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1. Introduction

After many years Lf developmcnt of the hardware, the airborne gravity gradiometry has
reached the operational stage. The test flight was taken in the Texas-Oklahoma area and the test
results were published tBrzezowski, et aL., 1988). The test area is very smooth, so the
!opographic effect was neglected. In the future, the airborne gravity gradiometry will be used for
the rough mountain area. The effect of the topography has to be taken into account in more rugged
topographic areas. For many years this problem has been studied by different authors (Chinnery,
1961- Dorman et aL., 1974: Hammer, 1976; Tziavos, et al., 1988). All studies had a basic idea -
the,, intended to eliminate the effect of the topography by removing the mass above the geoid. The
gradients of the attractions of the mass above the geoid were subtracted from the aerial gradient
data. and the gravity disturbances could be determined on the geoid by processing the reduced
aer.al gradient data.

If the uavitv disturbance is determined on the earth's surface, other methods can be used.
One of the methods was suggested by Jekeli (1987). He used a surface integral to determine the
dis.turbing potential on the earth's surface and avoided using the topographic reduction.
Theoretically, this method is perfect but it is difficult to realize in practice, because the inclination
of the topography, which is ill-defined, is needed at every computation point.

An alternative solution (ibid., p.239) which is difficult but simply defined is the use of the
analytical continuation method. Assume that the derivatives of the disturbing potential T, such as
T,.- Tj,. Tz 7 . - can be well determined at a mean plane through the topographic surface. By
analtical down'ward continuation, the gravity disturbance can be determined on the topographic
surtce by using Tavor's series.

It was shown (Schwarz, 1979; Rummel, et al., 1979; Neyman, 1985; Ilk, 1988) that
dwo.nward continuation is an improperly posed problem. An improperly posed problem may have
a sOlution but it does not depend on the data continuously. A small error in data, e.g. a random
measurement error, can cause a significant deviation in the solution. It is expected that the second
derivatives of the disturbing potential T, such as Tz, Tz, ... , are rough at the flight altitude.
Thc problem is, how can we downward continue these rough functions to a mean level'?
Fnrthcrmore, how can we absorb the useful information from such data to determine even higher
derivatives of the disturbing potential on the mean level? Sometimes it looks like it is impossible,
but if the gradient data is accurate and in good distribution, the reasonable results can always be
expected. In order to avoid the instability of the computations and get a reasonable smooth
solution, there are different methods that can be used, e.g., least squares collocation,
r:-xularization, or ,rnoothing (filtenng). These methods have the same property: they filter out the

:gh frequency ot the data and make the reiflis stable and smooth. We will show that the three
methou{, are identical under some conditions.

The goal of this study is i. find methods for the determination of the gravity disturbance on
the topographic surfice by processing the aerial gradient data. The numerical computation will be
tared nTut to gain an idea about the use of the methods.

liccause the gradient data can be obtained at regular grid points, the very efficient numerical
&(,mputai;,n method Fast Fourier transformation (FMT), is used. We will study the problem in
!ht: ,pectral domain and use F-F' in the numerical computations.

.,lut) (,t ,Am:',vticat 4?,', nward Continuation for the Airborne Gravity' Gradiometrv

I-hi .. ccnon prccnts the forniulas of the analytical downward continuation for the airborne
,, t., eradini rvm

• " . , I I I I I I-I-



Because the airbonre gravity-gradiometry is taken in a local area, the flat-earth approximation
is suitable for tne orocessing the aerial gravity gradient data (Jekeli, 1985).

At first we consider the analytical downward continuation of the aerial gravity-gradient data to
the mean elevation level. The geometry of the airborne gravity-gradiometry is dravn in Figure 1.

P Flight level

zZ y A " Mear elevation
-: _- Alevel

hm Topography

SSealevel

0

Figure 1. Geometry of the Airborne Gradiometry

Assume that the Runge's theorem (Moritz, 1980, p. 67) is valid also for the plane approximation,
one can say that there is a function which is harmonic on and outside the mean elevation level and
this function approximates the disturbing potential on and outside the earth's surface as good as we
wish. We assume this function can be approximated by the analytically downward continuing the
disturbing potential of me earth from outside the earth's surface to the mean elevation level.

Therefore we assume that the disturbing potential T and its derivatives, such as Ti, Tij, i, j =
1. 2, 3 corresponding to the subscripts x, y, z respectively, are analytically downward continued
inside the earth and are harmonic above the mean elevation level.

The Poisson's integral gives the relationship between a solid harmonic function and its values
at the mean elevation level (cf. Heiskannen and Moritz, 1967, p. 239):

T Y, ryp, z} = z f f ydx dy
2 nr (1)

where I = [(x-vp) 2 + (y-yp) 2 + z211/2, is the distance between the current point on the mean
elevation level T and the point P at the flight level; zH is the height of the flight level above the mean
elevation level. Eq. (1) is valid for any harmonic function. For the derivatives of the disturbing
potential T,, T,, we have:



zf (, yjd ,.,,
T (xp, yp, zt = 2! Jd2n3 (2)

=z f - vdx dy
t I i,j = 1, 2,3 ()

The second derivatives of the disturbing potential T, are given on the flight level, the
derivatives of the disturbing potential T, such as Ti, Ti, Tizz and even higher terms will be
determined on the mean elevation level. We consider this process in two steps: first the
components of the gravity distu:bance Ti are computed at the flight level by processing the second
denvatives of the disturbing potential T,1 The formulas can be found in (Jekeli, 1985)

f " x'Ydx'dv'
2AJ . do d(4)

T, J.y}= ) 1o dx' dy'

T, Y,.,) = - (4 Ty-. (X dx' dy'
(6)

T v)-} if f T,, (x',y')

S" c(sa x ) dx' dy'
7T fJf 10 (8)

where 10, = (x-x') 2 + (y-y') 2 and ci is the azimuth of the point (x', y') with respect to the point

The second step is to downward continue the derivatives of the disturbing potential Ti, Tiz,
T,, to the mean level by using the Poisson's integral. If Ti, Ti,, T,,z1 are determined on the mean
!cvi,. then we can get the gravity disturbance on the topographic surface by using Taylors series:

2

h ,

oh h=hm

1-, P' + Ahl',/(P-- (Ah) T,, (P')
2 i =1, 2,3 (9)

-3-



hevre Ah QP" hQ - hin, the height of the topography referenced to the mean elevation level.

The role of the mean elevation level is like the point level in the analytical downward
continuation solution of the Molodensky's problem (Moritz, 1980). Instead of the point level in
the solution of the Molodensky's problem the mean elevation level is being used, so that Ti, Ah
T,,, 1/2 ' h 2 Tizz should have a similar magnitude and property as Ag, gj and g2 of the solutio..
of the Molodensky's problem. For more details about the numerical properties of g1, g2 and
higher terms see (Wang, 1987).

In the following discussion we consider how the gravity disturbance and its derivatives can
best be detcrmined on the mean elevation level. First we consider the use of least squares
col'aloction to process the icrial gravity-gradient data.

