ETL-0548 o

AD-A214 481

Vision-Based Navigation

and Parallel Computing
First Annual Report

Larry S. Davis DT[C
Daniel DeMenthon 7 FLECTE =
Thor Bestul NOVR 21383 B

David Harwood D s, i

University of Maryland
Center for Automation Research
College Park, Maryland 20742-3411

August 1989

Approved for public release; distribution is uniimited.

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

8Y 1l

UNCLASSTFTED

JECJRITY CLASSIFICATION OF THIS 2ale

: REPORT DOCUMENTATION PAGE

ta. REPORT SECUR!TY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCL_ASSIFTE N2
. 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION 7 AVAILABILITY OF REPORT
N/A Approved for puplic relesazce; Zicwrizuzion
_20. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited
CN/R
. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBERI(S)
: ST -NE4AR
6a. NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
: (if applicabie)
1
! University of Maryiand N /A 11 S Aymy Fnrminear Tanamvaniric | seapcenvise
6c ADDRESS {(Gty, State, and Z2IP Code) 7b. ADDRESS (City, State, and 2IP Code)

nter for Automation Research

Colisge Park, MD 207472-3411 Fort Belvoir, VA 220E0-C5L4F
8a. NAME OF FUNDING / SPONSORING B0, OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION pefense Advanced (f applicable) DACA76-88-C-0008 —
Research Proiects Agency 1STO ARPA Trder Ne. 6250 Proagram Cade Ne, 8570
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCZ OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
1430 Wilson Bivd. ELEMENT NO. NO. NO. ACCESSION NO
r?incuon YA 2720¢ 52301E

. TITLE (Incluge Secunty Classification)

VISION-BASED NAVIGATION AND PARALLEL ZOMPUTING -- First Annual Rennrt

12. PERSONAL AUTHOR(S)

tarry S. Davis, Daniel DeMenthon, Thor Bestul, and David Harwood

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT
Annual FROM _5/88 10 _§/8Q August 1989 oL
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock numober)
FIELD GROUP SUB-GROUP

,autonomous navigation, computer vision, paraiiel
process1ng, search -(/kfp y (——

4
;

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

1
© This report describes research performed during the period May 1988-May 1289 under DARPZ
suppong The report contains discussion of four main topics:
1. On-going research on visual navwgatwon, focusing on a system named RAMBJ, for the
. study of robots acting on moving bodies,
2. Development and ‘implementation of parallel algorithms for image processing and
computer vision on the Connection Machine and the Butterfly,
3. Development of parallel heunistic search algorithms on the Butterfly thaz nave
. linear speedup properties over a wide range of problem sizes and machine sizes. '’
&, Development of Connection Mafh1ne a]gor1thms for matrix operations ithat are Key
computational steps in many image processing and computer vision algorithms.
esearch has resulted in twelve technical reports, and several publications in cor-
es and worksnops.—_ _~

S e
e

Thi

r
erang

t[) wn

s

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATICH
B UNCLASSIFIED/UNLIMITED (] SAME AS RPT {JoTmic USERS UNCLASSIFIED

22a. NAME OF REZPQNSIBLE INDIVIDUAL 22b. TELEPHONE (Inclurie Area Code) [22¢. OFFICE SYMBOL
_‘ni3 Graff (2072) 355-2818 CEETL-RT-T
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

UNCLASSIFIED

PREFACE

This report describes work performed under Contract DACAT6-88-C-0008 by the Cen-
ter for Automation Research, University of Marvland, College Park. Maryland for the U.S.
Army Engineer Topographic Laboratories (ETL), Fort Belvoir, Virginia. and the Defense
Advanced Research Projects Agency (DARPA), Arlington, Virginia. The Contracting Of-
ficer's Representative at ETL is Ms. Linda Graff. The DARPA point of contact is Dr.

William Isler.

I Acce iy T !
. - o i
T3 T8

, by Ys ! ‘

LJ 1 J

Oy i
ot t i I

1

Contents

1. Introduction

2. Navigation

2.1. RAMBO: Vision and Planning on the Connection Machine
2.1.1. Overview L
2.1.2. Experimental Set-Up L
2.1.3. Pose Estimation 0 oo
2.1.4. Connection Machine Impiementaticn
2.1.5. Task and Trajectory Planning
2.1.6. Perspectiveso

2.2. Zero-Bank Algorithm with Global Optimization
2.2.1. Backgroundo
2.2.2. The New Approach
2.2.3. The Algorithm L o
2.2.4. Experiments Lo e
2.2.5. Conclusions

3. Parallel Vision

3.1. Multiresolution Techniques
3.1.1. Pyramids and Hough Transform on the Connection Machine
3.1.2. Fast Addition on the Fat Pyramad
3.1.3. Replicated Image Processing

3.2. Quadtrees on the Connection Machine

3.3. Benchmarking Activitieso o oo
3.3.1. Border Tracking with an Implementation on the Butterfly Parallel

Computer e e
3.3.2. Parallel Matching of Attributed Relational Graphs

4. Parallel Iterative A* Search

4.1, Overview
4.2. The A® Algorithm
4.3. The PIA® Algorithm
4.3.1. Data Structures
4.3.2. TIteration Threshold, Mandatory Nodes and Speculative Nodes
4.3.3. The Node Expansion Procedure
4.34. Determining tV
4.3.5. The Successor Distribution Algorithm
4.3.6. The Node Transfer Procedure
4.3.7. Termination L0
4.4, Analysis L e
ik

e

S =1 e NN

. Parallel Matrix Operators 35
5.1. Generalized Matrix Inversion on the Connection Machine 33
5.2. Grid Evaluation-Interpolation on the Connection Machine 35

5.2.1. Grid Evaluation-Interpolation using Tensor Products and General In-
VETSION . . o . o v i e e 35

5.2.2. Grid Evaluation-Interpolation using Multivariable Spline-Blending Ap-
PIOXIMAtIoONn 36

. Conclusions and Future Research 37

List of Figures

LI I

-1

Vision-based control loop for a robot acting on a moving body.
Range Scanner System . . . e

A tagging joint takes a reaching trajectory during time T to reach a goal
trajectory required to grip a handle on the target.

The cross-segment of the world road is assumed horizontal and perpendicular
to the tangents at its end points. The tangents are assumed parallel. A
condition satisfied by the matching points in the image which also involves
the image tangents and the vertical direction is deduced.

Results of range/video fusion algorithm showing (a) the epipolar arcs drawn
withing the ERIM image, (b) profiles showing the camera pixel ray and the
elevation derived from the ERIM data along an epipolar arc. and (c) a per-
spective view of the resulting scene model. [

Results on a slightly curved, upsloping road scene. (a—c) show the fusion
algorithm compared with: (a) the flat-earth algorithm, (b) the modified zero-
bank algorithm, and (c) the hill-and-dale algorithm. An overhead view of all
four approaches issnown in (d).

Layout of the nodes of a 4-level pyramid mapped onto virtual processors linked
by a Boolean 6-cube.o

1. Introduction

This report describes research conducted during the period May 1983 - May 1939 under
DARPA support. Our research during this past vear has focused on four main areas:

1. Core research on autonomous visual navigation. Here, we are developing a svstem
called RAMBO. RAMBO is an acronym for Robot Acting on Moving Bodies. RAMBO
performs complex visual surveillance tasks on a moving object. In order to accomplish
its tasks RAMBO must establish a model for the motion of its target. monitor and
update that model over time, and plan and execute a trajectory that will allow it 1o
illuminate specific points on the surface of the target with a laser. RAMBO is being
implemented on the Computer Vision Laboratory’s Connection Machine. Our progress
on this project is described in Section 2.

2. Parallel vision algorithms. In order for RAMBO to successfully complete its tasks it
must solve a variety of vision problems. If systems such as RAMBO are to operate
in real time, then these vision problems must be solved using parallel algorithms.
We are focusing on the effective utilization of the Connection Machine for solving
vision problems at all levels of analysis—low level vision (preprocessing. local feature
extraction), intermediate level processing (matching, stereo, motion) and high level
processing (recognition and planning). In Section 3 we describe or research on parallel
vision algorithms. This research includes general multiresolution image processing
methods for the Connection Machine, as well as quadtree algorithms.

3. Search plays a central role in almost all Artificial Intelligence Systems. and especially
at higher levels of analysis in vision systems. We have developed a new parallel search
algorithm for MIMD machines, and have implemented this algorithm on the Labora-
tory’s Butterfly. Experiments with the algorithm have resulted in linear specdups up
to large numbers of processo.s (96) on realistic scheduling problems. The algorithm
and some representative experi'.:ental results are presented in Section 4.

4. Parallel matrix operators. Many complex i1mage processing operations. including restc-
ration and reconstruction from projections, are based on common matrix operations
(multiplication, inversion, etc.) We have developed several Connection Machine matrix
manipulation algorithms. They are described in Section 3.

Our research during the first year of the current contract has resulted in twelve technical
reports. The titles and abstracts of these reports are included at the end of this annual reporr.
We also present, in Section 6, some brief remarks concerning our goals for the coming vear.

2. Navigation

2.1. RAMBO: Vision and Planning on the Connection Machiue

2.1.1. Overview

We now describe research being performed on a system named RAMBO (Robot Acting on
Moving BOdies). RAMBO resides principally in the “mind™ of a Connection Machine. and
drives a monocular camera and laser pointer (attached to a robot arm) through space. A
second robot carries a target (perhaps along a “virtual” surface to mimic the motion of a
vehicle along the ground) attached to whose surface are sensors (light-sensitive diodes; wirh
focusing optics. RAMBO’s general task is to illuminate a set or sequence of these sensors
for specific durations of time, possibly subject to overall temporal constraints.

We briefly describe the functions of the Jdifferent modules of this system. from data
collection to robot motion control.

1. The digitizer of the video camera mounted on the robot arm can obtain video frames
when new visual information is needed.

[S]

A low level Connection Machine vision module extracts the locations of the projections
of model features (i.e., polyhedral vertices) from the image. Once a model for the
target’s motion has been established, the predicted locations of visible target features
are established using fast table lookup procedures implemented in the Connection
Machine.

3. An intermediate level vision module establishes the instantaneous pose (location and
orientation) of the target in the camera coordinate system.

4 The tarvet mation nredictor fits a target trajectory in location/orientation space to
the most recent historv of instantaneous pose estimates. The trajectories of so-called
goal points around the target (called goal trajectories) are also determined. A goal
point is a location fixed in the frame of reference of the target that one of the robot
joints has to follow in order to accomplish one of the basic illumination subtasks of
the total task. I'ne determinaticn of these trajectories should ideallv take into account
the subsequent visibility of a sufficient number of target features to verify or modify
RAMBO’s model of the target’s motion. and safety criteria that would allow RANMBO
to move away from the target to a safe viewing location in the event that the target's
motion changes in an unanticipated way.

5. From the predicted goal point trajectories. the robot motion planner calculates rhe
robot motions necessary for following the goal trajectories. and the resulting camera
trajectories. [f the subtasks were not ordered in the original task specification. then the
motion planner orders them (using either optimal or heuristic methods). The camera
trajectories are used for transforming subsequent target pose estimates from the camera
coordinate system to an absolute coordinate system. In our current implementation.
the Connecticn Machine is used to plan a smooth motion from one goal .rajectory to
a subsequent goal trajectory (from which the next subtask can be performed).

{)

&

AR e

The RAMBC project tiwas provides us with a context for studying several basic classes of
problems in vision and visual navigation. These problems inzlude the development of parallel
Connection Machine algorithms for efficient image processing and analysis. visual tracking.
and visual planning.

[n order for RAMBO to complete even its most basic navigation task. it must be capable
of visually tracking its target through space. Feasible tracking algorithms depend on many
factors including sensor field of view. processing time per frame. relative motion of the target
and the sensor. accuracy of sensor control. etc. We can identify two basic approaches to visnai
tracking that are relevant to RAMBO:

I. Two-dimensional tracking algorithms. in which the target can be kept in the field of
view by determining its image motion, and computing a suitable sensor motion tha:
"nulls” or minimizes the image motion.

Qv

Three-dimensional tracking, in which a complete three-dimensional i3-Dj model of the
target’s relative rigid body motion is established. and a sensor morion is determined
that would cause certain components of the relative motion to be zeroed ifor exampie.
when RAMBO is firing its laser at the target. we might want all components of the
relative rigid body motion between RAMBO and the target to be zeroj.

While approach (1) is simpler, it is not always applicable or sufficient. lts applicabilitv
depends on the factors listed above (i.e.. sensor field of view, frame processing rate. etc.:.
although little research has been conducted that reveals the conditions under which two-
dimensional (2-D) methods can be used for tracking. For example. given a frame processing
rate, a model for the accuracy of image motion estimation and a model for the control acei-
racy of the sensor. one would like to know the minimum field of view that would gnarantee
(with some probability) that the target could be tracked.

However, even if it is possible to keep the target in the field of view using two-dimersional
methods, it might not be sufficient for the overall planning process. For example. RAMBO
should compute its trajectory through space based not only its particular sequence of illu-
mination tasks, but also based on its ability to retreat if the target changes its motion in a
way that might potentially cause it to collide with RAMBO. This type of analvsis can be
more eastly accomplished using direct three-dimensional models.

