing potential T, at the mean level T and g° is T}; at the flight level. Now we have the
second denvatives of the disturbing potential T,y at the flight level. We want to determine Tjj on
the mean level T This inverse problem may be properly posed if Tyj at the flight level is smooth
enough and errorless.

In practice such an inverse problem 1s improperly defined, because we alwavs have the errors
i1 the data. [t means, instead of the onginal function g°, we have in practice

=gt (1
where ¢ 1s the measurement error.
Even though the inverse of the operator AT exists, the solution

Faaly (12)

cun be gquaie ditterent from t which we are trving to determine. Now we want to find the methods
woovercome this difficulty.

[t we nave the previous information about the statstics of the datd and the measurement error,

the method of least squares collocation can bhe used to obtain a solution.  This technique has
hecome a standard computational method for the inverse problem in physical geodesy.

4-




Ineq. (111 we assume that the function g° is centered:
M{g®) =0

The operator M is defined as

PR
The funcnion g° 1s deterministic and the error € s considered as a stochastic process, so the
medasurement g 1s a stochastic process.
The vanance and the covanance function are defined as
CrrlP. Qf = MIT(P) Q)
(14)
Cr [P Q= M{f(P) QY]
P.(Q are the points on the reference plane.
We assume the function g” and the error € are independent:

MR Q) = M g Ple(Q)) = 0

M{E(P) gl = M{e(P)elQ)) = CpylP.Q)

where Cpp 1s the covanance of ihe error €.
We consider a process for the best estimation of the function f:

f=Hg (16)

A . . . . . .
where f 15 the best estimate of the function f, H is the estimation operator which makes the mean
squire estimation error e the smallest:

Jioo
M{cz} :M)(H) { = min. (17)

L« f1T7)1s equivalent to
O tr=0, H) = min, (18

shere Cee is the covanance of the estimation error, and it 1s a function of the estimator H; ris the
JAistunce between the points P and Q.

-5




Eq. (18) can be viewed as an extreme value problem: To find an estimator H which makes
Cee tr =0, H) the smallest.

Now we consider how to solve this minimum problem in the frequency domain.

The two dimensional Fourier transformation and its inverse are defined by

F{f{(,y)}:ff f(.»;.y)cz“"‘“'-“’dxdy
- (19)

: ) = 2Rfixusyv)
F :g(u_v)}:]f guve frues "du dv
oo (20)
vhere § =+ -1 Fand F'! denote the Fourier transformation and its inverse respectively.

We denote the Founer wansformaton of the function f by wf

wr = F 1 v (21)
and assume that
FIAN =08 o (22)
FAHET = ¢y wy
wihere 04, O are cailed the specwa of the operators A and H respectively.
for the Founer ransformiition of the covanances we have (¢t Schwarz, et al., 1989):
R RERNE F{(‘m v } = rllm ~—1—?(cu(w;)
F s> 4T (23)
R, uvi= F{ Cr‘g" v, } = Tlm:m;T:(w((n;)
2 hm —J—.-( o ,O.‘\m'{f) = O.,\ R,
e o (24)
Ropuovr  BHC ppoxcvi =04 Ryg
Ky (25)
Rostuvr -4 04 Ry (26)

_be




where the symbol ” * " denotes the conjugate of a complex function and Ryf, Reg, Rgf, Rgg are the
Founer transformuation of the covariances. Sometimes they are called the power Spectrafdensity
functica.

If we denote the power spectral density of the estimation error by Ree (u, v), then eq. (18) can
be wnitten in the fonm:

Ccc{rz().}{isz R..lu.v.¢,)dudv=min.
i (27)

then the exoreme value problem becomes:
To tind the spectrum o! the operator H which makes the estimauon error the smallest.

If there 1s a procedure which minimizes the power spectral density function of the estimation
coror everywhere in the tfrequency domatn:

R\,\.(u.\’,o},)zmm.. ULV E (—oo. *w) (28)

the word "evervwhere” means the minimum “-alues of Ree for every frequency u, v, then the
oxireme vi'ue probiem (18) can be replaced by (28) in frequency domain. The minimum condition
(2% was used by Bendat (1980) for muinimizing the power spectral density function of the
Zslimation error.

Note that the R 15 non-negative and compare ¢q. (28) with eq. (27), one can find that eq.
271 <¢an be obtained by using eq. (28). If the power spectral density function Ree 1s minimized
cvervwhere, its integraton Cee (r = (0. H) is also smallest.

The esumanon error covariance 1s given by

!

- MletPretQn =M1 - Tip) [AQr - 1))
Ci- Gy G- O (29)

H

Using eqs. 123 - 126) and (29) we get the power spectral deasity function of the estimation
LTTOr el

* . . { .

R..= Ry 040, Ry 90, R+ 00,10, 0, R+ Ry (30)

-
Under the minimum condiuon (281, the spectra 9y, O have to satisty the following conditions:

2
R =0

" a1

-7-




ERF
IOy
From (30) and (31) we get:

OA Rff
oy= :
QA OARH+ Rnn (32)
y 04 Ry
On= »
O,\ o.\R(f+Rnn (33)
The bestesumate of the function f 1s given by
f": 18 1 oy, w !
VTH e
- '! 04 Ry \
-k . " (l)u ‘
|03 0aRu Ry, | (34)
~here wy s the Founer transtormanion of the measurement (data) g.
The estimation error s given by (cf. eqs. (27) and (30)):
N e} = Cee
i f] [‘1 a oAOH) R+ 0,40y Ropfdudv
- (35)

[f the pre-information of the statistics of the function t and the error e, or the power spectral
Fraseey tunction Ry and Rap, are known, then we can use formulas (32) and (34) to get the best

chumaton ot the tunction ftrom the data go The estimaton error can be computed by using eq.
13,

Now we consider a more general case. We have a heterogeneous data set related to the
ranction f

-8-




g1=At +¢g
gx=Axf+¢€>
gn = (‘\n f+gn , (36)

A solution which 1s the best approximation of the function f is to be determined by processing
this heterogeneous data. An example for eq. (36) is the processing of aerial gravity-gradient data.
z,. 0= 1, 2. ... 615 the second denvative of the disturbing potential, and f can be the disturbing
potential or any of 1ts denvatves. Of course, if we have any other data related to the function f, we
can always put itin the form uas eq. (36).