. Processing the Aerial Gravity-Gradient Data by Using Least Squares Collocation in a
Continuous Case

If the data are dense and regularly distributed as in the case of airborne gradiometry, least
squares collocation can be considered in a continuous case. The advantages are that the problem
cm be solved in the frequency domain easily and the efficient numerical computation method - Fast
Fourier transform can be used.

Gcnerally. .ke consider the operator equation

= g° (5. f (F (10)

w :cre A; F --, G, a linear Upcra'r which maps the normed space F into the normed space G. In
.irborne gradiometr,, A can be any integral or differential operator. A specific example is: A is the
UP A ard continue operator defined by the Poisson's integral (formula (3)); f is the second derivative
of the disturbing potential T, at the mean level 'r and g' is T1 at the flight level. Now wc have the
seconrd dcrivatives of the disturbing potential T1 at the flight level. We want to determine Tij on
the mean level -. This inverse problem may be properly posed if Tj at the flight level is smooth
enough and errorless.

In practice such an inverse problem is improperly defined, because we always have the errors
in the data. It means, instead of the onginal function g', we have in practice

g :g: * (Il)

hire i is the meo,.uremcnt error.

E- cn though the inverse of the operator A i exi,,ts, the solution

, .(12)

;:a he iicdittercnt from t' ,hich we are trying to determine. Now we want to find the methods
ox i rcome this difficulty.

It - ha,,c the previous inf-ornation about the statistics of the data and the measurement error,
hc :ncth ,d of least squares collocation can he used to obtain a solution. This technique has
hcome a standard computational method for the inverse problem in physical geodtesy.

-4-



In eq. (1I I c assume that the funcoon g' is centered:

MN1 .) =0

The operator M is defined as

M.g 1 =' (m -Tdxdy

T-,~ 4rT f 013)

The function g' is deterministic and the error E is considered as a stochastic process, so the
mea.surement g is a stochastic process.

The vanance and the cova-nance function are defined as

Cff(P,Q- M f(P)flQ)
(14)

C F,(P, Q = M f(P g Q)

P. Q are the points on the reference plane.

\c alssume the function gJ and the error E are independent:

NI EP g,!QI m g (P) (t = 0

-% C P)OQ ' -I '= (P C (Qj) =C n(P,Q) (15)

; here Cnn is the covariance of thL error c.

We consider a process for the best estimation of the function fE

fHg (16)

where is the best estimate of the function f, H is the estimation operator which makes the mean
'(suAre estimation error e the smallest:

f 21 f I
%I e = NI = min. (17)

• '7)

-, 7) is equivalent to

(> (r -- 0, 11) in. (8)

-, nrc Ccc is the covanance of the estimation error, and it is a function of the estimator H: r is the
!;,tince hetveen the points P and Q.

m u l ill a | i -5-



E. (I8) can be viewed as an extreme value problem: To find an estimator H which makes

C,: (r = 0, H) the smallest.

Now we consider how to solve this minimum problem in the frequency domain.

The two dimensional Fourier transformation and its inverse are defined by

F f ~x f f (x.vi ez"X" V" dx dy
ff- (19)

F gdu.=j f gl ,e u,,du dv (20)

A here j F and F I denote the Fourier transformation and its inverse respectively.

Wt! denote the Founer trLsformation of the function f by (f

CL! t ,(21)

. ,,, .- (22)

FF v Cu (¢!o~f

A 2crc O\.% O)t iar, cailed the s ',.ta of the operators A and H respectively.

!Ic uFrier trffiofr lltIon of the covanances we have (c. Schw-arz, et al., 1999):

F f C 14 x, ' 1 = h111 1 ( .f c

R , 1*)= : "l ! x,'1 ,. 4T -- (23)

Fi C tg ( y), I .,0 ) ) o )

(24)

V: U.'. F~ {C t r" ., -O..\ Rtf

(25)

, ', O R1  (26)

" " •I I I I-I-



where the symbol "denotes the conjugate of a complex function and Rff, Rfg, Rgf, Rgg ae the
Fourier transformation of the covariances. Sometimes they are called the power spectral density

If we denote the power spectral density of the estimation error by Rce (u, v), then eq. (18) can
be Antten in the form:

Cir = 0, I1 = Re. (u, v, Oil du dv = min.
(27)

the;: the extreme value problem becomes:

To find the spectrum of the operator H which makes the estimation error the smallest.

If there is a procedure which minimizes the power spectral density function of the estimation
,_c-,r ever-here r the frequency domain:

R.u, v, = mir. v(28)

the .kord "ever"", here' means the minimum -alues of Ree for every frequency u, v, then the
c,::n lc vaue problem (l1) can be replaced by (28) in frequency domain. The minimum condition

,a, cd by llcndat (1980 for minimizing the power spectral density function of the
->':mation error.

Note thlt the R,, is non-negative and compare eq. (28) with eq. (27), one can find that eq.
27T :an be obtained by using eq. (28). If the power spectral density function Re is minimized

C~eBwhere, tis inte'ration Cc> (r = 0 H) is also smallest.

Lnc est~matio error covar.ance is given by

K . ~e P~e~ M {fiPL- f(Pdjf Q1-imll

C!f C, Cf C, (29)

L ag eqs. 23 - (26) and f29) we get the power spectral density function of the estimation
q:'mr e:

R 1 A f il AR i i l 4A A Rf nJ (30)

nder the minimum condition (28), ine spectra of, Oil have to satisfy the following conditions:

(31)

-7-



From (30' and (31) we get:

0 A Rff
0 H =

0 A OA Rff + Rn, (32)

OH A R ff

0A CO RCff*4 Rnn, (33)

"The best esumate of the function f is given by

OH W )

If g

~R R :, (34)

.' ctre is the Fourier transformation of the measurement (data) g.

The estimation error is given by (cf. eqs. (27) and (30)):

M I Ci (0)

= ff ~ - ¢A 1 Rff + OH~HtRnn dudv
ff I-O 11 HHr 35)

[f the pre-.infornation of the statistics of the function f and the error e, or the power spectral
-::t:Iv tun~t m R-f and Rnn are known, then we can use formulas (32) and (34) to get the best

: ,t he function f from i tic data g. The estimation error can he computed by using eq.

ow vAc consider a more general case. We ha,,e a heterogeneous data set related to the

-8-



g =At f+Ej

g2 = Al f + E7-

gn = An f + E (36)

A solution which is the best approximation of the function f is to be determined by processing
this heterogeneous data. An example for eq. (36) is the processing of aerial gravity-gradient data.

i= 1, 2. ... 6 is the second derivative of the disturbing potential, and f can be the disturbing
potential or any of as denvadves. Of course, if we have any other data related to the function f, we
can always put it in the form as eq. (36).

