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observed residual strength of the San Fernando Dam hydraulic fill materials; {b) td deter-
mine whether the use of improved sampling procedures would lead to different results for
undrained cyclic load tests on "undisturbed" samples taken from the dam (relative to those
obtained in earlier investigations performed in 1971-~73); {c) to-explore the reproducibility
of laboratory steady state strength test data used for seismic stability evaluations as
measured in different laboratories, and €d) torevaluate the feasibility of basing both pore
pressure generation (“triggering") and undrained residual strength (post-triggering stabil-
ity) assessments on8PT-data using new standardized SPT procedures. J

Reproducibility of laboratory steady state strength test data was found to be very
good. Tests of reconstituted samples of a sandy silt material (Bulk Sample No. 7) from
the base of the downstream hydraulic fill zone performed at four different laboratories
(Stanford Geotechnical Laboratory, Waterways Experiment Station, GEI Consultants, Inc., and
" I Rensselaer Polytechnic Institute) yielded very similar steady state lines. Tests of 10 un-
/ldisturbed samples of sandy silt from this zone, corrected for disturbance effects and
earthquake-induced densification, resulted in an average estimated pre-earthquake steady
state stregnth of Syg =~ 880 psf for the base of the downstream slope. This agrees well with
an average value of Syg = 1100 psf based on 15 tests of undisturbed samples performed by
GEI, Inc. and the same set of corrections.

Overall assessment of a suitable value of S, for re-analysis of the 1971 upstream
slide based on the laboratory testing program is complicated by (a) the heterogeneity of the
hydraulic fill, (b) possible differences in density between the upstream and downstream
hydraulic fill zones due to different effective consolidation stresses, and (c) uncertainty
in assessment of earthquake induced densification of various fill zones. A conservative
assessment of these factors leads to an average laboratory-based estimate of the pre-
earthquake S, = 800 psf, and a lower 35-percentile estimate of Syg = 580 psf. These
values are somewhat higher than the observed residual field strength of Sy = 300 to
500 psf, but are lower than the initial average driving shear stresses in the hydraulic
fill of Tdr,i ® 900 psf. Accordingly, these laboratory-based steady state strength
estimates would correctly predict the initiation of slide movements, but would not predict
the large displacements actually observed and would provide a somewhat unconservative
assessment of the actual observed strength.

Results of undrained cyclic triaxial tests performed on undisturbed samples of
hydraulic fill were found to be in good agreement with those of earlier studies. Cyclic
strengths (stress ratios causing 5 percent strain in a given number of cycles) were about
5 to 15 percent lower in these studies than those measured in 1971-73, and both the current
and earlier cyclic strength data sets provide a good basis for evaluation of the observed
performance of the upstream and downstream slopes. It should be noted, however, that
this 1s probably due to a fortuitous compensation of the effects of sampling disturbance
and zampling densification, and does not mean that cyclic testing of undisturbed samples
will necessarily provide a consistently reliable basis for assessment of the in situ
liquefaction resistance of other materials.

Standard penetration test (SPT) results from 1971 and 1985 field investigatioms, after
correction for procedural and equipment effects to a new proposed standard (Nj)gg, provided
good agreement with the liquefaction resistance assessment based on cyclic tests of undis-
turbed samples, and by analogy provided a good assessment of observed pore pressure genera-
tion behavior of the hydraulic fill zones. With an additional correction for fines content,
the SPT resistance of (N1)gQ-clean sand = 13.5 blows/ft and the observed residual strength
of the hydraulic fill fit well with the pattern of (N1)60-clean sand versus Sy developed
by back-analysis of a number of other liquefaction slides. It thus appears that this type
of correlation between (N})g0-clean sand versus S, provides a reasonably and reliable
basis for evaluation of in situ residual undrained strengths.
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PREFACE

This study was a part of an investigation of the strength of soils
that have been weakened by earthquake shaking, and the stability of
embankment dams containing or founded on susceptible soils. This report
is one of a series which documents the investigation. The project was
carried out jointly by Geotechnical Engineers, Inc. (GEI), H. Bolton Seed,
Inc., Rensselaer Polytechnic Institute (RPI), and the US Army Engineer
Waterways Experiment Station (WES). Principal Investigators were Dr.
Gonzalo Castro for GEI, Professor H. Bolton Seed, Professor Ricardo Dobry
for RPI, and Dr. A. G. Franklin for WES. Mr. Edward Pritchett, Office of
the Chief of Engineers, Washington, DC, was responsible for recognizing
the importance and timeliness of this research to the Corps of Engineers,
and for generating Corps support for the project. Funding was provided
through the US Army Engineer District, Kansas City, for whom oversight
was provided by Mr. Francke Walberg.

Essential to the overall investigation was an exploration and
records review effort at the Lower San Fernando Dam, in order to obtain
crucial data and soil samples for laboratory testing. This effort
included an extensive drilling and penetration testing program, excavation
of a large-diameter shaft, in-situ testing, collection of samples, and
review of historical records. The Los Angeles Department of Water and
Power, owner of the Lower San Fernando Dam, provided access to the site
and to the historical records, and other assistance. The California
Department of Water Resources provided information from their files.

Drilling, Standard Penetration Testing, and undisturbed sampling
from borings were performed by WES, under the supervision of Mr. Joseph
Gatz. Cone Penetration Test soundings were performed by Earth Technology
Corporation (ERTEC). Excavation of the exploratory shaft was done by
Zamborelli Drilling Company, under the direction of GEI. Investigations
and sampling in the shaft, and the review of historical records, were done
by and under the supervision of Mr. Tom Keller of GEI.

The results presented in this report were developed by H. Bolton
Seed, Inc., in cooperation with the Stanford University Geotechnical
Laboratory. The work was carried out under WES Contract No. DACW39-85-

C-0048. N———

The technical monitor and Contracting Officer’s Representative at
WES was Dr. A. G. Franklin, Chief of the Earthquake Engineering and
Geosciences Division, Geotechnical Laboratory. The primary WES reviewer
was Dr. Paul F. Hadala, Assistant Chief of the Geotechnical Laboratory.
Chief of the Geotechnical Laboratory was Dr. William F. Marcuson 1III.

Commander and Director of WES during the preparation of this report
was COL Larry B. Fulton, EN. Dr. Robert W. Whalin was Technical Director.
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CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-Si units of measurement used in this report may be converted to metric

(SI) units as follows:

Multiply

cubic feet
inches
pounds {(force)

pounds (force) per
square inch

square inches

By
0.02831685
2.54
4.448222
6.894757

6.4516

13

To Obtain

cubic metres
centimetres
newtons

kilopascals

square centimetres




RE-EVALUATION OF THE LOWER SAN FERNANDO DAM
REPORT 2:
EXAMINATION OF THE POST-EARTHQUAKE SLIDE OF FEBRUARY 9, 1971
by
H. Bolton Seed, Raymond B. Seed, Leslie F. Harder and Hsing-Lian Jong

1. Introduction

The Lower San Fernando Dam in California developed a major slide in the
upstream slope and crest as a result of the 1971 San Fernando earthquake. An
investigation of the slide, including trenches and borings, in situ density
tests, undisturbed sampling, index testing, static and cyclic load testing,
and analyses was performed and reported by Seed et al. (1973), Seed et al.
(1975a), Seed et al. (1975b), and Lee et al. (1975). The field investigation
showed that the slide occurred due to liquefaction of a zone of hydraulic sand
fill near the base of the upstream shell.

Two cross sections of the Lower San Fernando Dam are presented in
Fig. 1-1, one showing the observations made in a trench excavated through the
slide area and the other showing a reconstructed cross section of the dam,
illustrating the zone in which liquefaction occurred. Large blocks of
essentially intact soil from the upstream section of the dam moved into tne
reservoir, riding over or '"floating'" on the liquefied soil. After movements
stopped, the liquefied soil was found to have extruded out below the toe of
the dam and up between the intact blocks, with maximum movements as much as
200 ft (61 m) beyond the toe of the dam. The block of soil which contained
the toe of the dam moved about 150 ft (46 m) into the reservoir.

Data from seismoscopes located on the abutment and on the crest of the
embankment indicated peak accelerations of about 0.55g and 0.5g, respectively,
and an analysis of the seismoscope record on the dam crest indicated that the

slide occurred about 20 to 30 seconds after the earthquake shaking had stopped
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(Seed, 1979). Thus the large slide movements apparently developed in the
absence of earthquake-induced stresses and were caused only by the static
stresses due to the weight of the materials in the embankment. It can thus be
inferred that the earthquake shaking triggered a loss of strength in the soils
comprising the embankment and it was this loss of strength, rather than the
inertia forces induced by the earthquake shaking, which led to the sliding of
the upstream slope.

It has been estimated that the slide movements in the Lower San Fernando
Dam developed mainly in about 40 seconds, suggesting that the average rate of
movement was about 5 ft/sec or 3 mph (5 kph). This comparatively slow rate of
movement indicates that the soil in the slide zone was in a marginal state of
limiting equilibrium during the period of sliding and that the factor of
safety was only slightly less than 1.0. However the flow of liquefied sand
into cracks in the embankment and the flow of sand beyond the toe of the
embankment suggests that the strength of the liquefied sand in some zones must
have been quite low.

While it is readily apparent that sliding due to liquefaction occurred
in the upstream shell of the embankment, performance data from the files of
the City of Los Angeles Department of Water and Power show that the water
levels measured in wells installed in the downstream shell showed only small
changes in elevation as a result of the earthquake shaking (see Figs. 1-2 and
1-3). Thus it would appear that while the earthquake caused a small increase
in pore pressure ratio in the downstream shell and its foundation, there was
no significant extent of soil liquefaction in this part of the embankment.

The analysis of the dynamic response of the dam, performed as part of
the investigation in 1973, was made using a method of analysis proposed by
Seed, Lee and Idriss (Seed et al., 1975b). This method of analysis involves

the following steps:
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-~

letermine the cross-section of the dam to be used for analysis.
Determine, with the cooperation of geologists and seismologists, the
maximum time history of base excitation to which the dam and its
toundation might be subjected.

Determine, as accurately as possible, the stresses existing in the
embankment before the earthquake; this is probably done most effec-
tively at the present time using finite elemment analysis procedures.
Determine the dynamic properties of the soils comprising the dam,
such as shear modulus, damping characteristics, bulk modulus or
Foisson's ratio, which determine its response to dynamic excitation.
Since the material characteristics are nonlinear, it is also neces-
sary to determine how the properties vary with strain,

Compute, using an appropriate dynamic finite element analysis proce-
dure, the stresses induced in the embankment by the selected base
excitation.

Subject representative samples of the embankment materials to the
combined effects of the initial static stresses and the superimposed
dynamic stresses and determine their effects in terms of the genera-
tion of pore water pressures and the potential development of
strains. Perform a sufficient number of these tests to permit simi-
lar evaluations to be made, by interpolation, for all elements com-
prising the embankment.

From the knowledge of the pore pressures generated by the earth-
quake, the soil deformation characteristics and the strength charac-
teristics, evaluate the factor of safety against failure of the

embankment either during or following the earthquake.
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8. If the embankment is found to be safe against failure, use the
strains induced by the combined effects of static and dynamic loads
to assess the overall deformations of the embankment.

9. Be sure to incorporate the requisite amount of judgment in each of
steps (1) to (8) as well as in the final assessment of probabie per-
formance, being guided by a thorough knowledge of typical soil char-
acteristics, the essential details of finite element analysis proce-
dures, and a detailed knowledge of the past performance of embank-
ments in other earthquakes.

Application of the method to the Lower San Fernando Dam led to the

conclusion that it provided a reasonable basis for evaluating the location

and extent of the zone of liquefaction in the upstream shell, as shown in

Fig. 1-4. The analysis also indicated that liquefaction would be expected

in limited zones of the downstream shell, as shown in Fig. 1-4. When the
liquefied soil was considered to have no residual strength the computed factor
of safety of the upstream shell was about 0.8 and it was thus concluded that
the analysis would indicate that failure would have occurred. However because
of the location and limited extent of the zones of liquefaction in the
downstream shell there was no danger of sliding in the downstream direction.
The same method of analysis also indicated failure of the Sheffield Dam in an
earthquake in 1925, and it correctly indicated no failures, and in fact no
liquefaction, in typical hydraulic fill dams subjected to earthquake motions
from Magnitude 6.5 earthquakes producing a peak acceleration of about 0.2g
(Seed et al., 1973). This is in accordance with the observed behavior of a
number of such dams including Fairmont, Silver Lake, and Lower Franklin dams

in the 1971 San Fernando earthquake. The method also seemed to explain
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reasonably well the performance of the Upper San Fernando Dam, in which there
was a downstream slide of about 5 ft in the same earthquake.

As a result of these successful analyses of embankment behavicr, -«
method, in its original form or in slightly modified forms, has been used
for seismic stability evaluations of a number of dams in the past 15 vears
(Babbitt et al., 1983; Marcuson et al., 1983; Smart and Von Thun, 1983). Dur-
ing that period, however, certain limitations of the method have been not.- 1,
including the facts that:

1. The method sometimes predicts large potential deformations accompa-

nying soil liquefaction which may not develop in the fieid.

2. The method does not provide any basis for evaluating the residus.

strength of the soil in zones which are predicted to liquef~.
and 3. The San Fernando Dam samples used for laboratory testing in the
1973 studies were probably slightly disturbed and densified pricor
to testing and thus may have given somewhat erroneous results.
At the same time, studies of the steady-state strength of liquefied soils by
Castro and Poulos (Castro et al., 1982; Poulos et al., 1985) have clearlv
shown that even after liquefaction, many sands do retain a significant resis-
tance to shear deformations, and laboratory test procedures have been devel-
oped for evaluating this steady-state or residual strength (Poulos et al.,
1985).

The procedure proposed by Poulos et al. for this purpose is based on
careful laboratory testing of good-quality undisturbed samples. It is des-
cribed in detail in Poulos et al. (1985) and illustrated schematically in
Fig. 1-5. Basically it recognizes that samples of loose to medium dense sands
are likely to be densified in the sampling, transportation, handling and test-

ing procedures. Thus the steady state strength of the soil is measured at the
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Void
Ratio,

Fig.

e_ = Void ratio of undisturbed sample
after consolidation in laboratory
e¢ = Void ratio of in-situ deposit

(Sys), = Steady-state strength of soil
as determined in laboratory at
void ratio e

(Susg)s = Steady-state strength at void ratio ef

Steady-state Line for
Re-constituted Samples

Steady-state Strength, S,¢ (Log scale)

1-5 PROCEDURE FOR DETERMINING STEADY-STATE STRENGTH FOR SOIL
AT FIELD VOID RATIO CONDITION (AFTER POULOS ET AL., 1985)




void ratio at the time of failure in the laboratory and then, assuming that
the slope of the steady state line (the relationship between steady state
strength and void ratio) is the same for undisturbed and remolded samples,
the steady state strength measured in the laboratory is corrected to a lower
value corresponding to the void ratio of the soil in its field condition.
Associated with the development of this procedure has been the development of
improved procedures for obtaining undisturbed samples of sand for laboratory
testing purposes.

More recently Seed (1986, 1987) has analyzed the stability, after lique-
faction, of a number of field cases of instability resulting from liquefac-
tion. The most recent (1988) values of the residual strength of the liquefied
soils determined in this way, including several data points recently obtained
from studies of embankment failures during the 1985 Chilean earthquake
(De Alba et al., 1987) are shown in Fig. 1-6. Such values provide a useful
guide to residual strengths likely to be developed in other deposits of lique-
fied sand and they provide an important basis for evaluating the applicability
of laboratory testing procedures for determining such values.

In using case studies such as these to evaluate the residual or steady-
state strength of a liquefied soil, however, it is important to keep in mind
the meaning of this soil strength characteristic. As described by Poulos
et al. (1985), it is the lowest value of resistance to deformation which a
liquefied soil exhibits during deformation, at constant composition, over a
large range of deformations (see Fig. 1-7). This being the case it is correct
to conclude that if the steady-state strength of a deposit in which liquefac-
tion occurs over the full length of the potential slip surface is greater
than the average driving stress on this slip surface, including any inertia

effects, no significant deformations (i.e., failure) can develop. Thus
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Initial R Failure occurs when strength
driving drops below the initial

shear driving shear stress

stress

Initial — 3 Failure occurs when strength
driving drops below the initial

shear driving shear stress

stress

f

Steady-State
Strength

I
Strain

Fig. 1-7 SCHEMATIC ILLUSTRATION OF STRESS CONDITIONS WHEN
LIQUEFACTION FAILURE OCCURS IN LABORATORY CYCLIC
LOAD TESTS
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comparison of the driving stress and the steady-state strength is a useful
design technique for evaluating the possibility of major sliding occurring
under these conditions. Its validity however will clearly depend on the accu-
racy with which the residual or steady-state strength is determined and

on the computed value of the average driving stress for the pre-failure con-
figuration of the deposit under consideration.