We assume the best estimate of the function f is given by:

n
::HIgX$ngl+"'+Hngn:zH1gl
=1

(37)
The esomation error 1§
. m
e=f-f=f-Y Hg,
(38)
The estuimation error covanance has the same form as eq. (29):
Coo= G- G- Cp+ C (29
Note that
“FfC 1= ! .
Ri' = F{(.h} = llin. s ((J)?(D{)
n.
= 2_, 0,0, Ry
=1
Ry=F1Cq]
rL * .
: Z 00 Ry
(39

-9-




where

N \0 1#] (40)

Here we have assumed the measure errors €, 1 = 1, 2, ... n are independent of each other; Rj; is
the power spectral density function of the measurement error €;; ; is the spectrum of the operator
A The spectral density function of the esumaton error is:

n n * o
Ree= Ry~ EQh'?,Rff‘Z‘beDj R+

1=1 1=1

n n - .
+ 2 2.040410,0, R+ R,
i=1 =1

(41)

The power spectral density function Rge has the extreme value when:

oR .
\.L:O

aoH, 42)

IR,
= =0

doy

Using egs. (41) and (42) we get

n

1 . non ( . _ ‘
‘ZQJ RIT*ZLOH‘Q’!O; R+ R, =0
R 121 =1 (43)

n n n * -
-2 0 Ry+ ZZQH(Q;‘D; R+ R,J=0
=1 1=1)=1
fq. (43) can be rewnitten as
. n

2 -9, Rrr*Z‘?’nl(o,", Rrr*Ru) =0

I 1=

(43%)

-10-




n n . .
2|0 R+ zon‘(oi% Rx‘f+RiJ]=()
1=1 3=1 ‘ J

Eq. (43*) implies that

. n .
=0, Ry 2 ‘Di{,{oiQJ R+ Ri): 0
=1 (44)

n . .
-0, Ry+ 2 oH‘(m‘q’J R+ Ru): 0
! (43)

Equauons (44) and (45) are conjugate to each other. They are indeterminate linear equations.

There are infinite solutions for the "vanables” ¢y, and ¢;{j. One of the solutions of eq. (44) can be
wrntien as:

0, Ry
OH: - When Rl 1= R
ZOJOJ R”+ RIl
! (46)

1o

o
]
~

nrr

This 1s a special case 1n which all measurement errors have the same magnitude and property
(same power spectral density function). One can expect that it can happen sometimes, ¢.g., in the
airborne gravity-gradiometry, the components of the gradient of the gravity are measured with
different accuracy.

In the last case the solution for the indeterminate equation (41) can be

' !
Qi RITR 1"
Oy =
USRS N
20,9 RyR +1
=l (47)
If the power spectral density function of the measurement error 1s "white” noise, we have:
R, = constant 48)

We then can define a spectral weight o) by

-11-




0, ™ Ry (49)
so that equation (47) becomes:

1
¢i R“(l)p

Q}{=

' n » J
z QJ ¢J Rﬂ'(.l)p‘f' 1
)=l (50)

Obviously, eq. (50) can be considered as a weighted least squares collocation solution with weight

wp. If a data set is measured with low accuracy, based on egs. (49) and (50), the spectral weight

w{, becomes smaller and so the ¢y,. This data set is weighted and has less contribution to the
results.

The definition of the spectral weight ay, can also be expanded to a more general case in which
the Ree 1s not restricted to be a constant. Assume that the power spectral density function of the
measurement errors is not only the "white"” noise and let eq. (49) still be vahd eq. (47) can be
considered as a wcnghted least squares collocation solution wuh weight @y, too. The only
difference from the “"white"” noise case is that the spectral weight (op has different va!ucs to different
frequencies.

We now consider only the case in which all data are measured with the same accuracy. The
best esumation of the function fis given by

S
|8y

=F'1/§n‘, b \
1=l *
2¢J0) R(f+R(|
! (51)

where wyg 15 the Founer transtorm of the data g,.

The esumation error variance 1s (cf. eqs. (27) and (41)):

M (] = Cee (0)

A EL

”+il¢sz R, | dudv
! (52)

-12-




Here we have used:

. L ]

22 OpOn Rij = El%,%..R.,
)

=121

(53)

In an ideal case the data are errorless, the spectrum of the best estimation operator H;j has the
form:

1=1 ‘ (54)

then the function f can be exactly recovered without using any pre-information of the statistics of
the function f.

Because egs. (44), and (45) are indeterminate linear equations and pose infinite solutions, we
can find another solutions of the operator H; which sausfies egs. (44) and (45). An alternauve
method to solve this problem is discussed in (Bendat, et al., 1980, Chapter 10).

The above formulas can be used for any observed quantities which are related to the disturbing
potential, e.g., the gravity anomalies; deflections of the vertical; geoid undulation etc. It we have
such heterogeneous data, the above formulas can be used to determine the needed quantities.

The weakness of this method is that the data have to be regularly dismbuted and should not be
<o sparse that the interested information is lost.

4. Regulanzation

In Section 3 we have considered the solution of the improperly posed problem by using least
squares collocation. Now we study the problem from another starting point. We will consider the
solution to be stable and smooth.

In least squares collocation the statistics of the determined function and the measurement error
have to be known. In practice, they are never exactly known and are always assumed. [f the
solutions are sensitive to the statistical model of the measurement error or of the function being
estimated, or the statistical model is not properly assumed, the results may not be good or not
stable. In this case one can consider the use of a regularization method.