One standard approach for three-dimeunsioial tracking ic te comnute a <equence of in-
stantaneous target pose estimates. and then to fit a motion model to this sequence of pose
estimates. The pose estimation problem arises in cther applications as well (e.g.. object
recognition). so is of general interest. In Section 2.3 we describe a Cannection Machine pose
estimation algorithm. This algorithm, based on methods previously developed in our laho-
ratory, involves generating target pose hypotheses from matches of triples of image features
to triples of target surface features. and clustering appropriate low-dimensional projections
of the complete six parameter pose estimates. The algorithm is very fast. generating a pose

estimate in the order of one second of Connection Machine time.

The overall computational architecture of RAMBO has not been finalized vet, but shonld
be quite similar to the crie we previously developed for road and road network navigation with
separate computational modules for image processing, geometric reasoning. sensor control,

3

-——-—

“‘

motion planning and plan supervision. RAMBO S task set. however, leads to a much richer

<et of problems in visual planning. In Section 2.5 we describe how RAMBO derermines an
appropriate sur: Kk ordering if the imitial task definition does not specify a tixed snbtisk
ordering, a ' also explain how the Connection Machine can be used to establish smoorh
motions between conseciutive goal trajectories.

2.1.2. Experimental Set-Up

1 N

We mounted a CCD camera and a low-power laser pointer on the tool plate of the dmerecan
(“imfler robot arm. Images from the camera are digitized and can be <ent 1o the Connectiorn,
Machine for processing. We purchased a smaller robot arm i Mitsubishe RM-501. woren carn
translate and rofate an object (the target) through space. Several light-sensirive diodes with
{ocusing optics are mounted on the surface of the object. RAMBO s goal 1s to hir a <equence
of diodes on the moving object with its laser beam for given durations. possibiv subject +,
overall 1ime constraints. Electronics inside the object monitor the sratus of the diodes and
‘ransmit this status to a computer through a serial line.

Simultaneouslv, we are developing a full computer simulation in which the camera mpr-
are replaced by syvnthetic images. Figure | is a schematic representarion of the equipmen:
This Heure also shows the vision-based control loop—using actual and simnlated images.

We also built a Fast Range Scanner. which has various applications for navigzation an:
calibration within the RAMBO project. The range scanner design is based on the followiny

KNOWD principie:

e A\ sheet of light is scanned across the scene in small increments. so that at the ent of
the scan all the points of interest in the scene have been illuminared.

e Fur each scanning position of the sheet of light. a camera collects an image of the scene
containing the stripe of light created by the sheet.

e [n cach camera image obtained from previous step. and for each 1mage pixel which
helongs to the centerline of a stripe. the distance of the corresponding point which i«
illuminated by the sheet can be obtained. because such a point 15 at rthe intersection
of the sheet of licht and the line of sight given by the pixcl. This step s repeared Gy
all pixels on the centerline of a stripe.

[n 1987, we designed and built a range scanner based on these principles. The two main
problems with that scanner were the very long time of range image acqpusition faronnd ~
minntes; and the poor precision of the range image obtained. dne to the thickness of rhe
licht stripes created by a remote light source and a fiberoptics light ande.

The goal of this project was to build a range scanner with better precision and faster
aceuisition speed. The precision is improved by the use of a laser source and companents
monnted ua an optical tanle. The speed-up is obtained by building hardware specialized for

the detection of the stripe pixels.

2.1.2.1. Cptical Components

The range scanner system contains a laser source with optics. a mirror rotated by a stepping
motor and a camera. [t is illustrated in Figure 2.

The laser source i1s a 1 mW helium-neon laser. [t is equipped with optics transforming
the laser beam into a thin sheet of light. The sheet of light spreads around 7.5 degrees on
each side of the original beam axis.

The mirror is used to scan the sheet of light across a scene. The mirror is mounted on
the axis of a stepping motor block. The stepping motor block includes a harmonic gear with
virtually zero backlash. The step angle is 0 0144 degrees.

The camera does not uwse a CCD sensor. Instead. a light-sensitive RAM (Random Access
Memory) is mounted on the image plane, and provides a digitized 256 x 123 one bit deep
image directiy. This “Optic RAM” is a normal 64 kbit dynamic RAM (D-RAM covered hu
a transparent window. and light can hit the memory cells through this window and discharge
these cells. In a D-RAM. all of the cells keep losing their charges. but in a cell which receives
light. the discharge becomes more active. The optic RAM uses this feature. All cells are
charged to 5V, then are read after an exposure time called soak time. The cells exposed to
sufficient illumination have their voltage drop below a given threshold. and these locations
correspond to an image pixel with the value 0, while the cells which kept. their charges above
the threshold are given the value 1. Then all the cells are charged again for a new soak time
and a new image.

Compared to a CCD sensor, an optic RAM is both an image sensor and an image memory.
resulting in a simpler circuit. A CCD camera would require a digitizing circuit and a frame
buffer, and would store several bits per pixel. more than is needed to simply detect positions
of stripes of light. The drawback of the only Optic RAM sensor available on the market is
that it was not optimally designed for optical applications. 1t is very small (4.42 mm x 0.3%
mm) compared to CCD chips. so that in order to get an acceptable field of view a lens with
short focal length must be used. Such lenses have a tendoncy to absorb a lot of light and
distort the image. Also, the width of the field is five times its height. whereas most CCDs
give a fleld 1.5 wider than its height. We are investigating new light sensing components
such as CIDs (Charge [njected Devices; which have similar advantages to the Optic RAM
but larger dimensions.

2.1.2.2. Control Hardware

This hardware system consists of about 30 logic ICs. with a NuBus parallel interface to the
Macintosh [I computer. [t includes the stepping motor controller. the Optic RAM controller.
the stripe detector. the stripe buffer and a conversion table RAM. By nsing this circnit. we
can control all of this system and gct the desired range.

e Optic RAM Controller

The Optic RAM controiler has a refresh counter. a row address counter and a colinmn address
counter. When the optic RAM is not exposed. we always refresh it. We use 2-phase. ps

clocks for system clocks and use a half-period for refresh. and another half-period for the
read/write operation. We need 256us to refresh the whole row of image cells. The pixel
which is addressed by the row and column address counters can be read or written in this
period. The hardware can access each pixel at a rate of I MHz.

The camera and laser source are mounted in such a way that stripes of light are almost
parallel to rows of the RAM light-sensitive array. Each column is scanned until a pixel 0
is found. indicating that we reached the leading edge of a stripe. Then we keep scanning
until we find a pixel 1 indicating that we reached the other edge of the stripe. We deduce
the address of the centerline of the stripe half way between these two pixels. The hardware
circuit repeats this process for each column of the array.

Now, for the first stripe in the scanning process we start the search from the edge of
the array. But if we assume we swing the laser from left to right. the next stripe generallv
appears on the right of the previous one. We use this property to start looking for the next
stripe from the leftmost pixels of the previous stripe. The whole process is implemented in
hardware.

e Stripe Buffer

We use a 1 kbyte FIFO memory as a stripe buffer. The data coming at high speed from the
stripe detector are fed to the FIFO and can be read more slowly.

¢ Range Conversion Table

A conversion table gives the range when the stripe address and the mirror angle are given.
This table is calculated in the host computer prior to the range image capture from geometric
parameters of the relative mirror-camera configuration and transferred to two 32kbyte RAMs
of the Range Detector board.

2.1.2.3. Operations

For a 256 x 128 range image, a sequence of around 256 images must be processed. each with
a stripe at a slightly shifted position, created by a new angle of the mirror shifted by 0.0144
degrees with respect to the previous step. One step of this process consists of moving the
mirror, soaking the Optic RAM, detecting the positions of the centerline pixels of the stripe.
reading the corresponding ranges in the conversion table, and transferring the range data.

At first we move the mirror from the home position to the first angle. and start soaking
the Optic RAM, i.e. we stop refreshing the optic RAM. Then we start detecting a stripe.
while moving the mirror to the next angle at the same time. The time for the stripe detection
depends on the shape of the stripe. and is of the order of 10 ms. This time becomes longer
when we can’t detect a stripe (it can be hidden behind an object). The time for moving the
mirror and letting it settle does not exceed 10 ms.

Then we can start to soak the Optic RAM for the next stripe. Mearwhile we start

trausferring the range data to the computer. The transfer time is very short compared to
the soak time, because we use a NuBus parallel interface, which is about 30 times faster than

—

the RS232 serial interface of the Macintosh Il computer. With a lens of 10 mm focal length.
we need 10 to 20 ms for soaking, and 4 to 10 seconds to get the whole range image. But
when we use a lens of 4.3 mm focal length, to get a wide field (30 degrees x 10 degrees). we
need about 70 ms for soaking because this lens absorbs, and about 20 seconds are required
to get the whole range image.

Prior to capturing a range image, we can run a self-diagnostic routine, which checks the
Optic RAM. the Stripe Detector and the Range Conversion Table.

2.1.3. Pose Estimation

‘We are presently exploring Kalman filtering techniques for predicting future poses of a poiv-
hedral target from past estimates. Using these techniques in a “feed-forward™ mode of
processing, we can quickly compute a new pose estimate based on predictions of the image
projections of specific target surface features. However, in order to “bootstrap™ this proce-
dure, or to recover from gross errors due to either changes in the trajectory of the target
or mistakes in image analysis, we have developed a Connection Machine pose estimation
algorithm that is not based on any prior knowledge of target pose or motion. This algorithm
is based on work originally performed by Linnainmaa, Harwood and Davis in our laboratory.
In that paper, we showed that if a triple of image features (i.e., perspective projections of
polvhedra corners) could be matched to a triple of target surface features, then a simple
quartic equation can be solved to determine a small number of six degree of freedom pose
estimates (in fact, the equations almost always have only two solutions). Since it is difficult
to determine which image features match to which target features in the absence of prior
knowledge, the basic hypothesis generation procedure is embedded in a clustering algorithm
that matches many combinations of three image features against combinations of three target
features. Various heuristics can be employed to reduce the combinatorics of this matching
process. The key to the success of the clustering process is the choice of an appropriate
projection of the six-dimensional pose space in which to perform the initial clustering. The
projection used was a two-dimensional projection corresponding to the visual direction to the
target center under any hypothetical pose estimate. Within each bin of this two-dimensional
clustering space, pose estimates were grouped by visual size of the target.

A straightforward implementation of this algorithm on the Connection Machine would
result in a very slow pose estimation process because of the intensive floating point arith-
metic operations associated with solving the quartic equations determined by each image
triple/target triple combination.

Our Connection Machine pose estimation algorithm combines three ideas:
e Pose estimation by matching triples of image features to triples of target features.
e Standard camera rotations.

e Paraperspective approximation to perspective projection.

This combination allows the extensive use of lookup tables in lieu of costly Hoating point
arithmetic operations. Feature points detected in the image are grouped into triples (called

|

image triangles). Each image triangle is defined by a distinguished vertex (called the refer-
ence verter). the lengths of the two adjacent sides, and the angle between them (the reference
angle). Image tiiangles can be computed for all triples of detected image features (three tri-
angles per triple. since anv point can be chosen as the reference vertex) or various heuristics
can be emploved to reduce the number of image triangles constructed (for example. our
current implementation includes a simple test for vertex connectivity).

The determination of the target’s pose is somewhat simplified if each image triangle is
first transformed so that its reference vertex is at the image center and one of its edges is
coincident with the image r-axis. This is equivalent to a rotation of the image plane (with the
rotation parameters expressed as functions of the reference vertex’s initial image position:
to bring the reference vertex to the image center, followed by a camera roll to bring one edge
into coincidence with the r-axis. Kanatani developed simple formulas for these rotations.
Combining these techniques, we compute the location of the centroid of the target. and then
comnpute its projection onto the image plane for each pose hypothesis. We then applv the
inverse transformations of the roll and standard rotation (that brought the reference vertex
to the image center to the target centroid projection) to compute the direction of sight of the
target under this particular pose hypothesis. A two-dimensional array of possible centroid
projections is maintained, and at each location in the array we count the number of image
triangle/target triangle pairs that yielded pose estimates resulting in that projected target
centroid location, and we maintain a list of those pairs along with the distances computed
to the target centroid. This information is used by a subsequent clustering algorithm to
identify large subsets of image triangle/target triangle pairs yielding sufficiently similar pose
estimates. :

2.1.4. Connection Machine Implementation

The Connection Machine is used in three ways to implement the pose estimation algorithm:

1. as a lookup table engine:

(8]

as a combinatorial machine, considering all combinations of image triangles and target
triangles:

3. as an image processor for calculating convolutions and finding peaks (clustering) in the
Hough transform space.

2.1.4.1. Lookup Table Engine

There are several different table lookup operations performed in the course of pose estimation.
First. the parameters of the standard rotation are stored in a two-dimensional lookup table
indexed by image position. The parameters of the inverse rotations are also stored in this
two-dimensional lookup table.

A second set of lookup tables is maintained, one for each possible target triangle. These
are also two-dimensional lookup tables, indexed by a. the reference angle of an image triangle
and A'. obtained by dividing the ratio of the two image triangle sides adjacent to a and the

8
R

ratio of the two corresponding target triangle sides. Each such table contains the three-
dimensional location of the target centroid as output {there is no need to explicitly store
or compute the intermediate variables correspcnding to the orientation and location of the
target triangle in the image coordinate system)

All of these tables can be computed beforehand and loaded into the Connection Machine.