When case histories are used to evaluate actual values of residual or
steady-state strength, however, the average driving stress on the potential
failure surface for the pre-failure configuration does not have the same level
of significance. The conditions when failure is initiated may be complicated
by the fact that liquefaction does not extend all the way along the failure
surface, or that sliding begins before all the soil has attained its minimum
resistance to deformation. Thus, as failure develops, the soil resistance may
still be dropping to its steady-state value, represented by the fact that the
theoretical factor of safety when the sliding was initiated may have been sig-
nificantly less than 1. Such conditions will probably always exist whenever a
major flow-type failure occurs. If the factor of safety were in fact unity,
then a small change in configuration would reduce the driving stress, raise
the factor of safety, and quickly arrest the slide movements. Large deforma-
tions indicate that large reductions in driving stress were required to bring
the slide movements to a stop and thus the factor of safety based on the
residual or steady-state strength of the soil being developed all along the
sliding surface could not have been unity for the pre-slide configuration. In
fact, if the residual or steady-state strength of the liquefied soil is devel-
oped over the full length of the failure surface, then the factor of safety

must be unity only when the slide movements stop, and thus it is the post-
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failure configuration which provides the most reliable basis for evaluating
the residual or steady-state strength of a liquefied soil deposit.

This differentiation between the role of the driving stress in the pre-
failure and post-failure configurations is an important consideration in the
use of case histories to evaluate residual or steady-state strengths under
field conditions. It is directly analagous to the stress conditions illus-
trated for laboratory tests in Fig. 1-7 where the steady-state strength bears
no direct relationship to the pre-failure driving stresses acting on the soil
samples and is the same for both samples, even though they have different
driving stresses. Clearly the samples would not fail if the steady-state
strength were not less than the driving stress, but the steady-state strength
is not determined by the value of the driving stress. Similarly for design
evaluations the driving stress for the pre-slide configuration serves a very
useful purpose for evaluating stability, but for case study evaluations of
residual strength, it can only be regarded as providing a theoretical upper-
bound value which may bear no resemblance to the actual residual strength of
the soil.

In the case of the Lower San Fernando Dam slide, for example, the con-
figuration of the upstream shell of the embankment when sliding was initiated
was approximately as shown in Fig. 1-8. Analyses indicate that the average
driving stress along the potential failure surface was about 850 psf. If it
is assumed that all the soil along the failure surface was liquefied and that
the factor of safety at this time was unity, then it would be concluded that
the residual or steady-state strength of the liquefied soil was about 850 psf
in this case.

If the residual or steady-state strength of the soil were indeed close

to 850 psf, however, then only a relatively small movement of the slide mass,
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say 10 to 15 ft, would have brought the slide movement to a stop. The fact
that very large movements, of the order of 150 ft occurred before sliding
stopped indicates that either the factor of safety was significantly less than
unity, and the residual strength of the liquefied soil significantly less than
850 psf, or that more complex considerations were involved in determining the
onset of sliding. In either case the value of 850 psf can only be considered,
as previously indicated, as a theoretical upper bound value for the residual
strength of the liquefied soil and it cannot be assumed that the residual or
steady-state strength of the soil in the liquefied zone was necessarily equal
to or even nearly equal to the average driving stress at the time the slide
movements started.

Possible complexities involve the recognition that the configuration of
the embankment and the approximate extent of the zone of liquefaction at the
time of initiation of sliding were similar to those shown in Fig. 1-8. 1t may
be seen that there is a zone of non-liquefied soil near the toe of the up-
stream shell, probably associated with the starter dike, which apparently did
not liquefy. It has been hypothesized (Seed, (1979)) that it was the develop-
ment of the undrained strength of the scil in this dilatant zone, after lique-
faction occurred in the interior zone of the upstream shell, which prevented
failure from occurring during and immediately following the earthquake; fur-
thermore that it was the gradual reduction in strength of the soil in this
zone from its undrained value to the drained value, as water migrated from the
reservoir to this zone of reduced pore-water pressures, which ultimately led
to a sufficient reduction in strength to cause the failure to be initiated.
However there can be no assurance that the strength had dropped to the drained
strength values shown in Fig. 1-B when sliding started. All that is known is

that for the configuration shown, the factor of safety dropped to a value of
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about 1. Assuming that the drained strength was developed in the non-
liquefied dilatant zone near the toe of the upstream shell, stability analyses
indicate that the residual or steady-state strength of the liquefied soil must
have been about 800 psf. However if the strength of the soil in the dilatant
toe zone was only reduced part-way towards the drained strength, the residual
strength of the soil in the liquefied zone would be significantly less than
this value. Because of this uncertainty and uncertainties about the extent of
the non-liquefied zone at the toe of the upstream shell, the residual or
steady-state strength of the liquefied soil cannot be determined with any high
degree of accuracy from the conditions existing when failure was initiated.

These uncertainties are minimized, however, if the residual or steady-
state strength of the liquefied soil is computed from the conditions and con-
figuration of the embankment when slide movements stopped. At this stage, as
shown in Fig. 1-9, virtually the entire surface of sliding was covered with
the liquefied soil and, since the rate of sliding was relatively slow, inertia
effects were relatively small. Knowing that sliding would stop when the
factor of safety attained a value of unity, the residual or steady-state
strength, based on the configuration of the slide mass at the end of sliding,
can be computed to have values as low as 300 psf. Somewhat higher values, up
to about 500 psf, are determined if allowance is made for the inertia effects
associated with the rate of movement and a possible 70% reduction in strength
of the liquefied soil as it moves into the reservoir. There is other evi-
dence, such as the flow of liquefied sand into cracks which developed in the
embankment, to indicate that the lower bound values of residual strength were
indeed probably attained in some zones however. Allowing for all these

sources of uncertainty, a good representative value for the residual strength
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of the liquefied soil in this case can thus be determined to be about 400 ¢
100 pst.

Similar analyses can be made, but usually with lesser levels of
accuracy, for other cases where liquefaction-type slides and failures have
occurred. The residual strengths determined from such case studies seem to be
related in a general way to the standard penetration resistance of the sands,
as indicated in Fig. 1-6, and these results also provide a basis for estimat-
ing the residual strength of soils on other projects.

In the light of new developments in sampling techniques and in proce-
dures for evaluating the residual or steady-state strength of liquefied sands
and silty sands, it was concluded in 1985 that considerable benefits and
clarification of the current state of knowledge might be gained through a co-
operative re-evaluation of the Lower San Fernando Dam. This study was
sponsored by the U.S. Army Corps of Engineers for the following purposes:

1. To determine whether laboratorv testing procedures for evaluating

steadv-state strengths would predict the known residual strength of

the sand in the Lower San Fernando Dam.

ro

To determine whether the use of improved sampling procedures would
lead to different results for cyclic load tests on undisturbed
samples taken from the dam.
3. To explore the reproducibility of laboratory test data used for
seismic stability evaluations as measured in different laboratories.
4. To examine the standard penetration resistance of the sands in the
Lower San Fernando Dam using new standardized procedures.
The cooperating agencies involved were the Waterwavs kxperiment Station of

the U.S. Armv Corps of Engineers, Geotechnical Fugineers Inc. of Winchester,
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Massachusetts, and H. Bolton Seed Inc. in cooperation with the Soil Mechanics
Laboratory of Stanford University, California.

This report presents the results of the study by H. Bolton Seed Inc.
Section 2 presents a brief description of the Lower San Fernando Dam and the
field investigations made in 1985 to explore its properties. Section 3 pre-
sents an analysis of the probable changes in properties of the soils in the
embankment since the earthquake occurred in 1971. Section 4 presents a review
of the standard penetration test data for the sands in the dam in the 1971 and
1985 investigations. Section 5 presents the results of cyclic load tests per-
formed on the samples obtained in the 1985 investigation and a comparison of
these results with those obtained in 1971 and those expected based on past
field performance. Section 6 presents the results of steady-state strength
tests on samples obtained in the 1985 field exploration program. Section 7
presents an evaluation of the properties of the hydraulic fill near the base
of the upstream shell, based on the test results and other studies summarized
in this report. Section 8 discusses the practical significance of the results
obtained, including a comparison of steady state strengths determined by labo-
ratory testing with those estimated from the known field performance of the
upstream shell in this dam and other dams where liquefaction-type failures
have occurred, and a general review of the applicability of analytical methods
for evaluating the seismic stability of the Lower San Fernando Dam. Section 9

presents overall conclusions.
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2. Field Investigations in 1985

Since the failure of the upstream slope of the Lower San Fernando Dam
in 1971, the dam has been reconstructed to serve as an emergency water
retaining structure with the configuration shown in Fig. 2-1. The original
upstream shell has been replaced by a compacted fill but the downstream shell
below El. 1100 remains essentially as it was at the time of the 1971 earth-
quake. Since the original hydraulic fill embankment was probably reasonably
symmetrical in configuration and properties about the center line of the
crest, the properties of the soil forming the upstream shell can be evaluated
with a reasonable degree of accuracy on the basis of the properties of the
hydraulic fill comprising the present downstream portion of the embankment.
For this purpose a field exploration program was performed by
Geotechnical Engineers Inc. in 1985. The program involved:
1. The performance of 6 borings (S101, S102, S103, S104, S105, and
S111) in which, with the exception of Boring S104, split spoon
samples were obtained continuously through the hydraulic fill por-
tion of the dam and intermittently above and below the hydraulic
fill. In Boring S104 samples were taken at 5 ft intervals for the
entire boring.
2. The performance of CPT soundings at 12 locations, designated C10l
to Cl112. Six of the 12 CPT soundings were performed adjacent to the
SPT sampling holes.

3. The performance of 6 borings (U102, U103, U104, U105, Ulll, and
Ul11A) in which undisturbed samples were taken in selected zones
of the dam.

and 4. The construction of an exploration shaft from which hand carved
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undisturbed samples were recovered using a special '"tripod" sampling
procedure developed by GEI.

The locations of the various field tests and borings are shown in Fig. 2-2.
The investigation program was laid out along four cross-sections located at
Stations 5+85, 9+35, 12+85, and 16+40 along the axis of the dam.

In the field investigation the SPT boring showing the most consistently
low blowcounts near the base of the hydraulic fill was found to be S111 on
the cross-section through Station 5+85. The exploration shaft was thus con-
structed near boring S111 in order to obtain high quality undisturbed samples
of this material, in addition to those obtained from undisturbed sample
borings. The material was found to be a layer of stratified silty sand and
sandy silt as shown by the results of SPT and CPT investigations at this loca-
tion in Fig. 2-3. The relative relationship between the exploration shaft and
Boring S111 is shown in Fig. 2-2. A cross-section at Station 9+35 showing the
SPT N-values measured in Borings S103, S104 and 5105 is shown in Fig. 2-4.

In interpreting the stratification in the hydraulic fill, GEI identified
5 major zones in each boring, designated as Zones 1 to 5 in Figs. 2-3 and 2-4.
A detailed analysis of these zones for Boring S111 is shown in Table 2-1. In
this table the measured SPT N-values of the soils in the various zones are
expressed in terms of values of (N1)60, the normalized N-values for an over-
burden pressure of 1 tsf as measured in an SPT test providing a driving energy
in the drill rod of 60 percent of the theoretical free-fall energy of the
falling weight, and an appropriate correction for the absence of liners in the
SPT sampling tube.

In addition small corrections (ANI) have been made for the silt contents
of the different layers to establish the equivalent clean sand values of

(N1)60 for the soils in the different zones. The representative soil profile
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for conditions near Boring S111 as indicated by the data in Table 2-1 and
Fig. 2-3 is shown in Fig. 2-5. It may be seen that the soil conditions in
Zones 2, 3 and 5 identified by GEI are very similar and samples for the
various laboratory tests were therefore taken almost exclusively from these
zones.

The undisturbed samples and representative bulk samples from the field
explorations were distributed by GEI among the participating laboratories,
the GEI laboratory in Winchester, Mass., the Waterways Experiment Station,
Vicksburg, Miss., and Stanford University, Palo Alto, California.

Full details of the field explorations are presented in the report on

the study prepared by Geotechnical Engineers Inc.
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Depth Elevation
0 1095

Compacted soil

or
- * o
10 Hydraulic shale Nl 29
fill
20 1075

Stratified sands

1

*
30 L and Zone 1 |N 21

Piezometric level

silty sand ”
lty s at time of

41
Stratified sands,
silty sands and Zone 2 Nl*= 16
sandy silts
56 1039
Stratified sands
and Zone 3 Nl*=20.5 Piezometric level at
silty sands r__.__g_t.i".‘f_o.f_l_gll borings
67 1028
Silty sand Zone 4 Nl*r 28
73 1022
Stratified silty
sands and Zone 5 Nl*: 15 Piezometric level at
ti f 1 ]
sandy silts -—--¥——“’l—e—°——9§5 borings
88 1007
Foundation
soils

*Denotes equivalent clean sand (Nl)eo-value.

Fig. 2-5 SOIL PROFILE NEAR BORING S111
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3. Changes of Density of Hydraulic Fill Since 1971 Earthquake

In order to evaluate the behavior of the Lower San Fernando Dam during
the earthquake in 1971, it is necessary to determine the properties of the
hydraulic fill for the conditions at the time the earthquake occurred. For
some properties, any changes since the earthquake may be of minor significance
but for others, such as the steady-state strength, the results are highly
dependent on an accurate evaluation of the void ratio of the soil in its pre-
earthquake condition. Estimates of the changes in void ratio in Zone 5 of the
hydraulic fill since the earthquake and just prior to sampling in 1985, for

sections along Stations 9400 and 5+00, are therefore presented below.

Station 9+00

Estimates of the changes in dry density or void ratio of the hvdraulic
fill since the time of the earthquake can be made from comprehensive settlement
observations made on the downstream shell of the dam by the Los Angeles
Department of Water and Power both prior to and following the 1971 earthquake.
Fig. 3-1, for example, shows settlements measured on the surface of the embank-
ment normal to the axis of the dam at Station 9+400. The test shaft is located
122 ft south of the axis at Station 5+85. For point A, located on the hori-
zontal berm at about the same distance from the axis as the test shaft, it may
be seen from Fig. 3-1 that the settlement in the period from December 1970,
just before the earthquake, to February 1985, the year the samples were taken
from the embankment, was about 0.82 ft. This represents the combined compres-
sion of the dense soil above the hydraulic fill, the zone of hydraulic fill
above the piezometric surface at the time of the earthquake, the saturated zone
of hydraulic fill and the foundation soils. This comprises about 40 ft of

compacted soil and partially saturated hydraulic fill above Elevation 1057,
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about 50 ft of hydraulic fill in Zones 2, 3, 4 and 5, and about 30 ft of foun-
dation soils, as shown in Fig. 3-2.

It may also be seen from Fig. 3-1, that significant settlement has
occurred on the top of the 1940 rolled fill berm at point B where the height
of the layer of hydraulic fill in the underlying soil column is zero. The
settlement at point B in the period between the earthquake and sampling in
1685 is about 0.32 ft. This represents the settlement of a 40 ft column of
partially saturated denser soils and the underlying 30 ft depth of foundation
=il. A comparison between the soil cuor.iitions in the columns underlying

:nts A and B, and the settlements of points A and B is shown in Fig. 3-2.

The difference between the observed settlements at points A and B is
iresumably due to the wvertical compression of Zones 2, 3, 4 and 5 of the satu-
rated hydraulic fill in the period Feb. 1971 to October 1985, i.e. about 0.8I-

i. = 0.50 ft. The total depth of saturated (at the time of the earthquake’
hvdraulic fill contributing to this settlement is about 50 ft as shown in
Fig. 3-2. Zone 5 of the hydraulic fill comprises only about 15 ft of this
kress but it probablv contributes disproportiocnately to the settlement. A
c.servative estimate would be that Zone 5 contributes about 457 of the total

~wmpression although it makes up only about 307 of the thickness.

Thus it may be estimated that:

Compressive strain in Zone 5 of the

hvdraulic fill since the 1971 earthquake = 0:45 X 0.50 ft

14

15 ft
= 1.57
Corresponding change in void ratio x L5 (14 o)
100
where e = v..id ratio of s»i. = .72 for the hydraulic fill
Henoe change in v . ratio of Zone 5
of hedraulic fiit at St. 9400 along
axis »f dam since earthquake occurred = %6% (1 +0.72)
0.026
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Station 5+00

Settlement data for the section through the embankment at Station 5+00
on the axis of the dam are shown in Fig. 3-3. Although this data is not so
complete as for the section at St. 9+00 (records were discontinued in May,
1975) it never-the-less provides a good basis for evaluating the change in
void ratio of the lower part of the hydraulic fill, especially with the data
at St. 9400 to serve as a guide. Thus, following the same procedure as that

outlined above, the following results are obtained:

Estimated post-earthquake settlement of point A = 0.57 ft
Estimated post-earthquake settlement of point B = 0.26 ft

Estimated change in thickness of Zones 2-5
of hydraulic fill from pre-earthquake

condition to time of sampling in 1985 = 0.31 ft
Estimated compressive strain in Zone 5 of
hydraulic fill = 0.45 x 0.31
15
* 0.97%

Estimated change in void ratio of Zone 5
since earthquake

o

0.9 (1 +0.72)
100

?

0.016

In addition to void ratio changes due to vertical compression there may
also have been some densification due to lateral compression of the hydraulic
fill. Fig. 3-4 shows the lateral movements of survey points along the down-
stream section of the embankment through Station 9+00 from 1945 to 1972. It
is clear that the earthquake caused a marked increase in lateral movements of
the survey points. However it is not clear whether these movements were due
to lateral compression of the embankment or to shear deformations of the

embankment and it seems highly probable that they were due mainly to shear
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deformations. Thus it is unlikely that the observed movements at the surface
of the embankment are indicative of movements along the base of the embank-
ment; in fact, it seems highly unlikely that there would be any significant
lateral deformations of points along the base of the embankment or in the
underlying foundation soil.

