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ABSTRACT

A parameter identification problem is considered in the context of a linear abstract
Cauchy problem with a parameter-dependent evolution operator. Conditions are investi-
gated under which the gradient of the state with respect to a parameter possesses smooth-

ness properties which lead to local convergence of an estimation algorithm based on quasi-

linearization. Numerical results are presented concerning estimation of unknown parameters

in delay-differential equations.
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1. Introduction

During the past fifteen years considerable effort has been devoted to

the problem of estimating unknown parameters in distributed parameter

systems. The recent book by Banks and Kunisch 191 provides an excellent

account of the progress made in the field. Many parameter estimation

problems are best formulated as optimization problems (often over infinite

dimensional "parameter spaces") and algorithms are developed to minimize an

appropriate cost function. Although there are several approaches to these

problems, their infinite dimensional nature requires that numerical

approximations be introduced at some point in the analysis. Consequently,

there are two basic classes of algorithms for optimization based parameter

estimation. The first type of algorithm, and the most frequently used for

dynamic problems, is indirect and proceeds by initially approximating the

dynamic equations (e.g. finite elements, finite differences, etc.) and then

using optimization algorithms on the finite dimensional problem. This

approach is typified by the papers (11-161, 181, 1101, and 1171. The

second more direct approach is based on the direct application of an

(perhaps infinite dimensional) optimization algorithm and employing

numerical approximations at each step of the algorithm to compute the

necessary solutions of the dynamic equations. This approach is used in

[121, 1131, and [181. Both methods have advantages and disadvantages.

Depending on the particular type of distributed parameter system, one

method may out perform the other.

Direct methods such as quasilinearization considered here are often

limited by the fact that the dependence on unknown parameters of the

solution to the infinite dimensional dynamical equations may not be "smooth

enough" to establish convergence of the algorithm. Indeed, some algorithms

may not be properly defined without this necessary smoothness. Indirect

methods avoid this difficulty and often lead to easily implemented

algorithms. On the other hand, when direct methods can be applied it is

sometimes possible to establish the convergence and the rates of

convergence to the unknown optimal parameters (see [131, 1181).
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This paper considers the dependence on an unknown parameter q of the

solution of the linear abstract Cauchy problem

((t) = A(q)x(t) + u(t), 0 < t < T,
(1 1)x(0) = x 0 '

Our ultimate goal is to formulate and establish the convergence of a

gradient-based parameter estimation algorithm applicable in this abstract

setting.

This algorithm employs computation of the gradient D x(t;q) of theq

solution of (1.1) with respect to the parameter. Conditions for the

existence of this gradient are established in 111l. In Section 2 we review

these conditions and the general setting for the remainder of the paper.

Convergence of the algorithm requires certain smoothness properties of the

gradient D x(t;q) with respect to q. These properties are established inq

Section 3 and their applicability to a linear delay-differential equation

is discussed in Section 4. In this example the delay is among the

parameters so that in this setting the parameter dependence appears in

unbounded terms of the evolution operator A(q).

An abstract parameter estimation algorithm is presented in Section 5.

In Section 6 its convergence is established using the results of Section 3.

In Section 7 we present several numerical examples which indicate the

performance of the algorith- tuo delay and coefficient estimation in linear

delay-differential equations. dditional examples may be found in [121.

Numerical testing and evaluation on a wider variety of parameter estimation

problems will be undertaken in a subsequent paper.

2. The General Setting

The application of quasilinearization to parameter estimation requires

knowledge of the derivative of the state with respect to the unknown

parameter. This topic is addressed in [11l. In this section we review the

framework used there to obtain differentiability and establish notation to

be used in the remainder of this paper.
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Let P be an open subset of a normed linear space P with norm .j and

let X be a Banach space with norm J['11. For every q E P let A(q) be a

linear operator on D(A(q)) in X. Throughout this paper we assume

(H1) A(q) generates a strongly continuous semigroup S(t;q) on X;

(112) D(A(q)) = D is independent of q;

(113) I~S(t;q)xll 5 Me tlix!!, x E X, t > 0, q E D, for some constants

M and w independent of q, x, and t.

