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ABSTRACT

We describe a 3-dimensional surface tracking algorithm which is
used to detect the interior laminar surfaces of a solid shell. Each of these
surfaces is called a "peel". Successive peels may be generated, thus
representing the solid shell by its tangential layers. This algorithm is
based on voxel surface tracking methods, and solves the problems associ-
ated with transfoing a s. ' tracking algorithm into a '-brain peeler".
We also discuss the properti- ,he voxel surfaces produced by this algo-
rithm. Using the connectivity properties of these objects, we are able to
convert voxel representations into polyhedral representations without
human interaction. W-ii1utrate this work with a high resolution recon-

struction of a monkey visual cortex. Additional application domains of
this work are in areas in which there is a natural laminar structure to a
three dimensional solid, such as geophysics (earth strata).

August IF, 1988
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INTRODUCTION

The cortex of the brain is a laminar structure. The term "cortex" is derived from
the Latin term for bark or rind. The cortex of the brain comprises the thin outer layer of
the cerebrum. The cortex itself ( typically about lmm thick in monkeys) is composed of
some six to ten layerst. In medical applications, the cortex is often imaged by a tomo-
graphic technique, such as CAT, NMR or PET scan. In experimental applications, it is
much more common to image the cortex using serial sections of the brain, cut on a
microtome (a more precise version of a sandwich meat-slicer.) Much work in voxel
based graphics is motivated by CAT scawi applications, due to the medical importance of
these techniques. However, the experimental application associated with stained brain
sections presents considerable algorithmic and scientific challenge. For one thing, physi-
cal brain sections can be imaged at much higher resolution than temographic images. A
typical resolution for CAT or NMR scan is in the range of 1 mm, and 10 mm for PET
scan. The physical sections described in this report were imaged at 40 microns. Since the
space complexity scales as the cube of the spatial scale, physical sections can involve
three to six orders of magnitude more data than a typical tomographic problem. The
much greater resolution available in this type of preparation allows us to obtain unique
views of the architecture of the brain. And, the gray-scale aspect of this data is of direct
importance. While CAT or NMR scans usually represent abstract surfaces, brain sections
represent images embedded in surfaces. Since much of the interesting structure

suppored by Syen= Development Foumdation, AFOSR 85-0341, and the Nathan S. Kline Psychiatic Research Center

tThe number )f cortical layers depends on the species, area of cortex, and the precise definition of
the term "layer".
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(columnar and topographic) of visual cortex is beyond the reach of current CAT or PET
technology, studying physical sections of monkey brain provides the only route to imag-
ing the important functional features of the brain.

SOME BASIC TERMS

In order to motivate the algorithms discussed here, we will briefly summarize some
of the important techniques in use. CAT scans are tomographic reconstruction of X-ray

density estimates. Since this technique only reveals tissue density, it has little utility, for
imaging functic.nal architecture. PET scan is a tomographic technique which has the
advantage of being able to image active metabolic activity in the brain. One example of
the use of this technique is to inject a glucose analogue called 2-dzoxyglucose, which is
labeled with positron emitting isotopes (e.g. Flourine-18). The 2-deoxyglucuse(2TlG) is
only partially metabolized, and is briefly bounC by neural cell. Thus, active cells take up
more 2DG. By exploiting the properties of the positron decay (co-linearity of emitted

photons), it is possible to create a three dimensional tomographic image of the motabolic
activity cf the brain (e.g. [13]).

Unfortunately, the advantages of PET in providing an active metabolic image are
undermined by the poor spatial resolution of the technique. Current PET scanners operate
roughly in the 10 mm range of spatial resolution. This is far zoo coarse to provide a

detailed image of the structure of a cortical area. However, in monkeys, it is possible to
use the same 2DG technique, followed by physical sectioning of the brain. This can pro-
vide both an active metabolic image, as well as sufficiently high resolution (-100

microns) to allow a detailed study of the brain to be performed.