These considerations make it difficult to estimate the possible changes
in void ratio of the embankment soils due to the observed horizontal move-
ments. Fortunately the observed movements in the vicinity of the exploration
shaft (i.e., near Survey Point No. 6), shown in Fig. 3-4, do not contribute
significantly to the overall densification of the hydraulic fill. Based on
data such as that shown in Fig. 3-4, it can be estimated that the average
change in void ratio of the soil near Survey Point No., 6 due to lateral move-
ments is about 0.0005 and 0.003 for sections through St. 9+00 and St. 5+00
respectively.

The results presented above may thus be summarized as follows:

Station 5+00 Station 9+00
Estimated void ratio change in Zone 5 of
hydraulic fill due to vertical settlement = 0.016 x 0.026
Estimated void ratio change in Zone 5 of
hydraulic fill due to lateral compression = 0.003 X 0.0005
Estimated change in void ratio between time
of earthquake and time of sampling in 1985 = 0.019 = 0.026

The main exploratory shaft is located on the section through Station
5+85. Interpolating in the above values determined for sections at Stations
5+00 and Stations 9400 leads to an estimated change in void ratio of the
hydraulic fill, in the period between the earthquake of 1971 and sampling in

1985 of about 0.020.
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It may be noted that the observed post-earthquake settlement of point A
on the horizontal berm at Station 5+00 is about 0.57 ft while the
corresponding settlement of point A on the berm at Station 9+00 is about 0.82
ft. Interpolation between these values for the settlement of a similar point
A on a cross-section at Station 5485 would lead to an estimated value of 0.62
ft. This is in good agreement with the observed settlement for a similar
point close to the test shaft at Station 6+00, where the post-earthquake
settlement was observed to be 0.63 ft, see Fig. 3-5.

Finally, it is interesting to note that an independent estimate of the
void ratio changes in the different zones of the hydraulic fill, near the test
shaft, following a totally different procedure from that described previously

(Franklin, 1987) led to the following values:

Estimated change in void ratio between

Zone time of earthquake and time of sampling
1 0.000
2 0.011
3 0.024
4 0.000
5 0.023

Since the samples used in the testing program described in this report were
obtained principally from Zones 2 and 5 of the hydraulic fill, it would appear
that a representative value for this void ratio change based on these results
would be somewhere between 0.011 and 0.023.

Based on the preceding analyses of void ratio changes since the 1971
earthquake, it was considered appropriate in interpreting the test data to
allow for an average post-earthquake change in void ratio of 0.020 for ail
samples prior to their extraction from the ground in the 1985 sampling

program.
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4. Analyses of Standard Penetration Test Data for
Downstream Shell of Embankment

Considerable insight into the properties of the soils comprising the
embankment can be obtained from the results of standard penetration tests.
Such tests were performed in a limited study in 1967, in the comprehensive
study performed in 1971 following the earthquake, and again in the investiga-

tion performed in 1985.

1971 Investigation

A plan showing the locations of SPT borings made in the 1971 investiga-
tions is shown in Fig. 4-1. In this study borings D-1, E-1, E-2, F-1, F-2,
G-1 and G-2 were made in the downstream shell, primarily to determine the in-
situ properties of the hydraulic sand fill. These borings showed that the
hydraulic fill was highly stratified with soil types ranging from poorly
graded sand to highly plastic clays. A summary of the soil stratification
revealed by these seven borings is shown on the right hand side of Fig. 4-2.
The results of all the penetration tests performed in the hydraulic fill are
shown on the left of Fig. 4-2. In order to provide meaningful comparisons,
the SPT data have been converted to values of (N1)60, the normalized standard
penetration resistance under an overburden pressure of 1 tsf for an SPT test
performed with a hammer providing 607 of the theoretical free-fall energy, in
accordance with the conditions listed in Table 4-1 (Seed et al., 1985).

The main corrections to the field data required to determine values of
(N])gg were as follows:

1. The tests were performed using drilling rigs belonging to the State

of California Dept. of Water Resources. These rigs are believed to

have used a safety hammer operated by a rope and pulley technique, a
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TABLE 4-1 RECOMMENDED SPT PROCEDURE FOR USE IN LIQUEFACTION CORRELATIONS

A. Borehole: 4 to 5-inch diameter rotary borehole with bentonite
drilling mud for borehole stability

B. Drill Bit: Upward deflection of drilling mud (tricone of baffled

drag bit)
C. Sampler: 0.D. = 2.00 inches
I.D. = 1.38 inches - Constant (i.e. no room for liners

in barrel)
D. Drill Rods: A or AW for depths less than 50 feet
N or NW for greater depths
E. Energy Delivered to Sampler: 2520 in.-1lbs. (607% of theoretical maximum)
F. Blowcount Rate: 30 to 40 blows per minute

G. Penetration Resistance Count: Measures over range of 6 to 18 inches
of penetration into the ground
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procedure which characteristically provides an energy ratio of 607.

Thus no energy correction was required.

8%

The Dept. of Water Resources test procedures at that time used the
ASTM sampling tube without the liners. The measured N-values were
increased by 10 to 307 to allow for this deviation from standard
procedures (Seed et al., 1985).

3. The measured SPT N-values were corrected to N; values using the
equation

N1=CN'N

where Cy is determined by the curve for loose to medium dense sand

proposed by Seed (1979a,b) and shown in Fig. 4-3.
The corrected values of (N1)60 for all tests performed in 1971 are shown in
Fig. 4-2. It was observed that some of these tests, indicated by open symbols
in Fig. 4-2, were performed in predominantly clayey soils. Since the SPT test
data were only intended to indicate the properties of the cohesionless soils,
the data from Fig. 4-2 are replotted in Fig. 4-4 for the cohesionless soils
only. An analysis of this data indicated four main zones of cohesionless soil
with mean and median values of (N1)60 as shown in Fig. 4-5. It may be noted
that the two upper layers and the lowest layer have very similar
characteristics with mean (N1)60 values of 16.5, 15.5 and 16 respectively.
The third layer which corresponds approximately with the Zones 3 and 4 as
identified by the GEI studies, shows higher (N1)60 values, with a mean value
of 21.5. These results may be interpreted to indicate that with the exception
of the apparently denser layer between Elevations 1024 to 1038, the cohesion-

less soils in the hydraulic fill have generally similar characteristics.
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For comparison purposes, the six SPT N-values measured in the 1967
investigation were converted to (N1)60 values and these results are
superimposed on the results of the 1971 investigation in Fig. 4-6. The 1967
data were believed to be obtained using a conventional Donut Hammer and a rope
and pulley test procedure. Consequently the energy ratio used in this test
was considered to be about 507 and the field data were corrected accordingly.
The data were also corrected for the presumed absence of liners in the
sampling tubes. In addition, because the N-values measured in the 1967
investigation were counted for 0 to 12 inches of penetration rather than the 6
to 18 inches range required in the standard procedure, the values were
increased by 157 to allow for this deviation from standard practice. This
correction was proposed by Schmertmann (1979). The results are shown in
Fig. 4-6. It may be seen that they reflect near upper and lower bounds for

the 1971 data.

1985 Investigation

Values of (Nj)gy determined in the 1985 investigation based on measure-
ments made in Borings Nos. S101, S103, S104 and S111 in the downstream shell
are shown in Fig. 4-7. As before, measured values were corrected for energy
ratio effects (the energy ratio for the hammer used in the 1985 program was
measured to be 727) and for the absence of liners in the sampling tube, and
then normalized to an overburden pressure of 1 tsf using the value of Cy shown
in Fig. 4-3.

The resulting values of (N1)60 are shown in Fig. 4-7, and the results of
statistical analyses of the values in the same four layers as those shown in

Fig. 4-5, are presented in Fig. 4-8. The presence of a more resistant layer
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of fill between approximately Elevations 1024 and 1038 is readily observable
in these data also.

For comparison purposes, the values of (N1)60 measured in cohesionless
soil in the downstream shell in the 1985 investigation are compared with
values determined in the 1971 investigation in Fig. 4-9. The general distri-

bution seems to be about the same for both studies.

Summary

The standard penetration resistance of the cohesionless soils in the
downstream shell of the embankment, expressed in terms of (N1)60 may be summa-

rized as follows:

Elevation Median values of (N1)60 Avg. values of (N1)60 Representative
(ft) 1971 Data 1985 Data 1971 Data 1985 Data Avg. (Ni)gq
1074-1057 17 20 16.5 21 = 19
1056-1039 14.5 13 15.5 14 = 14.5
1038-1024 21.5 25.5 21.5 28.5 = 24
1023-1000 16 13 16 14.5 * 14.5

In general the soil in the Elevation zones 1000-1023 and 1039 to 1056 corres-
ponds to that in Layers 2 and 5 identified by GEI. The cohesionless silty
sand in these layers appears to be very similar with an overall average value
of (N1)6O of about 14.5.

As noted previously, the density of this soil has probably changed since
the earthquake as evidenced by the settlement of observation points on the
downstream side of the embankment. Density changes at the time of the 1985

borings are significantly greater than those at the time of the post-
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earthquake 1971 borings (April and May, 1971). Conservatively a representa-
tive average change in void ratio appears to be about 0.02 as shown in
Section 3 of this report. This corresponds to a volumetric compression strain
of about 1.157 in the silty sands and to a corresponding change in dry density
of about 1.1 pcf. For the silty sands in the Lower San Fernando Dam, the
range between maximum and minimum dry densities was found to be about 25 pcf
in the 1971 investigations. Thus a change in density of about 1.1 pcf corre-
sponds to a change in relative density of about 47, with the relative density
increasing from a value of, say, about 48% before the earthquake to about 527
at the time of the investigations after the earthquake. Such a change in rel-
ative density, using a typical correlation between relative density and (N1)60
corresponds to an increase in (N1)60 of about 2 blows/ft.

In a recent paper, Skempton (1986) has suggested that the ratio of
(Nl)éo/Drz has values of about 65 for coarse sands and 55 for fine sands.
With a slight extrapolation, a suitable approximate relationship for silty

sands might be

“eo
Dr2
Thus B(Ny)go = 100 = D« A(D,)
and if D, ~ 0.5 and A(D.) = 0.04 as discussed above

A(N1)6O =~ 100 - 0.5 - 0.04 =~ 2 blOWS/ft.

Based on the above, the average pre-earthquake penetration resistance of the
silty sand in the most critical layers of the downstream shell would be about
(Ny)go = 12.5.

Finally it may be noted that the penetration resistance of silty sands

is somewhat lower than that for clean sands. Seed (1987) has recently
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proposed that for equal relative densities, values of (N;)gqp determined for
silty sands could be corrected to equivalent clean sand values by adding smalil

increments to the measured values of (N;)gg as follows:

Fines content A(N1)60
107 1
25% 2
50% 4
757 5

For the average silty sand in the Lower Dam, the fines content appears to be
about 25 percent and the corresponding value of A(Nj)gq would be about 2. In
these terms a representative average value of the equivalent clean sand

(Nl)éo-value for pre-earthquake conditions would be about 14.5.
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5. Results of Cyclic Load Tests on Silty Sand

Laboratory Test Data

During the investigation of the slide in the San Fernando Dam (1971-73),
it was observed in the field that the hydraulic fill in the upstream shell was
highly stratified with layers of silt and clay frequently occurring between
thicker layers of silty sand. Thus, since the clayey soils were not likely to
be vulnerable to liquefaction, the studies of cyclic loading resistance were
performed on undisturbed samples of silty sand taken by undisturbed sample
borings. A total of 49 cyclic load tests were performed on both isotropically
and anisotropically-consolidated samples obtained from the hydraulic fill and
the foundation alluvium. Details of the testing procedures, together with the
results of the tests are described by Seed et al. (1973). The relationships
between cyclic stress ratio and number of stress cycles required to cause a
pore-pressure ratio of r, = 1007 and %57 strain determined by this study for
samples consolidated under pressures of 2 kg/cm2 are shown by the dashed line
in Fig. 5-1.

In the 1985 investigation samples were obtained both from undisturbed
sample borings and from a test shaft. Many of the samples were sandy silt but
many were silty sand. Since the number of samples available, however, was
limited it was decided to concentrate the cyclic load test program on the
silty sand samples to provide a direct comparison with the data obtained in
the 1971 investigation. Furthermore, in view of the limited number of silty
sand samples available, tests were performed mainly on samples consolidated
isotropically under a confining pressure of 2 kg/cmz. Details of the testing
program are provided in the Appendix to this report.

The results of these tests are also shown in Fig. 5-1. It was found

that for samples which developed a condition of r, = 1007 and cyclic strains
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of +57 strain in low numbers of cycles (say less than 10), the cyclic stress
ratios were very similar to those determined in the 1971 investigation.
However for samples reaching the prescribed failure condition in larger
numbers of cycles, say 15 to 40 cycles, the cyclic loading resistance was 10
to 15 percent lower than that determined in the 1971 investigation. No reason
for this small difference in behavior could be determined. There appeared to
be no significant difference between the results of tests on samples obtained
from borings or from the test shaft. The range of grain size distribution
curves for the samples for which data is shown in Fig. 5-1 is presented in
Fig. 5-2.

Cyclic load tests were also performed on samples of sandy silt. The
grain size curves for these samples are shown in Fig. 5-3 and it will be seen
that the fines content was substantially higher than that for the samples of
silty sand. However, as shown by the test data in Fig. 5-4, there was no
significant difference in the cyclic loading resistance of these samples.
Details of the test conditions and results for all samples are presented in
Table 5-1.

A limited number of tests were also performed on samples of silty sand
consolidated anisotropically under a minor principal stress of 2 kg/cm2 and a
major principal stress of 3.3 kg/cmz. The grain size distribution curves for
these samples are shown in Fig. 5-5 and the test results are summarized in
Table 5-2. All of these samples were obtained from Zone 3 of the hydraulic
fill (see Appendix I, Table I-3 and Fig. I-1). The cyclic stress ratio
required to cause a pore pressure ratio r,; = 1007 and an axial strain of 5% in
these tests for each of the samples is plotted in Fig. 5-6. It may be seen

that the cyclic loading resistance of the anisotropically-consolidated samples

72




yBiapp Aq paurojey uddNiey

(N-21) SLS31 QV01 JIT0AD 0L Q3L)3r4ns
ANVS ALTIS 40 S3TdWYS Q3IQUNLSIANA 404 SIAYND NOILNGIYLSIQ IZIS-NIVYD 2-G b4

1> e Lus auiy ﬂ oEZ.“MBZ Hu:oou aury dw>_<¢0 831009
SI3jaW|IW W ITIG U015
1000 S000 100 S00 10 S0 l S ol oS 001
0ol (¢}
- = 444 — - - - —
—-4 — -1 1 ﬁ\ A4t T At 1 H
- 3 — - —4——) A 4 -—-——
06 - R e R N R Ans - - ol
—_— N 14 —1 4 — —+
—_— et —4— - a rly I ’vv i 4— AnlwAIFAIL\ - 4 - - .If
[¢] ] TYTH» HI’? 1 LT v‘“ — HT N AﬁJH 4 o -t — \Hl QL - |~ ‘HL \»I Lfiﬁ ol ..d
—- fll - b 4 t ﬁﬁw 1 - 4 ¢ 44 - \|.|\v,4}l:‘4 w
-—q e - 4 - - - — - - 4+ g
174 T W R S R R 1 11 7L TOn 2
TITH. 1 TV nnn o3
T HN S oy ¢
o S S R S SR I i | ST rrnee
IR SRS [ O 10§ 1 ) IR G A AR MR P37 «
vai|l - - 4 Tﬁ A -4 Lﬁll + <
o] e 00 A R S R R / SR EEiLE
e ] N : ‘ T ¢
o= \ CHIHE il
T I S i LN M RSN S0 HEN
— . S A M N N T T T T
i s s e 041 St Al o s S A 001 NN D WT e
H - HH AN
b — - 44— - —<+4-1tt44— - +-—--1- +- 444 44 — N w/ﬁ 4 4 44 - - -4 \1<‘WV lﬁ.‘TAL
oz ORI G S N QO & O SN S S IiA r/ P44~ —4--4-4 {d141i08
LTI o T \ N ISR 0S01 NN G R B AN,
— x‘l‘ﬁlwfllT -— Tl —4 +- + - / I 1 ﬁ — — ALATT
[ R !
v!.\il#‘w — 44 44 * - 4 # = A _LI A —4 H R 44 11+
ol - 4--+-4 44444 4 I X -— - - 44 06
b—— 4 44— ﬁ - - e V. 4 -4 Af
||11M4Y\ -4 %L; ¢ o Lvﬁ — ﬁ - - - M /»4 E 1 A‘A#l 1]
[+] - 1 ] ] ‘> I L i 'y AL -anu A P A L.- ] 1 i OO_
00C O¥1 001 O/ 05 0¥ OC O/ 91 et Ot A 0, ¢, Y o+ Ly
18 0Ww0IpAy SIaQuInN SASIS PIS ¢ N sayru) ut sbusad dr8g piIg SN
HdVEO SISATYNVY  1VDINVHDIIW