Fix T > 0 and u e LI (0,T;X). Define Q(t;q) = JS(t-s;q)u(s)ds for q E P,

0

0 < t < T. Note that if (1.1) has a strong solution then it is given by

the formula x(t) = S(t;q)x 0 + Q(t;q) for 0 < t < T.

In applications of this theory it is useful to consider just those

terms of A(q) in which the parameter appears. To this end we write

A(q) = A + B(q) where A and B(q) both have domain D and A is independent

of q. Concerning B(q) we assume the following:

(H4) For every q, q0 E P there is a constant K such that

fllB(q)S(t;q 0 )xtdt Kljxll for all x E D.

In Section 4 we discuss an example in which an unbounded operator B(q)

satisfies (114). This hypothesis does imply, however, that the linear

mapping x -* B(q)S(.;q 0 )x is bounded as a mapping from D into LI (0,T;X).

Let F(q,q 0 ) denote the bounded linear extension of this operator to X. Let

denote the norm in L1 (o,T;X). Concerning F we assume the following:
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(115) There is closed subspace Y of X such that

(i) F(q,q 0 )x0 E L I(0,T;Y) for q, q0 C P, and

(ii) for every q0 E P and e > 0 there exists 6 > 0 such that

JIF(q,q 0 )y - F(q0 ,q0 )y111 < Ellyll for y E Y and

Iq - q0I 6.

The analogue of F for the function Q(t;q) is the mapping G(q,q 0 ) from

LI (0,T;D) into L I(0,T;X) defined by

t

[G(q,q 0 )w](t) = J B(q)S(t-s;q 0 )w(s)ds.
0

By (H4) is follows that G can be extended to a bounded linear mapping on

LI (0,T;X) so that in particular G(q,q0 )u is defined as an element of

L I(0,T;X). In addition we assume

(116) G(q,q 0 )u E LI (0,T;Y) for q, q0 E P

where Y denotes the subspace required by (115).

3. Parameter Dependence

In this section we deduce smoothness properties of the solution

x(t;q) = S(t;q)x 0 + Q(t;q) with respect to q. These properties are derived

from similar properties of F(q,q ) and G(q,q0) which are operators related

to A(q). These results will be used in Section 5 to prove convergence of

the parameter estimation algorithm. Throughout this section T > 0, x0 E X,
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and u E L (O,T;X) are fixed as given in (1.1). The symbol D denotesq

Frechet differentiation with respect to q. These results are given as a

series of lemmas whose proofs are at the end of this section.

Lemma 3.1. Suppose (111) - (115) hold. In addition, suppose that for a

given q* E P

(117) F(q,q 0 )x0 is Frechet differentiable with respect to q at qo

for every q0 E P.

For brevity, let DF(q0 ) denote Dq [F(q,q 0 )x0 qq=q0 for q0 E P. In addition,

suppose

(118) DF(q) is strongly continuous in q at q*, that is, for each

h E P the mapping q 4 DF(q)h from P into LI (0,T;X) is

continuous at q*.

Then for each t E [0,T], S(t;q)x 0 is Frechet diffentiable with respect to q

at every q E P and Dq IS(t;q)X is strongly continuous with respect to q

at q*.

Lemma 3.2. Suppose (Hi) - (116) hold and in addition suppose that for a

given q* E P,

(H9) G(q,q 0 )u is Frechet differentiable with respect to q at q0

for every q0 E P.

Again denoting this derivative by DG(q0 ) for qa E P, assume

(H10) DG(q) is strongly continuous in q at q*,
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Then for t E [0,T], Q(t;q) is Frechet differentiable with respect to q at

every q E P and D q[Q(t;q)] is strongly continuous in q at q*.qi

Lemma 3.3. Suppose (HI) - (115) and (H7) hold and in addition suppose

(H11) F(q,q*) is locally Lipschitz continuous in q at q*, uniformly

for y ( Y, that is, there exist constants KI, 61 > 0 such that

IjF(q,q*) - F(q,q*)yll I _< K lq - q*1 IhlyI

whenever Iq - q* < 61 and y E Y.