The regulanizanon method has been used in many technical and scientific areas (Nashed,
1974, The use of the regulanization in physical geodesy can be found in (Schwarz, 1979;
Neyman, 1985; Ik, 1988). This method is flexible in obtaining a stable and smooth solution
because we have the chance to choose the regularization parameter and the regulanization function
arbitranty.
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There are different regularization methods and different ways to regularize an improperly
posed problem; for more detailed see Nashed (1974). Here we are interested in this problem: Find

a solution where its nt derivatives are smooth and it is the best approximation of the original
solution.
For the improperly pesed operator equation
g =Af (107
fe F.ge G
Let F, G and Z be Hilbert spaces and A: F—G be an operator mapping the Hilbert space F into G;

Lm: F—Z be an operator mapping the Hilbert space F into Z. We consider the minimization
problem: find a funcdon fg to minimize the functional

., 2
1f g L) = Af- glig+ @ [Lnf], (55)

where the norm of a function f i1s defined

=i (56)

Eq. (56) is from the definition of the Hilbert space (Bachman, et al., 1966, p. 141). The inner
product (f, f) can be defined for our purpose as:

T T
(1.0 =lim — [ [ fedxdy
T -7

Te= 4T (57)
where £ is the conjugate of the function f.
Notice that
Af-g=¢ (58)
where € 1s the measurement error, therefore eq. (55) is equal to
| 2 2
Higoa L) =|lellg+ o JLafl, (59)

Let a = 0, then the minimization problem (55) becomes: find a function fg to minimize the
functional

2
iE. ) =| el (60)

Fq. (60) 15 a classic least-squares munimization problem. The physical meaning of the last term in
(5915 clear. If L, is chosen as a differential operator up to m order, then the minimization
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problem (55) means: to find a function fy to minimize not only the measurement error, but also the

functional Hme |l The last term Hmel | makes the function fo smooth and stable and it makes
the difference between the classic least-squares minimization problem and the regulanization
problem.

The solution of (55) has been given by (Nashed, 1974, chapter 4):

A"A+a LoL |f,=A"g

(61)
where A* is the adjoint operator and is defined by (Bachman, et al., 1966, p. 16):
[Ax,y]=Ix,A*y), x,yeF (62)
It the inverse of the operator
(A' Ava L. Lm)
¢xists, then we have the solution
8
fu={A'A+aL;,Lm) A'g 63)
Based on the Lemma 2.2 (ibid. p. 25) we get the spectrum of the adjoint operator A*:
0,0, (64)

That means that the spectrum of the adjoint operator A* is equal to the conjugate of the spectrum of
the operator A.

Applying the Fourier transformation to eq. (61), we get the spectrum of the regularization
solittion fg:

0,0
Fify=w = Aﬂg
OA°A+ < ¢L,,"OLm (65)
We denote (61) by in operator equation
f{l:}{()g (66)
with
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-1
. 2 - .
H0= A A+Q LmL"J A (67)
Hp was viewed as a regulanizaton operator by Nashed (1974).

In the spectrai domain eq. (66) can be written in the form (cf. eq. (65)):

Or,= Ou,0g (68)
with
®a
OH'): ~ .
QAQA+ a oLmQLm (69)
The regulanzation error is defined as
ef =1 - fa . (70)
and the error covanance is
r J r r \
C.e=Mye (Ple Q)
=Cr- Crar Crta * Cruta 71
The power spectral density function of the regulanzation error is given by:
R .fu.vi=F |CLiix. vI]
:(1 'OHOQA) Rf[*‘QHJ Rnn (72)

where Ry Is the power spectral density function of the measurement error.

From egs. (61) and (69) we can see that the solution fg is dependent on the regularization
parameter & and on the choices of the operator Ly,. No statistical model of the function f and the
measurement error are needed. But if the regulanzation error is to be determined, the statistics of
the measurement error and of the function being estimated, are always needed (cf. eq. (72)).

The mean square of the regulanzation error is given by:

(t’cc((),a.l,m)=ff R fu. v} dudv
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Ll R Rufo

r . . . .
Cec (0, &, Lyn) 15 a function of the regularizaton parameters & and the operator L.

(73)

The regulanzation of the improperly posed problem can be extended to the heterogeneous
data. Denote the equations (36) with the vectorial form:

g=Af 74

where the underbar denotes the vector, § is a vector function with the components g;, i = 1, 2,
..n, and A is a vector operator with components Aj, i = 1. 2, ... n. The minunization problem is:
Find a function fg, to minimize the functional

2 2
J(, 8. o L) =1 Af- gl + a |ILmfllz (75)
The norm of a vector in the Hilbert space G is defined by the inner product:

g’ = (2.8) = (Af.AD

‘—'{A" Af,f) (76)

where the symbol "+" denotes the ranspose of the adjoint operator of the vector operator . The
productof the A~ A isa scalar operator and it is given by

A ~A=A:A,\:+A:A2+..,+A“An (77)

Because the Af, g are the elements of the Hilbert space G, therefore the extreme value problem
(75) 1s the same as the problem defined in (ibid, chapter 4). The solution of eq. (75) is then

“}*. A+ qal L,;, Lm)fa=/_\+~ g (78)

It the inverse of the operator

exists, then eq. (78) can be written in the form

fo=(A" Asallmly)t AY g (79)

By using eq. (77) and the definition of the vector operator ¢q. (78) can be written as

n, 2 o noo,
.ZAI A|+U LmLm f(lzzAl g,
i [ (80)
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Applying the Fourier transformation to eq. (80) and using egs. (22) and (64), we obtain the
spectrum of the regulanized funcuon fg:

n - R

20, 0+a oL %,

=t (81
In order to get the fy in space domain, the operator equation (80) has to be solved. In the

trequency domatin this problem becomes much easier: the regularized function fy can be obtained

by taking the inverse Fourier transformation of eq. (81).

The esumaton error covariance is the same as eq. (71):

R
Cee=Cpr- Cp¢- Crr+ Cy g, (82)

where the superscript "R” distinguishes the estimation error covariance between the heterogenous
data and the homogeneous data cases.

Notice that
FiCq =Ry
/ \ = )
F\Cu’ Og Ry (83)
*
F1Cy 1 =04Ry
F {C(?’q} = O(,O(,Rﬁ'** OL, .
where
n -
Z ol Ol
. 1=1
0,=04=
n . 2 .
2.0,0+a 0 0
e (84)
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to

io:olR”
1=1

L]
~

n . M .
zol 0"*'(1 OL,,,QL
1=1

. (85)
then we have
R 2 2
Rccz‘l ‘OO) Rff+oc (86)

ohviously the RR. is a function of the parameter o and the power spectral density function ¢ .

5. Smoothing

In practice there are always some kinds of smoothing being used in the numerical
computations. For instance, the use of the mean values of the data is a smoothing. A smoothing
procedure can be used for solving the improperly posed problem. [f we know the frequency
composition of the function f and of the measurement error, we can design a smoothing operator
itiiters to filter out the effect of errors.

Here we introduce one smoothing operator which has the spectrum

| + aw (87

where g 18 the spectrum of the smoothing operator S, and a. A are parameters which can be
b} . . .

chosen; @ = (u® + v4)172 4, v, are frequency variables. ¢ is a low-pass filter because it filters out

the high frequencies and lets the low frequencies pass through.