2.1.4.2. Combinatorial Machine

Here we describe how the image triangle/target triangle pairs are distributed in the Connec-
tion Machine. We regard the Connection Machine as a two-dimensional array. Each target
triangle is assigned to one row of this array. The information initially associated with each
image triangle includes the image plane coordinates of its vertices and the parameters of
both the standard rotation and its inverse. The target triangle data is then scanned across
the rows and the image triangle data is scanned up the columns to create the combinatorial
pairing of image triangles/target triangles.

2.1.4.3. Image Processor

The analysis of the pose estimate voting patterns of the image/target triangle pairs involves
operations common to basic image processing. The two-dimensional clustering array of pro-
jected target centroids is represented in the Connection Machine by assigning one processor
per location of this two-dimensional array. After all votes are cast by the image/target tri-
angle pairs, the counts in this array are locally smoothed, and the smoothed arrayv is then
thresholded. The above threshold processors are then numbered according to their vote
strength, and the image/target triangle pairs that contributed to the above threshold counts
are selected for further processing.

A second clustering step is then applied, in parallel, to the triangle pairs corresponding to
each above threshold centroid projection. Each centroid projection is assigned to a row in a
two-dimensional matrix, and the triangle pairs that contributed to that centroid projection
are then loaded into the columns of that row and bucket sorted by Z coordinate of the
centroid. Each row 1s smoothed independently, and the highest cluster is finally selected as
the correct cluster. The triangle pairs that contributed to that cluster are then selected.
and a final least squares estimate of the target’s pose is computed based on the actual
correspondence of image features to target features.

2.1.5. Task and Trajectory Planning

In order to perform task and trajectory planning, RAMBO currently makes the simplifyving
assumption that a complex goal can be decomposed into a sequence of simple subgoals. and
that each subgoal can be performed with one joint of the robot in a fixed position with
respect to the target. This joint has to “tag along™ with the target and so we call it the
taggqing joint of the robot. The fixed position with respect to the target that the tagging
point must follow to complete a subgoal is called the goal point. All goal points required for
each complex action on a target can be predetermined and stored in a database of actions
specific to each target. Each goal point is defined by its pose in the target coordinate system.

9

———

As RAMBO proceeds from one subgoal to another. it will generally have to change the
trajectory along which it moves, so that at some time ¢, we would want RAMBO to launch
from its current goal trajectory and to land at some subsequent time. ¢, + 7. on a new
goal trajectory. The duration T is referred to as the reaching duration. Once t, and T are
chosen, then a reaching trajectory that takes RAMBO from its original goal trajectory to the
new goal trajectory can be determined by using, for example, a parametric cubic spline that
ensures continuity and smoothness at both takeoff from the original trajectory and landing
on the new goal trajectory. See Figure 3.

A subproblem. then. in controlling RAMBO’s motion from one trajectory to another is
the choice of T, the transit time. It should be chosen so that the resulting linear and angular
velocities and accelerations are within the limits of RAMBO's motions. Aadiucaally. the
resulting reaching trajectory should be safe in the sense that it should not cross the path
of the target and should not require RAMBO to assume impossible configurations. The
Connection Machine can be used to examine a range of reaching durations in parallel. finallyv

choosing the smallest reaching duration resulting in a realizable reaching trajectory.

We set up a two-dimensional array of processing cells with time as the vertical dimension.
and values of T as the horizontal dimension. Each column of the array contains a copy of
the predicted goal trajectory, with the first row containing the position of the goal at the
present time in location/direction space, the next row containing the position at a time
increment beyond that, and so on. Every column also contains a copy of the trajectory of
the tagging joint from the original trajectory, sampled with the same time increments as the
goal trajectory. The difference between columns is that they use different durations. 7. of
the reaching trajectory, increasing from one column to the next.

Each cell in the array computes a point of the reaching trajectory for the time ¢, cor-
responding to its row and for duration T corresponding to its column. It then computes
estimates of appropriate derivatives of its reaching trajectory by communicating with its
neighbors in the column. The maxima of the derivatives are computed for each column and
the column that has the smallest T for which the maximum derivatives are within bounds
is chosen to determine the reaching trajectory. The near term future motion of the robot
should be controlled based on this selected trajectory.

A rule-based system is used for completing sets of tasks. It is based on a heuristic strategy
for dealing with illegal trajectories (ones involving collisions or impossible robot positions or
motion derivatives) and incorporates either a greedy strategy for choosing tasks or a fixed
task ordering. Both versions are described below. Esseuntially, the following ordered set of
rules is iteratively applied until the set of tasks is completed. The rules were chosen te he
simple, but fairly robust.

Rule 1: If currently on the goal trajectory of an uncompleted task. remain on it for the
specified task duration, then restart rule set.

Y

Rule 2 (Greedy): Find reaching trajectories to all remaining goal trajectories. (hoose
quickest legal reaching trajectory to a goal trajectory and follow it until reaching the
corresponsding goal trajectory, then restart rule set.

Rule 2 (Fixed order): Otherwise. find reaching trajectory to the goal trajectory of the

10

next task in the desired sequence. Follow this reaching trajectory until reaching the
corresponding goal trajectory, then restart the rule set.

Rule 3: If thereis no legal reaching trajectory to a goal trajectory. find a reaching trajectory
to the “approach™ trajectory (this is a pre-defined trajectory relative to the target
motion from which some goal trajectory is likely to be reachable in the future). begin
tc follow this reaching trajectory and restart the rule set.

Rule 4: If the reaching trajectory to the approach trajectory is not legal, maintain present
position relative to the target and restart the rule set.

If a revision of the target motion model parameters occurs during the application of any
of the rules, the rule set is restarted. This is because a revision of the target motion will
sometimes cause a reaching trajectery or section of goal trajectory previously thought to be
legal to be disallowed. Most of the time, however, since the revisions of the motion model

parameters will not be large, there will be no drastic change in the robot motion due to
them.

2.1.6. Perspectives

This is an on-going project. We have described progress to date on constructing a set of
Connection Machine vision and planning algorithms that should allow RAMBO to plan.
monitor and execute a complex navigation task. These algorithms are currently being inte-
grated so that they may be tested on some simple initial navigation tasks. Additionally. we
are developing fast Connection Machine two-dimensional target tracking algorithms. which
could be interleaved with the more computationally demanding three-dimensional tracking
algorithms, and studying the applicability of logic programming and probabilistic reasoning
methods for specifying, synthesizing, monitoring and controlling RAMBO’s actions. Details
will be given in future reports.

2.2. Zero-Bank Algorithm with Global Optimization

We developed a new “zero-bank” method for the reconstruction of a road in three-dimensional
space from a single image. The world road is modelled in a similar way as in our previous
“zero-bank” method, 1.e. as a space ribbon generated by a centerline spine and horizontal
cross-segments of constant length (the road width) cutting the spine at their midpoint at a
normal to the spine. Because reconstructions of cross-segments are now independent of each
other, a global optimization of the road reconstruction can be used.

2.2.1. Background

Our previous zero-bank method was recursive, requiring the knowledge of a previous cross-
segment of the road to compute a new cross-segment. The problem was that at each recursion
step. up to three possible cross-segments were found by solving a cubic equation: each of
these three segments could be used as starting elements for up to three new cross-segments

11

e

at the next recursion step. leading to a tree of possible roads growing exponentially. To avoid
exploring all these alternatives. we chose in our previous method to keep at each step only
the most plausible cross-segment. namely the cross-segment giving the smallest changes of
road slope and turn. These are local criteria. however, whereas the goal is to obtain the best
global road reconstruction. The images of the road edges could be locally of poor quality.
leading to the wrong branching choice at this place of the tree of possible reconstructions.
and the rest of the construction downstream could suffer or be brought to a dead end.

2.2.2. The New Approach

In the new method. tangents to the road ecdges at the end points of cross-segments are
assumed to be approximately parallel. Thanks to this reasonable addition to the road model.
a recursive reconstruction is not required. Cross-segments can be found from any eiement
of road image, independently of previous pieces of reconstruction. Several possible local
solutions of cross-segments are still found. but in this case we do not need to make choices
until all the available evidence from the image has been used. Then we can choose the best
global reconstructed three-dimensional road passing through the alternative reconstructed
cross-segments. This global optimization is not computationally expensive because we can
apply a dynamic programming technique minimizing local slopes and turns.

2.2.3. The Algorithm

A summary of the algorithm is now given; Figure 4 illustrates the road geometry reconstruc-
tion.

1. In a preliminary step, not detailed here, some appropriate image processing techniques
have isolated the two curves of the edges in the image. and a polygonal approximation
has been found for each edge curve.

[Q]

Picking image points anywhere on one image edge curve, we are able to find the points
which are candidates for being matching points on the other image edge curve. (Two
image points are called matching points if they are images of the end points of cross-
segments.) We found an expression that two image points located on the facing image
edge curves and the tangents to the edge images must satisfy to be matching points. If
a; and a, are matching points and aj/ and d3/ are the tangent directions to the image
edges in these points, the following relation holds:

—

[V x (a1 x a2)] - [(a] x d1/) x (d3 x a3/)} =0 (N

For edge curves approximated by polygonal lines, the matching point a, can be on
a line segment. and its position between the end points of the line segment can be
expressed by a number between 0 and 1. whereas its tangent vector a3/ is constant :
or the matching point a; can be at an end point of a line segment. with a constant
position but with a tangent angle which can be expressed by a number between 0 and
1 within the range of angles of the two adjacent line segments. For one point picked
on one image edge, we check for each of the line segments of the other image edge

12

“~

N —— |

if a matching point belongs to that line segment, i.e.. if our expression gives a linear
coordinate between 0 and 1 for this line segment. Then we look for matching points at
the nodes of the polygonal line by checking if the expression gives a number between
0 and 1 for the tangent angle. We repeat these searches for several points a; picked on
one image edgze.

. For each point picked on one edge image, the previous step can give several matching
points on the other edge image. One of the reasons is that the images of the edges
can be very rough and wiggly. Another reason is that the condition used is only a
necessary condition for two points to be matching points in the image of the road
we are seeing. This condition is local and it is up to us to pick up among the found
matching points the pairs which are the most globally consistent. and discard the other
pairs. The criteria of optimization are three-dimensional criteria: thus at this step of
the algorithm, from the pairs of matching points, the corresponding three-dimensional
cross-segments must be found. This correspondence is unique if the cross-segments
are assumed horizontal and of known constant length. The constant length is the
width of the road, and cannot be defined by this method. The assumed road width
is a scaling factor in the reconstruction, whereas the optimization is based on angular
considerations, which are independent of scaling. For duiving a vehicie the road width
must eventually be obtained from other methods, such as stored data about the road.
the “Flat Earth” me.hod, or close-range methods such as stereoscopy or time-of-flight
ranging.

. The group of matching point pairs corresponding to a single point chosen on one edge
is the image of a group of world cross-segments obtained at the previous step. and the
world road can go through at most one of these cross-segments. If a sequence of points
along one road edge is taken. a sequence of groups of cross-segments is obtained. and
the world road must go through at most one of the cross-segments of each group. in
the same order as the sequence of points chosen on the first road image edge. Each
cross-segment can be represented by a node of a graph. A path must be found in the
graph, which visits each group in the proper sequence and goes through at most one
node of each group, and which maximizes an evaluation function which characterizes
a “good road”. The total evaluation function is the sum of the functions of each of
the arcs of the graph. The evaluation function for an arc is the sum of weighted cri-
teria. which grade the choices of individual cross-segments and the neighborhood of
consecutive cross-segments. based on angular considerations. It would also seem useful
to introduce constraints such as a requirement for small differences of slope between
successive patches, but this type of relation involves three successive cross-segments
and complicates the interaction graph. The previous unary and binary criteria actu-
ally appear to be sufficient for discarding unwanted nodes. Dynamic programming is
appropriate for this type of path optimization, and, compared to a brute force search
for the best path. greatly reduces the complexity of the search.

13

2.2.4. Experiments

Two types of experiments were perfornied: (1) reconstructions of roads from synthetic road
images and comparison with the road models used to create the synthetic images; and (2)
reconstruction of roads at Martin Marietta, Denver, from video data obtained from the ALV
with comparisons of the results with the reconstructions obtained by data fusion between
video data and ERIM scanner range data.

In the synthetic data experiments, a criterion of navigability of the reconstructed road was
defined. as the percentage of actual visible road that a vehicle half the width of the road can
follow without driving its wheels on the edge, if the vehicle were following the reconstructed
road given by the algorithm. For all configurations of slopes and image noise tested. the
navigability of the reconstructed road is significantly better with the new zero-bank method
than with the previous method or the Flat-Earth approximation.

In the experiment with actual road images at Martin Marietta, Denver. the “ground
truth” was given by 2 method combining range data and video data. developed by Morgen-
thaler and Hennessy. The road edges are detected in the video image. Considering the line
of sight of a road edge point, the world point of the edge is the point where this line of sight
intersects the ground. The line of sight has a range image (epipolar curve) which can be
sal.ulated cod superposed on the range image of the ground. The intersection of the line
of sight with the ground corresponds to a point on the epipolar curve point with the same
range as the ground point of the ground range image. From the ranges of several road edge
points a three-dimensional profile of the road edges is obtained. This is illustrated in Fignre

J.