We assume the best estimate of the function f is given by:
n

=1t. g: -U t ..-, ±fl.gn=EHig,

= (37)

IThe esmimation error is

' : (38)

The e.timation error covariancc has the same form as eq. (29):

C.. - C"- Cr'r+ CT (29')

\,>tc that

R= F Cl I =(li 0- r)

n

= ",Oo, R f
1=1

Rf'> F TfC

n 4

(39)

-9-



n n 
0 i j

here

R Rij* 0 i=j
RIJR=/ 0 i=j (40)

Here we have assumed the measure errors ci, i 1, 2, n are independent of each other, Rjj is
the power spectral density function of the measurement error Ej; 0i is the spectrum of the operator
At. The spectral density function of the estimation error is:

n n *

RCo= Ri - Y "- Rff+
1=1 J=1

+~ R ff + R j)

(41)

The power spectral density function Roe has the extreme value when:

____ =0

o H (42)

o R

Using eqs. (41) and (42) we get

.. V O, O* R if + R ,j 0
i-i:1 (43)

- 0 Rff+ H1J,0 Rff+Rj 0=
tI J=l

-q (43) can be rewntten as

-0Rrr* u + O0* Rff + Rj=

(43*)

-10-



L0? Rff+ 0 i*f+J=
Eq. (43*) implies that

- Rff+ 01 0~{¢ Rr - RJ = 0

1=1 (44)

-oRff+ I 4i, OORf-f+ RJ 0
J= (45)

Equations (44) and (45) are conjugate to each other. They are indeterminate linear equations.

There are infinite solutions for the "variables" OHi and @*j. One of the solutions of eq. (44) can be
wxntten as:

Rr when R R= R 2 2 ... Rn,
n

00~ Rff+ R,

(46)

This is a special case in which all measurement errors have the same magnitude and property
(same power spectral density function). One can expect that it can happen sometimes, e.g., in the
airborne gravity-gradionietry, the components of the gradient of the gravity are measured with
different accuracy.

In the last case the solution for the indeterminate equation (44) can be

i RJ R ,I
0H=

n
OQ1 Qj RifRj +1

1= t (47)

If the power spectral density function of the measurement error is "white" noise, we have:

R1 = constant (48)

We then can define a spectral weight ow by

-11-



p -R) (49)

so that equation (47) becomes:

Oj Rtff p
nH= n

I 0i Oj RffwOp+ I

J=1 (50)

Obviously, eq. (50) can be considered as a weighted least squares collocation solution with weight
o'. If a data set is measured with low accuracy, based on eqs. (49) and (50), the spectral weight

co , becomes smaller and so the OHi. This data set is weighted and has less contribution to the
results.

The definition of the spectral weight oJ can also be expanded to a more general case in which
the R., is not restricted to be a constant. Assume that the power spectral density function of the
measurement errors is not only the "white" noise and let eq. (49) still be valid, eq. (47) can be
considered as a weighted least squares collocation solution with weight e), too. The only
difference from the "white" noise case is that the spectral weight i4 has different values to different
frequencies.

We now consider only the case in which all data are measured with the same accuracy. The
best estimation of the function f is given by

_ n

lXoj Rf +R,k = / (51)

, here w,, is the Fourier transform of the data g,.

The estimation error variance is (cf. eqs. (27) and (41)):

NI e2 = C e (0)

2

1-0,i H Rff+ I R,, dudv

(52)

-12-



tHere we have used:

n n 0 n

,= :.J =1 (53)

In an ideal case the data are errorles:,, the spectrum of the best estimation operator Hi has the
form:

X00-

I (54)

then the function f can be exactly recovered without using any pre-information of the statistics of
the function f.

Because eqs. (44), and (45) are indeterminate linear equations and pose infinite solutions, we
can find another solutions of the operator Hi which satisfies eqs. (44) and (45). An alternative
method to solve this problem is discussed in (Bendat, et al., 1980, Chapter 10).

The above formulas can be used for any observed quantities which are related to the disturbing
potential, e.g., the gravity anomalies; deflections of the vertical; geoid undulation etc. If we have
,uch heterogeneous data, the above formulas can be used to determine the needed quantities.

The weakness of this method is that the data have to be regularly distributed and should not be
, ) ,parse that the interested information is lost.

4. Reizularization

In Section 3 we have considered the solution of the improperly posed problem by using least
squares collocation. Now we study the problem from another starting point. We will consider the
solution to be stable and smooth.

In least squares collocation the statistics of the determined function and the measurement error
have to be known. In practice, they are never exactly known and are always assumed. If the
solutions are sensitive to the statistical model of the measurement error or of the function being
estimated, or the statistical model is not properly assumed, the results may not be good or not
stable. In this case one can consider the use of a regularization method.

The regularization method has been used in many technical and scientific areas (Nashed,
1974) The use of the regularization in physical geodesy can he found in (Schwarz, 1979;
Nevman, 1985; Ilk, 1988). This method is flexible in obtaining a stable and smooth solution
because we have the chance to choose the regularization parameter and the regularization function
arbitrarily.

-13-



There are different regularization methods and different ways to regularize an improperly
posed problem; for more detailed see Nashed (1974). Here we are interested in this problem: Find
a solution where its nth derivatives are smooth and it is the best approximation of the original
solution.

For the improperly posed operator equation

g=Af (10')

fE F,gE G

Let F, G and Z be Hilbcrt spaces and A: F-+G be an operator mapping the Hilbert space F into G;
Lm: F-4Z be an operator mapping the Hilbert space F into Z. We consider the minimization
problem: find a function fQ to minimize the functional

Jf, g, cx, Lm)= JIar- gG+ 2ILmf 2  (55)

where the norm of a function f is defined

f ,(56)

Eq. (56) is from the definition of the Hilbert space (Bachman, et al., 1966, p. 141). The inner
product f, f) can be defined for our purpose as:

(ff) =lim I T T f fdxdyT - 4 T 2  -T -T 57

, here f" is the conjugate of the function f.

Notice that

Af - g = c (58)

, here c is the measurement error, therefore eq. (55) is equal to

f,~~~~ g,(,Lr-=Il 1

1t'Gg+cx Lm)o I"LmfJJ? (59)

Let ct = 0, then the minimizarion problem (55) becomes: find a function fe0 to minimize the
ftnctional

C (60)

Fq. (60) is a classic least-squares minimization problem. The physical meaning of the last term in
(59) is clear. If Lm is chosen as a differential operator up to m order, then the minimization
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problem (55) means: to find a function fa to minimize not only the measurement error, but also the

functional I [Lmf 1 . The last term ILmf makes the function fa smooth and stable and it makes
the difference between the classic least-squares minimization problem and the regularization
problem.

The solution of (55) has been given by (Nashed, 1974, chapter 4):

2

A' A+o LmLm fC=A g (61)

where A* is the adjoint operator and is defined by (Bachman, et al., 1966, p. 16):

(Ax, y)(=Y , A* y), x, y F (62)

If the inverse of the operator

A + 2 LM Lm

exists, then we have the solution

, I ,
f, =A A+otL Lm A g (63)

Based on the Lemma 2.2 (ibid. p. 25) we get the spectrum of the adjoint operator A*:

OA= 0 A (64)

That means that the spectrum of the adjoint operator A* is equal to the conjugate of the spectrum of
the operator A.

Applying the Fourier transformation to eq. (61), we get the spectrum of the regularization
s)li,:tlon fez:

If OA -1) g

0 AOA+ L (65)

We denote (61) by an operator equation

f' = I t t g (66)

with
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H 0 = AA+ 2 LrnLJ A (67)

H0 was viewed as a regularization operator by Nashed (1974).