The algorithms described in the present paper were developed largely for the appli-
cation of 2DG experiments. However, in the present paper we will illustrate these algo-
rithms with yet another technique. Cytochrome oxidase(CO) is an enzyme which is pro-
duced in greater amounts when the long term (-days) activity of neural cells is increased.
If the brain of a monkey with only one active eye is processed to reveal the amount of
this metabolic enzyme, then an image of the terminations of the active eye is produced in
the series of sections. This creates a well known pattern, termed ocular dominance
columns, which resemble the stripes of a zebra. Figures 1 and 2 show computer recon-

structions of this pattern.

The ocular dominance column pattern is ideal for an assay of voxel based recon-

struction methods because the scale of these columns is about 500 microns. This is small
enough to provide a challenging test of our technology (when several thousand square
mm of cortex are to be handled), yet large enough to be within practical reach. More-
over, much of the interesting functional architecture of an area such as visual cortex can

be revealed at this scale.

Having briefly reviewed the problem domain of cortical architecture, and some of
the major techniques available in this domain, a brief review of the algorithmic steps
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Figure 1.

This figure shows a surface composed of voxels. It is a single-voxel layer of the back half (occipital
pole) of a monkey brain, in which a zebra-skin like pattern of metabolic activity appears. Tiiis pat-
tern (ocular dominance columns) represents the terminations of the left (dark) and right (light) eyes
in the brain. This structure was produced by repeatedly surface-tracking the entire brain. Each "sur-
face" is saved, and the process repeated, resulting in some 25 voxel surfaces such as this one, which
is located in the center of the cortex (layer IV). The size of these voxels is 40 L x 40 .t x 40 4., and
the figure is composed of 414,211 voxels. Note that the voxel surface is independent of the gray-

scale detail, which we have shown here merely for graphic interest.

necessary to form a full voxel based reconstruction of cortex, from serial sections, will be
provided. Then, a detailed statement of two algorithms which have emerged form this
work, the BRAINPEELER, and TRIANGULATIONFROMVOXELSURFACES

will be presented.

OVERVIEW OF THREE DIMENSIONAL RECONSTRUCTION FROM SERIAL

SECTIONS

An overview of the process of three dimensional reconstruction and processing of

serial brain sections, developed in our lab, has recently been published [15]. Briefly,
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Figure 2.

This figure shows the flattening of the 3D polyhedral model of figure 1. A small section of the most

peripheral extent of VI in this data (about 1-2 mm) was lost, and is not shown.

there are several distinct stages of this work.

1. Data collection

The 2DG and cytochrome oxidase methods are outlined above; there are many other

classical, histochemical, and radio-label methods availalle. For the present purposes, we

will use a cytochroine oxidase stain of the pattern of connections of one eye of a

macaque monkey, as reconstructed in primary visual cortex (see figure 1 and 2).

2. Digitization, image processing and alignment

Roughly two to four hundred serial sections, cut at 40 microns, provide a solids

model ot a brain. In order to use these sections, they must be digitized (we use a Fair-

child CCD camera), the sections must be image processed (contrast enhancement,
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thresholding, noise reduction, etc.). Finally, the sections must be aligned to their original
three dimensional positions. This alignment step is extremely difficult, as well as critic.'al.
We use an interactive method in which an animation of the original solid, produced dur-
ing brain slicing, is "toggled" with the corresponding processed section. This method
provides an estimated three dimensional error of roughly 150 iicions (i.e. the relative
positions of voxels in the digitized model is within 150 microns, on average, of its origi-
nal position, over the full posterior half of cortex, which is roughly 3000 square mm)
This degree of precision is sufficient to accurately reconstruct the 500 micron ocular
dominance column pattern, as shown in figures 1 and 2.

3. Brain peeling

The implicit solids model of the brain provided by a stack of image frames does not
allow us to readily view the internal lamina of the cortex. In order to view the individual
cortical lamina, it is necessary to "peel" the brain model. The details of the brain peeling
algorithm will be presented shortly.

4. Triangulation

An aligned set of thresholded image frames is an implicit voxel model of the three
dimensional brain. As such, it can be displayed via voxel rendering methods (as in figure
1). However, for some purposes it is necessary to obtain a polyhedral model of the same
object. This requirement may be viewed as a problem in converting a voxel data structure
to a polyhedral data structure, for the same 3D surface. We have developed an algorithm
to perform this transformation, which will be described below. To the best of our
knowledge, this is the first fully automatic method for triangulation of surfaces, and pro-
vides a means ot using either a voxei or a poiyhearai representation of the same surface.