For the improperly posed problem we have the solution
f,=S - Alyg (88)
[n the spectral domain eqy. (88) can be written as
-1
W, = 0,0, o, (89)

The smoaothing procedure can also be applied to the heterogencous data. If the data are
errorless, the best estmation operator Hy was given by eq. (53) and the spectrum of the solution 1s
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1=1
W; = ———0,
g

n
29,0
(90)
in reality the eirors are always included in the data. Except for the systematic error the
measurement ceror are often modeled by random errcr and such error effects mostly the high and
veny high frequencies of the data. Therefore a low-pass filter can be used to decrease such effect.
Another reason of the use of the low-pass filter is that the high frequencies (nearby Nyquist

frequency) must be minimized in the numerical computauon. Because such frequencies are mostly
Jistorted by the measurement error, sampling error, truncation error, etc.

After the smwothing of ey (90) we obtain a solution:

20,0,
vz ]

91

[t e smocnng procedure s chosen properly, the effect of the errors can also be minimized
parooth selution can be Staned from an improperty posed problem.

(U mOONT D erTor Iy Siven by

N -
Cou AU ool

GOC I
. [N < A\
O Mg Pie 1l

:'("ff'(“"._ C‘[J’*C‘f‘f (();)

Bouang egqe CEN (D88 and (92) we get the power spectral density function of the
ooy ertoT
2
. i

o -0 oo ‘
RV:VHJV\)/,X Qj )".[*‘OQOA Rnn (()4)

Porehe peteroceneons da e estumation error €518 given by
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where Ry is the power spectral density function of the .aeasurement error g;.

W
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o Relatonship Between the Least Square Collocation, Regularization and Smoothing

The relationship between the least squares collocation and the regularization method was
shown in (Rummel, et al, 1979) Both of the methods are identical under secme restmctions.
Basicallv, three methods are the same and have the sanwe property: they filter out the high
frequencies in the solutions and make the solution stable and smooth. We will show that they are
idenuical it they satisfy a few conditions.

The casiest way to show the relationship between the three methods is to inspect them in the
spectral domicin, We consider only the homogeneous data case. Comparing eq. (32) with (69),
we tind that oy, and ¢y become 1dentical, if the following equation holds

@ o, 0, =R_/R,
LS, nrf 1 (96)
Rewrite eg. (69)1n the form
-1
‘31!?0; 11 + UL Q Ol SO, Q )
‘ 5 Lotba WA YA (97)
snd comipare (971 wuh (89) and using eq. (87), we get the equation:
. ( . ) A A
(0, ¢, 10,0, =u o
LoTATY ‘ (98)

It the revulanzauon paro.neter o and the spectrum of the operator Ly, satisfy eq. (97), then the
revulanization method s ide vtical with the smoothing method which has a spectrum similar to eq.
X7

Putting egs. 1961 and (9%8) together, we get the identical condition of three methods:

. . A

: .
o0y BROR 20,0, a0 (99
o ‘ )

e regulunZanon parameter w, sumouing parameters o, A and the regularization operator ¢p
-t ey 199 then the three methods are identical.

Phe wudyv has ~hown the relanionship between the three methods. They pose the same property -
sl or Hlicning out the high frequencies in the solution. But they are different rrocedures
Ihos aredennce! only when all of them fulfill the condition (99).

For the regelanizatnon and smoothing method we can choose the parameters and the
cocclanzanon operator Ly or different smoothing operator te get smooth solutions. Therefore they
coerore texible than least squares collocation for the soiving of improperly posed problems.




7. Numerical Test

In this section we take numerical tests. The goal of this numenical simulation is: To have an
idea about the use of the Taylor series to get the gravity disturbance on the earth's surface by
processing the aerial gravity-gradient data. The formulas above derived are used to determine the
denvatives of the disturbing potential, such as Tz, Tzz, T;z; at the mean level. We want to know
how gogd the methods are and have a view about the magnitude of the terms, such as Ah T,
1/2(Ah)< Tozz.

The test area that was chosen has the geographic latitude 32°<¢<35° and the geographic
longitude 257°<A<260°. The 4 km x 4 km free-air anomaly for the United States (Rapp, et al.,
198%) was used as the ornginal data.

In the computation the point mass model was used. We assumed that there is a point mass
laver embedded at a depth of 8 km below sea level (i.e. the geoid). The relationship between the
point layer and the disturbing potential T is given by:

N M M

Thoyd= 3 e

1=1)=1 2 2,2
[(x-xl) *y-vy) *d] (100)

where M,; is the product of the point mass at point (x;, y;) times the gravitational constant G, and d
15 the height of the computed point; N, M are the grid numbers of the area along x and v directions,
the minus sign in eq. (100) is for convenience. The geometry of the point mass model is shown in
Figure 2.

N

Flight Altitude

Topography

Mean Elevation level

l @ — ;}; \
y/'y ? + Sea level

8 km

Point Mass Layer
—» X

Figure 2. Geometry of the Point Mass Model (zg = 4 km, hm = 1.5 km)
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The computational process is described generally as follows:

1. Read the free-air anomaly from the 4 km x 4 km data file (Rapp, et al., 1988) and assume
the data are given on the sea level. Furthermore, the free-air anomaly is assumed to be the
gravity disturbance T,, and the formula (102) given in paragraph 7.3 is used to get the M;;. d
was chosen as § kmy;

2. computing Ty, i, j = 1, 2, 3 on the flight level by using formulas (103), (104), (105).
(107), (108), and (110) given in paragraph 7.2;

3. corrupting Tij by adding random errors with error variances 62 = 1, 4, 25 E6tvos? and
mean value equal zero;

4. processing the simulated gradient data to get T,, Tz, Tz, on the mean elevation level,

5. companng the computed %-,. ?‘,Z, Ihu with the "true” value which were computed directly
from the point mass model.

In the tollowing we give the description of the data, the formulas used and some considerations
about the numernicai computations.

7.1 Darta Used

The gravity anomaly in 4 km x 4 km grid point values for the United States was used. In
order {0 get higher frequencies in the solution, the data was interpolated in 2 km x 2 km gnd
interval by using the bicubic spline function. All computations were based on the data in 2 km x 2
am grid values. The use of 2 km x 2 km gnd interval is based on the following considerations.