Reconstructions were produced for around 50 road configurations including combinations
of turns and slope changes. Both methods proved quite robust, giving plausible and consis-
tent road reconstructions for all these tests; however, the ERIM laser ranger has a limited
range of action. Only the first 15 meters of the road could be reconstructed by the fusion
method. The reconstruction by the zero-bank algorithm extended at least twice as far in
most road configurations. In the short stretch where both reconstructions were available. the
agreement was considered good in top view (Figure 6). Differences of elevations appeared in
side view, aithough the difference would probab'y not have resulted in different steering of
the vehicle. The zero-bank algorithm used a flat earth approximation in the first segments
of the road to remove the scale-range ambiguity inherent to this algorithm. The flat-earth
plane is calculated as an extension of the plane of the points of contact of the vehicle wheels
with the ground. If the vehicle is on a local bump, the actual road will be lower than the
result of this approximation. The laser ranger will ol course detect this lower profile. and
the fusion algorithm should produce a correct road profile.

2.2.5. Conclusions

Experiments with synthetic data show that the new zero-bank method gives useful infor-
mation about road profiles even far away from the vehicle. Experiments with real data and
comparisons with road reconstrictions obtained by fusion between video data and range
data show a good agreement in the short range in which range data are available. provided
the scaling factor not defined by the zero-bank reconstruction is well chosen. Until range

14

L ——————————————————

scanners covering a field as large as the field of view of video cameras are developed. the two
methods can profitably be used together. The fusion algorithm can give the ground truth
on the first 15 meters in front of the vehicle. The zero-bank algorithm can use this ground
truth to remove its scale-range ambiguity. and extend the road reconstruction to most of the
camera field of view. References and details are provided in [1].

3. Parallel Vision

3.1. Multiresolution Techniques

3.1.1. Pyramids and Hough Transform on the Connection Machine

3.1.1.1. Background

Pyramid architectures and algorithms have been demonstrated to be useful in fast compu-
tation of globa!l properties by performing only lccal operations. Embedded in the rapidly-
decreasing sizes of the processor arrays is a multiresolution data structure which enables
parallel multiresolution image analyses. Since processors at different levels in a pyramid are
connected in a tree structure, the height of which is only logarithmic in the image size. global
information can be extracted in logarithmic time. Log(image diameter) time performance
can be achieved for image filtering and segmentation, among other tasks. We developed a
pyramid programming environment on the Connection Machine. Pyramid algorithms can
be implemented in this programming environment to gain more knowledge about the per-
formance of parallel pyramid algorithms. A pyramid Hough transtorm program based on a
merge and select strategy among line or edge segments is presented to :llustrate the capability
of our system.

In the Connection Machine, groups of 16 processors are placed on single chips and con-
nected by a 4 by 4 grid. Global communication is done via a communication network called
the router. The router is a Boolean 12-cube with every router node connected to 16 proces-
sors. In addition, there i1s a communication mesh called the VE'WS network which connects
the processors in a two-dimensional mesh. Local grid communication between processors is
expected to be faster via the NEWS network than via the router.

For applications requiring more processors than there are in the machine. the C'onnection
Machine provides the mechanism of wvirtual processors. If the machine has 2% physical
processors while 2V, K < N, processors are needed for the application. a mechanism is
created so that every physical processor simulates 2V~* virtual processors, each having
an unique virtual cube address N bits long. In this way, a maximum number of physical
processors remain active during progran: execution.

3.1.1.2. Design Considerations

Our system was designed so that pyramid architectures with rectangular support from chil-
dren and resolution reduction factors of 2 could be implemented easily. Children linked to a
father are not limited to be only those in a 2 by 2 block but can be in any rectangular block
having even sides and centered at the 2 by 2 block. Such a construct is particularly helpful
in designing pyramid structures with elongated support from children as well as for over-
lapped pyramids. Our system also provides a p-ogramming environment compatible with
other existing vision software on the Connection Machine. Users need only define the data
structure of a pvramid node and the local operations desired. both inter- and intra-level. to

develop specific systems. Configuring the C'onnection Machine into a pyramid. setting up

16

the necessary linkages between processors. local memory allocation. and global bottom-up
and top-down activation are all done automatically by our system.

3.1.1.3. Embedding Pyramids into the Connection Machine

Several methods have been proposed to map the pyramid architecture onto a hypercube
architecture. Our mapping is based on a scheme called Shuffled 2D Gray Code. It uses
Reflezive Gray Coding. Reflexive Gray Coding has been widely used in mapping hyper-
cubes onto processor arrays as well as pyramid machines. It has the attractiveness that two
successive codes differ by only one bit.

For the computation of the Shuffled 2D Gray Code. we first compute the reflexive Gray
Code G(z) and G(j) of two integers : and j. We then interleave the bits of G(1) and G()i o
derive SG(i,J), the Shuffled 2D Gray Code.

We identify every Connection Machine processor by its virtual hypercube address. Let
node (i.j) represent the pvramid node on level [(the bottom level is level 0} with grid
coordinates (i.j). 0 <= i.j < 2F~! where L is the height of the pyramid. This node
is mapped to the virtual processor with cube address SG(i, ;) = 4. Every pvramid level
therefore maps one to one onto the whole machine. The number of levels each virtual
processor is involved in for this simulation is one plus half the number of trailing zeroes of
its cube address. Physical processor 0 will simulate the greatest number of pyramid nodes.
13 in a 64K machine on a 312 by 512 image. See Figure 7.

There are several advantages to using this mapping scheme. First. everv pyvramid level
in this mapping forms a 2D Gray Code mesh. Thus the whole pyvramid architecture is
homogeneous. Inter- and intra-level communication involves the same operation for everv
pyramid node and is independent of its location.

Secondly. because each row and each column in a 2D Gray Code mesh constitutes a Grav
Code sequence, each of the cube addresses of the four mesh neighbors of any pyramid node
differs from that of the given node by one bit only. This means that every 4-neighbor is
only one communication link away while every 8-neighbor is only two communication links
away. The communication cost between any neighboring pair of nodes on any level is greatly
reduced.

Thirdly, determining parent/child relations is very easy. For processor SG(i.j) = 4'.
which is node (7, ;) on level [, the cube address of its direct parent is SG(i/2.;/2) = 4~1.
Computationally, this is equivalent to setting bits 2/ and 2! + 1 of its own cube address to
zero (the least significant bit is bit 0). The addresses of the four direct children. if they exist.
can be determiucd <imilarly by setting bits 21 — 2 and 2! — 1 of its own address to 00. 01. 10.
and 11, respectively. The direct parent of any pyramid node is at most two communication
links away.

Our mapping scheme maps each pyramid level onto the v-hole Connection Machine. This
is adequate for most pyramid algorithms where only one level of the pyramid is active at anyv
time. For algorithms requiring that more than one level be active at one time. it is possible
to map the whole pyramid onto the Connection Machine so that every neighbor is at most
two communication links away, provided that the number of processors in the hypercube is
at least twice the number of processors in the pyramid.

17

3.1.1.4. Pyramid Hough Transform

We show that a pyramid machine can be used to perform a variation of the Hough transform
by implementing the following algorithm.

Every line in the X-Y plane can be represented by a pair of ccordinates, (p.#). where p
is the distance from the origin to the line and 8 is the directed angle from the positive X
axis to the normal of the line. Every point (z,y) on this line has coordinates of the form
(pcosB —tsinb, psinf + tcosf). The line segment from (pcosf — t,sinf. psinf + ¢, cos#:
to (pcosf — tysinf, psinf + t;cos) can be represented as (p, 8. t;.¢5).

Because of the exponentially tapering structure of the pyramid. information gathered
from children needs to be condensed so as to be stored locally and passed up for further
processing. We assume every pyvramid node to have a bounded memory capacity able to
store at most K 4-tuples (p.8.t,.t2) representing line segments. Every node on level |
collects from itc four direct sons a maximum of 4K such tuples. [t then tries to merge the
line segments representeu LY these tuples into longer segments using a distance measure
between segments. The K best segments surviving the merge are stored at that level-1 node.
This process is repeated at levels 2. 3. ... until the apex of the pvramid is reached. At this
stage the apex has stored the K most prominent line segments in the image.

We measured the actual spatial distances between pairs of line segments in order to merge
segments which are collinear and close to one another. We defincd the distance between two
line segments as the maximum of the distances from one of the endpoints of one segment 1o
the line on which the other segment lies. This distance is computed for all pairs of segments
coliected at current node. The pair with the minimal distance is merged into one segment
if the distance is below a certain tireshold. The process is repeated for the remaining 4K-1
segments until either the threshold is exceeded or the number of segments remaining equals
K.

To merge two segments into one, we define the new segment as lving on the line deter.
mined by the midpoints of the two pairs of endpoints of the two segments. The endpoinrs
of the new segment are the two outermost of the projections of the original four endpoints
onto this line.

Finally. to decide which K segments to keep, a node computes for every merged segment
the sum of the line (or edge) strengths of all pixels contributing to that segment. Shorter
and weaker lines or edges will have lower strengths and will be weeded ont gradnally as the
process continues up the pyramid. This leaves the more salient ones at higher levels in the
pyramid. as desired in a Hough transform.

In conclusion. our results show that the performance of the pvramid Hongh transform i«
not much worse than that of the ordinary Hough transform except when the globally promi-
nent lines or edges consist of collections of collinear short segments which are not locallv
salient. Further research is currently being conducted using our pyramid programming envi-
ronment on the Connection Machine to explore further capabilities of both the Connection
Machine and the pyramid architecture. Details and references are given in (21

3.1.2. Fast Addition on the Fat Pyramid

We developed an algorithm for fast addition on a parallel fat pyramid. i.e. a fat pyvramid
in which each pyvramid node has computational capabilities. A pyvramid representation of a
2% « 27 1mage Is a stack of successively smaller arravs of nodes: level [of the pvramid will
have a size of 2 = 2/, with the root of the pyramid being level 0. In the fat pyramid. the
size of a node depends on the level of the pyramid in which it appears. A node at level |
of the fat pyvramid will have four times as much storage space and processing power as a
node at level { + 1. In this paper we assume a fat pyramid in which larger processors ar-
implemented through the use of aggregations of smaller processors.

x

Our addition algorithm is based on a carry-lookahead technique that has been proposed
in the literature. [t is based on the fact that a carry does not depend explicitly on the
preceding one, but can be erpressed as a function of the relevant augend and addend bits and
some lower-order carry. The technique defines two auxiliary [unctions: G; = a.b; ithe carry-
generate function} and P, = a,;+b; (the carry-propagate function): G, gets the value of | when
a carry is generated at the ' stage, while P, gets the value of 1 when the i*! stage propagates
the incoming carry ¢, to the next stage ¢ + 1. The carry ¢iy can then be expressed as:
Cowr = @b, +(a,+ b,)¢, = G;+ P,c; which implies ¢;;1 = G +Z;;})(H}C=JH PG, +TTisg Pec.

[f a single processor is allocated to a single node at level r., ther 4"~% processors will he
allocated to a single node at level k. This implies that the operands for the addition operation
at level k should be distributed throughout those 4"~* processors. For reasons of uniformiry.
the same number of bits from each operand will be allocated to each of the above processars,
The addition of two .V-bit operands returns an .V + 1 bit result: however. V ~ | mav nor
be perfectly divided by 4"~%. This implies that sign-extension of each operand should he
performed to transform it into a number having the same value as before. but with a roimter
of bits equal to a multiple of 4"7%. We will be using the two's complement representat o of

binary numbers. so if ayv_1ay_2...a;a0 and by_1by_y ... bibg are the binary repre<entasiion

of the operands A and B respectively. we will allocate a total of 47757/ N — 11 477 Lol -,
each operand and the result, where [(.V +1)/4"*] of those bits will be stored in each one !
the 1"~% processors. From now on. we will be using M instead of 477571\ = 11 {777 .
total number of bits in each extended operand) and ¢ instead of (N = 11/1"™%" it e number

of bits from each operand stored in a single processor). According to the above discnssion, «

.IQ)

sign-extension of the numbers will give us new binary representations for the operands 1 and
B. as follows: A = avi_jav—a...av_1av-y...ayag and B = byy_hy_s. . hv_yheos 500
vhere ayiiy =av_: =---=ayv =ay-yand by = by = = by = by,

The M bits of each extended operand will be divided equally among the 177 procesaors,
such that if (r.y are the Cartesian coordinates of a processor in the 277% « 277% yrid e
corresponds to a single node at level k of the fat pvramid. then the processor will conta:
the bits of the operands whose subscript s satisfies the condition s mod 1775 = 277~ -

[he algorithm 1s as tollows: [nitially. the processor at (roy) intializes g individual oo
i terms ca,ir oyl to zero, for 0 <y < qicatroy) will represent the carryan wirh subeere
pVTE ety o po It alse initializes g individual propagate terms Proir oy that will cor
respond to groups preceding the bits of the operands it deals with. to 10 Prooroy wl
correspond to the propagate term with subseript j47=% £ 2%y & rowhere (0 <0 4 -y

/

19
_——

Then. all the processors initialize in parallel ¢ group carry and ¢ gronp propagate terms for
groups of size 2Y = 1, as follows: Gea,(r,y) = GG, = ab and GPry(c.y) =GP, a, = b,
for 0 < j < q. where ¢ = j4"=% 4 2"=%y 4 ¢ We assume that the binaryv representations of
the Cartesian coordinates (r.y) of each processor, in the grid of size 277% « 2"=* it helongs
to. are as follows: r = rq_koy ... 2120 and ¥ = Ynek—1- .- Y1Yo-

Let us denote by r’ the binary number that differs from the binary representation of
r only in bit position r. that is 2 = zp_k-1...Zr... 2120 where 0 < r < n - £, and r.

represents the binary complement of r.. In a similar way, let y. = yn_k1 ... Jr ... Y170,

Initially. pairs of processors that have the same value for the y coordinate. and whose
r coordinate differs only in rq, exchange their .alues of Gea,(z.y) and GPr,(z.y). where
) =0.1,....9 - 1. We consider bidirectional communication channels in the grid of proces-
sors. which means that any two neighbor processors can send data to each other at the same
time.