5. Brain flattening

Brain flattening is one of the purposes for which a polyhedral model is required.
Numerical algorithms for calculating mininnal di'tances in rolyheir-l curfa,-es [18], and
for using these minimal distances to flatten the brain [141 have recently been described.
The interest of these methods is that the structure of cortex is most naturally displayed in
an unfolded format, as in figure 2. In order to do this, both a voxel and polyhedral model
of the cortical surface is necessary.

6. Texture mapping

Having digitized, aligned, peeled, triangulated and flattened a brain, the final step is
to texture map the gray scale data in the 3D brain peel (figure 1) into its two dimensional

(flattened) model (figure 2).

Having outlined our motivations, methods, and goals, we will know described in
detail two algorithmic aspects of this work: brain peeling, and the use of voxel surfaces
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to effect an automatic triangulation of a surface.

TWO ALGORITHMS FOR BRAIN PEELING

ALGORITHM 1: INTERSECTION OF A POLYHEDRAL MODEL AND A 3D
VOXEL MODEL

This algorithm is relatively trivial. Clearly, if one has access to a polyhedral model
of some interior level of a solid, this polyhedro-n can be intersected with the 3D .voxel
model to obtain a voxel surface. The polyhedral model is likely to have been produced
by hand tracing of contours on individual images of brain sections, followed by conven-

tional (interactive) 3D triangulation. One advantage of this method is that it can produce
a surface at a known (i.e physiological location), subject only to the accuracy and
knowledge of the hand tracing of contours. However, this method will only reliably pro-
duce a voxel surface within a few voxel thicknesses of the traced surface. As one moves
further from this canonical surface, the "peels" produced tnis way become unreliable,
since they are following a relatively coarse approximation to the voxel surfaces. Figure 2
was produced with this method. However, if onc wishes to produce a full set of peels
(e.g. 25 peels at 40 microns thickness, spanning the full thickness of cortex), this method
is inadequate. It would require a great deal of laborious hand tracing and hand triangula-

tion.

ALGORITHM 2: 3D SURFACE TRACKING WITH A SHIELD

Excellent algorithms for 3D surface tracking are known (e.g. [2]). In the original
implementation of our brain peeler, we used this algorithm as the basic surface tracking
mechanism. However, there are several problems. First, the Artzy %z al algorithm is
memory intensive: it is necessary to store the full surface graph in active memory, and
ou, high resolution surfaces can exhaust 10's of megabytes of memory. Below, we

describe a surface tracking algorithm which requires memory storage of only a slice and
its two neighborst. Secondly, surface tracking provides two surfaces: the inside and the
outside of the 3D voxel model. Tl.:.' is problematic, because we wish to consider the
inside and the outside of the voxel model as distinct surfaces, which is the case physio-
logically. It is thus necessary to construct a "shield" which will prevent a surface trc:ker
from producing both the inside and outside surfaces of the solid shell as a single con-

nected component. Thirdly, successive peeling can introduce topological problems when
applied to complex surfaces. A given surface may be perforated, thus changing the con-
nectivity of the residual surface. Small connected components (which we call "dirt")
may have escaped earlier imaging editing, or may be produced in the process of peeling.

tln principle, only a slice and its neighbor are necessary, but for simplicity of implementation, we
store both neighbors.
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These d,- .s must be carefully dealt with, as the process of peeling is subject to extreme
topo.,,cal instability: even a single voxel connecting two surfaces inappropriately can
,hange the qualitative nature of the entire peel being produced.