I. Using a small grid interval can decrease the aliasing effect in the Fourier transformation, even
though we do not get more information by interpolating the 4 km x 4 km gravity anomaly into 2
km x 2 km gnd point values;

2. The evaluation of the formulas, such as given in the next paragraph, can be more accurate by
using 2 km x 2 km gnd than using 4 km x 4 km gnd. Using the smaller gnid can increase the
computation accuracy (cf. Tziavos, ct al., 1988).

The stausucs of gravity anomaly Ag in this area is given in Table 1.

Tuble 1. Statistcs of the Gravity Anomaly Ag in the Test Arca.
(mgal)

mcan value RMS value maximum minimum
-R.x2 24.4% 7821 -76.17

The contour map of the gravity anomaly in the test arca is shown in Figure 3.
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Figure 3 Contorr Map of the Grravr Anomaly i Test Area.
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7.2 Formulas Used

Before the numerical tests were taken, the formulas which would be used are written in the
following. The spectra of the differential operators used occur in the airborne gravity gradiometry
are given in Table 2 (cf. Vassiliou, 1986). The definiton of the spectra of the operators are given
in eq. (22).

Table 2. Spectra of the Differential Operators

(Operators Spectra
9
ox j2mu
9
dy j2mv
9
oz -2nw
n
_9
axkay‘azp (j2n u)k(jva)l(- 21t(u)p

Here we havek +1+p=n;k,1,p=0, 1,2, ..
It 1s easy to find the spectrum of the upward continuation operator U defined by eq. (1):

_ mimwly
Oy=¢ (101)

The relationship between the disturbing potential T and the mass point MH 1s given by eq.

(100). The derivatives of the disturbing potential Tj, Tjj, 1, J = I, 2, 3 can be derived from eq.
100) (cf. Vassiliou, 1986):

S
T.= 21 2 M,
=1 )

=1 (102)
3 frex)” + lyy) - 2
TIL:Z - 5/2) Mlj
=l ! (103)
4 & 3xx|d
T/x: - z M5/2 M‘J
SUEELN (104)
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i=1)=1 1 (105)
M N
X-X,
TX:ZZ 372 M‘.
=1 =1 ) (106)
M & fy-y) +d™-2{xx)
Txxzzz 5/2 1)
1=11=1 1 1N
\tur)
e 3[xx) {yy)
T‘Y ‘ 2 5/2 M‘
i=1 j=1 ! (108)
M N
- Yy
TY_. z 2 M,
1=1 =1 | (109)
M N (x‘x.)2+d 2{y-y)
T.VY=. z 5/2 M'J
i=1 =1 [ (110)

where 1 = [(x-x))2 + (y-yj)2 + d2]1/2.

Taking the Fourier transformation of the formulas (102) - (110), and using Table 2, we have:

FIT)=F|M,| -Lez"“’d)
) (111)
FIT.\=FIM (,’ -2noxj)
(T:}=F[M;|2ne (112)
/ 2 are)
FIT, =F (M \-(2n) we ™™ (113)
/ oy \l'( )2 e
F)T”’— FlM,” \ji2n) ue f (114)
I < 2 »2nwd}
F!le\':F{\AU} 1] 27’{) ve (115)
F{Tx}zF{M,J:f 2—’5552"“"’\
| 7w / (116)
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F{T.) =F (M, - e i
(2n)]

FIT b= FIM, ) T e 27

\ I \ Jf © (118)
9

FIT,}=F M) \j-)':ﬂe and}
@ (119)

E {T\ } -F {MU} ;(ZTW) e-;’nmd\
\ @ (120)

Here we should not confuse the subscript j with the imaginary number j = V-1.

In the numerical computations egs. (111) - (120) were discretizated and were evaluated by
using the fast Fourier transformation (FFT). The first and second derivatives of the disturbing
potential were computed at the flight level and mean elevation level by using egs. (111) - (120).

After the computations of the second denvatives of the disturbingzpoxcmial Tj;j at the flight
level. the normal distribution of the random noise with the variance 62 = 1, 4, 25 E6tvos? was
added to the computed Tj;. In processing the corrupted data to determine the derivatives of the
disturbing potential Tj, Tig, Tiyz on the mean elevation level, the regularization method was used.

[t was assumed that the disturbing potential T and its partial derivatives to z up to third order
are smooth at the mean elevation level. For the word "smooth” we understand it under such
meaning: The disturbing potential T has continuous partial derivatives up to third order. In fact,
the disturbing potential T has continuous partial derivatives up :2 all orders above the earth's
surface. Because the analytical downward continuation is used, we constrained the disturbing
potential has continuous partial derivatives up to 3rd order above the mean elevation level. We
took the regularization operator in eq. (75) as

3

d
L=V X
Jz (121)
where U is the upward continuation operator.
The spectrum of the operator Ly, 1s given by
3
Ol‘m:—‘lno)) Oy (122)
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Six components of the second derivatives were used to determine Tj, i = 1, 2, 3 on the mean
elevaton level. The observaticn equations are

| = A. T, +E (123)
| = AY Ty +EY (124)
[:AZT2+1»:z (125)

where | is the observation vector which has the components I;, i = 1, 2, ... 6, the measured second
derivatives of the disturbing potentiai, Ay, Ay and Az are vector operators; € is the vector of the
mcasuremeni error. As a specific example eq. (123) is written in the form:

1
TXZ

1 9 £,
T,, A

1 Aj €2
T, As . 3!

= +
X

TI Ay €4

XX A

1 5 Es
T,, Ag

] - €o
Ty (123"

where T,"Z, Tylz, ... are the measured gradients of the gravity disturbance; €1, €2,... are the
corresponding measurement error.