Moreover, assume that

(1112) DF(q) is strongly locally Lipschitz continuous with respect

to q at q*. That is, for each h E F, there are constants

K, 6 > 0 such that

lIDF(q)h - DF(q*)hll < Kjq - q*1

for Iq - q*l < 6.

Then D q S(t-q)x01 is strongly locally Lipschitz continuous with respect to

q at q* for every t F 10,TI.

Lemma 3.4. Suppose (HI) - (116), (119) - (HI0) hold and in addition suppose

(1113) DG(q) is strongly locally Lipschitz continuous with

respect to q at q*.

Then D q[Q(t;q)] is strongly locally Lipschitz continuous with respect to q

at q* for every t E [0,TJ.
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Although the assumptions (HI) - (1113) are rather technical, we shall

see that they can be easily verified for delay systems even in the case

that the unknown parameter is the delay itself. Therefore, the results

presented here remove the limitations placed on the perturbation B(q) in

papers [131 and 1161.

For completeness we now present the proofs of Lemma 3.1 - Lemma 3.4.

However, these proofs make use of the basic results found in tli and in

order to keep the length of the proofs reasonable we assume that the reader

has [111 in hand.

Proof of Lemma 3.1. It is shown in [111 that (H1) - (H5), (117) imply that

DqIS(t;q)x exists for q E P. Furthermore, it is given by the formula

t
(3.1) Dq IS(t;q)x 0 h = S(t-s;q)[DF(q)hl(s)ds, h E P.

0

We therefore obtain by substitution

(3.2) D q[S(t;q)x 0lh - Dq IS(t;q*)x 0 ]h

t
= IS(t-s;q) - S(t-s;q*)I(IDF(q)hl(s))ds

0

t
+ f S(t-s;q*)([DF(q)hl(s) - IDF(q*)hi(s))ds.

0

Let e > 0 be given and let C = MeWt. It can be shown (see the proof of

Theorem 1 (111) that for all x E X

(3.3) JIS(t;q)x - S(t;q*)xll ! CIIF(q,q*)x - F(q*,q*)xll

. . . . ' ii l l l l l l l l l II I
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Combining (3.3) with (H5ii) shows that for some 6 > 01

iIS(t,q)y - S(t;q*)yil -5 ECIIyIi, 0 < t < T, y E Y,

whenever fq - qI < 6 In particular, putting y = IDF(q)hl(s) c Y by

(1l5i) we obtain

111lS( t-s; q) -S( t-s; q*)}DF(q)h I(sF)l[< EC1I IDF(q)h I(s)[11

for [q - q*[ < 6, a.e. s C (0,T). Since DF(q)h is continuous at q*, there

exist constants K2, 62 > 0 such that

IIDF(q)h 1< K2 for Iq - q*j S 02

Combining these estimates shows that the first term in (3.2) is bounded

by ECK 2 if Iq - q*[ _< min( ,6 2).

Using (H8) it is easy to see that there exists 6 > 0 such that the3

second term in (3.2) is bounded by tC for jq - q*1 < b3 These estimates

complete the proof of Lemma 3.1.

Proof of Lemma 3.2. By Theorem 3 of 1il1, Iq) Q(t;q)l exists for q E P and

(3.4) D q[Q(t;q)] - D qQ(t;q*)]

t
- IS(t-s;q) - S(t-s;q*)llDG(q)(s)lds
0

t

+ f S(t-s;q*)[(DG(q))(s) - (DG(q*))(s)lds
I0

where u has been suppressed in the notation. Since DG(q) E L (o,T;Y) for

q E P by (116), the proof follows exactly as in the proof of Lemma 3.1.
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Proof of Lemma 3.3. Let c > 0 be given. By (3.3) and (1111) there exists

b6 > 0 such ths~t

IS(t;q)y - S(t;q*)yll ! CK ItyjIq - q*1

for y E Y and jq - q*1 < 6 . Since DF(q)h E LI (0,T;Y) by (115i) we have as

in the proof of Lemma 2.1 that the first term of (3.2) is bounded by

KIK 2Iq - q*j for Iq - q*j ! min (61,62). An estimate of the same form is

easily obtained for the second term of (3.2) using (H12). These estimates

complete the proof of Lemma 3.3.