So. the processor at position (r,y) receives Gea,(zy,y) and GPr {zg.y). for 0 < j < 4.
Then. only the processors whose z4's are 1 change their individual carry and propagate terms
as follows: ca,(r.y) = ca,(z.y) + Pr{r.y)Gea;(zy,y) and Pry(z.y) = Prj(z.y)GPr(zg. 4
where 0 < j < 1.

The above operations update the carry-in values and the corresponding propagate terms
for the bits in those processors, since for ro = 1 we have

Gea,(zy,y) = Gey o GPry(zg,y) = GPy yicaj{z.y) = cyy1 and Pry(z.y) = Py,

where j' = j4"7% + 2" Fy 4+ r — 1. We then have ¢,y = ¢4y + PyyGeyp o and Py =
P, .1GP, ; respectively, which give updated carry-in and propagate values for the corre-
sponding bit position. after combining consecutive bits in pairs. Then. the following op-
eration is performed in parallel in those processors that have ..o = 1. for 0 < j < ¢
Gea,(r,y) = Gea;(z,y) + GPr,(r.y)Gea;(zy,y). otherwise (i.e.. for processors that have
o = 0) Giea,/z.y) = Gea,(xp,y) + GPr,(ry,y)Gea;(z.y). Also, all the processors perform
in parallel the operation GPr,(z,y) = GPr,(z.y)GPr,(ry.y) for 0 <) < q.

The above implies Gep jpy = Geprg o + GPrpr i Geyp poand GPyjigy = GPoy s
G P, , respectively, where j' = jd4™~% + 2"~%y 4+ 2|7/2|. The new values of Gea,iz.y)
and GPr,(z,y) will represent the group carry and the group propagate terms for pairs of
consecutive bits.

th execution.

Processing similar to the above continues n — k — 1 more times. During the r
where 0 < r < n — k, any two processors that have the same value for the y coordinate but
differ in the r*® bit of their r coordinate (i.e., their distance is 2" in the grid of size 277% «
2"=%) exchange their values of Gea,(z,y) and GPr,(z,y). and then perform the followine

operations in parallel:

if £, = 1. then for 0 <) < q.

{ca,(z.yy = ca,lz.y)+ Pr(z.y)Gea,{zl y).
Prz.y) = Pr,(c.y)&@Pr,(z..y).
tica,(z.y) = CGeay(z.y)+ GPr(z.y)Geaisl gy}
20

e ——

otherwise
{Gea,(z,y) = Geaj(z,.y) + GPr,(z.,y)Gca,(z,y)}

and all the processors update the group propagate terms as follows:

GPr,(z,y) = GPry(z,y)GPr;(z.,y).

Just after the r't execution of the above steps, where 0 < r < n — k, the processor at
(z,y) will contain the group carry (assumning a carry-in of 0 for the group at this point) and
the group propagate terms for the g groups of 2"*! consecutive bits each. that are stored in
the processors with the same y coordinate and whose z coordinate in the 2"7% « 2"~% grid is
in the range from 27|z /27| to 27| z/<"| 4+ 2" — 1. Also, the final value of the carry-in for the
bit positions 0 through 2" — 1 will have been computed.

After those n — k “cycles”, the processor at (z,y) will contain the 2¢ auxiliary group
terms for the g groups of bits j4"~* + 2"~*y through j4" % + 2"~%(y + 1) = 1, for 0 < j < ¢
(i.e., the combination of data contained in all the processors whose second coordinate is
y). Similar types of operations are then performed for the y dimension. Groups of bits are
combined using only vertical communication patterns in the grid.

So, to summarize, communications and computations occur during the first 2(n — k) =
logp “cycles” of the algorithm, where p = 4™ * is the number of processors allocated to a
single node at level £ of the pyramid, while only computations occur during the remaining
q “cycles.” The computation time of the algorithm is proportional to logp + ¢, if we assume
that the system contains m-bit processors, where m > q. If we consider I-bit processors.
then the computation time of the algorithm will be proportional to ¢ * log p, because each
of the operations presented before will be executed ¢ times in each “cycle” of the algorithm.
Details and references can be found in {3].

3.1.3. Replicated Image Processing

The conventional way of mapping images onto large SIMD machines like the Connection
Machine, that of assigning a processing element per pixel, tends to let major portions of the
machine lie idle, especially when the picture is relatively small. as is the case in focus-of-
attention image processing. We developed a method to remedy this situation. gaining on
the processing time as a result. We replicate the image as many times as possikle. and let
each copy solve a part of the problem. The partial results from the individual copies are
then aggregated to get the solution to the problem. We call this method replicated image
processing. We developed replicated image algorithms for histogramming. table lookup.
and convolution on the Connection Machine and compared their performance with the non-
replicated algorithms for the same.

In a replicated pyramid, the cells in the hypercube are used to replicate, as many times
as possible, the image stored at any given level of the pyramid. So, for example. if the image
at the base (the 0-th level) of the pyramid has exactly as many nodes as there are cells in
the hypercube, then only one copy of the image would be stored in the hypercube. At the
first level there would be sufficient cells to store four copies of the reduced resolution image.
In general, at the I-th level we would have 4(copies of the reduced resolution image. It is

21

e ———

straightforward to embed the replicated reduced resolution images into the hypercube using
Gray codes.

We have implemented the histogramming. table lookup. and convolution algorithms for
a replicated pyramid architecture. A single level of the replicated pyramid was implemented
on the Connection Machine by configuring it as an n X m X m array of processors. where
n is the number of copies of the m x m image. Communication is efficient this way. since
the Connection Machine automatically assigns subhypercubes to each copy of the image.
Communication within each copy remains local and is independent of the communication
within other copies. Also. the logarithmic merging step. typical of the second phase of all
three algorithms is very fast because corresponding elements of different copies of the image
are adjacent in the Connection Machine hypercube.

A copy of the histogram of the image (in the case of the histogramming algorithm) or
the entire table (in the case of the table lookup algorithm) was stored in each copy of the
image. Histogramming and table lookup distribute the problem among the 1! copies available
in such a way that each copy handles an e¢qual number of grey-level values of the entire
image. The implementations of these two algorithms are verv similar. so we discuss only
the histogramming algorithm. The histogramming algorithm takes advantage of the CM?2
Connection Machine feature that if each processor sends a message to the processor that
counts its grey-level value, then there will be as many collisions at each counting processor
as the number of pixels with that grey-level value. Using the collision resolution strategy of
counting all the colliding values, the histogram for the entire image can be computed in a
single step. Thus, the histogramming algorithm implemented on a single level of a replicated
pyramid cannot outperform a single copy histogram algorithm on the Connection Machine.

The convolution algorithm yields more interesting results on replicated pyvramids. To
compute a k x k convolution, k% copies of the image are required. (On the Connection
Machine, the next power of 2 has to be chosen as the actual number of copies allocated.
although only k% of them are used.) Each copy handles one of the kernel weights. In the
first phase, each processor multiplies this kernel weight with its own grev-level value and
sends the product to the appropriate processor in the same copy. In the second phase. these
products are summed to obtain the final result of the convolution at every processor of everv
copy. We compared the time taken by the convoiution algorithm implemented on the CM
using a single copy against the replicated algorithm using k* copies. Experiments indicate
that the utilization of the Connection Machine is much higher for the replicated algorithm
than for the single copy algorithm. This can be explained as follows. [f there are a sufficient
number of physical processors to store all k? image copies. then the replicated algorithm
performs one multiplication step (in which all k% kernel multiplications are performed in
parallel) and 2log k& addition steps to compute the multi-copy convolution. In contrast. the
single copy convolution algorithm has to perform k? steps of multiplications and additions.
all nnder direction of the host computer. Thus. the host overhead 1s much higher for the
single copy algorithm than for the replicated algorithm.

There are many basic image analysis algorithms to which the methods described above
can be extended in a straightforward way. For example. grey scale morphological oper-
ations are implemented in much the same way as grey scale convolution: various types of
image statistics useful for image texture analysis. such as cooccurrence matrices or difference

o
[8]

histograms, can be computed very quickly also. Details and references can be found in [4].

3.2. Quadtrees on the Connection Machine

We developed a general technique for creating SIMD parallel algorithms on pointer-based
quadtrees. It is useful for creating parallel quadtree algorithms which run in time propor-
tional to the height of the quadtrees involved but which are independent of the number of
objects (regions, points, segments, etc.) which the quadtrees represent, as well as the total
number of nodes. The technique makes use of a dynamic relationship between processors
and the elements of the space domain and object domain being processed.

Consider the task of constructing a quadtree for line segment data (a PV quadtree). In
constructing a PM quadtree, a node should be assigned the color gray and subdivided if its
boundary contains more than one endpoint, or if its boundary has two segments which enter
it but which do not have a common endpoint within it. Initially, we have one processor
allocated for the quadtree root, and one processor for each line segment, containing the
coordinates of the segment’s endpoints.

Consider creating an algorithm, to construct the PM quadtree for this segment data.
Each segment processor initially possesses a pointer to the quadtree root processor. Each
segment processor computes how many of its segment’s endpoints lie within the boundary
of the node to which the segment processor points; this will be 0. 1, or 2. Each segment
then sends this value to the node it points to, and both the maximum and minimum of these
values is computed at the node. Any node which receives a maximum value of 2 assigns itself
the color gray, since this means that some single segment has both endpoints in the node’s
boundary. Any node which receives a maximum of 1 and a minimvm of 0 aiso assigns itself
the color gray. since this means that there are at least two segments in the node’s boundary.
one which passes completely through it and one which terminates within it.

Then each segment with exactly one endpoint in the node it points to sends the coor-
dinates of that endpoint to the node. The node receives the minimal bounding box of the
coordinates sent to it (this, of course, amounts simply to applying min and max operations
appropriately to the coordinate components). If this minimal bounding box is larger than
a point, the node assigns itself the color gray, since this means that some two segments
entering the node have non-coincidental endpoints within the node.

Finally each segment with 0 endpoints in the node it points to determines whether it in
fact passes through the interior of the node at all. and if so it sends the value “1” to the node.
where these values are summed. If the sum received by the node is greater than 1. the node
assigns itself the color gray. since this means that some two segments passing through the
node do not have any endpoints in the node, which implies that they do not have a common
endpoint in the node. Then all gray nodes allocate son processors. Any nodes which were
not given the color gray should be colored white if no segments entered their interior (the
sum is zero), and black otherwise (the sum is one).

At this point in the algorithm, we would like to have all segment pr-cessors which point
to gray nodes compute which of the node’s sons thev belong to. and retrieve from the node
the appropriate son pointer. Of course a given segment can intersect more than one of the
node’s sons, and we are left with the situatinn of wanting to assign up to four son pointers

23

R

to the segment processor’s node pointer. and processing each of the corresponding sons.
The solution to this dilemma is to allocate clones of each such segment processor. that is.
to create multiple processors which represent the same segment. and all of which contain
(almost) the same information. So for each segment processor pointing to a gray node. we
allocate three clone processors, all of which contain the segment’s endpoints and a pointer
to the same node as the original segment processor. In addition, the original and its clones
each contain a clone indez from 0 to 3, with the original containing 0 and each of the clones
containing a distinct index from 1 to 3. Now the original and its clones each fetch a son
pointer from the node that they all point to, each one fetching according to its clone index.
so that each gets a different son pointer.

The subsequent iterations of the algorithm proceed as the first, with each segment pro-
cessor determining how many of its endpoints lie within the interior of the node it points to.
and with the eventual computation of the colors of all the nodes on each particular level.
At this point in each iteration, notice that any segment processors pointing to leaf nodes. or
whose segments do not pass at all through the interior of the node to which thev point. will
not have any further effect of those nodes. and can thus be de-all- cated and re-used later.
This reclaiming of segment processors keeps the number of clones allocated for each segment
from growing exponentially. In fact the number of processors required for a given segment
at a given level in the construction of the quadtree will be only roughly as many as there
are nodes in that leve] of the tree through whose interior the segment passes.