We use gray run-length encoded images (GRLE) [9) as our initial data representa-

tion, instead of voxels. In this format, we reserve gray-scale '0' for the background (i.e.
'0' voxels are not legal in the object). The image is then represented by a run length code
which describes, on each raster line the location of the starting 'x' position of the run, the
.engdh of the run, and then the full gray-scale voxel run. A modified GRLE format is also

used (binary run length encoding) in which the actual gray intensities are dropped, since
only the positions of the runs are needed (we call this format SRLE for stripped GRLE).
If we measure the space requirement of a surface tracking algorithm in voxels and n
represents the width of an arbitrary dimension in voxels, a surface tracking algorithm
which requires the entire surface to be represented in memory requires O(n) space
whereas our algorithm results in a reduction to 0(n 2). This is true since the depth dimen-
sion is constant (three slices). Even though the space required by the width dimension is
theoretically 0(n), the compression achieved by using GRLE typically reduces it to a
small integer representing the maximum number of GRLE runs per scanline (-5 for our

data). The use of GRLE format also increases the speed of our algorithm since not every
voxel is addressed individually. Instead, GRLE runs are compared to each other to find
the surface and to remove the peel from input data. Using SRLE runs as output also
reduces the output size accordingly. To reconstruct full gray image peels from the SRLE
output, we run a merge program to incorporate the gray intensities into the peels, thereby
producing GRLE format data once again.

Algorithm Outline

The major concepts upon which the peeler algorithm is based are:

1) Capping the brain

2) Classification of regions

3) Generation of the shield

4) Preparation of the base

5) Generation of a peel

6) Removing a peel from the base

1. Capping the brain

This is a simple step which guarantees closure of the brain. We often wish to
work with only a partial brain, meaning that the interior region will be exposed. To

create a closed interior region, caps are added to either end of the set of sections
with which we are currently working. A cap is simply an image completely filled
with GRLE runs.



2. Classification of regions

In order to find the correct surface for peeling, all surfaces in the data must be

classified. We define the surface we wish to peel as the one bordering on the largest

interior hole in the brain. Other surfaces which we will encounter are: the exterior
surface of the brain, the surfaces of small interior holes not connected to the main
interior surface, and the surfaces of regions of data which are not connected to the
true brain connected component (dirt). A sample input section to the peeler is

shown in figure 3.

Figure 3. An input serial section.

These small interior holes and dirt, which for the peeler are topological errors.
vkould in most cases be eliminated by the data editing processes [10] [121. Flow-

ever, since the former is a human mediated procedure and the latter is not
guaranteed to eliminate all topological errors, we must detect and handle any
remaining topological errors to guarantee perfect peels for the triangulator. Alterna-
tively, the editing performed here could be done in a separate program: but it seems
a local requirement of the peeler, so it is done here.
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Originally, we thought that we could pass througi, all the sections, to find each
of the connected surface regions for each seciion. At the same time we would note
how these connected surface regions were connected to each other from section to
section. Then, the largest interior surface would be chosen as the true interior of the
brain. This does not work for the following reason. If tihere exist thin walls in the
brain, independent surfaces may be classified as connected to each other. For sim-
plicity, we will use voxels in the following illustration. Imagine, for example, an
interior sirface separated from the exterior surface by a one or two voxel thick wall.
All of the exterior surface voxels are chosen as surface elements as well as all of the

given interior surface voxels. This means that the entire thin wall separating inside
from outside will be entirely selected as part of the surface. Since there is now no
way to distinguish the given interior region from the exterior, they will be con-
sidered part of the same surface. The same phenomenon can incorrectly connect
distinct interior regions to each other.

To assure that disjoint surfaces are classified properly information about e-ach
face of each voxel could be kept, marking the proper surface faces instead of sur-
face voxels. This is the approach taken by Artzy et al [2]. But keeping voxel face
information is not necessary to correctly distinguish among distinct surfaces! To
solve the problem we take the following approach.

The classification procedure makes a pass over the entire set of brain section
images, processing two images at a time in a circular FIFO buffer. The output of
this procedure are two graphs describing the adjacency of connected components in
successive sections, and a set of output files containing a special variety of GRLE
information that, in addition to specifying the begin location and length of the run,
also specifies a tag identifying the connected component to which the run belongs in
that image. At each iteration the following steps are performed:

1) split the current image into holes and walls

2) track and mark connected components within the holes images and
walls images

3) match these connected components with those in their respective
previous images

4) store the connectivity information of the two sections' holes and
walls in the connectivity graph

5) merge the holes and walls components of the current image
back into a single special GRLE image and store on disk

After all the images are processed, the connectivity graph for the walls is
traversed, starting at the first component of the first image, marking all those nodes
in the graph which are connected to it. This process is repeated on the graph until
no more unvisited nodes remain. Each pass through the graph marks a separate
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connected component of the data. We define the largest of these connected com-
ponents to be the brain proper and save the tag identifying it.