Proof of Lemma 3.4. Since DG(q)u r L I(O,T;Y) by (16), the proof follows

exactly as in the proof of Lemma 3.3 using (3.4) in place of (3.2).

4. Application to a Delay-Differential Equation

In this section we apply the framework of the previous sections to the

linear delay-differential equation

n
( (t)= a0x(t) + E akx(t - qk) + u(t)

k=1

(4.1) x(O) = 7

Let P = Rn, fix r > 0, and let P = (q = (ql,q, . . . , qn 0 < qk < r

for k = 1,2,. . .,n). In equation (4.1), 17 E IR, ak E IR, k = 0,1,. .. ,n,

e Ll(-r, 0) with norm denoted by I1P11 1, u E LI (0,T), and xt (s) = x(t+s)

for t > 0, -r < s < 0. By a solution of (4.1) we mean a function x which

is absolutely continuous on I0,T) and satisfies (4.1) almost everywhere on

(0,T).

"'' ''' ili lll lll li
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Following the construction in [14], we take X = U x L (-r,O) with norm

11(7,P)II-- 1I + 11,P111 and define for q E P an operator A(q) on

D = {((,p) E X: o is abs. cont. on (-r,01, E L1(-r,0), and

P(0) = ?1}

by

n
Aq)(qV)= (a 0 P(O) + E ako( -qk) ,

k=1

Then is well known that A(q) generates a strongly continuous semigroup

S(t;q) on X satisfying S(t;q) = (v(t), yt ) where y(t) = y(t;q) denotes the

solution of (4.1) with u = 0. It is a consequence of standard results that

(111) - (113) hold in this setting.

For q = (q1 . . .An ) and q0 in P, (7,rp) E X, and w E LI (0,T) it

follows that in this example the mappings F and G of Section 3 are given by

n
(4.2) F(q,q 0 )(77,P) = ( E akY(t-qk;q 0 ), 0 )

k=l

and

n
(4.3) [G(q,, 0 )w](t) = ( akz(t-qk;q ) 0 )

k=I

for a.e. t E (0,T) where z(t;q) denotes the solution of (4.1) with u = w

and 07,V) = (0,0). It is shown in [11] that these mappings satisfy

(114) - (116) with the closed subspace Y = IR x {0). It is also shown in [11]

that F and G satisfy the differentiability hypotheses (W17) and (H9) for

(r7,Po) = x0 E D and qq 0 E P. Furthermore, their Frechet derivatives are
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n
(4.4) CDF(q)hj(t) =( - E a 0( A

and

n
(4.5) [DG(q)bI(t) = ( - F, a (- kq~ 0)

k=1

n
for q E P, b = (hip,. .. pn) IR, where y(t;q) is the solution of (4.1)

with u =0 and z(t;q) is the solution of (4.1) with (tn,V) = (0,0).

It remains to establish conditions under which (118), (1110) - (H113) are

satisfied.

Lemma 4.1. Fix q* = (q*, . .,q) E P and x E D. Then F(q,.q*)x 0 asI' n 00

defined by (4.2) satisfies (1111).

Proof: In Section 5 of 1111 it is shown that there is a constant C 2such

that

JjF~~q*)7,O)- F(q*,q*),7,0)jj 1 < C 2_ ~h 07t,0)~

n
for q E P, h E UZ n' ?7 R. Here we define 1h I E2 Ih k1. This estimate is

k=1

equivalent to (H111) with Y = IR x (0).

