The lux genes of Vibrio fischeri encode the ability of this marine bacterium to produce light. V. fischeri occurs at high density in specialized light-emitting organs of certain marine fish, where the light produced is used by the fish. V. fischeri is also found in seawater, where it exists as a member of the bacterioplankton. In the planktonic habitat light-production is not useful and in fact V. fischeri possesses a genetic control mechanism which enables light production when the bacteria exist in the symbiotic state but does not allow synthesis of the light-emitting system when V. fischeri is in the planktonic habitat. This regulatory phenomenon is termed autoinduction, and the aim of this research is to fully elucidate the mechanism of autoinduction. Specific objectives of this research effort include a structure/function analysis of the sensory receptor; the LuxR protein, purification of the LuxR protein and development of a defined in vitro assay for studying lux gene transcription.
PROGRESS REPORT ON CONTRACT N00019-88-K-0570 R & T Code 441d019

PRINCIPAL INVESTIGATOR: Everett P. Greenberg

CONTRACTOR: University of Iowa

CONTRACT TITLE: Regulation of lux Genes in Vibrio fischeri: Control of a Symbiosis-related Gene Expression System in a Marine Bacterium

START DATE: 15 August 1988

RESEARCH OBJECTIVE: To elucidate the mechanism of autoinduction of the Vibrio fischeri lux genes and to understand some of the physical factors which affect autoinduction. Specific objectives include development of an in vitro assay for autoinducer controlled transcriptional activation of lux genes, determination of the nature of the autoinducer interaction with its receptor, and the nature of the receptor interaction with DNA.

PROGRESS (Year 1): In the initial year of this ONR project, we have studied mutations in luxR; the gene encoding the transcriptional activator of V. fischeri luminescence. We have also made considerable progress towards purification of the luxR product for studies of the activity of this protein.

A number of luxR point mutations have been obtained. One class encodes LuxR proteins which do not activate transcription of the other lux genes. These mutants were isolated in the following manner: Hydroxylamine mutagenesis of pHK724 (a plasmid containing luxR under control of the tac promoter) was performed in vitro. The pool of mutagenized plasmids was used to transform E. coli cells containing pHK555 a plasmid compatible with pHK724 which possesses functional copies of all the lux genes except luxR. Transformants incapable of light production were considered luxR mutants. Sixteen such mutants were obtained and the plasmids derived from pHK724 were transferred to E. coli JM109 without pHK555. Each of these strains was screened by Western immunoblot procedures using anti-LuxR rabbit antiserum. Of the 17 strains, ten produced proteins of the appropriate molecular weight. Apparently the plasmids in these strains carried luxR missense mutations. The mutations in the ten luxR mutant genes encoding detectable protein have been sequenced. In nine, the mutations give rise to a single amino acid residue replacement. These mutations cluster in two domains of the 250 amino acid residue LuxR protein. Three are in a region between residue 94 and residue 127 and six are in a region between residues 184 and 230. Based on homologies with a group of other DNA binding protein, Henikoff, Wallace and Brown (Methods in Enzymology, In press), suggested the LuxR DNA-binding domain was around residues 200-220. Thus, the mutant analysis suggests the region between residue...
184 and 202 is in the DNA-binding region. One would deduce then that
the region defined by the mutations changing residues between 94 and
127 defines the area important to the autoinducer interaction. In support
of this conclusion, the phenotype of the mutant encoding a protein with
a substitution at residue 127 is reversible by exogenous addition of
autoinducer.

The second aspect of the project that we have initiated involves
purification of LuxR. Previously, we overexpressed luxR in E. coli and
purified the overexpressed protein product. However, the overexpressed
protein was synthesized in the form of inactive inclusion bodies. We
have used antibodies raised against the pure but inactive LuxR protein
as an analytical tool to detect soluble LuxR in cell extracts. In fact
when the inclusion bodies are removed from extracts of E. coli a significant
amount of soluble LuxR remains as detected by Western immunoblotting.
This protein cannot be visualized by comassie blue staining of SDS-gels
of these extracts. We have partially purified the soluble LuxR from these
extracts. The approach may be of general utility in cases where
inclusion bodies form upon overexpression of a foreign protein in E. coli.

WORK PLAN (Year 2): The mutations described define two regions in the
terminal two-thirds of the LuxR protein that are important to activity.
Thus, I now plan on deletion analysis in which parts of the 5'-third of
luxR will be excised in order to produce shorter proteins. I anticipate
that analysis of strains carrying these mutations will lead to some
understanding of the function of the N-terminal region of LuxR.