73




(N-21) SLS3L a¥01 217242 0L a3Ld3rdns
LIS AGNYS 40 SITdWYS 03gNLSIGNN d04 S3IAdND NOILNGIYLSIQ IZIS-NIVYD €-G "big

yBiap Aq peuviDiay jusdieyg

1> o 11 ouy | whpew M 031003 suy | #1100
aANV$ 1IAVYEO
LFTST IOTTTIVVRRYIRE 2 JT-SREVIT 3V
$000 100 SO0 10 S0 l S +]} 0$ OO—O
01
/ -
T - T ®3
8 I e 0 R — s
~—— X —t 1+ttt - 4 —+ 44— — —— “
..... , -+ 4 ﬁ; -1 - !17; - - —— 4 [+] g
Sl W 104 e e 1 IO W g .
0 1 1 0 U R S S [ (RN S T G ) S H ~
— § 0 1 0§ s g 1 1 o 3
B0 0 W 00 1 A A O 1 1 <
N NS 4 44+ — oS M
\ —+ — - H
- S R SN 4 o
R e :
ufm\:‘,|L‘;J‘ 4—S31dWYS AONYS 40 39NVY o
‘ N|
\ A 172
N\ N !
— V/r “f o8
N .
T 1- [ \ N  H—
: AN N "
11 fWMw , § p— NI
NGNS L h S 1
cmn ori 2.: oo 0 o.v ot o.« S q._ o1 ot -.n «._ Ye n [ATEG oot

.0.0‘.9.‘)1 siaquinn araig PIS SN sayouy w +G:.:Oﬂo sA®Ig PI§ SN
HdVYO SISAIVNY TVIINVHOIW




Och /203c

Ratio:

Stress

Cyclic

0.4 T T T T TTTI T T TTTTT T T TTTTT
03t _
\
02k _
ol _
[\ TUBE SAMPLES, 55%-85%FINES
L O TUBE SAMPLES,;< 40%FINES -
] CARVED SAMPLES,<40% FINES
o [N 1L Lt L Ll
| 10 100 1000

No. of Cycles to :5%,£A

Fig. 5-4 RESULTS OF CYCLIC LOAD TESTS ON UNDISTURBED SAMPLES OF
SILTY SAND AND SANDY SILT

75




*1jeys K103e107dx2a wo1j sajdues Panled-purHyy

TUOTIEPITOSUOD 13318 OJIEL PIOA -49°7 = mu uo paseq,

9¢ 6¢ o 866°0 06°Z 64070 98270 1690 1cot 11zsL | w3jeus 6
44 €1 12z2°0 1660 00°2 Leeo 65L°0 80L°0 ™ot Lu1sy | sayeys Ly
8 811 710 $66°0 00°2 7€L°0 85L°0 689°0 1zot 9t4dn i 6¢
8¢ Y1 802°0 %66°0 00°2 9070 SLL0 0£9°0 €901 vdn Tt {3
24 8y £81°0 {86°0 00°2 68L°0 190°0 60L°0 %901 vdn i | ot
6€ 6 £€92°0 966°0 00°2 9EL°0 12L°0 0£9°0 0101 %4n £o1n 44
£9 o1 78270 886°0 00°2 $(9°0 689°0 %29°0 1101 vin €otn 12
L 6€T 291°0 866°0 00°2 75570 £95°0 %05°0 1101 1z4n |81
194 0z %81°0 686°0 00°2 LIS 0 99570 L85°0 1101 1z4n i A
13 44 €61°0 986°0 00°2 879°0 LE£9°0 76570 2501 140 zoin SI
9 8 882°0 $66°0 00°2 80L°0 LoL-o 089°0 L101 8140 min | o8
61 12 %22°0 $66°0 00°2 65570 (€570 (8%°0 €101 8140 | viuen | ¢
St 6 04270 166°0 00°2 L09°0 S19°0 6%$°0 7101 guian | vitwn | ¢
8 S 61€°0 966°0 00°2 19970 15970 119°0 1201 84n %01n 4
0z LA 6%2°0 686°0 00°2 L0 0€L70 %99°0 zzot 84n %01N 1

anals v (qua/8n)|  »(S861) »3ujydueg ¥P2183] ()
00Z# ueyl 3 167 01 . . . nigs up 1913y se *A313 *oN *oN *oN
13Uty §3724) jJo ‘oON ¥ mom\u Po noniea-g,, ' mo ofiey PYOA oyi1ey PYOA o13Iey PIOA atdumeg ardueg Buyaog 1sa]

WYQ OGNYNY34 NYS Y3IMOT WO¥4 1114 I1INVYAAH 40

S3ITdWVS Q3BINLSIANN NO S1S3L IVIXVIY¥L IITIAD QINIVHONN-QILVWAITOSNOD ATIVII4OYIOSI ¥0J vivd 1S3L 1-G 378yl

76




‘UOT3IEPTTOSUOD 133J% OJIRA PIOA *6Q 7 = mo uo pasegg

st z8 16270 L66°0 002 069°0 1£9°0 $86°0 %01 Lan vitin Y
L (s sZe°o %(6°0 002 %19°0 209°0 0z5°0 90T 94n vitin 1y
A 182 {8Z°0 686°0 00°2 089°0 £99°0 $09°0 L£01 940 vITIn 0Y
71 k14 (s€°0 166°0 00°¢7 129°0 68570 [ 2] €0t 64N 1iin {c
Lz4 €St €6Z°0 £66°0 00°2 699°0 8(9°0 696°0 seor 640 i 4
3A31s v (,ud/9y) x(5861) »3uydueg ¥P231Sal ("33
00Z# ueyl 3 263 01 . 3¢p N_.m nitg uj 1313y se “A213 “ON *ON *ON
1suyg g sayd4y jo ‘oN mou\ o | ,antea-gq, Y ojiey pioA | oraey pron | oviey pron | ayduwes | ayduwes | Buypiog 1say

Wvd OONVYNY3I4 NVS ¥3IMOT WOHd 1114 JDITNVHAAH 40 S3ITdWYS Q394NLSIANN NO

S1S31 WIXVIYL J21710A3 QINIVIANN-QILVAITOSNOD ATIWIId0HLOSINY ¥0d viv0 1S3L 2-5 378yl

17




1yBrapn Aq pauibjay uadriey

ALTIS 40 S3TdWYS

J3%uNLSIANN &04

(N-2v) SibdL QY01 217242 01 Q3LJ3rans

SIAYND NOILNAIYLSIQ 3ZIS-NIVYD G-G "bi4

f
suiy i wnipew — #3,00) aury —’ #4100
v e ams aNvs 11AVED
SiajsWwNiW Ul BI1 UIDIG
1000 so0cC 100 10 S0 1 S [o]] (23 00l
oot 0o
- B N 41 —4- 444+ —— 4
N it 1 HI - 4
. A —+- I -
06 1T — ot
#.‘IO -~ —4 . % - “ - - 4 - -4+ 4 — 44
I _ 144 i.ll
oe L ] - ! R oz
- —4 - / A - {4 - %I? 44 “_.d
SERIS I NN I e
0s T ] LHHEN- / t -1 ot 2
-] _— U 4 44 - 1 + ‘\ L4 444 o
+++ - — - - - - - R or 5
09 ] S Tnm o / - wv 4] - - r.lHY. -]
H - - \ - - -+ 1. RS S -
I : J : \ 1 o g
0s -1- - / AL LL - T 05
4 F— - - - - + - 44 3 444- i ry
Y. 11 11711 A1 &
- ] \ b 14 3 B 1 G S z
or - - 4H - 3+ S EEREE % - 09
/v-l ﬁ O O S IT 50 0 5 SO §
ot 3 o H oW N - - E —- oc
L = "3 @ Q31531 u NN 1
WYS AONYS 40 3JINYY - NN AN 14 -
oz H P o - / L -t -1 «xllv|\u 1108
1o N J‘Zn..l 1] ﬁf|
—_ * —1 4+ N1+ NN —1- -+ 4+ -+ -
o I L T INEN INCETHE o6
° 00¢ or om_ o 0% o_w of oL S -b_ o T ¢ ~.._ L = Gttt oot

19)0W01pAY

SIaqQUINN SASIS PIS SN

HAVY¥O SISATVYNY  TVOINVHIIW

sayru) w sBusesdp samg IS ¢ N

78




0.4

o
w

1
~

Stress Ratio: g, /20,

Cyclic

0.1

UNDISTURBED SAMPLES OF SILTY SAND

79

T T 17111 T T T 1717117 T T T 11T
K= 1.75
i 04\0\ i
)\
O K =10
[
i & -
0 AN
~O—
— H
r— —
A\ TUBE SAMPLES, 55%-85% FINES
L O TUBE SAMPLES,< 40%FINES —
O CARVED SAMPLES,<40% FINES
Lt ol L Lt
! 10 100 1000
No. of Cycles to 5% EA
Fig. 5-6 COMPARISON OF IC-U AND AC-U CYCLIC LOAD TEST DATA FOR




is considerably higher than that required to cause similar conditions in the
tests on isotropically consolidated samples. These results weie also similar

to those obtained in the 1971 investigation.

Effect of Void Ratio Changes on Test Results

It may be noted from the test data presented in Table 5-1 that there was
a significant reduction in void ratio of the samples between their condition
in the field and their condition at the end of consolidation in the laboratory
tests. This change occurred during the sampling and handling processes. For
the 15 samples listed in Table 5-1, the average change in void ratio due to
these effects was about 0.052 which corresponds to a volumetric strain of

about 37%. Since the range of (Yd) - (Yd)min for the silty sand was

max
typically about 25 pcf, and the irn-situ dry density was about 100 pcf, such a
change in volume corresponds to a change in relative density of about 117.
Thus considering that the field relative density was about 527%, the average
relative density of the samples at the time of testing was probably about 637.

In addition to this change it was shown in Section 4 that the relative
density of the silty sand was probably increasad by about 47 due to the
earthquake shaking in 1971. Thus the test data shown in Fig. 5-1 represents
the behavior of the silty sand at a relative density about 157 higher than
that of the soil prior to the 1971 earthquake. It is necessary to consider
what effect this may have had on the test results.

The probable effects of sampling and handling on the results of cyclic
load tests on sands have been discussed by Seed et al. (1982). It was noted
that during sampling and handling of medium dense sands several effects occur:

(1) There is a loss of strength previously gained by aging resulting

from the disturbance of the grain structure, and

(2) There is a gain in strength due to densification of the samples.
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Thus it was suggested that in most cases, for sands with a relative density of
about 507, these effects are compensating and somewhat fortuitously, the
results of tests on undisturbed samples are about the same as those for the
soil in its in-situ condition. If this is so, then it is unnecessary to cor-
rect the test data for changes occurring during sampling and handling. How-
ever it would be appropriate to correct the results for the effects of densi-
fication during the earthquake of 1971. Such a correction, since cyclic load-
ing resistance is approximately proportional to relative density, would
require that the laboratory test data be reduced slightly, by about 87 to
determine the cyclic loading resistance for the pre-earthquake conditions in
1971.

Some insight into the appropriateness of this evaluation may be obtained
by noting that the cyclic loading resistance of sands and silty sands can also
be evaluated from the results of standard penetration tests (Seed et al.,
1983; Seed et al., 1985), using correlations between cyclic loading resistance
and (Nj)gp-values determined from field cases of level ground liquefaction and
non-liquefaction in Magnitude 7.5 earthquakes. Such a correlation developed
by Seed et al. (1985) is shown in Fig. 5-7. For any given value of (Nj)gg it
is a simple matter to read off from such a chart the value of 1,,,/0,' at which
liquefaction will occur under level ground conditions. This cyclic stress
ratio, applicable to simple shear conditions, can than be converted to a cor-
responding value of stress ratio causing liquefaction in triaxial tests condi-

tions using the relationship (Seed, 1979a,b):

T o]
av) < de )
<oo {-s8 r 203c ¢-triaxial

where c, has a value of about 0.6 for normally consolidated silty sands.
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It was shown in the previous section of this report that a representa-
tive pre-earthquake value of (Nl)60 for the silty sands in the critical zones
of the downstream shell of the San Fernando dam embankment is about 12.5 and
the fines content is about 257. From Fig. 5-7, it may be observed that this

corresponds to a value of <t ' causing liquefaction of about 0.2. Convert-

av/ %

ing this to a cyclic stress ratio for triaxial test conditions, with the aid

of Egn. (1), leads to a value of

de = £h%_ = 0.33 for a Mag. 7.5 earthquake.

Since a Magnitude 7.5 earthquake typically corresponds to about 15 uniform
stress cycles, this result can be compared with the results of the cyclic load
tests on undisturbed samples tested under a confining pressure of 1 kg/cmz;
and having determined one point on the cyclic loading resistance curve in this
way, other points can readily be determined following the procedure described
by Seed et al. (1983). The resulting comparison is shown in Fig. 5-8. It may
be seen that the cyclic loading resistance determined in this way is in good
agreement with the results obtained in the 1973 investigations.

This would seem to indicate that the effects of densification and sample
disturbance during sampling and handling are largely compensating for the
cyclic load test for hydraulic fill, and that no significant correction needs
to be applied to the test data to determine the probable cyclic loading resis-
tance for the pre-1971 earthquake conditions.

The fact that the samples were densified both by the 1971 earthquake and
during sampling and handling has, however, significant implications regarding
the possibility of determining the post-liquefaction strength of the hydraulic

fill from tests on undisturbed samples. This strength is determined, for any
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given soil, mainly by the void ratio or relative density of the soil and a
change in relative density of 157, say from about 487 to 637 could change the
soil from a compressive to a dilatant condition. Thus there is no possibility
that the post-liquefaction strength of a loose to medium dense sand could be
determined directly from tests performed on undisturbed samples. Such a
determination would require that test data be corrected for void ratio changes
occurring both during sampling ind handling as well as during the event caus-
ing liquefaction. The corrections for void ratio changes occurring during
sampling and handling of the test specimens are best made by means of steadv-

state strength tests as described in the following section of this report.
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6. Results of Steadv-State Strength Tests

To investigate the steady-state strength of the soils in the Lower
San Fernando Dam, a number of steady-state strength tests were performed on
undisturbed samples taken during the 1985 sampling program. The majority of
these samples were obtained from undisturbed sample borings Nos. Ulll and
UlllA and the exploratory test shaft, but five of the samples tested were
obtained from Borings U102, Ul04 and Ul105. The criteria for sele~tion of
samples were

1. That they should consist of the same tvpe of soil throughout the

height of the sample; i.e., contain no visual non-homogeneity
and 2. Be obtained from the zones of the hydraulic fill identified as
Zones 2, 3 or 5 by GEI.

A schematic section of the existing embankment showing the locations of
all samples judged to meet these criteria is shown in Fig. 6-1.

The samples obtained in this way generally fell into two groups:
(a) samples of sandy silt and (b) samples of silty sand. Steady-state
strength tests were performed on:

4 samples of sandy silt taken from the test shaft

7 samples of sandy silt taken from undisturbed sample borings

3 samples of silty sand taken from the test shaft

2 samples of silty sand taken from undisturbed sample borings.
Details concerning the testing program are provided in the Appendix to this
report.

It was recognized in the exploration program that different soils
existed in the hydraulic fill and representative bulk samples of the silty
sand (designated Bulk Sample No. 3) and the sandy silt (designated Bulk Sample

No. 7) were selected by GEI and distributed to the participating laboratories.
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Grain size distribution curves for these two materials are shown in ligs. A-2
and 6-3 respectively. In order to determine the steady state lines for these
rwo soils it was first necessary to perform steady-state strength tests on
reconstituted samples of these materials. For this purpose 9 tests were per-
formed on samples of Bulk Sample No. 3 (silty sand) prepared by moist tamping
te different void ratios in the range of 0.55 to 0.8. Similarly 1l tests were
performed on samples of Bulk Sample No. 7 (sandy silt), eight of the sampies
being prepared by moist tamping and three of the samples by wet pluviation.
There was no significant difference in the results of the tests for the rwa

Jifferent methods of sample preparation.

Test Results

The resuits of the steady-state strength tests performed on sci! {rom
Bulk Samples Nos. 3 and 7 are shown in Figs. 6-4 and 6-5 respectivelyv. The
steadv-state lines for these two materials are shown in the figures. It mav
be noted that the position of the line for Bulk Sample No. 7 is almost identi-
cal with that determined in the test program performed by GEI indicating very
good reproducibility of the results.

Grain size distribution curves for all of the undisturbed samples sub-
jected to steady-state strength tests are shown in Fig. 6-6. It may be seen
that they fall generally into two groups: (a) Samples with fines contents
ranging from about 457 to 857. These samples were classified as sandy silt
for the purposes of this investigation and the slope of their steady state
line was assumed to be parallel to that of Bulk Sample No. 7. (b) Samples
with fines contents less than about 257. These samples were classified as
silty sand and the slope of their steady state line was assumed to be parallel

to that for Bulk Sample No. 3. The grain size distribution curves for Bulk

Samples Nos. 3 and 7 are also shown on Fig. 6-6 for comparison purposes.
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The results of the steady-state strength tests on the undisturbed sam-
ples of sandy silt are shown in Fig. 6-7. For each sample the steady-state
strength is shown for four different void ratios:

1. The void ratio at the time of testing in the laboratory

2. The void ratio after the sample was recovered from the ground

3. The void ratio corresponding to the in-situ condition of the sample
and 4. The void ratio the sample would have had in the ground before the

1971 earthquake if the void ratio change occurring after the start
of the earthquake and prior to sampling in 1985 had been 0.020.