Lemma 4.2. Suppose x 0 = (77,P) E D. Then DF(q) as given by (4.4) satisfies

(118). Moreover, if in addition ' is of bounded variation on (-r,01, then

DF(q) satisfies (1111).
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Proof: Let A = max lakI and IhI = max IhkI Then we obtain the estimate
k k

n T
(4.6) IIDF(q)h - DF(q*)hll ! Am h I  I(t-qk;q) - ;(t-qk;q*)Idt

= 0

nT

+ Amihi E 1 j(t-qk;q*) - ;(t-qk;q*)Idt.

Now from (4.1) we obtain

T T
(4.7) J 1 ((t-qk;q) - ;(t-qk;q*)Idt < f 01(t;q) - ;(t;q*)Idt

0 0
n T

< Amjl foly(t-qj;q) - y(t-qt;q*)Idt

n T

< Am lfly(t-qj;q) - y(t-qj;q*)Idt
j=1 0

nT

+ A m E Jy(t-qj;q*) - y(t tq*qIdt+ Am= 10 tq q~*

n T

< Am jEl ly(t;q) - y(t;q*)Idt

+ A mE l y(t-qj;q*) - y(t-qj,*)dt

Now since y(t;q) = S(t;q)x 0 is differentiable with respect to q it is not

difficult to show that there are constants P and b such that
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(4.8) flY(t;q) - y(t;q*)jdt < Ojq - q*
0

whenever jq - q*< : 6. Combining (4.7) and (4.8) with (4.6) yields

(4.9) IDF(q)h - DF(q*)hil < A2 lhlnlq - q*j

n T
" Aihin f ly(t-qk;q*) - y(t-q*;q*)Idt

k=1 0

n T
"Am jhjk E0 I ( t-qk;q') - ;(t-q*;q')Idt

Since (,P) E D, we have y and ; in L I(-r,T). Therefore, the integral

terms in (4.9) approach zero as q 4 q* and (H8) holds. If ' is of bounded

variation on I-r,0, then y and ; are of bounded variation on {-r,TI. By

115, Theorem 2.1.7(b)] this implies that the integral terms in (4.9) are

O(Iq - q*j) as q -+ q* so that (1111) holds.

Lemma 4.3. Suppose u E LI (0,T). Then DG(q) as defined by (4.5) satisfies

(1110). Moreover, if in addition u is of bounded variation on [0,T], then

DG(q) satisfies (H13).

Proof: Using (4.5) in place of (4.4) one obtains the estimate (4.9) above

with y replaced by z. Now if U E L I(0,T) then z and ; are in L I(-r,T) so

that (1110) holds. Similarly, if u is of bounded variation on 10,T], then z

and z are of bounded variation on [-r,T] so that (1113) is satisfied.

5. The Algorithm

In this section we define a parameter estimation algorithm based on

quasilinearization and establish local convergence using the results of
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Section 3. Here we assume that the parameter space P is R nwith canonical

basis el, i = 1, 2, . ., n.

Given x0 E D and q E P C IRn a strong solution of (1.1) is given by

S(t;q)x 0 + Q(t;q). Here we have used the notation of Section 2. Let C be
+ we

a bounded linear mapping from X into lR and define

'Y(t;q) = C[S(t;q)x0  + Q(t;q)].

The parameter estimation algorithm is related to the following optimization

problem.

Problem 5.1. Let y. E R , j = 1, 2, ., m be data values taken at

times t. E 10, Ti, j = 1, 2, ., m, respectively. For q E P define theJ

quadratic cost function

m

J(q) = I JY(tj;q) - yjl
j=1

Find q* E P such that J(q*) < J(q) for all q E P.

The quasilinearization method defines a recursive algorithm whose

fixed point is a local solution of Problem 5.1. A more complete

exposition is given in [7]. Given an initial guess q0 E P define

qk+l = f(qk ), k = 0,1,2,3,...

where

f(q) = q - [D(q)1lb(q)

m T

D(q) = M (tj;q)m(tj;q)
j=l
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m

b(q) = E MT(tj;q)[y(tj;q) - yjI
j=1

and the matrix M(t;q) has its ith column M i(t;q) given by

Mi(t;q) = CD qS(t;q)x0 + Q(t;q)]ei, i = 1,2,3,...,n.