The best esiimates of the T,, Ty and T, in eq. (123), (124) and (125) are given by:

T (<. v hoy=F ' {klu, v)j2ru}

(126)
- -l N
Ty(x,y.hy=F {klu.v)j2rv, (127)
T, %y, ho) = F {ku, v){- 2r0)) (128)

where the symbol " A" denotes the estimate of the function, and k (u, v) is given by:
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ku,v)=

J

»*

o]
2 o, 0, +a ”no))
=1 (129)

Here we have used egs. (81) and (122). The wy; is the Fourier transform of the observations Tj;.
From eq. (126) - (128) one can see that the k (u, v) is nothing but the spectrum of the disturbing
potential T determined by using the gradient data Tjj. If the Tj; is ordered as in (123"), then we
have:
2 2
Ol=—j(2ﬁ) uw , ¢2=—j(2n) v,

2 2 2
03=(2n) o0 ¢>4=—(2n) uz,

05=-(2n)‘uv, Q():—(zﬂ)LVZ. (130)

Insert (130) into (129), we get

6
-1 -
Oy 2 0 0
1=1

3 2) 2 6
-u v+ (21t(u> (131)
In the numencal computations the regulanzation parameter a has taken the value (0.07.

In the same manner we have the formulas for the second and third denvatives on the mean
elevation level:

~ ) 2 \
Tolx v hd=F ko v){2n) (Huw)f (132)
R N SN
T,y by =F kfu,vil2r) (ol (133)
_]/ 22)
T, 0.y hJ=F ko v21) o (134)
and
. N (o2
To 6y = F {kiuovi(2n) Guo || (135)
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T),Ll(x.y,hn)=F"{k(u.v)(2n) ()’vw )[ (136)
- N 3( 3)\
Toalx v hod = Fklu, vi(2n) {a 'l (137)

The formulas (126) - (137) were discretizated and evaluated by using the fast Fourler
rransformation.

If we use the smoothing method, according to the equation (98). the parameter g, A are
chosen

1 2
asz-—WI = 100. X:=2
3 (138)

The specaum of the smoothing operator is

1 l

)

l+a, I+ 100 w (139)

The least squares collocation method can also be used. But the power spectral density
function of the disturbing potential and of the measurement error have to be properly chosen.

The regulanization error was not computed by using the formulas like (86), because the "true”
value could be computed directly. The difference between the "true” values and the computed
values were computed and the results are shown in the following section.

If we have no “true” values, as it should be in practice we can choose the spectral density
function of the disturbing potential T and of the error €, the esimation error (regulanzation error.
sinoothing error) can be estimated by using the above derived formulas.

7.3 Considerations of the Singularity and Recovery of the Spectra of the Gravity Disturbance
From Gradient Data

In the above denived formulas we have the singularity problem. The formulas, e.g. eq. (131).
are not defined at the origin. Such a problem can be catalogued by the singular integral problem.
A theoretical study of singular integrals and integral equations is given in Miklin (1965). The
study of the singular integrals in the physical geodesy can be found in (Siinkel, 1977 Wang,
1986).

Here we consider the singularity problem in the spectra domain. As a common example, we
consider the Stokes integral. In the planar approximation we have:

2ny

- (140
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where N 1s the geoid undulation, y, and Ag are the normal gravity and gravity anomaly,
respectively. Applying the Founer transformation to eq. (140) we get

2ryw (141)

where N, @y are the Founer transformation of the geoid undulation and the gravity anomaly,
respectvely.

We have two methods to compute eq. (140). One is taking the discrete Fourner transformation

to eq. (140). The kernel I'! has a singulanity at the point (x = 0, y = 0). The treatment of the
singularity can be found in (Heiskanen and Moritz, p. 121; Schwarz, et al., 1989).

Eq. (141) can also be used to compute the geoid undulation. The only question is, what kind
of value eq. (141) should be taken at the point (u = 0. v = 0)? It will be shown that the choice of
the value wn (0, 0) effects on the geoid a constant bias.

Let
w(0,0)=p w (0,0)=0 (142)
where B 1s an arbitrary constant. Notice that
(oS(O.O):f[ czm(”xfoy}Ag(x,y)dxdy
:ff Aglx, v)jdx dy
- (143)

If the integral in eq. (143) 15 limited in a local area, as the case in practice, wg (0, 0) is not always
cqual to zero. Assume that eq. (141) is discretized and inversed by using the discrete Fourier
transtormation. then the wa; (0, 0) has the contribution to the geoid.

1 Mo e (”,L()_,“_“)
(:)\ = \i\\ 2 2_’ u O)g(()_O)C - hS| N
T MmO
=pow,lo.0l

(144)

where ON is the change of the geoid due to the different choices of the wn; (0, 0). 8N is a constant
everywhere. If we set wg (0, 0) = 0, then 8N = 0. Therefore the geoid undulation from eq. (141
may have a constant difference with the geoid undulation direct from the Stoke's integral (140). In
order to romove this bias, other data, such as reference fields, should be used.
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Another question is: Can we recover all spectra of the gravity disturbance from the gradient
data? The answer is no. For example, the relationship between T, and Tzx 1s

If we want to recover wr, from wr,, . we have

Wy =—j——Of

Imu (146)

z

At the line u =0, the spectra T, are not defined. A common way in the numerical computation is
to set

wT, (0, v) =0, V E (- o0, + o0), (147)

Butin reality eq. (147} is noc correct, since the spectra wr, (0, v) should not be equal to zero. The
conclusion is: The spectrum of T, cannot be recovered from the spectra T, entirely.

In the numerical computations, we have to take the assumption (147). Therefore it is not good
cnough using Ty (including Ty;) to determine T, because we cannot recover all frequencies of T,
trom T,x or Tyy.

A better recovery of the spectrum of T, can be achieved from T,

(l)T:——(x)T

H T

2Tw (148)

This function is not defined at the origin (0, 0). If we assume the mean value Ty is equal to zero,
based on eq. (143) we have:

(»T‘(O.O)=O (149)

and we can get all frequencies of T from Tz, If the wr, is not equal to zero, we still have to take
(149) in the numerical computation. But the information on the bias of T, has to be provided by
other data, such as the point disturbance component values on the ground (Jekeli, 1986).