We perform a similar traversal of the connectivity graph for the holes, marking

nodes on each pass to identify separate holes. In this case we are interested in iden-
tifying two regions, the unbounded exterior region (the exterior "hole") and the lirg-
est interior hole which we identify to be the desired interior region for peeling.

It is through the separate processing of the hole regions, then, that makes it
possible to distinguish among distinct surfaces, even those which are separated bv
thin walls.

3. Generation of the shield

The shield provides a means of protecting the brain from having perforations
made in it during the peeling process. Multiple peels can be generated by the peeler.
As the peeling commences, beginning from the inside surface, peels will eventually
encounter the outer surface of the brain. Since the brain is not of uniform thickness,
a peel which encounters the exterior will do so only at intervals along its length.
When it does so, the region of the exterior which is encountered is peeled away.
This creates a gap in the remaining data, and unless handled, subsequent peels
would not be closed. The shield assures that encounters with the exterior are

detected and patched before the next peel is generated.

To generate the shield, we make another pass through the image files - this

time processing with three images simultaneously in a circular FIFO buffer. In
addition to the three base images we have in memory, we read in the special image,
generated in the classification step, corresponding to the most recently read image
of the three base images currently in memory. The special image modifies this
newest base image by filling in all of its interior holes (figure 4). Note that the other
two base images in the buffer had been previously modified in the same manner.

Now the three modified images are operated upon by a version of the surface-
tracking algorithm which detects all exposed surfaces. In this case, the only
exposed surfaces are the exterior ones, so the result is the edge-adjacent exterior
subset [2] of the center image (rendered as GRLE runs instead of voxels, see figure
5). The resulting peel image is stored on disk, the oldest image in the buffer is

dropped, a new one is read in, and the process is iterated until all the base images
are processed.

4. Preparation of the base

This procedure is done in concert with the generation of the shield, explained
above; but is presented separately for clarity.



Figure 4. Interior holes filled.

The result of this procedure will be a set of modified base images upon which

the surface tracker will operate. We wish to remove all dirt regions and fill all exte-
rior regions, leaving only the desired interior region as an exposed surface to be

detected by the surface tracker. The notion of filling the entire unbounded exterior

is understood by recognizing that for each scanline of a brain image, the exterior is
always encountered by a ray moving to the right from negative infinity and by a ray

moving to the left from positive infinity. Therefore, by making a simple
modification to the surface tracking algorithm, these cases can be detected without

any filling operation. On the other hand, those exterior regions which are enclosed

by data (bounded by GRLE runs) are not detectable by the same means and are
filled explicitly. This filling not only enables a simple uniform procedure to be per-

formed during later peeling, but also reduces further the amount of data to be han-
dled, since each fill operation joins two GRLE runs into one.

Before the newest image in the buffer is operated upon by the special image, a

copy of it is made which is also operated upon by the special image, but in a dif-

ferent way. This time, all dirt is removed from the base image and all exterior hole
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Figure 5. The shield.

regions are filled. The modified base image is stored on disk (figure 6).

5. Generation of a peel

The generation of a brain peel involves a pass over the prepared base sections
using a three image circular FIFO, as in the shield generation. This time, the three
images are simply operated upon by a version of the surface tracker which generates
an image of all exposed surfaces excluding those which are encountered first and
last on each scanline, since these are always exterior surface elements. The peel is

stored on disk (figure 7).

6. Removing a peel from the base

Finally, the newly-generated peel must be removed from the base images.
This is done in two steps. We consider removing the peel data from a single base
image. First, the shield image corresponding to this base image is removed from
the peel just generated for this base image. This does not change the peel unless it
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Figure 6. Exterior filled and dirt removed.

has overlapped the shield. Second, the remaining peel data is removed from the
base image.

After the shield data coincident with the peel has been removed from the peel
itself, the remaining peel can no longer create a gap in the base when it is removed
from the base. This means that later successive peels will contain the same data
where they coincide with the shield, but, for our purposes, a single connected sur-
face is what is required.