Lemma 5.1. Suppose the hypotheses of Lemmas 3.1 and 3.2 are satisfied.

Then M(tj;q) is continuous in q at q*.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2 and the above

definitions.

Lemma 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied.

Then there exist constants a, 6 > 0 such that

IM(tj;q) - M(tj;q*)j < alq - q*.

for Iq - q' 5 6, j = 1,2,..., m.

Proof. This is a direct consequence of Lemmas 3.3 and 3.4 and the above

definitions.

We can now prove the following convergence results. These results are

typical of quasilinearization methods and the pioofs given here are in the

same spirit as those in [7]. We obtain superlinear convergence when there

is an exact fit to data (Theorem 5.1) and linear convergence in the

presence of error (Theorem 5.2).
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Theorem 5.1. Suppose the hypotheses of Lemmas 3.1 and 3.2 are satisfied.

Moreover, assume [D(q*)] -  exists, f(q*) q*, and J(q*) 0. Then for

every c > 0 there exists 6 > 0 such that

If(q) - f(q*)l !5 Cjq -q*

for Iq - q*1 ! 6. In particular, there is a neighborhood UI of q* such that

qk -+ q* as k -+ ao whenever q0 E U.

Proof. Note that f(q*) = q* implies that b(q*) 0, or

m T
(5.1) E M (tj;q*)[-y(tj;q*) - yj] = 0.

j=1

Therefore

f(q) - f(q*) = D(q)- I D(q)(q - q*) - b(q)]

= D(q)-'[ IT(t.;q)[M(tj;q)(q - q*) - (-y(t.;q)Ij=l

= D(q) M(tj;q)[M(tj;q) - M(tj;q*)](q - q*)
j=1 J .

- D(q)-  N T(tj;q)[-y(tj;q) - )/(tj;q*) - M(tj;q*)(q - q*)]
j=1

-lm T

- D(q) E M (tj;q)[Vy(tj;q * ) - y.
j=1
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Therefore, using (5.1) we have that

(5.2) f(q) -f(q*) =

D(q) 1' E M -t~)M~j M(t.;q*)I(q - q*)
j=1 JI

-D(q)- I1 E4 (tj;q)('y(t.;q) - y(t.;q*) - M(t.;q)(q - q*)]
j=1 I

1m T T
-D(q)Y E~ [M (t.;q) - M (t.;q*)JL-y(t.;q*) - yj..

j=1 .

Note that D(q)- exists and is bounded in a neighborhood of q* since

D~*) Iexists by assumption and D(q)- is continuous at q* by Lemma 5.1.

Let c > 0 be given. Using Lemma 5.1 it is easy to see that there

exist constants P, b I > 0 such that the first term in (5.2) is bounded by

C' q-q*j for Iq - <~ !6 I Furthermore, since M(t .;q*) is the Frechet

derivative of -y(t.;q) at q*, one can show that there exist constants

P20 6 2 > 0 such that the second term of (5.2) is bounded by p2 q- *fo

I- <~ 65b2. Combining these estimates with (5.2) yields

(5.3) If(q) - f(q*)l 5

ej9)q - q*j + JDp)' MEI (t.;q) -MT(tj;q*)l [-1(tj;q*) - yl
j=1

for jq - q*1 <5 6 =min (6,, 2 ) and P9 = fl + P 2' Since J(q*) =0, the last

term in (5.3)is zero. This estimate yields the desired result.
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The following theorem does not require an exact fit to data, but does

place some technical restrictions on the behaviour of M near q*. Note

that if Lemmas 3.3 and 3.4 hold then there exists 3 > 0 such that for

0 < 6 < 3 there exists a constant K(6) such that

m T T
E IM (tj;q) - MT(tj;q*)l < K(6)jq - q*j
j=1

for Iq - q*j < 6. Let K* = lim sup K(b) and define
6 1o

(5.4) A* = K*ID(q*)-lI maxl-(tj;q*) - yjl.