In the spectrai domain eq. (66) can be written in the form (cf. eq. (65)):

f= ) (68)

with

OA

QAOA+ O" 0 LPq)L (69)

The regularization error is defined as

er = f- fa, (70)

and the error covariance is

C, NIMeer (P) e r(Q)j

= C!- Cff- C (C + C rafa (71

The power spectral densiiy function of the regularization error is given by:

= (i -Oo Rff+ HI Rn(72I - R, + Hj2 R(72)

%k here Rnn is the power spectral density function of the measurement error.

From eqs. (61) and (69) we can see that the solution fa is dependent on the regularization
parameter x and on the choices of the operator Lm. No statistical model of the function f and the
measurement error are needed. But if the regularization error is to be determined, the statistics of
the measurement error and of the function being estimated, are always needed (cf. eq. (72)).

The mean square of the regularzation error is given by:

C'C':0(o, ,l- = Eff R r(u, '4dudv
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=ff Rf + O H Rn ndudv

C-c (0, c, Lm) is a function of the regularization parameters cx and the operator Lm.

The regularization of the improperly posed problem can be extended to the heterogeneous

data. Denote the equations (36) with the vectorial form:

g= A f (74)

•A here the underbar denotes the vector, g is a vector function with the components gi, i = 1, 2,
...n. and A is a vector operator with components Ai, i = 1, 2, ... n. The minimization problem is:
Find a function f(1, to minimize the functional

22
(f, , ox, Lm) = il A f - 11 + cx2 II Lnf1i (7 5

The norm of a vector in the Hilbert space G is defined by the inner product:

" =(gg) =(At,Af)

=A A f,f) (76)

w here the symbol "+" denotes the transpose of the adjoint operator of the vector operator A. The
product of the A A is a scalar operator and it is given by

A A =A" A. +A',A 2 +..+ A',A,,

Because the A f, g_ are the elements of the Hilbert space G, therefore the extreme value problem
075 is the same as the problem defined in (ibid, chapter 4). The solution of eq. (75) is then

(A+  A + x2 Lm Lm) fa = A. g (78)

hf the inverse of the operator

A+ . A + * l, I

exits, then eq. (78) can be written in the form

f,, =(A A+I 2 L* Lm) " A *g (79)

Bv usi(ng eq. (77) and the definition of the vector operator eq. (78) can be written as

A, A, +o a 1,Lr f. =Ag

AA~ Lr~m~fi~~i~t(80)
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Applying the Fourier transformation to eq. (80) and using eqs. (22) and (64), we obtain the
spectrum of the regularized function fo,:

n

Wg

nt 2

Q+c
i=1 (81)

In order to get the fo in space domain, the operator equation (80) has to be solved. In the
frequency domain this problem becomes much easier: the regularized function fa can be obtained
by taking the inverse Fourier transformation of eq. (81).

The estimation error covariance is the same as eq. (71):

R
Ce~e= Cff" Cf. f- Cff + Cf, f" (82)

where the superscript "R" distinguishes the estimation error covariance between the heterogenous
data and the homogeneous data cases.

Notice that

F 1C 1.= R,,

F Crj =- oo R (83)

F C O Rt-

F Cf'.k:=OQ(,0Rff+O c .

. e re

U 00

, 0 + CcL

(84)
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+ (

O:= l +(85)

ien ,we nave

R, I R,, +Q (86)

,'viouslv the Ree is a function of the parameter cc and the power spectral density function Or.-

5. Smoothing

In practice there are always some kinds of smoothing being used in the numerical
computations. For instance, the use of the mean values of the data is a smoothing. A smoothing
procedure can be used for solving the improperly posed problem. If we know the frequency
:o)mposition of the function f and of the measurement error, we can design a smoothing operator
tltLrr) to filter out the effect of errors.

Here we introduce one smoothing operator which has the spectrum

O,~~~~ ... . ., c 0, '>_O
A

c o) (87)

'Xhcre o, is the spectrum of the smoothing operator S. and a, k are parameters which can be
chosen; o) = (u2 + v2 )1/2 , u, v, are frequency variables. Os is a low-pass filter because it filters out
the high frequencies and lets the low frequencies pass through.

For the improperly posed problem we have the solution

f, = S - g (88)

In the spectral domain eq. (88) can be written as
Ii

j),. 0 S O,, 0)9 (89)

The smoothing procedure can also be applied to the heterogeneous data. If the data are
crrrles, the best estimation operator HI, was given by eq. (53) and the spectrum of the solution is
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n *

' : (90)

i:v, reallit the emrs are aliays included in the data. Except for the systematic error the
mesuremcnt cMr are often modeled by random errer and such error effects mostly the high and
Ser\ high frequCnrcies of the data. Therefore a low-pass filter can be used to decrease such effect.
AIother reason of the use of the low-pass filter is that the high frequencies (nearby Nyquist
trequency) must be minimized in the numerical computauon. Because such frequencies are mostly
distorted by the measurement error, sampling error, truncation error, etc.

After the sm-othing of eq (90) we obtain a solution:

(91)

I 14 procC, , ho,,en properly, the effect of the errors can also be minimized
-a , : ,ut; o :an !, intaned from an improperly posed problem.

(92)

C C * + C,9)

1and (92) we get the power spectral density function of the
0, OA Rn

RH+,, w !1 0 j ! A Rn (94)

," " ) 2,'" XlC () lJ, data U2 c,,tirma' t n error el i" given by

-20-



2

R',ju, v)={ Oj R ff+
n

(95)

wxhcre R,1 is dhe power spectral density function of the .4 ieasurement error ci.



r Relationship Between the Least Square Collocation, Regularization and Smoothing

The relationship between the least squares collocation and the regularization method was
,ho,n in (Runnel, et al., 1970). Both of the methods are identical under some resmctions.
Basi,.allv. three methods are (he same and have the same property: they filter out the high
trequenc:ies in the Solutions and make the solution stable and smooth. We will show that they are
identical it thev satisfy a few conditions.

The easiest way to show the relationship between the three methods is to inspect them in the
spectral dom. in. %'e consider only the homogeneous data case. Comparing eq. (32) with (69),
,e t ind that OH!0 and oi become identical, if the following equation holds

( 0 L=L, R,,/Rj (96)

Rewnteeq (090 in the form

,O 0(97)

.r'i coni're ()7 viW 89) and using eq. (87), we get the equation:

\ (98)

If the reeuianzation para.neter a and the spectrum of the operator Lm satisfy eq. (97), then the
rc:tUl ,at:on rietliti is ide itical with the smoothing method which has a spectrum similar to eq.

'ut:: eq,. <hi6 and (IM) together, we get the identical condition of three methods:

• A

o0 O: -- 2.. . R0  O - .\0., (1t- (O)

i:, zt on paramterr tt, >,,,,,i,,g parameters a5 , . and the regularization operator Lni
,- cq. )a. t n the three methods are identical.

hh , i, - vn 1he relatioship between the three methods. They pose the same property -

I f rg out the high frequencies in the solution. But they are differen ,rocedurcs
P irc th'nt' U>nlv when all of them fulfill the condition (99).