The best way to recover the frequencies of the gravity disturbance is the use of all components
of the second derivatives of the disturbing potential. From eqs. (128) and (131) we can see,
frequency of T, from all data is not defined only at the point (0, 0). We define the frequency of T,
at this point as equal to zero, and the frequency wr, (0, 0) is obtained from tie point disturbance
component values or another data. '

Summary: We can recover all frequencies of the gravity disturbance by processing the aerial

gravity-gradient data except the mean value. The mean value of the gravity disturbance must be
provided by tie point values or another data.
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v deseribed the data, the formulas used. In this section we give
cvedns o of the disturbing potential were determined on the mean
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L7 were used. The regularization function was chosen as

Fabie 30 Sransues of the Diticiences Between the Computed and the "True™ Values
[ Nowse level mean RMS | max min
ETy, o= -0.29 0.521 2.57 372
iﬂ:ns.;) =l -0.29 0.60} 2,78} -394
L g=5 - (0.29 0991 3.67 476
‘ c =1 -0.03 0.26) 1.47 1.64
| o=2 -0.03 0471 213 1.95
[ ag=135 - 0.03 1141 435 4.73
} c=1 -0 84x10-21 0401 171 1.69
Lol c=2 S0.87x10°31 0771 3.05 1.95
Cmealie, | o=3 -0.96x103] 100] 7781 - 697

From Table fowe cun see that the random noises have no significant effects on T,. In the
compotatons the regulanzation was used and the effects of the noise have been mostly removed.

oot the same sy expected ddekeh, 19870 The reasons may be:

LW ed the gravay anoraly ina not very rough (gravity anomaly wise) area. The spectra

eetnd mosty oy iower frequencies. The power spectral density function of the data 1s
ooan o ure b The smpliaae of the high frequencies of the data is small and should have no
sookticasceonmhanen o b, T, wnd T, The high frequencies of the measurement noise and the
Loonregrer a0 the dota were Biliered cut and the results were not changed significantly from
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Frgure 4. Power Spectral Density of the Gravity Anomaly Ag 'n Test Area
2. An imporant thing in the numerical simulation is the choice of the gnd inteval. The
¢radient data used were regularly distnbuted in a 2 km x 2 kun gnd interval. The small gnd interval
minimized the aliasing effect. A study about the corputaidon accuracy with the grid spacing, flight
altitude can be found 1n (Tziavos, et al., 1988). Even though where they were talking about the
computation of the topographic effect on the gradient data, we get some idea about the relationship
between the computation accuracy and the ratic of the grid spacing/flight altitude. In our
cotaputation the rauo of mnd spacing/flight alutude was 2/2.5 and it met the computation accuracy.

3. The ratio of signal/noise 1s defined by the RMS value of signal/RMS value of noise. In the
numerical computations this ratio was reasonable. For example, for the gradient T,, we have the
signal/noise ratio equal 8, when the random noise has variance ¢ = | Edtvds. A very interesting
phenomenon is, even if 0 = 5 Eotvos when the ratio of the signal/noise equal 1.6, the results for T,
are still good. The reason may be: the random errors pose high frequencies and they are filtered
out by using the regularization method; the second reason is that all components of the gravity
gradient have been used and 1t improved the results.

Of course we cannot expect ' obtain zood results of T, by processing he aerial gradient
Aata The high denivatives of the disturbing potential T;z, 15 more sensitive to the measurement
croar.

[n the following we determine the derivatives of the disturbing potential up to third order on

.o mean elevation level, and the Taylor's senies are used o get the gravity disturbance on the
canth's surface. The difference between the "true” values and the computed values are given in the
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following tables. The second correction term of eq. (9) is also included and the results are
presented in the tables. The results without the second correction term of (9) are also shown in the
tollowing tables.

Table 4. Stansucs of the Differences of

~ ~ 1 2.
T,-|T,+AhT,, + f(Ah) T,,

unit mgal
noise level (E) mean RMS max min
c=1 -0.06 1.12 7.25 -7.55
c=2 - 0.06 1.94 8.52 | - 9.08
=3 - 0.06 461 18.83 -17.54

Table 5. Statistics of the Difference of
T,- ﬁ, + Ah %l,)

unit mgal
notse level (EY mean RMS max min
o= -0.06 0.91 789 | -9.02
c=2 - 0.06 1.26 8.51 -9.43
c=5 -0.06 2.61 10.39 | -12.04

Comparing Table 4 with 5 we find: If the accuracy of the gravity gradient data is poor, e.g.,
= 5 E, the term 0.5 (Ah)2 T,z is corrupted by the errors and it is not usable (compare the resuits in
Table 4 and 5 when o =5 E.). But this term still gives some contributions to the big values of T,
tvompare the results in Table 4 and 5 when ¢ = | E.) while the RMS values becomes bigger. Itis
expected that this term gives significant contributions to the big absolute values of T; if the gradient
data are accurate and in good distnbuton.

The map of the contour line for the esimated %, was drawn in Figure S. Comparing Figure 3
with 5. one can find the ‘T‘,_ is smoother and smaller (absolute magnitude). Figure 6 shows the
-ontribution of the correction term Ah T, | in test area. A few significant corrections are in the

rough gravity anomaly area. The contribution of the correction term 1/2(Ah)? Tzzz is shown in
Figure 7. The correction 1s small and rough. This correction can become very small after some
kinds of smoothing, e.g., the results are averaged into mean block values. Figure 8 gives the
computed T, in the test area. In comparnison with Figure 3 one can say that the recovery of the
cravity disturbance by processing the gradient data are successful. Figure 9 gives the difference
between the "true” values and the computed values. Although the difference (error) can reach 5-7

mgal at some points, but it can become smaller when the results are averaged into mean blc k
values.
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Similarly, the computation at results for Ty, Ty are given in Table 6-11.

Table 6. Statistics of Differences Between the Results and the "True Value”

unit mgal
Noise level (E) | mean RMS | max min
Ty o=1 0.71x10-2 ] 0.26] 2.84 ] - 2.11
(mgal) o=2 0.01 033} 284 -2.18
g=35 0.02 0.64| 2911 - 295
c=1 -0.35x10-31 0.18] 1.00{ - 1.00
Tyz c=2 -0.50x10-3| 0.33] 1.37| - 1.34
(mgal/km) =35 -0.94x103} 0.81] 3.01§ - 3.31
c=1 -0.32x10-°} 0.281 1.19| - 1.03
Tz c=2 -0.44x104| 0.54 | 2.37] - 2.03
(mgal/km?) G=5 -0.17x10-3} 1.35] 5.89] - 5.05
Table 7. Statistics of Differences of
~ —~ 1 2.
T | Toran T, + > (an) T,
unit mgal
noise level (E) mean RMS max min
o=1 0.01 0.78 5.39 | -4.82
oc=2 0.01 1.37 578 | -5.74
o=5 , 003 3.26 1320 | -12.36
Table 8. Staustics of the Differences of
T, -{Toa+ 8h Ty
unit mgal
noise level (E) mean RMS max min
o=1 0.01 0.63 6.48 | - 5.67
c=2 0.01 0.88 6.56 | -5.77
o=5 0.03 1.84 7.41 -7.44
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Table 9. Statistics of Differences Between the Results and the "True Value”