In all cases these void ratios could be determined from the changes in
volume of the samples in the sampling and handling processes as described in
the Appendix. The steady state lines for all samples were assumed to be par-
allel to that for Bulk Sample No. 7 as shown in Fig. 6-7. 1In this way the
pre-earthquake in-situ steady state strengths for the sandy silt samples could
be determined. The results for the void ratios at different stages of the
sampling and handling process are shown in Fig. 6-7. It should be noted that
the test data for samples of sandy silt taken from the Test Shaft have been
corrected for heave at the base of the shaft, following the procedures
described by GEI (Castro and Keller, 1987) in addition to the void ratio
changes described in the Appendix.

Similar results for the undisturbed samples of silty sand are shown in
Fig. 6-8, the steady state lines for these samples being assumed to be paral-
lel to that for Bulk Sample No. 3 as shown in the figure.

A summary of the steady-state strengths determined in this way for the
samples of sandy silt is presented in Table 6-1 and a similar summary for the

the samples cf ¢« 'ty sand is presented in Table 6-2.
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TABLE 6-1 SUMMARY OF ESTIMATED STEADY-STATE STRENGTHS FOR SILT SAMPLES

Sample Elev. Percent Pre-earthquake¥ Sus Sus
No. Source (ft) Fines Void Ratio {psf) (tsf)
7 U-111 1017 70 0.738 1140 0.57
10 U-104 1040 85 0.863 630 0.31
11 U-104 1039 78 0.783 1470 0.74
12 U-111 1041 78 0.856 190 0.09
14 U-102 1054 84 0.792 920 0.46
20 U-104 1008 61 0.655 (2500) ** (1.25)%*
28 U-105 1619 43 0.890 370 0.15
45 TS 1042 84 0.729 440 0.22
50 TS 1013 51 0.705 1600 0.80
51 TS 1013 44 0.694 1160 0.58
52 TS 1012 61 0.743 _800 0.40
Average = 880 psf 0.44 tsf

TABLE 6-2 SUMMARY OF ESTIMATED STEADY STATE STRENGTHS FOR SAND SAMPLES

Sample Elev. Percent Pre-earthquake*® Sus Sus

No. Source (ft) Fines Void Ratio (pst) (tsf)

4 U-111A 1013 22 0.620 2000 1.00

16 U-111 1017 15 0.890 200 0.10

43 TS 1044 21 0.758 680 0.34

44 TS 1044 16 0.712 2600 1.30
46 TS 1042 4 0.587 (4500) ** (2.25)**

Average = ]380 psf 0.69 tsf

* Assuming change in void ratio in interval from just before earthquake in 1971 to
time of sampling in 1985 is about Ae = 0.020.

**Sample not included in strength averages.
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Discussion of Results

It may be seen from Table 6-1 that the estimated values of steady-state
strength for the samples of sandy silt in their pre-earthquake condition range
from about 200 to 1600 psf, with an average value of 880 psf. There does not
appear to be any significant difference between the results of tests performed
on samples from the test shaft and samples obtained from the undisturbed
sample borings.

Table 6-2 shows the estimated values of steady-state strength for the
samples of silty sand; again samples taken from the test shaft have been cor-
rected for the effects of heave at the base of the shaft in addition to the
changes described in the Appendix to this report. However swelling for these
samples was considered to be only one half of that occurring in the sandy
silt. It may be seen that values of steady-state strength range from about
200 psf to over 4900 psf, with an average value (excluding Sample No. 46 since
it appears to represent an isolated condition) of about 1380 psf.

It is not clear how these results should be interpreted to determine a
representative value for the soils in the zone of liquefaction in the upstream
shell of the Lower San Fernando Dam. The soils which liquefied in the main
slide area were considered at the time of the field studies of the slide to be
mainly silty sands but it would seem, from the 1985 investigation, that they
must have included considerable quantities of sandy silts. A review of
photographs of the liquefied soils in the slide area shows that liquefaction
and loss of strength clearly occurred in a variety of soil types including
clean sands, some coarse sand, and silty sand, and that it was not limited to
sandy silt. Such soils were evident in the failure zone and in samples taken
from this zone. Under these conditions it does not seem reasonable to base an

evaluation of the post-earthquake strength of the soil in the liquefied zone

98




on the results of tests on a single material. Viewed from this perspective,
selection of a representative post-earthquake strength for the material in the
liquefied zone of the upstream shell, from the available data, presents
significant problems. The problems are compounded by the variability of the
test results and the very limited number of samples on which tests could be
performed.

If the average value determined for all samples tested in this study is
taken as representative, then based on tests on 14 samples (excluding Samples
Nos. 20 and 46) it would be about 1020 psf. On the other hand, if the average
values for sandy silt and silty sand are given equal weight, the representative
average value would be about 1130 psf. Alternatively if the sandy silt near
the base of the embankment near Boring S111 is considered representative, the
average steady-state strength would be 880 psf. In view of the variability of
the soils and the extensive zone over which failure occurred (about 1100 ft
along the embankment), it is not clear how a representative value can be
determined from the data available. Based on the data, however, it seems
reasonable to select a value of the order of 1000 psf for the steady-state
strength of the hydraulic fill near the base of the downstream shell of the
embankment .

It is interesting to note that the average steady-state strength for
15 samples of silt tested by GEI and corrected for post-earthquake void ratio
changes in the same manner as that used in this investigation leads to an
average value for steady strength of this soil, on the downstream side of the
embankment, of about 1100 psf. This is in remarkably good agreement with the
values discussed above. Averaging the results from the two laboratory programs

results in a mean value of approximately 1050 psf.
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7. Properties of Hydraulic Fill Near the Base of the
Upstream Shell of the Embankment

In the preceding sections of this report, emphasis has been placed on

determining the properties of the hydraulic fill near the base of the down-

stream shell of the embankment in the condition existing prior to the 1971

San Fernando earthquake. Since the slide occurred in the upstream shell of

the embankment, however, it is necessary to question whether the properties

of the hydraulic fill were the same on both sides of the embankment.

Castro and Keller (1987) have suggested that this was probably not the

case for two reasons:

and

account both of these considerations, the void ratio of hydraulic fill on the

1. The placement of the stabilizing berm on the outside of the down-
stream shell in 1940 induced some compressive stress and thus some
additional degree of densification of the hydraulic fill on the
downstream side of the embankment.

2. The presence of water in the reservoir would necessarily cause

the effective vertical stresses on the hydraulic fill in the up-

stream shell to be lower than those in the downstream shell, thereby

leading to a somewhat less dense condition for the soil in the

upstream shell. This would depend to some extent on whether the

upstream shell ever existed, after construction was completed, with

little or no water in the reservoir thus permitting the sand to com-

press under the full weight of the fill. Unfortunately this early

history of the reservoir is not known and thus this question cannot

be resolved definitively.

Never-the-less Castro and Keller (1987) have estimated that taking into

upstream side of the embankment may be as much as 0.011 higher than that of
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corresponding hydraulic fill near the base of the downstream side of the
embankment. This is a rather significant difference and it would cause corre-
sponding changes in the penetration resistance, the cyclic loading resistance
and particularly the steady state strength values of the hydraulic fill.
Estimated values of these characteristics taking this change in void ratio
into account are as follows:

(1) Penetration Resistance

It was shown in Section 4 of this report that a change in void ratio of
the hydraulic fill of 0.020 would lead to a change in penetration resistance
of the hydraulic fill of about 2 blows/ft. Following a similar line of rea-
soning, it may be shown that a void ratio change of 0.011 would lead to a
change in penetration resistance of about 1 blow/ft. Thus the standard pene-
tration resistance of the hydraulic fill near the base of the upstream shell
of the embankment before the earthquake of 1971 car. be expected to have had an
average value of (N1)60 = 11.5. The corresponding equivalent clean sand value
of (N1)6O is about 13.5.

(2) Cyclic Loading Resistance

On the basis of the results presented in Section 5 of this report, it is
found that a change in void ratio of 0.011 in the hydraulic fill could be
expected to change the cyclic loading resistance of the hydraulic fill by
about 47. The estimated cyclic loading resistance of the hydraulic fill near
the base of the upstream shell prior to the 1971 earthquake, obtained by
reducing the values shown in Figs. 5-4 and 5-8 by 47 is shown in Fig. 7-1.

Also shown in Fig. 7-1 is the cyclic loading resistance of the hydraulic
fill determined from the empirical correlation shown in Fig. 5-7, correspond-
ing to soil with a value of (Ny)gg = 11.5 and a fines content of 25 to 30%.

It may be seen that the cyclic loading resistance is about the same whether it
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is determined by laboratory tests or by the correlation based on SPT data.
Furthermore both procedures lead to values of cyclic loading resistance within
a few percent of the values used for analysis of the seismic stability of the
embankment in 1973 (Seed et al., 1973).

(3) Steady-State Strength

Steady-state strength values for the samples _ested in this investiga-
tion, corrected for an additional increase in void ratio of 0.011, can readily
be read off from the data presented in Figs. 6-7 and 6-8. The additional
values of S determined from the steady-state strength test data in this way
lead to the following values for the hydraulic fill near the base of the

upstream shell:

Average of 10 samples of silt = 640 psf
Average of 4 samples of silty sand = 1020 psf
Average of 14 samples of silt and silty sand = 750 psft.

For comparison purposes it may be noted that the average steady-state strength
for 15 samples of silt tested by GEI and corrected for the same change in vcid
ratio is 860 psf. The overall average for 29 samples tested in both studies
is thus about 800 psf.

A more conservative interpretation of the steady-state strength test
data, say by choosing 35-percentile values leads to the following values:

35-percentile value for 14 samples of silt and

silty sand tested in this investigation = 475 psf
35-percentile value for 15 samples of silt
tested by GEI ~ 680 psf.

The overall 35 percentile value for 29 samples tested in both studies is thus

about 580 psf.
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8. Practical Significance of Test Data

The main purposes of this study were:

1. To determine whether the steady-state testing procedure would pro-
vide values of post-earthquake strength for the liquefied soil in
the Lower San Fernando Dam in reasonable agreement with those deter-
mined from back-analysis of the failure conditions.

2. To determine whether the results of steady-state tests performed in
different laboratories would be in reasonable agreement.

3. To determine whether the cyclic loading resistance of the soils in
the hydraulic fill of the Lower San Fernando Dam used in previous
analyses of seismic stability were significantly affected by sample
disturbance.

4. To explore how the cyclic loading resistance of undisturbed samples
of the hydraulic fill material determined by laboratory tests com-
pared with that determined from correlations between cyclic loading
resistance and SPT values of (Nj)gq-

and 5. To determine whether the residual strength of the hydraulic fill in
the failure zone of the San Fernando Dam could be anticipated based
on correlations of values of residual strength determined from stud-

ies of other liquefaction-type failures and SPT (N1)60 values.

The results obtained in this study provide answers to most of these
questions as discussed below. For ease of reference, the properties of the
hydraulic fill determined in the preceding sections of this report are sum-

marized in Table 8-1.
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TABLE 8-1 SUMMARY OF STRENGTH PARAMETERS FOR

LOWER SAN FERNANDO DAM HYDRAULIC FILL

Strength Parameter

Pre-Earthquake
Average In Situ SPT (N;)gq
(blows/foot)

Pre-Earthquake
Average Clean Sand
SPT [(Np)go Ics
(blows/foot)

Pre-Earthquake
Average Cyclic Stress Ratio
Causing r, = 1007 in 15 Cycles
in Isotropically Consolidated
Cyclic Triaxial Tests
with o3, = 1 ksc

Pre-Earthquake
Average Steady-S:ate Strength

Pre-Earthquake
35th percentile
Steady-State Strength

Actual Residual Shear
Strength Determined from
Configuration When Slide
Mass Stopped Moving (psf)

Base of Upstream
Hydraulic Fill Zone

Base of Downstream

Hydraulic Fill Zone

&

12

400

105

= 11.5

= 13.5

0.31

&

800 psf

580 psf

* 100 psf

* 12.5

= 14.5

0.33

n

4

1050 psf

= 750 psf

NOT APPLICABLE
D/S Hydraulic Fill
did not liquefy




(a) Steady-State Strength Determination

1. It can be concluded that the use of the steady-state testing
approach, as proposed by Poulos et al. (1985) and applied in this
study, is capable of predicting the onset of sliding in the upstream
slope of the Lower San Fernando Dam. The approach used involves the
assumption that the soil in the embankment would liquefy and a very
conservative interpretation of a comprehensive set of test data.
Never-the-less following these procedures it can generally be deter-
mined that the initial (pre-slide) static driving stress in the
hydraulic fill would be about 800 to 900 psf and the average post-
earthquake residual or steady-state strength of this material after
liquefaction would be about 800 psf. Such results would indicate
that sliding would be initiated in the upstream slope, and this is a
significant accomplishment of this re-evaluation program. Also
important is the fact that similar results can be obtained indepen-
dently in different laboragories and they can all be interpreted to
indicate strengths which will lead to prediction of the onset of a
failure.

This conclusion becomes more definitive if the steady-state
strength test data is interpreted more conservatively by adopting a
35-percentile value (i.e. about 580 psf) for comparison with the
initial driving stress. However there seems to be no special reason
to select such a value in this case unless it is to allow for unknown
factors not included in the testing and data-interpretation proce-
dures.

It should be noted, however, that the results of the steady-

state testing program must be interpreted carefully and very

106




conservatively to arrive at these results. In fact the procedure

followed in this investigation involves the following steps and

assumptions:

1.

and 5.

Locate, by a careful investigation, what appears to be the

weakest zone in the embankment profile.

Assume that the soil in this layer or zone exists over the

entire base of a long embankment, even though it is unlikely

to do so because:

(a) Other soil types are known to exist near the base

of the embankment

and (b) There was apparently a dilatant zone of soil near
the toe of the upstream shell, probably related to
the construction of the starter dike for the
hydraulic fill construction operations.

Perform a steadv-state testing program on many samples from

the most critical layer or zone identified to determine a

representative strength for the most critical material in

the zone, even though the zone may also include other mate-

rial types.

Allow conservatively for the fact that the soil in the up-

stream shell of the embankment may be weaker than that in

the downstream shell even though there may be some uncer-

tainty about this question.

Interpret the test results conservatively--say by using the

35-percentile value of steady state strength from the test

data on the weakest soil type encountered, and assume that
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this strength applies for other soils comprising the lique-
fied zone.

Many of these procedures and assumptions are reasonable and
their use leads to good results in this significant case study. How-
ever presumably comparable levels of care and conservatism would be
required in any other project where steady-state testing is to be
used for design or analysis purposes. Despite these cautionary
observations, however, the present study provides a good indication
of the ability of the steady-state strength approach, with conserva-
tive data interpretation and conservative assumptions regarding
likely field behavior mechanisms, to predict the onset of a sliding
failure for the conditions existing after liquefaction occurred in
the upstream shell of the Lower San Fernando Dam. This is a signifi-
cant advancement in the use of laboratory test data for such a pur-

pose.

Also of importance, however, is the fact that even with conservative
data interpretation, the steady-state strength determined from the
laboratory tests does not indicate the best estimates of the actual
residual strength apparently achieved by the liquefied soil (about
300 to 500 psf) in the Lower San Fernando Dam. Based on the results
presented in Section 1, the best-estimates of the average pre-
earthquake, post-earthquake and post-slide stresses and strengths in
the hydraulic sand fill near the base of the upstream shell, and
their variations with time after the start of earthquake shaking to
the end of sliding, are shown in Fig. 8-1. As the slide movements
progressed, the average driving stress was gradually reduced and,

since inertia effects were small, sliding would stop when the average
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driving stress became equal to the residual or steady-state strength
of the liquefied sand. A comparison of the estimated range of resid-
ual strengths for the liquefied soil based on the configuration of
the slide zone when the slide movements stopped (400 * 100 psf as
discussed in Section 1 of this report), and the probable average and
35-percentile values of steady state strength determined from the
laboratory test program as indicated above is shown in Fig. 8-2. The
range of values of steady-state strength determined from laboratory
tests is significantly higher than the range of values of back-
calculated residual strength, indicating that a more conservative
interpretation of steady-state strength data than the use of a 35-
percentile value may well be required to determine the actual resid-
ual or steady-state strength of liquefied soils.

The steady state strength values determined in this study are
also significantly lower than those obtained for comparable materials
in a number of other studies (Von Thun, 1986), further indicating the

care required to assure the determination of representative values.

Possibly the main reason why it is necessary to interpret the test
data conservatively, rather than simply taking the average value of
steady state strength from a range of soil types as would seem appro-
priate for a failure investigation, is that the interpretation of the
test results does not include any allowance for the possible effects
of water content or void ratio redistribution which may well occur in
the field during an earthquake. Arthur Casagrande discussed this

possibility at length in his later writings on soil liquefaction. 1In

fact in his Carillo Lecture, the text of which was published in 1984,

he stated: ‘
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"The question that will arise is: If we have in the

ground a large mass of the same sand material with an

initial relative density of 40 or 41 percent, can the

material actually liquefy? Can such a redistribution of

water content occur, or is this redistribution a boundary

effect that occurs in (test) specimens and depends even on

the shape of the specimens?....l believe that many have

tried to answer these questions by laboratory tests. We

should do more in the field--investigate sand deposits in

areas that are subject to frequent earthquakes and deter-

mine on an empirical basis which relative density can lig-

uvefy and which can-not liquefy. At the moment I do not

have the answer to this problem."
More recently the possibility of water content redistribution has
been discussed by Seed (1986,1987), Whitman (1985), and the report of
the NRC Committee on Earthquake Engineering (1986). Model test data
from China indicates that this phenomenon does occur in stratified
sands and more recently, Arulanandan et al. (1989) have presented
centrifuge model test data to show that it occurs in sands in layered
deposits and Gilbert (1984) has shown that it occurs in undrained
laboratory triaxial tests. To circumvent the problem, Seed (1986,
1987) developed an empirical correlation between the residual
strength of liquefied sands and silty sands and the SPT blow count,
as Casagrande had suggested.