I,, th reu,.:liri/ation and smoothing method we can choose the parameters and the
/ ff1,: 1~i ,'m f .ir l or different smoothing operator to get smx)lt solutions. Therefore they

" , t , , than lcast coiArC5 Cll(x:atlon for the solving of improperly posed problems.
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7. Numerical Test

In this section we take numerical tests. The goal of this numerical simulation is: To have an
idea about the use of the Taylor series to get the gravity disturbance on the earth's surface by
processing the aerial gravity-gradient data. The formulas above derived are used to determine the
derivatives of the disturbing potential, such as Tz, Tzz, Tzzz at the mean level. We want to know
how good the methods are and have a view about the magnitude of the terms, such as Ah Tz,1 /2I Ah) 2 Tzz.

The test area that was chosen has the geographic latitude 32_<q <35 ° and the geographic
longitude 257 0 < X260° . The 4 km x 4 km free-air anomaly for the United States (Rapp, et al..
1988) was used as the original data.

In the computation the point mass model was used. We assumed that there is a point mass
laver embedded at a depth of 8 km below sea level (i.e. the geoid). The relationship between the
point layer and the disturbing potential T is given by:

N I M ,

-x .d 1/2
- + fy - Y) 2 +d21 (100)

.A here M, is the product of the point mass at point (xi, yj) times the gravitational constant G, and d
is the height of the computed point; N, M are the grid numbers of the area along x and y directions,
the minus sign in eq. (100) is for convenience. The geometry of the point mass model is shown in
Figure 2.

z

Flight Altitude

Topography

Mean Elevation level

Figure 2. Geometry of the Point Mass Model (zo = 4 kin, hm = 1.5 km)
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The computational process is described generally as follows:

1. Read the free-air anomaly from the 4 km x 4 km data file (Rapp, et al., 1988) and assume
the data are given on the sea level. Furthermore, the free-air anomaly is assumed to be the
-ravity disturbance T7, and the formula (102) given in paragraph 7.3 is used to get the Mij. d
was chosen as 8 kin;

2. computing T, , i, j = 1, 2, 3 on the flight level by using formulas (103), (104), (105).
(107), (108), and (110) given in paragraph 7.2;

3. corrupting Tij by adding random errors with error variances a2 = 1. 4, 25 E6tvis 2 and

mean value equal zero;

4. proce.,sing the simulated gradient data to get TI, Ttz, Tiz on the mean elevation level;

5. companng the computed , ?i, 'iz with the "true" value which were computed directly
from the point mass model.

In the following we give the description of the data, the formulas used and some considerations
about the numericai computations.

7.1 Data Used

The gravity anomaly in 4 km x 4 km grid point values for the United States was used. In
order :o get higher fiequencies in the solution, the data was interpolated in 2 km x 2 km grid
interval by using the bicubic spline function. All computations were based on the data in 2 km x 2
K1m grid values. The use of 2 km x 2 km grid interval is based on the following considerations.

1. Using a small grid interval can decrease the aliasing effect in the Fourier transformation, even
though we do not get more information by interpolating the 4 km x 4 km gravity anomaly into 2
km x 2 km grid point values-

2. The evaluation of the formulas, such as given in the next paragraph, can be more accurate by
using 2 km x 2 km grid than using 4 km x 4 km grid. Using the smaller glid can increase the
computation accaracy (cf. Tziavos, ci al., 1988).

Th-e statistics of gravity anomaly Ag in this area is given in Table 1.

Taslc 1. Statistics of the Gravity Anomaly Ag in the Test Area.
(mgal)

mcan value RM1S vale maximum minimum
-8., 2 24.48 78.21 -76.17

The contour map of the gravity anomaly in the test area is shown in Figure 3.
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7.2 Formulas Used

Before the numerical tests were taken, the formulas which would be used are written in the
following. The spectra of the differential operators used occur in the airborne gravity gradiornetry
are given in Table 2 (cf. Vassiliou, 1986). The definition of the spectra of the operators are given
in eq. (22).

Table 2. Spectra of the Differential Operators

upcrators -Sp-eciii--_____

ax j2 n u

___y ____ j2itva

z -2 x (o
n

k 1

ax ky I z p  (j 2 tu)k'G2 tv) 2lcw) P

Here we have k + I + p = n; k, 1, p = 0, 1,2,...

It is easy to find the spectrum of the upward continuation operator U defined by eq. (1):

-2nckiq
u= e ( I)

The relationship between the disturbing potential T and the mass point Mi is given by eq.
t 100). The derivatives of the disturbing potential Ti, Tij, i, j = I, 2, 3 can be derived from eq.
100) (cf. Vassiliou, 1986):

M N

i 1 (102)

. x x 2 +yyj} 2 2d 2

T/= ( 03/

313

T, =- E x. M,

(104)
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M N 3 y y j d  j
iz l I~ 1 512~=-1 3 Y=. 1(105)

M N x-xi

3/2
'=1 1=1 1(106)

M N {y2y + d2
- 2 x-x 2

T-= " +52 i
T = YY i= 

(5/2

M N 31x-xi)yy
ix l j~5/2

(108)

M N= Y--- M i
i= = 3/2

=1 J= 31 2 (109)

y 2_x -2 -y-y). Mi,
i~ ~ 1 j~5/2 ~5I2 (110)

where I = [(x-xi) 2 + (y-yj) 2 + d211/2 .

Taking the Fourier transformation of the formulas (!02) - (110), and using Table 2, we have:

I M TI M - I-e ( llij

(111)

F IT, = F I, - (in),2 ,2 (113)

f -F IT,, F (N'11 ) (i2.)'ue (114)
/ 2 2wd}

F{T,,1,=F M)I)\ (27t) e ' (115)

FiT I=FfM, j 2nt}, z-(116)
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I F (2u eI xx, lMj 2 2
FIT 1=F I e

I -I I I) (117)

/ x~l 1M~j}-2iot

FIT I = F f uve

(118)

F!T,!FI,-{ 2v e2flcx}'

1 ., t 'Ja (119)

F IT I F {MJ} (2,tv) 2' e27*1 A
I y~l

F\ O=e (120)

Here we should not confuse the subscript j with the imaginary numberj = .T74.

In the numerical computations eqs. (11) - (120) were discretizated and were evaluated by
using the fast Fouier transformation (FFT). The first and second derivatives of the disturbing
potential were computed at the flight level and mean elevation level by using eqs. (111) - (120).

After the computations of the second derivatives of the disturbing potential Tij at the flight
level, the normal distribution of the random noise with the variance 02 = 1, 4, 25 Eotvbs 2 was
added to the computed Tii. In processing the corrupted data to determine the derivatives of the
disturbing potential Ti, Tiz, Ti.z on the mean elevation level, the regularization method was used.