7. Surface Tracker

The kernel of the surface tracker is the simple idea that a surface element is one
which borders an empty region. A naive implementation using voxels would simply

check each inhabited voxel's neighbors, selecting each inhabited voxel with at least one
empty neighbor. In this way, all the surface elements for all surfaces would be selected.

Often, input data will contain many separate connected surfaces, but only certain
surfaces (usually one) are the desired output. A traditional surface tracking algorithm,
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Figure 7. A peel section.

given a starting point of a given surface, moves from voxel to voxel locating all surface
elements connected to the starting point and only those elements. Our tracker works in a
different manner. Instead of crawling over the three-dimensional surface to find all its
elements the data is pre-processed such that undesired surface elements are eliminated
before the main surface tracking procedure. Then the surface tracker can simply move
through the pre-processed data, selecting all surface elements which it finds, without
regard to connectivity (since all surface elements are guaranteed to be desired ones).

GRLE format data is used to represent the sequence of brain images in memory. As
mentioned before, we do not retain the actual gray values for each voxel in memory
because they are not needed by the algorithm. What we do need are the (x,y) location
and length of the run. We keep the runs in memory as an array of lists of runs, one list
per scanline of image. Each run in memory has an x starting location, a length and a
pointer to the next run. The y location is represented by the element of the array pointing
to the list containing this run.

GRLE format data provides several advantages over voxels for surface tracking.
First, they take up less space since each is able to represent many voxels. Second, since
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there is less data to handle, algorithms are faster. Third, their very definition implicitly

encodes some surface data since their ends are always bordering .n empty region (no two
runs may abut).

To translate the concept of determining whether a given voxel is bordering on an

empty region into where a given GRLE borders on an empty region, imagine a given

GRLE run and the surrounding (face-adjacent) runs. At any place along the length of the
subject run where there is a gap in the surrounding runs, we have a surface element. The
ends are always surface elements as well. The surface elements of a given subject GRLE
run consist of either a set of disjoint regions or the entire GRLE run if it is completely
exposed. To do so, we introduce the concept of the occlude list. As the occlude list is
constructed, it represents regions of the subject GRLE which are potentially occluded
from view (not exposed to an empty region). When the process of generating the occlude
list is finished, any remaining elements in it represent truly occluded portions of the sub-
ject GRLE. The complement of this list is the set of disjoint surface elements, also GRLE

runs.

The occlude list is constructed from the four lists of surrounding face-adjacent

GRLE runs, two from the same image as the subject run (those above and below it), and
one each from the previous and next images. This explains the necessary and sufficient
condition that three images must be in memory at once to determine the surface elements

of the runs which the middle image contains. The occlude list is initialized from one of
these surrounding lists, of which up to two elements may be truncated to the subject

GRLE if they overlap its ends. Then the occlude list is updated by each of the remaining
three lists of surrounding runs, each one potentially removing some of the occlude list,
possibly chopping it into a greater number of elements. An update consists of doing a
logical "and" of the current occlud2 list and the new list. This reduces the occlude list to

areas in which both the old occlude list and the new list cover the subject GRLE run. In
this way, as each update is made to the occlude list, only those regions of the subject
GRLE run which are occluded by all of the surrounding lists of GRLE runs remain in the
occlude list.

Finally, the occlude list is applied to the subjec t GRLE run, chopping it up inou dis-
joint surface GRLE runs. Note that the ends of the subject GRLE, if they are not already
included in an exposed region as dictated by the occlude list, are included as well. Also
note that if during the update of the occlude list, it is reduced to a null list, this means that
the entire subject GRLE is exposed and it can be output as a single surface element
immediately, without checking the remaining surrounding lists of runs.

Performance

Figure 1 was produced from 363 images (512x512x8) of coronal sections of a mon-

key brain (one functioning eye) stained for cytochrome oxidase. This data set was about
90 megabytes in voxel format and about 15 megabytes in GRLE format. On a SUN 3/50,
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the brain peeler required about 2.5 megabytes of memory. The pre-processing time was
about 18 minutes, with each peel requiring a little less than 7 minutes to generate. About
20% of the peel generation cpu time was devoted strictly to 1/0.