To summarize the general technique, then. we allow one processor per quadtree node.
and initially allow one processor per object. Each object is given access to a sequence of
shrinking nodes which contain part of it: initially all okjects have access to the root node.
By having each object obtain information from its node, and by combining at the node
information from all of the objects who access that node, the objects make decisions about
descending the quadtree from that node. For those objects which do descend. it is desirable
for their various parts which lie in various quadrants of the node to descend in parallel. Thus
we allow duplicate or ‘clone’ processors for each object, and have each processor handle just
that portion of the object relevant to one quadrant of the node. Duplicate processors which
determine that thev can no longer effect the the node to which they point. because that node
is a leaf, or because the object they represent does not overlap that node. can deactivate
themselves so that they may be used later in the computations for some other object.

We see then that this technique allows us to go beyond the level of granularity of one
processor for every element (space component or object) to a level where there are multiple
processors for certain elements and none for others; where the processors are being used and
disposed in a dyvnamic fashion.

The same general technique can be applied to create algorithms for several other quadtree
tasks, such as shifting, rotation, and expansion. which run in time proportional to the height
of the new quadtree. by computing in the parallel the rotated or expanded version of each
old black leaf node. and building the new quadtree using cloning. Further details are given

fe

in 3;.

3.3. Benchmarking Activities

3.3.1. Border Tracking with an Implementation on the Butterfly Parallel Com-
puter

3.3.1.1. Background

In digital image analysis, objects visible in an image can be recognized by describing their
borders, and then matching the border representations to model descriptions. There are
basically two ways of tracking the borders of a given object. The first is studying local gray
level values in a small neighborhood, and producing a strong response for fast gray level
changes at object edges and a low response for image locations with constant or slowly vary-
ing spatial gray level distribution. The strongest edges are separated from the weaker ones
by thresholding the gradient magnitude image, exploiting for example the edge strength his-
togram. The remaining borders are finally followed to produce coordinate lists corresponding
to the 4- or 8-connected edge point patterns in the image. The other alternative differs from
the first in that the segmentation phase preceding the border following is not trving to locate
the edges of an object directly by studying local gray level changes, but by first locating the
object body and then tracing the outer borders and the inner borders corresponding to the
holes in the body. In this work an algorithm based on the second approach was developed.

The real-time operation requirement of complicated vision systems necessitates the use
of fast parallel implementations of image analysis algorithms. In particular low and inter-
mediate level operations require processing of large amounts of input data. and are potential
objects for parallelization. In this study, a parallel version of the border tracking algorithm
was developed for a multiprocessor system classified as a MIMD-computer. The specific com-
puter used in testing the algorithm was the Butterfly Parallel Processor with an 88 processor
configuration.

3.3.1.2. Sequential Algorithm for Border Tracking

The algorithm tracks the borders of an area-segmented binary image. The input image is
processed by one pass in a row-by-row fashion, starting on the highest row and proceeding
downwards. Instead of outputting edge point coordinates, a crack code representation of the
border shape is used. The crack code of an object border is produced in the following way:
if we follow the cracks around a border, at each move we are going either left. right. up or
down; if we denote the direction 90*: by ¢, these moves can be represented by a sequence of
2-bit numbers (0,1,2,3).

There are two kinds of borders in an image: outer and inner borders. An outer border
encloses an object, whereas an inner one surrounds a hole in an object. In this algorithm the
outer boundaries are followed in a clockwise order and the inner ones in a counterclockwise
order. The opposite directions result from the principle of tracing the edges in such a way
that the object is always kept on the right side of the trace path. The objects are taken as
4-connected and the background as 8-connected.

An image is processed by moving a 2 x 2 window through the image in a raster scan
fashion: each row from left to right. row by row from top to bottom. The actions to be

25

R

performed depend on the neighborhood visible in the window. resulting in sixteen primary
operations on the crack code strings. The primary operations resolve themselves into various
subactions. such as extending a code string head or tail, merging of two strings, and creation
of a new outer or inner string.

A 2 x 2 window doesn’t always contain enough information to carry out certain string
operations. An example of such a case is the presence of neighboring runs on the previous
row, which often lead to the merging of two strings, or the creation of a new inner or outer
string. In this algorithm a knowledge of the runs yet to come on the current row is not
necessary, even if those runs turn out to be neighbors to the current run. Every decision is
made using only the local history of the row and the contents of the current window. The
local history of the row contains two pieces of information. The first one is a flag which
indicates whether there is a neighboring run in the previous row which terminates before the
current position on the row. If there is, the flag points to the right end of the neighboring
run. A similar flag is maintained for the current row. When the right end of the current run
is encountered, the flag is set to point to the end column if there is a neighboring run on the
previous row which still continues. The presence of a neighboring run on the previous row
sometimes results in the merging of two code strings or to the creation of a new inner string.

The algorithm contains two important data structures. The first is called an ‘active string
list” and the other one is called a ‘modified string list’. While scanning a row, the active
string list contains the addresses of the active strings for the current row, i.e. strings which
have not yet been updated on this row. After updating a string it is moved to the modified
string list. The modified string list becomes the active string list on the next row and a new
empty modified list is then created. As a string becomes closed, it is removed from the lists
and output.

3.3.1.3. Parallel Algorithm for Border Tracking

Parallelization of this kind of sequential algorithm seems quite straightforward. The input
image is divided into a given number of equal sized blocks overlapping each other by one
row, each of them is processed separately, and finally the partial results are combined. This
leads to a two-stage algorithm where the second stage cannot be started before the first one
is completed. The parallelization of the first part is obvious, but the necessity for parallelism
in the second stage depends on the amount of partially completed data produced in the first
stage. In this application the input aggregate for the merging process depends on input
image size and its contents and especially on the number of image blocks. The second stage
was found to be the bottleneck for the performance in several experiments, which motivated
us to design a parallel algorithm for merging of partial code strings. too.

There is an important point to be considered with the partition of image data. though.
The easiest way of doing the partitioning is to assign an equal number of rows to each
processor. This is the first approximation of equal work load for the processors. But a
simple principle like this often leads to improper balancing among the processors il the
contents of the image is not evenly distributed. Because the execution time of a parallel
program step is dominated by the slowest parallel subtask. it is important to do the division
of input data by exploiting a better estimation for the quantity of work.

26
————

The main modification to the sequential algorithm is due to the possibility that an object
border may traverse several image blocks. For this reason. the top row and bottom row
of a block contribute to extra actions in many of the primary cases. To overcome these
implications a few additional members must be included in the code string data structure.
The most important of these are binary flags to indicate an instant of a lower or higher
border crossing for string head and tail components. Also the intersection coordinates must
be recorded in the structure. These additional data are used in the merging stage for deciding
on connectedness of partial strings in neighboring image blocks.

Classification of strings into outer and inner borders becomes somewhat meaningless
within an image block if they traverse two or more partitions, because just by looking at a
partial string it is not possible to make the distinction. These attributes are useless in the
merging stage, too. If a string can be completed in a block, though, its classification holds.
There is a simple way to determine reliably whether a completed string is an outer one or
an inner one. This can be carried out by studying the local neighborhood of the highest
border point of the string, called the reference point of the string. It is the first point of the
associated border that is found during scanning the image. The special meaning of reference
point is due to the action of creating a new partial string at this location. Because borders
are always followed the same direction keeping the object on right the crack codes emanating
from the reference point are different with an outer string and an inner string. The crack
code sequence for an outer string in the vicinity of the reference point, coming along the head
and continuing along the tail, is ... 1-0...". The sequence for an inner string is respectively

.2-3...". During the border tracking stage, each processor assigns a reference point to
every string in its block. If a string c.usees the upper lunit of the block, the intersection
point is also the local reference point of the partial string. After the merging step. the global
reference point is searched for along the combined string chain and the classification is finally
done.

Ceonclusions

A general algorithm for extracting object borders was developed. The binary image is
processed in a raster scan fashion in one pass, producing crack code strings describing the
borders. The objects are regarded as 4-connected, but an S-connected version is easily
achieved. The algorithm can be generalized to process gray level images. too.

A two-stage parallel version of the algorithm was developed. where the input image
is partitioned into partially overlapping equal-sized blocks. each of which 1= processed by
a separate processor. The first step produces crack code descriptions of the object borders
hitting the blocks. in parallel. The second step is required for merging the incomplet= border
strings traversing more than one image block.

Our experiments on the Butterfly Parallel Processor reveal that with an image size of 512
by 51... the speedup increases nearly linearly up to the point where about twenty processors
are in use. After that. the contention for shared memory resources starts leveling off the
performance growth severely. One important source for the increase in execution time after
this critical point is the merging step which is more and more heavily loaded as the number
of incomplete border descriptions increases with the increased number of image partitions.

[%]
-1

The merging step can be omitted from the algorithm. Additional details and references can
be found in [6].

3.3.2. Parallel Matching of Attributed Relational Graphs

3.3.2.1. Background

In many computer vision applications, it is necessary to utilize structural analysis in pattern
classification. To facilitate this, an appropriate structural description of objects and their
mutual relations is required. In addition, a fast classifier for these descriptions should be
available.

Attributed relational graph description has been found to be very suitable for computer
vision. There are several approaches to match the graphs. These algorithms vary from
complex syntactic methods to simple matching techniques. Unfortunately, the optimal com-
parison of two graphs is inherently an NP-complete problem. Therefore, the computational
efforts required increase exponentially with the number of nodes in the graphs. For example.
the matching of two k-node graphs using conventional algorithms may require the construc-
tion and evaluation of k! x k! solution candidates in the worst case. This means that when
using conventional computers and algorithms the optimal comparison of graphs with micrc
than a few nodes may take too long for practical applications.

In most applications, however, some physical and heuristic constraints can be applied
to slow down the exponential explosion. Furthermore, the matching can be parallelized
to achieve almost a linear speedup in a multi-processor environment. Finally, the entire
structural classifier, based on graph matching, can be parallelized to match the graph to all
the models simultaneously.

We describe a fast graph matching algorithm and its parallel implementation on two
MIMD computers: a Butterfly Parallel Processor, and a Transputer system.

3.3.2.2. A Fast Graph Matching Algorithm

In our earlier work, a fast matching algorithm was developed for structural classification.
The algorithm can be used to solve both isomorphic and monomorphic problems. The
resulting numeric value describes the edit distance between the graphs. The algorithm has
been proved to be useful for defect classification in visual inspection applications.

The edit distance is defined as the minimum number of changes to make the graphs
similar to each other. The changes allowed are the deletion and the addition of a node. a
link. or an attribute. The structural classifier calculates the edit distance between the graph
to be classified and the model graphs representing different classes. The graph is classified
in the class for which the minimum distance was found.

The basic problem is to find the best possible mapping between the nodes of the graphs
to be matched. To accomplish this, a depth-first search is used to build a state space tree of
solution candidates. When the search terminates. the resulting candidates are described by
paths from the root to the leaves. In the worst case. the tree contains all the combinations

of the two sets of nodes corresponding to the graphs. For this reason. heuristic constraints
are applied to pruning tuc tree in order to achieve sufficient speed.

The first heuristics for limiting the size of the tree is using a certain predetermined model
node to align the matching process. This base node represents the most important object or
part of the object in the model description. If the problem graph contains the base node. a
partial match of the graphs has been found, and only one out of £k main branches of the tree
remains for further study. The second heuristics exploits the local structural similarities of
the graphs. The remaining & — 1 nodes are matched level by level in the graphs starting on
the successor levels of the base nodes. The resulting state space tree often consists of onlv a
few paths.

This ordered matching enables a speedup of several orders of magnitude without sacri-
ficing recognition accuracy, because all feasible mappings between the graphs are still con-
sidered.

The best match is found by evaluating each candidate and choosing the one which rep-
resents the minimum edit distance. In the case of monomorphism. empty (NIL) nodes are
ignored in the evaluation. The evaluation time is minimized by using lookup tables for edit
distances between node and link pairs.

3.3.2.3. Implemented Algorithm

The original algorithm was implemented on a Symbolics 3643 which supports list processing
by hardware. MIMD-classified multiprocessing systems usually have no special processors
tailored for svmbolic data processing but are rather designed for numerical calculations.
To better utilize the computational power of our target computers. all the svmbols (node
attributes, link attributes etc.) are hashed into integer values. The method for constructing
the state space in a depth-first manner is changed to a breadth-first type algorithm. and the
evaluation process is sped up by including several auxiliary tables in the algorithm.

3.3.2.4. A Parallel Algorithm

For a given number of processors in a MIMD computer. the most effective parallelization is
reached by parallelizing the outermost loop in the program. In this way, the speedup is nearlv
a linear function of the number of processors if there is no interaction between the loops. The
degree of sublinearity of a speedun curve is directly affected by the communication overhead
between parallel processes. The generation of a state space can be distributed effectivelv to
processors in such a way that every processor constructs its own main branch of the tree,
which is the outermost loop in the sequential program. This gives an asymptotic speedup
of O(k). where k stands for the size of the model graph counted in nodes. More speed can
be achieved by parallelizing the process deeper in the tree. For example. if parallelization is
done one level deeper there will be £ — [processors for each main branch. Thus the speednp
is Otk «(k~1)) = O(k = k). This has the side etfect that the number of processors increases
very quickly as the graph size is increased.