It was assumed that the disturbing potential T and its partial derivatives to z up to third order
are smooth at the mean elevation level. For the word "smooth" we understand it under such
meaning: The disturbing potential T has continuous partial derivatives up to third order. In fact,
the disturbing potential T has continuous partial derivatives up "' all orders above the earth's
surface. Because the analytical downward continuation is used, we constrained the disturbing
potential has continuous partial derivatives up to 3rd order above the mean elevation level. We
took the regul'arization operator in eq. (75) as

3

3
ogz 

(121)

vwhere U is the upward continuation operator.

The spectrum of the operator Lm is given by
3

S- -- U , (122)
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Six components of the second derivatives were used to determine Ti, i = 1, 2, 3 on the mean
elevation level. The observaticn equations are

L XT,+r, (123)

[=A T +(1
Y I (124)

I=Az I + (125)

where I is the observation vector which has the components li, i = 1, 2, ... 6, the measured second
derivatives of the disturbing potential; _., A and Az are vector operators; C is the vector of the

measuremern error. As a specific example eq. (123) is written in the form:

Ix

TI "A EAyz  Ai

I A 2  £2

TZ7 A3  £3
= T+

I A 4  E4
TXX A5

T I A6

(123')

where Tk,, Tz ... are the measured gradients of the gravity disturbance; E£, F2,... are the
corresponding measurement error.

The best estimates of the Tx, Ty and Tz in eq. (123), (124) and (125) are given by:

Txjx, y, h = F-1 k (u, v)j 2tu} (126)

Ty(x, y, h4= F-' {k (u, vii 2ztv} (127)

T,(x, y, h4 = F" (k (u, v)(- 2nwr)c, (128)

%khcre the symbol "" denotes the estimate of the function, and k (u, v) is given by:
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6Ou Y Oi cog,

k (u, v) = x , 2()6

i=1 (129)

Here we have used eqs. (81) and (122). The ogi is the Fourier transform of the observations TIP
From eq. (126) - (128) one can see that the k (u, v) is nothing but the spectrum of the disturbing
potential T determined by using thc gradient data Tij. If the Tij is ordered as in (123'), then we
have:

2' 2

1 - j (2 7r)2uWO, =-J(2x 2 vc,

(22 W22
2'1:01=(2r co' =, 2n)

O -- (2n UV, v . (130)

Insert (130) into (129), we get

-1 

6OU EOiO-g,

k (u, v) =

(3o W4_U 2 v2)+a2 (21rw)6 (131)

In the numerical computations the regularzation parameter ax has taken the value 0.07.

In the same manner we have the formulas for the second and third derivatives on the mean
elevation level:

2
T ,(x. y, h = F k 1u, v)(27) (-juw (132)

2 1
T.,IX, , h,) = F k u,v)(2t) ( ) (133

(133)
2 2~

T, X, y, h )=F ~k(u, v)(2) c0 (134)

TX , y, h.) = F k (u, v)(2t)(Juc°?(3
-- 135)
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TL(x. y, h.) = F ~k u, v) (2tuw (136)3 ( 0 3

y. h= F k (u, v)2n) (137)

The formulas (126) - (137) were discretizated and evaluated by using the fast Fourier
transformation.

If we use the smoothing method, according to the equation (98), the parameter a, X are
chosen

1 2
as =-a = 100, X=2

3 (138)

The spectrum of the smoothing operator is

I I0-- _ _

2 2

1 1 +100(0 (139)

The least squares collocation method can also be used. But the power spectral density
function of the disturbing potential and of the measurement error have to be properly chosen.

The regularization error was not computed by using the formulas like (86), because the "true"
value could be computed directly. The difference between the "true" values and the computed
values were computed and the results are shown in the following section.

If we have no "true" values, as it should be in practice we can choose the spectral density
function of the disturbing potential T and of the error E, the estimation error (regularization error.
smt-)thing error) can be estimated by using the above derived formulas.

7 1 Considerations of the Singularity and Recovery of the Spectra of the Gravity Disturbance
From Gradient Data

In the above derived formulas we have the singularity problem. The formulas, e.g. eq. (131).
are not defined at the origin. Such a problem can be catalogued by the singular integral problem.
A theoretical study of singular integrals and integral equations is given in Miklin (1965). The
study of the singular integrals in the physical geodesy can be found in (Stinkel, 1977; Wang,
1986).

Here we consider the singularity problem in the spectra domain. As a common example, we
()n',ider the Stokes' integral. In the planar approximation we have:

N .. ff dx dy
- (14)
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where N is the geoid undulation, y, and Ag are the normal gravity and gravity anomaly,
respectively. Applying the Fourier transformation to eq. (140) we get

I
CON = ---- (0 g

2n- (141)

where W-N, 0)g are the Fourier transformation of the geoid undulation and the gravity anomaly,
respectively.

We have two methods to compute eq. (140). One is taking the discrete Fourier transformation
to eq. (140). The kernel 1-1 has a singularity at the point (x = 0, y = 0). The treatment of the
singularity can be found in (Heiskanen and Moritz, p. 121; Schwarz, et al., 1989).

Eq. (141) can also be used to compute the geoid undulation. The only question is, what kind
of value eq. (141) should be taken at the point (u = 0. v = 0)? It will be shown that the choice of
the value w0N (0, 0) effects on the geoid a constant bias.

Let

) N(0o, 0)= (, o0 (142)

where P is an arbitrary, constant. Notice that

(0, (0,0K=f J( x:° lAg(xy)dxdy

ff 7  Ag x, y, dx dy
(143)

If the integral in eq. (143) is limited in a local area, as the case in practice, cog (0, 0) is not always
,>qial to zero. Assume that eq. (141) is discretized and inversed by using the discrete Fourier
transformation, then the oN (0, 0) has the contribution to the geoid.

m -() n :0

3 (o, 0o (144)

ricre 6N is the change of the geoid due to the different choices of the (ON (0, 0). 6N is a constant
cfcrvwhere. If we set og (0, 0) = 0, then 8N = 0. Therefore the geoid undulation from eq. (141
may have a constant difference with the geoid undulation direct from the Stoke's integral (140). In
rdcr to r :-',ove this bias, other data, such as reference fields, should he used.
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Another question is: Can we recover all spectra of the gravity disturbance from the gradient

data? The answer is no. For example, the relationship between Tz and Tzx is

COT,= J 2U0)xT (145)

If xe want to recover eyr, from 0)Tz, we have

I{X)Tz= -J (t)Tz
27,u (146)

At the line u = 0, the spectra (jyr z are not defined. A common way in the numerical computation is
to set

O)Tz (0, v) = 0, v e (-, + oo). (147)

But in reality eq. (147) is no( correct, since the spectra ciy z (0, v) should not be equal to zero. The
conclusion is: The spectrum of T, cannot be recovered from the spectra Tzx entirely.

In the numerical computations, we have to take the assumption (147). Therefore it is not good
enough using Tx2 (including Ty,) to determine T, because we cannot recover all frequencies of T,
from Tx or T1 y.

A better recovery of the spectrum of T, can be achieved from T.-

I
OT - OjT

27 T, 
(148)

This function is not defined at the origin (0, 0). If we assume the mean value T, is equal to zero,
based on eq. (143) we have:

O)T(O, 1) 0 (149)

and we can get all frequencies of Tz from T. If the OW.1 is not equal to zero, we still have to take
(1-9) in the numerical computation. But the information on the bias of Tz has to be provided by
other data, such as the point disturbance component values on the ground (Jekeli, 1986).