Theorem 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied.

Moreover, assume [D(q*)] - exists and f(q*) = q*. Let A* be defined by

(5.4) and assume A* < 1. Then there exists 6* > 0 such that

If(q) - f(q*)l ! A*lq - q*j

for Iq - q*1 ! 6*. In particular, qk -4 q* as k 4 w whenever

1q0 - q* < 6".

Proof. This estimate is a direct consequence of (5.3).

6. Numerical Examples

In this section we consider several examples in which the above

algorithm was used to solve parameter estimation problems in delay-

differential equations. In these examples the emphasis is on delay

identification since in the abstract setting this represents an unbounded

perturbation of the generator as noted in Section 4.



-19-

With the exception of Example 6.8, the various unknown parameters are

estimated using data generated from closed-form expressions for the

solution found by the "method of steps". The algorithm is implemented by

an averaging scheme (21 which approximates the state equation and the

associated sensitivity equations by a system of ordinary differential

equations. This system is solved by a fourth-order Runge-Kutta routine.

In the one delay examples the averaging scheme is implemented with the

delay interval [-r,O divided intc sixteen equal segments, except that

Example 6.8 uses 64 equal segments. In the two delay examples the

intervals I-r2, -ri] and I-rl,O are divided into sixteen equal segments.

All computations were done on a VAX 11/750 minicomputer or a SUN

Microsystem at the Institute for Computer Applications in Science and

Engineering (ICASE).

Example 6.1. This example illustrates the rapid convergence of the method

for a single unknown parameter--the delay in the following equation--with

an initial guess which is an order of magnitude greater than the "true

value" of r = 1.0. The equation and the results of the iteration are given

below.

; (t) = -2x(t) + 3x(t-r), t > 0

x(t) = t + 1, t < 0

iterate r error

0 10.000 34.056

1 1.299 0.955

2 0.946 0.175

3 0.989 0.115

4 0.987 0.115

The convergence of the states to ten data points on the interval f0,21 is

illustrated in Figure 1.
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Example 6.2. The data is the same as for Example 6.1, however in this case

the algorithm is asked to estimate the coefficients as well as the delay.

The equation shows an insensitivity to the individual coefficients which

leads to the inaccuracy in the converged estimates. In fact, because of

errors introduced by the averaging scheme for computing the state, the

estimated values fit the data better than the "true values" used to compute

the data by the method of steps. The "true values" are a = -2, b = 3, and

r = 1. The equation and the results of the iteration are given below:

{(t) = ax(t) + bx(t-r), t > 0

x(t) = t + 1, t < 0

iteratp a b r error

0 -4.000 7.000 2.000 3.379

1 -0.815 3.537 1.184 2.968

2 -1.596 3.342 1.122 0.775

3 -2.403 3.713 1.002 0.188

4 -2.250 3.361 1.015 0.094

5 -2.352 3.483 1.006 0.093

The convergence of the states is illustrated in Figure 2.

Example 6.3. This case illustrates the effect of a forcing function on the

state equation. The nonhomogeneous delay-differential equation

((t) = ax(t) + bx(t-r) + u(t), t > 0

X(t) = t + 1, t < 0

where

0 t < 0.1
u(t) = I , t > 0.1
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is solved in closed form by the method of steps with parameter values

a = -2, b = 3, r = 1 as in Example 6.2. The results of the parameter

estimation algorithm are given below:

iterate a b r error

0 -4.000 7.000 2.000 4.0527

1 1.022 3.165 1.140 39.2657

2 -2.637 23.652 1.168 24.9577

3 -5.979 28.631 1.141 11.6964

4 -8.034 23.250 1.118 3.5425

5 -5.167 5.417 1.028 2.0471

6 -1.239 4.195 1.008 4.8981

7 -2.861 6.222 1.005 1.8930

8 -2.485 3.795 0.998 0.0819

9 -2.115 3.201 1.013 0.0724

10 -2.247 3.380 0.998 0.0691

The results are similar to those of Example 6.3, except that the solution

has become somewhat more sensitive to the coefficients.