For practical applications. a compromise between speed and system size has to be made.
In this work. the process of state space generation is parallelized on the highest level of the

29

tree, which yields a speedup of O(k). Identification of the base node in the problem graph
reduces the size of the tree to one main branch, in which case the parallelization is carried out
on tiie nexi wighest level. Tue speedup here is O(A — 1) = 2(k) csuipared to the respective
sequential versicn.

Parallelization of the state space evaluation is done in the same way by dividing the tree
into a given number of equal-sized subtrees.

3.3.2.5. Results

The parallelization of the algorithm was designed especially to suit MIMD computers. like
the Butterfly Parallel Processor and the Transputer network used in our experiments. The
Transputer-based multiprocessor system was used to study the properties of our algorithm.
Butterfly experiments were also performed to compare the performance of our system to a
commercially available multiprocessor. The results show that the program runs two to three
times faster in the Transputer system than in the BPP. The performance ratio, however.
strongly depends on the system clock frequencies and the speed of the IC components se-
lected for the hardware implementation of these target computers. Programming languages
were also different (C with the BPP and Occam with Transputers), which contributes to
comparison difficulties.

With the graph sizes of three to seven, the speedup of the parallel algorithm is nearly
linear. The increasing deviation from a linear speedup with increasing graph size results from
the more extensive communication overhead, due to longer messages describing the properties
of the graphs. With larger graph sizes, our Transputer system runs out of processors if no
modifications to the algorithm are done. If there are M branches to be processed with the
maximum of V processors, the generation and the evaluation of the state space must be
done in L = |M/.N| consecutive steps. The execution time will thus be L x T. where T is the
processing time for NV branches. Details and references can be found in {7].

30

4. Parallel Iterative A* Search

4.1. Overview

In this work. we developed a distributed best-first heuristic search algorithm, Parallel [tera-
tive A* (PIA*). We show that the algorithm is admissible, and we give an informal analvsis
of its load balancing, scalability and speedup. To empirically test the PI A" algorithm. a
flow-shop scheduling problem has been implemented on the BBN Butterfly Multicomputer
using up to 80 processors. From our experiments, the algorithm is capable of achieving
almost linear speedup on a large number of processors with relatively small problem size.

4.2. The A* Algorithm

The A® search procedure can be described using graph-theoretical terms. For any problem
instance, a state-space graph is implicitly defined. Each node in the state-space graph
represents a state. As A" proceeds from a start node s, nodes in the state-space graph are
gradually expanded by a node expansion operator.

A* finds an optimal cost path from the start node, s, to a set of goal nodes. In 4=, a
node n is assigned an additive cost, f(r) = g,)+ h(n), where g(n) is the actual cost of
reaching node n from s, and A(n) is the heuristic or estimated cost of reaching a goal node
from node n. A variant of the A~ search procedure which does not test for duplicate nodes
is provided below:

i. Put the start node s on a list called OPEN.
2. If OPEN is empty, exit with failure.
3. Remove from OPEN a node n whose f value is minimum.

4. If n is a goal node, exit successfully with a solution.

(W}]

. Expand node n, generating all successors that are not ancestors of n and adding them

to OPEN.

6. Go to step 2.

The omission of the check for duplicate nodes is appropriate if the state-space graph is
a tree. For a graph search, there is a tradeoff between the computational cost of testing for
duplicate nodes and that of generating a larger search tree. The computation required for
identifying duplicate nodes can be quite substantial, especially in a distributed computational
environment. In the following discussion, we assume it is worthwhile to omit the test for
duplicate nodes.

31

4.3. The PIA" Algorithm

PIA" proceeds by repetitive synchronized iterations. At each iteration. processors are svn-
chronized twice to carry out two different procedures: the node erpansion procedure and the
node transfer procedure. Operations are largely local to the processor in the node expansion
procedure and are completely local in the node transfer procedure. Data structures in PJ A"
are distributed to avoid bottlenecks. Node selection. node expansion, node ordering and suc-
cessor distribution operations are fully parallelized. Processors performing searches which
are not following the current best heuristics are synchronized to stop as soon as possible to
reduce search overhead (the increase in the number of nodes that must be expanded owing to
the introduction of parallelism). During processor synchronization. speculative computations
are contingently performed at each processor. trying to keep processors always productively
busy, to reduce synchronization overhead. Unnecessary communications are avoided as long
as processors are performing worthwhile search to reduce communication overhead. A sym-
metric successor node distribution method is used to control load balancing. Finallyv. the
correct termination of P/A" is established by its iterative structure.

The parallel architecture model we assume consists of a set of processor-memory pairs
which communicate through an unspecified communication channel. The communication
channel can be realized using a shared memory or by message passing. Memoryv referencing
through local memory is completed in constant unit time. A remote reference through the
communication channel, however, requires O(log P) time in the worst case with no conflicts.
where P 1s the number of processors. Note that this architecture model is general enough
to subsume most scalable multicomputers which are currently available commercially.

4.3.1. Data Structures

In each processor j. two lists are maintained in its local memory: the work list (11", and
the reception list (RL;). WL, is a priority queue and RL, is a simple list. At the beginning
of each iteration. WL, contains the sorted nodes awaiting expansion by processor). and
RL, = 0. During the node expansion procedure. successor nodes generated are distributed
to RL,.) =0--- P — 1, using a successor distribution algorithm to be described t.elow,

Henceforth. we will use WL to denote the set of nodes in the work list of processor
J at the beginning of iteration i. [f the subscript is omitted. it means the union of all P
processors’ work lists. That 1s,

WL = U H’L;.
3=0.....P-1

I[f the superscript is omitted. it means for all iterations. Similar notation will he uzed
throughout this section.

Initially, WL = s and RL? = 0. As Pl A" proceeds. W L' is similar to a snapshot of the
OPEN list in A", but distributed.

4.3.2. Iteration Threshold, Mandatory Nodes and Speculative Nodes

A threshold t* is associated with each iteration . with 17 = A(s). At each iteration. a// nodes
in WL with fin) < t* will be expanded. and some nodes with f(n) > " will be expanded.

32

_

A node n € WL is thus called a mandatory nodef fin) <t Let M wihich i< e
of WLt be the set of all mandatory nodes. As we shall see later. all mandarors noces ol
eventually be selected for expansion by either 4™ or P7.4" in the worst caze

A node n € W L' is defined to be a speculative node if fin) > . Let 5% he the <ot of al
speculative nodes. Then. V'[! = WU 5.

Initially, MW/° = s and S° = 0.

4.3.3. The Node Expansion Procedure

The node expausion procedure at each iteration ! operates as follows. A processor o e
expards ~!l the nodes from M} and. by an algorithm to be described below. puts al e
successor nodes generated into the reception lists (RL). Then, as long as any other proces.or
is expanding a mandatory node, this processor continues to expand the best specularive node
from Si. When all the nodes from }M* have been expanded, all processors synchronize for
the node transfer procedure which is described below.

In P77, successors generated by a node expansion are not considered for expansion nn*i
the next iteration: they are added to RL immediately after they are generated

4.3.4. Determining tV

The threshold for the discrimination of mandatory nodes and speculative nodes at iterarion
[+1.tt+1). 15 defined as the maximum of:

la) t'. and
(b) the minimum cost of:

(b,) all successors generated from nodes in M*, and

{b,,} the nodes in S*.

There is a simple, efficient parallel method for computing #'*'. For each processor ;. &
local constant ¢,. which is the minimum cost of (a) all successors generated from nodes in
J =
M;. and (b) the best node in S}, can be computed during the node expansion proced- e
Then. the minimumofe¢,.) = 0--- P—1. can be computed in parallel in time Oiiog [0 wiile
) f
processors are svnchronized: #*! is then the maximum of ¢ and the compured minnm

4.3.5. The Successor Distribution Algorithm

Successor nodes generated by a processor are put into RL,. j =0 P — 1 in a multinh -
round-robin fashion. Moire precisely, suppose that the most recent succeessor node generated
by processor J is added to RL,. Then the next successor node generated by processar ; will
he added to RL.. where b =17+ 1 (mod P)). At each iteration. processor j sends it~ tire
generated successor to i1

The advantage of tlus approach is that it 1s simple to implement and its svmmeteic

strietare helps 1A attain the desired load balancing. Sinece the successors generated are
33

4——————_

not considered for expansion until the next itcration. some optimization can be mide for
message-passing architectiures. Messages for successor distribution can be asyvnchronous so
that computation and communication can be overlapped. For architectures which require
large communication setup time, successor nodes generated can be distributed and cached
in local memory and not sent until an etlicient message size for the underlving architectnre
1s reached.

4.3.6. The Node Transfer Procedure

After the node expansion procedure. each processor ;) empties the nodes from L. anil
inserts them into WL, to form a new priority queue for the next iteration. Norte rha
the node transfer procedure is completelv local; no cotnmunications between processors are
required.

4.3.7. Termination

When a mandatory node is found to be a goal node by a processor. a message can be
broadcast to inform all processors to terminate. If a speculative node 1s found to he a voal
node, this node is simply added to RL because it may not be an optimal goal node.

PI A" can terminate. failing to reach a goal node. when W L' =0. W L' = ¢ if and onlv 1f
WL =0, forallj =0--- P—1. This state can be recognized and broadcast to all processors:
at the end of the node transfer procedure.

4.4. Analysis

The algorithm can be proven to be admuissible. meaning that if a goal state is reachable then
an optimal goal will be reached. Informal analyses and experiments have shown that the
algorithn, maintains good load balancing among the processors and can achieve a nearly
linear parallel speedup. Details and references can be found in [3].

3

5. Parallel Matrix Operators

5.1. Generalized Matrix Inversion on the Connection Machine

This work is concerned with the practical implementation of algorithms for generalized in-
version (g-inversion) of a matrix on the Connection Machine.

The Connection Machire is extremely well suited to data level parallelism. Accordingly
the suitable algorithms are those which are deterministic and exhibit massive data par-
allelism. While there are several numerical algorithms available for matrix inversion. we
recommend the Ben-Israel-Greville algorithm as it has the following distinct advantages:

1. Deterministic
The procedure involves only matrix multiplications and the initial approximation can
be chosen to ensure convergence deterministically.

1i. Reliable
If the matrix is singular or rectangular. the least-squares or Moore-Penrose inverse is
obtained, so the process does not fail.

iii. Stable
The algorithm is self-correcting and stable, and permits the use of coarse precision at
earlier stages and finer precision towards the end.

iv. Linear time
Since the algorithm is entirely based upon -petitive parallel mocrix multiplication
(which takes linear time), it generates the inverse in linear time.

v. Scalable
The basic steps in this algorithm allow extension to larger matric~s by using the virtual
processor configuration on the Connection Machine. Here each physical processor can
simulate a two-dimensional grid of virtual processors. In such a case. the speed of each
processcr is reduced by a factor of V/ P, where
V' = total number of virtual processors
and P = total number of phvsical processors.

tDetails and reports of experiments with random matrices can be found in [9].)

The complexity of matrix-partitioning schemes for the g-inversion on the Connection
mechine was anaivzed. It tnrns out that the use of the virtual processor configuration on
the Connection Machine 15 of comparable efficiency to using any partitioning scheme. when
the multiplicative rerarive scheme is used for g:inversion. (See [10].)

-

5.2. Grid Evaluation-Interpolation on the Connection Machine

5.2.1. Grid Evaluation-Interpolation using Tensor Products and General Inver-
ston

The interpolation and approximation of functions of two or more independent variables have
recently become important because of their extensive technical applications in a wide range of

35

fields—digital image processing. digital filter design, topography, photogrammetry. geodesy.
and optical flow. to mention only a few. In all these applications it is required to construct
formulae that can be efficiently evaluated.

Tensor products are widely used in the evaluation and interpretation of functions as well
as 2D and 3D image blocks. We implemented a tensor product on the Connection Machine.
We developed a set of ready to use tensor product approximation schemes for data arravs
of size (2 x 2), (3 x 3) and (4 x 4) in 2D and 3D. We use bilinear, trilinear and higher order
forms for this purpose. These schemes can be used recursively for larger array sizes on the
Connection Machine. The tensor product approximation is computationally economical to
implement. For instance, in the 3D case for the (n x n) grid. we need to precompute and
store only the inverses of three matrices of size (n X n) rather than one of size (n® x n®).
Obviously, error is introduced in such an approximation: Gordon and Schumaker provide
explicit error bounds for this, as well as other related approximation schemes. Details and
numerical examples are given in [11].

5.2.2. Grid Evaluation-Interpolation using Multivariable Spline-Blending Ap-
proximation

Instead of using polynomials (1.z,z?,...), one can use Lagrange or spline functions for inter-
polation and use blending approximation that combines the approximations obtained using
coarse and fine grids. Computationally, one of the most convenient classes of methods for
this purpose is the “product-operator method,” where the approximating function is calcu-
lated by treating the individual variables separately. A particular scheme is the projection
operator technique of Gordon, which uses the cardinal splines. and provides a substantial
saving in the number of function values that are required to approximate a function to a
prescribed accuracy.