The best way to recover the frequencies of the gravity disturbance is the use of all components
of the second derivatives of the disturbing potential. From eqs. (128) and (131) we can see,
frequency of T7 from all data is not defined only at the point (0, 0). We define the frequency of T,
at this point as equal to zero, and the frequency Oi-z (0, 0) is obtained from tie point disturbance
c rnponent values or another data.

Summary: We can recover all frequencies of the gravity disturbance by processing the aerial
gra,, ty-gradient data zxcept the mean value. The mean value of the gravity disturbance must be
provided by tie point values or another data.
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we ~ ~ ~ ~ ~ ~ ~ C pcc.iu *nn.. dte data, the formulas used. In this section we give
;.":ntain9 re, ). U f th(- irturbing potential were determnined on the mean

'I ~ ~ ~ ~ ~ t( \ . '.<2l:7l~ 7 e' valucs which were computed from the point mass

a we 'm._1 Ae we ofs~:. othe diffeirnces (errors) between the computed and the
ikrT the rna : .esof the disturbing potential to z. In the numerical

:i~F.at1 ~ I I 4~arJ ', weTe lsed. The regularization function was chosen as

V.. Sa~cs.c Dccfe Between !he Computed and the "True" Values

___CFJ mlean 1 RNIS max min__
0. 29 0.5 2 2.57 -3.72

.- 0.29 0.60 2.7X 3.94
5 0.29 0.99 3.67 -4.76

1 0.03 0.26 1.47 -1.64

-0.03 0.47 2.13 1.95

1 7 TX4xfi 10 Ao4 1.71 - 1.69
-(.S7x 10-1 0. 77 1.05 - 1.95

Fr'mTaCK C-~ c, t t~h ninrndomn noises ha C no0 significant effects on T,. In the
WP- reeh, iz,* ICOU! uied and the effects of the noise have been mostly removed.

q a ~ . po' I ekeli, S7) The reasons may be:

-11k gra\,tk n!ii 'n In a not ver-v rough (gravity anomaly wise) area. The spectra
1(-v., c rtr i:ce.Thc power spectral density function of the data is

TInc ) am ,; .we V e high frequenc ies of the data 's small and should have no
i o -1 -'l T1.. T he high frequencies of the measurement noise and the

:h *jl, f ij-ered Yut and the results were not changed significantly from
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2. An imnportant thing in the numeical simulation is the choice of the grid inteval. The
grdetdata used ,acre regularly distributed in a 2 kni x 2 k-in grid interval. The small grid interval

mninimized the aliasing effect. A study about the comnputation accuracy with the grid spacing, flight
altitude can be found in (Tziavos, et a!-, 19988. Even z.hough where they were talking about the
computation of the topoxgraphic effe.-ct on the gradient data, wet ,et somne idea about the relationship
hetween the cornputation accuracy and the ratio of the grid spacin/fghatud.Ior
,.0,,nputation the ratio of i'qqd spacing/fliglh.t altitude was 2P-25 anod it met the computation accuracy.

3. Thc ratio of signal/noise is defined by the RMS value of signal/RJVIS value of noise. In the
nUmerical computations this ratio w,,as reasonable. For example, for the gradient T?. we have the
,ignal/noise ratio equal 8, when the random noise has variance cT = I E6tv6s. A very interesting
phenomenon is, even if 'a = .5 Eijtvbs when the ratio of the signal/noise equal 1.6, the results for Tz
art still good. The reason may be: the random errors pose high frequencies and they are filtered
out by using the regularization inethodJ; the second reason is that A11 components of the gravity

g.dn have been used and it improved the results.

Of course we cannot e-xpct ,o obtain good results of 'Fzzz, by procxessing the aerial gradient
.,,tT The high denva tives of the disturbing potenitial Tlzzz? is more sensitive to the measurement

In the following we determine the derivatives of the disturbing potential up to third order on
':-mean elevation level, and the Taylor's ;eries are used 'o get the gravity disturbance on the

i. r, ,urface. The difference between the "true" values and the computed values are given in the
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following tables. The second correction term of eq. (9) is also included and the results are
presented in the tables. The results without the second correction term of (9) are also shown in the
following tables.

Table 4. Statistics of the Differences of

T,- T+ Ah TZ2 + (Ah)Tz..,

unit mgal

noise level (E) mean RMS max min

= 1 -0.06 1.12 7.25 -7.55
= 2 -0.06 1.94 8.52 - 9.08

= 5 - 0.06 4.61 18.83 - 17.54

Table 5. Statistics of the Difference of

T, - (i + Ah iTj
unit regal

noise level (E) mean RIMS max min

7 = 1 -0.06 0.91 7.89 9.02

a = 2 - 0.06 1.26 8.51 - 9.43

_ _= 5 - 0.06 2.61 10.39 - 12.04

Comparing Table 4 with 5 we find: If the accuracy of the gravity gradient data is poor, e.g., a
= E, the term 0.5 (Ah) 2 T2zz is corrupted by the errors and it is not usable (compare the results in
Table 4 and 5 when a = 5 E.). But this term still gives some contributions to the big values of Tz
,ompare the results in Table 4 and 5 when a = 1 E.) while the RMS values becomes bigger. It is

expected that this term gives significant contributions to the big absolute values of Tz if the gradient
data are accurate and in good distribution.

The map of the contour line for the estimated t7, was drawn in Figure 5. Comparing Figure 3
with 5, one can find the t, is smoother and smaller (absolute magnitude). Figure 6 shows the
,ontribution of the correction term Ah ' ' , in test area. A few significant corrections are in the

rOUgh gravity anomaly area. The contribution of the correction term 1/2(Ah) 2 tzzz is shown in
F1ILure 7, The correction is small and rough. This correction can become very small after some
kInds of smoothing, e.g., the results are averaged into mean block values. Figure 8 gives the
computed T, in the test area. In comparison with Figure 3 one can say that the recovery of the
gravity disturbance by processing the gradient data are successful. Figure 9 gives the difference
between the "true" values and the computed values. Although the difference (error) can reach 5-7
megal at some points, but it can become smaller when the results are averaged into mean bic k
;-alues.
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Similarly, the computation at results for Tx, Ty are given in Table 6-11.