The fact that this phenomenon may well occur both in the field
and in the laboratory does not in any way invalidate the basic con-
cepts of the steady state approach. It simply puts an additional

obstacle in the path of determining an appropriate strength using

this method. Since the tests do not include water content redistri
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bution effects, it is necessary to allow for these effects by extrap-
olating the laboratory test data to somewhat higher void ratios than
those existing in the field at the start of the earthquake so that
the strength of the loosened sand zones can be determined. The prob-
lem is that we do not currently know how to determine these higher
void ratios; but certainly a conservative interpretation of the test
data is a step in the right direction. The alternative, which may
seem preferable to many engineers, is to accept the fact that field
case histories have this factor incorporated directly in the field
performance to the extent that it actually occurs in nature, and thus
determinations of residual strength from studies of liquefaction-type
failures allow for the effects of the phenomenon in the field.

This seems to be a more practical approach than the inclusion of
an arbitrary amount of conservatism in the interpretation of steadv-
state test data. It is also significantly less expensive, since pen-

etration test data will inevitablv be required in any case.

It may be noted that the overall average value of steady-state
strength determined in this special study of the soils near the base
of the upstream shell of the Lower San Fernando Dam (about 800 psf)
is in reasonable accord with the values of residual strength indi-
cated by other case studies of the residual strength of liquefied
sands and silty sands, when the effects of variations in relative
density, as measured by penetration resistance, are taken into
account (see Fig. 8-3). This is not always the case (see data summa-
rized by Von Thun, 1986) and thus a comparison of laboratory-deter-
mined values of residual or steady-state strength with values deter-

mined from case studies would seem to be necessary in all cases,
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pending further studies and the development of appropriate bases for

the use of laboratory test data for design and evaluation purposes.

Finally, it should be noted that field evidence indicates no signifi-
cant degree of pore-pressure generation occurring in the downstream
shell of the Lower San Fernando Dam during the earthquake shaking of
1971, and extensive sampling following the 1971 earthquake showed no
evidence of soil liquefaction in this zone, with the exception of one
sample taken from the upper layers of hydraulic fill near the core of
the embankment. In the absence of liquefaction in the downstream
shell it is not possible to judge the applicability of steady-state
theory, which applies only when liquefaction occurs, to the condi-

tions in the downstream shell of the embankment in this earthquake.

Determinations of Cyclic Loading Resistance

The results of cyclic load tests performed on samples of silty sand
and sandy silt obtained from the 1985 field investigation program are
very similar (within a few percent) to those obtained in the 1971
study for samples which are tested under isotropic consolidation con-
ditions and reach a condition of r, = 1007 and *57 strain in numbers

of cycles less than about 10.

The laboratory cyclic load test data for conditions producing a pore
pressure ratio of 1007 in isotropically-consolidated samples are also
in good accord with values determined from the standard penetration
test results and existing correlations between (N1)60 values and
cyclic loading resistance based on field performance of level sites.
This agreement is obtained despite the fact that the samples tested

were probably about 10 to 157 higher in relative density at the time
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of testing than for the field condition at the time of the earth-

quake. A correction to the data could be made for this relative den-
sity change, but it is apparently unnecessary because of compensating
effects on the test specimens resulting from the disturbance and den-

sification of loose to medium dense sands in the sampling process.

Because the cyclic loading resistance of the cohesionless soil in the
hydraulic fill is essentially the same in the 1985 and 1971 investi-
gations, it follows that the zones of liquefaction in the hydraulic
fill, based on the 1985 studies, are about the same as those deter-
mined from the 1971 studies if the Seed-Lee-Idriss method of analysis
is used to investigate the extent of this zone. The results of the
earlier analyses are shown in Fig. 8-4. The predicted zone of lique-
faction in the upstream shell is in good general accord with that
determined from field investigations of the mechanism of sliding.
Field evidence indicates no significant degree of pore pressure
generation occurring in the hydraulic fill in the downstream shell
of the Lower San Fernando dam due to earthquake shaking in 1971, and
extensive sampling following the earthquake in 1971 showed no evi-
dence of soil liquefaction in this zone with the exception of one
sample taken from the embankment in the upper layers of hydraulic
fill near the core of the embankment. Piezometer readings in the
downstream shell following the 1971 earthquake show no evidence that
a condition of liquefaction was even close to being triggered by the
shaking. The general absence of significant pore-pressure generation
in the downstream shell is also in accord with the analytical results
shown in Fig. 8-4. However a limited degree of pore pressure build-

up was observed to have occurred both in the downstream shell and in
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the foundation soils, and this presumably corresponds to some of the
settlements observed in the downstream slope since the 1971 earth-

quake.

The cyclic loading resistance of the hydraulic fill, either deter-
mined by the laboratory studies in the 1973 or 1985 investigations,
or on the basis of the empirical correlation between cyclic loading
resistance and standard penetration test data (Seed et al. 1983,
1985; Seed, 1981), used in association with the Seed-Lee-Idriss
procedure for evaluating the seismic stability of embankments, also
leads to the conclusion that there would be no large pore pressure
build-up leading to the onset of sliding in the Lower San Fernando
Dam if the Magnitude 6.6 earthquake in 1971 had produced motions at
the dam-site having a maximum acceleration of about 0.2g. This is an
important result because many hydraulic fill dams have withstood
earthquake shaking with maximum accelerations up to about 0.2g in
other earthquakes (Seed, 1984) and three hydraulic fill dams (Silver
Lake, Fairmont and Lower Franklin dams) located in the Los Angeles
area survived the 1971 San Fernando earthquake with no apparent
damage despite the fact that the earthquake caused ground shaking
with a maximum acceleration of about 0.2g at all three dam-sites.

It is also in reasonable accord with the known performance of
the Lower San Fernando Dam in previous earthquakes to which it had
been subjected. A review of earthquake shaking levels in the
San Fernando area since the Lower dam was constructed in 1915-1916
up to the time of the earthquake in 1971 shows that the maximum level
of earthquake shaking to which the Lower dam had been subjected prior

to 1971 was that resulting from the 1952 Kern County earthquake
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(Magnitude 7.6). Based on records obtained at stations in the vicin-
ity of San Fernando, the 1952 earthquake probably produced a maximum
acceleration of about 0.09g at the site of the Lower San Fernando
dam. Two days after this earthquake a pore pressure increase of
about 1 ft of water was observed in Observation Well No. 37, which
has its tip in the foundation soils below the downstream rolled fill
buttress. In comparison, this same well showed a pore pressure
increase of about 5 ft of water about 1 day after the 1971
earthquake. Observation wells in the downstream hydraulic fill were
not read until two weeks following the 1952 earthquake, at which time
no increase in pore water pressure could be observed. In comparison,
two weeks after the 1971 earthquake, one of these same wells (No. 16)
showed a pore pressure increase of about 4 ft. These water pressure
measurements indicate that the induced cyclic strains were signifi-
cantly less during the 1952 earthquake than in the 1971 earthquake,
suggesting that pore pressure increases in the upstream shell would
also be correspondingly less and clearly insufficient to trigger
liquefaction. This is also confirmed by the fact that there was no
evidence of any type to indicate that the upstream shell of the
embankment was even close to a failure condition in the 1952 event.
This behavior helps to set a bound on the accelerations which would
not cause a liquefaction-type failure in the upstream shell.

A ground motion with a peak acceleration of 0.09g in the 1952
Magnitude 7.6 earthquake would be equivalent in its damaging capabil-
ity to a significantly higher level of peak ground acceleration
developed in a Magnitude 6.6 event (which would have a shorter dura-

tion of shaking) such as that which occurred in 1971. Different
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approaches may be used to determine the equivalent level of shaking.
For example Bureau et al. (1985) have proposed the Earthquake
Severity Index as a means of assessing the effects of earthquake
shaking on embankment dams. The Earthquake Severity Index (ESI),
which is intended to evaluate the combined effects of earthquake
Magnitude and maximum ground accelerations, is defined by Bureau

et al. as:

Earthquake Severity Index = a « (M - A.S)3

max

Thus the ESI for the Lower San Fernando dam site in the 1952 earth-
quake was equal to 0.09g (7.6 - 4.5)3 = 2.7g. In a Magnitude 6.6
event the equivalent value of ap,, required to produce the same

severity of shaking would be:

ESI ~ 2.7g 5 0.3g

M - 4.5 (6.6 - 4.5)°

(amax)equiv =

Since there was no apparent damage to the dam in the 1952 event, it
might be concluded from this result that the embankment would have
safely withstood earthquake motions with a peak acceleration of about
0.3g in the 1971 San Fernando earthquake.

Alternatively if the incidence of liquefaction is due primarily
to the effects of (a) the slightly higher spectral accelerations
associated with M = 7.6 earthquakes as compared with M = 6.6 events
and (b) the greater duration of shaking in M = 7.6 earthquakes as
compared with M = 6.6 events, then the equivalent maximum accelera-
tion for a Magnitude 6.6 would only be about 1.4 times that for a

Magnitude 7.6 event, which would lead to an equivalent M = 6.6

120




acceleration, corresponding to the ground shaking in the 1952 earth-
quake, of only about 0.09g x 1.4 = 0.13g.

In view of this range of values and the fact that the Lower dam
showed no evidence of being even close to a failure condition in the
1952 earthquake, it seems reasonable to conclude that it would have
safely withstood the 1971 San Fernando earthquake with no observable
pore pressure changes in the downstream shell and no evidence of any
significant strength loss in the upstream shell, if it had been
further from the source and the maximum acceleration had been about
0.2g rather than the value of about 0.55g which actually occurred and
led to the failure.

This same result is indicated by the analysis procedure. Thus
the cyclic loading resistance of the hydraulic fill determined in
both the 1973 and 1985 investigations, used in conjunction with the
Seed-Lee-1driss procedure for seismic stability evaluation, seems to
provide satisfactory evaluations of the known performance of the
Lower San Fernando Dam at both bounds for which failure or non-

failure can be evaluated.

Because of the densification of samples in the sampling, handling,
and testing process, it is unreasonable to expect that the residual
or steady state strength measured on a sample, after it liquefies in
a cyclic load test, could possibly be indicative of the residual or
steady state strength of the soil in its field condition. To deter-
mine such a residual strength for the soil would require a major cor-
rection for void ratio changes and this is more easily accomplished
by performing steady-state strength tests under static loading condi-

tions as proposed by Poulos et al. (1985).




6. Although the residual strength of the silty sand in the Lower
San Fernando Dam can not be determined directly by cyclic loading
tests on undisturbed samples in the laboratory, it can be determined
with a good degree of accuracy from a correlation of residual
strength determined in other flow-failures with the SPT (Nj)gq value
of sands. Values determined in this way are in the range of 400 to
800 psf and, in conjunction with the indicated zones of liquefaction,
they lead to the conclusion that a flow failure would occur in the
Lower San Fernando Dam as a result of the 1971 earthquake shaking and
that the soil could move through a distance of 150 to 200 ft as

actually occurred.

7. Thus it follows that both the distribution of zones of liquefaction
and the residual strength of the soil in these zones can be predicted
with a satisfactory degree of accuracy from correlations of SPT
values of (N;)gg with cyclic loading resistance and residual strength
of sands, silty sands and sandy silts. This method of approach
offers the practical advantage that representative values can be
based on a larger number of data points which describe the non-
homogeneity of the soils involved and permits a meaningful statisti-
cal analysis of this data for the determination of representative
values. It also ensures that parameters selected for use in design
and analysis are not inconsistent with those representative of a
significant number of cases of failure and non-failure due to lique-

faction under actual field conditions.

(c) Post-liquefaction resistance of hydraulic fill determined from
laboratory tests

1. The only way to determine the post-liquefaction resistance of a sand
or silty sand in its in-situ condition by means of laboratory tests
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is to measure this resistance at the void ratio of the sample used in

the test and then correct it to the in-situ void ratio of the soil,

as proposed in the steady-state testing procedure. This procedure is

necessary because of the very significant change in void ratio which

takes place in the sampling, handling and reconsolidation processes.

Aspects of the procedure which should be carefully considered in

determining the residual or steady-state strength of a soil by this

method are the following:

(a)

(b)

(c)

Whether it is appropriate to correct the results to the current
in-situ void ratio of the sand or whether there may be some
redistribution of water content during the earthquake which
would change (increase) the void ratio to a higher value.

The magnitude of the correction involved. In the present study
the average steady-state strength of all samples, as tested, was
about 5250 psf, while the average strength after correcting the
results to the pre-1971 earthquake void ratio of the hydraulic
fill in the upstream shell was about 750 psf. Thus the correc-
tion factor is very large and small changes in procedural
details, such as the slope of the steady-state line, can have a
large effect on the final results.

The large variations in steady-state strength which occur from
one sample to another, even when a major effort is made to limit
the selection of samples to one type of soil. Because of the
large scatter it is necessary to perform a large number of tests
to obtain a representative body of data from which to select a
reasonable value of residual or steady-state strength to be used
in design. At the present time the selection of design strength
can only be made on the basis of engineering judgment.
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With appropriate consideration of these factors, the studies
described previously show that reasonable values of post-liquefaction

strength of a soil can be made by this procedure.

For the liquefied cohesionless soils in the upstream shell of the
Lower San Fernando Dam, the post-liquefaction strength can be deter-
mined from slope stability analyses to be about 400 + 100 psf. 1In
this study the average steady-state strength for all samples tested,
corrected to the pre-1971 earthquake condition in the upstream shell
was found to be 800 psf, while the 35-percentile value for all the
test data is about 580 psf. If the sandy silt and silty sand are
considered to be representative of all the soil in the liquefied zone
of the upstream shell, then with a conservative interpretation of the
test data and conservative assumptions regarding the likely field
behavior of the soil near the toe of the upstream shell of the
embankment, the steady state-strength procedure correctly predicts
the onset of sliding in the upstream shell. Use of the 35-percentile
value of steady state strength for the samples tested would indicate
that a flow-type failure would occur if liquefaction were triggered
by the 1971 earthquake shaking. However, even the 35-percentile
values of steady-state strength are still somewhat higher than the
values of residual strength determined from back-analysis of the con-
ditions in the failure zone of the dam after sliding stopped.

Thus very conservative data interpretation and/or the avoidance
of low factors of safety is required in interpreting the results of
steady-state strength tests in order to arrive at a meaningful value

for engineering analysis purposes.
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9. Conclusions

The results presented in the preceding pages provide a basis for re-

evaluating the soil conditions in the Lower San Fernando Dam prior to the

failure of the upstream shell in the earthquake of 1971 and the applicability

of currently-available procedures for evaluating the seismic stability of

embankment dams. The main conclusions to be derived from the studies would

appear to be as follows:

1. (a)

(b)

(c)

The soil in the zone of liquefaction in the upstream shell appears
to be a stratified sequence of layers of silty sand, sandy silt and
clay. The sand becomes less fine towards the outer parts of the
embankment. Representative average characteristics for the cohe-
sionless zones of the upstream hydraulic fill, in the condition
existing before the earthquake in 1971, appear to be as follows:

Silty sand with fines content of about 25 to 30%

(Nj)gp in situ * 11.5

13.5.

12

Equivalent clean sand (N1)60
The results of the standard penetration tests performed in both the
1971 and 1985 investigations were remarkably similar and both sets of
data are generally in accord with the average conditions noted above.
The average post-liquefaction strength of the soil in the liquefied
zone of the upstream shell at the time of failure was about 400 #
100 psf.
The combination of penetration resistance and residual strength of
the liquefied silty sand is consistent with the correlation between
these soil characteristics determined for other liquefaction failures

(see Fig. 8-3).
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The Seed-Lee-Idriss method for analyzing the seismic stability of earth
dams provides a meaningful basis for evaluating the zone of liquefaction
which developed in the upstream shell of the embankment of the Lower
San Fernando Dam as a result of the ground shaking in the 1971
San Fernando earthquake and also indicating the absence of liquefaction
in the downstream shell of the embankment. It also seems to provide a
suitable basis for demonstrating that a liquefaction-type failure would
not be triggered in a similar earthquake (M = 6.6) producing peak
accelerations of the order of 0.2 to 0.25g, which would appear to be
justified on the basis of the performance of the embankment in the 1952
Kern County earthquake (M = 7.6) and the performance of other hydraulic
fill dams in the Los Angeles area in the 1971 San Fernando earthquake.
However cyclic loading resistance as measured in cyclic triaxial
tests on "undisturbed" samples cannot predict the residual strength of the
liquefied sand and some supprlementary procedure is required for this

purpose.

The residual strength of a liquefied soil can only be determined at the
present time by two methods:
(a) Correlations based on past case studies (Seed, 1987).

or (b) Steady-state strength testing in the laboratory as proposed by
Poulos et al. (1985), followed by appropriately conservative
corrections to the field void ratio condition taking all rele-
vant factors into account.