Future Work

The space requirement could be lowered still further, mainly by changing the sur-
face tracker to operate on only two images at a time instead of three. Using this method
the old image will preprocess the new one such that each GRLE run will be potentially
partitioned into two types of runs: ones which are guaranteed to be exposed (because the
old image did not occiude them), and those which may yet be occluded (because the old
image covered them). When the new image in turn becomes the old one on the next
iteration, the possibly occluded runs are compared to the new image and are truncated
into exposed regions in the way described by this report. Finally, the previously gen-
erated exposed runs and the newly generated exposed runs are merged to produce the
output SRLE runs for the current image.

THE CONNECTIVITY PROPERTIES OF VOXEL SURF I CF1: AUTOMATIC
TRIANGULATION OF A VOXEL SURFACE

If a voxel surface produced by the brain peeler is represented by planar sections (of

one voxel thickness), then the appearance of each of these sections is that of an 8-
adjacent set or contour [2].

These contours resemble the contours which are produced by hand tracing through

the original sections, but have one extremely important property: each voxel on one sec-
tion has a neighboring voxel to which it is either edge or face adjacent on both neighbor-
ing sections. This is a trivial property of the fact that they are 2D sections of a 3D con-
nected component. We call the contours produced in this way "2.5D contours". Just as
a set of peels represents a voxel volume by its tangential surfaces, a (thinned) set of 2.5
contours represents a voxel surface by tangential curves. The set of 2.5D contours pro-
vide a means for constructing an automatic, minimal, topologically correct triangulation
of the voxel surface, because they allow us to locate the critical points of the voxel sur-
face, and to specify the connectivity rules to be applied to bridge these critical points.

We will outline the algorithm for this triangulation, but first will briefly describe the

difficulty in triangulating serial contours of a 3D object.

Heuristic triangulation algorithms and topological requirements

There are many algorithms which are capable of triangulating generalized cylindri-
cal surfaces [11] [81 [6] [5], and others which attempt to deal with more general three-
dimensional structures [71 [41 [1] [19]. In our experience, none of the- "'2--thm2

sufficient to successfully model a complex surface, such as that of primate cortex,
without human supervision. Part of this problem is that even for a simply connected (in
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Figure 8.

top center a contour of section 153.
top left and ight: its neighbors on the previous and succeeding sections.
bottom: the adjacency sets in our contour of its neighbors. These are the sets of voxels in the middle
contour that are actually edge-adjacent to voxels in the neighbor contours.

rI

3D) surface, contours might merge, split, be "born", "die", or change their internal
structure as one moves from section to section. Adjacent sections of a surface can mani-
fest changes in topology or connectivity even if the surface is simply connected and
closed. Such changes are purely an artifact of the sectional representation of a surface
(see Figure 8). A major part of the solution to triangulation in this context is thus the
proper association of contours on one level with those on adjacent levels. This associa-
tion is supplied by the properties of sections of voxel surfaces.

The essential difficulty in triangulating a surface represented as serial sections thus
arises from topological changes in the surface contours encountered during serial traver-
sal of the sections. These changes can be localized at critical points of the surface. For
the moment, assume that a voxel surface is a discrete sampling of a smooth surface (a
differentiable manifold). ., critical point occurs when the partial derivatives of the z
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coordinat .,r height function with respect to the local coordinate functions vanish [17].
Geometrically, this corresponds to a situation in which the tangent plane to the surface is
"horizontal." This occurs at maxima, minima, and saddle points of the surface. A sec-
tion containing a critical point will be denoted a critical level.

As a critical point is passed in the sectional traversal, a single contour can split into
several disjoint contours, or several disjoint contours can merge into one. These topolog-
ical chanies at critical levels incapacitate existing algorithms for triangulating from
serial sections, which become confused when a contour that is being tracked suddenly
splits into multiple contours, or vice versa.

As an example of a sectioned differentiable manifold, consider the surface of a
Joughnut standing on edge, and the serial sections of this object by horizontal planes
( Figure 9).