Table 6. Statistics of Differences Between the Results and the "True Value"
unit mgal

Noise level (E) mean RMS max min
Tx =l 0.71x10-2  0.26 2.84 -2.11

(mgal) a=2 0.01 0.33 2.84 -2.18
5__________ 0.02 0.64 2.91 - 2.95
I=1 -0.35x10 -3 0.18 1.00 - 1.00

Txz 2 - 0.50x10-3 0.33 1.37 - 1.34
(mga1/krM) a=5 - 0.94x10 - 3 0.81 3.01 - 3.31

F=I -0.32x10- 5 0.28 1.19 1.03
Txzz a=2 - 0.44x10 4  0.54 2.37 - 2.03

(mealkrm2 ) a = 5 - 0.17x10 "3  1.35 5.89 - 5.05

Table 7. Statistics of Differences of

T,- ThAh) + (Ah Tx,)

unit mgal

noise level (E) mean RMS max min

1 = I 0.01 0.78 5.39 - 4.82

a = 2 0.01 1.37 5.78 - 5.74

a 5 0.03 3.26 13.20 - 12.36

Table 8. Statistics of the Differences of

- (TX + Ah ,)

unit mreal

noise level (E) mean RMS max min

a = 1 0.01 0.63 6.48 - 5.67

a = 2 0.01 0.88 6.56 - 5.77

a =5 0.03 1.84 7.41 - 7.44
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Table 9. Statistics of Differences Between the Results and the "True Value"
unit mgal

Noise level (E) mean RMS max min
Ty Y=1 0.11 0.31 .97 - 2.89

(mgal) a=2 0,11 0.38 2.19 - 2.94
0=5 012 0.67 2.85 -3.35

=1 - 0.9Gxl0-" 0.18 1.14 -0.96
TYZ =2 -0.87x10- 3 0.33 1.43 - 1.30

(mgal/krn) 0=5 4 - 0.79x10-3  0.81 3.18, - 3.18
a=1 -0.17 -10-- 0.28 1-06 - 1.15

yzz2- 0.21x10 -3 0.54 2.09 -2.14
(meal/m 2) o= 5 -0.32x10-3  1.35 51 5.33

Table 10, Statistics of Differenc- ,f

Vy + Ah Tvz + (A h 'v 7,,,

unit rgal

noise level IE) mean RMS ax

T= 0.11 0.79 4.52 - 5.86

o = 2 0.t1 1._3,_ 5.55 - 6.07
o= 3 0.12 13 .27 [ 12.54 -12.I

Table 11. Statistics of Differences of

TY- (T'Y + Ah j

unit mgal

noise level (E) mean RMS ] max min

7= 1 0.11 0.65 5.02 -7.21

o = 2 0.12 0.89 5.42 - 7.25

a=5 0.13 1.85 6.99 -8.19

From Tables 4-11 we come to the following conclusion: The gravity disturbance can be
determined on the earth's surface with demanded accuracy. Witl, 1 E6tv6s error in the gradient
data, the components of the gravity disturbance Tx, Ty and T7 are determined with an accuracy in I
rngal. Even though the measurement error is 5 E., the gravity disturbance can be determined with
an accuracy of 3 mgal on the topographic surface.

f lere Ae need to point out that the measurement error model is assumed a normal distributed
random noise. Although this assumption is not entirely realistic it gives the main property of the
effects of the error in the processing of the gradient data. It is expected that if the spc-ctra!
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distributions of the gradient data and the measurement error are known, one can use the methods
proposed in this study to minimize the effect of the measurement error and to get a stable and
reasonable solution.

Normally, for a convergent series, the more correction terms that are taken, the results are
detemined more accurately. But we do not know whether the Taylor's series is convergent on the
mean elevation level. From Tables 4-11 we can see that the correction term 1/2(Ah) Tzzz may
have some contribution to the large values of the gravity disturbance when the measurement error
is small. But it supplies wrong information when the data accuracy is poor. Therefore we suggest
if the area is very rough and the data are accurate enough, e.g. measurement error is lower than I
E., then the correction term 1/2(Ah) 2 Tzzz, etc., could be taken into account; in a flat area this term
is very small and can be neglected; if the accuracy of the gradient data are poor, the correction term
1/2(Ah) 2 Tzzz, etc., could be wrong and it is not of benefit to the results.

8. Conclusion

After many years of development the airborne gravity gradiometer survey system is coming in
to practical application. Recently, a test flight was taken in the Texas-Oklahoma area which is
characterized by a very smooth topography. Although this was the first time the gravity
gradiometer survey system was flown, and only a fraction of the total runs yielded good gradient
data, the components of the gravity disturbance were determined on the ground with the accuracy
of 2 to 3 mgal in 5' x 5' mean anomalies.

In the future the test will be carried out in the rough mountain area and the topographic effect
has to be taken into account. This problem has been considered by many authors. Tziavos et. al,
have developed an estimation algorithms for the computation of the effect of the mass above the
ellipsoid (Tziavos, et al., 1988). If we subtract the contribution of the topography from the
gradient data, it means the mass of the earth is adjusted by removing the mass above the ellipsoid.
This is not correct in some cases, e.g. the determination of the geoid. This report did not discuss
this problem. Our goal was the determination of the gravity disturbance on the earth's surface.
We assumed that the disturbing potential and its derivatives can be analytically downward
continued to a mean level - in the report the mean elevation level was chosen, then the Taylor series
was used. The gravity disturbance was given by (cf. Figure 1):

TjQJ = T,(P') + Ah T,,,(P') + - h )2 T P')9-Q (9)

Obviously this analytical downward continuation problem is an improperly posed problem. The
,nution T, (Q) may pose serious numerical difficult and not be stable.

For an improperly posed problem there are three methods that can be used: the least squares
,:ollocation, regularization and smoothing. How can they be used in the gravity gradiometry was
sudied in Section 3, 4 and 5. The studies indicate that the three methods are essentially the same.
They filter out the high frequencies of the data and make the results smooth and stable. In
comparison to the least squares collocation the methods of the regularization and smoothing are
more flexible.

The regularization was used for a simulated computation. The numerical computation shows
that this method is qualified for the analytical continuation of the derivatives of the disturbing
potential, such as T/, Tz, T ,7 to the mean elevation level. When the accuracy of the gradient data
,,,as I Edtv6s, the gravity disturbance was recovered with the accuracy of I mgal. If the accuracy
of the gradient data is poor, but the ratio of the signal/noise is still high enough, the recovery of the
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gravity disturbance can achieve a r'2io-h c cnracy. One example described in the report is
vwhcn the gravity disturbance was LUn(ter.-n.ncd wl-' ir, a accuracy of 3 mgal when the accuracy of the
grav ity gradient data wzs 5; E6t-,,:s.

The derivatives of the disturhYi-., -"m iA T,, ca~n be obtained by processing the aerial
gyradient data but It is corrupted by * ll CLsurcrner I Cerrors. It Is st;il a difficult work to get the
higher derivatives of the. disturbing p -nu, and sometimes it looks like it is impossible.
Fortunately the high derivatives of tl~e Jiturbing potential have most effects on the high
frequencies of th,- disturbing 0!.-. L not r,-vz significant contribution to the disturbing
potentia.

For a flat area the fis wotc -d cr ne eds, but in 2r~a onanae
the last term in (9) has to b-, conisd if -11 -.1,y ct ,he gravity gradient dt shg.I h
accuracy of the gr-avity gradient dat' rua is riot txeneficial to tihe results.

Ihe numenca simubionu -v,. 'i2, a7srrnptions, such as ;he neasurement error
moel o oitoneros~nh M~t the main property of the processing of

the aerial gradienit da-ta an2:.1 co -. aja t xet IE -h c ptain
were completed by using the las-t Fu:
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