Both methods inevitably invoive a significant degree of judgment due to

the natural non-uniformity of cohesionless soils. Thus large numbers of

tests are required to determine representative properties. However both

methods, applied to the case of the liquefaction-type slide in the
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upstream shell of the Lower San Fernando Dam correctly predict that such
a slide would occur if liquefaction of the soils were induced by the
earthquake shaking.
4. Both cyclic loading resistance (as measured by the development of
1007 pore pressure ratio) and residual strength can be reasonably well corre-

lated with values of (N1)60 determined by SPT values. Use of these corre-

lations, in conjunction with appropriate analysis procedures, is likely to

provide as reliable a method as any to evaluate the seismic stability of

embankment dams.
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Appendix I: LABORATORY TESTING PROCEDURES AND TEST RESULTS

I-1 General:

This Appendix describes the sampling and testing procedures used in
these studies, and presents individual plots of the results of each test
performed. All tests reported herein were performed at the Stanford
University Geotechnical Laboratory. Testing procedures employed are
described in Sections I-2 and I-B.

Bulk samples as well as high quality "undisturbed" samples for this
program were obtained and delivered to the Stanford Geotechnical
Laboratory by Geotechnical Engineers, Inc. Bulk samples of hydraulic
fill were obtained by hand from within a large-diameter exploratory shaft
bored through the intact downstream portion of the hydraulic fill at
approximately station 6+00. Figure 2-2 shows the 1location of this
exploratory shaft. A total of seven different bulk samples from this
test shaft were forwarded for possible investigation.

Two sampling methods were used to obtain high quality "undisturbed"
samples of hydraulic fill. "Undisturbed" 2.8-inch diameter piston
samples were retrieved from conventional boreholes, and hand-carved
samples (also of 2.8-inch nominal diameter) were obtained at various
elevations within the exploratory shaft. A brief description of sampling
procedures and sample handling procedures is included in Appendix I -
Section B. Figure 2-2 shows the locations of the sample borings and test
shaft. Figure I-1 shows the locations of each "undisturbed” sample
tested as part of this testing program, projected onto the existing
embankment profile. This includes samples subjected to both monotonic

and cyclic undrained loading.
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Section I-A presents the results of IC-U triaxial tests performed
on reconstituted bulk samples and Section I-C presents the results of
IC-U triaxial tests performed on "undisturbed" samples to provide a basis
for evaluation of in-situ steady state strengths of the hydraulic fill
zones. Undisturbed samples for these tests were selected so that only
silty sand and sandy silt samples of low plasticity obtained from within
the elevation ranges of between +1008 to +1023 feet and between +1039 to
+1056 feet (NGVD) were subjected to residual strength testing, as
Standard Penetration Test (SPT) data suggests that these types of samples
within these two elevation ranges are likely to represent the lowest in-
situ steady-state strengths within the hydraulic fill zones.

Section I-D presents the results of undrained cyclic triaxial tests
performed on undisturbed samples. Isotropically consolidated undrained
cyclic tests were performed on "undisturbed" silty sand and sandy silt
hydraulic fill samples obtained from elevations of between +1010 to 1054
feet (NGVD). Anisotropically consolidated undrained cyclic triaxial
tests were performed on silty sand hydraulic fill samples obtained from
within the same range of elevations to investigate the influence of
initial static stress anisotropy on undrained cyclic pore pressure. In
addition, a series of 1isotropically consolidated undrained cyclic
triaxial tests were performed on "undisturbed" silty clay samples
obtained from the hydraulic fill "core" zone at approximately elevation
+1021 feet (NGVD) to investigate the cyclic loading behavior of this core

material.

I-2 Steady State Line Evaluation:
The gradation characteristics of the intact downstream portion of

the Lower San Fernando Dam hydraulic fill vary considerably, ranging from
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fairly clean medium silty sands to clayey silts of low plasticity. It
was judged that the "undisturbed" samples subjected to undrained steady-
state strength testing could be divided into two general classes:
(a) medium to fine silty sands (SM to SM-ML) and (b) finer sandy clayey
silts (SM-ML to ML). The criterion for separating these two classes of
hydraulic fill material was the samples’ fines contents: samples with
more than 40 percent by dry weight passing a No. 200 sieve were
considered to represent "silty" materials and will be referred to as
"sandy silts." Soils with less than 25 percent by dry weight passing a
No. 200 sieve were considered to represent "sandy" materials, and will be
referred to as "silty sands." Steady state lines were developed by
testing reconstituted specimens from two bulk samples, one a medium to
fine silty sand and the other a sandy clayey silt, in order to provide a

basis for the void-ratio-based correction of S, for samples of both soil

types.

I-2.1 Steady-State Line for Silty Sands:

Bulk Sample No. 3, obtained from the exploratory test shaft at
Elevation 2041, is a medium to fine silty sand with approximately 10

-

percent non-plastic silt fines as determined by "wet" hand-sieving
through a No. 200 sieve. A gradation curve for this soil is presented in
Figure 6-2. A series of nine isotropically consolidated-undrained (IC-U)
triaxial tests with pore pressure measurements were performed on
reconstituted samples of Bulk Sample No. 3,

All samples tested were 2.8-inches in diameter, with a height vs.
diameter ratio of approximately 2.3:1. All samples were prepared by

moist-tamping. Each sample was prepared in nine even layers. Sufficient

soil to achieve the desired void ratio within each layer was mixed to a
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water content of approximately 8 to 10 percent and then deposited into a
rubber membrane held by vacuum pressure to the sides of a rigid forming
mold. A tamper with a fixed maximum drop was then used to tamp the new
layer to a pre-determined thickness. The top of the layer was then
scarified lightly to "knit" with the base of the next layer, and the
process was repeated. Experience has shown that it is necessary to vary
the weight of soil used in each layer, using slightly more in upper
layers grading to slightly less in lower layers in order to achieve
uniform final density, as lower layers are densified slightly by tamping
of (upper) overlying layers.

Samples were saturated by a vacuum/back pressure saturation
process. First an essentially full vacuum was applied internally to
remove as much air as possible from the sample. An external vacuum
"cell" pressure was applied to minimize the applied effective confining
stress during this stage of sample preparation. Following vacuum
application, the sample was filled with de-aired water flowing from base
to top cap at approximately the rate of capillary rise (under slight
positive vertical gradient). Positive internal back pressure was then
applied sufficient to dissolve any remaining air and thus achieve full
saturation. This application of back pressure was accompanied by
simultaneous application of confining pressure in order to maintain
constant isotropic effective confining stress. An effective confining
stress of approximately 0.5 ksc (one-half atmosphere or 7.4 psi) was
maintained during both the vacuum and back-pressure saturation stages.
All vacuum and back pressures were applied slowly in increments in order
to avoid differential overconsolidation of the ends of the samples.

Achievement of full saturation was verified by monitoring the sample's
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B-values (B = Au/Ao3). B-values greater than or equal to approximately
0.98 were taken as acceptably close to full saturation.

Following back pressure saturation, each sample was isotropically
consolidated to the desired density and initial effective confining
stress 03,c'. The sample was then sheared to failure under undrained
conditions at a constant rate of axial strain. Axial strain rates for
loading were on the order of ¢, ~ 0.5% per minute, in order to provide
representative measurements of internal pore pressures during shearing.
Table I-1 presents a summary of test conditions for each sample, and
Section I-A presents individual plots of: (a) applied axial stress vs,
axial strain, (b) o3’ Vs, axial strain, and (c) deviatoric stress
(4)(oq - 03) vs. effective mean volumetric stress (5)(0'1 - 0'3) for
each test performed.

Table I-1 summarizes the results of this IC-U triaxial test series.
Figure 6-4 presents a plot of the results in the form of a plot of the
logyg of undrained steady-state strength (Sg,) Vvs. void ratio. The solid
line in Figure 6-4 represents the "steady-state line" for Bulk Sample

No. 3 as determined by this test series.

I-2.2 Steady-State Line for Sandy Silts:

Bulk Sample No. 7, obtained from the exploratory test shaft at
Elevation 1013, is a sandy silt of low plasticity with approximately 52
percent fines. A gradation curve for this soil is presented in Figure
6-3. The gradation of material passing the No. 200 sieve was evaluated
based on hydrometer analysis.

A series of eleven IC-U triaxial tests were performed on
reconstituted samples of Bulk Sample No. 7. All samples tested were 2.8-

inches in diameter with a height vs. diameter ratio of approximately
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2.3:1. All samples were saturated using the vacuum/back pressure
saturation procedures described in Section I-2.1. Two sample preparation
procedures were used. Eight samples were prepared by "moist tamping" as
described in Section I-2.1. Three additional samples were prepared by
"wet pluviation" to investigate the influence of sample preparation
method on steady-state strength behavior. The three "wet pluviation"
samples were deposited by pluviation through standing water, and were
then isotropically consolidated to different initial effective confining
stresses (03,c') in order to achieve different void ratios. All samples
were sheared to failure under undrained conditions at constant axial
strain. Axial strain rates for loading were approximately 0.07% to 0.1%
per minute. Table I-? presents a summary of test conditions for each
sample, and Section I-A presents individual plots of: (a) applied axial
stress vs. axial strain, (b) o3’ Vvs. axial strain, and (c) 4 of the
principal effective stress sum vs. the maximum deviatoric stress (p vs. q
or (o' + 03')/2 vs. (oy - 03)/2 for each test performed.

Table I-2 summaries the results of these IC-U triaxial tests on
Bulk Sample No. 7. Figure 6-5 presents a plot of the results in the form
of a plot of the 1og10 of undrained steady-state strength Sgy Vs. void
ratio. As shown in this figure, there appears to be little significant
difference in steady-state strength behavior between samples of this soil
prepared by moist tamping and samples prepared by wet pluviation. The
solid line in Figure 6-5 represents the "steady-state line" for Bulk

Sample No. 7 as determined by this test series.

I-3 Evaluation of Steady State Strengths In-Situ:
A series of 16 IC-U triaxial tests were performed on "undisturbed"

samples of hydraulic fill from the intact downstream portion of Lower
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San Fernando Dam to provide a basis for estimation of in-situ steady-
state strengths of this hydraulic fill material. Nine of these
"undisturbed" samples were 2.8-inch diameter piston samples retrieved
from conventional boreholes, and the other seven samples were hand-carved
2.8-inch diameter samples retrieved from the exploratory test shaft.
Table I1-3 and Figures 2-2 and I-1 summarize the locations from which
these samples were obtained.

Section I-B provides a description of procedures used for sampling,
sample extrusion and test set-up, sample saturation, sample consolidation
and undrained testing. Sampling procedures used for both piston and
hand-carved sampling permitted monitoring of sample void ratio changes
during the sampling process. Subsequent void ratio changes during sample
extrusion, test set-up and consolidation were also continuously
monitored.

Table I-3 lists the void ratios of each of the "undisturbed"
samples at various stages: (a) as tested (following consolidation),
(b) after sampling but prior to extrusion and test set-up, (c) in-situ
prior to sampling in 1985, and (d) in-situ prior to the 1971 San Fernando
Earthquake. Pre-earthquake (1971) void ratios are based on an estimated
average earthquake-induced void ratio decrease (densification of Ae =
0.020).

Table 1I-4 presents a summary of test conditions for each IC-U
triaxial test performed on an "undisturbed" sample. All samples tested
were 2.8-inches in diameter. Height vs. diameter ratios varied from
1.8:1 through 2.4:1, and all samples were tested with well-lubricated end
platens. All samples were back pressure saturated, were isotropically

consolidated to the desired initial effective confining stress (03 c’),
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and were sheared to failure under undrained conditions at a constant rate
of axial strain. Strain rates employed varied from sample to sample as a
function of perceived sample permeability. Tables 6-1, 6-2, 1-3 and 1-4
present the results of these IC-U tests. Section I-C also presents
(a) soil gradation curves, (b) plots of axial stress vs. axial strain,
(c) plots of effective confining stress (03,) vs. axial strain and

(d) p-q effective stress path plots for each "undisturbed" sample tested.

I-4 Undrained Cyclic Triaxial Testing:

Both 2.8-inch diameter "undisturbed" tube samples an well as 2.8-
inch diameter hand-carved samples were subjected to cyclic . stvs.  Sample
handling, test set-up and back pressure saturation proccd res used were
the same as described previously in Sections I-2 i, [-B. Upon
completion of back pressure saturation (to a "B-value" o! not less than
B = 0.98) most of the samples were isotropically counsolidated to
0'3 = 2.0 ksc. Some of the samples were anisotropicallv consolidated
at K, =1.75 by applying an additional axial consolidation stress
concurrent with the applied confining stress of 0'3 = T ke

Uniform sinusoidal axial cyclic loading was ;. . using a
computer-controlled pneumatic loading system. The rate o: -volic loading
was 0.5 Hz for all cyclic tests performed. Testing resu:' i .rc evaluated
herein primarily in terms of cyclic strains induced, : ‘¢ was judged
that many of the samples tested contained sufficient fi: . w.tont as to
be relatively impervious so that the pore pressure di - cions within
some of the samples might not have been fully wunifc ., testing.

Pore pressures were measured at the sample bases.
Tables 5-1 and 5-2 present a summary of the res.. o cvelice

tests.  Actual test data for each individual cyclic - voctormed s
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presented in Section I-D; this includes plots of (a) sample gradation
curves, (b) cyclic axial load vs. time, (c) incremental pore pressure
generation vs. time, and (d) axial strain vs. time.

In addition to the 15 cyclic tests performed on sandy and silty
samples, a series of four additional isotropically consolidated undrained
cyclic triaxial tests were performed on undisturbed samples of 1low
plasticity silty clay obtained from the central "core" zone of the
hydraulic fill. Table I-5 lists sample locations, sample characteris-
tics, testing conditions and test results for these cyclic tests. All
four samples tested were silty clays of low plasticity, and all consisted
of more than 97% by dry weight finer than a No. 200 sieve.

Figure 1-2 shows the results of these tests on clayey samples,
along with the cyclic strength curves for sandy and silty samples from
Figures 5-4. Inspection of the individual test records (Figures D-21,
D-31, D-33 and D-35) show that these samples do progressively soften and
develop positive pore pressures under repeated cyclic loading. However,
as shown in Figures I-2 and Figures D-21, D-31 , D-33 and D-35, they do
so only at relatively high cyclic stress ratios and large numbers of
loading cycles. It may be concluded from these test results that the
clayey hydraulic fill from the central “core" region of Lower
San Fernando Dam would not develop significant pore pressures and would
not be significantly softened by the cyclic loading likely to have been

induced by the 1971 San Fernando Earthquake.
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Section I-A: IC-U TRIAXIAL TESTS ON RECONSTITUTED SAMPLES

Figures A-1 through A-9 present plots of (a) applied axial stress vs.
axial strain, (b) effective confining stress (03') vs. axial strain and (c)
one-half of the principal effective stress sum (1/2)(o;' + o03') vs. the
maximum deviatoric stress (1/2)(o; - o3) for the isotropically consolidated
undrained (IC-U) triaxial tests of reconstituted samples of the hydraulic fill
material "Bulk Sample No. 3." A gradation curve for this medium to fine silty
sand is presented in Figure 6-2.

Figures A-10 through A-19 present similar plots of IC-U triaxial tests
of reconstituted samples of the hydraulic fill material "Bulk Sample no. 7."

A gradation curve for this non-plastic sandy silt (ML) is presented in Figure

6-3.
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Section I-B: HANDLING AND TESTING OF UNDISTURBED SAMPLES

"Undisturbed" samples of hydraulic fill from the intact downstream
portion of Lower San Fernando Dam were provided by Geotechnical
Engineers, Inc. Sample void ratio changes during sampling, extrusion,
test set-up and consolidation were continuously monitored so that
steady-state strengths measured in laboratory 1C-U triaxial tests could
be ''corrected" for void ratio changes in order to derive estimates of
in-situ steady-state undrained strengths. Sample retrieval, handling
and set-up procedures employed were designed to minimize both sample

disturbance and sample volume (void ratio) changes.

B.1 Sampling

Two different sampling procedures were employed: (a) 2.8-inch
diameter piston sampling with thinwalled Shelby-type tubes in
conventional boreholes, and (b) 2.8-inch diameter hand-carved sampling
within a large-diameter exploratory test shaft.

Void ratio changes during piston sampling were evaluated based on
consideration of: (a) the ratio of the average diameter inside the
lead cutting edge of the thinwall Shelby tube vs. the internal tube
diameter, and (b) the ratio between the length of sampling tube
penetration vs. the length of the sample inside the tube following
removal from the borehole. Typical sampling penetration lengths were
approximately 2 feet, so that 2-foot long samples were retrieved. Void
ratio changes (ie) during sampling were generally small; typical Ae <
0.02. Most piston samples were slightly densified during sampling,

through a few samples dilated slightly.
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Hand-carved samples were obtained by carving 2.8-inch diameter
cylindrical block samples ahead of an advancing 2.8-inch diameter
sampling tube. The tube was suspended by a sampling tripod, and was
periodically lowered as hand-trimming progressed. Hand-carved samples
were typically 14 inches in length. Volume changes during hand-carved
sampling were evaluated using measurements similar to those used to
evaluate piston sampling-induced volume changes. Void ratio changes
during hand-carved sampling were generally small, and most samples
densified slightly during sampling through some samples dilated
slightly.