unit mgal

Noise level (E) | mean RMS | max min

Ty g=1 0.11 031F 197} - 2389
(mgal) c=2 0.11 0381 2.19| - 2.94
aga=35 012 0.67) 2.85{ -3.35
o=1 -0.96x1021 0.18 1.14] - 096
Ty g=2 -0.87x1031 033 1.43[ - 1.30
(mgal/km) ag=35 -0.79x1931 0.81] 3.18] -3.18
c=1 -0.17x10-2) 0281 1.06} - L.15
Tyz c=2 -021x10-31 054 209 -2.14
(mgalkm?) | g=5 -0.32x10-3] 1.35] 518] -5.33

Table 10. Staustcs of Difference s of

_‘v’l/}
l

o st 1 2.’;
T,-|\T,+ah Ty, + (Ah) 7

unit mgal

notse level (E) mean RMS rnax min
c=1 0.11 0.79 4.52 - 5.86
c=2 0.11 1.34 5.55 - 6.07
c=3 0.12 3.27 12.54 -12.81

Tabie 11, Stausucs of Differences of

T,-{T,+an T,

unit mgal
noise level (E) mean RMS max min
Gg=1 0.11 0.65 5.02 -7.21
c=2 0.12 0.890 5.42 -7.25
G=5 0.13 1.85 6.99 -8.19

From Tables 4-11 we come to the following conclusion: The gravity disturbance can be
determined on the earth’s surface with demanded accuracy. Wit | Eotvos error in the gradient
data, the components of the gravity disturbance Ty, Ty and T, are determined with an accuracy in 1
mgal. Even though the measurement error is S E., the gravity disturbance can be determined with
an accuracy of 3 mgal on the topographic surface.

Here we need to point out that the measurement error model 1s assumed a normal distributed

random noise. Although this assumption 1s not entirely realistic it gives the main property of the
cffects of the error in the processing of the gradient data. It is expected that if the spectra!
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distributions of the gradient data and the measurement error are known, one can use the methods
proposed in this study to minimize the effect of the measurement error and to get a stable and
reasonable solution.

Normally, for a convergent series, the more correction terms that are taken, the results are
determined more accurately. But we do not know whether the Taylor's series is convergent on the
mean elevation level. From Tables 4-11 we can see that the correction term 1/2(Ah)< T;z, may
have some contribution to the large values of the gravity disturbance when the measurement error
is small. But it supplies wrong information when the data accuracy is poor. Therefore we suggest
if the area is very rough and the data are accurate enough, e.g. measurement error is lower than 1
E.. then the correction term 1/2(Ah)2 T4, etc., could be taken into account; in a flat area this term
is very small and can be neglected; if the accuracy of the gradient data are poor, the correction term
1/2(Ah)2 T,,5, etc., could be wrong and it is not of benefit to the results.

%. Conclusion

After many years of development the airborne gravity gradiometer survey system is coming in
to practical application. Recently, a test flight was taken in the Texas-Oklahoma area which is
characterized by a very smooth topography. Although this was the first time the gravity
eradiometer survey system was flown, and only a fraction of the total runs yielded good gradient
data, the components of the gravity disturbance were determined on the ground with the accuracy
of 2 to 3mgalin 5" x §" mean anomalies.

In the future the test will be carried out in the rough mountain area and the topographic effect
has to be taken into account. This problem has been considered by many authors. Tziavos et. al,
have developed an estimation algonthms for the computation of the effect of the mass above the
ellipsoid (Tziavos, et al., 1988). If we subtract the contribution of the topography from the
gradient data, it means the mass of the earth is adjusted by removing the mass above the ellipsoid.
This is not correct in some cases, e.g. the determination of the geoid. This report did not discuss
this problem. Our goal was the determination of the gravity disturbance on the earth's surface.
We assumed that the disturbing potential and its derivatives can be analytically downward
continued to a mean level - in the report the mean elevation level was chosen, then the Taylor series
was used. The gravity disturbance was given by (cf. Figure 1):

T,(Q =T P)+anT,[P)+ %(Ah)’ T, P o

Obviously this analytical downward continuation problem is an improperly posed problem. The
solution T, (Q) may pose senious numerical difficult and not be stble.

For an improperly posed problem there are three methods that can be used: the least squares
collocation, regulanization and smoothing. How can they be used in the gravity gradiometry was
studied in Section 3, 4 and 5. The studies indicate that the three methods are essentially the same.
They filter out the high frequencies of the data and make the results smooth and stable. In
comparison to the least squares collocation the methods of the regularization and smoothing are
more flexible.

The regularization was used for a simulated computation. The numerical computation shows
that this method 1s qualified for the analytical continuation of the derivatives of the disturbing
potential, such as T,, Tz, Tzzz to the mean elevation level. When the accuracy of the gradient data
was | Eotvos, the gravity disturbance was recovered with the accuracy of 1 mgal. If the accuracy
of the gradient data is poor, but the ratio of the signal/noise is sull high enough, the recovery of the
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gravity disturbance can achieve a reasonable accuracy. One example described in the report is
when the gravity disturbance was ceternined witx an accuracy of 3 mgal when the accuracy of the
gravity gradient data was 5 EOtv3s.

The derivatives of the disturbing potential Ty, ¢an be obtained by processing the aerial
gradient data but i1t is corrupted by rhiz measurernent crrers. tis still a difficult work to get the
higher derivatives of the disturbing p("::n!i&l and sometimes 1t looks like it i1s impossible.

Fortunately the high denivatives of the Jisturbing poteniial have most effects on the high
frequencies of thz disturbing potential wiich do not hawve significant contnbution to the disturbing
potenual.

+ud our needs, but in 2 rough mountain area
2ey of the gravity gradient data is high. If the
i mo1s not beneficial (o the results.

The numencai simulaton oni gssumptions, sue h as the measurement error
model, no pos*fmn eTTO s inthe data, Gicl, But i seorisents the main property of the processing of
tne acrial gragient (ata an‘ : Sies o worid 1o real extent. Al the computations
were completed by using the
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