We developed a Connection Machine implementation of the projection operator technique
for multivariable cardinal spline interpolation. Fer this purpose we implemented several data-
parallel operations such as inner product and tensor product of vectors (whose components
are single variable polynomials). These give rise to the functional form of approximation:
hence we can perform symbolic differentiation and integration of the approximating functions
directly. The technique uses orthogonal polynomial basis functions and their tensor products
without requiring matrix inversion. Details and numerical examples can be found in {12].

36

6.

Conclusions and Future Research

During the remaining two years of the contract we will focus our attention on the RAMBO
project. We hope to have an initial version of the RAMBO system competed by the end of
1939 that will be capable of illuminating the target sensors when the target is undergoing a
relatively simple motion. such as pure translation or pure rotation. Additionally, we plan to
study the following specific problems during the coming year:

1.

target reacquisition. It is possible that the target might move completely ont of
RAMBO's field of view either due tc unexpected changes in the target’s motion. or
errors in estimation of the target’s motion. We plan to study visual search strategies.
based on both explicit models for the allowable motions of the target and estimates of
the accuracy with which the parameters of those models can be determined. thar will
allow RAMBO to reacquire the target if it is lost from the field of view.

task planning. Our current task planning system is very simple. emploving a greedy
like algorithm to choose the unext subtask to achieve. It does not include in its plan
formation considerations of escape if the target motion changes or visibility consrraints
for monitoring both the motion of the target or the execution of the plan. \We are
designing a more general plan generation and monitoring system that makes extensive
use of predetermined possible paths for subtask execution. and can generate plans for
more complex task specifications.

The class of tasks that RAMBO can achieve depends on the accuracy with which it
can estimate the motion of the target. We are studyving the use of Kalman filtering
methods to improve the accuracy of both pose estimation and motion estimation.

Other projects that we have initiated include development of methods for stabiiizing

image sequernces for tele-operaticn. methods for performing texture analvsis on range data

and more goal directed parallel object recognition and pose estimation algorithms.

e

37

References

‘11 D. DeMenthon. “Reconstruction of a Road by Matching Edge Points in the Road Im-
age.” June 1933, CAR-TR-368, CS-TR-20553, June 1988.

ABSTRACT: A method for the reconstruction of a road in 3D space from a single image
1s presented. The world road is modelled as a space ribbon generated by a centerline
spine and horizontal cross-segments of constant length (the road width) cutting the
spine at their midpoints and normal to the spine. The tangents to the road edges at
the end points of cross-segments are also assumed to be approximately parallel. These
added constraints are used to find pairs of points (matching points) which are images
of the end points of world cross-segments. Given a point on one road image edge. the
proposed method finds the matching point(s) on the other road image edge. Surprisingly.
for images of road turns, a point on one road image edge has generally more than one
matching point on the other edge. The extra points belong to “ghost roads™ whose
images are tangent to the given road image at these matching points.

Once pairs of matching points are found in the image, the reconstruction of the cor-
responding world cross-segments is straightforward since cross-segments are assumed
to be horizontal and to have a known length. Ghost road cross-segments are discarded
by a dynamic programming technique. A benchmark using synthetic roads is applied.
and the sensitivity of the road reconstruction to variations in width and bank of rhe
actual world road is evaluated and compared to the sensitivity of two other algorithms.
Experiments with a sequence of actual road images as the Autonomous Land \ehicle
(ALV) moves down a road are also presented.

i~

C.A. Sher and A. Tosenfeld, A Pyramid Hough Transform on the Connection Ma-
chine,” CAR-TR-421, CS-TR-2182, January 1989.

ABSTRACT: A pyramid programming environment on the Connection Machine is pre-
sented. The mapping betwecn the Connection machine and pyramid structures is based
on a scheme called Shuffled 2D Gray Codes. A pyramid Hough transform. based on
computing the distances between line or edge segments and enforcing merge and select
strategies among them, is implemented using this programming environment.

3] S. Ziavras and L.S. Davis. “ Fast Addition on the Fat Pyramid and its Simulation on
the Connection Machine.” CAR-TR-383, CS-TR-2093. August 1988.

ABSTRACT: This paper presents an aigorithm for fast addition on the fat pyramid.
The fat pyramid is a pyramid in which the storage space and the processing power allo-
cated to a single node increase as the root of the pyramid is approached. The addition
algorithm is based on a carry-lookahead technique. The computation time of the algo-
rithm is proportional to log p + q for operands of size p * ¢ bits. when p processors are
used to deal with the numbers. The addition algorithm was simulated on the Connection
Machine; some performance results are presented in this paper.

'+ L.S. Davis and P.J. Narayanan, “Lfficient Multiresolution Image Processing on Hyper-
cube Connected SIMD Machines,” CAR-TR-430, CS-TR-2227, April 1989.

33

EEEEEEE—————

ABSTRACT: We describe two approaches to efhiciently processing small images on
hypercube connected SIMD machines. The first approach. called fat images. is based
on distributing the bits representing the grey level (or other feature) from each pixel
across the processors of a sub-hyvpercube. using Gray coding techniques to obtain a
good mapping of the fat image into the hypercube. The second method. called replicared
images. involves generating as many copies of the small image as will fit into the machine.
and then distributing the computation of basic image processing operations across the
copies. For the replicated images, we present algorithms for histogramming. table lookup
and convolution, and describe the results of implementing the convolution algorithm on
a 16K processor Connection Machine I1.

51 T. Bestul., A General Technique for Creating SIMD Algorithms on Parallel Pointer-
Based Quadtrees.” CAR-TR-420, CS-TR-2181, January 1989. :

ABSTRACT: This paper presents a general technique for creating SIMD parallel algo-
rithms on pointer-based quadtrees. [t is useful for creating parallel quadtree algorithms
that run in time proportional to the height of the quadtrees involved but that are inde-
pendent of the number of objects (regions. points. segments. etc.) which the quadtrees
represent. The technique makes use of a dynamic relationship between processors and
the elements of the space and object domains being processed.

67 T. Seppanen and K. Pehkonen, “A Generalized Algorithm for Border Tracking with
an lmplementation on the Butterfly Parallel Processor,” CAR-TR-38%. CS-TR-2000.
August 1988.

ABSTRACT: This report describes a generalized one-pass algorithm for border tracking
of objects in thresholded binary images. The input image is scanned from top to botram,
from left to right. On each row, partial border descriptions produced on previous rows
are updated according to run ends on the current row. Borders are represented by crack
code strings following the outer borders in a clockwise direction, and the inner borders

in a counterclockwise direction.

Secondly, a parallelized version of the algorithm is presented with an implementation
on a Butterfly Parallel Processor. The program was developed based on the Uniform
System approach which supports a shared memory model of computation. The input
image is partitioned into equal sized blocks. and each partition is assigned to a separate
processor. Partially completed border descriptions gathered from the blocks are finally
merged in parallel.

7] T. Seppanen, T. Westman and M. Pietikainen, “Parallel Matching of Attributed Rela-
tional Graphs,” CAR-TR-376, CS-TR-2073, July 1988.

ABSTRACT: This report presents experiments with a parallel algorithm for matching
attributed relational graphs. The algorithm generates a state space tree in a breadth-first
manner and then evaluates the tree by computing the edit distance for each candidate
solution. The parallelization method used 1s best suited for MIMD-tyvpe computers.
The first target machine is the Butterfly Parallel Processor. in which the programs were
developed on Uniform System software supporting a shared memory model of compu-
tation. The second multiprocessor is a link-oriented Transputer-based system. In this

39

———

—

—

[10]

——

[$™)

system. concurrent processes communicate through message channels. The experiments
show that nearly linear speedup can be achieved by parallelizing the algorithm in the
outermost loop.

S. Huang and L.S. Davis. “Parallel Iterative A* Search: An Admissible Distributed
Heuristic Search Algorithm,” CAR-TR-434, CS-TR-2233. April 1989.

ABSTRACT: In this paper. a distributed heuristic search algorithm is presented. Ve
prove that the algorithm is admissible and give an informal analysis of its load balanc-
ing, scalability. and speedup. A flow-shop scheduling problem has been implemenred
on a BBN Butterfly Multicomputer using up to 80 processors to empirically test this
algorithm. From our experiments, this algorithm is capable of achieving almost linear
speedup on a large number of processors with relatively small problem size.

E.V. Krishnamurthy and S.G. Ziavras. *Matrix g-Inversion on the Connection Ma-

chine,” CAR-TR-399. CS-TR-2125, October 1988.

ABSTRACT: The generalized inversion of a matrix has many applications. This report
considers the implementation of the Ben-Israel-Greville algorithm for finding the Moore-
Penrose inverse of a matrix. This algorithm is highly suitable for data-level parallelism
and has several advantages: linearity, stability, reliability, determinism and scalabil-
ity. Connection Machine experiments with random matrices of different dimensions are
reported.

E.V. Krishnamurthy and S.G. Ziavras, “Complexity of Matrix Partitioning Schemes for
g-Inversion on the Connection Machine,” CAR-TR-400, CS-TR-2126. October 1933,

ABSTRACT: Theoretical results concerning partitioning of large matrices for ¢-
inversion are outlined. The complexity and performance analysis of these methods on
the Connection Machine are described. It turns out that the use of the virtual proces-
sor configuration on the Connection Machine is of comparable efficiency to using anv
partitioning scheme, when the multiplicative iterative scheme is used for g-inversion.

E.V. Krishnamurthy and S.G. Ziavras, “Grid Evaluation-Interpolation on the Con-
nection Machine using Tensor Products and g-Inversion,” CAR-TR-401. CS-TR-2127.
October 1938.

ABSTRACT: Tensor products are widely used in the evaluation and interpolation of
functions as well as 2D and 3D image blocks. This report describes the implementation
of the tensor product method on the Connection Machine and its applications.

E.V. Krishnamurthy and S.G. Ziavras. “Multivariate Spline-Blending Approximation
on the Connection Machine,” CAR-TR-102, CS-TR-2132, October 1983,

ABSTRACT: This report describes the principles of the projection operator technique
for multivariable cardinal spline-blending approximation on the Connection Machine.
This technique requires data-parallel operations for polynomial (single and multivari-
able) evaluation and hence is best suited for implementation on the Connection Machine.
The basic operations needed are the inner product and the tensor product of vectors

40

whose components are polynomials or their evaluated values. The spline-blending ap-

proximation has several applications: finite-element methods. digital image processing,
optical flow and topographyv.

Robots Full Simulation

Target
Model Geome.uy
in Model Coord. System
. Robot
\D‘Ode Computer
‘—T_J y
Robot @ To absolute
Matian Controller AbSQIUte —™ Coord. System
5 © Motio
i}
s is Y
&)
‘ Robot @ - To camera I
Mation Controlier Camera Coord. System ' .
[2
Robot t
Computer Perspective Transform.

-
\

N [

- Targetrlr@‘;

i

Low Level Vision

' Y

Target Pose Estimation
Camera
Motion Target
: Relative
' Pose

Robot Motion From Camera to
Planner Absolute Reference

_f

Target
Absolute
Pose

Target Motion
Predictor

Figure 1. Vision-based control loop for a robot acting on a moving body.

42

22E22ize ([

0

Micron Eye

|~

Harmonic-Geared
Stepping Motor

STEPPING
MOTOR -

DRIVER

Macintosh 1

y

RANGE
DETECTOR

Parallel I/F

—>

Conversicn
O Table Data

Range Data

S——— y

Parallel I/0 Unit

Figure 2. Range Scanner System

N

Goal Trajectory

Time t,+T

Reaching Trajectory
Reaching Duration T

Laser
Camera

Tagging joint

Robot Arm

Original Trajectory

Figure 3. A tagging joint takes a reaching trajectory during time T to
reach a goal trajectory required to grip a handle on the target.

44

Horizon

A;

Figure 4. The cross-segment of the world road is assumed horizonta! ond
perpendicular to the tangents at its end points. The tangents
are assumed parallel. A condition satisfied by the matching
points in the image which also involves the image tangents and
the vertical direction is deduced.

45

NN 777 R

Figure 5. Results of range/video fusion algorithm showing (a) the epipolar
arcs drawn within the ERIM image, (b) profiles showing the
camera pixel ray and the elevation derived from the ERIM data
along an epipolar arc, and (c) a perspective view of the resulting
scene model.

46

(a) (b)
! | ! Lo
= - | 1 i I
- " l | I
1} | L
— e # o Y ‘ o
745——7&,‘_' x - ~ y } ‘ i

(c) (d

Figure 6. Results on a slightly curved, upsloping road scene. (a-c) show the
fusion algorithm compared with: (a) the flat-earth algorithm, (b)
the modified zero-bank algorithm, and (¢) the hill-and-dale
algorithm. An overhead view of all four approaches is shown in

(d).

47

Level 1 Processors

n Level 2 Processors
O Level 3 Processors

a

‘IEI 1 S 4 20| 21 17

2 3 7 6 22| 23| 19| 18

10| 11 151 14| 30| 31| 27| 26

8 9 13 1112]]]128]| 29| 25 || 24

40(| 41| 45 || 44/|/60/| 61| 57 (|56

42 | 43| 47| 46| 62| 63| 59| 58

34| 35, 39| 38| 54| 55| 51| 50

33| 37|36 Lsz 53 | 49 |J48

Figure 7. Layout of the nodes of a 4-level pyramid mapped
onto virtual processors linked by a Boolean 6-cube.

48