Following sampling, all samples were trimmed and the length from
the tube ends to the ends of the samples were recorded so that sample
volume changes during transport could be monitored. After trimming and

measuring, fixed

'packers" were inserted in the sample tubes to confine
the samples during transport. Most of the samples arrived at Stanford

University having undergone no volume change during transport.

B.2 Sample Extrusion and Test Set-Up:

Prior to sample extrusion, x-ray photographs of each sample tube
were consulted to identify attractive sample zones. Sample zones
showing striations due to layering between distinct soil zones of
different gradation were not tested. Attractive sample 2zones were
marked on the tube, and the end packers were briefly removed so that
sample volume changes during transport could be evaluated. Any
measured changes in sample length were assumed to represent volume
change distributed uniformly over the full length of the sample.

Measured transportation volume changes were typically negligible.
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The tubes were next clamped vertically in a chain vise for
cutting, with a free-moving packer plate on top of the sample as a
measuring reference and a fixed packer supporting the base of the
sample in the tube. All cuts were made approximately 2 to 3 cm from
the preliminary "desired" final triaxial test sample ends, and the
chain vise was applied approximately one inch from the cutting
locations. A pair of circumferential ring stiffeners were applied
approximately one and two inches above the cutting location,
respectively. Each stiffener consisted of a steel ring with six radial
screws which were lightly hand-tightened to provide radial pressure and
confinement to minimize tube distortion during cutting. The tube was
cut by hand using a rotary pipe cutter. Light cutting contact pressure

was applied and the cutter was rotated slowly to minimize tube

distortions. Cutting pressure and rate were further decreased
immediately prior to 'break-through". Each tube 'cut" required
approximately 30 to 60 minutes. All cutting was performed by two

personnel who were rigorously drilled and practiced on numerous ''dummy"
tubes prior to being allowed to work on actual sample tubes. The care
taken in cutting the sample tubes appears to have been successful, as
samnle volume changes during tube cutting were typically negligible.
(Volume changes were evaluated by measuring the distance from the top
of the tube to the free-moving packer plate at the top of the sample
both before and after cutting.) In the few instances that minor volume
changes were measured, these were assumed to be distributed within the
top '"'triaxial sample length" within the tube, as tube movements

(distortions) during cutting were localized at the tube end being cut.
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The cutting process resulted in a slight inward rotation at the
new lip of the cut tube, and some minor "burring" of this lip. The
sample was next trimmed to approximately one to two centimeters from
the newly cut tube end, and this lip was reduced and "de-burred" by
hand using a sharp surgical knife and a tungsten machinist's hand
cutting blade. Measurements before and after de-burring consistently
showed that this process caused no sample volume change.

Next the tube was advanced vertically and re-clamped in the chain
vise, and similar procedures were used to make a second tube cut
approximately at the base of the "desired" triaxial sample. This lower
end cut was not de-burred, as the sample would be subsequently extruded
through the upper end of the newly produced short tube section. A thin
steel plate with a sharp cutting edge was passed through the lower cut
to separate the new short tube section and sample from the parent tube.
Lower cuts were consistently found to produce no measurable sample
volume change.

This process resulted in production of short tube (and sample)
sections, with sample volume changes and dimensions of known (and
typically negligible) magnitude. These short tube sections were then
clamped vertically in a chain vise, and a stiff steel loading plate
with a diameter almost equal to the sample diameter was placed beneath
the sample. A hand-operated hydraulic jack was used to extrude the
sample by applying force to this steel base plate. Samples were
extruded in the direction of sample ingress during initial sampling to
avoid shear reversal, and were extruded through the "de-burred" ends of
the short sample tube sections. Some samples were placed overnight on

porous stones in a shallow water bath to draw water by capillary rise
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prior to extrusion, as this was found to be beneficial in reducing
sample/tube wall interface friction, particularly in "sandy' samples.

Samples were extruded into a confining membrane held by external
vacuum pressure to the sides of a forming mold with a diameter slightly
larger than the sample diameter so that no sample/membrane contact
occurred during extrusion. A gap between the top of the short sample
tube and the base of the forming mold permitted examination of the
sample during extrusion so that striated samples with distinct layers
of variable gradation could be avoided. A number of samples were
discarded because of such striation or layering at this stage, and
several additional samples had one end trimmed 'short" resulting in
occasional testing of 'short" triaxial samples with height: diameter
ratios as low as 1.8:1 to optimize sample homogeneity.

Following extrusion, the vacuum pressure holding the membrane to
the sides of the forming mold was released so that this membrane
applied a light lateral confining stress to the sides of the extruded
sample. A top cap and base plate were applied to the ends of the
sample, and the membrane was sealed to these with O-rings. A vacuum
pressure of 0.25 ksc was then applied to primarily "sandy" samples, but
none to primarily "silty" samples, and the samples were then placed in
a triaxial cell for testing. The average sample diameter and sample
height were measured at this stage to evaluate sample volume changes
during extrusion. These were usually found to be small but not
negligible, and were typically compressive though a few sandy samples
dilated during extrusion.

A number of samples were difficult to extrude, apparently due to

sample/tube wall interface friction associated with rust accumulation
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on the tube walls. This was observed only with predominantly ''sandy"
samples. Several samples which were difficult to extrude were also
found to suffer significant volume change during extrusion, and these

samples were discarded at this stage.

B.3 C-U Triaxial Testing:

Samples were saturated using the vacuum/back pressure saturation
techniques described in Section 2.2.1. A number of undisturbed samples
with high fines content were found to have high initial degrees of
saturation immediately after extrusion, and the vacuum application
stage of the vacuum/back pressure saturation process was omitted for
these samples. Upon completion of back-pressure saturation, samples
were consolidated to the desired initial effective confining stress
conditions (0'1,c and °'3,c)' Volume changes were measured during
consolidation.

Two types of undrained loading were applied to samples following
initial consolidation: (a) monotonic axial loading to large strain for
undrained residual or steady-state strength evaluation, or (b) cyclic
axial 1loading for evaluation of wundrained <cyclic pore pressure
generation and cyclic strain behavior. Monotonic loading was strain-
controlled, and axial strain rates for each sample were selected to
permit equalization of the internal sample pore pressure field during
testing. Cyclic 1loading was computer-controlled/stress-controlled
loading with uniform sinusoidal loading cycles. Cyclic loading rates
varied from sample to sample, and were between 0.1 Hz and 0.5 Hz.

After completion of undrained shear testing, the final sample void
ratio was determined by measuring and drying the entire sample. Void

ratio estimates based on final dry unit weight and final sample volume
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were found to be in close agreement with void ratio estimates based on

final (fully saturated) water content.
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Section I-C: IC-U TRIAXIAL TESTS ON UNDISTURBED SAMPLES

A total of 16 isotropically consolidated-undrained triaxial tests were
performed on "undisturbed" samples of hydraulic fill from the downstream shell
of Lower San Fernando Dam. Sample extrusion and testing procedures employed
are described in Section I-B. All samples tested had a nominal diameter of
2.8-inches. Table I-4 summarizes testing conditions as well as the results of
these IC-U tests. Figures C-1 through C-32 present plots of (a) axial stress
vs. axial strain, (b) effective confining stress (03') vs. axial strain,
(c) deviatoric stress (1/2)(o; - o3) vs. (1/2)(oy' - o3') and (d) soil

gradation for each of the samples tested.
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Section I-D: UNDRAINED CYCLIC TRIAXTIAL TESTS ON
UNDISTURBED SAMPLES

A total of 19 cyclic triaxial tests were performed on undisturbed
samples of hydraulic fill. Figure D-1 through D-48 present plots of
(a) cyclic axial stress vs. time, (b) incremental pore pressure development
vs. time, (c) axial strain vs. time, and (d) soil sample gradation for each
cyclic test performed. On these figures; cyclic stress ratio is defined as
CSR = °d,c/2°'3,i and K. = 0'1,1/0'3’1 at the end of consolidation. The
results of these tests are summarized in Figures 5-1 through 5-6, and 1-2 as

well as in Tables 5-1, 5-2 and I-5.
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Figure D-1: UNDRAINED CYCLIC TRIAXIAL TEST NO. 1: HYDRAULIC FILL
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Figure D-3: UNDRAINED CYCLIC TRIAXIAL TEST NO. 2: HYDRAULIC FILL
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Figure D-5: UNDRAINED CYCLIC TRIAXIAL TEST NO. 3: HYDRAULIC FILL
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Figure D-7: UNDRAINED CYCLIC TRIAXIAL TEST NO. 5: HYDRAULIC FILL
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Figure D-11: UNDRAINED CYCLIC TRIAXIAL TEST NO. 15: HYDRAULIC FILL
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Figure D-13: UNDRAINED CYCLIC TRIAXIAL TEST NO. 17: HYDRAULIC FILL
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Figure D-15: UNDRAINED CYCLIC TRIAXIAL TEST NO.

18: HYDRAULIC FILL
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Figure D-17: UNDRAINED CYCLIC TRIAXIAL TEST NO. 21: HYDRAULIC FILL
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Figure D-19: UNDRAINED CYCLIC TRIAXIAL TEST NO. 22: HYDRAULIC FILL
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Figure D-21: UNDRAINED CYCLIC TRIAXIAL TEST NO. 27:
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Figure D-23: UNDRAINED CYCLIC TRIAXIAL TEST NO. 30:
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Figure D-25: UNDRAINED CYCLIC TRIAXIAL TEST NO. 31: HYDRAULIC FILL
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Figure D-27: UNDRAINED CYCLIC TRIAXIAL TEST NO.
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Figure D-31: UNDRAINED CYCLIC TRIAXTA! 7ThHST NG. 3.: HYDRAULIC FILL
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Figure D-33: UNDRAINED CYCLIC TRIAXIAL TEST NO. 35: HYDRAULIC FILL
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Figure D-35: UNDRAINED CYCLIC TRIAXIAL TEST NO. 36: HYDRAULIC FILL
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Sandy Clayey Silt (ML), 837 fines. CSR : 0.174

Figure D-37: UNDRAINED CYCLIC TRIAXIAL TEST NO. 39: HYDRAULIC FILL
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(Figure D-37, continued)
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Silty Sand (SM-SP), 127 fines. CSR 0.287

Figure D-39: UNDRAINED CYCLIC TRIAXIAL TEST NO. 40:

HYDRAULIC FILL
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(Figure D-39, continued)

253




Axigl stroin

d g/ Sigma 3

d UsSigma 3

NORMALIZED RXIAL STRESS

40 500

Time (seconds)

NORMALIZED EXCESS PORE PRESSURE

1 r

T

.7:‘> ' AW
azé

N A R

:Q: 4< 500 550 (S

Time [(seconds)
AXIAL STRAIN

C.!

;
.C:t

!
) ;OS 45C 50C S50 600

Time (seconds)

(Figure D-39, continued)

254




yBiaps Aq pauipiay uddiey

0% "ON LS4l TVIXVIYL DITOAD

TNOILNGTHLSIA AZIS NIVYD :0%-d @and1y

au) wnpa #si00 aur #5:00
V1> 0 1S Ho | wow | p) 4| )
ANVS 1IAVYEO
Sigjawit)iw Wi AT UIDLG
1000 S000 100 SO0 10 S0 { S ol 0s 001
001 0
—_— |Q -4
4 —— = ﬁq -4
06 t-- Jﬁ - ot
1 - T 41t— - 4 -t 4t ——
- - B G \ﬁ —+ 44 - - 4 NSRRI S
b———1—1 —4 + ¢4 —-- - 44444+ ————4— —
o8 4 44+ - - B G O 15 1 0 b oz
. : - 1 44 SR - - °
* JI»iﬁ%;fT ;‘L:-‘ 4 4 AYL H - — 1+ -1 W
S e A - - RS D S
os 4 - e ﬁ - B oc 2
S P 44— 4 - - { 44— 444 ©
\lwau - 4 it - ‘ 4 4 Q
1~ — 44y - t - - AT: “
09 - Tt w M T 7 1 lﬁiLiﬁr Hov n.u..
- - . o - - 1 - —4-1+—1 + 11
b - [ - - - A 4 4 - 4- - [0 S O L4 o
E— 4o 4+t ! b i 4 . , 4 - |LAULA1 <
osf——-- - + bopognd ; N | *ML { HHHos 5
b1t {11119 H . k : g t : : SRR - # ﬁ. 2
Tl . (RS E I I R Eressi I
— ] bz - : oot EU R I A N T
oy -+ -- -} 4 - -1 + el 1- — +1+109
—— 44144 - — 4 4- [ .
— q PSRN G S S
] o —, i Lj
|
ot ¢
- 5 0 S S AU 5 ) O o¢
——t 4= -
ol - - 08
L 4. 44— § SRS DU
- e —t— g L .[ - L * . LIV# LL .,1*
— —1 B e b4 —— —— + —-4— -4 .AI./ e +
01 - —t- - AN - 06
[ O ] e 18}
b+ ——— 4 - - -
|+ 1 4.1 l‘* — 4 44 4 I B f\ . I.AA/ . ::L;.:ﬁIT‘ 1}
0 A i I i i i d il 4 i 001
00Z Ol 00t O 05 Ov Of OL 9 vl O e v 0 B0l Yo o Lol ¢
18j8woIpAy LIIQWNN ARG PIS SN saydu| ur sbuued( sAdIg pis ¢ n

HdVY9O SISAIVNY

TVDIINVHIIW

255




Axial strain

da/ Sigmo 3

d U/Sigmo 3

NORMALIZED AXIAL STRESS

l
|
"W&M it MMWWM%W %WWWMMMW%WW’
[ e
N
5C 10C el
Time (seconds)
NORMQLIZED EXCESS PORE PRESSURE
ST mmmmmmwmmmmwmw i mmmmg
c.z P {
- |
bC 5C 163 180 cll
Time (seconds}
- AXIAL STRAIN
c.:zr ! v WM
|
: :M
-c.02 E
b ,
V“C SC 100 150 25l
Time (seconds)
Test No. 41 B-value : 0.974
Test Date : 8/28/86 o3, : 2.00 ksc
Material ¢ Tube Ull1A-UF6 K. : 1.75
Silty Sand (SM-ML), 17% fines. CSR : 0.325
Figure D-41: UNDRAINED CYCLIC TRIAXIAL TEST NO. 41: HYDRAULIC FILL
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(Figure D-41, continued)
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Figure D-43: UNDRAINED CYCLIC TRIAXIAL TEST NO. 42:

HYDRAULIC FILL
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(Figure D-43, continued)

260

- —
™ Z.3T
o]
E
o
w 0
~N
o g
° -C. t
22¢ 25C 300 350 4L
Time (seconds)
NORMRLIZED EXCESS PORE PRESSURE
l +
t
m [
C.7% . |
g W :
P C.SL
3 t
> !
o 035 .
t |
C " J
el 25z 300 350 40
Time (seconds)
AXIAL STRAIN
C.!
L |
C.05 =~
b
of
-G0.CS
_O‘ —_ " o —_ " —_
200 250 300 350 4C




yBispy Aq pauinjay uediey

Zv "ON LSAL TVIXVIYL DITOAD TNOIINGIYLSIA AZIS NIVYD :¢%-Q @in814

V1> 30 1S suiy ﬂ whipew a #3100 auly _ 831005
ANVS 13AVYO
si1jow|Iw U1 3715 WDIG
1000 S000 100 o SO L S o]} 0s 001
oot Y
06 ol
o1 ] s B S e o s o o
s ik S R ot 5 ma 8 e —§ 444 EEER —+ 1 -4- 414 o
AQERER RN I A i 5 { B A A S S 9801
——— 4 - -4 4414 - PUNRNED S S “
0L — U -1 1t 41 H - -4 ot =
+4- - — - -4 -4
-4+— +— 4w‘ Lu.% — — #A\H - - O.C
B RS . - S IS u B0 1 O R S “
09 Y S T — N1 4 - - S T - A by 4oy 3
IT\A N JES (D DU G U 9 - [ S _— :+ll\>l‘] o
— 4-+4 44— — o
- B R . VS 114 - 4+ oo <
os — Xttt 05
e
- — g — @
14 £y
or — 09
ot N [+ 74
oz - o8
. N\
[+]} AN 06
AN
i i A A I\ i A A
0 2.:. o.! 001 o.u 0¢ oy Of O W v.. oL 9 v € &0, Y o Lpro ¢ oot
h..gohv>x siaquiniy ansig pis SN sayYou v w@—:"ﬁo eABIS ‘Pig S N
HAV3O SISATYNY  TVOINVHIOIW

261




Axigl strain

NORMALIZED AXIAL STRESS

dq/ Sigmo 3
(@)

C S0 1635 150 cll

Time (seconds)

NORMALIZED EXCESS PORE PRESSURE

™ 575 hw
o ;
3 ' |
.U-') 005_]' 111
~N
> e
5 0.25'
O i A i " -
0 50 100 150 202
Time (seconds)
AXIAL STRAIN
0.1 ¢
o.csE
0F
-C.03%
C 50 100 150 sie
Time (seconds)
Test No. s 47 B-value : 0.991
Test Date : 9/3/86 03’1' : 2.00 ksc
Material : Tube TS117 K. 1.00
Silty Sand (SM-ML), 227 fines. CSR : 0.221

Figure p-45: UNDRAINED CYCLIC TRIAXIAL TEST NO. 47: HYDRAULIC FILL
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Figure D-47: UNDRAINED CYCLIC TRIAXIAL TEST NO. 49: HYDRAULIC FILL
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