We also intend to completely purify the LuxR protein and initiate
our analysis of its activity in vitro.

INVENTIONS (Year 1): No inventions.

PUBLICATIONS AND REPORTS (Year 1):

1. A manuscript describing the analysis of luxR point mutations is
   in preparation.

TRAINING ACTIVITIES: One Postdoctoral Fellow (Dr. James Slock) and one
graduate student (Ms. Dana Kolibachuk) have been working on this project
since August, 1988. A second graduate student (Mr. Sang Ho Choi) joined
the lab to work on this project in March, 1989. Stipends for each of
these individuals are provided by sources other than this contract.
Dr. Slock left in July to assume a faculty position at King's College
in Pennsylvania. Dr. Kendall Gray joined the group in August, 1989 as
a Postdoctoral Associate. The demographic data regarding these students are

   Women or minorities - 1
   Non-citizens - 1 (citizen of Korea)

Sea Grant Postdoctoral Scholar Award to Dr. James Slock, August, 1988.
Sea Grant Postdoctoral Scholar Award (Continuation) to Ms. Dana Kolibachuk.
BELAS, M. Robert
Center of Marine Biotechnology
University of Maryland
600 East Lombard Street
Baltimore, MD 21202

BLAKE, III, Robert C.
Department of Biochemistry
Meharry Medical College
Nashville, TN 37208

BLAKEMORE, R. P.
Department of Microbiology
University of New Hampshire
Durham, New Hampshire 03824

BURCHARD, Robert P.
Department of Biological Sciences
Univ of Maryland-Baltimore County
Catonsville, MD 21228

CLARK, Douglas S.
Dept of Chemical Engineering
University of California
Berkeley, CA 94720

COOKSEY, Keith E.
Department of Microbiology
Montana State University
Bozeman, MT 59717

DENNIS, Patrick P.
Department of Biochemistry
University of British Columbia
2146 Health Sciences Mall
Vancouver, B.C. V6T 1W5

DOOLITTLE, W. Ford
Department of Biochemistry
Dalhousie University
Halifax, Nova Scotia
CANADA B3H 4H7

EISENBERG, Henryk
The Weizmann Institute of Science
Dept of Polymer Research
P.O. Box 26
Rehovot 76100, Israel

EPEL, Dvid
Hopkins Marine Station
Stanford University
Pacific Grove, CA 93950

FELBECK, Horst
Marine Biology Research Division
Scripps Institution of Oceanography
University of California – San Diego
La Jolla, CA 92093

FISHER, Charles R.
Marine Science Institute
University of California-Santa Barbara
Santa Barbara, CA 93106

GIBOR, Aharon
Marine Science Institute
University of California
Santa Barbara, CA 93106

GONZALEZ, Elma
Department of Biology
UCLA
Los Angeles, CA 90024

GREENBERG, Everett P.
Department of Microbiology
University of Iowa
Iowa City, Iowa 52242

GUNSALUS, Robert P.
Department of Microbiology
UCLA
405 Hilgard Avenue
Los Angeles, CA 90024

GUPTA, Ramesh
Southern Illinois University
Dept of Chem and Biochemistry
Carbondale, IL 62901

HAYGOOD, Margo
Marine Biology Research Division
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093

JENSEN, Roy A.
Department of Microbiology
University of Florida
Gainesville, FL 32611

KELLY, Robert M.
Dept of Chemical Engineering
The Johns Hopkins University
Baltimore, MD 21218

KIRCHMAN, David L.
College of Marine Studies
University of Delaware
Robinson Hall
Newark, DE 19716

KONISKY, Jordan
Department of Microbiology
University of Illinois
809 South Wright Street
Champaign, IL 61820

LEADBETTER, Edward R.
Dept of Molecular and Cell Biology
University of Connecticut
Box U-131
Storrs, CT 06268

LIAO, Hans H.
Biotechnology Center
University of Wisconsin
1710 University Avenue
Madison, WI 53705

LIDSTROM, Mary E.
Keck Laboratories 138-78
California Institute of Technology
Pasadena, CA 91125

MORSE, Daniel E.
Marine Science Institute
University of California
Santa Barbara, CA 93106

MITCHELL, Ralph
Division of Applied Sciences
Harvard University
125 Pierce Hall
Cambridge, MA 02138

NADATHUR, Govind S.
Marine Science Institute
Univ Cal-Santa Barbara
Santa Barbara, CA 93106