Example 6.4. This example indicates the ability of the algorithm to

estimate two unknown delays. The algorithm converges rapidly from a

relatively poor initial guess. The "true values" are r1 = 1.0 and

r2 = 2.0. The equation and the results of the parameter estimation

algorithm are given below and the convergence of the states to ten data

points on the interval 10,31 is illustrated in Figure 3.

{ (t) = -x(t) + x(t-r1) - x(t-r 2 ), t > 0

x(t) = t + 1, t < 0
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iterate r1 r2  error

0 0.600 4.000 7.500

1 1.569 3.216 2.295

2 1.146 2.100 0.100

3 0.977 1.998 0.034

4 0.978 2.003 0.032

Example 6.5. The equation and data for this example are the same as in

Example 6.4. In this case the initial guess reverses the order of the
"true" delay values. The results of this iteration are given below and
covergence of the states on the interval [0,31 is illustrated in Figure 4.

iterate rI  r2  error

0 2.000 1.000 2.460

1 0.483 1.151 1.379

2 1.561 2.014 0.788

3 1.100 2.072 0.077

4 0.980 2.002 0.033

Example 6.6. In this case the algorithm is asked to estimate parameters in

a delay model of a system with no delay. Ten data points on the interval

10,21 are computed from the exponential solution of

;(t) = -2x(t)
x(0) = 1

and the algorithm is asked to estimate unknown parameters in the system

f(t) = ax(t) + bx(t-r), t > 0
x(t) = t + 1, t < 0
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The first four iterations are given below:

iterate a b r error

0 -3.000 3.000 2.000 1.2577

1 -3.060 -0.637 1.947 0.2551

2 -1.687 0.235 1.981 0.1144

3 -1.967 0.025 1.985 0.0110

4 -2.000 0.000 1.986 0.0001

On the fifth iteration the algorithm aborted when it was asked to invert a

nearly singular matrix. This reflects the fact that at the true parameter

values the state is completely insensitive to the delay.

Example 6.7. This case is the same as the previous example except that the

data is taken from the closed form solution of the nonhomogeneous undelayed

equation

((t) = -2x(t) + u(t)
x(0) I

where u is the same step function as in Example 6.3. The results are

similar to those of the previous example.

iterate a b r error

0 -3.000 3.000 2.000 1.3135

1 -2.848 0.099 1.804 0.5121

2 -1.841 0.138 2.401 0.0811

3 -1.971 0.003 2.508 0.0197

Example 6.8. In this example we consider the second-order equation

d2x( 2 dx
d 2 + W2x(t) + a0 L(t-r) + alx(t-r) = u(t), t > 0,

x(t) = 1, t < 0,
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where u(t) is the step function of Example 6.3. This equation models a

harmonic oscillator with retarded damping and restoring forces. In 1131 a

quasilinearization algorithm is used to estimate coefficients in this

equation. The methods of this paper allow the delay r to be added to the

set of unknown parameters. For this example the averaging method was used

to compute "data" values for the parameter estimation algorithm with "true"

values of w = 6, a0 = 2.5, a1 = 9, and r = 1. The results of the iterative

algorithm are given below and the convergence of the states (displacement

and velocity) on the interval 10, 21 is illustrated in Figures 5 and 6.

iterate w a0 a1 r error

0 4.100 4.600 6.300 1.500 15.212

1 5.073 6.025 -8.338 0.918 15.181

2 6.705 4.710 -0.682 1.524 12.389

3 6.188 -14.677 -4.838 1.102 31.950

4 5.902 12.347 8.396 1.068 25.234

5 5.964 2.994 8.980 1.061 2.186

6 5.995 2.416 9.016 1.004 0.344

7 6.000 2.503 8.999 1.000 0.007
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