The following topological tran sformations occur. First, a point appears, the first
riical point. We call this a "birth" event. At this level the section consists of a single

pc~it, which immediately opens into a loop as we ascend. A series of loops is produced
until a second critical point of the doughnut is reached. At this point, the loop becomes a
''figure eight", and splits into two disjoint loops. We call this event "splitting." Then,
at the third critical point, the loops fuse back into a "figure eight". We call this a
"merge" event. The figure eight immediately becomes a simple loop. Finally, the sin-
gle loops shrink down to a point and disappear at the fourth and final critical point (a
"death" event).

For the embedding of the torus implied by this sectioning, there are four isolated
critical points. It can be proven that any differentiable 2-manifold can be embedded in
Euclidan 3-space in such a way that its critical points are finite in number, and no mor --
than one occurs on a given level. Also, it can be shown that the only topological changes
which can occur (for an orientable surface) are the "birth" , "death", "splitting" and
"merging" events illustrated for the torus [17].

Algorithm Outline

Having stated, by analogy of the critical points and critical levels of a differentiable
manifold, the problems which a triangulation algorithm must solve, we now turn to a
discrete approximation to the manifold, or surface, which we wish to triangulate.

Consider a series of voxel-thick contours obtained by intersecting the surface with
parallel planes (see Figure 8). Contours on adjacent levels havc adjacency relationships,
which allow us to "parse" the surface into generalized cylinders, which a simple tri-
angulation algorithm can process. (A generalized cylinder is a run of simple loops. It
.Liiit1iS no critical points, and represents a (distorted) sausage-like object [31). In our
experience, even complex surfaces such as cortex consist of relatively few critical levels
with long runs of generalized cylinder between them. We find the critical points where
Lhe four types of transitions -' "birth", "death", "merging", or "splitting" - occur,
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SPLIT

BIRTH 3

Figure 9.

This figure shows a torus, and the location of its four critical points: a maximum, two saddle points,

and a minimum. Below the first saddle point, the sections of the torus are single loops. Above this

critical section, whose contour resembles a "figure-eight", the contours split into two sets of

loops/section. The torus can be represented in terms of its critical points, and the generalized

cylinders which lie between critical levels. In general position, any differentiable manifold has a

finite, separated set of critical points, so that the situation illustrated in this figure is g-e.ic for the

kinds of surface which we wish to triangulate.

and write a program or script for the simple triangulator. This script contains the com-
mands a human would normally be required to provide to instruct the simple triangulator

on the proper association of contours around the critical levels. We use the Mosaic pro-

gram of Movie.BYU for the simple triangulator stage of the process. (The "compiler

approach" which we follow makes it easy to substitute other simple triangulators. In

effect, we construct a high-level syntactic description of the surface consisting of critical
points and generalized cylinders, and then write a program in a low-level language (such

as a script for Mosaic) to effect the triangulation.

Figure 10 shows an example of the triangulation of a monkey brain from the voxel

surface of figure 1.
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Figure 10.

This figure shows a polyhedral model of the same brain represented in figure 1, in terms of triangular
surface patches, of typical size about .5 mm'. This triangulation is the final output of the algorithm
of the present paper, that is, this triangulation was produced completely automatically, with no hu-

man interaction or decision. There are 1776 triangles in this model.

This triangulation, consisting of about 2500 triangles, was accomplished purely
automatically, using the above described algorithm. To the best of our knowledge, this
algorithm is the only algorithm currently known which is capable of triangulating a sur-
face as .o'plex as that of the monkey brain, with no human interaction. It is based

entirely on the connectivity properties of the voxel surfaces produced by the brain peeler.
A ftull description of the implementation details of this algorithm can be found in [16].

S UXI MARY

Given a solid shell, described by voxels, we discuss several methods of obtaining
the tangential voxel surfaces whose union is this shell. We call this operation "peeling",
and illustrate its application with data of monkey visual cortex. Secondly, we show that a
representation of a voxel surtace, consisting of the tangential curves whose union is the
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surface, has connectivity properties which allow us to perform a conversion into
polyhedral representation of the surface. This algorithm is based on the observation that
the sole difficulty in triangulating a surface is caused by the existence of critical points,
and these critical points can be easily located and bridged by using the connectivity pro-
perties of the voxel representation of the surface. We demonstrate this triangulation algo-
rlhm on the samric monkey data, and show that it is capable of constructing a polyhedral
representation from the voxel representation of a highly complex surface.
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